WO2004086480A1 - Method for cleaning plasma processing apparatus and plasma processing apparatus - Google Patents

Method for cleaning plasma processing apparatus and plasma processing apparatus Download PDF

Info

Publication number
WO2004086480A1
WO2004086480A1 PCT/JP2004/004016 JP2004004016W WO2004086480A1 WO 2004086480 A1 WO2004086480 A1 WO 2004086480A1 JP 2004004016 W JP2004004016 W JP 2004004016W WO 2004086480 A1 WO2004086480 A1 WO 2004086480A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
plasma
gas
oxygen
hydrogen
Prior art date
Application number
PCT/JP2004/004016
Other languages
French (fr)
Japanese (ja)
Inventor
Hiraku Ishikawa
Kohei Kawamura
Yasuo Kobayashi
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2004086480A1 publication Critical patent/WO2004086480A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • H01J37/32862In situ cleaning of vessels and/or internal parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching

Definitions

  • the present invention relates to a plasma processing apparatus cleaning method and a plasma processing apparatus.
  • the present invention relates to a cleaning method for removing a fluorine-added carbon film adhered inside a processing vessel of a plasma processing apparatus, and a plasma processing apparatus having a cleaning function.
  • Copper wiring is mainly used as the wiring pattern for integrated circuits, and a fluorine-added carbon film (hereinafter referred to as “CF film”) with a low dielectric constant attracts attention as an interlayer insulating film to insulate it.
  • This CF film is placed on a mounting table by, for example, converting a processing gas containing carbon (C) and fluorine (F) into a plasma in a plasma processing apparatus capable of converting the processing gas into plasma in a vacuum container.
  • a film is formed on the surface of the formed substrate.
  • the CF film adheres to the wall surface of the vacuum vessel and the vicinity of the mounting table, and the film formation process proceeds.
  • the adhered film is peeled off. Therefore, after performing the film forming process a predetermined number of times, a predetermined cleaning is performed to remove these adhered films.
  • this cleaning is performed by converting oxygen (O 2 ) gas into plasma in a vacuum vessel and reacting the oxygen plasma with the deposited film.
  • oxygen O 2
  • this method although the CF film adhering to the vessel is removed, a phenomenon occurs in which another organic substance adheres to the vacuum vessel.
  • the new deposits are carboxyl groups (one COO), ketones
  • An organic substance with a bond such as a group (one CO), which has a strong oxidizing power of oxygen plasma during cleaning. It breaks the bond between carbon and fluorine in the CF film, and the carbon bond formed by this breaks. It is generated by the binding of oxygen to the hands and remains as organic matter without evaporating.
  • the organic matter containing carbon and oxygen adheres to the inner wall of the vacuum vessel in this way, the oxygen contained in the organic matter will be scattered into the gas phase during the next film forming process, and the cause of the particles may be reduced. It may cause the film to be etched, exert an etching action, or form an oxygen-bonded film, thereby deteriorating the film quality of the obtained film. Therefore, removal of the organic matter is being studied. At this time, a method of suppressing the generation of the organic substance by weakening the oxidizing power of oxygen plasma is considered. Are considering.
  • the oxygen gas and the hydrogen gas are simultaneously supplied into the processing chamber to generate plasma by the above-described conventional technique, and the carbon fluoride-based deposits are removed, the oxygen plasma and the oxygen plasma are generated in the processing chamber.
  • Hydrogen plasma At the same time, the oxidizing power of the oxygen plasma is hindered by the reducing power of the hydrogen plasma during the cleaning of the fluorocarbon-based deposits, and the cleaning (etching) effect of the oxygen plasma is weakened. It will be small.
  • the reducing power of the hydrogen plasma directly affects the oxidizing power of the oxygen plasma during the above-described cleaning, it includes C and ⁇ generated when the CF film is cleaned by the oxygen plasma.
  • the reducing power of hydrogen plasma is weakened, and the organic substances are decomposed to some extent but remain in large quantities without being decomposed.
  • the present invention has been made under such circumstances, and its purpose is to remove the fluoridated carbon film adhered to the inside of the processing vessel by first decomposing the fluoridated carbon film with oxygen plasma and then hydrogen By decomposing organic substances containing carbon and oxygen generated during the decomposition of the fluorinated carbon film by the above-mentioned plasma, the deposits in the processing vessel can be reliably removed without lowering the cleaning speed.
  • the present invention relates to a method for cleaning a plasma processing apparatus that converts a processing gas containing carbon and fluorine into a plasma in a processing vessel and performs a predetermined processing on a substrate.
  • a hydrogen plasma is generated in the processing vessel, and a second tallying step of decomposing an organic substance containing carbon and oxygen in the processing vessel with the plasma is provided. ing.
  • the plasma processing apparatus guides microwaves to a flat waveguide having a large number of slots formed on one surface thereof, and radiates a microphone mouth wave from the slots by guiding the microwaves to a surface having the slots formed therein.
  • the use of a configuration in which the plasma is generated by using this method is effective because a plasma with a high electron density can be generated.
  • the method of the present invention is, for example, a plasma processing apparatus in which a processing gas containing carbon and fluorine is converted into plasma in a processing vessel to perform a predetermined processing on a substrate.
  • a substrate processing unit for supplying the processing gas to the processing container to convert the processing gas into plasma and performing a predetermined processing on the substrate; an oxygen gas, an argon gas, and a helium gas in the processing container; And supplying an inert gas selected from neon gas, talipton gas, and xenon gas to convert the oxygen gas and the inert gas into plasma, and decompose the fluorine-added carbon film adhered to the processing container by the oxygen plasma.
  • a hydrogen gas and an inert gas selected from argon gas, helium gas, neon gas, krypton gas, and xenon gas are supplied to the processing container, and the hydrogen gas and the inert gas are turned into plasma to form the hydrogen plasma.
  • oxygen is introduced into the processing container.
  • the oxygen plasma processing performing means and the hydrogen plasma processing performing means such that a gas is supplied to perform the processing by the oxygen plasma, and then a hydrogen gas is supplied into the processing container to perform the processing by the hydrogen plasma.
  • the control is performed by a plasma processing device, which includes a control unit for controlling and a control unit.
  • oxygen plasma is generated in the processing vessel in the first cleaning step to remove the fluorine-added carbon film. Decompose completely.
  • most of the fluorine and carbon, which are the decomposition products of the fluorine-added carbon film are discharged to the outside of the device and removed, and part of the carbon reacts with the oxygen plasma to produce organic substances containing carbon and oxygen. I do.
  • the organic matter is decomposed by generating hydrogen plasma in the processing vessel, and carbon and oxygen, which are decomposition products at this time, are discharged to the outside of the apparatus. Remove.
  • the fluorine-added carbon film is completely decomposed by oxygen plasma in the first cleaning step, and then the first cleaning step is performed in the second cleaning step. Since the organic matter generated in step (1) is decomposed and removed by hydrogen plasma, the cleaning inside the processing vessel can be performed efficiently without lowering the tarnishing speed.
  • FIG. 1 is a cross-sectional view showing an overall configuration of an embodiment of a plasma processing apparatus to which the present invention is applied.
  • FIG. 2 is a plan view showing a part of a second gas supply unit provided in the plasma processing apparatus of FIG.
  • FIG. 3 is a perspective view showing an antenna unit provided in the plasma processing apparatus of FIG.
  • FIG. 4 is a process chart for explaining the method of the present invention.
  • reference numeral 1 denotes, for example, a processing vessel composed of a vacuum vessel formed entirely in a cylindrical shape.
  • the side wall and bottom of the processing vessel 1 are composed of a conductor, for example, an aluminum alloy, and the inner wall has For example, a protective film made of aluminum oxide is formed.
  • a mounting table 11 for mounting a substrate, for example, a semiconductor wafer (hereinafter referred to as a wafer) is provided substantially at the center of the processing chamber 1.
  • the mounting table 1 for example, aluminum nitride (A 1 N) Moshiku consists Ri by the oxidation Aruminiu beam (A 1 2 0 3), the heater have been found provided (not shown) therein, mounting surface It is configured as an electrostatic chuck.
  • the mounting table 11 is connected to a high frequency power supply for bias 12 having a frequency of, for example, 13.56 MHz.
  • the ceiling of the processing vessel 1 is open, and this section is opposed to the mounting table 11 via a sealing member (not shown) such as an o-ring.
  • a first gas supply unit 2 configured as described above is provided.
  • the gas supply unit 2 is configured Ri by the example A 1 2 O 3, ⁇ base 1 1 and the opposing first gas supply holes 2 1 The surface number of the is formed.
  • a gas flow path 22 communicating with one end of the gas supply hole 21 is formed in the gas supply section 2, and one end of the first gas supply path 23 is connected to the gas flow path 22.
  • the other end of the first gas supply path 23 is plasma gas such as argon (Ar) gas, helium (He) gas, krypton (Kr) gas, or neon (Ne) gas. , Xenon (Xe) gas, etc.
  • a click leaning gas oxygen ( ⁇ 2) gas Suya, hydrogen (H 2) is supplied source 2 5, 2 6 and respectively connected to gas, of these
  • the gas is sequentially supplied to the gas flow path 22 through the first gas supply path 23, and is uniformly supplied to the space below the first gas supply section 2 through the gas supply hole 21. Can be supplied.
  • the processing vessel 1 is provided between the mounting table 11 and the first gas supply unit 2, for example, a second gas having a substantially circular planar shape so as to partition between them.
  • a supply unit 3 is provided.
  • the second gas supply unit 3 is made of, for example, a conductor such as aluminum (A1) alloy containing magnesium (Mg) or stainless steel with A1 addition.
  • the second gas supply hole 31 is formed.
  • a grid-like gas flow path 32 communicating with one end of the gas supply hole 31 is formed inside the gas supply section 3, for example, as shown in FIGS. 1 and 2, a grid-like gas flow path 32 communicating with one end of the gas supply hole 31 is formed.
  • One end of the second gas supply path 33 is connected to the flow path 32.
  • the second gas supply section 3 is formed with a number of openings 34 so as to penetrate the gas supply section 3.
  • the openings 34 are for allowing the plasma and the processing gas in the plasma to pass through the space below the gas supply unit 3.
  • the openings 34 are formed between adjacent gas channels 32. I have.
  • the second gas supply section 3 is connected to a processing gas containing carbon and fluorine, for example, a C 5 F 8 gas supply source 35 via a second gas supply path 33.
  • the gas sequentially flows into the gas flow path 32 via the second gas supply path 33, and flows into the space below the second gas supply section 3 via the gas supply hole 31.
  • V1 to V4 are flow control valves provided on each supply line. These flow control valves are configured by combining an open / close valve and a flow control unit. The opening and closing of these valves V 1 to V 4 and the control of the flow rate are performed by the control unit C.
  • the antenna part 4 has a flat antenna body 41 having a circular planar shape and an opening on the lower surface side, and a flat antenna body 41 having an opening on the lower surface side.
  • the antenna body 41 and the slot plate 42 are provided with a disk-shaped slot plate 42 on which a number of slots are formed.
  • the antenna body 41 and the slot plate 42 are made of copper (Cu) or aluminum (A1). ), Which form a flat hollow circular waveguide.
  • a slow wave plate 43 made of a material is provided between the slot plate 4 2 and the antenna body 4 1, for example, A 1 2 O 3 and oxide Kei element (S i 0 2), a low-loss dielectric such as nitride Kei element (S i 3 N 4)
  • a slow wave plate 43 made of a material is provided.
  • the slow wave plate 43 is for shortening the wavelength of the microwave to shorten the guide wavelength in the waveguide.
  • a radial line slot antenna is composed of the antenna body 41, the slot plate 42, and the slow wave plate 43.
  • the antenna unit 4 configured as described above is mounted on the processing container 1 via a sealing member (not shown) so that the slot plate 42 is in close contact with the cover plate 13.
  • the antenna section 4 is connected to an external microwave generating means 45 via a coaxial waveguide 44, and for example, a microwave having a frequency of 2.45 GHz or 8.3 GHz is supplied. It's eel.
  • the outer waveguide 44 A of the coaxial waveguide 44 is connected to the antenna body 41, and the center conductor 44 B is inserted through the opening formed in the slow wave plate 43. It is connected to the cutout plate 42.
