WO2004085813A1 - Moteur a combustion interne a transmission hydraulique et distribution sans soupape alimente par un générateur d'oxygène - Google Patents

Moteur a combustion interne a transmission hydraulique et distribution sans soupape alimente par un générateur d'oxygène Download PDF

Info

Publication number
WO2004085813A1
WO2004085813A1 PCT/DZ2003/000002 DZ0300002W WO2004085813A1 WO 2004085813 A1 WO2004085813 A1 WO 2004085813A1 DZ 0300002 W DZ0300002 W DZ 0300002W WO 2004085813 A1 WO2004085813 A1 WO 2004085813A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
internal combustion
combustion engine
engine characterized
linked
Prior art date
Application number
PCT/DZ2003/000002
Other languages
English (en)
Inventor
Monès JAAFAR
Original Assignee
Jaafar Mones
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jaafar Mones filed Critical Jaafar Mones
Priority to AU2003223940A priority Critical patent/AU2003223940A1/en
Priority to PCT/DZ2003/000002 priority patent/WO2004085813A1/fr
Publication of WO2004085813A1 publication Critical patent/WO2004085813A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B13/00Reciprocating-piston machines or engines with rotating cylinders in order to obtain the reciprocating-piston motion
    • F01B13/04Reciprocating-piston machines or engines with rotating cylinders in order to obtain the reciprocating-piston motion with more than one cylinder
    • F01B13/06Reciprocating-piston machines or engines with rotating cylinders in order to obtain the reciprocating-piston motion with more than one cylinder in star arrangement
    • F01B13/068Reciprocating-piston machines or engines with rotating cylinders in order to obtain the reciprocating-piston motion with more than one cylinder in star arrangement the connection of the pistons with an actuated or actuating element being at the inner ends of the cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B21/00Combinations of two or more machines or engines
    • F01B21/02Combinations of two or more machines or engines the machines or engines being all of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/04Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft
    • F01B9/06Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft the piston motion being transmitted by curved surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B57/00Internal-combustion aspects of rotary engines in which the combusted gases displace one or more reciprocating pistons
    • F02B57/08Engines with star-shaped cylinder arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/04Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft
    • F01B9/06Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft the piston motion being transmitted by curved surfaces
    • F01B2009/061Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft the piston motion being transmitted by curved surfaces by cams
    • F01B2009/065Bi-lobe cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1816Number of cylinders four
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a system for transforming the reciprocating rectilinear movement into a continuous circular movement and vice versa by a balanced and symmetrical structure applicable mainly to internal combustion and explosion engines with hydraulic transmission and valveless distribution, supplied by an oxygen generator. , based on the enormous reduction in displacement and a short stroke of the piston.
  • FIG. 1 represents an internal combustion engine with a rotating cylinder block.
  • Figures 2 and 3 shows a variant of the internal combustion engine with fixed cylinder block.
  • This mechanism (fig. 1) consists of a rotor which comprises four cylinders 1, 2, 3, and 4 offset by c degrees relative to one another linked by a sealing ring 9 forming cells 10 which can be used for air circulation or cooling water, each cylinder contains a combustion piston 5, 6, 7, and 8 linked to two guide pins 11 and 12, a guide piston and balancing 13 which exerts no effort, and a hydraulic thrust piston 14 whose axis is parallel and eccentric relative to the axis of the combustion piston in the direction of rotation and which causes the rotation of the rotor, each piston combustion is linked with four links by two articulation axes 17 and 18, two links 15 and 16 on each lateral side, which transmit a rectilinear movement where each end is linked separately with a combustion piston thus forming two articulated octagons, a variant is to link the qu atre rods together by a single axis of articulation thus forming an articulated diamond. In another variant, the axis of each link is broken in the middle, thus forming an articulate
