WO2004083135A1 - Glass optical element molding device - Google Patents

Glass optical element molding device Download PDF

Info

Publication number
WO2004083135A1
WO2004083135A1 PCT/JP2004/003513 JP2004003513W WO2004083135A1 WO 2004083135 A1 WO2004083135 A1 WO 2004083135A1 JP 2004003513 W JP2004003513 W JP 2004003513W WO 2004083135 A1 WO2004083135 A1 WO 2004083135A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
molding
transfer
mold
unloading
Prior art date
Application number
PCT/JP2004/003513
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Kurihara
Akiyoshi Shibasaki
Tadashi Horikawa
Keiichi Morishima
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Publication of WO2004083135A1 publication Critical patent/WO2004083135A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/122Heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/86Linear series of multiple press moulds

Definitions

  • the present invention relates to a glass optical element forming apparatus for manufacturing a glass optical element used for optical equipment by heating and press forming a glass material, and more particularly, to a glass mold containing a glass material.
  • the present invention relates to an apparatus for forming a glass optical element.
  • the present invention also relates to a method for manufacturing a press-formed glass optical element.
  • the glass material is put into a mold and heated, and the heated and softened glass material is pressed by the mold (A glass optical element forming apparatus that presses (presses) and forms a glass optical element by pressing is devised.
  • the glass optical element molding equipment includes a method in which a glass material is transported to a molding die fixed in the device to heat, press (press) mold, and cool the glass optical element. There is a method in which the glass optical element is conveyed inside, heated, pressed (pressed), and cooled to form a glass optical element.
  • a method of transporting the mold containing the glass material into the apparatus for example, the mold is linearly transported in a chamber in an inert gas atmosphere (hereinafter, referred to as a transport chamber), and heated and pressed.
  • Pressing) and cooling for example, Japanese Patent Publication No. 7-53331
  • a method in which a mold is conveyed in an arc and heated, pressed (pressed), and cooled (for example, Fairness 7—2 9 7 7 9) ing.
  • glass aspherical lenses have been required to be smaller and more accurate, but there are many demands for high-precision glass aspherical lenses having a medium aperture (about 15 to 4 O mm).
  • a medium-diameter glass lens is molded by a glass optical element molding device that transports the molding die into the device, the dimensions of the molding die become approximately 50 mm, and the glass lens can be formed without increasing the tact time.
  • the present invention has been made in view of such a problem, and has as its object to reduce the size of a glass optical element molding apparatus.
  • the glass optical element forming apparatus is a molding apparatus in which a glass material is internally pressed and heated while being pressed to form the glass material by a forming die.
  • the mold and the mold loaded into the predetermined loading position are transported from the predetermined loading position to a predetermined supply position where the mold is supplied into the molding chamber, and the mold pressed while heating in the molding chamber is formed from the predetermined supply position.
  • a transfer device that can be transferred to a predetermined unloading position where the mold is unloaded. It is characterized in that it is provided at a different position from where the transport device is laid and its extension.
  • the glass optical element molding apparatus is the glass optical element molding apparatus according to the first aspect, wherein the molding die that has reached the predetermined supply position is detached from the transfer device and faces the predetermined supply position.
  • a molding chamber transfer device that can reciprocate into the molding chamber through the communication opening of the formed molding room is provided.
  • the molding room transfer device moves the mold that has reached the specified supply position in a direction perpendicular to the transfer direction of the transfer device. It is provided so as to reciprocate into the molding chamber.
  • the glass optical element molding device according to the invention according to claim 3 is the glass optical element molding device according to claim 1 or claim 2, wherein the transport device is provided in the transport chamber, and the first drive device drives the transport device. And a second driving device for driving the molding chamber transport device is provided in the molding chamber transport device, and at least one of the first drive device and the second drive device is provided outside the molding chamber and the transport chamber. It is characterized by being provided in a position.
  • the glass optical element molding apparatus according to the invention according to claim 4 is the glass optical element molding apparatus according to claim 1 or claim 2, wherein at least a part of the transport device is included, and the molding die is positioned at a predetermined loading position.
  • a transfer chamber forming a space movable between the predetermined supply position and the predetermined unloading position, and a transfer chamber connected to the transfer chamber via a transfer chamber communication port formed to face the predetermined transfer position of the transfer chamber.
  • the transfer chamber is provided via a loading chamber for loading the molding die into the transfer chamber from the outside and a transfer chamber communication port formed to face a predetermined discharge position of the transfer chamber.
  • the transfer device is characterized in that it is provided with an unloading-room transfer device capable of removing the mold having reached the setting position from the transfer device and transferring the formed mold through the unloading-room communication port into the unloading room.
  • the glass optical element molding apparatus according to the invention according to claim 5 is the glass optical element molding apparatus according to claim 3, wherein the transfer chamber is provided via a transfer chamber communication port formed to face a predetermined transfer position of the transfer chamber.
  • a chamber transfer device, and an unloading-room transfer device capable of removing the mold that has reached the predetermined unloading position in the transfer chamber by the transfer device, and transferring the mold into the unloading room through the unloading-room communication port. It is characterized by the following.
  • the glass optical element molding apparatus according to the invention according to claim 6 is the glass optical element molding apparatus according to claim 4 or claim 5, wherein the loading chamber is configured such that a molding die loaded into the loading chamber is transported by the loading chamber transport device.
  • the transfer chamber is provided so as to be transported to the specified loading position of the transfer chamber in a direction perpendicular to the transfer direction of the transfer device. It is provided so that it may be conveyed at right angles to the carry-out room.
  • the glass optical element molding apparatus according to claim 7 is the glass optical element molding apparatus according to any one of claims 4 to 6, wherein a cooling device capable of cooling a molding die is provided in the transfer chamber. It is characterized by having.
  • the glass optical element molding apparatus according to the invention according to claim 8 is the glass optical element molding apparatus according to any one of claims 1 to 7, wherein the heating unit capable of heating the surroundings of the molding die in the molding chamber.
  • the heating unit is provided so that it can be divided, and the divided heating unit can be moved and taken out of the molding chamber.
  • the glass optical element molding apparatus according to claim 9 is the glass optical element molding apparatus according to any one of claims 1 to 8, wherein In addition, a plurality of straight tubes are arranged at equal intervals on a concentric circle surrounding the mold.
  • the method for manufacturing a glass optical element according to claim 11 is the manufacturing method according to claim 10, wherein a transport direction in the transport step is substantially horizontal.
  • the transfer direction of the mold in the chamber introducing step is an upward direction with respect to the transfer direction in the transfer step.
  • the installation area of the glass optical element molding device * can be reduced, and the manufacturing cost of the glass optical element molding device can be reduced. Further, according to the present invention, the manufacturing cost of the glass optical element can be reduced.
  • FIG. 1 is a front view (cross-sectional view) of a glass optical element molding apparatus according to the present invention.
  • FIG. 2 is a plan sectional view of a transfer chamber included in the glass optical element forming apparatus.
  • FIG. 3 is a plan sectional view of a molding chamber included in the glass optical element molding apparatus.
  • Fig. 4 (a) is a plan view of a molding die included in the glass optical element molding device.
  • Fig. 4 (b) is a front view (cross-sectional view) of the mold.
  • FIG. 5 is a front view (cross-sectional view) showing a second embodiment of the glass optical element molding apparatus.
  • FIG. 6 is a plan view of a heating device included in the glass optical element forming device of the second embodiment.
  • FIG. 7 is an explanatory diagram showing a process in which the heating section of the heating device is divided and taken out of the forming chamber in a time series in the order of (a) to (c).
  • FIG. 8 is a flowchart of the method for manufacturing an optical element according to the present invention.
  • FIG. 1 shows a glass optical element molding apparatus according to the present invention.
  • the glass optical element molding apparatus 1 includes a molding die 10 capable of press-molding a glass material, a carry-in room 20 and a carry-out room 50 provided on a base 2, a carry-in room 20 and a carry-out room 50. It is mainly composed of a transfer chamber 30 connected to the upper part and a molding chamber 40 connected to the upper part of the transfer chamber 30.
  • the glass optical element forming apparatus 1 includes an indoor transfer apparatus 60 provided in the transfer chamber 30, and a transfer chamber transfer apparatus 70 provided across the transfer chamber 20 and the transfer chamber 30.
  • a forming chamber transfer device 75 provided across the transfer chamber 30 and the forming room 40; an unloading room transfer device 80 provided across the transfer chamber 30 and the unloading room 50;
  • the apparatus is provided with a first cooling device 85 and a second cooling device 90 for cooling the mold 10.
  • the indoor transfer device 60 is the transfer device in the present invention.
  • the molding die 10 includes an upper molding die 12 located above the glass material 11 to be molded, and a lower molding die located below the glass material 11 1.
  • Sleeve that can be mated with mold 13 and upper mold 1 2 and lower mold 1 3 14 and a transfer table 15 on which these are placed.
  • the sleeve 14 is formed in a cylindrical shape that can be fitted to the upper mold 12 and the lower mold 13, and the lower mold 13, the glass material 11, and the upper mold 12 are arranged in this order. Are inserted into the sleeve 14 so that the upper mold 12 and the lower mold 13 can move up and down along the inner wall of the sleep 14.
  • thermocouple insertion hole 12a is formed in the upper mold 12 and the temperature of the upper mold 12 is measured by inserting a thermocouple 47 into the thermocouple insertion hole 12a. You can do it.
  • the lower molding die 13 is also provided with an insertion hole (not shown) similar to that of the upper molding die 12, and the carrier 15 is provided with a through hole (not shown) that communicates with the insertion hole. And a thermocouple may be inserted into the through hole and the insertion hole so that the temperature of the lower mold 13 can be measured.
  • the loading chamber 20 is formed in a rectangular box shape at the upper end of one side of the pace 2.
  • a carry-in room gas introduction part 21 is provided, so that inert gas (for example, nitrogen) is supplied into the carry-in room 20.
  • inert gas for example, nitrogen
  • a carry-in room gas discharge part 22 is provided so as to be connected to the vacuum pump 25. Is discharged to the outside.
  • a loading shaft passage hole 23 is formed, so that the loading shaft 71 of the loading room transfer device 70 passes therethrough.
  • the carry-in shaft packing 23 a is in sliding contact with the carry-in shaft 71 in the carry-in shaft passage hole 23.
  • the inside of the loading room 20 is kept airtight (to the outside).
  • a front door (not shown) is provided on the front side of the loading room 20.
  • the loading room front door is opened to open the inside of the loading room 20 to the outside, a worker may use the door.
  • the mold 10 is loaded (taken) from outside into the loading location I of the loading chamber 20.
  • the front door of the carry-in room is closed, and the inside of the carry-in room 20 is closed (closed) to the outside.
  • the transfer chamber 30 is formed in a rectangular box shape over the carry-in chamber 20 and the carry-out chamber 50.
  • a transfer chamber communication port 31 is formed at a lower portion of one end of the transfer chamber 30 (a position facing the transfer position II in FIG. 1), and the transfer chamber 30 is connected to the transfer chamber 30 through the transfer chamber communication port 31.
  • the carry-in chamber 20 communicates with the mold 10 and the carry-in shaft 71 of the carry-in chamber transfer device 70.
  • a carry-in lid 26 for closing the carry-in chamber communication port 31 is provided so that the carry-in lid 26 swings around a carry-in lid shaft 27. I'm in love.
  • a loading lid packing 28 is provided so as to be aligned with the outer peripheral portion of the loading chamber communication port 31.
  • the loading lid 26 is closed and the loading chamber communication port 31 is opened. When closing, the airtightness (with respect to the loading chamber 20) in the transfer chamber 30 is maintained.
  • a forming chamber communication port 32 is formed in the upper center of the transfer chamber 30 (a position opposite to the supply position III in FIG. 1), and the transfer chamber 30 is formed via the forming chamber communication port 32.
  • the mold 40 and the supply shaft 76 of the molding chamber carrying device 75 pass through while communicating with the chamber 40.
  • a first supply shaft packing 32a is provided so as to be in sliding contact with the supply shaft 76, and when the supply shaft 76 passes through the molding chamber communication port 32, The airtightness (with respect to the transport chamber 30) in the molding chamber 40 is maintained.
  • An unloading chamber communication port 33 is formed at the lower end on the other end side of the transfer chamber 30 (a position facing the unloading position VI in FIG.
  • the transfer chamber 30 is connected to the transfer chamber 30 through the unloading chamber communication port 33.
  • the unloading chamber 50 communicates with the molding die 10 and the unloading shaft 81 of the unloading chamber transfer device 80.
  • An unloading lid 56 closing the unloading chamber communication port 33 is provided at the lower end of the other end of the transfer chamber 30.
  • the unloading lid 56 swings open and close around the unloading lid shaft 57. It has become.
  • On the lower surface side of the carry-out cover 56 a carry-out cover packing 58 is provided so as to be aligned with the outer periphery of the carry-out room communication port 33, and the carry-out cover 56 is closed to close the carry-out chamber communication port 33.
  • the airtightness (with respect to the unloading chamber 50) in the transfer chamber 30 is maintained.
  • a transfer chamber gas introduction section 34 is provided above one side of the transfer chamber 30 so that an inert gas (for example, nitrogen) is supplied into the transfer chamber 30.
  • a transfer chamber gas discharge section 35 is provided above the other side of the transfer chamber 30.
  • the gas supply amount in the transfer chamber gas introduction section 34 and the gas discharge in the transfer chamber gas discharge section 35 are provided. By adjusting the amount of each, the inert gas can be supplied to replace the air in the transfer chamber 30 with the inert gas.
  • a ball screw passage hole 36 is formed below the other side of the transfer chamber 30 so that the ball screw 61 of the indoor transfer device 60 passes therethrough.
  • a ball screw packing 36a is provided so as to be in sliding contact with the ball screw 61, so that the airtightness (to the outside) in the transfer chamber 30 is maintained. ing.
  • a supply shaft passage hole 37 is formed in the lower center of the transfer chamber 30 so that the supply shaft 76 of the forming chamber transfer device 75 can pass therethrough.
  • the second supply shaft packing 37 a is provided in the supply shaft passage hole 37 so as to be in sliding contact with the supply shaft 76, so that the airtightness (with respect to the outside) in the transfer chamber 30 is maintained. It has become.
  • a cooling shaft passage hole 38 is formed at the other lower end of the center of the transfer chamber 30 so that the cooling shaft 87 of the first cooling device 85 passes therethrough.
  • a cooling shaft packing 38a is provided so as to be in sliding contact with the cooling shaft 87, so that airtightness (with respect to the outside) in the transfer chamber 30 is maintained. Has become.
  • the molding chamber 40 mainly includes a heating molding mechanism 41 provided above the transfer chamber 30.
  • the heat forming mechanism 41 includes a heat sink 42, a heat sink case 43 for accommodating heat sink, a quartz tube 44 provided inside the heat sink 42, and a heat sink 4. It comprises a mold contact member 45 provided on the upper inside of 3, a gas introduction pipe 46, and a thermocouple 47.
  • the heater 42 is arranged so that the molding die 10 placed on the supply shaft 76 can be efficiently heated from the surroundings.
  • the heat case 43 is formed in a cylindrical shape with a bottom at the upper part of the transfer chamber 30, and the heat case 42 is accommodated therein.
  • a first gas introduction hole 43 a is formed in the upper center of the heat case 43 so as to be aligned with the mounting position of the gas introduction pipe 46.
  • the quartz tube 44 is formed in a cylindrical shape, and is mounted inside the heater tube 42 in the heater case 43 and forms a mold 1 inside the quartz tube 44 (that is, the heating forming mechanism 41). 0 can be located. That is, the internal space of the quartz tube 44 becomes the internal space of the molding chamber 40, and the airtightness with the outside is maintained by the quartz tube 44.
  • the mold contact member 45 is attached to the upper inside of the heat case 43 so as to protrude downward, and the molding die 10 is moved from the molding position IV in the molding chamber 40 by the molding room transfer device 75. By moving the glass material further upward, the upper molding die 12 of the molding die 10 comes into contact with the die contact member 45 to press the glass material 11 onto the molding die 10. In this way, the glass material 11 can be formed. You. In the center of the mold contact member 45, a second gas introduction hole 45a is provided with a heater case.
  • Holes 43 are formed in alignment with the first gas introduction holes 43a.
  • the gas inlet pipe 46 is mounted at the center of the upper part of the heat case 43, and an inert gas (for example, nitrogen) flows from the gas inlet pipe 46 to the first gas inlet hole 43a and the second gas inlet hole. After passing through 45a, it is supplied into the molding chamber 40 (heat molding mechanism 41).
  • the thermocouple 47 is attached and fixed to a thermocouple mounting hole 46a formed at the upper end of the gas introduction pipe 46, and the gas introduction pipe 46, the first gas introduction hole 43a, and the (2) The lower end portion passes through the gas introduction hole 45a and is located in the molding chamber 40 (the heat molding mechanism 41).
  • the carry-out chamber 50 is formed in a rectangular box shape on the upper end of the other end of the base 2. Loading room
  • An unloading chamber gas introduction unit 51 is provided on the upper part of the side wall of the 50, and an inert gas (for example, nitrogen) is supplied into the unloading chamber 50.
  • an inert gas for example, nitrogen
  • a unloading chamber gas exhausting section 52 is provided at the lower part of the side wall of the unloading chamber 50 so that an inert gas can be supplied to replace the air in the unloading chamber 50 with the inert gas. I have.
  • An unloading shaft passage hole 53 is formed in the lower bottom portion (base 2) of the unloading room 50 so that the unloading shaft 81 of the unloading room transfer device 80 can pass through. Also, in the unloading shaft passage hole 53, an unloading shaft packing 53a is provided so as to be in sliding contact with the unloading shaft 81, so that the airtightness (with respect to the outside) in the unloading chamber 50 is maintained. It is supposed to be.
  • a front door (not shown) is provided on the front side of the carry-out room 50.
  • a worker may use the door.
  • the mold 10 is carried out (taken out) from the unloading position VII of the unloading chamber 50 by an operator.
  • the door in front of the unloading room is closed and the inside of the unloading room 50 is closed. It is closed (closed) to the outside.
  • the indoor transfer device 60 includes two ball screws 61, 61 attached to the transfer chamber 30, and two finger pins 62, 62, two finger cylinders 63, 63 screwed to the ball screws 61, 61, and a first drive device 65, which rotationally drives the ball screws 61, 61, is formed.
  • the mold 10 is configured to be able to be transferred (in the horizontal direction) from the loading position II of the transfer chamber 30 to the unloading position VI through the supply position III and the cooling position V.
  • the two ball screws 61, 61 are mounted in parallel to each other and horizontally in the transfer chamber 30, and the other ends of the ball screws 61, 61 are located outside through the ball screw passage holes 36. It is supposed to.
  • the fingers 62, 62 are provided on the finger cylinders 63, 63 so as to face each other, and by the operation of the finger cylinders 63, 63, the molding die 10 is conveyed. It can be reciprocated in the direction to pinch the platform 15 (inside), that is, it can be closed to the carrier 15.
  • the finger cylinders 63 and 63 are screwed to ball screws 61 and 61, respectively, and can reciprocate by rotation of the ball screws 61 and 61.
  • the molding die 10 can be transported (in the horizontal direction) from the carry-in position II to the carry-out position VI of the transfer chamber 30 while being sandwiched between the fingers 62, 62.
  • the first drive unit 65 is attached to the motor 66, the motor-side pulley 67 attached to the rotating shaft of the motor 66, and the other end of the ball screw 61, 61, respectively.
  • Bells 1 and 6 that transmit the rotation of the screw-side pulleys 6 8 and 6 8 and the motor-side pulley 6 7 (motor-side 6 6) to the screw-side pulleys 6 8 and 6 8 (ball screws 6 1 and 6 1).
  • the ball screw 6 1, 6 1 is rotatably driven by the motor 6 through the motor pulley 6 7, the belt 6 9, and the screw pulleys 6 8, 6 8. .
  • the motor 66, motor pulley 67, screw pulleys 68, 68, and belt 69 included in the first drive device 65 are located outside the transfer chamber 30. Have been. Accordingly, the dimensions of the transfer chamber 30 can be reduced, so that the dimensions of the glass optical element molding apparatus 1 can be reduced, and the manufacturing cost of the glass optical element molding apparatus 1 can be reduced. . Further, the amount of the inert gas supplied to the transfer chamber 30 can be reduced, and the running cost of the glass optical element molding apparatus 1 can be reduced.
  • the carry-in room transfer device 70 includes a vertically extending carry-in shaft 71 on which the mold 10 can be placed, a carry-in shaft driving device (not shown) for vertically moving the carry-in shaft 71, and a carry-in shaft 71. And a carrying-in shaft guide 72 for supporting, so that the molding die 10 can be carried from the taking-in position I of the carrying-in room 20 to the carrying-in position II of the carrying room 30.
  • a carry-in stage 71a having the same diameter as the forming die 10 is formed, and the mold 10 is placed on the carry-in stage 71a.
  • the carry-in shaft guide 72 is attached to the lower surface side of the base 2, and is fitted to the carry-in shaft 71 to support the carry-in shaft 71 so as to be vertically movable.
  • the carry-in shaft 71 can be moved up and down by the carry-in shaft drive device, and the molding die 10 carried into the take-in position I of the carry-in room 20 is moved by the carry-in shaft 71 (the carry-in room carrying device 70). It is possible to transport the transport chamber 30 to the carry-in position II of the transport chamber 30 in a direction perpendicular to the transport direction of the indoor transport device 60 (vertical direction).
  • the carry-in room 20 is provided separately below the transfer room 30, and the molding die 10 in the carry-in room 20 is moved by the carry-in room transfer device 70 in the transfer direction of the indoor transfer device 60. Since the transfer chamber 30 is configured to be transferred to the transfer chamber 30 at right angles, the size of the transfer chamber 30 can be reduced.
  • the installation area of the glass optical element molding apparatus 1 can be reduced, and the manufacturing cost of the glass optical element molding apparatus 1 can be reduced.
  • the strike can be reduced.
  • the transfer chamber 30 and the carry-in chamber 20 can be separated from each other in an airtight manner, the amount of inert gas supplied to the transfer chamber 30 can be reduced, and the glass optics can be reduced.
  • the running cost of the element molding device 1 can be reduced.
  • the forming chamber transfer device 75 includes a vertically extending supply shaft 76 on which the molding die 10 can be placed, a second driving device (not shown) for vertically moving the supply shaft 76, and a supply shaft 76. And a supply shaft guide 77 for supporting the molding die 10.
  • the molding die 10 can be reciprocated from the supply position III of the transfer chamber 30 to the molding position IV of the molding chamber 40.
  • a supply stage 76 a having a diameter slightly larger than the molding die 10 is formed at the upper end of the supply shaft 76, and the molding die 10 is placed on the supply stage 76 a. Has become.
  • the supply shaft guide 77 is attached to the lower surface side of the base 2 and is fitted to the supply shaft 76 to support the supply shaft 76 so as to be able to move up and down.
  • the supply shaft 76 can be moved up and down by the second driving device, and the forming die 10 which has reached the supply position III of the transfer chamber 30 is transferred indoors by the supply shaft 76 (forming room transfer device 75). It is possible to reciprocate to the molding position IV of the molding chamber in the direction perpendicular to the transport direction of the device 60 (vertical direction).
  • the molding chamber 40 is separately provided on the upper part of the transfer chamber 30 which is different from the laying of the indoor transfer device 60 and the extension thereof, and the molding die 10 in the transfer chamber 30 is formed. Since the chamber transfer device 75 is configured to be reciprocated to the forming chamber 40 in a direction perpendicular to the transfer direction of the indoor transfer device 60, the size of the transfer chamber 30 can be reduced.
  • the installation area of the glass optical element molding device 1 can be reduced, and the manufacturing cost of the glass optical element molding device 1 can be reduced. Further, the amount of the inert gas supplied to the transfer chamber 30 can be reduced, and the running cost of the glass optical element molding apparatus 1 can be reduced. Further, since the second driving device also serves as a means for pressing the molding die 10 in the molding chamber 40, the glass optical element molding device 1 can be simplified and further reduced in size. did it. Therefore, the manufacturing cost of the glass optical element molding apparatus 1 can be further reduced.
  • the first cooling device 85 moves a vertically extending first cooling plate 86 provided in the transfer chamber 30, a cooling shaft 87 on which the mold 10 can be placed, and a cooling shaft 87. And a cooling shaft guide 88 supporting the cooling shaft 87.
  • the molding die 10 placed on the cooling shaft 87 is moved upward to The mold 10 can be cooled by contacting the cooling plate 86.
  • the first cooling plate 86 is mounted so as to face the cooling position V in the upper part of the transfer chamber 30 and is configured to abut the upper mold 12 and the sleeve 14 of the mold 10. Is done.
  • a cooling stage 87a having the same diameter as the molding die 10 is formed, and the cooling die 87 is placed on the cooling stage 87a.
  • the first cooling plate 86 and the cooling shaft 87 are water-cooled by a cooler (not shown).
  • the cooling shaft guide 88 is attached to the lower surface side of the base 2, and is fitted to the cooling shaft 87 so as to support the cooling shaft 87 so that it can move up and down.
  • the unloading chamber transfer device 80 includes an unloading shaft 81 on which the molding die 10 can be mounted, an unloading shaft driving device (not shown) for vertically moving the unloading shaft 81, and unloading supporting the unloading shaft 81.
  • a shaft guide 82 is provided so that the mold 10 can be transferred from the unloading position VI of the transfer chamber 30 to the unloading position VII of the transfer chamber 50.
  • An unloading stage 81a is formed at the upper end of the unloading shaft 81, and the molding die 10 is placed on the unloading stage 81a.
  • the unloading shaft guide 82 is attached to the lower surface side of the base 2 and is fitted to the unloading shaft 81 to support the unloading shaft 81 movably up and down.
  • the unloading shaft 81 can be moved up and down by the unloading shaft drive device.
  • the molding die 10 that has reached the unloading position VI of the transfer chamber 30 is unloaded into the unloading chamber 5 in a direction perpendicular to the transfer direction of the indoor transfer device 60 (vertical direction) by the unloading shaft 81 (unloading chamber transfer device 80). It can be transported to the unloading position VII.
  • the unloading chamber 50 is provided separately below the transfer chamber 30, and the molding die 10 in the transfer chamber 30 is moved by the unloading chamber transfer device 80 in the transfer direction of the indoor transfer device 60. Since the transfer chamber 30 is configured to be transferred to the discharge chamber 50 in a right angle direction, the size of the transfer chamber 30 can be reduced.
  • the installation area of the glass optical element molding device 1 can be reduced, and the manufacturing cost of the glass optical element molding device 1 can be reduced. Furthermore, the amount of inert gas supplied to the transfer chamber 30 can be reduced, and the running cost of the glass optical element molding apparatus 1 can be reduced.
  • a second cooling device 90 capable of cooling the mold 10 is provided immediately above the unloading room 50.
  • the second cooling device 90 mainly includes a second cooling plate 91 and an unloading shaft 81 as a second cooling shaft on which the mold 10 can be mounted, and is mounted on the unloading shaft 81.
  • the mold 10 is cooled. This eliminates the need to separately provide the second cooling device 90, so that the installation area of the glass optical element molding device 1 can be reduced, and the manufacturing cost of the glass optical element molding device 1 can be reduced. Can be.
  • the second cooling plate 91 is attached to the upper part of the transfer chamber 30 so as to face the unloading position VI, and is configured to abut the upper mold 12 and the sleeve 14 of the mold 10. Is done.
  • the second cooling plate 91 and the unloading shaft 81 are water-cooled by a cooler (not shown), like the first cooling device 85.
  • the glass optical element molding apparatus 1 having such a configuration, the glass optical element was molded by the following production method.
  • the process will be described with reference to FIGS.
  • a mold preparation step (SS 1) shown in FIG. 8 is performed.
  • the lower mold 13, the glass material 11, and the upper mold 12 are inserted into the sleeve 14 placed on the carrier 15 of the mold 10 in order, The material 11 is put in the mold 10.
  • a mold carrying-in process (SS2) is performed. This process is performed by opening the front door of the loading room of the loading room 20 and opening the inside of the loading room 20 to the outside, and then using a hand of an operator or an automatic loading machine (not shown) to form the molding die. 10 is loaded from outside into the loading position I of the loading room 20 (placed on the loading stage 71 a of the loading shaft 71). At this time, the carry-in chamber communication port 31 is closed by the carry-in lid 26, thereby preventing oxygen (air) from flowing into the transfer chamber 30. After the mold 10 is carried into the take-in position I, the front door of the carry-in room is closed so that the inside of the carry-in room 20 is closed (closed) to the outside. Therefore, oxygen is not mixed into the molding chamber 40, so that the oxidation of the molding die 10 and the molding chamber 40 can be reduced, and a longer life of the molding die 10 and the device can be expected.
  • SS2 mold carrying-in process
  • the inside of the carry-in room 20 is evacuated by the vacuum pump 25, the inside of the carry-in room 20 is once evacuated, and the evacuation is stopped.
  • the load cover 26 that closes the transfer chamber communication port 31 is opened (rotated) to open the transfer chamber 20 and the transfer chamber 30. And communicate with.
  • the first transfer step (SS3) of the mold is performed.
  • the carry-in shaft 71 of the carry-in room transfer device 70 is moved upward, and the mold 10 carried into the take-in position I of the carry-in room 2 ⁇ is passed through the carry-in room communication port 31. It is transported to the carry-in position II of the transfer chamber 30 and delivered to the indoor transfer device 60.
  • the loading shaft 71 (the loading stage 71a) is moved down to return to the loading room 20.
  • the transfer from the carry-in room transfer device 70 to the indoor transfer device 60 is performed by transferring the fingers 6 2, 6 2 of the indoor transfer device 60 located at the transfer position II of the transfer room 30 to the recesses 15 of the transfer table 15. a, 1 5 a and engage with two fingers 6 2, 6 2 This is performed by sandwiching the transfer table 15 of the forming die 10.
  • the ball screws 6 1 and 6 1 are rotated by the motor 6 and the molding die 10 (the transfer table 15) sandwiched between the fingers 6 2 and 6 2 of the indoor transfer device 60 is transferred to the transfer chamber. It is transported from the carry-in position II of 30 to the supply position III, and delivered to the molding room transport device 75.
  • the transfer from the indoor transfer device 60 to the molding room transfer device 75 involves engaging the fingers 62, 62 of the indoor transfer device 60 with the recesses 15a, 15a of the transfer table 15. Release is performed, and the molding die 10 located at the supply position III of the transfer chamber 30 is placed on the supply stage ⁇ 6 a of the supply shaft 76.
  • the carry-in lid 26 closes to close the carry-in chamber communication hole 31.
  • the molding room introduction step (SS4) is performed.
  • the supply shaft 76 of the molding chamber transfer device 75 is moved upward, and the forming die 10 located at the supply position III of the transfer chamber 30 is passed through the forming chamber communication port 32 to form. It is transported to the molding position IV in chamber 40.
  • the molding die 10 is heated to a predetermined molding temperature by the heating molding mechanism 41 and the temperature of the molding die 10 (upper molding die 12) measured by the thermocouple 47.
  • the glass material 11 is molded by the heating molding mechanism 41 (forming step SS5).
  • the supply shaft 76 is moved upward to move the molding die 10 further upward from the molding position IV of the molding chamber 40, and the upper molding die 12 is moved. It is brought into contact with the mold contact member 45 of the thermoforming mechanism 41. Further, by applying a driving force to further move the supply shaft 76 upward, the upper molding die 12 and the lower molding die 13 are pressed against the glass material 11 and the glass material 11 (glass optical The element is molded.
  • a molding chamber removal step (SS6) is performed.
  • the supply shaft 76 of the molding chamber transfer device 75 is moved downward to move the molding die 10 above the molding position IV in the molding chamber 40.
  • From the side (contact position with the mold contact member 45) returns to the supply position III of the transfer chamber 30 through the forming chamber communication port 32, and is transferred to the indoor transfer device 60.
  • the fingers 6 2, 62 of the indoor transport device 60 located at the supply position III of the transport chamber 30 are transferred to the recesses 1 of the transport table 15. 5a and 15a are reengaged, and the two fingers 62 and 62 pinch the carrier 15 of the molding die 10 to perform this operation.
  • a second transfer step (SS7) of the molding die is performed.
  • the ball screws 61, 61 are further rotated by the motor 66, and the molding die 10 (transfer stand) sandwiched between the fingers 62, 62 of the indoor transfer device 60 is rotated.
  • 15) is transferred from the supply position III of the transfer chamber 30 to the cooling position V, and delivered to the first cooling device 85.
  • the transfer from the indoor transfer device 60 to the first cooling device 85 is performed by engaging the fingers 62, 62 of the indoor transfer device 60 with the recesses 15a, 15a of the transfer table 15. This is performed by releasing the mold 10 placed at the cooling position V of the transfer chamber 30 on the cooling stage 87 a of the cooling shaft 87.
  • a cooling step (SS8) is performed.
  • the cooling shaft 87 of the first cooling device 85 is moved upward to bring the molding die 10 into contact with the first cooling plate 86, and in this state, the molding die 10 is cooled for a predetermined time. Is moved down to return the molding die 10 to the cooling position V and delivered to the indoor transfer device 60.
  • the transfer from the first cooling device 85 to the indoor transfer device 60 is performed by using the fingers 62 and 62 of the indoor transfer device 60 located at the cooling position V of the transfer chamber 30 with the recesses 15 of the transfer table 15. a and 15a are again engaged with each other, and the two fingers 62 and 62 hold the transfer table 15 of the mold 10 therebetween.
  • the ball screws 6 1, 6 1 are further rotated by the motor 6 6, and the mold 10 (the transfer table 15) held between the fingers 6 2, 6 2 of the indoor transfer device 60 is transferred to the transfer room. It is transferred from the cooling position V of 30 to the unloading position VI and delivered to the unloading room transfer device 80 (that is, the second cooling device 90).
  • the unloading room With the unloading lid 56 closing the communication port 33 opened and the transfer chamber 30 and the unloading chamber 50 communicating with each other, the unloading shaft 81 of the unloading chamber transfer device 80 is positioned below the unloading position VI (adjacent to Contact) is located.
  • the association between the fingers 62, 62 of the indoor transfer device 60 and the dents 15a, 15a of the transfer table 15 is released. Then, the molding is performed by placing the molding die 10 located at the unloading position VI of the transfer chamber 30 on the unloading stage 81 a of the unloading shaft 81.
  • the unloading shaft 81 of the unloading room transfer device 80 is moved up (as a second cooling shaft) to bring the mold 10 into contact with the second cooling plate 91 of the second cooling device 90.
  • the unloading shaft 81 is moved downward to move the molding die 10 above the unloading position VI in the transfer chamber 30 (the contact position with the second cooling plate 91). From the discharge room 50 to the discharge position VII of the discharge room 50.
  • the unloading cover 56 is closed (rotated) to close the unloading chamber communication port 33.
  • the unloading process (SS9) is performed.
  • the operator's hand or an automatic unloading machine (not shown) is used.
  • the mold 10 is carried out of the carry-out chamber 50 from the take-out position VII to the outside.
  • the unloading chamber communication port 33 is closed by the unloading lid 56, the inflow of oxygen (air) into the transfer chamber 30 is prevented.
  • the front door of the carry-out chamber is closed to make the inside of the carry-out chamber 50 closed (closed) to the outside. Then, the inside of the carry-out chamber 50 is evacuated by a vacuum pump (not shown), the inside of the carry-out chamber 50 is once evacuated, and the evacuation is stopped. With the pressure difference between the transfer chamber 30 and the transfer chamber 30 set to a predetermined value, the discharge cover 56 closing the transfer chamber communication port 33 is opened (by swinging), and the transfer chamber 30 and the transfer chamber 30 are opened. 5 and Communicate. This prevents oxygen (air) from flowing into the transfer chamber 30. Therefore, oxygen is not mixed into the molding chamber 40, and the molding die 10 and the molding chamber 40 are not mixed.
  • Oxidation of the mold can be reduced, and the service life of the mold 10 and equipment can be prolonged.
  • the apparatus itself is reduced in size, the equipment area is small, and the equipment cost is low. Therefore, it leads to cost reduction in optical element manufacturing.
  • the glass optical element molding apparatus 100 of the present embodiment is different only in the apparatus configuration of the molding chamber 40 in the above-described first embodiment, and the other apparatus configurations are the same. And a duplicate description is omitted.
  • the glass optical element molding apparatus 100 in the second embodiment includes a molding die 10 capable of press-molding a glass material, a carry-in room 20 and a carry-out room 50 provided on a base 2, and a carry-in room 20. And a transfer chamber 30 connected to the upper part of the transfer chamber 50 and a molding chamber 140 connected to the upper part of the transfer chamber 30.
  • the glass optical element molding apparatus 100 includes an indoor transfer apparatus 60 provided in the transfer chamber 30, and a transfer chamber transfer apparatus 70 provided across the transfer chamber 20 and the transfer chamber 30.
  • a forming chamber transfer device 75 provided across the transfer chamber 30 and the forming room 140; and an unloading room transfer device 80 provided across the transfer chamber 30 and the unloading room 50. It is provided with a first cooling device 85 and a second cooling device 90 for cooling the mold 10.
  • the molding chamber 140 includes a column member 14 1 erected above the transfer chamber 30 and a top plate 14 2 provided above the column member 14 1.
  • a quartz tube 144, a mold contact member 144, a gas introduction tube 144, a thermocouple 144, and a heating device 150 are provided and formed, respectively.
  • Top plate 1 4 2 In the center, a first gas introduction hole 1442a is formed in a position aligned with the mounting position of the gas introduction pipe 146.
  • the quartz tube 144 is formed in a cylindrical shape, and is attached to the center of the molding chamber 140, and the molding die 10 is located inside the quartz tube 144. That is, the internal space of the quartz tube 144 becomes the internal space of the molding chamber 140, and the quartz tube 144 maintains airtightness with the outside.
  • the mold contact member 144 is mounted so as to protrude downward at the center of the lower surface side of the top plate 142, and the forming die 100 is formed in the forming chamber 140 by the forming room conveying device 75. By moving it further upward from the position IV, the upper molding die 12 of the molding die 10 comes into contact with the die contact member 1 45, and the glass material 11 is pressed against the molding die 10. Thus, the glass material 11 can be formed.
  • a second gas introduction hole 144a is formed in the center of the mold contact member 144 in alignment with the first gas introduction hole 144a of the top plate 142. .
  • the gas inlet pipe 144 is attached to the center of the upper surface of the top plate 142, and an inert gas (for example, nitrogen) is supplied from the gas inlet pipe 144 to the first gas inlet hole 142a and The gas is supplied into the molding chamber 140 (quartz tube 144) through the second gas introduction hole 144a.
  • the thermocouple 147 is attached and fixed to a thermocouple mounting hole 144a formed at the upper end of the gas introduction pipe 146. After passing through 42 a and the second gas introduction hole 144 a, the lower end is positioned inside the molding chamber 140 (quartz tube 144).
  • the heating device 150 includes, as shown in FIGS. 5 and 6, a base member 150 and a heating section 160 provided on the base member 150.
  • the base member 155 is formed in a plate shape, and a heating section 160 is provided on the upper part thereof so as to be separable.
  • an escape portion 1556 slightly wider than the quartz tube 144 is formed in the center of the pace member 1555 in an inverted U-shape.
  • the heating section 160 does not interfere with the quartz tube 144.
  • the four corners of the base member are threaded with an annular foot 157, and the base member is rotated by screwing the adjustable foot 157. The height of the heating section 150 and the heating section 160 can be adjusted.
  • the heating section 160 includes a cylindrical case member 161, and two heaters 170 arranged inside the case member 161, respectively. It is configured with.
  • the case member 16 1 is formed in a cylindrical shape surrounding the molding die 10 and the quartz tube 144 so that the molding die 10 can be efficiently heated.
  • the case member 16 1 is composed of a left and right case member 16 2 and a right case member 16 3 which are bilaterally symmetrical. One and the other). Then, as shown in FIGS.
  • the case member 16 1 (the left case member 16 2 and the right case member 16 3) of the heating section 160 is divided into right and left, and By moving the heating section 160 (the case member 16 1) together with the base member 150 to the rear of the molding chamber 140, the heating device 150 (that is, the heating section 160) is moved. ) Can be taken out of the molding chamber 140. This makes it possible to easily take out the heating device 150 (heating section 160) to the outside of the molding chamber 140, thereby facilitating replacement of the heater 170 and maintenance in the molding chamber 140. Can be done. In order to mount the heating device 150 in the molding chamber 140, the reverse operation of removing the heating device 150 may be performed.
  • a mirror 165 that reflects infrared rays is attached to the inner surface of the case member 161 so that the mold 10 can be uniformly heated.
  • the heater 170 is a straight tube heater heated by infrared rays. As shown in Fig. 6, inside the case member 161, the concentric circles surrounding the mold 10 are equally spaced (30 degrees apart). It is arranged in. As a result, the mold 10 can be more uniformly heated, so that the temperature distribution of the cylindrical mold 10 and the glass material 11 (by heating the heater 170) is It is concentric when viewed from above 0. Therefore, by correcting the shape of the mold 10 concentrically (as viewed from above), it is possible to correct the temperature distribution (heating temperature) of the glass material 11. It should be noted that if there is a non-uniform temperature distribution on the concentric circle, it is difficult to cope with the shape correction of the mold 10.
  • a glass optical element is molded by performing the same procedure as that of the glass optical element molding apparatus 1 in the first embodiment. Can be molded.
  • the same effects as those of the glass optical element molding apparatus 1 in the first embodiment can be obtained. It is possible to easily perform the replacement of the mold and maintenance in the molding chamber 140, and it is possible to more uniformly heat the molding die 10.
  • the present invention is not limited to the above embodiments.
  • a supply / exhaust system capable of rapidly replacing the atmosphere of the molding chamber with an inert gas can be used, a loading chamber or a transfer chamber can be used.
  • the molding die may be directly introduced into the carry-in position of the transfer room and directly taken out of the carry-out room of the transfer room.
  • the transfer device does not have to be provided in a room, such as a transfer room, which is isolated from the outside world to some extent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

A glass optical element molding device (1) according to the invention comprises a molding chamber (40) for pressure molding a glass raw material by a mold (10) by pressing the glass raw material while heating the mold (10) with the glass raw material contained therein, and a transfer device (60) capable of carrying the mold (10) carried into a predetermined carry-in position (II) to a predetermined supply position (III) where the mold (10) is supplied from the predetermined carry-in position (II) into the molding chamber (40) and capable of carrying the mold (10) pressed while being heated in the molding chamber (40) from the predetermined supply position (III) to a predetermined carry-out position (VI) from which the mold (10) is carried out, wherein the molding chamber (40) is disposed at a position different from any position on its installation line or extension of the transfer device (60).

Description

明 糸田 書 ガラス光学素子成形装置 技術分野  Akira Itoda Glass optical element molding equipment Technical field
本発明は、 ガラス素材を加熱、 プレス成形することにより光学機器等に 使用されるガラス光学素子を製造するガラス光学素子成形装置に関し、 さ らに詳しくは、 ガラス素材を入れた成形型を搬送可能なガラス光学素子成 形装置に関する。 また、 プレス成形されたガラス光学素子の製造方法に関 する。 背景技術  The present invention relates to a glass optical element forming apparatus for manufacturing a glass optical element used for optical equipment by heating and press forming a glass material, and more particularly, to a glass mold containing a glass material. The present invention relates to an apparatus for forming a glass optical element. The present invention also relates to a method for manufacturing a press-formed glass optical element. Background art
光学機器等に使用されるガラス光学素子を研磨加工などの後処理を行う ことなく製造するために、 ガラス素材を成形型の中に入れて加熱し、 加熱 軟化したガラス素材を成形型によりプレス (押圧) することで、 ガラス光 学素子をプレス (押圧) 成形するガラス光学素子成形装置が考案されてい る。  In order to manufacture glass optical elements used in optical equipment without post-processing such as polishing, the glass material is put into a mold and heated, and the heated and softened glass material is pressed by the mold ( A glass optical element forming apparatus that presses (presses) and forms a glass optical element by pressing is devised.
ガラス光学素子成形装置には、 装置内に固定した成形型にガラス素材を 搬送してガラス光学素子を加熱、 プレス (押圧) 成形、 および冷却を行う 方式と、 ガラス素材を入れた成形型を装置内に搬送して加熱、 プレス (押 圧)、 および冷却を行い、 ガラス光学素子を成形する方式とがある。 ガラス 素材を入れた成形型を装置内に搬送する方式としては、 例えば、 不活性ガ ス雰囲気のチャンバ一 (以下、 搬送室と称する) 内で、 成形型を直線的に 搬送して加熱、 プレス (押圧)、 および冷却を行う方式 (例えば、 特公平 7 - 5 3 3 1号公報) や、 成形型を円弧状に搬送して加熱、 プレス (押圧)、 および冷却を行う方式 (例えば、 特公平 7— 2 9 7 7 9号公報) が知られ ている。 The glass optical element molding equipment includes a method in which a glass material is transported to a molding die fixed in the device to heat, press (press) mold, and cool the glass optical element. There is a method in which the glass optical element is conveyed inside, heated, pressed (pressed), and cooled to form a glass optical element. As a method of transporting the mold containing the glass material into the apparatus, for example, the mold is linearly transported in a chamber in an inert gas atmosphere (hereinafter, referred to as a transport chamber), and heated and pressed. (Pressing) and cooling (for example, Japanese Patent Publication No. 7-53331), or a method in which a mold is conveyed in an arc and heated, pressed (pressed), and cooled (for example, Fairness 7—2 9 7 7 9) ing.
ところで、 近年、 ガラス非球面レンズは小型化、 高精度化が要求されて いるが、 中口径 ( 1 5〜4 O mm程度) の高精度なガラス非球面レンズ の要求も多い。 成形型を装置内に搬送する方式のガラス光学素子成形装置 で中口径のガラスレンズを成形する場合には、 成形型の寸法が 5 0 m m 程度になり、 タク 卜タイムを長くせずにガラスレンズの成形を行うには、 成形型 (ガラス素材) の加熱に用いるヒー夕の容量を大きくする必要があ る。  By the way, in recent years, glass aspherical lenses have been required to be smaller and more accurate, but there are many demands for high-precision glass aspherical lenses having a medium aperture (about 15 to 4 O mm). When a medium-diameter glass lens is molded by a glass optical element molding device that transports the molding die into the device, the dimensions of the molding die become approximately 50 mm, and the glass lens can be formed without increasing the tact time. In order to perform molding, it is necessary to increase the capacity of the heater used to heat the mold (glass material).
しかしながら、 従来の (成形型を装置内に搬送する方式の) ガラス光学 素子成形装置では、 成形型の加熱、 プレス (押圧)、 および冷却を行う装置 が搬送室内において水平方向へ連続的に配置されているため、 ヒー夕の容 量が大きくなるのに伴ってヒ一夕の寸法が大きくなる。ゆえに、 ヒ一夕(す なわち、 成形型の加熱に用いる装置) を内部に備える搬送室を大きくする 必要があり、 装置寸法が大きくなつてしまう。 また、 成形型の酸化を防止 するため搬送室内を不活性ガス (例えば、 窒素) で満たす (置換する) 必 要があり、 搬送室が大きくなると不活性ガスの使用量が増加してしまう。 発明の開示  However, in a conventional glass-optical-element forming apparatus (in which the mold is transported into the apparatus), apparatuses for heating, pressing (pressing), and cooling the mold are continuously arranged horizontally in the transport chamber. As the heat capacity increases, the dimensions of the heat increase. Therefore, it is necessary to increase the size of the transfer chamber provided with the light source (ie, the device used for heating the mold), and the size of the device becomes large. In addition, it is necessary to fill (replace) the transfer chamber with an inert gas (eg, nitrogen) in order to prevent oxidation of the mold, and the use of the inert gas increases when the transfer chamber becomes large. Disclosure of the invention
本発明は、 このような問題に鑑みてなされたものであり、 ガラス光学素 子成形装置の小型化を図ることを目的とする。  The present invention has been made in view of such a problem, and has as its object to reduce the size of a glass optical element molding apparatus.
このような目的達成のため、 請求項 1に係る発明のガラス光学素子成形 装置は、 ガラス素材を内在させた成形型を加熱しつつ押圧することで、 成 形型によりガラス素材を押圧成形する成形室と、 所定搬入位置に搬入され た成形型を所定搬入位置から成形型が成形室内に供給される所定供給位置 へ搬送し、 成形室内で加熱しつつ押圧された成形型を所定供給位置から成 形型が搬出される所定搬出位置へ搬送可能な搬送装置とを備え、成形室は、 搬送装置の敷設上およびその延長上とは異なる位置に設けられることを特 徵とする。 In order to achieve such an object, the glass optical element forming apparatus according to the first aspect of the present invention is a molding apparatus in which a glass material is internally pressed and heated while being pressed to form the glass material by a forming die. The mold and the mold loaded into the predetermined loading position are transported from the predetermined loading position to a predetermined supply position where the mold is supplied into the molding chamber, and the mold pressed while heating in the molding chamber is formed from the predetermined supply position. And a transfer device that can be transferred to a predetermined unloading position where the mold is unloaded. It is characterized in that it is provided at a different position from where the transport device is laid and its extension.
請求項 2に係る発明のガラス光学素子成形装置は、 請求項 1に記載のガ ラス光学素子成形装置において、 所定供給位置に達した成形型を、 搬送装 置から取り外し所定供給位置に対向して形成される成形室連通口を通って 成形室内へ往復搬送可能な成形室搬送装置を備え、 成形室搬送装置は、 所 定供給位置に達した成形型を搬送装置の搬送方向に対し直角方向に成形室 内へ往復搬送するように設けられることを特徴とする。  The glass optical element molding apparatus according to the second aspect of the present invention is the glass optical element molding apparatus according to the first aspect, wherein the molding die that has reached the predetermined supply position is detached from the transfer device and faces the predetermined supply position. A molding chamber transfer device that can reciprocate into the molding chamber through the communication opening of the formed molding room is provided. The molding room transfer device moves the mold that has reached the specified supply position in a direction perpendicular to the transfer direction of the transfer device. It is provided so as to reciprocate into the molding chamber.
請求項 3に係る発明のガラス光学素子成形装置は、 請求項 1もしくは請 求項 2に記載のガラス光学素子成形装置において、 搬送装置は搬送室内に 設けられ、 搬送装置を駆動する第 1駆動装置が設けられるとともに、 成形 室搬送装置には成形室搬送装置を駆動する第 2駆動装置が設けられており、 第 1駆動装置および第 2駆動装置の少なくとも一つが、 成形室および搬送 室の外部に位置して設けられることを特徴とする。  The glass optical element molding device according to the invention according to claim 3 is the glass optical element molding device according to claim 1 or claim 2, wherein the transport device is provided in the transport chamber, and the first drive device drives the transport device. And a second driving device for driving the molding chamber transport device is provided in the molding chamber transport device, and at least one of the first drive device and the second drive device is provided outside the molding chamber and the transport chamber. It is characterized by being provided in a position.
請求項 4に係る発明のガラス光学素子成形装置は、 請求項 1もしくは請 求項 2に記載のガラス光学素子成形装置において、 搬送装置の少なく とも 一部を内在し、 成形型が所定搬入位置と、 所定供給位置と、 所定搬出位置 との間で移動可能な空間を形成する搬送室と、 搬送室の所定搬入位置に対 向して形成される搬入室連通口を介して搬送室に繋がって設けられた、 成 形型を外部から搬送室内へ搬入するための搬入室と、 搬送室の所定搬出位 置に対向して形成される搬出室連通口を介して搬送室に繋がって設けられ た、 成形型を搬送室内から外部へ搬出するための搬出室と、 外部から搬入 室内に搬入された成形型を、 搬入室連通口を通って搬送室の所定搬入位置 へ搬送可能な搬入室搬送装置と、 搬送装置により搬送室の所定搬出位置に 達した成形型を、 搬送装置から取り外し搬出室連通口を通って搬出室内へ 搬送可能な搬出室搬送装置とを備えて構成されることを特徴とする。 請求項 5に係る発明のガラス光学素子成形装置は、 請求項 3に記載のガ ラス光学素子成形装置において、 搬送室の所定搬入位置に対向して形成さ れる搬入室連通口を介して搬送室に繋がって設けられた、 成形型を外部か ら搬送室内へ搬入するための搬入室と、 搬送室の所定搬出位置に対向して 形成される搬出室連通口を介して搬送室に繋がって設けられた、 成形型を 搬送室内から外部へ搬出するための搬出室と、 外部から搬入室内に搬入さ れた成形型を、 搬入室連通口を通って搬送室の所定搬入位置へ搬送可能な 搬入室搬送装置と、 搬送装置により搬送室の所定搬出位置に達した成形型 を、 搬送装置から取り外し搬出室連通口を通って搬出室内へ搬送可能な搬 出室搬送装置とを備えて構成されることを特徴とする。 The glass optical element molding apparatus according to the invention according to claim 4 is the glass optical element molding apparatus according to claim 1 or claim 2, wherein at least a part of the transport device is included, and the molding die is positioned at a predetermined loading position. A transfer chamber forming a space movable between the predetermined supply position and the predetermined unloading position, and a transfer chamber connected to the transfer chamber via a transfer chamber communication port formed to face the predetermined transfer position of the transfer chamber. The transfer chamber is provided via a loading chamber for loading the molding die into the transfer chamber from the outside and a transfer chamber communication port formed to face a predetermined discharge position of the transfer chamber. An unloading chamber for unloading the mold from the transfer chamber to the outside, and a transfer chamber transfer device capable of transferring the mold from the outside into the transfer chamber to the specified transfer position in the transfer chamber through the transfer chamber communication port. And a predetermined unloading position of the transfer chamber by the transfer device The transfer device is characterized in that it is provided with an unloading-room transfer device capable of removing the mold having reached the setting position from the transfer device and transferring the formed mold through the unloading-room communication port into the unloading room. The glass optical element molding apparatus according to the invention according to claim 5 is the glass optical element molding apparatus according to claim 3, wherein the transfer chamber is provided via a transfer chamber communication port formed to face a predetermined transfer position of the transfer chamber. A loading chamber for loading the mold into the transport chamber from the outside, and a transport chamber connected to the transport chamber via a discharge port communicating with a predetermined discharge position of the transport chamber. A transfer chamber for transferring the molding dies out of the transfer chamber to the outside, and a transfer yard for transferring the molding dies transferred from the outside into the loading chamber to a predetermined loading position in the transfer chamber through the communication opening of the loading chamber. A chamber transfer device, and an unloading-room transfer device capable of removing the mold that has reached the predetermined unloading position in the transfer chamber by the transfer device, and transferring the mold into the unloading room through the unloading-room communication port. It is characterized by the following.
請求項 6に係る発明のガラス光学素子成形装置は、 請求項 4もしくは請 求項 5に記載のガラス光学素子成形装置において、 搬入室は、 搬入室内に 搬入された成形型が搬入室搬送装置により搬送装置の搬送方向に対し直角 方向に搬送室の所定搬入位置へ搬送されるように設けられ、 搬出室は、 所 定搬出位置に達した成形型が搬出室搬送装置により搬送装置の搬送方向に 対し直角方向に搬出室内へ搬送されるように設けられることを特徴とする。 請求項 7に係る発明のガラス光学素子成形装置は、 請求項 4から請求項 6のうちいずれか一項記載のガラス光学素子成形装置において、 搬送室内 に成形型を冷却可能な冷却装置が設けられていることを特徴とする。  The glass optical element molding apparatus according to the invention according to claim 6 is the glass optical element molding apparatus according to claim 4 or claim 5, wherein the loading chamber is configured such that a molding die loaded into the loading chamber is transported by the loading chamber transport device. The transfer chamber is provided so as to be transported to the specified loading position of the transfer chamber in a direction perpendicular to the transfer direction of the transfer device. It is provided so that it may be conveyed at right angles to the carry-out room. The glass optical element molding apparatus according to claim 7 is the glass optical element molding apparatus according to any one of claims 4 to 6, wherein a cooling device capable of cooling a molding die is provided in the transfer chamber. It is characterized by having.
請求項 8に係る発明のガラス光学素子成形装置は、 請求項 1から請求項 7のうちいずれか一項記載のガラス光学素子成形装置において、 成形室内 に成形型を囲んで加熱可能な加熱部が設けられており、 加熱部は分割可能 に構成され、 分割された加熱部を移動させて成形室外へ取り出し可能に構 成されていることを特徴とする。  The glass optical element molding apparatus according to the invention according to claim 8 is the glass optical element molding apparatus according to any one of claims 1 to 7, wherein the heating unit capable of heating the surroundings of the molding die in the molding chamber. The heating unit is provided so that it can be divided, and the divided heating unit can be moved and taken out of the molding chamber.
請求項 9に係る発明のガラス光学素子成形装置は、 請求項 1から請求項 8のうちいずれか一項記載のガラス光学素子成形装置において、 成形室内 に、 複数の直管型ヒ一夕が成形型を囲む同心円上に等間隔で配設されてい ることを特徴とする。 The glass optical element molding apparatus according to claim 9 is the glass optical element molding apparatus according to any one of claims 1 to 8, wherein In addition, a plurality of straight tubes are arranged at equal intervals on a concentric circle surrounding the mold.
請求項 1 0に係る発明のガラス光学素子の製造方法は、ガラス素材が配 置された金型を成形室に移送し、 成形室で前記金型に熱と圧力を加えるこ とで前記ガラス素材を所定の形状に成形し、所望の光学特性を有するガラ ス光学素子の製造方法において、前記ガラス素材を前記金型に配置するェ 程と、 前記ガラス素材が配置された金型を前記成形室への導入可能位置に 搬送する第 1搬送工程と、 前記金型を前記成形室への導入可能位置から前 記成形室へ搬送する成形室導入工程と、前記成形室に導入された前記金型 に、所定の温度まで加熱し、かつ所定の圧力を所定方向に印加する成形工程 と、 前記成形工程が終了した前記金型を搬出する搬出工程とを順次行うこ とを特徴とする。  A method for manufacturing a glass optical element according to the invention according to claim 10, wherein the mold in which the glass material is disposed is transferred to a molding chamber, and heat and pressure are applied to the mold in the molding chamber. Forming a glass material in a predetermined shape, and placing the glass material in the mold in the method of manufacturing a glass optical element having desired optical characteristics. A first transfer step of transferring the mold to a position at which the mold can be introduced into the molding chamber; a molding chamber introduction step of transferring the mold from the position at which the mold can be introduced to the molding chamber to the molding chamber; In addition, a molding step of heating to a predetermined temperature and applying a predetermined pressure in a predetermined direction, and an unloading step of unloading the mold after the completion of the molding step are sequentially performed.
請求項 1 1に係る発明のガラス光学素子の製造方法は、請求項 1 0に係 る発明の製造方法であって、前記搬送工程における搬送方向は、実質的に水 平方向であり、前記成形室導入工程における前記金型の搬送方向は、前記搬 送工程で搬送される方向に対して、上向きの方向であることを特徴とする。 本発明によれば、 ガラス光学素子成形装 *の設置面積を小さくすること ができ、ガラス光学素子成形装置の製造コス トを低減させることができる。 また、本発明によれば、 ガラス光学素子の製造コスト削減をも達成できる。 図面の簡単な説明  The method for manufacturing a glass optical element according to claim 11 is the manufacturing method according to claim 10, wherein a transport direction in the transport step is substantially horizontal. The transfer direction of the mold in the chamber introducing step is an upward direction with respect to the transfer direction in the transfer step. According to the present invention, the installation area of the glass optical element molding device * can be reduced, and the manufacturing cost of the glass optical element molding device can be reduced. Further, according to the present invention, the manufacturing cost of the glass optical element can be reduced. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係るガラス光学素子成形装置の正面図 (断面図) であ る o  FIG. 1 is a front view (cross-sectional view) of a glass optical element molding apparatus according to the present invention.
図 2は、ガラス光学素子成形装置に構成される搬送室の平断面図である。 図 3は、ガラス光学素子成形装置に構成される成形室の平断面図である。 図 4 ( a ) はガラス光学素子成形装置に構成される成形型の平面図であ り、 図 4 ( b ) は成形型の正面図 (断面図) である。 FIG. 2 is a plan sectional view of a transfer chamber included in the glass optical element forming apparatus. FIG. 3 is a plan sectional view of a molding chamber included in the glass optical element molding apparatus. Fig. 4 (a) is a plan view of a molding die included in the glass optical element molding device. Fig. 4 (b) is a front view (cross-sectional view) of the mold.
図 5は、 ガラス光学素子成形装置の第二実施形態を示す正面図 (断面図) である。  FIG. 5 is a front view (cross-sectional view) showing a second embodiment of the glass optical element molding apparatus.
図 6は、 第二実施形態のガラス光学素子成形装置に構成される加熱装置 の平面図である。  FIG. 6 is a plan view of a heating device included in the glass optical element forming device of the second embodiment.
図 7は、 加熱装置の加熱部が分割されて形成室外に取り出される過程を ( a ) 〜 ( c ) の順に時系列で示す説明図である。  FIG. 7 is an explanatory diagram showing a process in which the heating section of the heating device is divided and taken out of the forming chamber in a time series in the order of (a) to (c).
図 8は、 本発明に係る光学素子の製造方法のフローチヤ一トである。 発明を実施するための最良の形態  FIG. 8 is a flowchart of the method for manufacturing an optical element according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明の好ましい実施形態について説明する。 本 発明に係るガラス光学素子成形装置を図 1に示している。 このガラス光学 素子成形装置 1は、 ガラス素材を押圧成形可能な成形型 1 0と、 ベース 2 上に設けられた搬入室 2 0および搬出室 5 0と、 搬入室 2 0および搬出室 5 0の上部に繋がって設けられた搬送室 3 0と、 搬送室 3 0の上部に繋が つて設けられた成形室 4 0とを主体に構成される。  Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a glass optical element molding apparatus according to the present invention. The glass optical element molding apparatus 1 includes a molding die 10 capable of press-molding a glass material, a carry-in room 20 and a carry-out room 50 provided on a base 2, a carry-in room 20 and a carry-out room 50. It is mainly composed of a transfer chamber 30 connected to the upper part and a molding chamber 40 connected to the upper part of the transfer chamber 30.
また、 このガラス光学素子成形装置 1は、 搬送室 3 0に設けられた室内 搬送装置 6 0と、 搬入室 2 0と搬送室 3 0とに跨って設けられた搬入室搬 送装置 7 0と、 搬送室 3 0と成形室 4 0とに跨って設けられた成形室搬送 装置 7 5と、 搬送室 3 0と搬出室 5 0とに跨って設けられた搬出室搬送装 置 8 0と、 成形型 1 0を冷却するための第 1冷却装置 8 5および第 2冷却 装置 9 0とを備えて構成されている。 なお、 室内搬送装置 6 0は、 本発明 における搬送装置となっている。 ·  The glass optical element forming apparatus 1 includes an indoor transfer apparatus 60 provided in the transfer chamber 30, and a transfer chamber transfer apparatus 70 provided across the transfer chamber 20 and the transfer chamber 30. A forming chamber transfer device 75 provided across the transfer chamber 30 and the forming room 40; an unloading room transfer device 80 provided across the transfer chamber 30 and the unloading room 50; The apparatus is provided with a first cooling device 85 and a second cooling device 90 for cooling the mold 10. The indoor transfer device 60 is the transfer device in the present invention. ·
成形型 1 0は、 図 4 ( a ), ( b ) に示すように、 成形されるガラス素材 1 1の上方に位置する上成形型 1 2と、 ガラス素材 1 1の下方に位置する 下成形型 1 3と、 上成形型 1 2および下成形型 1 3と嵌合可能なスリーブ 1 4と、 これらが載置される搬送台 1 5とを備えて構成される。 スリーブ 1 4は、 上成形型 1 2および下成形型 1 3と嵌合可能な筒状に形成されて おり、 下成形型 1 3、 ガラス素材 1 1、 そして上成形型 1 2の順でこれら がスリーブ 1 4内に挿入されて、 上成形型 1 2および下成形型 1 3がスリ ープ 1 4の内壁に沿って上下移動可能に構成される。 As shown in FIGS. 4 (a) and 4 (b), the molding die 10 includes an upper molding die 12 located above the glass material 11 to be molded, and a lower molding die located below the glass material 11 1. Sleeve that can be mated with mold 13 and upper mold 1 2 and lower mold 1 3 14 and a transfer table 15 on which these are placed. The sleeve 14 is formed in a cylindrical shape that can be fitted to the upper mold 12 and the lower mold 13, and the lower mold 13, the glass material 11, and the upper mold 12 are arranged in this order. Are inserted into the sleeve 14 so that the upper mold 12 and the lower mold 13 can move up and down along the inner wall of the sleep 14.
搬送台 1 5の両側面には、 搬送室 3 0に設けられた室内搬送装置 6 0の フィンガ一 6 2 , 6 2と係合可能な窪み 1 5 a , 1 5 aが形成されている。 そして、 室内搬送装置 6 0のフィンガー 6 2 , 6 2が搬送台 1 5の窪み 1 5 a , 1 5 aと係合し搬送台 1 5がフィンガー 6 2, 6 2に挟持された状 態で、 成形型 1 0 (搬送台 1 5 ) が室内搬送装置 6 0により搬送室 3 0内 で搬送されるようになつている。  On both sides of the transfer table 15, recesses 15 a, 15 a capable of engaging with the fingers 62, 62 of the indoor transfer device 60 provided in the transfer chamber 30 are formed. Then, the fingers 62, 62 of the indoor transfer device 60 are engaged with the recesses 15a, 15a of the transfer table 15, and the transfer table 15 is held between the fingers 62, 62. The mold 10 (transfer table 15) is conveyed in the transfer chamber 30 by the indoor transfer device 60.
上成形型 1 2には熱電対挿入孔 1 2 aが孔開け形成されており、 この熱 電対挿入孔 1 2 aに熱電対 4 7を挿入することにより上成形型 1 2の温度 を測定することができるようになつている。 なお、 下成形型 1 3にも上成 形型 1 2と同様な揷入孔 (図示せず) を設けるとともに、 搬送台 1 5にこ の揷入孔と連通するような貫通孔 (図示せず) を設け、 貫通孔および挿入 孔に熱電対を挿入して下成形型 1 3の温度を測定できるようにしてもよい。 搬入室 2 0は、 ペース 2の一端側上部に矩形箱状に形成される。 搬入室 2 0の側壁上部には、 搬入室ガス導入部 2 1が設けられており、 不活性ガ ス (例えば、 窒素) が搬入室 2 0内に供給されるようになっている。 一方、 搬入室 2 0の側壁下部には、 搬入室ガス排出部 2 2が真空ポンプ 2 5に繋 がって設けられており、 真空ポンプ 2 5の吸引力により搬入室 2 0内の気 体が外部に排出されるようになっている。  A thermocouple insertion hole 12a is formed in the upper mold 12 and the temperature of the upper mold 12 is measured by inserting a thermocouple 47 into the thermocouple insertion hole 12a. You can do it. The lower molding die 13 is also provided with an insertion hole (not shown) similar to that of the upper molding die 12, and the carrier 15 is provided with a through hole (not shown) that communicates with the insertion hole. And a thermocouple may be inserted into the through hole and the insertion hole so that the temperature of the lower mold 13 can be measured. The loading chamber 20 is formed in a rectangular box shape at the upper end of one side of the pace 2. At the upper part of the side wall of the carry-in room 20, a carry-in room gas introduction part 21 is provided, so that inert gas (for example, nitrogen) is supplied into the carry-in room 20. On the other hand, in the lower part of the side wall of the carry-in room 20, a carry-in room gas discharge part 22 is provided so as to be connected to the vacuum pump 25. Is discharged to the outside.
搬入室 2 0の下底部 (ペース 2 ) には、 搬入軸通過穴 2 3が形成されて おり、 搬入室搬送装置 7 0の搬入軸 7 1が通過するようになっている。 ま た、 搬入軸通過穴 2 3には、 搬入軸パッキン 2 3 aが搬入軸 7 1と摺接す るように設けられており、 搬入室 2 0内の (外部に対する) 気密性が保た れるようになっている。 In the lower bottom portion (pace 2) of the loading room 20, a loading shaft passage hole 23 is formed, so that the loading shaft 71 of the loading room transfer device 70 passes therethrough. The carry-in shaft packing 23 a is in sliding contact with the carry-in shaft 71 in the carry-in shaft passage hole 23. The inside of the loading room 20 is kept airtight (to the outside).
搬入室 2 0の前面側には搬入室前扉 (図示せず) が設けられており、 こ の搬入室前扉を開けて搬入室 2 0内を外部に対し開放した状態で、 作業者 による手または自動搬入機 (図示せず) を利用して、 成形型 1 0が外部か ら搬入室 2 0の取入位置 Iに搬入される (取り入れられる) ようになって いる。 なお通常は、 搬入室前扉は閉められて搬入室 2 0内が外部に対し閉 鎖 (密閉) された状態にされる。  A front door (not shown) is provided on the front side of the loading room 20. When the loading room front door is opened to open the inside of the loading room 20 to the outside, a worker may use the door. Using a hand or an automatic loading machine (not shown), the mold 10 is loaded (taken) from outside into the loading location I of the loading chamber 20. Usually, the front door of the carry-in room is closed, and the inside of the carry-in room 20 is closed (closed) to the outside.
搬送室 3 0は、 搬入室 2 0および搬出室 5 0の上部に跨って矩形箱状に 形成される。搬送室 3 0の一端側下部(図 1における搬入位置 IIに対向す る位置) には搬入室連通口 3 1が形成されており、 この搬入室連通口 3 1 を介して搬送室 3 0と搬入室 2 0とが連通するとともに、 成形型 1 0およ び搬入室搬送装置 7 0の搬入軸 7 1が通過するようになっている。 また、 搬送室 3 0の一端側下部には、 搬入室連通口 3 1を塞ぐ搬入蓋 2 6が設け られており、 搬入蓋軸 2 7を中心に搬入蓋 2 6が揺動開閉するようになつ ている。 搬入蓋 2 6の下面側には、 搬入蓋パッキン 2 8が搬入室連通口 3 1の外周部に位置整合して設けられており、 搬入蓋 2 6が閉じて搬入室連 通口 3 1を塞く、ときに、 搬送室 3 0内の (搬入室 2 0に対する) 気密性が 保たれるようになつている。  The transfer chamber 30 is formed in a rectangular box shape over the carry-in chamber 20 and the carry-out chamber 50. A transfer chamber communication port 31 is formed at a lower portion of one end of the transfer chamber 30 (a position facing the transfer position II in FIG. 1), and the transfer chamber 30 is connected to the transfer chamber 30 through the transfer chamber communication port 31. The carry-in chamber 20 communicates with the mold 10 and the carry-in shaft 71 of the carry-in chamber transfer device 70. At the lower end of one end of the transfer chamber 30, a carry-in lid 26 for closing the carry-in chamber communication port 31 is provided so that the carry-in lid 26 swings around a carry-in lid shaft 27. I'm in love. On the lower surface side of the loading lid 26, a loading lid packing 28 is provided so as to be aligned with the outer peripheral portion of the loading chamber communication port 31.The loading lid 26 is closed and the loading chamber communication port 31 is opened. When closing, the airtightness (with respect to the loading chamber 20) in the transfer chamber 30 is maintained.
搬送室 3 0の中央上部 (図 1における供給位置 III に対向する位置) に は成形室連通口 3 2が形成されており、 この成形室連通口 3 2を介して搬 送室 3 0と成形室 4 0とが連通するとともに、 成形型 1 0および成形室搬 送装置 7 5の供給軸 7 6が通過するようになっている。 成形室連通口 3 2 には、 第 1供給軸パッキン 3 2 aが供給軸 7 6と摺接可能に設けられてお り、供給軸 7 6が成形室連通口 3 2を通過したときに、成形室 4 0内の(搬 送室 3 0に対する) 気密性が保たれるようになつている。 搬送室 3 0の他端側下部 (図 1における搬出位置 VI に対向する位置) には搬出室連通口 3 3が形成されており、 この搬出室連通口 3 3を介して 搬送室 3 0と搬出室 5 0とが連通するとともに、 成形型 1 0および搬出室 搬送装置 8 0の搬出軸 8 1が通過するようになっている。 また、 搬送室 3 0の他端側下部には、 搬出室連通口 3 3を塞ぐ搬出蓋 5 6が設けられてお り、 搬出蓋軸 5 7を中心に搬出蓋 5 6が揺動開閉するようになっている。 搬出蓋 5 6の下面側には、 搬出蓋パッキン 5 8が搬出室連通口 3 3の外周 部に位置整合して設けられており、 搬出蓋 5 6が閉じて搬出室連通口 3 3 を塞く、ときに、 搬送室 3 0内の (搬出室 5 0に対する) 気密性が保たれる ようになつている。 A forming chamber communication port 32 is formed in the upper center of the transfer chamber 30 (a position opposite to the supply position III in FIG. 1), and the transfer chamber 30 is formed via the forming chamber communication port 32. The mold 40 and the supply shaft 76 of the molding chamber carrying device 75 pass through while communicating with the chamber 40. In the molding chamber communication port 32, a first supply shaft packing 32a is provided so as to be in sliding contact with the supply shaft 76, and when the supply shaft 76 passes through the molding chamber communication port 32, The airtightness (with respect to the transport chamber 30) in the molding chamber 40 is maintained. An unloading chamber communication port 33 is formed at the lower end on the other end side of the transfer chamber 30 (a position facing the unloading position VI in FIG. 1), and the transfer chamber 30 is connected to the transfer chamber 30 through the unloading chamber communication port 33. The unloading chamber 50 communicates with the molding die 10 and the unloading shaft 81 of the unloading chamber transfer device 80. An unloading lid 56 closing the unloading chamber communication port 33 is provided at the lower end of the other end of the transfer chamber 30.The unloading lid 56 swings open and close around the unloading lid shaft 57. It has become. On the lower surface side of the carry-out cover 56, a carry-out cover packing 58 is provided so as to be aligned with the outer periphery of the carry-out room communication port 33, and the carry-out cover 56 is closed to close the carry-out chamber communication port 33. Sometimes, the airtightness (with respect to the unloading chamber 50) in the transfer chamber 30 is maintained.
搬送室 3 0の一側部上方には、搬送室ガス導入部 3 4が設けられており、 不活性ガス (例えば、 窒素) が搬送室 3 0内に供給されるようになってい る。 一方、 搬送室 3 0の他側部上方には、 搬送室ガス排出部 3 5が設けら れており、 搬送室ガス導入部 3 4におけるガス供給量と搬送室ガス排出部 3 5におけるガス排出量とをそれそれ調整することにより、 不活性ガスを 供給して搬送室 3 0内の空気を不活性ガスに置換できるようになつている。 搬送室 3 0の他側部下方には、ボールネジ通過穴 3 6が形成されており、 室内搬送装置 6 0のボールネジ 6 1が通過するようになっている。 また、 ボ一ルネジ通過穴 3 6には、 ボールネジパッキン 3 6 aがボールネジ 6 1 と摺接するように設けられており、 搬送室 3 0内の (外部に対する) 気密 性が保たれるようになつている。  A transfer chamber gas introduction section 34 is provided above one side of the transfer chamber 30 so that an inert gas (for example, nitrogen) is supplied into the transfer chamber 30. On the other hand, a transfer chamber gas discharge section 35 is provided above the other side of the transfer chamber 30. The gas supply amount in the transfer chamber gas introduction section 34 and the gas discharge in the transfer chamber gas discharge section 35 are provided. By adjusting the amount of each, the inert gas can be supplied to replace the air in the transfer chamber 30 with the inert gas. A ball screw passage hole 36 is formed below the other side of the transfer chamber 30 so that the ball screw 61 of the indoor transfer device 60 passes therethrough. In the ball screw passage hole 36, a ball screw packing 36a is provided so as to be in sliding contact with the ball screw 61, so that the airtightness (to the outside) in the transfer chamber 30 is maintained. ing.
搬送室 3 0の中央下部には、 供給軸通過穴 3 7が形成されており、 成形 室搬送装置 7 5の供給軸 7 6が通過するようになっている。 また、 供給軸 通過穴 3 7には、 第 2供給軸パッキン 3 7 aが供給軸 7 6と摺接するよう に設けられており、 搬送室 3 0内の (外部に対する) 気密性が保たれるよ うになつている。 搬送室 3 0の中央下部他端側には、冷却軸通過穴 3 8が形成されており、 第 1冷却装置 8 5の冷却軸 8 7が通過するようになっている。 また、 冷却 軸通過穴 3 8には、 冷却軸パッキン 3 8 aが冷却軸 8 7と摺接するように 設けられており、 搬送室 3 0内の (外部に対する) 気密性が保たれるよう になっている。 A supply shaft passage hole 37 is formed in the lower center of the transfer chamber 30 so that the supply shaft 76 of the forming chamber transfer device 75 can pass therethrough. In addition, the second supply shaft packing 37 a is provided in the supply shaft passage hole 37 so as to be in sliding contact with the supply shaft 76, so that the airtightness (with respect to the outside) in the transfer chamber 30 is maintained. It has become. A cooling shaft passage hole 38 is formed at the other lower end of the center of the transfer chamber 30 so that the cooling shaft 87 of the first cooling device 85 passes therethrough. In the cooling shaft passage hole 38, a cooling shaft packing 38a is provided so as to be in sliding contact with the cooling shaft 87, so that airtightness (with respect to the outside) in the transfer chamber 30 is maintained. Has become.
成形室 4 0は、 搬送室 3 0の上部に設けられた加熱成形機構 4 1を主体 に構成される。 この加熱成形機構 4 1は、 ヒー夕 4 2と、 ヒー夕を収容す るヒー夕ケース 4 3と、 ヒ一夕 4 2の内側に設けられた石英管 4 4と、 'ヒ —夕ケース 4 3の内側上部に設けられた型当接部材 4 5と、 ガス導入管 4 6と、 熱電対 4 7とを備えて構成される。  The molding chamber 40 mainly includes a heating molding mechanism 41 provided above the transfer chamber 30. The heat forming mechanism 41 includes a heat sink 42, a heat sink case 43 for accommodating heat sink, a quartz tube 44 provided inside the heat sink 42, and a heat sink 4. It comprises a mold contact member 45 provided on the upper inside of 3, a gas introduction pipe 46, and a thermocouple 47.
図 1および図 3に示すように、 ヒー夕 4 2は、 供給軸 7 6に置かれた成 形型 1 0を周囲から効率的に加熱できるように配置されている。 ヒ一タケ ース 4 3は、 搬送室 3 0の上部に有底円筒状に形成されており、 ヒー夕 4 2が収容されるようになっている。 ヒー夕ケース 4 3の上部中央には、 第 1ガス導入孔 4 3 aがガス導入管 4 6の取付位置に位置整合して孔閧け形 成されている。  As shown in FIG. 1 and FIG. 3, the heater 42 is arranged so that the molding die 10 placed on the supply shaft 76 can be efficiently heated from the surroundings. The heat case 43 is formed in a cylindrical shape with a bottom at the upper part of the transfer chamber 30, and the heat case 42 is accommodated therein. A first gas introduction hole 43 a is formed in the upper center of the heat case 43 so as to be aligned with the mounting position of the gas introduction pipe 46.
石英管 4 4は筒状に形成されており、 ヒー夕ケース 4 3内におけるヒー 夕 4 2の内側に取り付けられて、 石英管 4 4 (すなわち、 加熱成形機構 4 1 ) の内部に成形型 1 0が位置できるようになつている。 すなわち、 石英 管 4 4の内部空間が成形室 4 0の内部空間となり、 石英管 4 4により外部 との気密性が保たれるようになっている.。  The quartz tube 44 is formed in a cylindrical shape, and is mounted inside the heater tube 42 in the heater case 43 and forms a mold 1 inside the quartz tube 44 (that is, the heating forming mechanism 41). 0 can be located. That is, the internal space of the quartz tube 44 becomes the internal space of the molding chamber 40, and the airtightness with the outside is maintained by the quartz tube 44.
型当接部材 4 5は、 ヒー夕ケース 4 3の内側上部に下方へ突出するよう に取り付けられており、 成形室搬送装置 7 5により成形型 1 0を成形室 4 0内の成形位置 IV からさらに上方へ移動させることで、 成形型 1 0の上 成形型 1 2が型当接部材 4 5に当接してガラス素材 1 1が成形型 1 0に加 圧される。 このようにして、 ガラス素材 1 1を成形できるようになつてい る。 型当接部材 4 5の中央部には、 第 2ガス導入孔 4 5 aがヒータケースThe mold contact member 45 is attached to the upper inside of the heat case 43 so as to protrude downward, and the molding die 10 is moved from the molding position IV in the molding chamber 40 by the molding room transfer device 75. By moving the glass material further upward, the upper molding die 12 of the molding die 10 comes into contact with the die contact member 45 to press the glass material 11 onto the molding die 10. In this way, the glass material 11 can be formed. You. In the center of the mold contact member 45, a second gas introduction hole 45a is provided with a heater case.
4 3の第 1ガス導入孔 4 3 aに位置整合して孔開け形成されている。 Holes 43 are formed in alignment with the first gas introduction holes 43a.
ガス導入管 4 6は、 ヒー夕ケース 4 3上部中央に取り付けられており、 不活性ガス (例えば、 窒素) が、 ガス導入管 4 6から第 1ガス導入孔 4 3 aおよび第 2ガス導入孔 4 5 aを通過して成形室 4 0 (加熱成形機構 4 1 ) 内に供給されるようになっている。 熱電対 4 7は、 ガス導入管 4 6の上端 部に形成された熱電対取付孔 4 6 aに取付固定されており、 外部からガス 導入管 4 6、 第 1ガス導入孔 4 3 aおよび第 2ガス導入孔 4 5 aを通過し て、 下端部が成形室 4 0 (加熱成形機構 4 1 ) 内に位置するようになって いる。  The gas inlet pipe 46 is mounted at the center of the upper part of the heat case 43, and an inert gas (for example, nitrogen) flows from the gas inlet pipe 46 to the first gas inlet hole 43a and the second gas inlet hole. After passing through 45a, it is supplied into the molding chamber 40 (heat molding mechanism 41). The thermocouple 47 is attached and fixed to a thermocouple mounting hole 46a formed at the upper end of the gas introduction pipe 46, and the gas introduction pipe 46, the first gas introduction hole 43a, and the (2) The lower end portion passes through the gas introduction hole 45a and is located in the molding chamber 40 (the heat molding mechanism 41).
搬出室 5 0は、 ベース 2の他端側上部に矩形箱状に形成される。 搬出室 The carry-out chamber 50 is formed in a rectangular box shape on the upper end of the other end of the base 2. Loading room
5 0の側壁上部には、 搬出室ガス導入部 5 1が設けられており、 不活性ガ ス (例えば、 窒素) が搬出室 5 0内に供給されるようになっている。 一方、 搬出室 5 0の側壁下部には、 搬出室ガス排出部 5 2が設けられており、 不 活性ガスを供給して搬出室 5 0内の空気を不活性ガスに置換できるように なっている。 An unloading chamber gas introduction unit 51 is provided on the upper part of the side wall of the 50, and an inert gas (for example, nitrogen) is supplied into the unloading chamber 50. On the other hand, at the lower part of the side wall of the unloading chamber 50, a unloading chamber gas exhausting section 52 is provided so that an inert gas can be supplied to replace the air in the unloading chamber 50 with the inert gas. I have.
搬出室 5 0の下底部 (ベース 2 ) には、 搬出軸通過穴 5 3が形成されて おり、 搬出室搬送装置 8 0の搬出軸 8 1が通過するようになっている。 ま た、 搬出軸通過穴 5 3には、 搬出軸パッキン 5 3 aが搬出軸 8 1 と摺接す るように設けられており、 搬出室 5 0内の (外部に対する) 気密性が保た れるようになっている。  An unloading shaft passage hole 53 is formed in the lower bottom portion (base 2) of the unloading room 50 so that the unloading shaft 81 of the unloading room transfer device 80 can pass through. Also, in the unloading shaft passage hole 53, an unloading shaft packing 53a is provided so as to be in sliding contact with the unloading shaft 81, so that the airtightness (with respect to the outside) in the unloading chamber 50 is maintained. It is supposed to be.
搬出室 5 0の前面側には搬出室前扉 (図示せず) が設けられており、 こ の搬出室前扉を開けて搬出室 5 0内を外部に対し開放した状態で、 作業者 による手または自動搬出機 (図示せず) を利用して、 作業者により成形型 1 0が搬出室 5 0の取出位置 VII から外部へ搬出される (取り出される) ようになつている。 なお通常は、 搬出室前扉は閉められて搬出室 5 0内が 外部に対し閉鎖 (密閉) された状態にされる。 A front door (not shown) is provided on the front side of the carry-out room 50. When the front door of the carry-out room is opened and the inside of the carry-out room 50 is opened to the outside, a worker may use the door. Using a hand or an automatic unloading machine (not shown), the mold 10 is carried out (taken out) from the unloading position VII of the unloading chamber 50 by an operator. Usually, the door in front of the unloading room is closed and the inside of the unloading room 50 is closed. It is closed (closed) to the outside.
室内搬送装置 6 0は、 図 1および図 2に示すように、 搬送室 3 0に取り 付けられた 2つのボールネジ 6 1, 6 1と、 成形型 1 0を挟持する 2つの フィンガ一 6 2, 6 2と、 ボ一ルネジ 6 1 , 6 1に螺合された 2つのフィ ンガーシリンダ 6 3 , 6 3と、 ボールネジ 6 1, 6 1を回転駆動する第 1 駆動装置 6 5とを備え、成形型 1 0を搬送室 3 0の搬入位置 IIから供給位 置 IIIおよび冷却位置 Vを通って搬出位置 VIへ (水平方向に) 搬送可能 に構成される。  As shown in FIGS. 1 and 2, the indoor transfer device 60 includes two ball screws 61, 61 attached to the transfer chamber 30, and two finger pins 62, 62, two finger cylinders 63, 63 screwed to the ball screws 61, 61, and a first drive device 65, which rotationally drives the ball screws 61, 61, is formed. The mold 10 is configured to be able to be transferred (in the horizontal direction) from the loading position II of the transfer chamber 30 to the unloading position VI through the supply position III and the cooling position V.
2つのボールネジ 6 1, 6 1は、 搬送室 3 0において互いに平行かつ水 平に取り付けられており、 ボールネジ 6 1, 6 1の他端がボ一ルネジ通過 穴 3 6を通過して外部に位置するようになっている。  The two ball screws 61, 61 are mounted in parallel to each other and horizontally in the transfer chamber 30, and the other ends of the ball screws 61, 61 are located outside through the ball screw passage holes 36. It is supposed to.
フィ ンガー 6 2 , 6 2は、 フィンガーシリンダ 6 3, 6 3にそれそれ互 いに対向するように設けられており、 フィンガ一シリンダ 6 3 , 6 3の作 動により、 成形型 1 0の搬送台 1 5を挟持する方向 (内側) へ往復移動、 すなわち搬送台 1 5に対して閧閉可能になっている。 フィ ンガ一シリンダ 6 3 , 6 3は、 ボールネジ 6 1, 6 1にそれぞれ螺合されており、 ボール ネジ 6 1 , 6 1の回転により往復移動可能になっている。 これにより、 成 形型 1 0は、 フィ ンガ一 6 2 , 6 2に挟持された状態で、 搬送室 3 0の搬 入位置 IIから搬出位置 VIへ (水平方向に) 搬送可能になる。  The fingers 62, 62 are provided on the finger cylinders 63, 63 so as to face each other, and by the operation of the finger cylinders 63, 63, the molding die 10 is conveyed. It can be reciprocated in the direction to pinch the platform 15 (inside), that is, it can be closed to the carrier 15. The finger cylinders 63 and 63 are screwed to ball screws 61 and 61, respectively, and can reciprocate by rotation of the ball screws 61 and 61. As a result, the molding die 10 can be transported (in the horizontal direction) from the carry-in position II to the carry-out position VI of the transfer chamber 30 while being sandwiched between the fingers 62, 62.
第 1·駆動装置 6 5は、 モー夕 6 6と、 モー夕 6 6の回転軸に取り付けら れたモ一夕側プーリ 6 7と、 ボールネジ 6 1 , 6 1の他端にそれぞれ取り 付けられたネジ側プーリ 6 8, 6 8と、 モー夕側プーリ 6 7 (モー夕 6 6 ) の回転をネジ側プ一リ 6 8 , 6 8 (ボールネジ 6 1, 6 1 ) へ伝えるベル 1、 6 9とを備え、 モー夕 6 6により、 モー夕側プーリ 6 7とベルト 6 9お よびネジ側プーリ 6 8 , 6 8を介してボールネジ 6 1 , 6 1が回転駆動さ れるように構成される。 なお、第 1駆動装置 6 5に構成されるモー夕 6 6、 モー夕側プーリ 6 7、 ネジ側プーリ 6 8, 6 8、 そしてベルト 6 9は、 搬送室 3 0の外部に位置 して設けられている。 これにより、 搬送室 3 0の寸法を小さくすることが できるため、 ガラス光学素子成形装置 1の装置寸法を小さくすることがで き、 ガラス光学素子成形装置 1の製造コス トを低減させることができる。 さらに、 搬送室 3 0に供給される不活性ガスの使用量を減少させることが でき、 ガラス光学素子成形装置 1のランニングコストを低減させることが できる。 The first drive unit 65 is attached to the motor 66, the motor-side pulley 67 attached to the rotating shaft of the motor 66, and the other end of the ball screw 61, 61, respectively. Bells 1 and 6 that transmit the rotation of the screw-side pulleys 6 8 and 6 8 and the motor-side pulley 6 7 (motor-side 6 6) to the screw-side pulleys 6 8 and 6 8 (ball screws 6 1 and 6 1). The ball screw 6 1, 6 1 is rotatably driven by the motor 6 through the motor pulley 6 7, the belt 6 9, and the screw pulleys 6 8, 6 8. . The motor 66, motor pulley 67, screw pulleys 68, 68, and belt 69 included in the first drive device 65 are located outside the transfer chamber 30. Have been. Accordingly, the dimensions of the transfer chamber 30 can be reduced, so that the dimensions of the glass optical element molding apparatus 1 can be reduced, and the manufacturing cost of the glass optical element molding apparatus 1 can be reduced. . Further, the amount of the inert gas supplied to the transfer chamber 30 can be reduced, and the running cost of the glass optical element molding apparatus 1 can be reduced.
搬入室搬送装置 7 0は、 成形型 1 0を載置可能な上下に延びる搬入軸 7 1と、 搬入軸 7 1を上下移動させる搬入軸駆動装置 (図示せず) と、 搬入 軸 7 1を支持する搬入軸ガイ ド 7 2とを備えて構成され、 成形型 1 0を搬 入室 2 0の取入位置 Iから搬送室 3 0の搬入位置 IIへ搬送可能に構成され る。 搬入軸 7 1の上端部には成形型 1 0と同等の径を有する搬入ステージ 7 1 aが形成されており、 この搬入ステージ 7 1 a上に成形型 1 0が載置 されるようになつている。 搬入軸ガイ ド 7 2は、 ベース 2の下面側に取り 付けられており、 搬入軸 7 1と嵌合して搬入軸 7 1を上下移動可能に支持 するようになつている。  The carry-in room transfer device 70 includes a vertically extending carry-in shaft 71 on which the mold 10 can be placed, a carry-in shaft driving device (not shown) for vertically moving the carry-in shaft 71, and a carry-in shaft 71. And a carrying-in shaft guide 72 for supporting, so that the molding die 10 can be carried from the taking-in position I of the carrying-in room 20 to the carrying-in position II of the carrying room 30. At the upper end of the carry-in shaft 71, a carry-in stage 71a having the same diameter as the forming die 10 is formed, and the mold 10 is placed on the carry-in stage 71a. ing. The carry-in shaft guide 72 is attached to the lower surface side of the base 2, and is fitted to the carry-in shaft 71 to support the carry-in shaft 71 so as to be vertically movable.
そのため、 搬入軸 7 1は搬入軸駆動装置により上下移動可能となり、 搬 入室 2 0の取入位置 Iに搬入された成形型 1 0を、 搬入軸 7 1 (搬入室搬 送装置 7 0 ) により室内搬送装置 6 0の搬送方向に対し直角方向 (鉛直方 向) に搬送室 3 0の搬入位置 IIへ搬送可能となる。 これにより、 搬入室 2 0が搬送室 3 0の下部に別体に設けられるとともに、 搬入室 2 0内の成形 型 1 0が搬入室搬送装置 7 0により室内搬送装置 6 0の搬送方向に対し直 角方向に搬送室 3 0へ搬送されるように構成されているため、 搬送室 3 0 の寸法を小さくすることができる。 そのため、 ガラス光学素子成形装置 1 の設置面積を小さくすることができ、 ガラス光学素子成形装置 1の製造コ ストを低減させることができる。 さらに、 搬送室 3 0と搬入室 2 0とは気 密可能に空間を分離することができるため、 搬送室 3 0に供給される不活 性ガスの使用量を減少させることができ、 ガラス光学素子成形装置 1のラ ンニングコストを低減させることができる。 Therefore, the carry-in shaft 71 can be moved up and down by the carry-in shaft drive device, and the molding die 10 carried into the take-in position I of the carry-in room 20 is moved by the carry-in shaft 71 (the carry-in room carrying device 70). It is possible to transport the transport chamber 30 to the carry-in position II of the transport chamber 30 in a direction perpendicular to the transport direction of the indoor transport device 60 (vertical direction). Thus, the carry-in room 20 is provided separately below the transfer room 30, and the molding die 10 in the carry-in room 20 is moved by the carry-in room transfer device 70 in the transfer direction of the indoor transfer device 60. Since the transfer chamber 30 is configured to be transferred to the transfer chamber 30 at right angles, the size of the transfer chamber 30 can be reduced. Therefore, the installation area of the glass optical element molding apparatus 1 can be reduced, and the manufacturing cost of the glass optical element molding apparatus 1 can be reduced. The strike can be reduced. Further, since the transfer chamber 30 and the carry-in chamber 20 can be separated from each other in an airtight manner, the amount of inert gas supplied to the transfer chamber 30 can be reduced, and the glass optics can be reduced. The running cost of the element molding device 1 can be reduced.
成形室搬送装置 7 5は、 成形型 1 0を載置可能な上下に延びる供給軸 7 6と、 供給軸 7 6を上下移動させる第 2駆動装置 (図示せず) と、 供給軸 7 6を支持する供給軸ガイ ド 7 7とを備えて構成され、 成形型 1 0を搬送 室 3 0の供給位置 IIIから成形室 4 0の成形位置 IVへ往復搬送可能に構成 される。 供給軸 7 6の上端部には成形型 1 0より若干大きい径を有する供 給ステージ 7 6 aが形成されており、 この供給ステージ 7 6 a上に成形型 1 0が載置されるようになっている。 供給軸ガイ ド 7 7は、 ベース 2の下 面側に取り付けられており、 供給軸 7 6と嵌合して供給軸 7 6を上下移動 可能に支持するようになっている。  The forming chamber transfer device 75 includes a vertically extending supply shaft 76 on which the molding die 10 can be placed, a second driving device (not shown) for vertically moving the supply shaft 76, and a supply shaft 76. And a supply shaft guide 77 for supporting the molding die 10. The molding die 10 can be reciprocated from the supply position III of the transfer chamber 30 to the molding position IV of the molding chamber 40. A supply stage 76 a having a diameter slightly larger than the molding die 10 is formed at the upper end of the supply shaft 76, and the molding die 10 is placed on the supply stage 76 a. Has become. The supply shaft guide 77 is attached to the lower surface side of the base 2 and is fitted to the supply shaft 76 to support the supply shaft 76 so as to be able to move up and down.
そのため、 供給軸 7 6は第 2駆動装置により上下移動可能となり、 搬送 室 3 0の供給位置 III に達した成形型 1 0を、 供給軸 7 6 (成形室搬送装 置 7 5 ) により室内搬送装置 6 0の搬送方向に対し直角方向 (鉛直方向) に成形室の成形位置 IVへ往復搬送可能となる。 これにより、 成形室 4 0 が室内搬送装置 6 0の敷設上およびその延長上とは異なる搬送室 3 0の上 部に別体に設けられるとともに、 搬送室 3 0内の成形型 1 0が成形室搬送 装置 7 5により室内搬送装置 6 0の搬送方向に対し直角方向に成形室 4 0 へ往復搬送されるように構成されているため、 搬送室 3 0の寸法を小さく することができる。 そのため、 ガラス光学素子成形装置 1の設置面積を小 さくすることができ、 ガラス光学素子成形装置 1の製造コストを低減させ ることができる。 さらに、 搬送室 3 0に供給される不活性ガスの使用量を 減少させることができ、 ガラス光学素子成形装置 1のランニングコス トを 低減させることができる。 また、 第 2駆動装置は、 成形室 4 0での成形型 1 0への加圧手段の役割 をも兼ねているので、 ガラス光学素子成形装置 1を簡略化することができ さらに小さくすることができた。 よって、 ガラス光学素子成形装置 1の製 造コス トをより低減させることができる。 Therefore, the supply shaft 76 can be moved up and down by the second driving device, and the forming die 10 which has reached the supply position III of the transfer chamber 30 is transferred indoors by the supply shaft 76 (forming room transfer device 75). It is possible to reciprocate to the molding position IV of the molding chamber in the direction perpendicular to the transport direction of the device 60 (vertical direction). Thus, the molding chamber 40 is separately provided on the upper part of the transfer chamber 30 which is different from the laying of the indoor transfer device 60 and the extension thereof, and the molding die 10 in the transfer chamber 30 is formed. Since the chamber transfer device 75 is configured to be reciprocated to the forming chamber 40 in a direction perpendicular to the transfer direction of the indoor transfer device 60, the size of the transfer chamber 30 can be reduced. Therefore, the installation area of the glass optical element molding device 1 can be reduced, and the manufacturing cost of the glass optical element molding device 1 can be reduced. Further, the amount of the inert gas supplied to the transfer chamber 30 can be reduced, and the running cost of the glass optical element molding apparatus 1 can be reduced. Further, since the second driving device also serves as a means for pressing the molding die 10 in the molding chamber 40, the glass optical element molding device 1 can be simplified and further reduced in size. did it. Therefore, the manufacturing cost of the glass optical element molding apparatus 1 can be further reduced.
第 1冷却装置 8 5は、 搬送室 3 0内に設けられた上下に延びる第 1冷却 板 8 6と、 成形型 1 0を載置可能な冷却軸 8 7と、 冷却軸 8 7を上下移動 させる冷却軸駆動装置 (図示せず) と、 冷却軸 8 7を支持する冷却軸ガイ ド 8 8とを備え、 冷却軸 8 7に載置された成形型 1 0を上方へ移動させて 第 1冷却板 8 6に当接させることで、成形型 1 0を冷却可能に構成される。 第 1冷却板 8 6は、搬送室 3 0内の上部における冷却位置 Vに対向して 取り付けられており、 成形型 1 0の上成形型 1 2やスリーブ 1 4と当接す るように構成される。 冷却軸 8 7の上端部には成形型 1 0と同等の径を有 する冷却ステージ 8 7 aが形成されており、 この冷却ステージ 8 7 a上に 成形型 1 0が載置されるようになつている。 なお、 第 1冷却板 8 6および 冷却軸 8 7は、 図示しない冷却器により水冷されている。 冷却軸ガイ ド 8 8は、 ベース 2の下面側に取り付けられており、 冷却軸 8 7と嵌合して冷 却軸 8 7を上下移動可能に支持するようになっている。  The first cooling device 85 moves a vertically extending first cooling plate 86 provided in the transfer chamber 30, a cooling shaft 87 on which the mold 10 can be placed, and a cooling shaft 87. And a cooling shaft guide 88 supporting the cooling shaft 87. The molding die 10 placed on the cooling shaft 87 is moved upward to The mold 10 can be cooled by contacting the cooling plate 86. The first cooling plate 86 is mounted so as to face the cooling position V in the upper part of the transfer chamber 30 and is configured to abut the upper mold 12 and the sleeve 14 of the mold 10. Is done. At the upper end of the cooling shaft 87, a cooling stage 87a having the same diameter as the molding die 10 is formed, and the cooling die 87 is placed on the cooling stage 87a. I'm familiar. The first cooling plate 86 and the cooling shaft 87 are water-cooled by a cooler (not shown). The cooling shaft guide 88 is attached to the lower surface side of the base 2, and is fitted to the cooling shaft 87 so as to support the cooling shaft 87 so that it can move up and down.
搬出室搬送装置 8 0は、 成形型 1 0を載置可能な搬出軸 8 1と、 搬出軸 8 1を上下移動させる搬出軸駆動装置 (図示せず) と、 搬出軸 8 1を支持 する搬出軸ガイ ド 8 2とを備えて構成され、 成形型 1 0を搬送室 3 0の搬 出位置 VIから搬出室 5 0の取出位置 VIIへ搬送可能に構成される。 搬出 軸 8 1の上端部には搬出ステージ 8 1 aが形成されており、 この搬出ステ ージ 8 1 a上に成形型 1 0が載置されるようになつている。 搬出軸ガイ ド 8 2は、 ベース 2の下面側に取り付けられており、 搬出軸 8 1と嵌合して 搬出軸 8 1を上下移動可能に支持するようになっている。  The unloading chamber transfer device 80 includes an unloading shaft 81 on which the molding die 10 can be mounted, an unloading shaft driving device (not shown) for vertically moving the unloading shaft 81, and unloading supporting the unloading shaft 81. A shaft guide 82 is provided so that the mold 10 can be transferred from the unloading position VI of the transfer chamber 30 to the unloading position VII of the transfer chamber 50. An unloading stage 81a is formed at the upper end of the unloading shaft 81, and the molding die 10 is placed on the unloading stage 81a. The unloading shaft guide 82 is attached to the lower surface side of the base 2 and is fitted to the unloading shaft 81 to support the unloading shaft 81 movably up and down.
そのため、 搬出軸 8 1は搬出軸駆動装置により上下移動可能となり、 搬 送室 3 0の搬出位置 VI に達した成形型 1 0を、 搬出軸 8 1 (搬出室搬送 装置 8 0 )により室内搬送装置 6 0の搬送方向に対し直角方向(鉛直方向) に搬出室 5 0の取出位置 VIIへ搬送可能となる。 これにより、 搬出室 5 0 が搬送室 3 0の下部に別体に設けられるとともに、 搬送室 3 0内の成形型 1 0が搬出室搬送装置 8 0により室内搬送装置 6 0の搬送方向に対し直角 方向に搬出室 5 0へ搬送されるように構成されているため、 搬送室 3 0の 寸法を小さくすることができる。 そのため、 ガラス光学素子成形装置 1の 設置面積を小さくすることができ、 ガラス光学素子成形装置 1の製造コス トを低減させることができる。 さらに、 搬送室 3 0に供給される不活性ガ スの使用量を減少させることができ、 ガラス光学素子成形装置 1のラン二 ングコストを低減させることができる。 Therefore, the unloading shaft 81 can be moved up and down by the unloading shaft drive device. The molding die 10 that has reached the unloading position VI of the transfer chamber 30 is unloaded into the unloading chamber 5 in a direction perpendicular to the transfer direction of the indoor transfer device 60 (vertical direction) by the unloading shaft 81 (unloading chamber transfer device 80). It can be transported to the unloading position VII. Thus, the unloading chamber 50 is provided separately below the transfer chamber 30, and the molding die 10 in the transfer chamber 30 is moved by the unloading chamber transfer device 80 in the transfer direction of the indoor transfer device 60. Since the transfer chamber 30 is configured to be transferred to the discharge chamber 50 in a right angle direction, the size of the transfer chamber 30 can be reduced. Therefore, the installation area of the glass optical element molding device 1 can be reduced, and the manufacturing cost of the glass optical element molding device 1 can be reduced. Furthermore, the amount of inert gas supplied to the transfer chamber 30 can be reduced, and the running cost of the glass optical element molding apparatus 1 can be reduced.
なお、 搬出室搬送装置 8 0には、 成形型 1 0を冷却可能な第 2冷却装置 9 0が搬出室 5 0の直上に設けられている。 第 2冷却装置 9 0は、 第 2冷 却板 9 1と、 成形型 1 0を載置可能な第 2冷却軸としての搬出軸 8 1とを 主体に構成され、 搬出軸 8 1に載置された成形型 1 0を上方へ移動させて 第 2冷却板 9 1に当接させることで、 成形型 1 0が冷却されるようになつ ている。 これにより、 第 2冷却装置 9 0を別途独立に設ける必要がないた め、 ガラス光学素子成形装置 1の設置面積を小さくすることができ、 ガラ ス光学素子成形装置 1の製造コストを低減させることができる。  Note that, in the unloading chamber transfer device 80, a second cooling device 90 capable of cooling the mold 10 is provided immediately above the unloading room 50. The second cooling device 90 mainly includes a second cooling plate 91 and an unloading shaft 81 as a second cooling shaft on which the mold 10 can be mounted, and is mounted on the unloading shaft 81. By moving the formed mold 10 upward and making contact with the second cooling plate 91, the mold 10 is cooled. This eliminates the need to separately provide the second cooling device 90, so that the installation area of the glass optical element molding device 1 can be reduced, and the manufacturing cost of the glass optical element molding device 1 can be reduced. Can be.
なお、 第 2冷却板 9 1は、 搬送室 3 0内の上部において搬出位置 VI に 対向して取り付けられており、 成形型 1 0の上成形型 1 2やスリーブ 1 4 と当接するように構成される。また、第 2冷却板 9 1および搬出軸 8 1は、 第 1冷却装置 8 5と同様に、 図示しない冷却器により水冷されている。  The second cooling plate 91 is attached to the upper part of the transfer chamber 30 so as to face the unloading position VI, and is configured to abut the upper mold 12 and the sleeve 14 of the mold 10. Is done. The second cooling plate 91 and the unloading shaft 81 are water-cooled by a cooler (not shown), like the first cooling device 85.
このような構成のガラス光学素子成形装置 1において、 ガラス光学素子 を成形するには、 次の製造方法により、 製造した。 その工程を図 1及び図 8を用いて説明する。 まず、 図 8に示す成形型準備工程 (SS 1 ) を行う。 この工程は、成形型 1 0の搬送台 1 5に載置されたスリーブ 1 4内に、下成 形型 1 3、 ガラス素材 1 1、 そして上成形型 1 2を順に挿入することで、 ガラス素材 1 1を成形型 1 0内に入れておく。 In the glass optical element molding apparatus 1 having such a configuration, the glass optical element was molded by the following production method. The process will be described with reference to FIGS. First, a mold preparation step (SS 1) shown in FIG. 8 is performed. In this process, the lower mold 13, the glass material 11, and the upper mold 12 are inserted into the sleeve 14 placed on the carrier 15 of the mold 10 in order, The material 11 is put in the mold 10.
次に、 成形型搬入工程 ( SS2 ) を行う。 この工程は、 搬入室 2 0の搬入 室前扉を開けて搬入室 2 0内を外部に対し開放した状態で、 作業者による 手または自動搬入機 (図示せず) を利用して、 成形型 1 0を外部から搬入 室 2 0の取入位置 Iに搬入する (搬入軸 7 1の搬入ステージ 7 1 aに載置 する)。 このとき、 搬入蓋 2 6により搬入室連通口 3 1が塞がれており、 こ れにより搬送室 3 0への酸素 (空気) の流入が防止される。 成形型 1 0を 取入位置 Iに搬入した後は、 搬入室前扉を閉めて搬入室 2 0内が外部に対 し閉鎖 (密閉) された状態にする。 したがって、 成形室 4 0に酸素が混入 されず、 成形型 1 0や成形室 4 0の酸化を低減することができ、 成形型 1 0や装置の長寿命化が期待できる。  Next, a mold carrying-in process (SS2) is performed. This process is performed by opening the front door of the loading room of the loading room 20 and opening the inside of the loading room 20 to the outside, and then using a hand of an operator or an automatic loading machine (not shown) to form the molding die. 10 is loaded from outside into the loading position I of the loading room 20 (placed on the loading stage 71 a of the loading shaft 71). At this time, the carry-in chamber communication port 31 is closed by the carry-in lid 26, thereby preventing oxygen (air) from flowing into the transfer chamber 30. After the mold 10 is carried into the take-in position I, the front door of the carry-in room is closed so that the inside of the carry-in room 20 is closed (closed) to the outside. Therefore, oxygen is not mixed into the molding chamber 40, so that the oxidation of the molding die 10 and the molding chamber 40 can be reduced, and a longer life of the molding die 10 and the device can be expected.
続いて、 搬入室 2 0内を真空ポンプ 2 5で排気し、 搬入室 2 0内を一旦 真空状態にして排気を止めた後、 搬入室ガス導入部 2 1から不活性ガスを 搬入室 2 0内に導入し搬送室 3 0との圧力差を所定値にした状態で、 搬入 室連通口 3 1を塞ぐ搬入蓋 2 6を (回動させて) 開いて搬入室 2 0と搬送 室 3 0とを連通させる。  Subsequently, the inside of the carry-in room 20 is evacuated by the vacuum pump 25, the inside of the carry-in room 20 is once evacuated, and the evacuation is stopped. With the pressure difference between the transfer chamber 30 and the transfer chamber 30 set to a predetermined value, the load cover 26 that closes the transfer chamber communication port 31 is opened (rotated) to open the transfer chamber 20 and the transfer chamber 30. And communicate with.
次に、 成形型第 1搬送工程 (SS3 ) を行う。 この工程は、 搬入室搬送装 置 7 0の搬入軸 7 1を上動させて、 搬入室 2 ◦の取入位置 Iに搬入された 成形型 1 0を搬入室連通口 3 1に通過させて搬送室 3 0の搬入位置 II へ 搬送し、 室内搬送装置 6 0に受け渡す。 受け渡し終了後、 搬入軸 7 1 (搬 入ステージ 7 1 a ) を下動させて搬入室 2 0まで戻す。  Next, the first transfer step (SS3) of the mold is performed. In this step, the carry-in shaft 71 of the carry-in room transfer device 70 is moved upward, and the mold 10 carried into the take-in position I of the carry-in room 2◦ is passed through the carry-in room communication port 31. It is transported to the carry-in position II of the transfer chamber 30 and delivered to the indoor transfer device 60. After the delivery is completed, the loading shaft 71 (the loading stage 71a) is moved down to return to the loading room 20.
搬入室搬送装置 7 0から室内搬送装置 6 0への受け渡しは、 搬送室 3 0 の搬入位置 IIに位置する室内搬送装置 6 0のフィンガ一 6 2 , 6 2を搬送 台 1 5の窪み 1 5 a , 1 5 aと係合させ、 2つのフィンガー 6 2 , 6 2に より成形型 1 0の搬送台 1 5を挟持することで行われる。 The transfer from the carry-in room transfer device 70 to the indoor transfer device 60 is performed by transferring the fingers 6 2, 6 2 of the indoor transfer device 60 located at the transfer position II of the transfer room 30 to the recesses 15 of the transfer table 15. a, 1 5 a and engage with two fingers 6 2, 6 2 This is performed by sandwiching the transfer table 15 of the forming die 10.
続いて、 モー夕 6 6によりボールネジ 6 1 , 6 1を回転させて、 室内搬 送装置 6 0のフィ ンガー 6 2 , 6 2に挟持された成形型 1 0 (搬送台 1 5 ) を搬送室 3 0の搬入位置 IIから供給位置 IIIへ搬送し、 成形室搬送装置 7 5に受け渡す。室内搬送装置 6 0から成形室搬送装置 7 5への受け渡しは、 室内搬送装置 6 0のフィ ンガ一6 2, 6 2と搬送台 1 5の窪み 1 5 a, 1 5 aとの係合を解除して、 搬送室 3 0の供給位置 III に位置する成形型 1 0を供給軸 7 6の供給ステージ Ί 6 a上に載置することで行われる。また、 成形型 1 0が供給位置 III まで搬送されたときに、 搬入蓋 2 6が閉じて搬 入室連通孔 3 1を塞ぐ。  Subsequently, the ball screws 6 1 and 6 1 are rotated by the motor 6 and the molding die 10 (the transfer table 15) sandwiched between the fingers 6 2 and 6 2 of the indoor transfer device 60 is transferred to the transfer chamber. It is transported from the carry-in position II of 30 to the supply position III, and delivered to the molding room transport device 75. The transfer from the indoor transfer device 60 to the molding room transfer device 75 involves engaging the fingers 62, 62 of the indoor transfer device 60 with the recesses 15a, 15a of the transfer table 15. Release is performed, and the molding die 10 located at the supply position III of the transfer chamber 30 is placed on the supply stage Ί 6 a of the supply shaft 76. When the mold 10 is transported to the supply position III, the carry-in lid 26 closes to close the carry-in chamber communication hole 31.
次に、 成形室導入工程 (SS4) を行う。 この工程は、 成形室搬送装置 7 5の供給軸 7 6を上方向に移動ざせて、 搬送室 3 0の供給位置 III に位置 する成形型 1 0を成形室連通口 3 2に通過させて成形室 4 0の成形位置 IVへ搬送する。 そして、 成形型 1 0は加熱成形機構 4 1のヒ一夕 4 2によ り所定成形温度まで加熱され、熱電対 4 7により測定される成形型 1 0 (上 成形型 1 2 ) の温度が成形温度に達すると、 加熱成形機構 4 1によるガラ ス素材 1 1の成形が行われる (成形工程 SS5)。  Next, the molding room introduction step (SS4) is performed. In this step, the supply shaft 76 of the molding chamber transfer device 75 is moved upward, and the forming die 10 located at the supply position III of the transfer chamber 30 is passed through the forming chamber communication port 32 to form. It is transported to the molding position IV in chamber 40. Then, the molding die 10 is heated to a predetermined molding temperature by the heating molding mechanism 41 and the temperature of the molding die 10 (upper molding die 12) measured by the thermocouple 47. When the molding temperature is reached, the glass material 11 is molded by the heating molding mechanism 41 (forming step SS5).
ガラス素材 1 1の成形の際には、 供給軸 7 6を上方向に移動させて、 成 形型 1 0を成形室 4 0の成形位置 IV からさらに上方へ移動させ、 上成形 型 1 2を加熱成形機構 4 1の型当接部材 4 5に当接させる。 そして、 さら に供給軸 7 6を上動させるように駆動力を与えることで上成形型 1 2と下 成形型 1 3とがガラス素材 1 1に対して加圧してガラス素材 1 1 (ガラス 光学素子) が成形される。  When molding the glass material 11, the supply shaft 76 is moved upward to move the molding die 10 further upward from the molding position IV of the molding chamber 40, and the upper molding die 12 is moved. It is brought into contact with the mold contact member 45 of the thermoforming mechanism 41. Further, by applying a driving force to further move the supply shaft 76 upward, the upper molding die 12 and the lower molding die 13 are pressed against the glass material 11 and the glass material 11 (glass optical The element is molded.
さて、 加熱成形機構 4 1によるガラス素材 1 1の成形が終了すると、 成 形室取出し工程 (SS6 ) を行う。 この工程は、 成形室搬送装置 7 5の供給 軸 7 6を下動させて、 成形型 1 0を成形室 4 0における成形位置 IV の上 方 (型当接部材 4 5との当接位置) から成形室連通口 3 2を通過させて搬 送室 3 0の供給位置 IIIへ戻し、 室内搬送装置 6 0に受け渡す。 成形室搬 送装置 7 5から室内搬送装置 6 0への受け渡しは、 搬送室 3 0の供給位置 IIIに位置する室内搬送装置 6 0のフィンガー 6 2 , 6 2を搬送台 1 5の窪 み 1 5 a , 1 5 aと再び係合させ、 2つのフィンガ一 6 2, 6 2により成 形型 1 0の搬送台 1 5を挟持することで行われる。 When the molding of the glass material 11 by the heating molding mechanism 41 is completed, a molding chamber removal step (SS6) is performed. In this step, the supply shaft 76 of the molding chamber transfer device 75 is moved downward to move the molding die 10 above the molding position IV in the molding chamber 40. From the side (contact position with the mold contact member 45), returns to the supply position III of the transfer chamber 30 through the forming chamber communication port 32, and is transferred to the indoor transfer device 60. For the transfer from the molding room transport device 75 to the indoor transport device 60, the fingers 6 2, 62 of the indoor transport device 60 located at the supply position III of the transport chamber 30 are transferred to the recesses 1 of the transport table 15. 5a and 15a are reengaged, and the two fingers 62 and 62 pinch the carrier 15 of the molding die 10 to perform this operation.
次に、 成形型第 2搬送工程 ( SS7) を行う。 この工程は、 モ一夕 6 6に よりボ一ルネジ 6 1 , 6 1をさらに回転させて、 室内搬送装置 6 0のフィ ンガ一 6 2, 6 2に挟持された成形型 1 0 (搬送台 1 5 ) を搬送室 3 0の 供給位置 IIIから冷却位置 Vへ搬送し、 第 1冷却装置 8 5に受け渡す。 室 内搬送装置 6 0から第 1冷却装置 8 5への受け渡しは、 室内搬送装置 6 0 のフィンガ一 6 2 , 6 2と搬送台 1 5の窪み 1 5 a , 1 5 aとの係合を解 除して、搬送室 3 0の冷却位置 Vに位置する成形型 1 0を冷却軸 8 7の冷 却ステージ 8 7 a上に載置することで行われる。  Next, a second transfer step (SS7) of the molding die is performed. In this step, the ball screws 61, 61 are further rotated by the motor 66, and the molding die 10 (transfer stand) sandwiched between the fingers 62, 62 of the indoor transfer device 60 is rotated. 15) is transferred from the supply position III of the transfer chamber 30 to the cooling position V, and delivered to the first cooling device 85. The transfer from the indoor transfer device 60 to the first cooling device 85 is performed by engaging the fingers 62, 62 of the indoor transfer device 60 with the recesses 15a, 15a of the transfer table 15. This is performed by releasing the mold 10 placed at the cooling position V of the transfer chamber 30 on the cooling stage 87 a of the cooling shaft 87.
続いて、 冷却工程 (SS8) を行う。 第 1冷却装置 8 5の冷却軸 8 7を上 動させて成形型 1 0を第 1冷却板 8 6に当接させ、 この状態で成形型 1 0 を所定時間冷却した後、 冷却軸 8 7を下動させて成形型 1 0を冷却位置 V へ戻し、 室内搬送装置 6 0に受け渡す。 第 1冷却装置 8 5から室内搬送装 置 6 0への受け渡しは、 搬送室 3 0の冷却位置 Vに位置する室内搬送装置 6 0のフィンガー 6 2, 6 2を搬送台 1 5の窪み 1 5 a , 1 5 aと再び係 合させ、 2つのフィ ンガー 6 2, 6 2により成形型 1 0の搬送台 1 5を挟 持することで行われる。  Subsequently, a cooling step (SS8) is performed. The cooling shaft 87 of the first cooling device 85 is moved upward to bring the molding die 10 into contact with the first cooling plate 86, and in this state, the molding die 10 is cooled for a predetermined time. Is moved down to return the molding die 10 to the cooling position V and delivered to the indoor transfer device 60. The transfer from the first cooling device 85 to the indoor transfer device 60 is performed by using the fingers 62 and 62 of the indoor transfer device 60 located at the cooling position V of the transfer chamber 30 with the recesses 15 of the transfer table 15. a and 15a are again engaged with each other, and the two fingers 62 and 62 hold the transfer table 15 of the mold 10 therebetween.
次に、 モー夕 6 6によりボールネジ 6 1 , 6 1をさらに回転させて、 室 内搬送装置 6 0のフィンガー 6 2, 6 2に挟持された成形型 1 0 (搬送台 1 5 ) を搬送室 3 0の冷却位置 Vから搬出位置 VIへ搬送し、 搬出室搬送 装置 8 0 (すなわち、 第 2冷却装置 9 0 ) に受け渡す。 このとき、 搬出室 連通口 3 3を塞ぐ搬出蓋 5 6が開いて搬送室 3 0と搬出室 5 0とが連通し た状態で、 搬出室搬送装置 8 0の搬出軸 8 1が搬出位置 VI の下方に (隣 接して) 位置している。 Next, the ball screws 6 1, 6 1 are further rotated by the motor 6 6, and the mold 10 (the transfer table 15) held between the fingers 6 2, 6 2 of the indoor transfer device 60 is transferred to the transfer room. It is transferred from the cooling position V of 30 to the unloading position VI and delivered to the unloading room transfer device 80 (that is, the second cooling device 90). At this time, the unloading room With the unloading lid 56 closing the communication port 33 opened and the transfer chamber 30 and the unloading chamber 50 communicating with each other, the unloading shaft 81 of the unloading chamber transfer device 80 is positioned below the unloading position VI (adjacent to Contact) is located.
室内搬送装置 6 0から搬出室搬送装置 8 0への受け渡しは、 室内搬送装 置 6 0のフィンガー 6 2, 6 2と搬送台 1 5の窪み 1 5 a , 1 5 aとの係 合を解除して、 搬送室 3 0の搬出位置 VI に位置する成形型 1 0を搬出軸 8 1の搬出ステージ 8 1 a上に載置することで行われる。  For the transfer from the indoor transfer device 60 to the unloading room transfer device 80, the association between the fingers 62, 62 of the indoor transfer device 60 and the dents 15a, 15a of the transfer table 15 is released. Then, the molding is performed by placing the molding die 10 located at the unloading position VI of the transfer chamber 30 on the unloading stage 81 a of the unloading shaft 81.
続いて、 搬出室搬送装置 8 0の搬出軸 8 1を (第 2冷却軸として) 上動 させて成形型 1 0を第 2冷却装置 9 0の第 2冷却板 9 1に当接させ、 この 状態で成形型 1 0を所定時間冷却した後、 搬出軸 8 1を下動させて成形型 1 0を搬送室 3 0における搬出位置 VI の上方 (第 2冷却板 9 1との当接 位置) から搬出室連通口 3 3に通過させて搬出室 5 0の取出位置 VIIへ搬 送する。 搬送終了後、 搬出蓋 5 6を (回動させて) 閉じて搬出室連通口 3 3を塞ぐ。  Subsequently, the unloading shaft 81 of the unloading room transfer device 80 is moved up (as a second cooling shaft) to bring the mold 10 into contact with the second cooling plate 91 of the second cooling device 90. After cooling the molding die 10 for a predetermined time in this state, the unloading shaft 81 is moved downward to move the molding die 10 above the unloading position VI in the transfer chamber 30 (the contact position with the second cooling plate 91). From the discharge room 50 to the discharge position VII of the discharge room 50. After the transfer is completed, the unloading cover 56 is closed (rotated) to close the unloading chamber communication port 33.
そして、 搬出工程 (SS9) を行う。 この工程は、 搬出室 5 0の搬出室前 扉を開けて搬出室 5 0内を外部に対し開放した状態で、 作業者による手ま たは自動搬出機 (図示せず) を利用して、 成形型 1 0を搬出室 5 0の取出 位置 VIIから外部へ搬出する。 このとき、 搬出蓋 5 6により搬出室連通口 3 3が塞がれているため、 搬送室 3 0への酸素 (空気) の流入が防止され る。  Then, the unloading process (SS9) is performed. In this process, with the door in front of the unloading room of the unloading room 50 opened and the inside of the unloading room 50 opened to the outside, the operator's hand or an automatic unloading machine (not shown) is used. The mold 10 is carried out of the carry-out chamber 50 from the take-out position VII to the outside. At this time, since the unloading chamber communication port 33 is closed by the unloading lid 56, the inflow of oxygen (air) into the transfer chamber 30 is prevented.
成形型 1 0を外部へ搬出した後は、 まず、 搬出室前扉を閉めて搬出室 5 0内を外部に対し閉鎖 (密閉) された状態にする。 そして、 搬出室 5 0内 を図示されていない真空ポンプで排気し、 搬出室 5 0内を一旦真空状態に して排気を止めた後、 搬出室ガス導入部 5 1から不活性ガスを搬出室 5 0 内に導入し搬送室 3 0との圧力差を所定値にした状態で、 搬出室連通口 3 3を塞ぐ搬出蓋 5 6を (揺動させて) 開いて搬送室 3 0と搬出室 5 0とを 連通させる。 これにより、 搬送室 3 0への酸素 (空気) の流入が防止され る。 したがって、 成形室 4 0に酸素が混入されず、 成形型 1 0や成形室 4After the mold 10 has been carried out, first, the front door of the carry-out chamber is closed to make the inside of the carry-out chamber 50 closed (closed) to the outside. Then, the inside of the carry-out chamber 50 is evacuated by a vacuum pump (not shown), the inside of the carry-out chamber 50 is once evacuated, and the evacuation is stopped. With the pressure difference between the transfer chamber 30 and the transfer chamber 30 set to a predetermined value, the discharge cover 56 closing the transfer chamber communication port 33 is opened (by swinging), and the transfer chamber 30 and the transfer chamber 30 are opened. 5 and Communicate. This prevents oxygen (air) from flowing into the transfer chamber 30. Therefore, oxygen is not mixed into the molding chamber 40, and the molding die 10 and the molding chamber 40 are not mixed.
0の酸化を低減することができ、 成形型 1 0や装置の長寿命化が期待でき o Oxidation of the mold can be reduced, and the service life of the mold 10 and equipment can be prolonged.
また、 本装置が行う搬送方法によれば、 装置自体が小型化となり、 設備 面積が小さく設備コストの掛からないものとなる。 ゆえに、 光学素子製造 に関するコスト削減につながる。  In addition, according to the transfer method performed by the present apparatus, the apparatus itself is reduced in size, the equipment area is small, and the equipment cost is low. Therefore, it leads to cost reduction in optical element manufacturing.
次に、 ガラス光学素子成形装置の第二実施形態について図 5〜図 7を参 照して説明する。 なお、 本実施形態のガラス光学素子成形装置 1 0 0は、 上述した第一実施形態における成形室 4 0の装置構成のみ異なり、 他の装 置構成は同様であるため同一部位に同一番号を付して重複説明を省略する。 第二実施形態におけるガラス光学素子成形装置 1 0 0は、 ガラス素材を 押圧成形可能な成形型 1 0と、 ベース 2上に設けられた搬入室 2 0および 搬出室 5 0と、 搬入室 2 0および搬出室 5 0の上部に繋がって設けられた 搬送室 3 0と、 搬送室 3 0の上部に繋がって設けられた成形室 1 4 0とを 主体に構成される。  Next, a second embodiment of the glass optical element forming apparatus will be described with reference to FIGS. Note that the glass optical element molding apparatus 100 of the present embodiment is different only in the apparatus configuration of the molding chamber 40 in the above-described first embodiment, and the other apparatus configurations are the same. And a duplicate description is omitted. The glass optical element molding apparatus 100 in the second embodiment includes a molding die 10 capable of press-molding a glass material, a carry-in room 20 and a carry-out room 50 provided on a base 2, and a carry-in room 20. And a transfer chamber 30 connected to the upper part of the transfer chamber 50 and a molding chamber 140 connected to the upper part of the transfer chamber 30.
また、 このガラス光学素子成形装置 1 0 0は、 搬送室 3 0に設けられた 室内搬送装置 6 0と、 搬入室 2 0と搬送室 3 0とに跨って設けられた搬入 室搬送装置 7 0と、 搬送室 3 0と成形室 1 4 0とに跨って設けられた成形 室搬送装置 7 5と、 搬送室 3 0と搬出室 5 0とに跨って設けられた搬出室 搬送装置 8 0と、 成形型 1 0を冷却するための第 1冷却装置 8 5および第 2冷却装置 9 0とを備えて構成されている。  The glass optical element molding apparatus 100 includes an indoor transfer apparatus 60 provided in the transfer chamber 30, and a transfer chamber transfer apparatus 70 provided across the transfer chamber 20 and the transfer chamber 30. A forming chamber transfer device 75 provided across the transfer chamber 30 and the forming room 140; and an unloading room transfer device 80 provided across the transfer chamber 30 and the unloading room 50. It is provided with a first cooling device 85 and a second cooling device 90 for cooling the mold 10.
成形室 1 4 0は、 図 5に示すように、 搬送室 3 0の上部に立設された柱 部材 1 4 1 と、 柱部材 1 4 1の上部に設けられた天板 1 4 2とに囲まれて 形成され、 石英管 1 4 4と、 型当接部材 1 4 5と、 ガス導入管 1 4 6と、 熱電対 1 4 7と、 加熱装置 1 5 0とがそれそれ設けられる。 天板 1 4 2の 中央には、 第 1ガス導入孔 1 4 2 aがガス導入管 1 4 6の取付位置に位置 整合して孔開け形成されている。 As shown in FIG. 5, the molding chamber 140 includes a column member 14 1 erected above the transfer chamber 30 and a top plate 14 2 provided above the column member 14 1. A quartz tube 144, a mold contact member 144, a gas introduction tube 144, a thermocouple 144, and a heating device 150 are provided and formed, respectively. Top plate 1 4 2 In the center, a first gas introduction hole 1442a is formed in a position aligned with the mounting position of the gas introduction pipe 146.
石英管 1 4 4は筒状に形成されており、 成形室 1 4 0の中央に取り付け られて、 石英管 1 4 4の内部に成形型 1 0が位置する。 すなわち、 石英管 1 4 4の内部空間が成形室 1 4 0の内部空間となり、 石英管 1 4 4により 外部との気密性が保たれるようになっている。  The quartz tube 144 is formed in a cylindrical shape, and is attached to the center of the molding chamber 140, and the molding die 10 is located inside the quartz tube 144. That is, the internal space of the quartz tube 144 becomes the internal space of the molding chamber 140, and the quartz tube 144 maintains airtightness with the outside.
型当接部材 1 4 5は、 天板 1 4 2の下面側中央に下方へ突出するように 取り付けられており、 成形室搬送装置 7 5により成形型 1 0を成形室 1 4 0内の成形位置 IV からさらに上方へ移動させることで、 成形型 1 0の上 成形型 1 2が型当接部材 1 4 5に当接してガラス素材 1 1が成形型 1 0に 加圧される。 このようにして、 ガラス素材 1 1を成形できるようになって いる。 型当接部材 1 4 5の中央部には、 第 2ガス導入孔 1 4 5 aが天板 1 4 2の第 1ガス導入孔 1 4 2 aに位置整合して孔閧け形成されている。 ガス導入管 1 4 6は、 天板 1 4 2の上面側中央に取り付けられており、 不活性ガス (例えば、 窒素) が、 ガス導入管 1 4 6から第 1ガス導入孔 1 4 2 aおよび第 2ガス導入孔 1 4 5 aを通過して成形室 1 4 0 (石英管 1 4 4 ) 内に供給されるようになっている。 熱電対 1 4 7は、 ガス導入管 1 4 6の上端部に形成された熱電対取付孔 1 4 6 aに取付固定されており、 外部からガス導入管 1 4 6、 第 1ガス導入孔 1 4 2 aおよび第 2ガス導入 孔 1 4 5 aを通過して、 下端部が成形室 1 4 0 (石英管 1 4 4 ) 内に位置 するようになつている。  The mold contact member 144 is mounted so as to protrude downward at the center of the lower surface side of the top plate 142, and the forming die 100 is formed in the forming chamber 140 by the forming room conveying device 75. By moving it further upward from the position IV, the upper molding die 12 of the molding die 10 comes into contact with the die contact member 1 45, and the glass material 11 is pressed against the molding die 10. Thus, the glass material 11 can be formed. A second gas introduction hole 144a is formed in the center of the mold contact member 144 in alignment with the first gas introduction hole 144a of the top plate 142. . The gas inlet pipe 144 is attached to the center of the upper surface of the top plate 142, and an inert gas (for example, nitrogen) is supplied from the gas inlet pipe 144 to the first gas inlet hole 142a and The gas is supplied into the molding chamber 140 (quartz tube 144) through the second gas introduction hole 144a. The thermocouple 147 is attached and fixed to a thermocouple mounting hole 144a formed at the upper end of the gas introduction pipe 146. After passing through 42 a and the second gas introduction hole 144 a, the lower end is positioned inside the molding chamber 140 (quartz tube 144).
加熱装置 1 5 0は、図 5および図 6に示すように、ベース部材 1 5 5と、 ベ一ス部材 1 5 5の上に設けられた加熱部 1 6 0とを備えて構成される。 ベース部材 1 5 5は板状に形成されており、 その上部に加熱部 1 6 0が分 割自在に設けられる。 図 7 ( c ) に示すように、 ペース部材 1 5 5の中央 部には、 石英管 1 4 4より若干幅の大きい逃げ部 1 5 6が逆 U字状に形成 されており、加熱部 1 6 0が石英管 1 4 4と干渉しないようになっている。 また、 図 5に示すように、 ベ一ス部材の四隅にはアジヤス夕ーフヅ ト 1 5 7が螺合されており、 アジヤス夕一フッ ト 1 5 7をネジ回転させること で、 ベ一ス部材 1 5 5および加熱部 1 6 0の高さを調整することができる ようになつている。 これにより、 加熱部 1 6 0によって加熱される成形型 1 0の上下方向における温度バランスを容易に調整することができる。 加熱部 1 6 0は、 図 5および図 6に示すように、 円筒状のケース部材 1 6 1と、 ケース部材 1 6 1の内側に配設された 1 2本のヒー夕 1 7 0とを 備えて構成される。 ケース部材 1 6 1は、 成形型 1 0および石英管 1 4 4 を囲む円筒状に形成され、 成形型 1 0を効率的に加熱できるようになって いる。 また、 ケース部材 1 6 1は、 左右対称の左ケース部材 1 6 2および 右ケース部材 1 6 3とから構成されており、 分割面 1 6 1 aを境にベース 部材 1 5 5上で左右 (一方および他方) へ分割できるようになつている。 そして、 図 7 ( a ) 〜 ( c ) に示すように、 加熱部 1 6 0のケース部材 1 6 1 (左ケース部材 1 6 2および右ケース部材 1 6 3 )を左右に分割し、 分割された加熱部 1 6 0 (ケ一ス部材 1 6 1 ) をベース部材 1 5 5ととも に成形室 1 4 0の後方へ移動させることで、 加熱装置 1 5 0 (すなわち、 加熱部 1 6 0 ) を成形室 1 4 0の外部へ取り出すことができるようになつ ている。 これにより、 加熱装置 1 5 0 (加熱部 1 6 0 ) を成形室 1 4 0の 外部へ容易に取り出すことができるため、 ヒー夕 1 7 0の交換や成形室 1 4 0内のメンテナンスを容易に行うことができる。 なお、 加熱装置 1 5 0 を成形室 1 4 0内に取り付けるには、 取り出すときと逆の操作を行えばよ い。 The heating device 150 includes, as shown in FIGS. 5 and 6, a base member 150 and a heating section 160 provided on the base member 150. The base member 155 is formed in a plate shape, and a heating section 160 is provided on the upper part thereof so as to be separable. As shown in Fig. 7 (c), an escape portion 1556 slightly wider than the quartz tube 144 is formed in the center of the pace member 1555 in an inverted U-shape. The heating section 160 does not interfere with the quartz tube 144. Also, as shown in FIG. 5, the four corners of the base member are threaded with an annular foot 157, and the base member is rotated by screwing the adjustable foot 157. The height of the heating section 150 and the heating section 160 can be adjusted. Thereby, the temperature balance in the up-down direction of the mold 10 heated by the heating unit 160 can be easily adjusted. As shown in FIGS. 5 and 6, the heating section 160 includes a cylindrical case member 161, and two heaters 170 arranged inside the case member 161, respectively. It is configured with. The case member 16 1 is formed in a cylindrical shape surrounding the molding die 10 and the quartz tube 144 so that the molding die 10 can be efficiently heated. The case member 16 1 is composed of a left and right case member 16 2 and a right case member 16 3 which are bilaterally symmetrical. One and the other). Then, as shown in FIGS. 7 (a) to 7 (c), the case member 16 1 (the left case member 16 2 and the right case member 16 3) of the heating section 160 is divided into right and left, and By moving the heating section 160 (the case member 16 1) together with the base member 150 to the rear of the molding chamber 140, the heating device 150 (that is, the heating section 160) is moved. ) Can be taken out of the molding chamber 140. This makes it possible to easily take out the heating device 150 (heating section 160) to the outside of the molding chamber 140, thereby facilitating replacement of the heater 170 and maintenance in the molding chamber 140. Can be done. In order to mount the heating device 150 in the molding chamber 140, the reverse operation of removing the heating device 150 may be performed.
また、 ケース部材 1 6 1の内側面には赤外線を反射するミラー 1 6 5が 取り付けられており、 成形型 1 0を均一に加熱することができるようにな つている。 ヒー夕 1 7 0は、赤外線加熱の直管型ヒー夕であり、 図 6に示すように、 ケース部材 1 6 1の内側において成形型 1 0を囲む同心円上に等間隔 ( 3 0度間隔) で配設される。 これにより、 成形型 1 0をより均一に加熱する ことができるため、 筒状に形成される成形型 1 0およびガラス素材 1 1の (ヒータ 1 7 0の加熱による) 温度分布は、 成形型 1 0の上方から見て同 心円状となる。 そのため、 成形型 1 0の形状を (上方から見て) 同心円状 に補正することにより、 ガラス素材 1 1に対する温度分布 (加熱温度) の 補正を行うことが可能である。 なお、 同心円上で不均一な温度分布がある と、 成形型 1 0の形状補正による対応は困難である。 A mirror 165 that reflects infrared rays is attached to the inner surface of the case member 161 so that the mold 10 can be uniformly heated. The heater 170 is a straight tube heater heated by infrared rays. As shown in Fig. 6, inside the case member 161, the concentric circles surrounding the mold 10 are equally spaced (30 degrees apart). It is arranged in. As a result, the mold 10 can be more uniformly heated, so that the temperature distribution of the cylindrical mold 10 and the glass material 11 (by heating the heater 170) is It is concentric when viewed from above 0. Therefore, by correcting the shape of the mold 10 concentrically (as viewed from above), it is possible to correct the temperature distribution (heating temperature) of the glass material 11. It should be noted that if there is a non-uniform temperature distribution on the concentric circle, it is difficult to cope with the shape correction of the mold 10.
このような構成のガラス光学素子成形装置 1 0 0において、 ガラス光学 素子を成形するには、 第一実施形態におけるガラス光学素子成形装置 1 と 同様な手順を行うことで、所望のガラス光学素子を成形することができる。 この結果、以上のような構成のガラス光学素子成形装置 1 0 0によれば、 第一実施形態におけるガラス光学素子成形装置 1と同様の効果を得ること ができるのに加え、 ヒー夕 1 7 0の交換や成形室 1 4 0内のメンテナンス を容易に行うことができ、 さらには、 成形型 1 0をより均一に加熱するこ とができる。  In the glass optical element molding apparatus 100 having such a configuration, a glass optical element is molded by performing the same procedure as that of the glass optical element molding apparatus 1 in the first embodiment. Can be molded. As a result, according to the glass optical element molding apparatus 100 having the above-described configuration, the same effects as those of the glass optical element molding apparatus 1 in the first embodiment can be obtained. It is possible to easily perform the replacement of the mold and maintenance in the molding chamber 140, and it is possible to more uniformly heat the molding die 10.
なお、 本発明は、 上述の各実施形態に限られるものではなく、 例えば、 成形室の雰囲気を高速に不活性ガスに置換できる給排気システムを用いる ことができるのであれば、 搬入室や搬送室のように酸素が成形室に入りに く くするための部屋を設けずに、 成形型を搬送室の搬入位置に直接取り入 れて、 搬送室の搬出室から直接取り出すようにしてもよい。 また、 搬送装 置が特に搬送室のような外界とある程度遮断された部屋に設けられなくて も構わない。  The present invention is not limited to the above embodiments. For example, if a supply / exhaust system capable of rapidly replacing the atmosphere of the molding chamber with an inert gas can be used, a loading chamber or a transfer chamber can be used. Instead of providing a room for preventing oxygen from entering the molding chamber as described above, the molding die may be directly introduced into the carry-in position of the transfer room and directly taken out of the carry-out room of the transfer room. In addition, the transfer device does not have to be provided in a room, such as a transfer room, which is isolated from the outside world to some extent.

Claims

言青 求 の 範 囲  Scope of demand
1 . ガラス素材を内在させた成形型を加熱しつつ押圧することで、 前記成 形型により前記ガラス素材を押圧成形する成形室と、 1. a molding chamber in which the glass material is pressed and formed by the molding die by pressing while pressing the molding die in which the glass material is embedded;
所定搬入位置に搬入された前記成形型を前記所定搬入位置から前記成 形型が前記成形室内に供給される所定供給位置へ搬送し、 前記成形室内 で加熱しつつ押圧された前記成形型を前記所定供給位置から前記成形型 が搬出される所定搬出位置へ搬送可能な搬送装置とを備え、  The molding die transported to the predetermined loading position is transported from the predetermined loading position to a predetermined supply position where the molding die is supplied into the molding chamber, and the molding die pressed while being heated in the molding chamber is subjected to the heating. A transfer device that can be transferred from a predetermined supply position to a predetermined discharge position where the molding die is discharged,
前記成形室は、 前記搬送装置の敷設上およびその延長上とは異なる位 置に設けられることを特徴とするガラス光学素子成形装置。  The glass optical element molding device, wherein the molding chamber is provided at a position different from the position where the transfer device is laid and the extension thereof.
2 . 前記所定供給位置に達した前記成形型を、 前記搬送装置から取り外し 前記所定供給位置に対向して形成される成形室連通口を通って前記成形 室内へ往復搬送可能な成形室搬送装置を備え、 2. A molding chamber transfer device capable of removing the molding die that has reached the predetermined supply position from the transfer device and reciprocatingly transferring the molding die into the molding chamber through a molding chamber communication port formed to face the predetermined supply position. Prepare
前記成形室搬送装置は、 前記所定供給位置に達した前記成形型を前記 搬送装置の搬送方向に対し直角方向に前記成形室内へ往復搬送するよう に設けられることを特徴とする請求項 1に記載のガラス光学素子成形装 置。 3 . 前記搬送装置は搬送室内に設けられ、 前記搬送装置を駆動する第 1駆 動装置が設けられるとともに、 前記成形室搬送装置には前記成形室搬送 装置を駆動する第 2駆動装置が設けられており、  2. The molding chamber transfer device is provided to reciprocate the molding die that has reached the predetermined supply position into the molding chamber in a direction perpendicular to a transfer direction of the transfer device. Glass optical element molding equipment. 3. The transfer device is provided in a transfer chamber, a first drive device for driving the transfer device is provided, and the molding room transfer device is provided with a second drive device for driving the formation chamber transfer device. And
前記第 1駆動装置および前記第 2駆動装置の少なくとも一つが、 前記 成形室および前記搬送室の外部に位置して設けられることを特徴とする 請求項 1もしくは請求項 2に記載のガラス光学素子成形装置。 O 2004/083135 The glass optical element molding according to claim 1 or 2, wherein at least one of the first driving device and the second driving device is provided outside the molding chamber and the transfer chamber. apparatus. O 2004/083135
26 . 前記搬送装置の少なくとも一部を内在し、 前記成形型が前記所定搬入 位置と、 前記所定供給位置と、 前記所定搬出位置との間で移動可能な空 間を形成する搬送室と、  26. A transfer chamber that includes at least a part of the transfer device, and forms a space in which the mold can move between the predetermined carry-in position, the predetermined supply position, and the predetermined carry-out position.
前記搬送室の前記所定搬入位置に対向して形成される搬入室連通口を 介して前記搬送室に繋がって設けられた、 前記成形型を外部から前記搬 送室内へ搬入するための搬入室と、  A loading chamber provided to be connected to the transport chamber via a loading chamber communication port formed to face the predetermined loading position of the transport chamber, for loading the mold into the transport chamber from outside; ,
前記搬送室の前記所定搬出位置に対向して形成される搬出室連通口を 介して前記搬送室に繋がって設けられた、 前記成形型を前記搬送室内か ら外部へ搬出するための搬出室と、  An unloading chamber for unloading the molding die from the transfer chamber to the outside, the unloading chamber being provided so as to be connected to the transfer chamber via an unloading chamber communication port formed opposite to the predetermined unloading position of the transfer chamber. ,
外部から前記搬入室内に搬入された前記成形型を、 前記搬入室連通口 を通って前記搬送室の前記所定搬入位置へ搬送可能な搬入室搬送装置と、 前記搬送装置により前記搬送室の前記所定搬出位置に達した前記成形 型を、 前記搬送装置から取り外し前記搬出室連通口を通って前記搬出室 内へ搬送可能な搬出室搬送装置とを備えて構成されることを特徴とする 請求項 1もしくは請求項 2に記載のガラス光学素子成形装置。 . 前記搬送室の前記所定搬入位置に対向して形成される搬入室連通口を 介して前記搬送室に繋がって設けられた、 前記成形型を外部から前記搬 送室内へ搬入するための搬入室と、  A carry-in room transfer device capable of transferring the mold from outside into the carry-in room to the predetermined carry-in position of the transfer room through the carry-in room communication port; 2. The unloading-room transfer device capable of removing the molding die that has reached the unloading position from the transfer device and transferring the forming die through the unloading-room communication port into the unloading room. Alternatively, the glass optical element molding apparatus according to claim 2. A loading chamber provided to be connected to the transport chamber via a loading chamber communication port formed opposite to the predetermined loading position of the transport chamber, for loading the mold into the transport chamber from outside. When,
前記搬送室の前記所定搬出位置に対向して形成される搬出室連通口を 介して前記搬送室に繁がって設けられた、 前記成形型を前記搬送室内か ら外部へ搬出するための搬出室と、  Discharge for discharging the molding die from the transfer chamber to the outside, which is provided in the transfer chamber through a discharge chamber communication port formed to face the predetermined discharge position of the transfer chamber. Room and
外部から前記搬入室内に搬入された前記成形型を、 前記搬入室連通口 を通って前記搬送室の前記所定搬入位置へ搬送可能な搬入室搬送装置と、 前記搬送装置により前記搬送室の前記所定搬出位置に達した前記成形 型を、 前記搬送装置から取り外し前記搬出室連通口を通って前記搬出室 内へ搬送可能な搬出室搬送装置とを備えて構成されることを特徴とする 請求項 3に記載のガラス光学素子成形装置。 . 前記搬入室は、 前記搬入室内に搬入された前記成形型が前記搬入室搬 送装置により前記搬送装置の搬送方向に対し直角方向に前記搬送室の前 記所定搬入位置へ搬送されるように設けられ、 A carry-in room transfer device capable of transferring the mold from outside into the carry-in room to the predetermined carry-in position of the transfer room through the carry-in room communication port; The mold that has reached the unloading position is removed from the transfer device, and the unloading chamber is passed through the unloading chamber communication port. 4. The glass optical element molding apparatus according to claim 3, further comprising a carry-out chamber transfer device capable of being transferred into the inside. The carry-in chamber is configured so that the molding dies carried into the carry-in chamber are transported by the carry-in chamber transport device to a predetermined carry-in position of the transport chamber in a direction perpendicular to a transport direction of the transport device. Provided,
前記搬出室は、 前記所定搬出位置に達した前記成形型が前記搬出室搬 送装置により前記搬送装置の搬送方向に対し直角方向に前記搬出室内へ 搬送されるように設けられることを特徴とする請求項 4もしくは請求項 5に記載のガラス光学素子成形装置。 . 前記搬送室内に前記成形型を冷却可能な冷却装置が設けられているこ とを特徴とする請求項 4から請求項 6のうちいずれか一項記載のガラス 光学素子成形装置。 . 前記成形室内に前記成形型を囲んで加熱可能な加熱部が設けられてお り、  The unloading chamber is provided such that the mold that has reached the predetermined unloading position is transported by the unloading chamber transporting device into the unloading chamber in a direction perpendicular to a transport direction of the transport device. The glass optical element molding device according to claim 4 or claim 5. 7. The glass optical element molding device according to claim 4, wherein a cooling device capable of cooling the molding die is provided in the transfer chamber. A heating unit is provided in the molding chamber, which is capable of heating around the molding die,
前記加熱部は分割可能に構成され、 分割された前記加熱部を移動させ て前記成形室外へ取り出し可能に構成されていることを特徴とする請求 項 1から請求項 7のうちいずれか一項記載のガラス光学素子成形装置。 . 前記成形室内に、 複数の直管型ヒータが前記成形型を囲む同心円上に 等間隔で配設されていることを特徴とする請求項 1から請求項 8のうち いずれか一項記載のガラス光学素子成形装置。 0 . ガラス素材が配置された金型を成形室に移送し、 成形室で前記金型 に熱と圧力を加えることで前記ガラス素材を所定の形状に成形し、所望 の光学特性を有するガラス光学素子の製造方法において、 The heating unit is configured to be dividable, and the divided heating unit is configured to be able to be moved and taken out of the molding chamber, wherein the heating unit is configured to be able to be taken out of the molding chamber. Glass optical element molding equipment. The glass according to any one of claims 1 to 8, wherein a plurality of straight tube heaters are arranged at equal intervals on a concentric circle surrounding the mold in the mold chamber. Optical element molding equipment. 0. The mold on which the glass material is placed is transferred to the molding room, and the mold is The glass material is formed into a predetermined shape by applying heat and pressure to a glass optical element having desired optical characteristics.
前記ガラス素材が配置された前記金型を前記成形室への導入可能位置 に搬送する搬送工程と、  A transfer step of transferring the mold on which the glass material is arranged to a position where the mold can be introduced into the molding chamber;
前記金型を前記成形室への導入可能位置から前記搬送工程へ搬送され た方向とは異なる方向にある前記成形室へ搬送する成形室導入工程と、 前記成形室に導入された前記金型に、所定の温度まで加熱し、かつ所定 の圧力を所定方向に印加する成形工程と、  A molding chamber introducing step of transporting the mold to the molding chamber in a direction different from the direction in which the mold is introduced into the molding chamber and being transported to the transporting step; A molding step of heating to a predetermined temperature and applying a predetermined pressure in a predetermined direction;
前記成形工程が終了した前記金型を搬出する搬出工程とを順次行うこ とを特徴とする光学素子の製造方法。 1 . 前記搬送工程における搬送方向は、実質的に水平方向であり、 前記成形室導入工程における前記金型の搬送方向は、前記搬送工程で 搬送される方向に対して、上向きの方向であることを特徴とする請求項 1 0に記載の光学素子の製造方法。  And a carrying-out step of carrying out the mold after the completion of the molding step. 1. The transfer direction in the transfer step is substantially horizontal, and the transfer direction of the mold in the molding chamber introduction step is an upward direction with respect to the transfer direction in the transfer step. The method for producing an optical element according to claim 10, wherein:
PCT/JP2004/003513 2003-03-17 2004-03-17 Glass optical element molding device WO2004083135A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003072550 2003-03-17
JP2003-072550 2003-03-17
JP2003-294203 2003-08-18
JP2003294203 2003-08-18

Publications (1)

Publication Number Publication Date
WO2004083135A1 true WO2004083135A1 (en) 2004-09-30

Family

ID=33032338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003513 WO2004083135A1 (en) 2003-03-17 2004-03-17 Glass optical element molding device

Country Status (2)

Country Link
TW (1) TW200424138A (en)
WO (1) WO2004083135A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062030A (en) * 2013-04-24 2014-04-10 Hoya Corp Apparatus and method for manufacturing glass molding

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224118A (en) * 1990-12-27 1992-08-13 Toshiba Mach Co Ltd Forming apparatus for optical glass device
JPH05193963A (en) * 1992-01-17 1993-08-03 Olympus Optical Co Ltd Method for forming glass optical element
JPH08245223A (en) * 1995-03-10 1996-09-24 Canon Inc Method for forming optical element
JPH0971425A (en) * 1995-09-04 1997-03-18 Olympus Optical Co Ltd Apparatus for forming optical glass element
JP2002012432A (en) * 2000-06-27 2002-01-15 Toshiba Mach Co Ltd Device for molding glass optical element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224118A (en) * 1990-12-27 1992-08-13 Toshiba Mach Co Ltd Forming apparatus for optical glass device
JPH05193963A (en) * 1992-01-17 1993-08-03 Olympus Optical Co Ltd Method for forming glass optical element
JPH08245223A (en) * 1995-03-10 1996-09-24 Canon Inc Method for forming optical element
JPH0971425A (en) * 1995-09-04 1997-03-18 Olympus Optical Co Ltd Apparatus for forming optical glass element
JP2002012432A (en) * 2000-06-27 2002-01-15 Toshiba Mach Co Ltd Device for molding glass optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062030A (en) * 2013-04-24 2014-04-10 Hoya Corp Apparatus and method for manufacturing glass molding

Also Published As

Publication number Publication date
TW200424138A (en) 2004-11-16

Similar Documents

Publication Publication Date Title
US20140283555A1 (en) Molding apparatus and molding method of glass casings
US7682537B2 (en) Mold-press forming apparatus and method of manufacturing a formed product
JP2012114285A (en) Resin molding apparatus
JP2020518548A (en) Curved glass thermoforming apparatus and method
TW202039379A (en) Glass plate molding device
JP2014051431A (en) Molding apparatus
WO2004083135A1 (en) Glass optical element molding device
WO2008050846A1 (en) Optical element pressing apparatus
TWI830868B (en) Glass plate forming method
JP6051272B2 (en) Molding equipment
JP5690475B2 (en) Molding apparatus and method for manufacturing molded product
JP3828058B2 (en) Mold for molding
JP2009034887A (en) Method and apparatus for producing preliminarily molded resin
JP2612068B2 (en) Press forming equipment for optical elements
JP4455963B2 (en) Molded body manufacturing apparatus and manufacturing method
JP2019051729A (en) Resin molding apparatus and molded resin production
JPH06305744A (en) Apparatus for production of optical element
JP4382529B2 (en) Mold press molding apparatus and optical element manufacturing method
JP2015059051A (en) Glass molding apparatus, and glass molded product
JPWO2005120810A1 (en) Nanoimprint system
JP2815037B2 (en) Press forming equipment for optical elements
KR20010106202A (en) vacuum management chamber, manufacturing device of plasma display device, and manufacturing method of plasma display device
JP3964939B2 (en) Optical element molding equipment
JP2792614B2 (en) Glass forming apparatus and method
JPH03223126A (en) Apparatus for producing glass lens

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

122 Ep: pct application non-entry in european phase