  • the slot plate 42 has a large number of slots 46 for generating, for example, circularly polarized waves.
  • This slot 46 is slightly separated in a substantially T shape.
  • a pair of slots 46a and 46b arranged as a pair is formed as a set, for example, in a concentric or spiral shape.
  • the micro wave is transmitted from the slot plate 42. Emitted as a nearly plane wave.
  • the slots 46a and the slots 46b are arranged so as to be substantially orthogonal to each other, a circularly polarized wave including two orthogonally polarized components is emitted.
  • the antenna section 4 includes a cooling block 5 in which a cooling water flow path 51 is formed, and the heat stored in the first gas supply section 2 by the cooling block 5 is transmitted to the antenna section. 4 to be absorbed.
  • an exhaust port 14 connected to a vacuum pump (not shown) is provided at the bottom of the processing vessel 1, so that the inside of the processing vessel 1 can be evacuated to a predetermined pressure as required.
  • FIG. 4 (a) which is the processing step of the present invention
  • a wafer W having copper wiring formed on the surface for example, is placed in a processing vessel 1 via a gate pulp (not shown). Carry in and place it on the mounting table 1 1. Subsequently, the inside of the processing vessel 1 is evacuated to a predetermined pressure, the valve V 1 is opened, and a plasma gas, for example, Ar gas is supplied to the first gas supply section 2 through the first gas supply path 23.
  • a plasma gas for example, Ar gas is supplied to the first gas supply section 2 through the first gas supply path 23.
  • a processing gas for example, C 5 F 8 gas is supplied to the second gas supply section 3 through the second gas supply path 33 at a predetermined flow rate.
  • a processing gas for example, C 5 F 8 gas is supplied to the second gas supply section 3 through the second gas supply path 33 at a predetermined flow rate.
  • supplied at 150 sccm For example, the inside of the processing vessel 1 is maintained at a process pressure of 7 Pa, and a bias voltage of 13.56 MHz and 200 W or less is applied to the mounting table 11. Set the surface temperature to 350 ° C.
  • microwave generation means microwave generation means
  • the microwave propagates in the coaxial waveguide 44 in the TM mode, the TE mode, or the TEM mode, and reaches the slot plate 42 of the antenna unit 4.
  • the light propagates radially from the center of the slot plate 42 toward the peripheral region via the inner conductor 44 B of the coaxial waveguide.
  • the microwaves from the slot pairs 46a and 46b pass through the cover plate 13 and the first gas supply unit 2 to the processing space below the gas supply unit 2. Released.
  • the force par play sheet 1 3 and the first gas supply unit 2 is configured Ri by the microwave transmissive material capable of example A 1 2 O 3, acts as a microwave transmission window, microwave Transmits these efficiently.
  • the circularly polarized wave is uniformly emitted 1: in the plane of the slot plate 42, and the electric field in the processing space below this The density is made uniform.
  • the energy of the microphone mouth wave excites a high-density plasma with a uniform density over the entire processing space.
  • the plasma generated in this way flows into the processing space below the gas supply unit 3 through the opening 34 of the second gas supply unit 3, and from the gas supply unit 3 to the processing space. Activate the C 5 F 8 gas supplied to form a reactive species.
  • the active species transported onto the wafer W are formed as a CF film.
  • the wafer W on which the CF film has been formed is unloaded from the processing chamber 1 via a gate valve (not shown).
  • CF film formed at the corners of the pattern on the surface of the wafer W was scraped off by the sputter etching effect of the Ar ions drawn into the wafer W by the bias voltage for plasma attraction, and the frontage was widened.
  • a CF film may be formed from the bottom of the pattern groove, and the CF film may be embedded in the recess.
  • Such a CF film deposition process is performed on a plurality of, for example, two wafers.
  • the first cleaning step is performed as shown in Fig. 4 (b).
  • -out valve V 2 opens, ⁇ 2 gas and A r gas from the first gas supply channel 2 3, H e gas, N e gas,
  • An inert gas selected from Kr gas and Xe gas, for example, Ar gas is supplied at a predetermined flow rate, for example, SOO sccm and 200 sccm, respectively.
  • a microwave microwave of 2.45 GHz and 2000 W is supplied from the microwave generating means to excite the plasma as described above, and the plasma is supplied from the gas supply unit 2 by the plasma.
  • Activate (plasma) O 2 gas Activate (plasma) O 2 gas.
  • the O 2 gas is converted into plasma to generate active species (plasma) of oxygen, such as radicals and ions, and the oxygen plasma reacts with the CF film adhered to the inside of the processing chamber 1.
  • the oxygen plasma cuts the bond between C and F in the CF film, and most of the C and F decomposition products generated by this evaporate and scatter, and are processed through the exhaust port 14. Discharged outside of container 1.
  • a part of C of the decomposition product is oxidized by oxygen plasma and becomes a new organic substance having a bond between C and o such as a carboxyl group (one COO) and a ketone group (—CO). Attached inside 1. After cleaning with oxygen plasma for about 30 seconds, for example, valve V2 is closed, and this process is completed.
  • a second cleaning process using hydrogen plasma is performed. That is, the first cleaning by the oxygen plasma in the processing vessel 1 is completed, and the first cleaning step and the process pressure (13.3 Pa) are performed in a state where there is no oxygen in the processing vessel 1.
  • the valve V 3 was opened, and the first gas supply path 2 3 From H 2
  • the gas and an inert gas selected from the group consisting of Ar gas, He gas, Ne gas, Kr gas, and Xe gas, for example, Ar gas, are supplied at predetermined flow rates, for example, 300 sccm and 200 sccm, respectively.
  • the second cleaning step is preferably performed after the first cleaning step in a state where there is no oxygen in the processing vessel 1, so that the H 2 gas and the inert gas described above are removed. It is preferable to supply microwaves as described below some time after flowing into the processing vessel 1. Therefore, after the first cleaning step, a purging step for substantially purging residual oxygen in the processing container 1 may be introduced before the second cleaning step. In this case, only an inert gas serving as a purge gas may be supplied into the processing vessel 1 in the purge step.
  • a microphone mouth wave is supplied from the microwave generating means under the same conditions (2.45 GHz, 2000 W) as in the first talling process, and the plasma is excited as described above.
  • This plasma activates H 2 gas.
  • the H 2 Ri by the plasma gases, such as hydrogen active species consisting of radicals and ions of H (plasma) is generated, the hydrogen plasma react with organic material containing C and o adhered inside the processing vessel 1 To decompose the organic matter.
  • the hydrogen plasma cuts the bond between c and o in the organic matter, and the decomposition products of C and o generated by this evaporate and scatter, and are discharged outside the processing vessel 1 through the exhaust port 14. Is done.
  • valves VI and V3 are closed, and this process is completed.
  • the wafer W is loaded into the processing chamber 1 as described above, and the above-described CF film formation processing is performed again.
  • the processing step of performing a predetermined processing on the wafer W and the CF film that is performed after the processing step and decomposes into the processing chamber by oxygen plasma are decomposed.
  • the configuration for performing the processing step corresponds to a substrate processing execution unit
  • the configuration for performing the first cleaning step corresponds to the oxygen plasma processing execution unit
  • the second configuration corresponds to a hydrogen plasma processing execution unit.
  • the substrate processing execution unit and the control unit C perform the first cleaning step after the processing step, and then perform the second cleaning step based on the recipe prepared in advance.
  • the oxygen plasma processing execution means and the hydrogen plasma processing execution means are controlled respectively.
  • the processing vessel 1 when removing the CF film adhered to the processing vessel 1 by cleaning, first, oxygen plasma is generated in the processing vessel 1, and the CF film is decomposed by the plasma, and then the processing is performed. Since a plasma of hydrogen is generated in the vessel 1 and the organic matter containing C and O is decomposed and removed by this plasma, the residue in the processing vessel 1 can be maintained while maintaining a high cleaning rate. Efficient cleaning can be performed by preventing the formation of CF films and new organic substances that could not be completely removed by cleaning.
  • the CF film adhering to the inside of the processing vessel 1 reacts with the oxygen plasma to completely decompose the CF film by the oxidizing power of the oxygen plasma. Most of the decomposition products F and C are scattered and removed. At this time, if the oxidizing power of the oxygen plasma is strong, new organic substances having a bond between c and o, such as a carboxyl group (1-COO) and a ketone group (1-CO), adhere to the inner wall of the processing vessel 1.
  • the decomposing ability of the CF film by oxygen plasma is also weakened.
  • the cleaning speed is significantly reduced and cleaning takes too long.
  • the present invention secures high cleaning efficiency by selectively using the oxidizing power of oxygen plasma and the reducing power of hydrogen plasma according to the object to be removed.
  • the operation and the effect of the configuration in which the oxygen gas and the hydrogen gas are simultaneously introduced into the processing vessel 1 are different. It is completely different.
  • the first cleaning is first performed by oxygen plasma, and then the second cleaning is performed by hydrogen plasma.
  • the deposits in (1) can be reliably removed, and efficient cleaning can be performed.
  • the generation of deposits in the processing chamber 1 is suppressed, there is no risk of deteriorating the film quality of the film obtained during the next film forming process, and the occurrence of a temporal change in the film quality is suppressed, and a stable film quality is secured. be able to.
  • examples performed to confirm the effects of the present invention will be described.
  • O 2 gas and Ar gas were introduced into the processing vessel, oxygen plasma was generated under the following oxygen plasma processing conditions, and the CF film attached inside the processing vessel was cleaned.
  • emission spectroscopy CO emission was observed.
  • This luminescence is generated when the CF film is decomposed by oxygen plasma and the decomposition products evaporate. Therefore, the point at which no light emission was observed was the point at which the decomposition of the CF film was completed, and the oxygen plasma treatment was terminated at this timing (tally Jung time: 30 seconds).
  • the emission was confirmed by emission spectroscopy, and the emission of the deposits different from the CF film was observed.
  • H 2 gas and Ar gas were introduced into the processing vessel, hydrogen plasma was generated under the following hydrogen plasma processing conditions, and the deposits inside the processing vessel were cleaned. When this treatment was confirmed by emission spectroscopy, all deposits were removed after 10 seconds.
  • Microwave 2 ⁇ 45 GHz, 200 W
  • the plasma processing apparatus to which the present invention is applied is not limited to the one using the radial line slot antenna as the plasma generation source, but may use other plasma generation systems, such as a parallel plate system, an electron cyclotron resonance (ECR) system,
  • ECR electron cyclotron resonance
  • the present invention can also be applied to a plasma processing apparatus that generates plasma using a plasma generation method such as an inductively coupled plasma generation method.
  • the plasma processing apparatus performs processing other than film formation processing on the wafer W, for example, plasma processing using a gas such as F 2 , N 2 , NF 3, COF 2, CO, and H 20 turned into plasma.
  • a gas such as F 2 , N 2 , NF 3, COF 2, CO, and H 20 turned into plasma.
  • the present invention is also applicable to the case where the CF film adhered to the inside of the processing vessel is removed by performing the process.
  • He gas, Ne gas, Kr gas, and Xe gas are used as the inert gas in the first and second tungsten processes in place of Ar gas. You can use it.
  • the fluorine-added carbon film adhered to the processing vessel of the plasma processing apparatus can be efficiently removed.
  • the present invention is useful for removing a CF film adhering to the inside of a processing vessel in an apparatus for performing plasma processing by converting a gas into a plasma in the processing vessel.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

A method for cleaning a CF film adhering to the inner surface of a plasma processing chamber where a process for forming a CF film on an object is conducted is disclosed. First, a plasma of oxygen is generated within the processing chamber for decomposing the CF film adhering to the inner surface of the processing chamber, and most of F and C as the decomposition products are removed therefrom. A plasma of hydrogen is then generated within the processing chamber for decomposing and removing organic matter containing C and O, which is adhering to the inner surface of the processing chamber. Since the CF film is decomposed by the oxygen plasma and the organic matter containing C and O is decomposed by the hydrogen plasma, cleaning of the processing chamber can be surely conducted while assuring a high cleaning rate.

Description

明細書  Specification
プラズマ処理装置のク リ一二ング方法及びプラズマ処理装置 技術分野  TECHNICAL FIELD The cleaning method of a plasma processing apparatus and the plasma processing apparatus
本発明はプラズマ処理装置のク リーニング方法, 及びプラズマ処理 装置に関するものである。 発明の背景  The present invention relates to a plasma processing apparatus cleaning method and a plasma processing apparatus. Background of the Invention
本発明は, プラズマ処理装置の処理容器内部に付着したフッ素添加 カーボン膜を除去するためのク リーニング方法, 及ぴク リー ング機能 を有するプラズマ処理装置に関する。  The present invention relates to a cleaning method for removing a fluorine-added carbon film adhered inside a processing vessel of a plasma processing apparatus, and a plasma processing apparatus having a cleaning function.
集積回路の配線パターンと しては主に銅配線が用いられ, これを絶 縁するための層間絶縁膜と して,誘電率の低いフッ素添加カーボン膜(以 下 「C F膜」 という) が注目 されている。 この C F膜は, 例えば真空容 器内にて処理ガスをプラズマ化し得るプラズマ処理装置内において, 炭 素 (C ) とフッ素 (F ) を含む処理ガスをプラズマ化することにより, 載置台に載置された基板の表面に対して成膜される。 このよ うな処理を 行う と, 真空容器の壁面や载置台周辺にも C F膜が付着してしまい, 成 膜処理が進み, この膜の膜厚がある程度の厚さになると, 付着した膜が 剥がれてパーティクルの原因となることから, 前記成膜処理を所定回数 行った後, これらの付着した膜を除去するために所定のク リーニングが 行われている。  Copper wiring is mainly used as the wiring pattern for integrated circuits, and a fluorine-added carbon film (hereinafter referred to as “CF film”) with a low dielectric constant attracts attention as an interlayer insulating film to insulate it. Have been. This CF film is placed on a mounting table by, for example, converting a processing gas containing carbon (C) and fluorine (F) into a plasma in a plasma processing apparatus capable of converting the processing gas into plasma in a vacuum container. A film is formed on the surface of the formed substrate. When such a process is performed, the CF film adheres to the wall surface of the vacuum vessel and the vicinity of the mounting table, and the film formation process proceeds. When the film thickness reaches a certain thickness, the adhered film is peeled off. Therefore, after performing the film forming process a predetermined number of times, a predetermined cleaning is performed to remove these adhered films.
このク リーニングは, 従来では真空容器内にて酸素 ( O 2 ) ガスを プラズマ化し, この酸素プラズマを付着した膜に反応させることによ り 行っていた。 し.かしながらこの手法では, 容器内に付着した C F膜は除 去されるものの, 真空容器内に別の有機物が付着するという現象が発生 してしま う。 この新たな付着物はカルボキシル基 (一 C O O ), ケ トン 基 (一 C O ) 等の結合を備えた有機物であり, ク リーニング時の酸素プ ラズマの酸化力が強く, C F膜の炭素とフッ素との結合を切断した上, これによつて生じる炭素の結合手に酸素が結合することによ り発生し, そのまま蒸発せずに有機物と して残存するものである。 Conventionally, this cleaning is performed by converting oxygen (O 2 ) gas into plasma in a vacuum vessel and reacting the oxygen plasma with the deposited film. However, with this method, although the CF film adhering to the vessel is removed, a phenomenon occurs in which another organic substance adheres to the vacuum vessel. The new deposits are carboxyl groups (one COO), ketones An organic substance with a bond such as a group (one CO), which has a strong oxidizing power of oxygen plasma during cleaning. It breaks the bond between carbon and fluorine in the CF film, and the carbon bond formed by this breaks. It is generated by the binding of oxygen to the hands and remains as organic matter without evaporating.
このよ うに真空容器の内壁などに前記炭素と酸素とを含む有機物が 付着していると, 次の成膜処理時に有機物に含まれる酸素が気相中に飛 散していき, パーティクルの原因となったり, エツチング作用を及ぼし たり, 酸素結合膜を形成したり してしまい, 得られる膜の膜質を悪化さ せてしま うおそれがある。 そのため前記有機物を除去することを検討し ている。 この際酸素プラズマの酸化力を弱めることにより前記有機物の 発生を抑える手法が考えられ, 本発明者らは, 酸素プラズマの酸化力と 水素プラズマの還元力との組み合わせによるタ リ一二ング手法を検討し ている。  If the organic matter containing carbon and oxygen adheres to the inner wall of the vacuum vessel in this way, the oxygen contained in the organic matter will be scattered into the gas phase during the next film forming process, and the cause of the particles may be reduced. It may cause the film to be etched, exert an etching action, or form an oxygen-bonded film, thereby deteriorating the film quality of the obtained film. Therefore, removal of the organic matter is being studied. At this time, a method of suppressing the generation of the organic substance by weakening the oxidizing power of oxygen plasma is considered. Are considering.
ところで, 酸素ガスに水素ガスを添加したク リーニングガスのプラ ズマによ り, 処理容器内に付着したフッ化炭素系付着物を除去する構成 (例えば, 日本国特許公開公報 特開平 7— 7 8 8 0 2号参照) が提案 されている。 この例は, 酸素ラジカルとフッ化炭素系付着物との反応に より発生したフッ素ラジカルによる処理容器内の各種部品のエッチング を抑制して, 前記各種部品の消耗を抑制することを目的と し, このため に酸素ガスと同時に水素ガスを処理容器内に導入している。 つまり水素 ガスは, 水素ラジカルをフッ素ラジカルと反応させることによ り, フッ 素ラジカルを除去するために酸素ガスと共に供給されるものであり, 前 記炭素と酸素とを含む有機物を分解除去する 目的で供給されるものでは なレ、。  By the way, a configuration in which the fluorocarbon-based deposits adhering to the inside of the processing vessel are removed by a plasma of a cleaning gas in which hydrogen gas is added to oxygen gas (for example, see Japanese Patent Application Laid-Open No. 7-7898). 802) has been proposed. The purpose of this example is to suppress the etching of various components in the processing vessel by fluorine radicals generated by the reaction between oxygen radicals and the fluorocarbon-based deposits, and to suppress the consumption of the various components. For this purpose, hydrogen gas is introduced into the processing vessel simultaneously with oxygen gas. In other words, hydrogen gas is supplied together with oxygen gas to remove fluorine radicals by reacting hydrogen radicals with fluorine radicals. The purpose is to decompose and remove the organic matter containing carbon and oxygen. It is not supplied with.
従って上述の従来の技術による方法によって, 処理容器内に酸素ガ スと水素ガスを同時に供給してプラズマ化させ, フッ化炭素系付着物の 除去を行おう とすると, 処理容器内では酸素プラズマと水素プラズマが 同時に発生するので, フッ化炭素系付着物のク リーニング時に水素プラ ズマの還元力によ り酸素プラズマの酸化力が妨げられ, 酸素プラズマに よるク リーニング (エッチング) 作用が弱まり, ク リーニング速度が小 さく なつてしま う。 Therefore, when the oxygen gas and the hydrogen gas are simultaneously supplied into the processing chamber to generate plasma by the above-described conventional technique, and the carbon fluoride-based deposits are removed, the oxygen plasma and the oxygen plasma are generated in the processing chamber. Hydrogen plasma At the same time, the oxidizing power of the oxygen plasma is hindered by the reducing power of the hydrogen plasma during the cleaning of the fluorocarbon-based deposits, and the cleaning (etching) effect of the oxygen plasma is weakened. It will be small.
またこのよ うに前記ク リ一エング時に水素プラズマの還元力が酸素 のプラズマの酸化力に直接作用してしま うので, 酸素プラズマによる C F膜のク リーニングの際に発生する Cと◦とを含む有機物の分解時には: 水素ブラズマの還元力が弱まつてしまい, 前記有機物は多少分解される ものの, 分解できずに残存してしま う量が多い。  In addition, since the reducing power of the hydrogen plasma directly affects the oxidizing power of the oxygen plasma during the above-described cleaning, it includes C and ◦ generated when the CF film is cleaned by the oxygen plasma. During decomposition of organic substances: The reducing power of hydrogen plasma is weakened, and the organic substances are decomposed to some extent but remain in large quantities without being decomposed.
このよ うに従来の技術では前記有機物を完全に除去することは困難 であり, 薄膜化される層間絶縁膜中の膜厚や不純物などの膜質の精度を 向上させるためには, より確実に前記有機物を除去できる手法が望まれ ている。 発明の開示  As described above, it is difficult to completely remove the organic substance by the conventional technique. To improve the accuracy of the film quality such as the film thickness and impurities in the thinned interlayer insulating film, the organic substance must be more reliably removed. There is a need for a method that can eliminate these. Disclosure of the invention
本発明はこのよ うな事情の下になされたものであり, その目的は, 処理容器内に付着したフッ素添加カーボン膜を除去するにあたり, 先ず 酸素のプラズマにより フッ素添加カーボン膜を分解し, 次いで水素のプ ラズマによ り前記フッ素添加カーボン膜の分解時に発生した炭素と酸素 とを含む有機物を分解することにより, ク リーニング速度を低下させる ことなく確実に処理容器内の付着物を除去し, こ う して効率のよいク リ 一ユングを行う技術を提供することにある。  The present invention has been made under such circumstances, and its purpose is to remove the fluoridated carbon film adhered to the inside of the processing vessel by first decomposing the fluoridated carbon film with oxygen plasma and then hydrogen By decomposing organic substances containing carbon and oxygen generated during the decomposition of the fluorinated carbon film by the above-mentioned plasma, the deposits in the processing vessel can be reliably removed without lowering the cleaning speed. Thus, it is an object of the present invention to provide a technology for performing efficient cleaning.
本発明は, 処理容器内で炭素とフッ素とを含む処理ガスをプラズマ 化して基板に所定の処理を行うプラズマ処理装置を, ク リーニングする 方法において,  The present invention relates to a method for cleaning a plasma processing apparatus that converts a processing gas containing carbon and fluorine into a plasma in a processing vessel and performs a predetermined processing on a substrate.
処理容器内にて前記所定の処理を行い, 前記処理容器内にフッ素添加力 一ボン膜を付着させる処理工程と, 次いで処理容器内にて酸素のプラズマを発生させ, このプラズマによ り 前記処理容器内に付着したフッ素添加カーボン膜を分解する第 1 のタ リ 一二ング工程と, A processing step of performing the predetermined processing in a processing container, and attaching a fluorine-added film to the processing container; Next, an oxygen plasma is generated in the processing chamber, and the plasma is used to decompose the fluorine-added carbon film adhered in the processing chamber.
次いで処理容器内にて水素のブラズマを発生させ, このプラズマによ り 前記処理容器内の炭素と酸素とを含む有機物を分解する第 2のタ リー二 ング工程と, を有することを特徴と している。 Next, a hydrogen plasma is generated in the processing vessel, and a second tallying step of decomposing an organic substance containing carbon and oxygen in the processing vessel with the plasma is provided. ing.
ここで前記プラズマ処理装置は, 一面に多数のスロッ トが形成され た扁平な導波管の,前記スロッ トが形成された一面にマイクロ波を導き, これにより前記スロッ トからマイク口波を放射させてプラズマを発生さ せる構成を用いると, 電子密度が高いプラズマを発生することができて 有効である。  Here, the plasma processing apparatus guides microwaves to a flat waveguide having a large number of slots formed on one surface thereof, and radiates a microphone mouth wave from the slots by guiding the microwaves to a surface having the slots formed therein. The use of a configuration in which the plasma is generated by using this method is effective because a plasma with a high electron density can be generated.
また本発明方法は, 例えばプラズマ処理装置は, 処理容器内で炭素 とフッ素とを含む処理ガスをプラズマ化して基板に所定の処理を行うプ ラズマ処理装置において,  Further, the method of the present invention is, for example, a plasma processing apparatus in which a processing gas containing carbon and fluorine is converted into plasma in a processing vessel to perform a predetermined processing on a substrate.
前記処理容器に前記処理ガスを供給して,当該処理ガスをプラズマ化し, 前記基板に対して所定の処理を行うための基板処理実行手段と, 前記処理容器に酸素ガスと, アルゴンガス, ヘリ ウムガス, ネオンガス, タリプトンガス, キセノンガスより選ばれる不活性ガスとを供給して, 前記酸素ガスと不活性ガスとをプラズマ化し, 酸素プラズマによ り前記 処理容器内に付着したフッ素添加カーボン膜を分解する処理を行うため の酸素プラズマ処理実行手段と, A substrate processing unit for supplying the processing gas to the processing container to convert the processing gas into plasma and performing a predetermined processing on the substrate; an oxygen gas, an argon gas, and a helium gas in the processing container; And supplying an inert gas selected from neon gas, talipton gas, and xenon gas to convert the oxygen gas and the inert gas into plasma, and decompose the fluorine-added carbon film adhered to the processing container by the oxygen plasma. Means for performing an oxygen plasma process for performing the process;
前記処理容器に水素ガスと, アルゴンガス, ヘリ ゥムガス, ネオンガス, ク リプトンガス, キセノ ンガスよ り選ばれる不活性ガスとを供給して, 前記水素ガスと不活性ガスとをプラズマ化し, 前記水素プラズマによ り 前記処理容器内に付着した炭素と酸素とを含む有機物を分解する処理を 行うための水素プラズマ処理実行手段と, A hydrogen gas and an inert gas selected from argon gas, helium gas, neon gas, krypton gas, and xenon gas are supplied to the processing container, and the hydrogen gas and the inert gas are turned into plasma to form the hydrogen plasma. Hydrogen plasma processing execution means for performing processing for decomposing organic substances containing carbon and oxygen attached to the processing container,
前記処理容器にて基板に所定の処理を行った後, 前記処理容器内に酸素 'ガスを供給して前記酸素プラズマによる処理を行い, 次いで前記処理容 器内に水素ガスを供給して前記水素プラズマによる処理を行うよ うに, 前記酸素プラズマ処理実行手段と, 水素プラズマ処理実行手段と, を制 御する制御部と, を備えたことを特徴とするブラズマ処理装置にて実施 される。 After performing predetermined processing on the substrate in the processing container, oxygen is introduced into the processing container. The oxygen plasma processing performing means and the hydrogen plasma processing performing means such that a gas is supplied to perform the processing by the oxygen plasma, and then a hydrogen gas is supplied into the processing container to perform the processing by the hydrogen plasma. The control is performed by a plasma processing device, which includes a control unit for controlling and a control unit.
このよ うな発明では, プラズマ処理装置の処理容器内部に付着した フッ素添加カーボン膜を除去するにあたり, 先ず第 1のク リーニングェ 程にて処理容器内にて酸素プラズマを発生させてフッ素添加カーボン膜 を完全に分解する。 この処理により フッ素添加カーボン膜の分解生成物 であるフッ素と炭素の大部分は装置外部に排出されて除去され, 炭素の 一部が酸素プラズマと反応して,炭素と酸素とを含む有機物を生成する。 次いで第 2のク リ一二ング工程にて処理容器内にて水素プラズマを発生 させることにより, 前記有機物を分解し, このときの分解生成物である 炭素と酸素とを装置外部に排出して除去する。  In such an invention, when removing the fluorine-added carbon film adhered to the inside of the processing vessel of the plasma processing apparatus, first, oxygen plasma is generated in the processing vessel in the first cleaning step to remove the fluorine-added carbon film. Decompose completely. By this treatment, most of the fluorine and carbon, which are the decomposition products of the fluorine-added carbon film, are discharged to the outside of the device and removed, and part of the carbon reacts with the oxygen plasma to produce organic substances containing carbon and oxygen. I do. Next, in the second cleaning step, the organic matter is decomposed by generating hydrogen plasma in the processing vessel, and carbon and oxygen, which are decomposition products at this time, are discharged to the outside of the apparatus. Remove.
このよ う に本発明では, 先ず第 1 のク リーニング工程にて酸素プラ ズマにより フッ素添加カーボン膜を完全に分解し, 続く第 2のク リー二 ング工程にて第 1 のタ リ一ユング工程にて生成した有機物を水素プラズ マにより分解除去しているので, タ リ一ユング速度を低下させることな く, 効率良く処理容器内のク リーユングを行う ことができる。 図面の簡単な説明  As described above, in the present invention, first, the fluorine-added carbon film is completely decomposed by oxygen plasma in the first cleaning step, and then the first cleaning step is performed in the second cleaning step. Since the organic matter generated in step (1) is decomposed and removed by hydrogen plasma, the cleaning inside the processing vessel can be performed efficiently without lowering the tarnishing speed. BRIEF DESCRIPTION OF THE FIGURES
図 1 は, 本発明が適用されるプラズマ処理装置の一実施の形態の全体構 成を示す断面図である。 FIG. 1 is a cross-sectional view showing an overall configuration of an embodiment of a plasma processing apparatus to which the present invention is applied.
図 2は, 図 1のプラズマ処理装置に設けられる第 2のガス供給部の一部 を示す平面図である。 FIG. 2 is a plan view showing a part of a second gas supply unit provided in the plasma processing apparatus of FIG.
図 3は, 図 1 のプラズマ処理装置に設けられるアンテナ部を示す斜視図 である。 図 4は, 本発明方法を説明するための工程図である。 発明を実施するための最良の形態 FIG. 3 is a perspective view showing an antenna unit provided in the plasma processing apparatus of FIG. FIG. 4 is a process chart for explaining the method of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明が適用されるブラズマ処理装置の一実施の形態につい て図 1によ り説明する。 このプラズマ処理装置は, ラジアルライ ンス口 ッ トアンテナを用いてプラズマを発生させる装置である。 図中, 1 は例 えば全体が筒体状に構成された真空容器よ りなる処理容器であり, この 処理容器 1 の側壁や底部は, 導体, 例えばアルミニウム合金より構成さ れ, 内壁面には例えば酸化アルミニゥムよ りなる保護膜が形成されてい る。  Hereinafter, an embodiment of a plasma processing apparatus to which the present invention is applied will be described with reference to FIG. This plasma processing apparatus is an apparatus that generates plasma using a radial line antenna. In the figure, reference numeral 1 denotes, for example, a processing vessel composed of a vacuum vessel formed entirely in a cylindrical shape. The side wall and bottom of the processing vessel 1 are composed of a conductor, for example, an aluminum alloy, and the inner wall has For example, a protective film made of aluminum oxide is formed.
処理容器 1内のほぼ中央には, 基板, 例えば半導体ウェハ (以下 「ゥ ェハ」 という) を載置するための載置台 1 1が設けられている。 この載 置台 1 1は例えば窒化アルミニウム (A 1 N ) もしく は酸化アルミニゥ ム (A 1 2 0 3 ) によ り構成され, 内部には図示しないヒータが設けら れており, 載置面は静電チャックと して構成されている。 また載置台 1 1 には例えば周波数が 1 3 . 5 6 M H z のバイァス用高周波電源 1 2が 接続されている。 A mounting table 11 for mounting a substrate, for example, a semiconductor wafer (hereinafter referred to as a wafer) is provided substantially at the center of the processing chamber 1. The mounting table 1 1, for example, aluminum nitride (A 1 N) Moshiku consists Ri by the oxidation Aruminiu beam (A 1 2 0 3), the heater have been found provided (not shown) therein, mounting surface It is configured as an electrostatic chuck. The mounting table 11 is connected to a high frequency power supply for bias 12 having a frequency of, for example, 13.56 MHz.
処理容器 1の天井部は開放されており, この部分には oリ ング等の シール部材 (図示せず) を介して, 載置台 1 1 と対向するよ うに, 例え ば平面形状が略円形状に構成された第 1 のガス供給部 2が設けられてい る。 このガス供給部 2は例えば A 1 2 O 3によ り構成され, 载置台 1 1 と対向する面には多数の第 1のガス供給孔 2 1が形成されている。 The ceiling of the processing vessel 1 is open, and this section is opposed to the mounting table 11 via a sealing member (not shown) such as an o-ring. A first gas supply unit 2 configured as described above is provided. The gas supply unit 2 is configured Ri by the example A 1 2 O 3,载置base 1 1 and the opposing first gas supply holes 2 1 The surface number of the is formed.
ガス供給部 2の内部にはガス供給孔 2 1 の一端側と連通するガス流 路 2 2が形成されており, このガス流路 2 2には第 1 のガス供給路 2 3 の一端側が接続されている。 —方, 第 1 のガス供給路 2 3 の他端側はプ ラズマガスであるアルゴン ( A r ) ガスや, ヘリ ウム ( H e ) ガス, ク リプトン (K r ) ガス, ネオン (N e ) ガス, キセノ ン (X e ) ガス等 の不活性ガスの供給源 2 4や, ク リーニングガスである酸素 (〇 2 ) ガ スゃ, 水素 (H 2 ) ガスの供給源 2 5, 2 6 と夫々接続されており, こ れらのガスは, 第 1 のガス供給路 2 3を介してガス流路 2 2に順次供給 され, 前記ガス供給孔 2 1 を介して, 第 1 のガス供給部 2の下方側の空 間に一様に供給きれる。 A gas flow path 22 communicating with one end of the gas supply hole 21 is formed in the gas supply section 2, and one end of the first gas supply path 23 is connected to the gas flow path 22. Have been. On the other hand, the other end of the first gas supply path 23 is plasma gas such as argon (Ar) gas, helium (He) gas, krypton (Kr) gas, or neon (Ne) gas. , Xenon (Xe) gas, etc. Source 2 4 and of the inert gas, a click leaning gas oxygen (〇 2) gas Suya, hydrogen (H 2) is supplied source 2 5, 2 6 and respectively connected to gas, of these The gas is sequentially supplied to the gas flow path 22 through the first gas supply path 23, and is uniformly supplied to the space below the first gas supply section 2 through the gas supply hole 21. Can be supplied.
また処理容器 1 は, 載置台 1 1 と第 1 のガス供給部 2 との間に, 例 えばこれらの間を区画するように, 例えば平面形状が略円形状に構成さ れた第 2のガス供給部 3を備えている。 この第 2のガス供給部 3は例え ばマグネシウム ( M g ) を含むアルミニウム ( A 1 ) 合金や A 1添加ス テンレススチール等の導電体により構成され, 载置台 1 1 と対向する面 には多数の第 2のガス供給孔 3 1が形成されている。  Further, the processing vessel 1 is provided between the mounting table 11 and the first gas supply unit 2, for example, a second gas having a substantially circular planar shape so as to partition between them. A supply unit 3 is provided. The second gas supply unit 3 is made of, for example, a conductor such as aluminum (A1) alloy containing magnesium (Mg) or stainless steel with A1 addition. The second gas supply hole 31 is formed.
このガス供給部 3 の内部には, 例えば図 1及ぴ図 2に示すよ うにガ ス供給孔 3 1 の一端側と連通する格子状のガス流路 3 2が形成されてお り, このガス流路 3 2 には第 2のガス供給路 3 3の一端側が接続されて いる。 また第 2のガス供給部 3には, 当該ガス供給部 3を貫通するよ う に, 多数の開口部 3 4が形成されている。 この開口部 3 4は, プラズマ やプラズマ中の処理ガスを当該ガス供給部 3の下方側の空間に通過させ るためのものであり, 例えば隣接するガス流路 3 2同士の間に形成され ている。  Inside the gas supply section 3, for example, as shown in FIGS. 1 and 2, a grid-like gas flow path 32 communicating with one end of the gas supply hole 31 is formed. One end of the second gas supply path 33 is connected to the flow path 32. The second gas supply section 3 is formed with a number of openings 34 so as to penetrate the gas supply section 3. The openings 34 are for allowing the plasma and the processing gas in the plasma to pass through the space below the gas supply unit 3. For example, the openings 34 are formed between adjacent gas channels 32. I have.
第 2のガス供給部 3は, 第 2のガス供給路 3 3を介して処理ガスで ある炭素とフッ素とを含むガス, 例えば C 5 F 8ガスの供給源 3 5 と接 続され, この処理ガスは, 第 2のガス供給路 3 3を介してガス流路 3 2 に順次通流していき, 前記ガス供給孔 3 1 を介して, 第 2のガス供給部 3の下方側の空間に一様に供給される。 図中 V 1〜V 4は夫々の供給ラ インに設けられた流量調整バルブであり, この流量調整バルブは開閉バ ルブと流量調整部とを組み合わせて構成されている。 これらバルブ V 1 〜 V 4の開閉や流量の制御は制御部 Cにより行われている。 第 1のガス供給部 3の上部側には, Oリ ング等のシール部材 (図示 せず) を介して, 例えば A 1 2 0 3によ り構成されたカバープレー ト 1 3が設けられ, このカバープレー ト 1 3の上部側には, 当該カバープレ 一卜 1 3 と密接するよ うにァンテナ部 4が設けられている。 このァンテ ナ部 4は, 図 1及び図 3に示すよ うに, 平面形状が円形の下面側が開口 する扁平なアンテナ本体 4 1 と, このアンテナ本体 4 1の前記下面側の 開口部を塞ぐよ うに設けられ, 多数のスロッ トが形成された円板状のス ロッ ト板 4 2 とを備えており, これらアンテナ本体 4 1 とスロッ ト板 4 2 とは銅 (C u ) やアルミニウム (A 1 ) 等の導体によ り構成され, こ れらにより扁平な中空の円形導波管が構成されている。 The second gas supply section 3 is connected to a processing gas containing carbon and fluorine, for example, a C 5 F 8 gas supply source 35 via a second gas supply path 33. The gas sequentially flows into the gas flow path 32 via the second gas supply path 33, and flows into the space below the second gas supply section 3 via the gas supply hole 31. Supplied as In the figure, V1 to V4 are flow control valves provided on each supply line. These flow control valves are configured by combining an open / close valve and a flow control unit. The opening and closing of these valves V 1 to V 4 and the control of the flow rate are performed by the control unit C. Of the upper side first gas supply unit 3 via the O-rings or the like of the sealing member (not shown), for example A 1 2 0 3 cover plates 1 3 constructed Ri by the provided, An antenna section 4 is provided on the upper side of the cover plate 13 so as to be in close contact with the cover plate 13. As shown in FIGS. 1 and 3, the antenna part 4 has a flat antenna body 41 having a circular planar shape and an opening on the lower surface side, and a flat antenna body 41 having an opening on the lower surface side. The antenna body 41 and the slot plate 42 are provided with a disk-shaped slot plate 42 on which a number of slots are formed. The antenna body 41 and the slot plate 42 are made of copper (Cu) or aluminum (A1). ), Which form a flat hollow circular waveguide.
スロ ッ ト板 4 2 とアンテナ本体 4 1 との間には, 例えば A 1 2 O 3 や酸化ケィ素 ( S i 0 2 ), 窒化ケィ素 ( S i 3 N 4 ) 等の低損失誘電体 材料により構成された遅波板 4 3が設けられている。 この遅波板 4 3は マイクロ波の波長を短く して前記導波管内の管内波長を短くするための ものである。 この実施の形態では, これらアンテナ本体 4 1 , スロ ッ ト 板 4 2 , 遅波板 4 3によ り ラジアルラインスロ ッ トァンテナが構成され ている。 Between the slot plate 4 2 and the antenna body 4 1, for example, A 1 2 O 3 and oxide Kei element (S i 0 2), a low-loss dielectric such as nitride Kei element (S i 3 N 4) A slow wave plate 43 made of a material is provided. The slow wave plate 43 is for shortening the wavelength of the microwave to shorten the guide wavelength in the waveguide. In this embodiment, a radial line slot antenna is composed of the antenna body 41, the slot plate 42, and the slow wave plate 43.
このよ うに構成されたアンテナ部 4は, 前記スロ ッ ト板 4 2がカバ 一プレート 1 3に密接するよ うに, 図示しないシール部材を介して処理 容器 1 に装着されている。 そしてこのアンテナ部 4は同軸導波管 4 4を 介して外部のマイクロ波発生手段 4 5 と接続され, 例えば周波数が 2 . 4 5 G H z あるいは 8 . 3 G H zのマイクロ波が供給されるよ うになつ ている。 この際, 同軸導波管 4 4 の外側の導波管 4 4 Aはアンテナ本体 4 1 に接続され, 中心導体 4 4 Bは遅波板 4 3に形成された開口部を介 してス ロ ッ ト板 4 2に接続されている。  The antenna unit 4 configured as described above is mounted on the processing container 1 via a sealing member (not shown) so that the slot plate 42 is in close contact with the cover plate 13. The antenna section 4 is connected to an external microwave generating means 45 via a coaxial waveguide 44, and for example, a microwave having a frequency of 2.45 GHz or 8.3 GHz is supplied. It's eel. At this time, the outer waveguide 44 A of the coaxial waveguide 44 is connected to the antenna body 41, and the center conductor 44 B is inserted through the opening formed in the slow wave plate 43. It is connected to the cutout plate 42.
スロッ ト板 4 2には, 例えば円偏波を発生させるための多数のス ロ ッ ト 4 6が形成されている。 このスロ ッ ト 4 6は略 T字状に僅かに離間 させて配置した一対のスロ ッ ト 4 6 a , 4 6 b を 1組と して, 例えば同 心円状や渦卷き状に形成されている。 この際スロ ッ ト対 4 6 a, 4 6 b を遅波板 4 3により圧縮されたマイク口波の波長に対応した間隔で配列 することにより, マイク ロ波がスロ ッ ト板 4 2 よ り略平面波と して放射 される。 またス ロ ッ ト 4 6 a とス ロ ッ ト 4 6 b とを相互に略直交するよ うに関係で配列しているので, 2つの直交する偏波成分を含む円偏波が 放射される。 The slot plate 42 has a large number of slots 46 for generating, for example, circularly polarized waves. This slot 46 is slightly separated in a substantially T shape. A pair of slots 46a and 46b arranged as a pair is formed as a set, for example, in a concentric or spiral shape. At this time, by arranging the slot pairs 46a and 46b at intervals corresponding to the wavelength of the microphone mouth wave compressed by the slow wave plate 43, the micro wave is transmitted from the slot plate 42. Emitted as a nearly plane wave. In addition, since the slots 46a and the slots 46b are arranged so as to be substantially orthogonal to each other, a circularly polarized wave including two orthogonally polarized components is emitted.
またこの例では, アンテナ部 4は, 冷却水流路 5 1が形成された冷 却ブロック 5を備えており, この冷却ブロック 5によ り第 1 のガス供給 部 2に蓄熱された熱がアンテナ部 4を介して吸収されるようになってい る。 さらに処理容器 1 の底部には, 図示しない真空ポンプに接続された 排気口 1 4が設けられており, 必要に応じて処理容器 1内を所定の圧力 まで真空引きできるよ うになつている。  Further, in this example, the antenna section 4 includes a cooling block 5 in which a cooling water flow path 51 is formed, and the heat stored in the first gas supply section 2 by the cooling block 5 is transmitted to the antenna section. 4 to be absorbed. Further, an exhaust port 14 connected to a vacuum pump (not shown) is provided at the bottom of the processing vessel 1, so that the inside of the processing vessel 1 can be evacuated to a predetermined pressure as required.
続いてこの装置にて実施される本発明のク リ一二ング方法について 図 4を用いて説明する。 先ず本発明の処理工程である C F膜の成膜工程 (図 4 ( a ) ) について説明すると, 図示しないゲー トパルプを介して 処理容器 1内に, 例えば表面に銅配線が形成されたウェハ Wを搬入して 载置台 1 1上に載置する。 続いて処理容器 1の内部を所定の圧力まで真 空引きし, バルブ V 1 を開いて第 1のガス供給路 2 3を介して第 1のガ ス供給部 2にプラズマガス例えば A rガスを所定の流量例えば 3 0 0 s c c mで供給すると共に, バルブ V 4を開いて第 2のガス供給路 3 3 を 介して第 2のガス供給部 3に処理ガス例えば C 5 F 8ガスを所定の流量, 例えば 1 5 0 s c c mで供給する。 そして処理容器 1内を例えばプロセ ス圧力 7 P aに維持し, かつ載置台 1 1 に 1 3 . 5 6 M H z, 2 0 0 W 以下のバイ アス電圧を印加する と共に, 载置台 1 1 の表面温度を 3 5 0 °cに設定する。 Next, the cleaning method of the present invention performed by this apparatus will be described with reference to FIG. First, the CF film forming step (FIG. 4 (a)), which is the processing step of the present invention, will be described. A wafer W having copper wiring formed on the surface, for example, is placed in a processing vessel 1 via a gate pulp (not shown). Carry in and place it on the mounting table 1 1. Subsequently, the inside of the processing vessel 1 is evacuated to a predetermined pressure, the valve V 1 is opened, and a plasma gas, for example, Ar gas is supplied to the first gas supply section 2 through the first gas supply path 23. At a predetermined flow rate, for example, 300 sccm, the valve V 4 is opened, and a processing gas, for example, C 5 F 8 gas is supplied to the second gas supply section 3 through the second gas supply path 33 at a predetermined flow rate. , For example, supplied at 150 sccm. For example, the inside of the processing vessel 1 is maintained at a process pressure of 7 Pa, and a bias voltage of 13.56 MHz and 200 W or less is applied to the mounting table 11. Set the surface temperature to 350 ° C.
一方マイクロ波発生手段から 2 . 4 5 G H z , 2 0 0 0 Wの高周波 (マイクロ波) を供給すると, このマイクロ波は, T Mモー ド或いは T Eモー ド或いは T E Mモー ドで同軸導波管 4 4内を伝搬してアンテナ部 4のスロ ッ ト板 4 2に到達し, 同軸導波管の内部導体 4 4 Bを介して, スロ ッ ト板 4 2の中心部から周縁領域に向けて放射状に伝搬される。 そ してこの伝搬の間にスロッ ト対 4 6 a , 4 6 bからマイクロ波がカバー プレート 1 3, 第 1 のガス供給部 2を介して当該ガス供給部 2の下方側 の処理空間に向けて放出される。 ここで力パープレー ト 1 3 と第 1のガ ス供給部 2はマイク ロ波が透過可能な材質例えば A 1 2 O 3によ り構成 されているので, マイクロ波透過窓として作用し, マイクロ波はこれら を効率良く透過していく。 On the other hand, high frequency of 2.45 GHz, 200 W from microwave generation means (Microwave), the microwave propagates in the coaxial waveguide 44 in the TM mode, the TE mode, or the TEM mode, and reaches the slot plate 42 of the antenna unit 4. The light propagates radially from the center of the slot plate 42 toward the peripheral region via the inner conductor 44 B of the coaxial waveguide. During this propagation, the microwaves from the slot pairs 46a and 46b pass through the cover plate 13 and the first gas supply unit 2 to the processing space below the gas supply unit 2. Released. Here, since the force par play sheet 1 3 and the first gas supply unit 2 is configured Ri by the microwave transmissive material capable of example A 1 2 O 3, acts as a microwave transmission window, microwave Transmits these efficiently.
このとき既述のよ うにスロッ ト対 4 6 a , 4 6 bを配列したので, 円偏波がスロッ ト板 4 2の平面に 1:つて均一に放出され, この下方の処 理空間の電界密度が均一化される。 そしてこのマイク口波のエネルギに より, 広い処理空間の全域に亘つて, 密度が均一であり, かつ高密度な プラズマが励起される。 こ う して発生したプラズマは, 第 2のガス供給 部 3の開口部 3 4を介して当該ガス供給部 3の下方側の処理空間に流れ 込んで行き, 当該ガス供給部 3からこの処理空間に供給される C 5 F 8 ガスを活性化させて活性種を形成する。 At this time, since the slot pairs 46a and 46b are arranged as described above, the circularly polarized wave is uniformly emitted 1: in the plane of the slot plate 42, and the electric field in the processing space below this The density is made uniform. The energy of the microphone mouth wave excites a high-density plasma with a uniform density over the entire processing space. The plasma generated in this way flows into the processing space below the gas supply unit 3 through the opening 34 of the second gas supply unit 3, and from the gas supply unit 3 to the processing space. Activate the C 5 F 8 gas supplied to form a reactive species.
一方ウェハ W上に輸送された活性種は C F膜と して成膜される。 こ う して C F膜が成膜されたウェハ Wは, 図示しないゲートバルブを介し て処理容器 1から搬出される。  On the other hand, the active species transported onto the wafer W are formed as a CF film. The wafer W on which the CF film has been formed is unloaded from the processing chamber 1 via a gate valve (not shown).
なおプラズマ引き込み用のバイアス電圧によって, ウェハ Wに引き 込まれた A rイオンによるスパッタエッチング作用によ り, ウェハ W表 面のパターン上の角部に成膜した C F膜を削り取り,間口を広げながら, パターン溝底部から C F膜を成膜し, 凹部に C F膜が埋め込まれるよう な処理を行ってもよレ、。  The CF film formed at the corners of the pattern on the surface of the wafer W was scraped off by the sputter etching effect of the Ar ions drawn into the wafer W by the bias voltage for plasma attraction, and the frontage was widened. Alternatively, a CF film may be formed from the bottom of the pattern groove, and the CF film may be embedded in the recess.
このよ うな C F膜の成膜処理を複数枚例えば 2枚のウェハに対して 行った後, 図 4 ( b ) に示すよ うに第 1 のク リーニング工程を行う。 先 ず例えば 2枚目のウェハを処理容器 1から搬出した後, バルブ V 2を開 き, 第 1 のガス供給路 2 3から〇 2ガスと A r ガス, H eガス, N eガ ス, K rガス, X eガスよ り選ばれる不活性ガス, 例えば A rガスとを 夫々所定の流量例えば S O O s c c m, 2 0 0 s c c mで供給すると共 に, 処理容器 1 内を例えばプロセス圧力 1 3. 3 P a に維持し, かつ载 置台 1 1 の表面温度を 3 0 0 °Cに設定する。 このとき処理容器 1 の内壁 温度は 1 5 0 °C程度である。 Such a CF film deposition process is performed on a plurality of, for example, two wafers. After this, the first cleaning step is performed as shown in Fig. 4 (b). After unloading the previously not a example second wafer from the processing chamber 1,-out valve V 2 opens, 〇 2 gas and A r gas from the first gas supply channel 2 3, H e gas, N e gas, An inert gas selected from Kr gas and Xe gas, for example, Ar gas is supplied at a predetermined flow rate, for example, SOO sccm and 200 sccm, respectively. Maintain 3 Pa and set the surface temperature of mounting table 11 to 300 ° C. At this time, the temperature of the inner wall of the processing vessel 1 is about 150 ° C.
一方マイクロ波発生手段から 2. 4 5 GH z , 2 0 0 0 Wのマイク 口波を供給して, 既述のよ うにプラズマを励起させ, このプラズマによ り前記ガス供給部 2から供給される O 2ガスを活性化 (プラズマ化) さ せる。 この O 2ガスのプラズマ化によ り, 例えば〇のラジカルやイオン からなる酸素の活性種 (プラズマ) が発生し, この酸素プラズマは処理 容器 1内部に付着した C F膜と反応する。 つま り酸素プラズマが C F膜 の Cと F との結合を切断し, これによつて生じる Cや Fの分解生成物の 大部分は蒸発して飛散して行き, 排気口 1 4を介して処理容器 1 の外部 に排出される。 また分解生成物の Cの一部分は酸素プラズマによ り酸化 され, カルボキシル基 (一 C O O), ケ トン基 (— C O) 等の C と oと の結合を備えた新たな有機物と して処理容器 1 の内部に付着する。 こ う して酸素プラズマによるク リーニングを例えば 3 0秒程度行った後, バ ルブ V 2を閉じ, この工程を終了する。 On the other hand, a microwave microwave of 2.45 GHz and 2000 W is supplied from the microwave generating means to excite the plasma as described above, and the plasma is supplied from the gas supply unit 2 by the plasma. Activate (plasma) O 2 gas. The O 2 gas is converted into plasma to generate active species (plasma) of oxygen, such as radicals and ions, and the oxygen plasma reacts with the CF film adhered to the inside of the processing chamber 1. In other words, the oxygen plasma cuts the bond between C and F in the CF film, and most of the C and F decomposition products generated by this evaporate and scatter, and are processed through the exhaust port 14. Discharged outside of container 1. In addition, a part of C of the decomposition product is oxidized by oxygen plasma and becomes a new organic substance having a bond between C and o such as a carboxyl group (one COO) and a ketone group (—CO). Attached inside 1. After cleaning with oxygen plasma for about 30 seconds, for example, valve V2 is closed, and this process is completed.
続いて図 4 ( c ) に示すよ うに, 水素のプラズマによる第 2のク リ 一ユング工程を行う。 つまり処理容器 1 内における酸素プラズマによる 第 1のク リーニングが終了し, 処理容器 1 内に酸素がない状態で, 例え ば第 1 のタ リ—ニング工程とプロセス圧力 ( 1 3. 3 P a ) , 載置台 1 1の表面温度 ( 3 0 0 °C), 処理容器 1 の内壁温度 ( 1 5 0 °C) を同じ 状態に維持したままバルブ V 3を開き, 第 1 のガス供給路 2 3から H2 ガスと, A r ガス, H eガス, N e ガス, K r ガス, X eガスよ り選ば れる不活性ガス, 例えば A rガスとを夫々所定の流量例えば 3 0 0 s c c m, 2 0 0 s c c mで供給する。 第 2のタ リ一二ング工程は, 第 1 の ク リ一ユング工程の後, 処理容器 1 内に酸素がない状態で行う ことが好 ましいので, 前記した H 2ガスと不活性ガスを処理容器 1内に流した後, しばらく してから, 下記に述べるよ うにマイクロ波を供給することが好 ましい。 従って, 第 1 のク リーニング工程の後に, 実質的に処理容器 1 内の残留酸素をパージするパージ工程を, 第 2のク リ一二ング工程の前 に採り入れてもよレ、。 この場合のパージ工程では, パージガスとなる不 活性ガスのみを処理容器 1 内に供給するよ うにしてもよい。 Then, as shown in Fig. 4 (c), a second cleaning process using hydrogen plasma is performed. That is, the first cleaning by the oxygen plasma in the processing vessel 1 is completed, and the first cleaning step and the process pressure (13.3 Pa) are performed in a state where there is no oxygen in the processing vessel 1. With the surface temperature of the mounting table 1 (300 ° C) and the inner wall temperature of the processing vessel 1 (150 ° C) kept the same, the valve V 3 was opened, and the first gas supply path 2 3 From H 2 The gas and an inert gas selected from the group consisting of Ar gas, He gas, Ne gas, Kr gas, and Xe gas, for example, Ar gas, are supplied at predetermined flow rates, for example, 300 sccm and 200 sccm, respectively. Supply by The second cleaning step is preferably performed after the first cleaning step in a state where there is no oxygen in the processing vessel 1, so that the H 2 gas and the inert gas described above are removed. It is preferable to supply microwaves as described below some time after flowing into the processing vessel 1. Therefore, after the first cleaning step, a purging step for substantially purging residual oxygen in the processing container 1 may be introduced before the second cleaning step. In this case, only an inert gas serving as a purge gas may be supplied into the processing vessel 1 in the purge step.
一方マイクロ波発生手段から, 例えば第 1 のタ リーエング工程と同 じ条件 ( 2 . 4 5 G H z, 2 0 0 0 W) でマイク口波を供給して, 既述 のよ うにプラズマを励起させ, このプラズマによ り H 2ガスを活性化さ せる。 この H 2ガスのプラズマ化によ り, 例えば Hのラジカルやイオン からなる水素の活性種 (プラズマ) が発生し, この水素プラズマは処理 容器 1内部に付着した Cと oとを含む有機物と反応して当該有機物を分 解する。 つまり水素プラズマが有機物の cと oとの結合を切断し, これ によって生じる Cや oの分解生成物は, 蒸発して飛散して行き, 排気口 1 4を介して処理容器 1の外部に排出される。 こ う して水素プラズマに よるク リーニングを例えば 1 0秒程度行った後, バルブ V I, V 3を閉 じ, この工程を終了する。 この後既述のよ うにウェハ Wを処理容器 1 内 に搬入して, 再び既述の C F膜の成膜処理が行われる。 On the other hand, for example, a microphone mouth wave is supplied from the microwave generating means under the same conditions (2.45 GHz, 2000 W) as in the first talling process, and the plasma is excited as described above. This plasma activates H 2 gas. The H 2 Ri by the plasma gases, such as hydrogen active species consisting of radicals and ions of H (plasma) is generated, the hydrogen plasma react with organic material containing C and o adhered inside the processing vessel 1 To decompose the organic matter. In other words, the hydrogen plasma cuts the bond between c and o in the organic matter, and the decomposition products of C and o generated by this evaporate and scatter, and are discharged outside the processing vessel 1 through the exhaust port 14. Is done. After cleaning with hydrogen plasma, for example, for about 10 seconds, valves VI and V3 are closed, and this process is completed. Thereafter, the wafer W is loaded into the processing chamber 1 as described above, and the above-described CF film formation processing is performed again.
上述のプラズマ処理装置では, 既述のよ うに, ウェハ Wに対して所 定の処理を行う処理工程と, 処理工程の後に行われ, 酸素プラズマによ り処理容器内に付着した C F膜を分解除去する第 1 のク リーニング工程 と, 第 1のク リーニング工程の後に行われ, 水素プラズマにより処理容 器内に付着した Cと Oとを含む有機物を分解する除去する第 2のタ リー ニング工程と, が実施される。 In the plasma processing apparatus described above, as described above, the processing step of performing a predetermined processing on the wafer W and the CF film that is performed after the processing step and decomposes into the processing chamber by oxygen plasma are decomposed. A first cleaning step for removing, and a second cleaning step performed after the first cleaning step for decomposing organic substances containing C and O adhering to the inside of the processing container by hydrogen plasma. The following steps are performed:
上述のプラズマ処理装置では, 前記処理工程を実施する構成が基板 処理実行手段に相当し, 第 1 のク リ一二ング工程を実施する構成が酸素 プラズマ処理実行手段に相当し, 第 2のク リ一ユング工程を実施する構 成が水素プラズマ処理実行手段に相当する。 そして予め作成されたレシ ピに基づいて前記制御部 Cにより, 処理工程の後に第 1のク リーニング 工程を実施し, 次いで第 2のク リーニング工程を実施するよ うに, 前記 基板処理実行手段, 前記酸素プラズマ処理実行手段, 前記水素プラズマ 処理実行手段が夫々制御されている。  In the above-described plasma processing apparatus, the configuration for performing the processing step corresponds to a substrate processing execution unit, the configuration for performing the first cleaning step corresponds to the oxygen plasma processing execution unit, and the second configuration. The configuration for performing the re-junging step corresponds to a hydrogen plasma processing execution unit. The substrate processing execution unit and the control unit C perform the first cleaning step after the processing step, and then perform the second cleaning step based on the recipe prepared in advance. The oxygen plasma processing execution means and the hydrogen plasma processing execution means are controlled respectively.
本実施の形態では, 処理容器 1 内に付着した C F膜をク リーニング により除去する際, 先ず処理容器内 1 にて酸素のプラズマを発生させ, このプラズマによ り C F膜を分解し, 次いで処理容器内 1 にて水素のプ ラズマを発生させ, このプラズマにより Cと Oとを含む有機物を分解し て除去しているので, 高いク リーニング速度を確保しつつ, 処理容器 1 内の残存物例えばク リーニングによ り除去し切れなかった C F膜や, 新 たな有機物などの発生を防いで, 効率のよいク リーエングを行う ことが できる。  In the present embodiment, when removing the CF film adhered to the processing vessel 1 by cleaning, first, oxygen plasma is generated in the processing vessel 1, and the CF film is decomposed by the plasma, and then the processing is performed. Since a plasma of hydrogen is generated in the vessel 1 and the organic matter containing C and O is decomposed and removed by this plasma, the residue in the processing vessel 1 can be maintained while maintaining a high cleaning rate. Efficient cleaning can be performed by preventing the formation of CF films and new organic substances that could not be completely removed by cleaning.
すなわち, まず第 1のク リーニング工程において, 処理容器 1内に 付着した C F膜と酸素プラズマとを反応させることにより,' C F膜を酸 素のプラズマの酸化力によ り完全に分解して, 分解生成物である Fと C の大部分を飛散させて除去する。この際酸素プラズマの酸化力が強いと, 処理容器 1 の内壁に, カルボキシル基 (一 C O O ) , ケ トン基 (一 C O ) 等の cと oとの結合を備えた新たな有機物が付着する。  That is, first, in the first cleaning step, the CF film adhering to the inside of the processing vessel 1 reacts with the oxygen plasma to completely decompose the CF film by the oxidizing power of the oxygen plasma. Most of the decomposition products F and C are scattered and removed. At this time, if the oxidizing power of the oxygen plasma is strong, new organic substances having a bond between c and o, such as a carboxyl group (1-COO) and a ketone group (1-CO), adhere to the inner wall of the processing vessel 1.
そこで次工程と して第 2のク リ一二ング工程において, 処理容器 1 内にて水素プラズマを発生させ, この水素プラズマの還元力によ り前記 有機物の Cと oとの結合を切断し, 分解生成物を飛散させて除去する。 この際仮に有機物の分解生成物である Cや Oと水素プラズマの Hとが反 応したと しても生成物は気体状態であり, 処理容器 1 内に新たな付着物 が発生するおそれはない。 Therefore, in the next cleaning step, hydrogen plasma is generated in the processing vessel 1 and the bond between C and o in the organic substance is cut off by the reducing power of the hydrogen plasma. , Spray and remove decomposition products. At this time, if the decomposition products of organic substances, C and O, and the H of the hydrogen plasma react, Even if it responds, the product is in a gaseous state, and there is no risk that new deposits will be generated in the processing vessel 1.
ここで仮に, 第 1 のク リ一-ング工程において酸素ブラズマのブラ ズマ量を調整して有機物の発生を抑えよ う とすると, 酸素プラズマによ る C F膜の分解力も弱く なるので, ク リ ーニング速度がかなり低下し, ク リ一ニングに時間がかかり過ぎてしま う。  Here, if the generation of organic substances is suppressed by adjusting the amount of oxygen plasma in the first cleaning step, the decomposing ability of the CF film by oxygen plasma is also weakened. The cleaning speed is significantly reduced and cleaning takes too long.
このよ うに本発明は, 除去する対象に応じて酸素プラズマの酸化力 と水素プラズマの還元力とを使い分けることによって, 高いク リーニン グ効率を確保するものであり, 例えば従来の技術の項でも説明したよ う に, ク リーニングガスと して酸素ガスと水素ガスとを用いる場合であつ ても, これら酸素ガスと水素ガスとを同時に処理容器 1内に導入する構 成とは, 作用や効果が全く異なるものである。  Thus, the present invention secures high cleaning efficiency by selectively using the oxidizing power of oxygen plasma and the reducing power of hydrogen plasma according to the object to be removed. As described above, even when the oxygen gas and the hydrogen gas are used as the cleaning gas, the operation and the effect of the configuration in which the oxygen gas and the hydrogen gas are simultaneously introduced into the processing vessel 1 are different. It is completely different.
つま り処理容器 1内にて, 酸素プラズマと水素プラズマとを同時に 発生させると, 酸素プラズマの酸化力と水素プラズマの還元力とが作用 して, お互いに弱められ, 酸素プラズマでは C F膜の分解力が小さく な つて, ク リーニング速度が低下してしま う。 また水素プラズマでは前記 有機物の分解力が小さく なつて, 分解できずに残存する有機物が多く な つてしま う。 このため処理容器 1内の付着物がすべて除去されるまでの トータルのク リ一二ング時間がかなり長く なり, 成膜処理全体のスルー プッ トが悪化してしま う。  In other words, when oxygen plasma and hydrogen plasma are simultaneously generated in the processing vessel 1, the oxidizing power of oxygen plasma and the reducing power of hydrogen plasma act on each other and weaken each other. As the force decreases, the cleaning speed decreases. In addition, in the case of hydrogen plasma, the decomposing ability of the organic matter is reduced, and the amount of organic matter remaining without being decomposed increases. As a result, the total cleaning time until all the deposits in the processing vessel 1 are removed is considerably long, and the throughput of the entire film forming process is degraded.
このよ うに本発明では, 先ず酸素プラズマによ り第 1 のタ リーニン グを行った後, 水素プラズマにより第 2のク リーニングを行っているの で, ク リーニング速度を低下させることなく, 処理容器 1内の付着物を 確実に除去し, 効率のよいク リーニングを行う ことができる。 また処理 容器 1内における付着物の発生が抑えられるので, 次の成膜処理時に得 られる膜の膜質を悪化させるおそれがなく, 膜質の経時変化の発生が抑 えられ, 安定した膜質を確保することができる。 以下に本発明の効果を確認するために行った実施例について説明す る。 As described above, according to the present invention, the first cleaning is first performed by oxygen plasma, and then the second cleaning is performed by hydrogen plasma. The deposits in (1) can be reliably removed, and efficient cleaning can be performed. In addition, since the generation of deposits in the processing chamber 1 is suppressed, there is no risk of deteriorating the film quality of the film obtained during the next film forming process, and the occurrence of a temporal change in the film quality is suppressed, and a stable film quality is secured. be able to. Hereinafter, examples performed to confirm the effects of the present invention will be described.
[実施例 1 ]  [Example 1]
図 1 に示すプラズマ処理装置において, 成膜ガス と して C 5 F 8ガス を用い, 以下の成膜処理条件にて成膜ガスをプラズマ化し, 8イ ンチサ ィズの 2枚のウェハに対して厚さの 0. 5 mの C F膜を成膜した。 2 枚のウェハに対する処理を終了した時点で処理容器 1の内部を目視によ り確認したところ, C F膜の付着が認められた。 In the plasma processing apparatus shown in FIG. 1, using a C 5 F 8 gas as a deposition gas, and plasma deposition gas under the following film forming process conditions, with respect to two wafers of 8 b Nchisa I's A CF film having a thickness of 0.5 m was formed. When the processing on the two wafers was completed, the inside of the processing vessel 1 was visually inspected, and adhering of the CF film was observed.
(成膜条件)  (Deposition conditions)
マイクロ波 : 2. 4 5 GH z, 2 0 0 0W  Microwave: 2.45 GHz, 200 W
プロセス圧力 : 7 P a  Process pressure: 7 Pa
C5F8ガス流量 : 3 0 0 s c c m  C5F8 gas flow rate: 300 s c cm
載置台温度 : 3 5 0 °C  Mounting table temperature: 350 ° C
次いで処理容器内に, O 2ガスと A r ガスとを導入し, 以下の酸素 プラズマ処理条件にて酸素のプラズマを発生させ, 処理容器内部に付着 した C F膜のク リーニングを行った。 この処理を発光分光法にて確認し たところ, C Oの発光が認められた。 この発光は, 酸素プラズマによ り C F膜が分解され, 分解生成物が蒸発する際に発生するものである。 こ のため発光が認められなく なった時点が C F膜の分解が完了した時点で あるので, このタイ ミングで酸素プラズマによる処理を終了し (タ リー ユング時間 3 0秒), 処理容器 1 の内部を発光分光法によ り確認したと ころ, C F膜とは異なる付着物の発光が認められた。 Next, O 2 gas and Ar gas were introduced into the processing vessel, oxygen plasma was generated under the following oxygen plasma processing conditions, and the CF film attached inside the processing vessel was cleaned. When this treatment was confirmed by emission spectroscopy, CO emission was observed. This luminescence is generated when the CF film is decomposed by oxygen plasma and the decomposition products evaporate. Therefore, the point at which no light emission was observed was the point at which the decomposition of the CF film was completed, and the oxygen plasma treatment was terminated at this timing (tally Jung time: 30 seconds). The emission was confirmed by emission spectroscopy, and the emission of the deposits different from the CF film was observed.
(酸素プラズマ処理条件)  (Oxygen plasma processing conditions)
マイクロ波 : 2 · 4 5 GH z, 2 0 0 0 W  Microwave: 2 · 45 GHz, 2000 W
プロセス圧力 : 1 3. 3 P a  Process pressure: 13.3 Pa
02ガス流量 : 3 0 0 s c c m 0 2 Gas flow rate: 300 sccm
A rガス流量 : 2 0 0 s c c m 載置台温度 : 3 5 0 °C Ar gas flow rate: 200 sccm Mounting table temperature: 350 ° C
次いで処理容器内に, H 2ガスと A r ガスとを導入し, 以下の水素 プラズマ処理条件にて水素のプラズマを発生させ, 処理容器内部に付着 した付着物のク リーニングを行った。 この処理を発光分光法で確認した ところ, 1 0秒後には全ての付着物が除去された。 Next, H 2 gas and Ar gas were introduced into the processing vessel, hydrogen plasma was generated under the following hydrogen plasma processing conditions, and the deposits inside the processing vessel were cleaned. When this treatment was confirmed by emission spectroscopy, all deposits were removed after 10 seconds.
(水素プラズマ処理条件)  (Hydrogen plasma processing conditions)
マイクロ波 : 2 · 4 5 GH z , 2 0 0 0 W  Microwave: 2 · 45 GHz, 200 W
プロセス圧力 : 1 3. 3 P a  Process pressure: 13.3 Pa
H2ガス流量 : 3 0 0 s c c m  H2 gas flow rate: 300 s c cm
A rガス流量 : 2 0 0 s c c m  Ar gas flow rate: 200 s c cm
載置台温度 : 3 5 0 °C  Mounting table temperature: 350 ° C
[比較例 1 ]  [Comparative Example 1]
実施例 1 と同様の成膜条件にて C F膜を成膜した後, 酸素ガスと水 素ガスとを同時に処理容器内に導入して, 処理容器に付着した C F膜の ク リーニングを行った。 このときの処理条件は以下の通りである。  After forming a CF film under the same film forming conditions as in Example 1, oxygen gas and hydrogen gas were simultaneously introduced into the processing vessel to clean the CF film adhered to the processing vessel. The processing conditions at this time are as follows.
(ク リ一エング処理条件)  (Clean processing conditions)
マイクロ波 : 2 ' 4 5 GH z, 2 0 0 0 W  Microwave: 2 '45 GHz, 200 W
プロセス圧力 : 1 3. 3 P a  Process pressure: 13.3 Pa
02ガス流量 : 3 0 0 s c c m  02 gas flow rate: 300 s c cm
H2ガス流量 : 3 0 0 s c c m  H2 gas flow rate: 300 s c cm
A rガス流量 : 2 0 0 s c c m  Ar gas flow rate: 200 s c cm
載置台温度 : 3 5 0 °C  Mounting table temperature: 350 ° C
この様子を目視により確認したところ, 実施例 1の第 1 のク リー二 ング工程と同じク リーニング時間が経過しても C F膜の除去が終了せず また実施例 1 の第 2のク リ一ニング工程と同じク リ一二ング時間が経過 した時点での処理容器の内部には, 付着物の発生が認められた。  When this state was visually checked, the CF film removal was not completed even after the same cleaning time as in the first cleaning step of Example 1 and the second cleaning of Example 1 was performed. At the time when the same cleaning time as in the cleaning process had elapsed, the generation of deposits was observed inside the processing vessel.
以上の実験結果より, 水素プラズマによ り Cと Oとを含む有機物が 効率よく分解除去されることが確認され, これにより処理容器に付着し たじ F膜を除去するには, 先ず酸素プラズマによって C F膜を完全に分 解し, 次いで水素プラズマによって Cと〇とを含む有機物を分解除去す ることによ り, ク リ ーニング速度の低下を抑えながら, 効率良く タ リ ー ユングできることが認められた。 From the above experimental results, it was found that organic matter containing C and O was It was confirmed that the F film was efficiently decomposed and removed. In order to remove the F film adhered to the processing vessel, the CF film was first completely decomposed by oxygen plasma, and then C and に よ っ て were separated by hydrogen plasma. It was recognized that by removing and removing the organic matter contained, the tarry jung can be efficiently performed while keeping the cleaning speed from decreasing.
以上において本発明が適用されるプラズマ処理装置は, ラジアルラ イ ンスロッ トアンテナをプラズマ発生源に用いるものに限らず, 他のプ ラズマ発生方式, 例えば並行平板方式, 電子サイクロ トロン共鳴 (E C R ) 方式, 誘導結合型プラズマ発生方式等のプラズマ発生方式を用いて プラズマを発生させるプラズマ処理装置にも適用可能である。  In the above, the plasma processing apparatus to which the present invention is applied is not limited to the one using the radial line slot antenna as the plasma generation source, but may use other plasma generation systems, such as a parallel plate system, an electron cyclotron resonance (ECR) system, The present invention can also be applied to a plasma processing apparatus that generates plasma using a plasma generation method such as an inductively coupled plasma generation method.
またプラズマ処理装置にて,ウェハ Wに対して成膜処理以外の処理, 例えば F 2 , N 2, N F 3 , C O F 2 , C O , H 2 0等のガスをプラズマ化 して用いるプラズマ処理などを行なう ことによ り, 処理容器内部に付着 した C F膜を除去する場合にも, 本発明は適用可能である。 さらに本発 明では第 1及ぴ第 2のタ リ一二ング工程にて, 不活性ガスと して A rガ スの代わり に H eガスや N eガス, K r ガス, X eガスを用いるよ うに しても よレ、。 In addition, the plasma processing apparatus performs processing other than film formation processing on the wafer W, for example, plasma processing using a gas such as F 2 , N 2 , NF 3, COF 2, CO, and H 20 turned into plasma. The present invention is also applicable to the case where the CF film adhered to the inside of the processing vessel is removed by performing the process. Furthermore, in the present invention, He gas, Ne gas, Kr gas, and Xe gas are used as the inert gas in the first and second tungsten processes in place of Ar gas. You can use it.
本発明によれば, プラズマ処理装置の処理容器に付着したフッ素添 加カーボン膜を, 効率良く除去することができる。 産業上の利用可能性  According to the present invention, the fluorine-added carbon film adhered to the processing vessel of the plasma processing apparatus can be efficiently removed. Industrial applicability
本発明は, 処理容器内でガスをプラズマ化してプラズマ処理を行な う装置において, 処理容器内部に付着した C F膜を除去する場合に有用 である。  INDUSTRIAL APPLICABILITY The present invention is useful for removing a CF film adhering to the inside of a processing vessel in an apparatus for performing plasma processing by converting a gas into a plasma in the processing vessel.

Claims

請求の範囲 The scope of the claims
1 . 処理容器内で炭素とフッ素とを含む処理ガスをプラズマ化して基 板に所定の処理を行うプラズマ処理装置を, クリーニングする方法にお いて, 1. In a method of cleaning a plasma processing apparatus for performing a predetermined processing on a substrate by converting a processing gas containing carbon and fluorine into a plasma in a processing container,
処理容器内にて前記所定の処理を行い, 前記処理容器内にフッ素添加力 一ボン膜を付着させる処理工程と, A processing step of performing the predetermined processing in a processing container, and attaching a fluorine-added film to the processing container;
次いで処理容器内にて酸素のプラズマを発生させ, このプラズマによ り 前記処理容器内に付着したフッ素添加カーボン膜を分解する第 1 のタ リ 一ニング工程と, Next, an oxygen plasma is generated in the processing chamber, and the plasma is used to decompose the fluorine-added carbon film adhered in the processing chamber.
次いで処理容器内にて水素のプラズマを発生させ, このプラズマによ り 前記処理容器内の炭素と酸素とを含む有機物を分解する第 2のタ リー二 ング工程と, Next, a hydrogen gas is generated in the processing chamber, and a second tungsten step of decomposing organic substances containing carbon and oxygen in the processing chamber by the plasma;
を有する。 Having.
2 . 請求項 1 のプラズマ処理装置をク リ一二ングする方法において, 前記プラズマ処理装置は, 一面に多数のスロッ トが形成された扁平な導 波管における, 前記スロ ッ トが形成された一面にマイクロ波を導き, こ れにより前記スロッ トからマイクロ波を放射させてプラズマを発生させ るものである。  2. The method for cleaning a plasma processing apparatus according to claim 1, wherein the plasma processing apparatus includes a flat waveguide having a plurality of slots formed on one surface, wherein the slots are formed. Microwaves are guided to one side, and the microwaves are radiated from the slots to generate plasma.
3 . 請求項 1 のプラズマ処理装置をク リ一二ングする方法において, 第 2のタ リ一ユング工程は, 処理容器内の酸素をパージした状態で実施 する。  3. In the method for cleaning a plasma processing apparatus according to claim 1, the second targing step is performed in a state where oxygen in the processing container is purged.
4 . 処理容器内で炭素とフッ素とを含む処理ガスをプラズマ化して基 板に所定の処理を行うプラズマ処理装置であって,  4. A plasma processing apparatus that converts a processing gas containing carbon and fluorine into a plasma in a processing vessel and performs a predetermined processing on the substrate.
前記処理容器に前記処理ガスを供給して,当該処理ガスをプラズマ化し, 前記基板に対して所定の処理を行うための基板処理実行手段と, 前記処理容器に酸素ガスと, アルゴンガス, ヘリ ウムガス, ネオンガス, ク リ プトンガス, キセノ ンガスよ り選ばれる不活性ガスとを供給して, 前記酸素ガスと不活性ガス とをプラズマ化し, 酸素プラズマによ り前記 処理容器内に付着したフッ素添加カーボン膜を分解する処理を行うため の酸素ブラズマ処理実行手段と, A substrate processing execution means for supplying the processing gas to the processing container, converting the processing gas into plasma, and performing a predetermined processing on the substrate; An oxygen gas and an inert gas selected from an argon gas, a helium gas, a neon gas, a krypton gas, and a xenon gas are supplied to the processing vessel, and the oxygen gas and the inert gas are turned into plasma to form an oxygen plasma. Means for performing an oxygen plasma treatment for decomposing the fluorine-added carbon film adhered to the inside of the treatment container;
前記処理容器に水素ガスと, 了ルゴンガス, ヘリ ゥムガス, ネオンガス, ク リ プトンガス, キセノ ンガスよ り選ばれる不活性ガスとを供給して, 前記水素ガスと不活性ガス とをプラズマ化し, 前記水素プラズマによ り 前記処理容器内に付着した炭素と酸素とを含む有機物を分解する処理を 行うための水素プラズマ処理実行手段と, A hydrogen gas and an inert gas selected from the group consisting of argon gas, helium gas, neon gas, krypton gas, and xenon gas are supplied to the processing vessel, and the hydrogen gas and the inert gas are turned into plasma. Hydrogen plasma processing execution means for performing processing for decomposing organic substances containing carbon and oxygen attached to the processing container,
前記処理容器にて基板に所定の処理を行った後, 前記処理容器内に酸素 ガスを供給して前記酸素プラズマによる処理を行い, 次いで前記処理容 器内に水素ガスを供給して前記水素プラズマによる処理を行う よ うに, 前記酸素プラズマ処理実行手段と, 水素プラズマ処理実行手段と, を制 御する制御部と, を有する。 After performing a predetermined process on the substrate in the processing container, an oxygen gas is supplied into the processing container to perform the process using the oxygen plasma, and then a hydrogen gas is supplied into the processing container to supply the hydrogen plasma. And a control unit that controls the oxygen plasma processing execution unit and the hydrogen plasma processing execution unit so as to perform the processing according to.
PCT/JP2004/004016 2003-03-25 2004-03-24 Method for cleaning plasma processing apparatus and plasma processing apparatus WO2004086480A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-083293 2003-03-25
JP2003083293A JP2004296512A (en) 2003-03-25 2003-03-25 Method of cleaning plasma treatment device

Publications (1)

Publication Number Publication Date
WO2004086480A1 true WO2004086480A1 (en) 2004-10-07

Family

ID=33094948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004016 WO2004086480A1 (en) 2003-03-25 2004-03-24 Method for cleaning plasma processing apparatus and plasma processing apparatus

Country Status (2)

Country Link
JP (1) JP2004296512A (en)
WO (1) WO2004086480A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100768707B1 (en) 2005-12-19 2007-10-19 주식회사 대우일렉트로닉스 Manufacturing process of organic light emitting diode
JP5082411B2 (en) * 2006-12-01 2012-11-28 東京エレクトロン株式会社 Deposition method
JP5751895B2 (en) * 2010-06-08 2015-07-22 株式会社日立国際電気 Semiconductor device manufacturing method, cleaning method, and substrate processing apparatus
CN105051871B (en) * 2013-03-28 2018-06-12 芝浦机械电子株式会社 Mounting table and plasma processing apparatus
JP7341099B2 (en) 2020-04-07 2023-09-08 東京エレクトロン株式会社 Cleaning method and plasma treatment equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250985A (en) * 1988-08-11 1990-02-20 Semiconductor Energy Lab Co Ltd Cleaning method of equipment for forming film made of carbon or material mainly composed of carbon
WO1998021749A1 (en) * 1996-11-14 1998-05-22 Tokyo Electron Limited Method for cleaning plasma treatment device and method for plasma treatment
JP2002299331A (en) * 2001-03-28 2002-10-11 Tadahiro Omi Plasma processing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250985A (en) * 1988-08-11 1990-02-20 Semiconductor Energy Lab Co Ltd Cleaning method of equipment for forming film made of carbon or material mainly composed of carbon
WO1998021749A1 (en) * 1996-11-14 1998-05-22 Tokyo Electron Limited Method for cleaning plasma treatment device and method for plasma treatment
JP2002299331A (en) * 2001-03-28 2002-10-11 Tadahiro Omi Plasma processing apparatus

Also Published As

Publication number Publication date
JP2004296512A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
JP4256763B2 (en) Plasma processing method and plasma processing apparatus
US7819082B2 (en) Plasma processing apparatus
CN104882360B (en) Cleaning method of plasma processing apparatus
WO2008035678A1 (en) Plasma cleaning process and plasma cvd method
TWI416622B (en) Etching method and memory media
JP2005340787A (en) Surface cleaning method for remote plasma generation tube, substrate treatment method using remote plasma generation tube, and substrate treatment equipment
JP2010192934A (en) Plasma processing apparatus and plasma processing method
KR20100080933A (en) Plasma processing system and plasma processing method
KR20070011463A (en) Substrate for electronic device and method for processing same
US20050112879A1 (en) Insulation film etching method
US7713864B2 (en) Method of cleaning semiconductor substrate conductive layer surface
KR101432415B1 (en) Plasma nitriding treatment method and plasma nitriding treatment device
KR20180018824A (en) Adjustable remote dissociation
JPH10199869A (en) Dry-etching method
WO2004086480A1 (en) Method for cleaning plasma processing apparatus and plasma processing apparatus
EP0926716B1 (en) Method of processing a semiconductor substrate
KR100327277B1 (en) Method and system for plasma-processing
JPH1050656A (en) Cleaning semiconductor manufacturing apparatus and semiconductor wafer and manufacturing semiconductor device
JP4262126B2 (en) Insulating film formation method
KR100733440B1 (en) Method of forming fluorinated carbon film
JPH02174120A (en) Removal of organic high-polymer film
JP2001131752A (en) Plasma cleaning method
JP2003332317A (en) Method and apparatus for exfoliating resist using plasma
JP2005243707A (en) Plasma generation method and plasma generation apparatus
JP2002083802A (en) Dry processing device such as etching device and ashing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase