WO2004085985A1 - Service life sensor - Google Patents

Service life sensor Download PDF

Info

Publication number
WO2004085985A1
WO2004085985A1 PCT/DE2004/000606 DE2004000606W WO2004085985A1 WO 2004085985 A1 WO2004085985 A1 WO 2004085985A1 DE 2004000606 W DE2004000606 W DE 2004000606W WO 2004085985 A1 WO2004085985 A1 WO 2004085985A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
sleeve
sensor
strains
antenna
Prior art date
Application number
PCT/DE2004/000606
Other languages
German (de)
French (fr)
Inventor
Karl Nienhaus
Original Assignee
Thiele Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10352959A external-priority patent/DE10352959A1/en
Application filed by Thiele Gmbh & Co. Kg filed Critical Thiele Gmbh & Co. Kg
Priority to EP04722796A priority Critical patent/EP1606603A1/en
Publication of WO2004085985A1 publication Critical patent/WO2004085985A1/en
Priority to US11/177,018 priority patent/US7281434B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0004Force transducers adapted for mounting in a bore of the force receiving structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/04Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands
    • G01L5/10Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means
    • G01L5/102Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means using sensors located at a non-interrupted part of the flexible member
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0041Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress

Definitions

  • the invention relates to a device for determining the service life of mechanical equipment, a so-called service life sensor.
  • the service life of stressed parts is to be recorded and calculated using a sensor with an evaluation unit.
  • the recorded values are transmitted to a readout unit via radio excitation.
  • the object of the invention is to enable an integrated simple solution for absorbing the existing stresses in the operation of a mechanical device.
  • the device according to the invention does not require any cabling, is easy to apply, enables “online” measurements and is not restricted to a specific application.
  • the measured values are recorded directly on the component online.
  • a complex, downstream measurement technology is no longer required, the recorded values of the component stress are already processed in the integrated microcontroller. Due to the small and compact design, the sensor can be easily attached anywhere. The recorded loads are already processed in the sensor.
  • the new lifetime sensor with evaluation / readout station will be significantly cheaper than conventional methods.
  • FIG. 1 schematic diagram of the life sensor
  • FIG. 2 sensor sketch, cross section of variant A
  • FIG. 4 Application of the life sensor on a round steel link chain.
  • the principle of the device according to the invention as a life sensor 1 is composed of three units (FIG. 1).
  • the lifespan sensor 1 consists of a coupling element in the form of an antenna 2, a processing unit 3 and a sensor 4 which can be attached to, in or on a mechanical component.
  • the lifespan sensor 1 works together with a reader 5, which is also equipped with an antenna 6 and an associated application 7 in the form of a data processing system.
  • the lifetime sensor 1 has direct contact with the component to be observed and registers the loads on the component.
  • the lifetime sensor 1 can be applied to the component to be observed in two design variants.
  • the general internal structure of the sleeve 8 is shown in Figures 2 and 3 and does not differ in the two variants.
  • the embodiment A of the life sensor 1 is, as shown in Figure 2, constructed as follows: on the inner wall of the sleeve 8, a strain gauge (DMS) or Surface Acoustic Wave Sensor (SAW) 9 - English surface sensor - is attached.
  • the sleeve 8 absorbs the stresses in the form of strains.
  • the strains of the sleeve 8 are registered with the strain gauge or SAW 9 by means of a measurement pulse from a microcontroller which is applied to a multilayer ceramic module, a low temperature cofired ceramic 10 (LTCC).
  • the recorded measured values are not saved individually as absolute values, but are assigned to them on the basis of a division of the nominal load range into classes. This division of the nominal load range is matched to the component connected to the sleeve 8.
  • the measured values recorded with the DMS or SAW 9 are processed in the microcontroller by a suitable counting method and stored in its memory.
  • the counting method is designed in such a way that, in contrast to other counting methods, medium load fluctuations are taken into account become.
  • the component stresses are thus stored as a load spectrum of individual classes in a storage matrix.
  • the memory content is read out by radio excitation at any time intervals via the antenna 11.
  • the energy supply is ensured by a battery 12.
  • the embodiment B of the life sensor 1 is shown in Figure 3.
  • the DMS or SAW 9 is applied directly to the component to be observed outside the sleeve 8.
  • the component stresses in the form of the component expansions are carried out directly on the component in the embodiment variant B and are not measured via the deformation of the sleeve 8.
  • the data transmitted via antenna 11 are recorded and evaluated by a reading device 5.
  • This monitoring unit registers possible overstressing and enables the component to be replaced in good time before longer downtimes occur.
  • a web with a bore is embedded in the safety component 13 (measuring link) according to DE 100 36 014 A1 of the round steel link chain 14 as an example.
  • the lifetime sensor 1 according to variant A is used in this bore.
  • the safety components 13 are arranged at certain intervals in the round steel link chain 14.
  • the round steel link chain 14 is subjected to tension during operation.
  • the tensile forces acting on the chain lead to the web in the measuring element 13 being deformed or compressed.
  • This deformation / compression is transmitted to the life sensor 1 and registered with the strain gauge or SAW 9 via the expansion of the sleeve 8.
  • the safety component 13 When the safety component 13 is relieved, the web resumes its initial shape and thus deforms the sleeve 8 into its initial state.
  • the recorded measured values are evaluated according to the matrix counting method and periodically transmitted to the reading device 5 with every complete chain circulation.
  • the determined by the connected application 7 Data allow a statement about the previous component loads and the remaining component life.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

The invention relates to a device for determining the actual service life of technical structures. Said device comprises a monitoring system and a sensor that is equipped with strain gauges (SG) or SAW resonators for recording stresses and expansion in a structural component. According to the invention, the monitoring system comprises a signal processing unit, an antenna and a battery. The signal processing unit is mounted on a multi-layer ceramic module, a low-temperature co-fired ceramic (LTCC). The LTCC module, antenna and battery are situated in a metal tube and are fixed in the latter by means of a sealing compound.

Description

Lebensdauersensor Life sensor
Die Erfindung betrifft eine Vorrichtung zur Bestimmung der Lebensdauer von maschinentechnischen Einrichtungen, einem sogenannten Lebensdauersensor.The invention relates to a device for determining the service life of mechanical equipment, a so-called service life sensor.
Die Lebensdauer von beanspruchten Teilen soll mit einem Sensor mit Auswerteeinheit erfasst und berechnet werden. Die erfassten Werte werden über Funkanregung an eine Ausleseeinheit übermittelt.The service life of stressed parts is to be recorded and calculated using a sensor with an evaluation unit. The recorded values are transmitted to a readout unit via radio excitation.
Es ist bekannt, Sensoren an maschinentechnischen Bauteilen anzubringen, um deren Schädigung und das Lastkollektiv zu bestimmen. Diese Sensoren, in der Regel bestehend aus Dehungsmessstreifen, müssen an dem Bauteil befestigt mit einer Auslese-/Auswerteeinheit und Stromversorgung gekoppelt werden. Die Verkabelung der zu überwachenden Bauteile ist nur bei den wenigsten Anwendungen durchführbar. Ein hoher personeller Aufwand ist für das Durchführen solcher Messungen erforderlich. Zusätzlich nehmen Messeinrich- tungen aufgrund der Einheiten - Stromversorgung, Auswerteeinheit und Spannungsmesssensor - viel Platz in Anspruch. Dauermessungen sind nur sehr eingeschränkt möglich, die bekannten Verfahren sind teuer in der Installation und unkomfortabel in der Handhabung.It is known to attach sensors to mechanical components in order to determine their damage and the load spectrum. These sensors, usually consisting of strain gauges, must be attached to the component and coupled to a readout / evaluation unit and power supply. The components to be monitored can only be wired in very few applications. A lot of personnel is required to carry out such measurements. In addition, measuring due to the units - power supply, evaluation unit and voltage measurement sensor - take up a lot of space. Long-term measurements are only possible to a very limited extent, the known methods are expensive to install and uncomfortable to use.
Aufgabe der Erfindung ist es, eine integrierte einfache Lösung zur Aufnahme der vorhandenen Beanspruchungen im Betrieb einer maschinellen Einrichtung zu ermöglichen.The object of the invention is to enable an integrated simple solution for absorbing the existing stresses in the operation of a mechanical device.
Diese Aufgabe wird durch eine Vorrichtung mit den Merkmalen von Patentanspruch 1 gelöst.This object is achieved by a device with the features of claim 1.
Das erfindungsgemäße Vorrichtung benötigt keine Verkabelung, ist einfach zu applizieren, ermöglicht "online"-Messungen und ist nicht auf eine spezielle Anwendung beschränkt. Die Messwerte werden online direkt am Bauteil aufgenommen. Eine aufwendige, nachgeschaltete Messtechnik entfällt, die erfassten Werte der Bauteilbeanspruchung werden bereits im integrierten Mikrocontroller verarbeitet. Durch die kleine und kompakte Bauweise kann der Sensor einfach und überall angebracht werden. Die aufgenommenen Beanspruchungen werden bereits im Sensor verarbeitet.The device according to the invention does not require any cabling, is easy to apply, enables “online” measurements and is not restricted to a specific application. The measured values are recorded directly on the component online. A complex, downstream measurement technology is no longer required, the recorded values of the component stress are already processed in the integrated microcontroller. Due to the small and compact design, the sensor can be easily attached anywhere. The recorded loads are already processed in the sensor.
Der neue Lebensdauersensor mit Auswerte/Auslese-Station wird deutlich preisgünstiger sein als herkömmliche Verfahren.The new lifetime sensor with evaluation / readout station will be significantly cheaper than conventional methods.
Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und wird im Folgenden näher erläutert. Es zeigen:An embodiment of the invention is shown in the drawings and is explained in more detail below. Show it:
Figur 1 Prinzipskizze des Lebensdauersensors;Figure 1 schematic diagram of the life sensor;
Figur 2 Sensorskizze, Querschnitt der Ausführungsvariante A;FIG. 2 sensor sketch, cross section of variant A;
Figur 3 Sensorskizze, Längsschnitt der Ausführungsvariante B undFigure 3 sensor sketch, longitudinal section of the embodiment B and
Figur 4 Anwendung des Lebensdauersensors an einer Rundstahlgliederkette. Das Prinzip der erfindungsgemäßen Vorrichtung als Lebensdauersensor 1 setzt sich aus drei Einheiten (Figur 1 ) zusammen. Der Lebensdauersensor 1 besteht aus einem Kopplungselement in Form einer Antenne 2, einer Verarbeitungseinheit 3 und einem Sensor 4, der an, in oder auf einem maschinentechnischen Bauteil angebracht werden kann. Der Lebensdauersensor 1 arbeitet mit einem Lesegerät 5 zusammen, das ebenfalls mit einer Antenne 6 ausgestattet ist und einer damit verbundenen Applikation 7 in Form einer Datenverarbeitungsanlage. Der Lebensdauersensor 1 hat mit dem zu beobachtenden Bauteil direkten Kontakt und registriert die Belastungen des Bauteils.Figure 4 Application of the life sensor on a round steel link chain. The principle of the device according to the invention as a life sensor 1 is composed of three units (FIG. 1). The lifespan sensor 1 consists of a coupling element in the form of an antenna 2, a processing unit 3 and a sensor 4 which can be attached to, in or on a mechanical component. The lifespan sensor 1 works together with a reader 5, which is also equipped with an antenna 6 and an associated application 7 in the form of a data processing system. The lifetime sensor 1 has direct contact with the component to be observed and registers the loads on the component.
Der Lebendauersensor 1 kann in zwei Ausführungsvarianten an dem zu beobachtenden Bauteil appliziert werden. Der generelle innere Aufbau der Hülse 8 ist in Figur 2 und 3 dargestellt und unterscheidet sich nicht bei beiden Ausführungsvarianten.The lifetime sensor 1 can be applied to the component to be observed in two design variants. The general internal structure of the sleeve 8 is shown in Figures 2 and 3 and does not differ in the two variants.
Das Ausführungsbeispiel A des Lebensdauersensors 1 ist, wie in Figur 2 dargestellt, folgendermaßen aufgebaut: an der inneren Wand der Hülse 8 ist ein Dehnmeßstreifen (DMS) oder Surface Acoustic Wave Sensor (SAW) 9 - zu deutsch Oberflächen-Sensor - angebracht. Die Hülse 8 nimmt die Spannungen in Form von Dehnungen auf. Durch einen Messimpuls von einem Mikro- controller, der auf einem Mehrlagenkeramik-Modul, einem Low Temperature Cofired Ceramic 10 (LTCC) aufgebracht ist, werden die Dehnungen der Hülse 8 mit dem DMS oder SAW 9 registriert. Die aufgenommenen Messwerte werden nicht einzeln als Absolutwerte abgespeichert, sondern anhand einer Einteilung des Nennbelastungsbereiches in Klassen diesen zugeordnet. Diese Einteilung des Nennbelastungsbereiches ist auf das mit der Hülse 8 verbundene Bauteil abgestimmt.The embodiment A of the life sensor 1 is, as shown in Figure 2, constructed as follows: on the inner wall of the sleeve 8, a strain gauge (DMS) or Surface Acoustic Wave Sensor (SAW) 9 - English surface sensor - is attached. The sleeve 8 absorbs the stresses in the form of strains. The strains of the sleeve 8 are registered with the strain gauge or SAW 9 by means of a measurement pulse from a microcontroller which is applied to a multilayer ceramic module, a low temperature cofired ceramic 10 (LTCC). The recorded measured values are not saved individually as absolute values, but are assigned to them on the basis of a division of the nominal load range into classes. This division of the nominal load range is matched to the component connected to the sleeve 8.
Durch ein geeignetes Zählverfahren werden die mit dem DMS oder SAW 9 aufgenommenen Messwerte im Mikrocontroller verarbeitet und in dessen Speicher hinterlegt. Das Zählverfahren ist so ausgelegt, dass im Gegensatz zu anderen Zählverfahren auftretenden Mittellastschwankungen berücksichtigt werden. Die Bauteilbeanspruchungen werden somit als Lastkollektiv einzelner Klassen in einer Speichermatrix hinterlegt. Der Speicherinhalt wird durch Funkanregung in beliebigen zeitlichen Abständen über die Antenne 1 1 ausgelesen. Die Energieversorgung wird durch eine Batterie 12 sichergestellt.The measured values recorded with the DMS or SAW 9 are processed in the microcontroller by a suitable counting method and stored in its memory. The counting method is designed in such a way that, in contrast to other counting methods, medium load fluctuations are taken into account become. The component stresses are thus stored as a load spectrum of individual classes in a storage matrix. The memory content is read out by radio excitation at any time intervals via the antenna 11. The energy supply is ensured by a battery 12.
Das Ausführungsbeispiel B des Lebensdauersensors 1 ist in Figur 3 dargestellt. Der DMS oder SAW 9 ist dabei direkt auf den zu beobachtenden Bauteil außerhalb der Hülse 8 aufgebracht. Die Bauteilspannungen in Form der Bauteildehnungen werden bei der Ausführungsvariante B direkt am Bauteil aufgenommen und nicht über die Verformung der Hülse 8 gemessen.The embodiment B of the life sensor 1 is shown in Figure 3. The DMS or SAW 9 is applied directly to the component to be observed outside the sleeve 8. The component stresses in the form of the component expansions are carried out directly on the component in the embodiment variant B and are not measured via the deformation of the sleeve 8.
Sowohl bei Ausführungsvariante A als auch bei B werden die über die Antenne 1 1 übermittelten Daten von einem Lesegerät 5 erfasst und ausgewertet. Diese Überwachungseinheit registriert mögliche Überbeanspruchungen und ermöglicht den rechtzeitigen Austausch des Bauteils, bevor längere Stillstandszeiten auftreten.In variant A as well as in variant B, the data transmitted via antenna 11 are recorded and evaluated by a reading device 5. This monitoring unit registers possible overstressing and enables the component to be replaced in good time before longer downtimes occur.
Nach Figur 4 ist als Beispiel in dem Sicherheitsbauteil 13 (Messglied) nach DE 100 36 014 A1 der Rundstahlgliederkette 14 ein Steg mit einer Bohrung eingelassen. In dieser Bohrung wird der Lebensdauersensor 1 nach Ausführungsvariante A eingesetzt. Die Sicherheitsbauteile 13 sind in bestimmten Abständen in der Rundstahlgliederkette 14 eingereiht. Durch den Betrieb wird die Rundstahlgliederkette 14 auf Zug beansprucht. Die auf die Kette wirkenden Zugkräfte führen dazu, dass sich der Steg im Messglied 13 verformt bzw. gestaucht wird. Diese Verformung/Stauchung wird auf den Lebensdauersensor 1 übertragen und mit dem DMS oder SAW 9 über die Dehnung der Hülse 8 registriert. Bei Entlastung des Sicherheitsbauteils 13 nimmt der Steg wieder seine Ausgangsform an und verformt so die Hülse 8 in ihren Ausgangszustand. Die aufgenommenen Messwerte werden nach dem Matrix-Zählverfahren ausgewertet und periodisch bei jedem ganzen Kettenumlauf an das Lesegerät 5 übermittelt. Die durch die angeschlosse Applikation 7 ermittelten Daten lassen eine Aussage über die bisherigen Bauteilbelastungen und die verbleibende Bauteillebensdauer zu. According to FIG. 4, a web with a bore is embedded in the safety component 13 (measuring link) according to DE 100 36 014 A1 of the round steel link chain 14 as an example. The lifetime sensor 1 according to variant A is used in this bore. The safety components 13 are arranged at certain intervals in the round steel link chain 14. The round steel link chain 14 is subjected to tension during operation. The tensile forces acting on the chain lead to the web in the measuring element 13 being deformed or compressed. This deformation / compression is transmitted to the life sensor 1 and registered with the strain gauge or SAW 9 via the expansion of the sleeve 8. When the safety component 13 is relieved, the web resumes its initial shape and thus deforms the sleeve 8 into its initial state. The recorded measured values are evaluated according to the matrix counting method and periodically transmitted to the reading device 5 with every complete chain circulation. The determined by the connected application 7 Data allow a statement about the previous component loads and the remaining component life.
Bezugszeichenaufstellung:REFERENCE NUMBERS:
1 - Lebensdauersensor1 - Lifetime sensor
2 - Antenne v. 12 - antenna from 1
3 - Verarbeitungseinheit3 - processing unit
4 - Sensor4 - sensor
5 - Lesegerät5 - reader
6 - Antenne v. 56 - antenna from 5
7 - Applikation7 - Application
8 - Hülse8 - sleeve
9 - SAW 10 - LTCC 11 - Antenne 12 - Batterie9 - SAW 10 - LTCC 11 - antenna 12 - battery
13 - Sicherheitsbauteil 14 - Rundstahlgliederkette 13 - Safety component 14 - Round steel link chain

Claims

Patentansprüche claims
1. Vorrichtung zur Bestimmung der Lebensdauer von maschinentechnischen Einrichtungen, welcher die Funktionen "Messen", "Auswerten" und "Übermitteln" in einem Bauteil vereint, dadurch gekennzeichnet, dass einem Sensor zur Erfassung von Bauteilspannungen und -dehnungen, ein Low Temperature Cofired Ceramic LTCC, eine Antenne und eine Batterie vorgesehen ist, wobei der LTCC, die Antenne und die Batterie innerhalb einer Metallhülse liegen und mit einer Vergussmasse in der Hülse lagefixiert sind.1. Device for determining the service life of mechanical engineering equipment, which combines the functions "measuring", "evaluating" and "transmitting" in one component, characterized in that a sensor for detecting component stresses and strains, a Low Temperature Cofired Ceramic LTCC , an antenna and a battery is provided, wherein the LTCC, the antenna and the battery lie within a metal sleeve and are fixed in position with a potting compound in the sleeve.
2. Vorrichtung nach Patentanspruch 1 , dadurch gekennzeichne t, dass die Bauteilspannungen und -dehnungen mit einem Surface Accustic Wave Element (SAW), der auf der Innenwand der Hülse liegt, erfassbar sind.2. Device according to claim 1, characterized gekennzeichne t that the component stresses and strains with a surface acoustic wave element (SAW), which lies on the inner wall of the sleeve, can be detected.
3. Vorrichtung nach Patentanspruch 1 , dadurch gekennzeichne t, dass die Bauteilspannungen und -dehnungen mit einem Surface Accustic Wave Element (SAW), der sich außerhalb der Sensorhülse befindet, erfassbar sind.3. Device according to claim 1, characterized gekennzeichne t that the component stresses and strains with a surface acoustic wave element (SAW), which is located outside the sensor sleeve, can be detected.
4. Vorrichtung nach Patentanspruch 1, dadurch gekennzeichne t, dass die Bauteilspannungen und -dehnungen mit einem Dehnungsmessstreifen (DMS) erfassbar sind, der auf der Innenwand der Hülse liegt.4. The device according to claim 1, characterized in that the component stresses and strains can be detected with a strain gauge (DMS) which lies on the inner wall of the sleeve.
5. Vorrichtung nach Patentanspruch 1, dadurch gekennzeichne t, dass die Bauteilspannungen und -dehnungen mit einem Dehnungsmessstreifen (DMS) erfassbar sind, der sich außerhalb der Hülse befindet. 5. The device according to claim 1, characterized in that the component stresses and strains can be detected with a strain gauge (DMS), which is located outside the sleeve.
6. Vorrichtung nach einem der Patentansprüche 1 bis 5, dadurch gekennzeichnet, dass die Bauteilspannungen anhand des Matrix- Zählverfahrens auswertbar sind.6. Device according to one of the claims 1 to 5, characterized in that the component voltages can be evaluated using the matrix counting method.
7. Vorrichtung nach einem der Patentansprüche 1 bis 5, dadurch gekennzeichnet, dass die Bauteilspannungen anhand des Rainflow-Zählverfahrens auswertbar sind. 7. Device according to one of claims 1 to 5, characterized in that the component voltages can be evaluated using the rainflow counting method.
PCT/DE2004/000606 2003-03-27 2004-03-24 Service life sensor WO2004085985A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04722796A EP1606603A1 (en) 2003-03-27 2004-03-24 Service life sensor
US11/177,018 US7281434B2 (en) 2003-03-27 2005-07-08 Service life sensor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10313726 2003-03-27
DE10313726.2 2003-03-27
DE10352959.4 2003-11-13
DE10352959A DE10352959A1 (en) 2003-03-27 2003-11-13 Life sensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/177,018 Continuation-In-Part US7281434B2 (en) 2003-03-27 2005-07-08 Service life sensor device

Publications (1)

Publication Number Publication Date
WO2004085985A1 true WO2004085985A1 (en) 2004-10-07

Family

ID=33099292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/000606 WO2004085985A1 (en) 2003-03-27 2004-03-24 Service life sensor

Country Status (2)

Country Link
EP (1) EP1606603A1 (en)
WO (1) WO2004085985A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070008A1 (en) * 2004-12-28 2006-07-06 Rieter Ingolstadt Spinnereimaschinenbau Ag Method for determining the linear density or the cross-section of a textile fiber composite and corresponding device
GB2436220A (en) * 2006-03-16 2007-09-19 Ncode Internat Ltd Damage monitoring tag
FR2923293A1 (en) * 2007-11-05 2009-05-08 Karver Soc Par Actions Simplif Force sensor integrated pulley for competition boat, has detectors producing information representing strains exerted between cordages and connected to remote transmission units transmitting information to processing and calculation unit
DE202011000794U1 (en) 2011-04-04 2011-06-09 RUD Ketten Rieger & Dietz GmbH u. Co. KG, 73432 Load-receiving part with non-contact readable data carrier
DE102011001787A1 (en) 2011-04-04 2012-10-04 Rud Ketten Rieger & Dietz Gmbh U. Co. Kg Load-receiving part with non-contact readable data carrier
DE102017130328A1 (en) 2017-12-18 2019-06-19 Thiele Gmbh & Co. Kg Load-bearing component for chains

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4336595A (en) * 1977-08-22 1982-06-22 Lockheed Corporation Structural life computer
DE3930314A1 (en) * 1988-09-09 1990-03-22 Nissan Motor PIEZOELECTRIC SENSOR FOR MONITORING A KINETIC MOTION SIZE
US5421204A (en) * 1993-06-08 1995-06-06 Svaty, Jr.; Karl J. Structural monitoring system
DE19504050A1 (en) * 1995-02-08 1996-08-14 Gutehoffnungshuette Man Mobile system for metering and classifying load cycles for support structures esp. bridges
DE19645613A1 (en) * 1996-03-14 1997-09-18 Herion Werke Kg Pressure sensor with deformable membrane e.g. for vehicle engine or seat occupation sensing
DE10036014A1 (en) * 2000-07-25 2002-02-21 Thiele Gmbh & Co Kg Safety component for chain link or hook comprises transponder which is mounted in bore using bi conical molding component outside load-bearing area
US6480792B1 (en) * 1998-10-22 2002-11-12 British Aerospace Public Limited Company Fatigue monitoring systems and methods incorporating neural networks

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4336595A (en) * 1977-08-22 1982-06-22 Lockheed Corporation Structural life computer
DE3930314A1 (en) * 1988-09-09 1990-03-22 Nissan Motor PIEZOELECTRIC SENSOR FOR MONITORING A KINETIC MOTION SIZE
US5421204A (en) * 1993-06-08 1995-06-06 Svaty, Jr.; Karl J. Structural monitoring system
DE19504050A1 (en) * 1995-02-08 1996-08-14 Gutehoffnungshuette Man Mobile system for metering and classifying load cycles for support structures esp. bridges
DE19645613A1 (en) * 1996-03-14 1997-09-18 Herion Werke Kg Pressure sensor with deformable membrane e.g. for vehicle engine or seat occupation sensing
US6480792B1 (en) * 1998-10-22 2002-11-12 British Aerospace Public Limited Company Fatigue monitoring systems and methods incorporating neural networks
DE10036014A1 (en) * 2000-07-25 2002-02-21 Thiele Gmbh & Co Kg Safety component for chain link or hook comprises transponder which is mounted in bore using bi conical molding component outside load-bearing area

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MICHEL J: "DEHNUNGSMESSUNG MIT FUNKABFRAGBAREN OFW-RESONATOREN", TECHNISCHES MESSEN TM, R.OLDENBOURG VERLAG. MUNCHEN, DE, vol. 62, no. 9, 1 September 1995 (1995-09-01), pages 342 - 345, XP000527993, ISSN: 0171-8096 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070008A1 (en) * 2004-12-28 2006-07-06 Rieter Ingolstadt Spinnereimaschinenbau Ag Method for determining the linear density or the cross-section of a textile fiber composite and corresponding device
GB2436220A (en) * 2006-03-16 2007-09-19 Ncode Internat Ltd Damage monitoring tag
GB2436220B (en) * 2006-03-16 2009-08-12 Ncode Internat Ltd Damage dosing monitoring system
FR2923293A1 (en) * 2007-11-05 2009-05-08 Karver Soc Par Actions Simplif Force sensor integrated pulley for competition boat, has detectors producing information representing strains exerted between cordages and connected to remote transmission units transmitting information to processing and calculation unit
DE202011000794U1 (en) 2011-04-04 2011-06-09 RUD Ketten Rieger & Dietz GmbH u. Co. KG, 73432 Load-receiving part with non-contact readable data carrier
DE102011001787A1 (en) 2011-04-04 2012-10-04 Rud Ketten Rieger & Dietz Gmbh U. Co. Kg Load-receiving part with non-contact readable data carrier
EP2508461A1 (en) 2011-04-04 2012-10-10 RUD Ketten Rieger & Dietz GmbH u. Co. KG Load bearer with contactless readable data carrier
CN102734387A (en) * 2011-04-04 2012-10-17 路德-李格和蒂茨链条有限公司 Load bearer with contactless readable data carrier
AU2012201799B2 (en) * 2011-04-04 2016-09-22 Rud Ketten Rieger & Dietz Gmbh U. Co. Kg Load handling part with contactlessly readable data carrier
DE102017130328A1 (en) 2017-12-18 2019-06-19 Thiele Gmbh & Co. Kg Load-bearing component for chains
WO2019120359A1 (en) 2017-12-18 2019-06-27 Thiele Gmbh & Co. Kg Load receiving component for chains
DE102017130328B4 (en) 2017-12-18 2019-10-10 Thiele Gmbh & Co. Kg Load-bearing component for chains

Also Published As

Publication number Publication date
EP1606603A1 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
EP1364193B1 (en) Device for measuring in or on flexible hose-type pipes
DE10017572B4 (en) Rolling bearings with remote sensing units
DE60310703T2 (en) MONITORING A PARAMETER WITH LOW ENERGY CONSUMPTION FOR A DATA LOGGER FOR A PLANE OF A PLANE
DE102006051642B4 (en) Roller bearing with a measuring rolling element
EP2981796B1 (en) Force-measuring device
DE102010001144A1 (en) Mechanical connection component e.g. screw, for monitoring e.g. screw connections in bridge, has wireless interface for wireless detection of information describing mechanical load of component based on electrical property of sensor layer
EP1764596A2 (en) Arrangement for collecting measured values in threaded connections
EP1484608A2 (en) Damage determination of test objects by permanently attached ultrasonic sensors with integrated control circuitry
DE102010015325A1 (en) Tester for blind rivet setting tool, has pickup portion which provides signal output on reception of counter bearing power of rivet inserted through insertion portion of frame over support element
DE102015201577A1 (en) Sensor arrangement for the indirect detection of a torque of a rotatably mounted shaft
EP1342925A2 (en) Contraction unit with position sensing device
WO2004085985A1 (en) Service life sensor
EP0749934A2 (en) Method and apparatus for the determination of the dynamic stresses in parts, equipments and machines
DE102006057225A1 (en) Sensor arrangement for use as torque sensor in motor vehicle steering system, has sensor unit arranged at carrier module that is arranged in recess of shaft or in form of foil formed at shaft, where module is fitted and connected in shaft
EP3959448B1 (en) Assembly comprising at least one section of a structure and method for determining a status of at least one section of a structure
DE202017106872U1 (en) Sensor arrangement for determining a variable voltage of a circulating chain or belt drive
DE10352959A1 (en) Life sensor
WO2004108439A1 (en) Transponder for tyres
DE102016123970A1 (en) Connection device, monitoring method and assembly tool for a connection device
DE19514050A1 (en) Method and device for detecting loads on lifting and pulling devices
AT408900B (en) DEVICE FOR MONITORING A SLIDING BEARING
WO1992002747A1 (en) Device for sealing feed-through gaps between the wall of a housing and a shaft
DE19504050C2 (en) Device for recording load cycles of supporting structures
EP3857213A1 (en) Measuring method for determining a structural state and state of wear of a component, and use of a measurement in the surface region of a metallic electrical conductor for the purposes of material monitoring
EP1839983B1 (en) Apparatus for measuring the braking force in an aircraft brake assembly

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004722796

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11177018

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004722796

Country of ref document: EP