  • the combustion piston 7 When the combustion piston 7 is subjected to the pressure forces generated by the expansion of the combustion gases, it pushes its four rods which in turn pull the four rods linked to the three opposite combustion pistons of the same articulated octagon, thus causing a downward stroke of the combustion pistons 5 and 7 and an upward stroke of the combustion pistons 6 and 8, which simultaneously causes suction in the cylinder 1, compression in the cylinder 2, expansion and work in the cylinder 3 , and the exhaust in the cylinder 4, the engine cycle and the rotation of the rotor are caused by the hydraulic thrust pistons of the two combustion pistons 7 and 5 in downward travel which compress the incompressible hydraulic oil in a closed circuit, and pushes it towards the pistons in an upward stroke through the connecting pipes 19 and 20 as the rotor rotates, while exerting a pushing force on the base of the hydraulic piston cylinder, the axis of which is parallel and offset with respect to the axis of the combustion piston, which gives rise to a rotation of a quarter turn, where each combustion piston performs
  • This technique makes it possible to produce a regular and uninterrupted torque according to conventional rotational speeds, and improves the efficiency of the system.
  • the distribution is done without valve where the rotor turns in a circular ring 23 which contains a suction orifice 26, an exhaust orifice 25, and a spark plug or an in ector 21 depending on the type of engine, which allows an engine cycle per piston and per revolution, this system is foolproof and offers large gas passage sections with a persistent seal, and a compact shape.
  • each combustion piston is linked to two guide pins 29 and a hydraulic piston 28 whose axis is coaxial with the axis of the combustion piston.
  • the hydraulic piston compresses the oil which actuates the rotation of the toothed rotor through the conduits tangent to the toothed rotor 31 in the direction of rotation.
  • the rotor drives the oil towards the hydraulic piston in an upward stroke and so on, one thus obtains a four-stroke engine cycle per piston and per revolution, or two two-stroke engine cycle per piston and per revolution where each two pistons of opposite combustion carry out a working stroke every quarter of a turn, in this case the forces are perfectly balanced, the distribution is made for each cylinder separately by a disc 27 which contains a single orifice 32 which gradually unmasks the suction and delivery by turning around the cylinder axis one revolution per engine cycle, this movement is synchronized with the rotation of the toothed rotor, the cam is fixed to the toothed rotor.
  • a version of the double-acting two-stroke engine with fixed cylinder fig. 3, consists in having two hydraulic pistons 36 and 39 actuated periodically and linked together with two arms 35 and 40 as well as rigidly linked with the combustion piston 34 where their axes are coaxial, when the combustion piston 34 is in downward travel the hydraulic piston 36 compresses the oil in a closed circuit through the tangent lines 38 to the toothed rotor 37 in the direction of rotation which makes this toothed rotor which pushes the oil towards the hydraulic piston 39 which sucks it up, during the race upward of the combustion piston it is the hydraulic piston 39 which compresses the oil and the hydraulic piston 36 sucks it up and so on, it is possible to envisage the introduction of a vacuum cleaner which performs a forced exhaust and improves filling the cylinder.
  • the mechanism avoids ovalization of the cylinder since the latter no longer undergoes the pressures of the sealing segments and the guide pressures, prolongs the life of the sealing segments, cylinder and piston,
  • the oxidant is supplied by a pure oxygen generator 22 where the oxygen is separated beforehand from the air and introduced directly into the suction pipe as it is produced, but it is possible to store it in an auxiliary tank or use previously stored oxygen, it is not a question of enriching the admitted air with oxygen but of supplying pure oxygen for combustion, this generator is driven by l he motor shaft and provides a flow proportional to the speed of rotation of the rotor, which greatly reduces the displacement and the mass of the motor, and prevents the formation of polluting compounds. Materials in direct contact with oxygen must obviously be stainless. It is possible to use the gases resulting from the separation of oxygen from the air, mainly consisting of nitrogen, for cooling the engine and its components such as the radiator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

La présente invention concerne un moteur à combustion interne basé sur l'énorme réduction de la cylindrée grâce à l'utilisation de l'oxygène pur comme comburant fournit par le générateur d'oxygène (22), et la réalisation d'un cycle moteur à quatre temps par tour. Le rotor qui comporte quatre cylindres tourne dans un anneau circulaire (23) qui contient un orifice d'admission (26) et un orifice de refoulement (25). Quand le piston de combustion (7) du cylindre (3) est soumit à la pression des gaz de combustion il provoque la rotation du rotor, ainsi que l'aspiration dans le cylindre (1), la compression dans le cylindre (2), et l'échappement dans le cylindre (4), ce qui permet de réaliser un couple régulier et ininterrompu ; deux cames fixes (24) sont prévues pour limiter la course des pistons et servir au démarrage.

Description

Moteur à combustion interne à transmission hydraulique et distribution sans soupape, alimenté par un générateur d'oxygène
La présente invention concerne un système de transformation du mouvement rectiligne alternatif en un mouvement circulaire continu et vis versa par une structure équilibrée et symétrique applicable principalement aux moteurs à combustion et explosion interne à transmission hydraulique et distribution sans soupape, alimentés par un générateur d'oxygène, basé sur l'énorme réduction de la cylindrée et une course faible du piston.
La transformation des forces de pression des gaz dans les moteurs à combustion par un attelage mobile formant un système bielle manivelle engendre une composante normale à la paroi du cylindre qui se traduit par une pression des segments d'étanchéité et des pressions de guidage qui engendrent par suite une usure localisée qui provoque 1 ' ovalisation du cylindre et un couple de renversement sur le bâti, ainsi le piston est allongé, par contre le vilebrequin reçoit un couple moteur variable ce qui exige l'utilisation d'un volant de régulation, la nécessité d'équilibrage, le surdimensionnement des pièces, en plus de l'utilisation d'un système de distribution à soupape dont la commande est coûteuse et encombrante.
L'autre inconvénient majeur des moteurs à combustion interne c'est la puissance spécifique massique, la masse du moteur est élevée par rapport à sa puissance cela est dû en partie au faible nombre de cycle moteur par tour notamment pour le cycle à quatre temps, ainsi qu'au volume élevé de la cylindrée à cause de l'utilisation de l'air dans la combustion au lieu de l'oxygène pur puisque le volume de l'air est au moins quatre fois plus grand que le volume utile de l'oxygène, ce qui contribue à la formation des composés polluants tels que les oxydes d'azote. La figure 1 représente un moteur à combustion interne à bloc cylindre tournant . Les figures 2 et 3 représente une variante du moteur à combustion interne à bloc cylindre fixe.
Ce mécanisme (fig. 1) est constitué par un rotor qui comprend quatre cylindres 1, 2, 3, et 4 décalés de c degrés l'un par rapport à- l'autre liés par un anneau d'étanchéité 9 formant des alvéoles 10 qui peuvent être utiliser pour la circulation de l'air ou l'eau de refroidissement, chaque cylindre contient un piston de combustion 5, 6, 7, et 8 lié à deux axes de guidage 11 et 12, un piston de guidage et d'équilibrage 13 qui n'exerce aucun effort, et un piston de poussée hydraulique 14 dont l'axe est parallèle et excentré par rapport à l'axe du piston de combustion suivant le sens de rotation et qui provoque la rotation du rotor, chaque piston de combustion est lié avec quatre biellettes par deux axes d'articulation 17 et 18, deux biellettes 15 et 16 de chaque côté latéral, qui transmettent un mouvement rectiligne où chaque extrémité est liée séparément avec un piston de combustion formant ainsi deux octogones articulés, une variante consiste à lier les quatre biellettes ensemble par un seul axe d'articulation formant ainsi un losange articulé. Dans une autre variante l'axe de chaque biellette est brisé au milieu formant ainsi une étoile articulée ou bien un octogone articulé à axes brisés (fig. 1) .
En effet quand le piston de combustion 7 est soumit aux forces de pression engendrées par la détente des gaz en combustion, il pousse ses quatre biellettes qui tirent à leur tour les quatre biellettes liées aux trois pistons de combustion opposés du même octogone articulé, entraînant ainsi une course descendante des pistons de combustion 5 et 7 et une course ascendante des pistons de combustion 6 et 8, ce qui provoque simultanément l'aspiration dans le cylindre 1, la compression dans le cylindre 2, la détente et le travail dans le cylindre 3, et l'échappement dans le cylindre 4, le cycle moteur et la rotation du rotor sont provoqués par les pistons de poussée hydraulique des deux pistons de combustion 7 et 5 en course descendante qui compriment l'huile hydraulique incompressible en circuit fermé, et le pousse vers les pistons en course ascendante à travers les conduites de liaison 19 et 20 et ce au fur et à mesure de la rotation du rotor, tout en exerçant une force de poussé sur la base du cylindre du piston hydraulique dont l'axe est parallèle et décalé par rapport à l'axe du piston de combustion, ce qui engendre une rotation d'un quart de tour, où chaque piston de combustion réalise un cycle moteur à quatre temps et simple effet et quatre courses par tour du rotor, on obtient ainsi un cycle moteur chaque quart de tour. Deux cames symétriques 24 fixées à chaque côté latéral sont prévues pour limiter la course des pistons et servir au démarrage du moteur grâce aux huit axes de guidage, il est possible de disposer deux butés ressort sur le piston hydraulique et le piston de guidage.
Cette technique permet de réaliser un couple régulier et ininterrompu suivant les vitesses de rotations conventionnelles, et améliore le rendement du système.
La distribution se fait sans soupape où le rotor tourne dans un anneau circulaire 23 qui contient un orifice d'aspiration 26, un orifice d'échappement 25, et une bougie d'allumage ou un in ecteur 21 suivant le type du moteur, ce qui permet de réaliser un cycle moteur par piston et par tour, ce système est indéréglable et offre des larges sections de passage aux gaz avec une étanchéité persistante, et une forme compacte.
Il est possible de disposer plusieurs rotors suivant le besoin sur le même arbre, ainsi que de suralimenter le moteur en oxygène pur par un turbocompresseur à gaz d'échappement.
Dans une deuxième version de réalisation (fig. 2) le bloc cylindre 33 est fixe, chaque piston de combustion est lié à deux axes de guidage 29 et un piston hydraulique 28 dont l'axe est coaxial avec l'axe du piston de combustion. Suivant le même cycle déjà décrit, le piston hydraulique comprime l'huile qui actionne la rotation du rotor denté à travers les conduites tangentes 30 au rotor denté 31 suivant le sens de rotation. Le rotor entraîne l'huile vers le piston hydraulique en course ascendante et ainsi de suite, on obtient ainsi un cycle moteur à quatre temps par piston et par tour, ou bien deux cycle moteur à deux temps par piston et par tour où chaque deux pistons de combustion opposés effectuent une course de travail chaque quart de tour, dans ce cas les forces sont parfaitement équilibrées, la distribution se fait pour chaque cylindre séparément par un disque 27 qui contient un seul orifice 32 qui démasque progressivement les orifices d'aspiration et de refoulement en tournant autour de l'axe du cylindre un tour par cycle moteur, ce mouvement est synchronisé avec la rotation du rotor denté, la came est fixée au rotor denté.
Une version du moteur à deux temps à double effet et cylindre fixe fig. 3, consiste à disposer deux pistons hydrauliques 36 et 39 actionnés périodiquement et liés entre eux avec deux bras 35 et 40 ainsi que liés rigidement avec le piston de combustion 34 où leurs axes sont coaxiaux, quand le piston de combustion 34 est en course descendante le piston hydraulique 36 comprime l'huile en circuit fermé à travers les conduites tangentes 38 au rotor denté 37 suivant le sens de rotation ce qui fait tourner ce rotor denté qui pousse l'huile vers le piston hydraulique 39 qui l'aspire, pendant la course ascendante du piston de combustion c'est le piston hydraulique 39 qui comprime l'huile et le piston hydraulique 36 l'aspire et ainsi de suite, il est possible d'envisager l'introduction d'un aspirateur qui effectue un échappement forcé et améliore le remplissage du cylindre.
Pour les deux versions du moteur à deux temps susmentionnées, le mécanisme évite 1 ' ovalisation du cylindre puisque ce dernier ne subit plus les pressions des segments d'étanchéité et les pressions de guidage, prolonge la durée de vie des segments d'étanchéité, du cylindre et du piston, L'alimentation par le comburant se fait par un générateur d'oxygène pur 22 où l'oxygène est séparé préalablement de l'air et introduit directement dans la conduite d'aspiration au fur et à mesure de sa production, mais il est possible de le stocker dans un réservoir auxiliaire ou d'utiliser de l'oxygène stocké préalablement, il ne s'agit pas d'enrichir l'air admit en oxygène mais de fournir de l'oxygène pur pour la combustion, ce générateur est entraîné par l'arbre moteur et fournit un débit proportionnel à la vitesse de rotation du rotor, ce qui réduit énormément la cylindrée et la masse du moteur, et évite la formation des composés polluants. Les matériaux en contact direct avec l'oxygène doivent être évidemment inoxydables. Il est possible d'utiliser les gaz résultants de la séparation de l'oxygène de l'air, constitués principalement de l'azote, pour le refroidissement du moteur et ses composants tel que le radiateur.

Claims

REVENDICATIONS
1-Moteur à combustion interne caractérisé en ce que le rotor comporte le bloc cylindre qui contient quatre cylindres 1, 2, 3 , et 4 décalés quatre-vingts dix degrés l'un par rapport à l'autre (fig.l), et alimentés par l'oxygène pur, ce rotor tourne dans un anneau circulaire 23 où chaque piston effectue quatre course par tour du rotor.
2.Moteur à combustion interne caractérisé en ce que le bloc cylindre fixe 33 (fig. 2) contient quatre cylindres décalés quatre-vingts dix degrés l'un par rapport à l'autre, alimentés par l'oxygène pur, où chaque piston effectue quatre course par tour du rotor denté.
3.Moteur à combustion interne caractérisé en ce que la distribution se fait sans soupape (fig. 1) par la rotation du rotor, qui comporte le bloc cylindre, dans un anneau circulaire 23 qui contient un orifice d'échappement 25, un orifice d'admission 26 de l'oxygène pur, et une bougie d'allumage ou bien un injecteur 21 suivant le type du moteur.
4.Moteur à combustion interne caractérisé en ce que les quatre pistons de combustion 5, 6, 7, et .8 (fig. 1, 2) sont liés avec huit biellettes à axes brisés où chaque piston de combustion est lié avec deux biellettes de chaque côté latéral par deux axes d'articulations 17 et 18 ce qui forme un octogone articulé à axes brisés.
5.Moteur à combustion interne caractérisé en ce que les quatre pistons de combustion sont liés avec huit biellettes à axes brisés où chaque piston de combustion est lié avec deux biellettes de chaque côté latéral par un axe d'articulation ce qui forme une étoile articulée.
6.Moteur à combustion interne caractérisé en ce que les quatre pistons de combustion sont liés avec huit biellettes où chaque piston de combustion est lié avec deux biellettes de chaque côté latéral par un axe d'articulation ce qui forme un losange articulé.
7.Moteur à combustion interne caractérisé en ce que les quatre pistons de combustion sont liés avec huit biellettes où chaque piston de combustion est lié avec deux biellettes de chaque côté latéral par deux axes d'articulations à chaque piston ce qui forme un octogone articulé.
8.Moteur à combustion interne caractérisé en ce que dans la version où le bloc cylindre tourne (fig. 1), chaque piston de combustion est lié à deux axes de guidage 11 et 12, un piston de guidage et d'équilibrage 13, et un piston de poussé hydraulique 14 en circuit fermé.
9.Moteur à combustion interne caractérisé en ce que dans la version où le bloc cylindre tourne (fig. 1) , le piston de poussée hydraulique 14 doit avoir un axe parallèle et excentré par rapport à l'axe du piston de combustion suivant le sens de rotation.
10.Moteur à combustion interne caractérisé en ce que dans la version où le bloc cylindre est fixe (fig. 2) , chaque piston de combustion est lié à deux axes de guidage 29, et un piston de poussé hydraulique 28 en circuit fermé, dont l'axe est coaxial avec l'axe du piston de combustion.
11.Moteur à combustion interne caractérisé en ce que pour la version où le bloc cylindre est fixe (fig. 2) et l'axe du piston hydraulique est coaxial avec l'axe du piston de combustion, le piston hydraulique 28 comprime l'huile en circuit fermé à travers des conduites tangentes 30 au rotor denté 31 ce qui fait tourner ce rotor denté par l'huile sous pression.
12.Moteur à combustion interne caractérisé en ce que pour le moteur à deux temps alimenté par l'oxygène pur, l'échappement forcé se fait par un aspirateur.
13.Moteur à combustion interne caractérisé en ce que pour le moteur à deux temps à double effet (fig. 3), les deux pistons hydrauliques 36 et 39 sont liés rigidement avec le piston de combustion 34 dont les axes sont coaxiaux avec l'axe du piston de combustion et qui actionne périodiquement le rotor denté chaque demi-tour.
14.Moteur à combustion interne caractérisé en ce que le comburant introduit dans la chambre de combustion doit être de 1 ' oxygène pur .
15.Moteur à combustion interne caractérisé selon la revendication 14 en ce que 1 ' alimentation en comburant se fait par un générateur d'oxygène pur 22 dont le débit est proportionnel avec la vitesse de rotation du moteur à combustion interne .
16.Moteur à combustion interne caractérisé selon la revendication 15 en ce qu'il est possible d'utiliser les gaz résultants de la séparation de l'oxygène de l'air, constitués principalement de l'azote, pour le refroidissement du moteur et ses composants tel que le radiateur.
PCT/DZ2003/000002 2003-03-26 2003-03-26 Moteur a combustion interne a transmission hydraulique et distribution sans soupape alimente par un générateur d'oxygène WO2004085813A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003223940A AU2003223940A1 (en) 2003-03-26 2003-03-26 Internal combustion engine with hydraulic transmission and valveless distribution, which is supplied by an oxygen generator
PCT/DZ2003/000002 WO2004085813A1 (fr) 2003-03-26 2003-03-26 Moteur a combustion interne a transmission hydraulique et distribution sans soupape alimente par un générateur d'oxygène

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DZ2003/000002 WO2004085813A1 (fr) 2003-03-26 2003-03-26 Moteur a combustion interne a transmission hydraulique et distribution sans soupape alimente par un générateur d'oxygène

Publications (1)

Publication Number Publication Date
WO2004085813A1 true WO2004085813A1 (fr) 2004-10-07

Family

ID=33040868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DZ2003/000002 WO2004085813A1 (fr) 2003-03-26 2003-03-26 Moteur a combustion interne a transmission hydraulique et distribution sans soupape alimente par un générateur d'oxygène

Country Status (2)

Country Link
AU (1) AU2003223940A1 (fr)
WO (1) WO2004085813A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006135349A1 (fr) * 2005-06-13 2006-12-21 Mones Jaafar Moteur rotatif a transmission hydraulique et distribution sans soupape alimente par un separateur d’oxygene
WO2010102434A1 (fr) * 2009-03-12 2010-09-16 Zhao Junzheng Moteur à combustion interne à oxygène pur

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1122972A (en) * 1914-01-31 1914-12-29 Edward Maye Revolving internal-combustion engine.
GB406748A (en) * 1932-09-08 1934-03-08 Rudolf Arnold Erren Improvements in and relating to the use of hydrogen alone or in conjunction with other liquid or gas as fuel in internal combustion engines
FR2101914A6 (fr) * 1970-07-30 1972-03-31 Combustion Power
US3739756A (en) * 1969-08-04 1973-06-19 T Villella Internal combustion engine
FR2278916A1 (fr) * 1974-05-15 1976-02-13 Debreczeny Georges Moteur a explosion fonctionnant avec de l'oxygene pur
FR2577988A1 (fr) * 1985-02-27 1986-08-29 Lehir Jean Pierre Multiplicateur de force pour moteurs
EP0345055A2 (fr) * 1988-06-03 1989-12-06 Andrew Bell Moteur à combustion interne à piston liquide
FR2707344A1 (fr) * 1991-11-14 1995-01-13 Czemerega Stephane Moteur à explosion à allumage simultané opposé deux-à-deux .

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1122972A (en) * 1914-01-31 1914-12-29 Edward Maye Revolving internal-combustion engine.
GB406748A (en) * 1932-09-08 1934-03-08 Rudolf Arnold Erren Improvements in and relating to the use of hydrogen alone or in conjunction with other liquid or gas as fuel in internal combustion engines
US3739756A (en) * 1969-08-04 1973-06-19 T Villella Internal combustion engine
FR2101914A6 (fr) * 1970-07-30 1972-03-31 Combustion Power
FR2278916A1 (fr) * 1974-05-15 1976-02-13 Debreczeny Georges Moteur a explosion fonctionnant avec de l'oxygene pur
FR2577988A1 (fr) * 1985-02-27 1986-08-29 Lehir Jean Pierre Multiplicateur de force pour moteurs
EP0345055A2 (fr) * 1988-06-03 1989-12-06 Andrew Bell Moteur à combustion interne à piston liquide
FR2707344A1 (fr) * 1991-11-14 1995-01-13 Czemerega Stephane Moteur à explosion à allumage simultané opposé deux-à-deux .

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006135349A1 (fr) * 2005-06-13 2006-12-21 Mones Jaafar Moteur rotatif a transmission hydraulique et distribution sans soupape alimente par un separateur d’oxygene
WO2010102434A1 (fr) * 2009-03-12 2010-09-16 Zhao Junzheng Moteur à combustion interne à oxygène pur

Also Published As

Publication number Publication date
AU2003223940A1 (en) 2004-10-18

Similar Documents

Publication Publication Date Title
EP1240416B1 (fr) Moteur alternatif a combustion interne avec equilibrage et suralimentation
US9920687B2 (en) Rotary engine and rotary unit thereof
EP0145626A1 (fr) Moteur thermique à piston rotatif alternatif et à chambre sphérique
JP2010190223A (ja) 往復機関
GB2262965A (en) Rotary piston internal combustion engine or compressor.
CH623633A5 (fr)
FR2572770A1 (fr) Moteur rotatif a combustion interne
WO2004085813A1 (fr) Moteur a combustion interne a transmission hydraulique et distribution sans soupape alimente par un générateur d'oxygène
EP0834001B1 (fr) Machine volumetrique a piston rotatif
CN1336982A (zh) 压缩可变的活塞组件
FR2619596A1 (fr) Agencement rotatif pour le deplacement de pistons
FR2778945A1 (fr) Moteur circulaire a pistons oscillants
US8206129B2 (en) Supercharged internal combustion engine including a pressurized fluid outlet
FR2980523A1 (fr) Procede et dispositif d'alimentation en air d'un moteur hybride pneumatique-thermique
EP0020806A1 (fr) Moteur 3 temps
FR2662468A1 (fr) Moteur thermique rotatif modulaire.
CN111120083B (zh) 一种双转子活塞发动机
FR2957631A1 (fr) Element de moteur a combustion interne a detente prolongee et moteur a combustion interne comprenant un ou plusieurs de ces elements
FR2711189A1 (fr) Ensemble moteur-variateur hydraulique pour véhicule automobile.
FR2474586A1 (fr) Moteur a combustion interne, a disque, sans vilebrequin et sans bielle
FR2544385A1 (fr) Capsulisme rotatif a piston cylindrique diametral adaptable en pompe, compresseur ou moteur
BE888704R (fr) Systeme de moteur a combustion
EP0799978A2 (fr) Moteur à explosion deux temps à crosse comportant un système de distribution à chemise rotative
RU25907U1 (ru) Цилиндрический роторный двигатель
FR2466609A1 (fr) Machine rotative

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AT AU BR BY CA CH CN DE DK DZ ES FI GB IN JP KR NO RU SE TR US ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP