WO2004083127A1 - Alkali ion water conditioner - Google Patents

Alkali ion water conditioner Download PDF

Info

Publication number
WO2004083127A1
WO2004083127A1 PCT/JP2004/003261 JP2004003261W WO2004083127A1 WO 2004083127 A1 WO2004083127 A1 WO 2004083127A1 JP 2004003261 W JP2004003261 W JP 2004003261W WO 2004083127 A1 WO2004083127 A1 WO 2004083127A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
electrolytic cell
ion
acidic
discharge
Prior art date
Application number
PCT/JP2004/003261
Other languages
French (fr)
Japanese (ja)
Inventor
Keisou Iwai
Original Assignee
The Chugoku Electric Power Co., Inc.
Chugoku Electric Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004022104A external-priority patent/JP3611847B1/en
Priority claimed from JP2004022105A external-priority patent/JP4442752B2/en
Priority claimed from JP2004022102A external-priority patent/JP3611846B1/en
Priority claimed from JP2004027040A external-priority patent/JP3611848B1/en
Priority claimed from JP2004027039A external-priority patent/JP4462607B2/en
Application filed by The Chugoku Electric Power Co., Inc., Chugoku Electric Manufacturing Co., Ltd. filed Critical The Chugoku Electric Power Co., Inc.
Publication of WO2004083127A1 publication Critical patent/WO2004083127A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms

Definitions

  • the present invention relates to an alkali ion water purifier capable of supplying ionized ionized water and acidic ionized water by ionizing tap water supplied from tap water, and more particularly to a type provided in the middle of a water pipe, a so-called built-in type. It relates to a bright type alkali ion water conditioner. Background art
  • An Al-Rion water conditioner that generates Al-Lion water and acidic I-ion water from tap water uses an ion exchange membrane between the positive and negative electrodes and utilizes the electrolysis of water to form Al-Lion water. Some are separated and produced from acid ion water.
  • an AL-RION water conditioner is designed to take water from a water tap (faucet) and discharge AL-RION water and acidic ionic water from a dedicated water outlet, and install the main unit on a sink.
  • there is a so-called built-in type in which the main unit is installed in the undersink, which has a dedicated cull for water intake and water spouting. It discharges lion water.
  • a user can remove a water tap of a raw water pipe connected to an Al-Lion water conditioner. By opening, tap water is passed through the raw water pipe and supplied to the electrolytic cell, where alkaline water and acidic water are generated. Then, the alkaline water generated in the electrolytic cell is discharged through the water discharge pipe, and the acidic water is discharged through the acid water discharge pipe. In addition, when the user closes the faucet, the flow of water from the raw water pipe is stopped, and the discharge of alkaline water is stopped.
  • the flow rate of tap water is about 20 to 30 (LZ), whereas the flow rate of the generated alkaline ionized water is extremely high, about 2 to 3 (L / min).
  • alkaline ionized water was used only for drinking, and could not be used for bathing and showering, which required a relatively large flow rate. Disclosure of the invention
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an Al-Lion water conditioner that can discharge Al-Lion water at the same flow rate as tap water.
  • tap water is introduced into an electrolytic cell having an ion exchange membrane and a pair of electrodes disposed on both sides of the ion exchange membrane, and the tap water is ionized.
  • the alkali ion water dispenser that produces alkali ion water and acid ion water, at least a part of the area of the electrolytic cell facing the ion exchange membrane is formed by a flexible membrane, and the electrolytic cell is formed.
  • Al-Ri-ion water purifier characterized by the following.
  • the water pressure difference generated in the electrolytic cell is substantially absorbed by the deformation of the flexible film constituting a part of the electrolytic cell, so that the damage caused by the deformation of the ion exchange membrane is reduced. Is prevented. Therefore, the water pressure of the tap water supplied to the electrolytic cell can be increased, and the discharge amount of the alkaline ionized water can be increased.
  • At least a part of the space that does not come into contact with the electrolytic cell has an air portion in which air remains. It is in the alkali ion water purifier.
  • the flexible membrane is easily deformed, and the difference in water pressure generated in the electrolytic cell is more reliably absorbed.
  • an Al-forced ionizer in the first or second aspect, there is provided an Al-forced ionizer, wherein the entire surface of the electrolytic cell is formed of the flexible membrane.
  • the difference in water pressure generated in the electrolytic cell is reliably absorbed by the deformation of the flexible membrane.
  • a fourth aspect of the present invention is the Al-Ryion water conditioner according to any one of the first to third aspects, wherein the flexible film is made of a plastic sheet.
  • the difference in water pressure in the electrolytic cell can be reliably absorbed.
  • a tap water supply path for supplying tap water to the water purifier main body in the electrolytic cell, An alkaline water discharge channel for discharging potassium ion water, and an acidic water discharge channel for discharging the acidic ion water generated in the electrolytic cell, and tap water from the supply channel together with the electrolytic cell.
  • the alkali ion water conditioner is characterized in that the water is also supplied to the space between the electrolytic cell and the water conditioner body.
  • the flexible membrane constituting the electrolytic cell is deformed with the change in the pressure of the tap water. No damage.
  • the water purifier according to the fifth aspect further comprising a tap water discharge passage for discharging tap water supplied to the space to the outside.
  • tap water is supplied to the space between the electrolytic cell and the water conditioner main body and discharged to the outside, so that the pressure of the tap water stored in this space and the supply of the tap water to the electrolytic cell are performed.
  • the tap water pressure is always kept constant.
  • the tap water discharge path and the acid water discharge path are communicated with each other, and water supplied to a space between the electrolytic cell and the water conditioner main body is provided.
  • the tap water is discharged to the outside together with the acidic ion water from the acid water discharge passage.
  • each of the pair of electrodes is fixed to one surface of a spacer made of a porous material, respectively.
  • the alkaline water conditioner is provided in the electrolytic cell so as to sandwich the ion exchange membrane.
  • each of the pair of electrodes is disposed at a predetermined distance from the ion exchange membrane in the electrolytic cell. It is in the Al-Rion water purifier.
  • the ion-exchange membrane is disposed separately from the electrodes. However, since the pressure difference in the electrolytic cell is reliably absorbed, the ion-exchange membrane is not broken.
  • the tap water supply channel is connected to a raw water pipe of tap water, and the power supply water discharge channel is connected to a power run.
  • the alkali ion water conditioner is characterized in that the amount of water discharged is controlled by opening and closing the water tap of the curan.
  • the pressure difference in the electrolytic cell is greatly reduced when the discharge amount of the ionized water is mechanically controlled by opening and closing the faucet. Since the pressure difference is absorbed by the deformation of the membrane, breakage of the ion exchange membrane can be prevented.
  • an Al-powered ionization water conditioner wherein the Al-power water spouting channel is connected to a water heater.
  • the AL force water can be supplied to the water heater at a desired flow rate, and the hot water can be discharged.
  • a water discharge amount detection means provided in the water discharge passage for detecting the discharge amount of the alkaline ionized water
  • a flow rate adjusting means provided in the acid water discharge passage for adjusting the discharge amount of the acidic ion water; and an acid ion water with respect to the discharge amount of the alkali ion water based on the actual water discharge amount detected by the water discharge amount detection means. So that the discharge amount of And a control means for controlling the amount adjusting means.
  • the ratio of the discharge amount of the acidic ion water to the discharge amount of the alkaline ion water is determined.
  • the water pressure can be kept constant, and the pressure applied to the alkaline ionized water side and the acid ion water side can be kept constant, respectively, and water can be prepared at a constant concentration.
  • the voltage application to the electrolytic cell is stopped when the discharging of the alkaline water from the alkaline water discharging channel is stopped.
  • a tap water replacement unit for replacing at least water on the acidic ion water side of the electrolytic tank with tap water.
  • the discharge of the alkali ion water stops only the water at least on the acidic ion water side in the electrolytic cell is replaced with the tap water. For this reason, the acidic ion water remaining in the electrolytic cell does not flow out to the Allion water side, and the Alion water can be prevented from being changed to the acidic ion water.
  • a first and a second space having one of the pair of electrodes are provided on both sides of the ion exchange membrane.
  • the pair of electrodes When generating Al-ion water and acid-ion water in the first and second spaces, respectively, according to the polarity of the voltage applied to the pair of electrodes, the pair of electrodes are applied to the pair of electrodes. And the first and second spaces of the electrolytic cell.
  • An inversion means for switching a connection flow path for interconnecting the power supply water discharge passage and the acid water discharge path so that the connection state is reversed. is there.
  • the connection flow path from the space in the electrolytic cell where the alkaline ionized water is generated to the time the alkaline ionized water is discharged and the inside of the electrolytic cell Since the connection state of the connection flow path until the acidic ionic water is discharged from the space where the acidic ionic water is generated is reversed, even if the voltage polarity applied to the electrodes is reversed, Al-Li-ion water can be used. Also, since the electrodes are used alternately by reversing the polarity of the electrodes, In addition to preventing impurities from adhering to the electrodes, the electrodes can be consumed in a well-balanced manner.
  • the electrolytic cell in any one of the first to fourteenth aspects, is provided in two or more stages, and the first-stage electrolytic cell is provided with tap water directly from the tap water supply passage. And supply the acidic ionic water generated by the preceding electrolytic cells to the subsequent electrolytic cells in the second and subsequent stages, and supply the alkaline ionic water generated in the electrolytic cells in the respective stages. Characterized in that water is discharged from the water discharge channel and the acidic ion water generated in the last electrolytic cell is discharged from the acidic water discharge channel. It is in.
  • the acidic ion water generated in the previous electrolyzer is supplied to the latter electrolyzer to further generate an alkaline ionized water and an acidic ion water. Since all the alkaline ionized water generated in the electrolytic cell in the second stage is discharged from the water discharge channel, and only the acidic ion water generated in the last electrolytic cell is discharged from the discharge port, a single-stage electrolytic cell structure As compared with, the discharge amount of acidic ionized water can be significantly reduced.
  • the alkaline water and the acidic ionized water are supplied from one end where the tap water is introduced.
  • a plurality of folding plates that are arranged in the width direction intersecting the reference direction toward the other end from which the water flows out and that block a part of the flow in the width direction are provided at predetermined intervals over the reference direction;
  • a meandering flow is formed with respect to the reference direction, and at the other end side of the folding plate.
  • the sixteenth aspect by forming the flow and the second flow path in the electrolytic cell, the water stop area in the electrolytic cell can be eliminated, and the ionization and decomposition of tap water can be efficiently performed. be able to. Further, by forming two flow paths on both end sides of the folding plate, it is possible to prevent the pressure loss from remarkably lowering and prevent the flow rate inside the electrolytic cell from lowering. As a result, the size of the electrolytic cell can be reduced, and the size of the alkaline water conditioner can be reduced. According to a seventeenth aspect of the present invention, in any one of the first to sixteenth aspects, a branch path branched from the tap water supply path, one end of which is connected to the branch path and an external end is connected to the other end side.
  • a calcium addition chamber which has an opening which can be opened and closed with respect to the outside and which can be filled with external force from outside; and a calcium addition chamber provided in the branch passage and which is provided with the water pressure of tap water in the branch passage.
  • a sealing member which is urged toward the chamber to seal one end of the power addition chamber, one end of which is provided in the calcium addition chamber and abuts the sealing member, and the other end of which projects from the opening.
  • a pressing member that is pressed by the lid member to open one end of the calcium addition chamber when the opening is sealed with the lid member.
  • the sealing member closes one end of the calcium addition chamber by the water pressure of the tap water.
  • the tapping water does not leak from the section, the calcium addition chamber can be opened to the outside, and the calcium can be easily and reliably filled into the calcium addition chamber.
  • the sealing member is pressed downward by the pressing member to open one end of the calcium addition chamber, and calcium is easily and surely supplied to the source water. Can be added.
  • damage to the ion exchange membrane due to a pressure difference in the electrolytic cell is prevented, and destruction of the electrolytic cell due to tap water pressure is prevented. For this reason, it is possible to provide a relatively large amount of alkaline water.
  • FIG. 1 is a side view of an Al-Ryion water conditioner according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of the alkali ion water purifier according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing a schematic configuration of an alkali ion water purifier according to Embodiment 1 of the present invention. '.'
  • FIG. 4 is a sectional view showing a deformed state of the electrolytic cell according to Embodiment 1 of the present invention.
  • FIG. 5 is a cross-sectional view showing a modification of the Al-Rion water purifier according to Embodiment 1 of the present invention.
  • FIG. 6 is a cross-sectional view of a main part showing a modified configuration example of the alkali ion water purifier according to Embodiment 1 of the present invention.
  • FIG. 7 is a diagram showing a schematic configuration of an Al-Rion water purifier according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic block diagram showing a control system of an Al-Rion water conditioner according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic block diagram showing a control system of an AL-force water regulator according to Embodiment 3 of the present invention.
  • FIG. 10 is a diagram showing a schematic configuration of an alkali ion water purifier according to Embodiment 4 of the present invention. '
  • FIG. 11 is a schematic block diagram showing a control system of an Al-Rion water conditioner according to Embodiment 4 of the present invention.
  • FIG. 12 is a diagram showing an operation example of an electrode and an electromagnetic valve according to Embodiment 4 of the present invention.
  • FIG. 13 is a cross-sectional view of an Al force ionizer according to Embodiment 5 of the present invention.
  • FIG. 14 is a side view of the Al-Lion water purifier according to the fifth embodiment of the present invention.
  • FIG. 15 is a schematic diagram showing an operation example of the Al-Lion water purifier according to the fifth embodiment of the present invention. It is a block diagram. '
  • FIG. 16 is a schematic diagram showing a connection configuration between electrolytic cells according to Embodiment 5 of the present invention.
  • FIG. 17 is a schematic cross-sectional view of an Al-Li-ion water purifier according to Embodiment 6 of the present invention.
  • FIG. 18 is a schematic diagram illustrating each flow path in the electrolytic cell according to Embodiment 6 of the present invention.
  • FIG. 19 is a cross-sectional view of an alkali ion water purifier according to Embodiment 7 of the present invention.
  • FIG. 20 is a cross-sectional view of a main part of an Al-Lion water purifier according to Embodiment 7 of the present invention. is there. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a side view of an Al-Li-ion water purifier according to Embodiment 1 of the present invention
  • FIG. 2 is a new front view of the water purifier
  • FIG. 3 is an alkali-ion water purifier. It is a figure which shows the schematic structure of a container.
  • tap water is ionized inside the water purifier body 11 constituting the outer frame of the water force water purifier 10 of the present embodiment, and alkaline ionized water and acidic ionized water are formed therein.
  • a plurality of electrolytic cells 12 to be generated are held.
  • the water purifier body 11 also has a tap water inlet 11a for introducing tap water from the raw water pipe into the inside, and an AL water outlet for discharging the AL water produced in the electrolytic cell 12.
  • a water spout 11b and an acid water outlet 11c for discharging acid ion water are provided.
  • a tap water supply pipe 13 communicating with the tap water inlet 11 a of the water purifier body 11 is connected to the lower end side of each electrolytic tank 12, and the upper end of the electrolytic tank 12
  • Each is connected to the upper end.
  • Each of the pipes 13, 14, and 15 is fixed to the water conditioner main body 11, so that each electrolytic cell 12 is held in the water conditioner main body 11.
  • each electrolytic cell 12 An ion exchange membrane 16 is fixed in each electrolytic cell 12, and the ion exchange membrane 16 divides the inside of the electrolytic cell 12 into two spaces 12 a and 12 b.
  • a pair of electrodes 17a and 17 are provided in a region facing the ion exchange membrane 16 in the electrolytic cell 12 respectively, and each electrode 17a and 17b is provided with a water conditioner.
  • the terminal part 18 provided on the main body 11 is connected to the connection wiring 19.
  • each of the electrodes 17a and 17b is, for example, a mesh-shaped plastic.
  • One surface of a fixing member 20 which is formed of a sheet or the like and has a size equivalent to an ion exchange membrane. Is attached to each. Then, these fixing members 20 are arranged so as to sandwich the ion exchange membrane 16 in each of the spaces 12 a and 12 b, so that the electrode 17 a is formed in a region opposed to the ion exchange membrane 16. , 17b are provided.
  • the whole of the electrolytic cell 12 is formed of a flexible film having a predetermined flexibility.
  • the electrolytic cell 12 is formed of a plastic sheet having a thickness of about 0.3 mm.
  • tap water is supplied to the inside of the water conditioner main body 11 in which such a plurality of electrolytic baths 12 are held, that is, the space between each electrolytic bath 12 and the water conditioner main body 11, Each electrolytic cell 12 is held in the tap water (retained water) 21 stored in the body 11 of the regulator.
  • a part of the area not in contact with the electrolytic cell 12 for example, in this embodiment, an air part 2 2 in which air remains at the upper part of the acidic water discharge pipe 15.
  • the water conditioner main body 11 into which the tap water is supplied as described above needs to be formed of a material having rigidity enough to withstand the water pressure of the tap water, for example, stainless steel or the like.
  • the stored water 21 is a supply of tap water from the tap water inlet 11 a of the water purifier body 11 along with the electrolytic cell 12 into the water purifier body 11. is there. That is, at the end of the tap water supply pipe 13, a minute communication hole 23 communicating with the water conditioner main body 11 is provided, and the water conditioner main body 1 is connected through the communication hole 23. Tap water (reserved water 21) is supplied within 1.
  • a fine communication hole 24 communicating with the water conditioner main body 11 is also provided at the distal end of the acidic water discharge pipe 15, and the stored water 21 is formed by the communication hole. The water is discharged to the acidic water discharge pipe 15 through 24. For this reason, in the present embodiment, the upper part of the acidic water discharge pipe 15 in the water conditioner main body 11, that is, the upper side of the communication hole 24 becomes the air part 22 in which air remains. ing.
  • the stored water 21 is discharged to the outside together with the acidic water through the communication hole 24.
  • the stored water discharge port for discharging the stored water 21 to the outside is provided. It may be provided in the water conditioner body 11 so that it is discharged to the outside separately from the acidic ionized water.
  • such an alkali ion water purifier 10 is connected to a tap water supply pipe 13 and a water pipe 110A on the raw water side, and an It is connected to the water pipe 110B on the faucet 100 side.
  • One end of the acidic water discharge pipe 15 is connected to a discharge port 120 from which the acidic ionic water generated by the electrolytic cell 12 is discharged.
  • An electromagnetic valve 3 is provided in the middle of the acidic water discharge pipe 15, and the discharge amount of the acidic water is controlled by opening and closing the electromagnetic pulp 30.
  • a flow switch 40 is provided at a connection portion between the water discharge pipe 14 and the water pipe 110B, and electromagnetic pulp is provided based on a signal from the flow switch 40. 30 is opened and closed. Further, such control of the flow rate switch 40 and the electromagnetic valve 30 or control of the voltage supplied to the electrodes 17a and 17b in each electrolytic cell 12 is not shown in FIG. Is controlled by the department. Hereinafter, the operation of such an alkali ion water conditioner will be described.
  • the alkali ion water conditioner 10 is provided in the middle of the water pipe, tap water is always supplied to the electrolytic tank 12 from the water supply pipe 13 at a predetermined pressure. ing. Then, when the user opens the faucet 101 provided in the faucet 100, the Al-Lion water generated in the electrolytic cell 12 is discharged from the faucet 1 through the Al-Ly water spouting pipe 14. It starts to be supplied at a predetermined flow rate from 00. At the same time, the flow switch 40 provided between the alkaline water discharge pipe 14 and the water pipe 110B detects that the AL-ion water has begun to flow. A predetermined voltage is applied between the electrodes 17a and 17b in the electrolytic cell 12 based on the signal. Further, the electromagnetic valve 30 provided in the acidic water discharge pipe 15 is opened, and the acidic ion water is discharged from the discharge port 120.
  • the tap water supplied into the electrolytic cell 12 from the lower end side of the electrolytic cell 12 via the tap water supply pipe 13 is supplied to the space 12 a on both sides separated by the ion exchange membrane 16. Flow into 1 and 2 respectively. Since a predetermined voltage is applied between both electrodes 17a and 17b, when passing through the electrolytic cell 12, that is, between the ion exchange membrane 16 and the electrode, Water is ionized into hydrogen ions H + and hydroxyl ions OH—, and hydrogen ions H + collect in one space via the ion exchange membrane 16 to generate alkali ion water and acidic ion water.
  • the supply of the alkaline ionized water is stopped.
  • the acid water is stopped by the signal of the flow rate switch 40.
  • the electromagnetic pulp 30 provided in the discharge pipe 15 is closed, and the discharge of the acidic water is also stopped.
  • the time at which the flow in the water discharge pipe 14 is generated or stopped by the opening and closing of the faucet 101, and the time at which the flow rate switch 40 detects it and the electromagnetic valve 30 is opened and closed. And there is a slight time lag. Due to the inertial action of the flowing water caused by this time lag, a difference occurs between the internal pressure of the space 12 b on the alkali ion water side and the space 12 a of the acid ion water side in the electrolytic cell 12. Since the ion exchange membrane has, for example, a thickness of about 12 m, the pressure difference may cause the ion exchange membrane 16 to be deformed and damaged.
  • the electrolytic cell 12 is formed of a flexible membrane, for example, when the faucet 101 is opened, a pressure difference is generated between the two spaces 12 a and 12 b. However, as shown in FIG. 4, this pressure difference is absorbed by the electrolytic cell 12 itself deforming inward, so that the ion exchange membrane 16 can be prevented from being damaged by deformation. When the faucet 101 is closed, the internal pressure difference is absorbed by the electrolytic cell 12 itself deforming outward.
  • the fixing member 20 is provided so as to be sandwiched between the electrodes 17 a and 17 b on the other side and the ion exchange membrane 16. ing. That is, the ion exchange membrane 16 is sandwiched by these fixing members 20. Accordingly, the deformation of the ion exchange membrane 16 is also suppressed by these fixing members 20, and the breakage of the ion exchange membrane 16 due to the internal pressure difference of the electrolytic cell 12 is more reliably prevented. be able to.
  • the fixing member 20 is, for example, a spacer that can keep a constant interval between two parts or the like.
  • the entire electrolytic cell 12 is formed of a flexible film. Of course, if the pressure difference in the electrolytic cell 12 can be absorbed, the flexible portion made of the flexible film can be used as the electrolytic cell 12. Alternatively, it may be provided in a part of the region facing the ion exchange membrane.
  • the electric angle tank 12 in order to absorb the pressure difference between the two spaces 12a and 12b due to the deformation of the electrolytic cell 12, the electric angle tank 12 needs to have relatively high flexibility. It is preferable to have more flexibility than the ion exchange membrane 16.
  • the electrolytic cell 12 is formed of a flexible film made of a relatively thin plastic film. Therefore, the electrolytic cell 12 itself withstands the pressure of tap water supplied into the electrolytic cell 12 via the tap water supply pipe 13, for example, a pressure of about 1 to 6 kg / cm 2. There is a risk of being destroyed without being crushed.
  • the tap water supply main body 1 when tap water is supplied into the electrolytic cell 12 through the tap water supply pipe 13, the tap water supply main body 1 is connected to the communication hole 23 at the tip of the tap water supply pipe 13. Tap water is also supplied to the inside 1, and each electrolytic cell 12 is held in the stored water 21 stored in the water purifier body 11. For this reason, the pressure of the stored water 21 in the water conditioner main body 11 is maintained at substantially the same pressure as the tap water supplied to the electrolytic cell 12, and the inner surface of the electrolytic cell 12 is Approximately the same water pressure is applied. Therefore, even when relatively high pressure is applied to the inner surface of the electrolytic cell 12 by the tap water supplied into the electrolytic cell 12, substantially the same pressure is applied to the outer surface of the electrolytic layer 12. Thus, the electrolytic cell 12 itself is not damaged by deformation due to a change in water pressure.
  • the stored water 21 is discharged to the outside together with the acidic ion water from the communication hole 24 provided in the acidic water discharge pipe 15. That is, the water purifier body 11 is not fully filled with tap water, and an air portion 22 in which air remains is present above the communication hole 24. Therefore, the deformation of the electrolytic cell 12 due to the pressure difference in the electrolytic cell 12 described above is not hindered by the stored water 21, and the ion exchange membrane 16 can be prevented from being damaged.
  • the volume in the water conditioner main body 11 changes.
  • the stored water 2 1 itself is substantially
  • the stored water 21 prevents the electrolytic cell 12 from being deformed.
  • the air part 22 since the air part 22 is present in the water conditioner main body 11 and the volume of the air part 22 changes when the electrolytic cell 12 is deformed, the deformation of the electrolytic cell 12 is performed. Is not disturbed. Therefore, by providing the air part 22 in the water conditioner body 11, damage to the ion exchange membrane 16 can be prevented more reliably.
  • the volume of the air portion 22 is not particularly limited, but is preferably about 20 to 30% of the volume in the water conditioner main body 11.
  • the alkali ion water purifier 10 of the present embodiment even if tap water is supplied at a relatively high water pressure, the ion exchange membrane 16 and the electrolytic cell 12 are not damaged, so that a predetermined number of By arranging tanks 12 side by side, at a flow rate equivalent to that of tap water, for example, about 20 to 30 (L / min) for general household use, and about 100 (L / min) for commercial use Alcalyon water can be supplied to users.
  • the allion water generated by the allion water dispenser 10 can be supplied to a water heater such as an electric water heater and provided to the user as hot water. Can be used for bathing and showering.
  • a water heater such as an electric water heater
  • alkaline ionized water is supplied from the alkali ion water conditioner 10 to the water heater
  • the water pressure of the water supplied to the water heater is slightly reduced. For this reason, for example, as shown in FIG. 5, by providing a flow rate adjusting member 50 in the acidic water discharge pipe 15 to block a part of this discharge flow path, the alkali ion supplied to the water heater is provided. The water pressure of the water may be adjusted.
  • the ratio of Al-Lion water to acidic ionic water is set to about 10 to 2 by adjusting the internal flow resistance and the like. Therefore, the discharge of acid ion water is extremely small as compared with the conventional one-to-one system, but this ratio can be set as appropriate.
  • the acidic ion water is allowed to flow to the discharge pipe without being used, but for example, the acidic ion water can be used by storing it in a dedicated tank or the like. You can also In this case, it is desirable to discharge the stored water 21 outside the acidic ionized water separately.
  • the plurality of electrolytic cells 12 are arranged side by side at predetermined intervals in the water conditioner main body 11, but the invention is not particularly limited to this. Instead, for example, the electrolytic cells 12 may be juxtaposed so that the outer peripheral surfaces are in contact with each other without leaving a space between the adjacent electrolytic cells 12.
  • Water main unit 1 1 can be downsized
  • the pressure difference caused by the opening and closing of the faucet 101 can be absorbed by the flexible membrane of the electrolytic cell 12A.
  • alkaline ionized water can be spouted at the same flow rate as tap water.
  • the discharge ratio of Al-Lion water and acidic ionic water is about 1 to 1, and the discharge of acid-ion water (discarded water) is accompanied by the discharge of Al-Lion water.
  • the alkali ion water purifier 10 of the present embodiment has an advantage that the discharge amount of the acidic ion water can be extremely reduced.
  • the structure of the electrolytic cell is not limited to that described above.
  • an alkaline ionizer using an electrolytic cell 12A as shown in FIG. 6 may be configured.
  • FIG. 6 the same members as those in the first embodiment described above are denoted by the same reference numerals, and redundant description will be omitted.
  • the electrolytic cell 12 A is provided with an ion exchange membrane 16 and a pair of electrodes 17 a and 17 b so as to face the ion exchange membrane 16. . Further, the electrolytic cell 12A is entirely formed of a flexible film having a predetermined flexibility, as in Embodiment 1 described above.
  • Each of the electrodes 17a and 17b is fixed by four fixing members 2OA provided on the inner surface of the electrolytic cell 12A.
  • the fixing member 2OA is provided between the inner surface of the electrolytic cell 12A and the electrodes 17a, 17b, and has a cylindrical spacer 20a forming a gap of 1 mm, for example.
  • a sleeper 20b having a cylindrical shape sandwiching the electrodes 17a and 17b between the spacer 20a and a spacer 20a and a sleeve 20b.
  • the ion exchange membrane 16 is sandwiched between a sleeve 20b holding the electrode 17a and a sleeve 20b holding the electrode 17b. That is, the ion exchange membrane 16 is sandwiched at four places by a sleeve 20b for fixing the electrodes 17a and 17b, whereby each of the electrodes 17a and 17b is It is provided separated from the ion exchange membrane 16 by a predetermined distance.
  • the gap between each of the electrodes 17a and 17b and the ion exchange membrane 16 is, for example, 3 mm.
  • the deformation of the ion exchange membrane 16 is suppressed by sandwiching the ion exchange membrane 16 using the mesh-shaped fixing member 20.
  • the implementation of the present invention is not limited to the structure of the electrolytic cell and the fixing member for holding the ion exchange membrane 16 in the electrolytic cell or the fixing method.
  • the use of the four fixing members 2 OA can also suppress the deformation of the ion exchange membrane 16.
  • the pressure generated by opening and closing the faucet 101 is the same as in the first embodiment. Since the difference can be absorbed by the flexible membrane of the electrolytic cell 12 A, it is possible to discharge the alkaline ionized water at the same flow rate as tap water, and the discharge amount of the acidic ionized water can be extremely reduced. There is.
  • FIG. 7 is a diagram showing a schematic configuration of an alkali ion water purifier according to Embodiment 2 of the present invention
  • FIG. 8 is a control system of an Al-Rion water purifier according to Embodiment 2 of the present invention.
  • the present embodiment is an example in which the flow control valve 30A is controlled by the control of the control device 60 such that the discharge amount of the acidic ion water with respect to the discharge amount of the alkaline ion water becomes a predetermined ratio.
  • the present embodiment is different from the above-described first embodiment in that a flow sensor 40B is provided in the middle of the acidic water discharge pipe 15. Further, in the above-described first embodiment, the electromagnetic valve 30 having a function of opening and closing based on a predetermined signal is employed. However, in the present embodiment, a flow rate adjusting valve 3 OA that can further adjust the flow rate is used. They differ in their adoption.
  • control device 60 is installed outside the water conditioner body 11 and electrically connected to a terminal 18 provided on the water conditioner body 11 and connection wiring (not shown). And controls the voltage supplied to the electrodes 17a and 17b in each electrolytic cell 12.
  • the configuration of the control device 60 is not limited as long as it can perform calculations based on input signals and has a function of outputting signals based on the calculation results.
  • the control device 60 is installed outside the water purifier main body 11, but may be held inside the water purifier main body 11.
  • the AL-RION water purifier 10 A having such a configuration, when the user opens the faucet 101 provided in the faucet 100, the AL-RION generated in the electrolytic cell 12 is opened.
  • the ON water starts to be spouted at a predetermined flow rate from the faucet 100 via the water spouting pipe 14.
  • the flow sensor 4 OA provided between the water discharge pipe 14 and the water pipe 110 B detects that the alkaline ionized water has begun to flow, and the flow sensor 4 OA A predetermined voltage is applied between the electrodes 17a and 17b in the electrolytic cell 12 based on the signal from Further, the amount of acidic ion water discharged from the outlet 120 is adjusted by driving the flow rate adjusting valve 3 OA provided in the acidic water discharge pipe 15.
  • the control device 60 obtains the amount of discharged alkaline ionized water detected by the flow rate sensor 4OA, and always discharges the discharged alkaline ionized water even if the discharged amount changes.
  • the flow control pulp 30A is driven by calculating so that the amount of acidic ion water is about 20% of the amount of alkali ion water.
  • the control device 60 obtains the amount of acidic ionic water detected by the flow sensor 40 B provided in the acidic water discharge pipe 15, and controls the flow control valve 3 OA based on the discharged amount. Since feed-pack control is used, control can be performed while confirming whether or not the amount of acid ion water actually discharged is about 20% of the amount of alkali ion water.
  • the numerical value of 20% of the amount of alkaline ionized water here is a design value from the beginning, and the apparatus of the present embodiment discharges acidic force water at a predetermined water-concentration concentration while maintaining the acid ion elongation. This is a value that can keep the emission amount to a minimum, but is not limited to this, and can be changed according to the equipment standard.
  • the discharge rate of alkaline ionized water and acidic ionized water is about 1 to 1 in the conventional Al-Lion water conditioner, and the discharge of acid-ion water (discarded water) is reduced by half with the discharge of Al-Lion water.
  • the degree of discharge of the acidic ion water can be extremely reduced according to the Al-Lion water purifier 10 A of the present embodiment, as described above, in the present embodiment, The advantage is that this ratio does not change even when the amount of spouted Li-ion water is very small, and wasteful acid ion water is not always discharged.
  • the control device 60 acquires the flow rates detected by the flow sensors 40A and 4OB, respectively.
  • the flow sensors 40A and 40B May be controlled so as to notify the control device 60 of the detected flow rate.
  • the flow control valve 3 OA provided in the acidic water discharge pipe 15 is driven by the signal of the flow sensor 4 OA, and the discharge of the acidic water is stopped.
  • the electrolytic cell 12 is easily damaged. That is, by maintaining the amount of alkaline ionized water and the amount of acidic ionic water at a discharge ratio of 10 to 2, in the electrolytic cell 12, the space 1 b on the Al-ion water side and the space 1 b on the acid-ion water side There will be a difference between 2a and the internal pressure. Since the ion exchange membrane 16 has, for example, a film thickness of about 11211, the pressure difference may cause the ion exchange membrane 16 to be deformed and damaged.
  • the electrolytic cell 12 is formed of a flexible film, for example, when the faucet 101 is opened as described above, a pressure difference is generated between the two spaces 12a and 12b. Even in the case where the pressure difference occurs, similarly to Embodiment 1 described above, since the electrolytic cell 12 itself deforms inward, this pressure difference is absorbed, so that the ion exchange membrane 16 can be prevented from being damaged by deformation. it can. Therefore, the pressure difference caused by maintaining the discharge ratio of the amount of the alkali ion water and the amount of the acidic ion water to 10 to 2 as described above can be relatively easily absorbed.
  • the discharge amount of the acidic ion water with respect to the discharge amount of the alkaline ion water can always be maintained at a predetermined ratio.
  • the discharge of acidic ionized water can be minimized, and the water conditioning concentration of Alion deionized water, which changes due to fluctuations in the amount of spouted Alion deionized water, can be kept constant.
  • the water pressure regulator 10A of the present embodiment since the electrolytic cell 12 is formed of a flexible film having a predetermined flexibility, the discharge ratio of the alkaline ionized water and the acidic ionized water is determined. The internal pressure difference caused by maintaining a constant ratio can be easily absorbed.
  • control system shown in FIG. 8 is an example, and any control system may be used as long as it controls the discharge amount of acid ion water in accordance with the amount of spouted water. It is not always necessary to provide the flow sensor 40B. That is, even when the flow rate sensor 40B is not provided, the same control as the above-described control can be executed except that the feedback control is not performed.
  • control device 60 obtains the flow rates of the flow sensors 4OA and 40B, and The flow control valve 3OA may be controlled so that the ratio of the flow control valve 3OA falls within a predetermined range.
  • the controller 6Q does not need to constantly control the flow control pulp 3OA, and the ratio of the discharge amount of alkaline ion water to the discharge amount of acidic ion water is, for example, 10: 2 ⁇ 1. Control may be performed only when the value is out of the range of 0% to 20%.
  • the drive of the flow control valve 30A performed by the control device 60 may be a stepwise drive instead of a continuous drive. That is, the discharge amount of the acidic ionized water may be such that the discharge amount of the alkaline ionized water is set at a plurality of levels, and the discharge amount is controlled stepwise according to the level.
  • FIG. 9 is a schematic block diagram showing a control system of an Al-Li-ion water purifier according to Embodiment 3 of the present invention.
  • the present embodiment is different from the above-described first embodiment in that a tap water replacement means 50 is provided in the control section 60B as shown in FIG.
  • the control section 60 B mainly controls the power supply system including the application of voltage to the electrodes 17 a and 17, the flow switch 40 and the electromagnetic pulp 30, and the tap water replacement means 50 0 Controls the flow switch 40 and the electromagnetic pulp 30 to replace the water on the acidic ion water side 12a.
  • the tap water replacement means 50 delays the operation of closing the electromagnetic valve 30 until the discharge of the acidic ion water reaches a predetermined amount after detecting the stoppage of the discharge of the ionized water. Has functions.
  • control section 60B is not limited as long as it has a function capable of controlling the operation of all or a part of the peripheral device based on an input signal or an output signal.
  • control unit 60B includes a control device including a general microprocessor and a memory. ⁇
  • the configuration other than the above-described configuration is the same as that of the above-described first embodiment, the description thereof is omitted.
  • the control unit 60B indicates that the discharge of the AL-RION water detected by the flow switch 40 is stopped. Get the signal.
  • the tap water replacement means 50 discharges acidic ionized water based on the acquired signal.
  • the operation of closing the electromagnetic pulp 30 is delayed until a predetermined amount is reached.
  • the introduction of tap water to the acidic ionized water side 12a is continued while the introduction of tap water to the alkaline water side 12b in the electrolytic cell 12 is stopped.
  • the tap water replacement means 50 sends an f
  • the electromagnetic valve 30 closes the flow path on the acidic water discharge pipe 15. As a result, all the electrolytic water ′ on the acidic ionized water side 12 a in the electrolytic cell 12 is replaced with tap water.
  • the retention amount on the acidic ion water side 12a is about 0.45 liter, and by delaying about 15 seconds, the water in the acidic ion water side 12a is completely replaced with tap water. Have been.
  • the Al-Lion water conditioner 10 B of the present embodiment when the spouting of the Al-Lion water stops, the side of the acidic ionized water 12a left in the electrolytic cell 12 is stopped. Only the electrolyzed water can be flushed with the tap water, and the electrolyzed water can be replaced with the tap water. For this reason, the electrolyzed water remaining in the electrolyzed water side 12 b in the electrolyzer 12 is maintained as it is without being changed to acidic ionized water or the like. Therefore, for example, when the user opens the faucet again, it becomes possible to use Al-Ion deionized water immediately without waiting for waste water.
  • the control system shown in FIG. 9 is an example.
  • a flow switch (hereinafter, referred to as a flow switch 40a; not shown) for detecting the discharge amount of the acidic ion water is provided to the acidic water discharge pipe 15.
  • the control unit 60B obtains the actual discharge amount of the acidic ion water detected by the flow rate switch 40a, and the tap water replacing means 50 actually performs the acidic ion water 12a
  • the electromagnetic valve 30 may be controlled. That is, for example, the tap water replacement means 50 sends an instruction signal to the electromagnetic valve 30 at a timing when the integrated value of the discharge amount of the acidic ionic water detected by the flow rate switch 40a becomes a predetermined amount. do it.
  • the control unit 60B may be notified.
  • control unit 60B and the tap water replacement means 50 are provided outside the alkali ion water conditioner 10B.
  • the present invention is not limited to this. It may be provided inside 10 B.
  • the third embodiment described above may be applied to the second embodiment as it is.
  • FIG. 10 is a diagram showing a schematic configuration of an Al-Lion water purifier according to Embodiment 4 of the present invention.
  • FIG. 11 is an Al-Lion water purifier according to Embodiment 4 of the present invention.
  • FIG. 12 is a schematic block diagram showing the control system of FIG. 12, and FIG. 12 is a diagram showing an operation example of the electrode and the electromagnetic pulp according to Embodiment 4 of the present invention.
  • the polarity of the voltage applied to the electrodes 17a and 17 is inverted at each use interval of the alkaline ionized water, and the water discharge pipe 14 and the acidic water discharge pipe 15 are connected to each other.
  • the water discharge pipe 14 is connected to the space 12b and the acid water discharge pipe 15 is connected to the space 12a.
  • the first connecting pipe 14A is connected via the first connecting pipe 14A and the second connecting pipe 15B which is branched from the upstream side and communicates with the second connecting pipe 15A. 4B, and the second connecting pipe 15A is provided with a fourth connecting pipe 15B that branches off from the upstream side and communicates with the first connecting pipe 14A.
  • solenoid valves 31 to 34 are provided in the middle of the first to fourth connecting pipes 14A, 14B, 15A and 15B, solenoid valves 31 to 34 are provided, and a faucet 100 is provided.
  • the flow path connected to the discharge port 120 is controlled by opening and closing the electromagnetic pulp 31 to 34.
  • the present embodiment also differs from the above-described first embodiment in that the control unit 60C is provided with an inversion means 5OA as shown in FIG.
  • This control unit 60 C is mainly As a body, the power supply system including the application of voltage to the electrodes 17a and 17b, the flow switch 40, the electromagnetic valves 31 to 34, and the electromagnetic pulp 30 are controlled.
  • the inversion means 5 OA inverts the polarity of the voltage applied to the electrodes 17 a and 17 b, and switches the faucet 10 from any of the spaces 12 a and 12 b in the electrolytic cell 12. It has a function of inverting the connection flow path leading to 0 or the connection flow path leading from any one of the spaces 12 a and 12 b in the electrolytic cell 12 to the outlet 120.
  • control unit 60C is not limited as long as it has a function capable of controlling the operation of all or a part of the peripheral device based on an input signal or an output signal. Absent.
  • control unit 60C includes a control device including a general microprocessor and a memory.
  • the control unit 60C sends a signal indicating the start of spouting of the Al-Rion water detected by the flow switch 40.
  • a predetermined voltage is applied between the electrodes 17a and 17b, and the electromagnetic valve 30 is opened so that the acidic ion water is discharged from the discharge port 120.
  • a positive voltage is applied to the electrode 17a
  • a voltage is applied to the electrode 17b
  • the electromagnetic pulp 3 1 and 32 are open
  • the solenoid valves 33 and 34 are closed. That is, the first connection pipe 14A and the second connection pipe 15A are open (hereinafter, referred to as a "first switching state").
  • the polarity of the applied voltage is reversed so that the electrode 17a is the negative electrode and the electrode 17 is the positive electrode, and the solenoid valve is 33 and 34 are opened, and the flow paths passing through the alkaline water and the acidic ion water are reversed so that the electromagnetic valves 31 and 32 are closed.
  • the third connection pipe 14 B and the fourth connection pipe 15 B are in an open state (hereinafter, referred to as a “second switching state”), and the connection is made in conjunction with the reversal of the polarity.
  • the flow path is also inverted from the first switching state to the second switching state.
  • control unit 60C obtains a signal indicating the stop of the discharge of the ionized water detected by the flow rate switch 40, and after confirming that the polarity of the voltage and each flow path have been inverted, the electrode 60C The application of a voltage to 17a and 17b is stopped, and an instruction signal is sent to the electromagnetic valve 30 to stop the discharge of the acidic ionized water. As a result, the discharge of the acidic ionic water is also stopped.
  • the electrolysis is performed.
  • Al-ion water produced in the space 12 a in the tank 12 is supplied to the faucet via the second connection pipe 15 A and the fourth connection pipe 15 B via the Al-force water discharge pipe 14. It starts to be supplied at a predetermined flow rate from 100.
  • the electromagnetic valve 30 provided in the acidic water discharge pipe 15 is opened, and the acidic ion water generated in the space 12 b in the electrolytic cell 12 is discharged into the first connection pipe 14 A and The acid water is discharged from the outlet 120 through the acidic water discharge pipe 15 via the third connecting pipe 14B.
  • the inverting means 5OA Reverses the polarity and reverses the connection flow path from the second switching state to the first switching state. That is, the polarity is reversed so that the electrode 17a becomes a positive electrode and the electrode 17b becomes one electrode, and the electromagnetic valves 31 and 32 are opened. Then, the electromagnetic valves 33 and 34 are controlled so as to be closed.
  • the inverting means 5OA Reverses the polarity and reverses the connection flow path from the second switching state to the first switching state. That is, the polarity is reversed so that the electrode 17a becomes a positive electrode and the electrode 17b becomes one electrode, and the electromagnetic valves 31 and 32 are opened. Then, the electromagnetic valves 33 and 34 are controlled so as to be closed.
  • tap water is introduced again into the electrolytic cell 12
  • Al force water is generated in the space 12 b
  • acidic ion water is generated in the space 12 a.
  • the alkaline ionized water is discharged from the faucet 100 through the first connecting pipe 14 A provided with the electromagnetic pulp 31, and the acidic ionized water is discharged from the second connecting pipe 15 provided with the electromagnetic valve 32. It will be discharged from outlet 120 through A.
  • the polarity of the voltage applied to each of the electrodes 17a and 17b is inverted for each interpal using the alkaline ionized water, and the connection between the alkaline water and the acidic ionized water is performed.
  • the reversal of the flow path is repeated, and the functions of the electrodes 17a and 17b, the spaces 12a and 12b in the electrolytic cell 12 and the electromagnetic valves 31 to 34 are used alternately.
  • the lifetimes of the electrodes 17 a and 17 b and the ion exchange membrane 16 are considered to be doubled as compared with the case where one of the functions is used continuously. .
  • the Al-Lyr water spouting pipe 14 is linked to the reversal of the polarity of the voltage applied to the electrodes 17 a and 17 b. Since the connection flow path leading to the acidic water discharge pipe 15 is reversed, the ionized water is used as usual even when the electrodes 17a and 17b remain inverted. And each function can be used alternately at similar time intervals. This prevents impurities from adhering to one of the electrodes 17a and 17b and the ion-exchange membrane 16 and prevents the wear and operation burden of each function from being biased to one side. In addition to maintaining the water quality, it is possible to maintain the water conditioning capacity at the beginning of use for a long time.
  • the polarity and the connecting flow path were reversed when the discharge of the water was stopped, but the present invention is not limited to this.
  • the time may be determined in advance, and the time may be reversed every predetermined time.
  • the polarity and the connection flow path are reversed at the same timing.
  • the present invention is not limited to this.
  • the faucet 101 stops only the polarity is reversed.
  • the connection flow path is reversed. May be controlled as follows. In other words, the polarity reversal and the connection channel reversal need only be linked in a practical use state, and there is no need for the temporal timings to match, and the timing of each reversal may be appropriately controlled. .
  • Embodiment 4 described above may be applied to Embodiment 2 or 3 described above as it is.
  • FIG. 13 is a cross-sectional view of an Al-ion water purifier according to Embodiment 5 of the present invention.
  • FIG. 14 is a side view of an alkali ion water purifier according to Embodiment 5 of the present invention.
  • FIG. 1 is a schematic block diagram showing an operation example of an alkali ion water purifier according to Embodiment 5 of the present invention
  • FIG. FIG. 2 is a schematic diagram showing a connection configuration of FIG.
  • the acidic ionized water is electrolyzed in a stepwise manner, thereby significantly reducing the prepared water concentration of the alkaline ionized water to be discharged.
  • This is an example in which control is performed such that the discharge amount of acidic ionized water is greatly reduced without any problem.
  • the present embodiment is different from the above-described first embodiment in that the electrolyzer is configured and held in at least two or more stages inside the water purifier body 11D.
  • this electrolytic cell consists of a first (previous) electrolytic cell (hereinafter referred to as a main electrolytic cell 12D) to which tap water is supplied, and an electrolytic cell generated in the first electrolytic cell. It consists of the second and subsequent (later stage) electrolytic cells to which acidic ionized water is supplied (hereinafter referred to as an auxiliary electrolytic cell 1 12 D).
  • the electrolytic cell for supplying the generated acidic ionized water will be described as the first stage, and the electrolytic cell for supplying the acidic ionized water will be described as the second stage.
  • the present embodiment six electrolytic cells are provided side by side, of which five electrolytic cells on the right correspond to the main electrolytic cell 12 D of the first stage (front stage), and one electrolytic cell on the left.
  • the dissolving tank corresponds to the second and subsequent (later) auxiliary electrolytic cells 1 1 2D.
  • the five electrolytic cells on the right side are collectively referred to as a main electrolytic cell 12D, and the one electrolytic cell on the right side is also referred to as an auxiliary electrolytic cell 112D.
  • the ratio of the processing capacity of the main electrolytic cell 1 2D to that of the auxiliary electrolytic cell 1 12 D In other words, the production rates of Al-Karion water and acid-ion water are almost the same.
  • the generation ratio of the alkaline ionized water and the acidic ionized water 10: 2 the acid ionized water with respect to the alkali ionized water generated in each of the electrolytic cells 12D and 112D is minimized. It is possible to reduce the emission of acid ion water most efficiently.
  • the branch pipe X is provided so that the alkaline water discharge pipe 14 and the acidic water discharge pipe 15 communicate with each other.
  • An electromagnetic valve 30 b is provided in the middle of the branch pipe X.
  • the electrodes 17a and 17b function when they are washed.
  • connection configuration between the electrolytic cells is specifically as shown in FIG.
  • the five electrolyzers on the right namely the main electrolyzer 12D
  • the tap water supply pipe 13 on the downstream side so that tap water is supplied from the downstream side.
  • the upstream side is in communication with the water discharge pipe 14 and the water discharged from the main electrolytic cell 12D is discharged.
  • the upstream side of the main electrolytic cell 12D communicates with the acidic water discharge pipe 15 so that the acidic ion water generated in the main electrolytic cell 12D is discharged.
  • one electrolytic cell on the left side that is, the auxiliary electrolytic cell 1 12D is provided in the middle of the acidic water discharge pipe 15 and the acid is introduced from the downstream side of the auxiliary electrolytic cell 1 12D to the inside.
  • Water is supplied, and an auxiliary water discharge pipe 14b communicating with the water discharge pipe 14 is provided upstream. Alkaline water generated in the above is discharged.
  • the main electrolytic cell 12 D that is, water is supplied to all of the five electrolytic cells on the right side. Water is supplied. Then, the supplied tap water is electrolyzed into alkali ion water and acid ion water in each main electrolytic cell 12D.
  • the alkaline ion water generated in each of the main electrolytic cells 12 D is discharged from the faucet 100 through the alkaline water discharge pipe 14.
  • the main electrolyzer 1 2 The acidic ion water generated in D is supplied to the auxiliary electrolytic cell 112D provided in the middle of the acidic water discharge pipe 15.
  • the acidic ion water supplied here is electrolyzed again into alkaline ion water and acidic ion water in the auxiliary electrolytic cell 112D.
  • the main electrolytic cell 12D with respect to 120 L of tap water of pH 7.1, 100 L of alkaline ionized water of pH 9.7 to 9.8 and ⁇ 84. Twenty liters of acidic ionized water consisting of 2 to ⁇ ⁇ 4.5 are generated, and they are supplied from the faucet 100 to the spouting water or the auxiliary electrolytic cell 112D.
  • the alkaline ionized water generated in the auxiliary electrolytic cell 112D is discharged from the faucet 100 through the auxiliary water discharge pipe 14b, the alkaline water discharge pipe 14, and the like.
  • the acidic ionic water generated in the auxiliary electrolytic cell 112D is discharged from the outlet 120 through the acidic water discharge pipe 15.
  • for 20 L of acidic ionized water composed of pH 4.2 to pH 4.5 generated in the main electrolytic cell 12 D 16.7 L composed of H9.4 to 9.5 is used.
  • the electrodes 17a and 17b may be cleaned by operating the electromagnetic valve 30b provided in the branch pipe X.
  • the polarity (10, 1) of the voltage applied to the electrodes 17a, 17b in the electrolytic cells 12D, 112D of each stage is reversed.
  • all the water (water used for cleaning) in the electrolytic cells 12 D and 12 D of each stage may be discharged from the discharge port 120.
  • the water conditioner 10D all the alkaline ionized water generated in the electrolytic cells 12D and 112D in each stage is discharged from the faucet 100, and the electrolytic cell in the last stage (in this embodiment, the auxiliary electrolytic cell Only the acidic ionized water generated in 1 1 2D) can be discharged from the outlet 120.
  • the acidic ionic water generated in the preceding electrolytic cell (main electrolytic cell 12D) is supplied to the subsequent electrolytic cell (auxiliary electrolytic cell 112D) to further supply the alkaline ionized water and the acidic ion water. Since water is generated, it is possible to reduce the amount of acidic ionized water finally discharged from the outlet 120.
  • the electrolytic cell structure including multiple stages as in the present embodiment can reduce the discharge amount of acidic ion water, for example, from 20% to 3.0%. It can be greatly reduced to 3%.
  • a flow rate adjusting solenoid valve or the like is provided near the discharge outlet on the acidic ion water side to control the discharge amount of the acidic ion water. Since the discharge amount is relatively small at 3.3%, it is not necessary to install a flow rate adjustment solenoid valve near the discharge port 120.For example, one of the discharge passages in the acidic water discharge pipe 15 It is also possible to adjust the discharge of acidic ionized water by providing a resistance member or the like that blocks the section. As a result, the number of parts of the electromagnetic valve is reduced as compared with the conventional device, and the cost can be reduced.
  • the multistage structure of the electrolytic cell is exemplified by a two-stage electrolytic cell structure.
  • the present invention is not limited to this.
  • a three-stage or four-stage electrolytic cell structure may be used.
  • An electrolytic cell structure composed of steps may be employed. That is, any configuration may be used as long as the acidic ion water is electrolyzed stepwise on the acidic water discharge pipe 15 to generate alkaline ionized water and acidic ionized water.
  • the acidic ionic water generated in the preceding electrolytic cell is supplied to the latter electrolytic cell, and only the acidic ionic water generated in the latter electrolytic cell is discharged from the outlet 120. Will be.
  • the electromagnetic valve 30 is provided to reliably control the discharge amount of the acidic ionized water.
  • the water may be naturally discharged from the outlet 120 with the discharge of the alkaline ionized water.
  • FIG. 17 is a schematic sectional view of an Al-Rion water conditioner according to Embodiment 6 of the present invention
  • FIG. 18 illustrates each flow path in the electrolytic cell according to Embodiment 6 of the present invention.
  • FIG. FIG. 18 schematically shows the inside of the electrolytic cell when FIG. 17 is viewed from the direction of arrow A.
  • the present embodiment is an example in which the electrolysis efficiency is improved without reducing the flow rate and the size of the Al-Lion water conditioner is reduced.
  • the flow path meandering at one end of the folding plate 27 and the other end is different from the first embodiment in that another flow path is formed.
  • the ion exchange membrane 16 is held in the electrolytic cell 12 E by the fixing member 20 E provided with the folding plate 27, so that the two spaces 12 a and 12 b are formed. It is divided into A pair of electrodes 17a and 17b is fixed by a fixing member 20E in a region of the electrolytic cell 12E facing the ion exchange membrane 16. That is, in the electrolytic cell 12 E, the ion exchange membrane 16 and the respective electrodes 17 a and 17 b are integrally held by the fixing member 20 E provided with the folding plate 27. I have.
  • the electrodes 17a and 17b are connected to the inner surface of the electrolytic cell 12E and the electrodes 17a and 17b by spacers 20e provided on the inner surface of the electrolytic cell 12E. A gap of 1 mm is formed between them.
  • the electrodes 17a and 17b are electrically connected to the terminal 18 provided on the water purifier main body 11E by connection wiring 19.
  • the fixing member 20E extends from the raw water introduction hole 26a of the electrolytic cell 12E to the Alion water outlet hole 26b and the acid ion water discharge hole 26c. It is composed of a pair of members provided on the ⁇ side of the width direction 201 orthogonal to the reference direction 200.
  • a plurality of folding plates 27 are held by the fixing member 20E at predetermined intervals via a holding member 28 over the reference direction 2.0.
  • three folding plates 27 are provided at equal intervals on the fixing member 20E.
  • the holding member 28 holding the folding plate 27 is provided on the ion exchange membrane 16 side of the fixing member 20 E. And a pair of plate-like members constituting the fixing member 20E in the width direction 201, on each of the surfaces on the electrode 17a or 17b side.
  • the folding plate 27 is held between a pair of holding members 28 provided on both sides of E such that the longitudinal direction thereof is the width direction 201.
  • Such a folding plate 27 is formed to be shorter than the interval between a pair of plate members constituting the fixing member 20E so that both ends thereof do not contact the fixing member 20E.
  • a part of the flow in the width direction 201 is restricted against the reference direction 200 of the tap water flowing in the electrolytic cell 12 E.
  • the deflection plate 27 is alternately displaced to one end side of the width direction 201 so as not to abut the fixing member 20E, so that the deflection plate 27 in the width direction 201 of the deflection plate 27 is First flow paths 29a are alternately formed between the other end and the fixing member 20E. Further, since one end of the folding plate 27 is deflected so as not to abut on the fixing member 20E, the second flow path 2 is provided between the one end and the fixing member 20E. 9 b are alternately formed. Such a second flow path 29b is provided to be narrower than the first flow path 29a, and has a smaller flow rate than the flow rate of tap water passing through the first flow path 29a. And tap water is passing through.
  • the tap water introduced from the power supply introduction hole 26 a into the electrolytic cell 12 E is converted into the first flow path 29 a defined by the folding plate 27 and the second flow path 2 a. Since it is provided wider than 9b, a meandering flow 210 is formed along the first flow path 29a. Further, since tap water also flows through the second flow path 29b, which is narrower than the first flow path 29a, the eddy current prevention flow 2 1 1 passing through the second flow path 29b is formed. It is formed. In other words, the tap water supplied to each of the spaces 12a and 12b from the raw water introduction hole 26a flows through the folding flow 210 and the eddy current prevention flow 211, and the alkaline ionized water flows. Outflow holes 26b and acidic ionized water outflow channels 26c flow out.
  • tap water can flow over the entire surface of the electrodes 17a and 17b, and the electrolysis efficiency by the electrodes 17a and 17b can be improved.
  • the flow rate flowing through the electrolytic cell 12 E is increased, it is possible to reliably generate electricity from the tap water and generate alkali ion water.
  • the meandering of the folding flow 210 is almost straight, and even if the meandering is gentle, the water is stopped by the eddy current prevention flow 211. Since no is formed, it is possible to prevent the pressure loss in the electrolytic cell 12E from being reduced in a state where the electrolytic efficiency is improved.
  • the folding plate 27 is arranged in the width direction 201 orthogonal to the reference direction 200.
  • the present invention is not particularly limited to this.
  • the folding plate 27 May intersect with the reference direction 200 and may be arranged so as to be inclined with respect to the width direction 201.
  • the folding plate 27 is provided on the fixing member 20E in the electrolytic cell 12E.
  • the folding plate 27 may be provided directly without providing the fixing member 20E.
  • the electrodes 17a and 17b hold one surface of each of the folding plates of the spaces 12a and 12b, and the folding plates of the spaces 12a and 12b are held.
  • the ion exchange membrane 16 may be sandwiched, and the folding plates of the spaces 12a and 12b may be connected so as to penetrate the ion exchange membrane 16.
  • the ion-exchange membrane 16 can be fixed only by the folding plate 27 without providing the fixing member 20E in the electroporation casket 12E.
  • the first and second flow paths 29a and 29b are arranged by disposing the both ends of the folding plate 27 so as not to contact the fixing member 20E.
  • the present invention is not limited to this.
  • the first and second flow paths may be formed.
  • the three flow plates 27 are provided in each of the first and second spaces 12a and 12b.
  • the first and second spaces are provided.
  • the flow rates of the first and second spaces 12a and 12b may be adjusted by changing the number of the flow plates 27 of 12a and 12b.
  • the same number of folding plates 27 are provided in each of the first and second spaces 12a and 12b, and the overlapping area of the adjacent folding plates 27 in the width direction 201 is changed. May be used to adjust the flow rate.
  • Embodiment 6 described above may be directly applied to Embodiments 2 to 5 described above.
  • FIG. 19 is a cross-sectional view of an Al-ion water purifier according to Embodiment 7 of the present invention.
  • FIG. 20 is a cross-sectional view of a main part of an alkali ion water purifier according to Embodiment 7 of the present invention. It is.
  • the present embodiment is an example of configuring an alkali ion water conditioner that can be used for medical and cosmetic purposes by easily and surely adding power calcium to raw water.
  • the present embodiment differs from the first embodiment in that a power calcium addition chamber 160 that is branched from the tap water supply pipe 13 and can be filled with calcium from the outside is provided.
  • the tap water supply pipe 13 is provided with a branch 150 that is branched from the tap water supply pipe 13.
  • the branch 150 is formed by a cheese 130 serving as a joint between the raw water pipe 100 and the tap water supply pipe 13.
  • a calcium addition chamber 160 is provided in which a calcium compound 15 1 having one end communicating with the branch 150 is held.
  • the calcium addition chamber 160 has an opening 161 on the opposite side of the branch passage 150 so as to be freely opened and closed with respect to the outside.
  • Examples of the calcium compound 151 held in the calcium addition chamber 160 include highly safe calcium compounds recognized as food additives such as calcium lactate and calcium glycerophosphate.
  • a calcium holding member 1 made of a mesh bag is used. By holding calcium compound 15 1 in 52 and placing calcium holding member 15 2 in calcium addition chamber 160, calcium compound 15 1 is held in calcium addition chamber 160 I did it. In this way, by holding the calcium compound 15 1 by the cal-pum holding member 15 2, when the tap water enters the calcium addition chamber 160, the calcium compound 15 1 Can be added in a desired ratio.
  • a sealing member holding part 162 having an inner diameter larger than that of the branch 150 is provided on the calcium addition chamber 160 side of the branch 150.
  • a sealing member 170 having a spherical shape is movably held in the sealing member holding portion 162. Since the sealing member 170 has an outer diameter larger than the inner diameter of the branch passage 150, movement toward the raw water pipe 100 is restricted.
  • a communication hole 163 having an inner diameter smaller than that of the sealing member 170 is provided on the calcium addition chamber 160 side of the sealing member holding portion 162, and the communication hole 163 is formed.
  • the sealing member holding part 162 and the calcium addition chamber 160 communicate with each other through the intermediary of the sealing member.
  • tap water is supplied.
  • a seal member 164 is provided to prevent the calcium from entering the chamber 164. Examples of the material of the sealing member 164 include metal, plastic, rubber, and elastomer. Examples of the material of the sealing member 170 include metal, plastic, rubber, and elastomer.
  • the tap water is always supplied at a predetermined water pressure in the tap water supply pipe 13. Supplied.
  • the sealing member 170 is urged toward the communication hole 163 by the water pressure of the tap water supplied from the raw water pipe 100 unless a force is applied from above, so that the calcium addition chamber 1 The 60 openings are sealed.
  • One end of the sealing member 170 is fixed to the sealing member 170, and the sealing member 170 is in contact with the sealing member 164 of the communication hole 163.
  • a rod-shaped pressing member 171 provided so that an end protrudes from the opening 161 of the calcium addition chamber 160 by a predetermined amount.
  • a lid member 165 is removably fitted to the opening 161 side of the calcium addition chamber 160, and the lid member 1665 is connected to the calcium addition chamber 160 The opening 161 is sealed.
  • the lid 165 is screwed into the opening 161 side of the calcium addition chamber 160 to seal the calcium addition chamber 160.
  • the size of the gap between the sealing member 170 opening the communication hole 163 and the communication hole 163 is determined from the opening 161 of the calcium addition chamber 160 of the pressing member 171. Is determined by the amount of protrusion.
  • the flow rate of tap water entering the calcium addition chamber 160 is determined by the size of the gap between the sealing member 170 and the communication hole 163. For this reason, the amount of protrusion of the pressing member 17 1 from the opening 16 1 may be appropriately determined so that the amount of calcium added to tap water has a predetermined ratio.
  • FIG. 20 is a cross-sectional view of a main part of an AL-force water regulator 10F showing a method of adding and filling calcium.
  • Fig. 20 (a) when the lid member 165 is removed from the opening 161 side of the calcium addition chamber 160, the sealing is performed by the pressure of tap water supplied from the raw water pipe.
  • the member 170 is pressed to the calcium addition chamber 160 side and abuts on the seal member 16 4, and the sealing member 170 seals the communication holes 1, 63 to form the calcium addition chamber 160. Seal one end.
  • the calcium compound 1501 in the calcium addition chamber 160 is also provided. Can be replenished.
  • the sealing member 170 is closed at one end by the water pressure of the tap water.
  • the tap water does not leak from the opening 16 1 of the calcium addition chamber 160, and the calcium compound 15 1 can be easily and reliably filled into the calcium addition chamber 160. .
  • the sealing member 170 is pressed downward by the pressing member 171 just by closing the opening 161 of the calcium adding chamber 160 with the lid member 165, so that calcium is added.
  • One end of the chamber 160 can be opened, and calcium can be easily and reliably added to tap water.
  • the sealing member 170 As described above, in the alkali ion water purifier 10 F of the present embodiment, when the lid member 165 that closes the opening 161 of the calcium addition chamber 160 is opened, the sealing member 170 One end of the calcium addition chamber 160 is closed by the water pressure of the tap water, so that the tap water does not leak out from the opening 161 of the calcium addition chamber 160, and the calcium compound 1501 is added with calcium.
  • the chamber 160 can be easily and reliably filled. Further, by simply closing the opening 161 of the calcium addition chamber 1660 with the lid member 1665, the sealing member 170 is pressed by the pressing member 171, and one end of the calcium addition chamber 1610 is closed. It can be opened and calcium can be easily and reliably added to tap water.
  • one end of the pressing member 17 1 is fixed to the sealing member 170, and the other end is pressed against the lid member 16 5.
  • one end of the rod-shaped pressing member may be fixed to the lid member, and the other end may be brought into contact with the sealing member so that the sealing member is pressed downward by the pressing member fixed to the lid member.
  • the sealing member 170 is a member having a spherical shape.
  • the present invention is not particularly limited to this.
  • a hemisphere in which the side abutting on the sealing member 164 is formed as a spherical surface It may be shaped.
  • Embodiment 7 described above may be directly applied to Embodiments 2 to 6 described above.
  • the present invention is applicable to an apparatus that separates and generates ionic water and acidic ionic water by the electrolysis of water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

An alkali ion water conditioner capable of delivering alkali ion water at a flow rate equivalent to that of city water. In the alkali ion water conditioner for producing alkali ion water and acid ion water by introducing city water into an electrolytic cell (12) comprising an ion-exchange membrane (16) and a pair of electrodes (17) arranged on the opposite sides thereof thereby ionizing the city water, at least part of the region of the electrolytic cell (12) facing the ion-exchange membrane (16) is formed of a flexible membrane and the electrolytic cell (12) is disposed in the water conditioner body (11). City water being supplied into the electrolytic cell (12) is also supplied to a space between the electrolytic cell (12) and the water conditioner body (11) so that the electrolytic cell (12) is held in the city water.

Description

アルカリイオン整水器 技術分野  Alkaline ion water purifier technical field
本発明は、 水道水から供給される水道水を電離してアル力リイオン水及び酸性 イオン水を供給可能なアルカリイオン整水器に関し、 特に、 水道管の途中に配設 されるタイプ、 いわゆるビルトイン明タイプのアルカリイオン整水器に関する。 背景技術  TECHNICAL FIELD The present invention relates to an alkali ion water purifier capable of supplying ionized ionized water and acidic ionized water by ionizing tap water supplied from tap water, and more particularly to a type provided in the middle of a water pipe, a so-called built-in type. It relates to a bright type alkali ion water conditioner. Background art
 book
水道水からアル力リィオン水及ぴ酸性ィオン水を生成するアル力リィオン整水 器としては、 正負の電極間にイオン交換膜を介在させ、 水の電気分解作用を利用 して、 アルカリィォン水と酸性ィォン水とに分離生成するものがある。 また、 こ のようなアル力リィオン整水器としては、 水道のカラン (蛇口) から取水し、 専 用吐水口からアル力リィオン水、 酸性イオン水を吐水する、 シンク上へ本体を設 置するタイプのものがある。 また、 アンダーシンク内へ本体を設置する、 いわゆ るビルトインタイプのものがあるが、 これは取水及ぴ吐水を行う専用のカランを 有し、 水道のカランとは別の専用吐水口からアル力リィオン水を吐水するもので ある。  An Al-Rion water conditioner that generates Al-Lion water and acidic I-ion water from tap water uses an ion exchange membrane between the positive and negative electrodes and utilizes the electrolysis of water to form Al-Lion water. Some are separated and produced from acid ion water. In addition, such an AL-RION water conditioner is designed to take water from a water tap (faucet) and discharge AL-RION water and acidic ionic water from a dedicated water outlet, and install the main unit on a sink. There are types. In addition, there is a so-called built-in type, in which the main unit is installed in the undersink, which has a dedicated cull for water intake and water spouting. It discharges lion water.
このビルトインタイプのアルカリイオン整水器 (例えば、 特開平 1 0— 1 9 2 8 5 8号公報参照) は、 例えば、 利用者がアル力リイオン整水器へ接続された原 水管の水栓を開くことによつて原水管から水道水が通水されて電解槽に供給され 、 この電解槽でアルカリ水と酸性水とが生成される。 そして、 電解槽で生成され たアルカリ水が吐水管を経て吐水されると共に、 酸性水が酸性水吐水管を経て排 水される。 また、 利用者が水栓を閉じることによって原水管からの通水が停止さ れることによってアルカリ水の吐水が停止する。  In this built-in type alkali ion water conditioner (for example, see Japanese Patent Application Laid-Open No. 10-192858), for example, a user can remove a water tap of a raw water pipe connected to an Al-Lion water conditioner. By opening, tap water is passed through the raw water pipe and supplied to the electrolytic cell, where alkaline water and acidic water are generated. Then, the alkaline water generated in the electrolytic cell is discharged through the water discharge pipe, and the acidic water is discharged through the acid water discharge pipe. In addition, when the user closes the faucet, the flow of water from the raw water pipe is stopped, and the discharge of alkaline water is stopped.
このようなアル力リィオン整水器では、 アル力リ水の吐水を停止しだ際、 酸性 水が排水される酸性水排水管は大気開放されているため、 電解槽内のアルカリ水 側と酸性水側とで水圧差が生じる。 そして、 電解槽内に配置されているイオン交 換膜は、 その厚さが極めて薄く、 また水素イオンを通すための小穴が開いている ため破損しゃすく、 このような水圧差によつて瞬時に破損してしまうという問題 がある。 In this type of water purifier, when the water discharge of the water is stopped, the acidic water drainage pipe from which the acidic water is drained is open to the atmosphere. A water pressure difference occurs between the water side and the water side. Then, the ion exchange placed in the electrolytic cell The exchange membrane has a problem that it is extremely thin and has a small hole for passing hydrogen ions, so that the membrane is easily damaged due to such a difference in water pressure.
このため、 従来の装置では、 水道水の流量が 2 0〜3 0 (LZ分) 程度である のに対し、 生成されるアルカリイオン水の流量は、 2〜3 (L/分) 程度と極め て少なく抑えなければならず、 一般的に、 アルカリイオン水は飲料用に用いられ るだけで、 比較的多くの流量を必要とする入浴 ·シャワー等には利用することは できなかった。 発明の開示  For this reason, in the conventional apparatus, the flow rate of tap water is about 20 to 30 (LZ), whereas the flow rate of the generated alkaline ionized water is extremely high, about 2 to 3 (L / min). In general, alkaline ionized water was used only for drinking, and could not be used for bathing and showering, which required a relatively large flow rate. Disclosure of the invention
本発明では上述のような事情に鑑み、 水道水と同等の流量でアル力リイオン水 を吐水することができるアル力リイオン整水器を提供することを課題とする。 上記課題を解決する本発明の第 1の態様は、 イオン交換膜とこのィォン交換膜 の両側に配置される一対の電極とを具備する電解槽内に水道水を導入しこの水道 水を電離することによりアルカリィォン水及び酸性ィォン水を生成するアルカリ イオン整水器において、 前記電解槽の少なくとも前記イオン交換膜に対向する領 域の一部を可撓膜によつて形成すると共に当該電解槽を整水器本体内に配置し、 前記電解槽内に供給する水道水を前記電解槽と前記整水器本体との間の空間にも 供給して、 前記電解槽を水道水中に保持するようにしたことを特徴とするアル力 リイオン整水器にある。  The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an Al-Lion water conditioner that can discharge Al-Lion water at the same flow rate as tap water. According to a first aspect of the present invention for solving the above problems, tap water is introduced into an electrolytic cell having an ion exchange membrane and a pair of electrodes disposed on both sides of the ion exchange membrane, and the tap water is ionized. In this way, in the alkali ion water dispenser that produces alkali ion water and acid ion water, at least a part of the area of the electrolytic cell facing the ion exchange membrane is formed by a flexible membrane, and the electrolytic cell is formed. It is arranged in the water purifier main body, so that the tap water supplied to the electrolytic cell is also supplied to the space between the electrolytic cell and the water purifier main body so that the electrolytic cell is held in the tap water. Al-Ri-ion water purifier characterized by the following.
かかる第 1の態様では、 電解槽内で生じる水圧差が電解槽の一部を構成する可 撓膜が変形することで実質的に吸収されるため、 ィオン交換膜が変形することに よる破損が防止される。 したがって、 電解槽に供給する水道水の水圧を上昇させ ることができ、 アルカリイオン水の吐水量を増加させることができる。  In the first aspect, the water pressure difference generated in the electrolytic cell is substantially absorbed by the deformation of the flexible film constituting a part of the electrolytic cell, so that the damage caused by the deformation of the ion exchange membrane is reduced. Is prevented. Therefore, the water pressure of the tap water supplied to the electrolytic cell can be increased, and the discharge amount of the alkaline ionized water can be increased.
本発明-の第 2の態様は、 第 1の態様において、 前記空間の前記電解槽とは接触 しない領域の少な.くとも一部に空気が残留している空気部を有することを特徴と するアルカリイオン整水器にある。  According to a second aspect of the present invention, in the first aspect, at least a part of the space that does not come into contact with the electrolytic cell has an air portion in which air remains. It is in the alkali ion water purifier.
かかる第 2の態様では、 空気部を設けておくことで、 可撓膜が変形しやすくな り、 電解槽内で生じる水圧差がより確実に吸収される。 本発明の第 3の態様は、 第 1又は 2の態様において、 前記電解槽の全面が前記 可撓膜で構成されていることを特徴とするアル力リイオン整水器にある。 In the second aspect, by providing the air portion, the flexible membrane is easily deformed, and the difference in water pressure generated in the electrolytic cell is more reliably absorbed. According to a third aspect of the present invention, in the first or second aspect, there is provided an Al-forced ionizer, wherein the entire surface of the electrolytic cell is formed of the flexible membrane.
かかる第 3の態様では、 電解槽内で生じる水圧差が、 可撓膜が変形することで 確実に吸収される。  In the third aspect, the difference in water pressure generated in the electrolytic cell is reliably absorbed by the deformation of the flexible membrane.
本発明の第 4の態様は、 第 1〜 3の何れかの態様において、 前記可撓膜がブラ スチックシートからなることを特徴とするアル力リイォン整水器にある。  A fourth aspect of the present invention is the Al-Ryion water conditioner according to any one of the first to third aspects, wherein the flexible film is made of a plastic sheet.
かかる第 4の態様では、 可撓膜 所定材料で形成することで、 電解槽内の水圧 差を確実に吸収することができる。  In the fourth aspect, by forming the flexible film from a predetermined material, the difference in water pressure in the electrolytic cell can be reliably absorbed.
本発明の第 5の態様は、 第 1〜4の何れかの態様において、 前記整水器本体に 前記電解槽内に水道水を供給する水道水供給路と、 前記電解槽で生成されたアル カリイオン水を吐水するアルカリ水吐水路と、 前記電解槽で生成された酸性ィォ ン水を排出する酸性水排出路とを具備し、 且つ前記供給路からの水道水を前記電 解槽と共に当該電解槽と前記整水器本体との間の空間にも供給するようにしたこ とを特徴とするアルカリイオン整水器にある。  According to a fifth aspect of the present invention, in any one of the first to fourth aspects, a tap water supply path for supplying tap water to the water purifier main body in the electrolytic cell, An alkaline water discharge channel for discharging potassium ion water, and an acidic water discharge channel for discharging the acidic ion water generated in the electrolytic cell, and tap water from the supply channel together with the electrolytic cell. The alkali ion water conditioner is characterized in that the water is also supplied to the space between the electrolytic cell and the water conditioner body.
かかる第 5の態様では、 電解槽の内部と外部とのそれぞれに供給される水道水 の圧力が一定となるため、 水道水の圧力変化に伴って電解槽を構成する可撓膜が 変形して破損することがない。  In the fifth aspect, since the pressure of the tap water supplied to each of the inside and the outside of the electrolytic cell becomes constant, the flexible membrane constituting the electrolytic cell is deformed with the change in the pressure of the tap water. No damage.
本発明の第 6の態様は、 第 5の態様において、 前記空間に供給された水道水を 外部に排出する水道水排出路を具備することを特徴とするアル力リイオン整水器 にある。  According to a sixth aspect of the present invention, there is provided the water purifier according to the fifth aspect, further comprising a tap water discharge passage for discharging tap water supplied to the space to the outside.
かかる第 6の態様では、 電解槽と整水器本体との間の空間に水道水を供給する と共に外部に排出することで、 この空間に貯留された水道水の圧力と電解槽内に 供給される水道水の圧力とが常に一定に保持される。  In the sixth aspect, tap water is supplied to the space between the electrolytic cell and the water conditioner main body and discharged to the outside, so that the pressure of the tap water stored in this space and the supply of the tap water to the electrolytic cell are performed. The tap water pressure is always kept constant.
本発明の第 7の態様は、 第 6の態様において、 前記水道水排出路と前記酸性水 排出路とを連通させ、 前記電解槽と前記整水器本体との間の空間に供給された水 道水を、 前記酸性水排出路から酸性イオン水と共に外部に排出するようにしたこ とを特徴とするアルカリイオン整水器にある。  According to a seventh aspect of the present invention, in the sixth aspect, the tap water discharge path and the acid water discharge path are communicated with each other, and water supplied to a space between the electrolytic cell and the water conditioner main body is provided. The tap water is discharged to the outside together with the acidic ion water from the acid water discharge passage.
かかる第 7の態様では、 電解槽と整水器本体との間の空間に供給された水道水 を比較的容易に外部に排出することができる。 本発明の第 8の態様は、 第 1〜 7の何れかの態様において、 前記一対の電極の それぞれが、 多孔性材料からなるスぺーサの一方面にそれぞれ固定され、 これら のスぺーサが前記イオン交換膜を挟^するように前記電解槽内に配設されている ことを特徴とするアルカリィォン整水器にある。 In the seventh aspect, tap water supplied to the space between the electrolytic cell and the water conditioner main body can be relatively easily discharged to the outside. According to an eighth aspect of the present invention, in any one of the first to seventh aspects, each of the pair of electrodes is fixed to one surface of a spacer made of a porous material, respectively. The alkaline water conditioner is provided in the electrolytic cell so as to sandwich the ion exchange membrane.
力かる第 8の態様では、 イオン交換膜がスぺーサによって挟持されるため、 電 解槽内の圧力差による変形がより確実に防止される。  In the strong eighth aspect, since the ion exchange membrane is sandwiched by the spacers, deformation due to a pressure difference in the electrolytic cell is more reliably prevented.
本発明の第 9の態様は、 第 1〜 7の何れかの態様において、 前記一対の電極の それぞれが、 前記電解槽内に前記ィオン交換膜と所定間隔離れて配設されている ことを特徴とするアル力リィオン整水器にある。  According to a ninth aspect of the present invention, in any one of the first to seventh aspects, each of the pair of electrodes is disposed at a predetermined distance from the ion exchange membrane in the electrolytic cell. It is in the Al-Rion water purifier.
かかる第 9の態様では、 イオン交換膜が電極と離されて配設されているが、 電 解槽内の圧力差が確実に吸収されるので、 ィオン交換膜が破壌されることはない 本発明の第 1 0の態様は、 第 1〜 9の何れかの態様において、 前記水道水供給 路が水道水の原水管に接続されると共に、 前記アル力リ水吐水路が力ランに接続 され、 該カランの水栓を開閉することによりアル力リィオン水の吐水量が制御さ れていることを特徴とするアルカリイオン整水器にある。  In the ninth aspect, the ion-exchange membrane is disposed separately from the electrodes. However, since the pressure difference in the electrolytic cell is reliably absorbed, the ion-exchange membrane is not broken. According to a tenth aspect of the present invention, in any one of the first to ninth aspects, the tap water supply channel is connected to a raw water pipe of tap water, and the power supply water discharge channel is connected to a power run. The alkali ion water conditioner is characterized in that the amount of water discharged is controlled by opening and closing the water tap of the curan.
かかる第 1 0の態様では、 水栓の開閉によってアル力リイオン水の吐水量が機 械的に制御されていると電解槽内の圧力差が生じゃすいが、 このような場合でも 可撓膜の変形によって圧力差が吸収されるため、 イオン交換膜の破損は防止でき る。  In the tenth aspect, the pressure difference in the electrolytic cell is greatly reduced when the discharge amount of the ionized water is mechanically controlled by opening and closing the faucet. Since the pressure difference is absorbed by the deformation of the membrane, breakage of the ion exchange membrane can be prevented.
本発明の第 1 1の態様は、 第 1〜1 0の何れかの態様において、 前記アル力リ 水吐水路が給湯器に接続されることを特徴とするアル力リイオン整水器にある。 かかる第 1 1の態様では、 アル力リィォン水を所望の流量で給湯器に供給する ことができ、 アル力リィオン水の温水を吐水することができる。  According to a eleventh aspect of the present invention, in any one of the first to tenth aspects, there is provided an Al-powered ionization water conditioner, wherein the Al-power water spouting channel is connected to a water heater. In the eleventh aspect, the AL force water can be supplied to the water heater at a desired flow rate, and the hot water can be discharged.
本発明の第 1 2の態様は、 第 1〜 1 1の何れかの態様において、 前記アル力リ 水吐水路に設けられて前記アルカリイオン水の吐水量を検出する吐水量検出手段 と、 前記酸性水排出路に設けられて前記酸性ィオン水の排出量を調整する流量調 整手段と、 前記吐水量検出手段が検出した実際の吐水量に基づいて、 アルカリィ オン水の吐水量に対する酸性イオン水の排出量が所定の割合となるように前記流 量調整手段を制御する制御手段とを具備することを特徴とするアル力リイオン整 水器にある。 According to a twenty-second aspect of the present invention, in any one of the first to eleventh aspects, a water discharge amount detection means provided in the water discharge passage for detecting the discharge amount of the alkaline ionized water, A flow rate adjusting means provided in the acid water discharge passage for adjusting the discharge amount of the acidic ion water; and an acid ion water with respect to the discharge amount of the alkali ion water based on the actual water discharge amount detected by the water discharge amount detection means. So that the discharge amount of And a control means for controlling the amount adjusting means.
かかる第 1 2の態様では、 アルカリイオン水の実際の吐水量に基づいて、 酸性 イオン水の排出量を制御するため、 アル力リイオン水の吐水量に対する酸性ィォ ン水の排出量の割合を常に一定に保持することができ、 アルカリイオン水側と酸 性ィオン水側にかかる圧力をそれぞれ一定に保って、 常に安定した整水濃度から なるアル力リイオン水を整水することができる。  In the first and second aspects, in order to control the discharge amount of the acidic ion water based on the actual discharge amount of the alkaline ion water, the ratio of the discharge amount of the acidic ion water to the discharge amount of the alkaline ion water is determined. The water pressure can be kept constant, and the pressure applied to the alkaline ionized water side and the acid ion water side can be kept constant, respectively, and water can be prepared at a constant concentration.
本発明の第 1 3の態様は、 第 1〜1 2の何れかの態様において、 前記アルカリ 水吐水路からのアル力リイオン水の吐水を停止する際、 前記電解槽への電圧印加 を停止した後、 前記電解槽の少なくとも酸性ィオン水側の水を水道水と置換する 水道水置換手段を具備することを特徴とするアル力リイオン整水器にある。 かかる第 1 3の態様では、 アルカリィオン水の吐水が停止すると、 電解槽内の 少なくとも酸性ィォン水側にある水だけが水道水に置換される。 このため、 電解 槽内に残された酸性ィオン水がアル力リィオン水側に流出することがなくなり、 アル力リィオン水が酸性イオン水に変化することを防止することができる。 本発明の第 1 4の態様は、 第 1〜1 3の何れかの態様において、 前記イオン交 換膜の両側に前記一対の電極の何れか一方を有する第 1及び第 2の空間を具備し According to a thirteenth aspect of the present invention, in any one of the first to thirteenth aspects, the voltage application to the electrolytic cell is stopped when the discharging of the alkaline water from the alkaline water discharging channel is stopped. And a tap water replacement unit for replacing at least water on the acidic ion water side of the electrolytic tank with tap water. In the thirteenth aspect, when the discharge of the alkali ion water stops, only the water at least on the acidic ion water side in the electrolytic cell is replaced with the tap water. For this reason, the acidic ion water remaining in the electrolytic cell does not flow out to the Allion water side, and the Alion water can be prevented from being changed to the acidic ion water. According to a fifteenth aspect of the present invention, in any one of the first to thirteenth aspects, a first and a second space having one of the pair of electrodes are provided on both sides of the ion exchange membrane.
、 当該一対の電極に印加される電圧の極性に応じて前記第 1及ぴ第 2の空間でそ れぞれアル力リィオン水及び酸性ィオン水を生成する際に、 前記一対の電極に印 加する電圧の極性を反転させると共に、 前記電解槽の前記第 1及び第 2の空間とWhen generating Al-ion water and acid-ion water in the first and second spaces, respectively, according to the polarity of the voltage applied to the pair of electrodes, the pair of electrodes are applied to the pair of electrodes. And the first and second spaces of the electrolytic cell.
、 前記アル力リ水吐水路及び前記酸性水排出路とを相互に接続する接続流路を接 続状態が反転するように切り替える反転手段を具備することを特徴とするアル力 リイオン整水器にある。 An inversion means for switching a connection flow path for interconnecting the power supply water discharge passage and the acid water discharge path so that the connection state is reversed. is there.
力かる第 1 4の態様では、 電極に印加する電圧極性の反転に伴って、 電解槽内 のアルカリイオン水が生成される空間からアルカリイオン水が吐水されるまでの 接続流路および電解槽内の酸性イオン水が生成される空間から酸性イオン水が排 出されるまでの接続流路の接続状態を相互に反転させているため、 電極に印加す る電圧極性を反転しても通常のようにアル力リイオン水を利用することができる 。 また、 電極の極性を反転させることにより電極が交互に使用されるため、 電極 に不純物が付着することが防止されると共に、 バランスよく電極を消耗させるこ とができる。 In the strong fourteenth aspect, with the reversal of the voltage polarity applied to the electrodes, the connection flow path from the space in the electrolytic cell where the alkaline ionized water is generated to the time the alkaline ionized water is discharged and the inside of the electrolytic cell Since the connection state of the connection flow path until the acidic ionic water is discharged from the space where the acidic ionic water is generated is reversed, even if the voltage polarity applied to the electrodes is reversed, Al-Li-ion water can be used. Also, since the electrodes are used alternately by reversing the polarity of the electrodes, In addition to preventing impurities from adhering to the electrodes, the electrodes can be consumed in a well-balanced manner.
本発明の第 1 5の態様は、 第 1〜1 4の何れかの態様において、 .前記電解槽を 二段以上の多段にし、 第 1段電解槽には前記水道水供給路から直接水道水を供給 するようにすると共に第 2段以降の後段電解槽には、 ぞの前段の電解槽が生成し' た酸性イオン水を供給するようにし、 各段の電解槽で生成されたアルカリイオン 水を前記アル力リ水吐水路から吐水するようにすると共に、 最も後段の電解槽で 生成された酸性イオン水を前記酸性水排出路から排出するようにしたことを特徴 とするアルカリイオン整水器にある。  According to a fifteenth aspect of the present invention, in any one of the first to fourteenth aspects, the electrolytic cell is provided in two or more stages, and the first-stage electrolytic cell is provided with tap water directly from the tap water supply passage. And supply the acidic ionic water generated by the preceding electrolytic cells to the subsequent electrolytic cells in the second and subsequent stages, and supply the alkaline ionic water generated in the electrolytic cells in the respective stages. Characterized in that water is discharged from the water discharge channel and the acidic ion water generated in the last electrolytic cell is discharged from the acidic water discharge channel. It is in.
かかる第 1 5の態様では、 多段からなる電解槽のうち、 前段の電解槽で生成さ れた酸性ィオン水を後段電解槽に供給してさらにアル力リイオン水と酸性ィオン 水を生成し、 各段の電解槽で生成されたアルカリイオン水を全て吐水路から吐水 させると共に、 最も後段の電解槽で生成された酸性ィォン水のみを排出口から排 出させているため、 一段からなる電解槽構造に比べて、 酸性イオン水の排出量を 大幅に低減させることができる。  In the fifteenth aspect, of the multi-stage electrolyzer, the acidic ion water generated in the previous electrolyzer is supplied to the latter electrolyzer to further generate an alkaline ionized water and an acidic ion water. Since all the alkaline ionized water generated in the electrolytic cell in the second stage is discharged from the water discharge channel, and only the acidic ion water generated in the last electrolytic cell is discharged from the discharge port, a single-stage electrolytic cell structure As compared with, the discharge amount of acidic ionized water can be significantly reduced.
本発明の第 1 6の態様は、 第 1〜1 5の何れかの態様において、 前記電解槽内 には、 前記水道水が導入される一端から前記アル力リイオン水及び前記酸性ィォ ン水が流出される他端に向かった基準方向に交差する幅方向に配置されて、 当該 幅方向の一部の流れをせき止める折流板を前記基準方向に亘つて複数個所定の間 隔で設け、 且つ前記折流板の幅方向一端側に第 1の流路を交互に形成することに より、 前記基準方向に対して蛇行した折流を形成すると共に、 前記折流板の他端 部側に前記第 1の流路ょりも小さな流量となる第 2の流路を形成したことを特徴 とするアル力リイォン整水器にある。  According to a sixteenth aspect of the present invention, in any one of the first to fifteenth aspects, in the electrolytic cell, the alkaline water and the acidic ionized water are supplied from one end where the tap water is introduced. A plurality of folding plates that are arranged in the width direction intersecting the reference direction toward the other end from which the water flows out and that block a part of the flow in the width direction are provided at predetermined intervals over the reference direction; In addition, by alternately forming the first flow paths at one end side in the width direction of the folding plate, a meandering flow is formed with respect to the reference direction, and at the other end side of the folding plate. The water pressure regulator according to claim 1, wherein a second flow path having a small flow rate is formed also in the first flow path.
かかる第 1 6の態様では、 電解槽内に折流と第 2の流路とを形成することによ つて、 電解槽内の止水域を無くすことができ、 水道水の電離分解を効率よく行う ことができる。 また、 折流板の両端部側に 2つの流路を形成することで、 圧力損 失が著しく低下するのを防止して電解槽の内部の流量が低下するのを防止するこ とができる。 これにより、 電解槽を小型化することができ.ると共にアルカリィォ ン整水器を小型化することができる。 本発明の第 1 7の態様は、 第 1〜1 6の何れかの態様において、 前記水道水供 給路から分岐された分岐路と、 該分岐路に一端が連通すると共に他端側に外部に 対して開閉自在となる開口部を有し且つ外部から力ルシゥムが充填可能なカルシ ゥム添加室と、 前記分岐路内に設けられて当該分岐路内の水道水の水圧により前 記カルシゥム添加室側に付勢されて当該力ルシゥム添加室の一端側を封止する封 止部材と、 前記カルシウム添加室内に設けられて前記封止部材に一端が当接する と共に他端が前記開口部から突出し且つ前記開口部を蓋部材で封止する際に当該 蓋部材により押圧されて前記カルシゥム添加室の一端側を開放する押圧部材とを 具備することを特徴とするアルカリィォン整水器にある。 According to the sixteenth aspect, by forming the flow and the second flow path in the electrolytic cell, the water stop area in the electrolytic cell can be eliminated, and the ionization and decomposition of tap water can be efficiently performed. be able to. Further, by forming two flow paths on both end sides of the folding plate, it is possible to prevent the pressure loss from remarkably lowering and prevent the flow rate inside the electrolytic cell from lowering. As a result, the size of the electrolytic cell can be reduced, and the size of the alkaline water conditioner can be reduced. According to a seventeenth aspect of the present invention, in any one of the first to sixteenth aspects, a branch path branched from the tap water supply path, one end of which is connected to the branch path and an external end is connected to the other end side. A calcium addition chamber which has an opening which can be opened and closed with respect to the outside and which can be filled with external force from outside; and a calcium addition chamber provided in the branch passage and which is provided with the water pressure of tap water in the branch passage. A sealing member which is urged toward the chamber to seal one end of the power addition chamber, one end of which is provided in the calcium addition chamber and abuts the sealing member, and the other end of which projects from the opening. And a pressing member that is pressed by the lid member to open one end of the calcium addition chamber when the opening is sealed with the lid member.
かかる第 1 7の態様では、 カルシウム添加室の開口部を塞ぐ蓋部材を開口した 際に、 封止部材が水道水の水圧によってカルシウム添加室の一端を塞ぐため、 力 ルシゥム添カ卩室の開口部から水道水が漏れ出ることがなく、 カルシウム添加室を 外部に開放することができ、 カルシゥムをカルシゥム添加室に容易に且つ確実に 充填することができる。 また、 カルシゥム添加室の開口部を蓋部材で塞ぐだけで 、 封止部材が押圧部材により下方に押圧されてカルシゥム添加室の一端を開放す ることができ、 源水にカルシウムを容易に且つ確実に添加することができる。 以上説明したように、 本発明のアル力リイオン整水器では、 電解槽内の圧力差 によるィオン交換膜の破損が防止され且つ電解槽の水道水の圧力による破壊が防 止されている。 このため、 比較的大量のアル力リイオン水を提供することが可能 となる。 図面の簡単な説明  In the seventeenth aspect, when the lid member that closes the opening of the calcium addition chamber is opened, the sealing member closes one end of the calcium addition chamber by the water pressure of the tap water. The tapping water does not leak from the section, the calcium addition chamber can be opened to the outside, and the calcium can be easily and reliably filled into the calcium addition chamber. Further, by merely closing the opening of the calcium addition chamber with the lid member, the sealing member is pressed downward by the pressing member to open one end of the calcium addition chamber, and calcium is easily and surely supplied to the source water. Can be added. As described above, in the Al-Lion water conditioner of the present invention, damage to the ion exchange membrane due to a pressure difference in the electrolytic cell is prevented, and destruction of the electrolytic cell due to tap water pressure is prevented. For this reason, it is possible to provide a relatively large amount of alkaline water. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施形態 1に係るアル力リィォン整水器の側面図である。 第 2図は、 本発明の実施形態 1に係るアルカリイオン整水器の断面図である。 第 3図は、 本発明の実施形態 1に係るアルカリイオン整水器の概略構成を示す 図である。 '. '  FIG. 1 is a side view of an Al-Ryion water conditioner according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view of the alkali ion water purifier according to Embodiment 1 of the present invention. FIG. 3 is a diagram showing a schematic configuration of an alkali ion water purifier according to Embodiment 1 of the present invention. '.'
第 4図は、 本発明の実施形態 1に係る電解槽の変形状態を示す断面図である。 第 5図は、 本楽明の実施形態 1に係るアル力リィオン整水器の変形例を示す断 面図である。 第 6図は、 本発明の実施形態 1に係るアルカリイオン整水器の変形構成例を示 す要部断面図である。 FIG. 4 is a sectional view showing a deformed state of the electrolytic cell according to Embodiment 1 of the present invention. FIG. 5 is a cross-sectional view showing a modification of the Al-Rion water purifier according to Embodiment 1 of the present invention. FIG. 6 is a cross-sectional view of a main part showing a modified configuration example of the alkali ion water purifier according to Embodiment 1 of the present invention.
第 7図は、 本発明の実施形態 2に係るアル力リィオン整水器の概略構成を示す 図である。  FIG. 7 is a diagram showing a schematic configuration of an Al-Rion water purifier according to Embodiment 2 of the present invention.
第 8図は、 本発明の実施形態 2に係るアル力リィオン整水器の制御系を示す概 略ブロック図である。 ,  FIG. 8 is a schematic block diagram showing a control system of an Al-Rion water conditioner according to Embodiment 2 of the present invention. ,
第 9図は、 本発明の実施形態 3に係るアル力リィオン整水 '器の制御系を示す概 略ブロック図である。  FIG. 9 is a schematic block diagram showing a control system of an AL-force water regulator according to Embodiment 3 of the present invention.
第 1 0図は、 本発明の実施形態 4に係るアルカリイオン整水器の概略構成を示 す図である。 '  FIG. 10 is a diagram showing a schematic configuration of an alkali ion water purifier according to Embodiment 4 of the present invention. '
第 1 1図は、 本発明の実施形態 4に係るアル力リィオン整水器の制御系を示す 概略ブロック図である。  FIG. 11 is a schematic block diagram showing a control system of an Al-Rion water conditioner according to Embodiment 4 of the present invention.
第 1 2図は、 の実施形態 4に係る電極及び電磁バルブの動作例を示す図である 第 1 3図は、 本発明の実施形態 5に係るアル力リイオン整水器の断面図である 第 1 4図は、 本発明の実施形態 5に係るアル力リィォン整水器の側面図である 第 1 5図は、 本発明の実施形態 5に係るアル力リィオン整水器の動作例を示す 概略ブロック図である。'  FIG. 12 is a diagram showing an operation example of an electrode and an electromagnetic valve according to Embodiment 4 of the present invention. FIG. 13 is a cross-sectional view of an Al force ionizer according to Embodiment 5 of the present invention. FIG. 14 is a side view of the Al-Lion water purifier according to the fifth embodiment of the present invention. FIG. 15 is a schematic diagram showing an operation example of the Al-Lion water purifier according to the fifth embodiment of the present invention. It is a block diagram. '
第 1 6図は、 本発明の実施形態 5に係る各電解槽間の接続構成を示す概略図で める。  FIG. 16 is a schematic diagram showing a connection configuration between electrolytic cells according to Embodiment 5 of the present invention.
第 1 7図は、 本発明の実施形態 6に係るアル力リイオン整水器の概略断面図で FIG. 17 is a schematic cross-sectional view of an Al-Li-ion water purifier according to Embodiment 6 of the present invention.
' める 0 '' 0
第 1 8図は、 本努明の実施形態 6に係る電解槽内の各流路を説明する概略図で ある。  FIG. 18 is a schematic diagram illustrating each flow path in the electrolytic cell according to Embodiment 6 of the present invention.
第 1 9図は、 本発明の実施形態 7に係るアルカリイオン整水器の断面図である 第 2 0図は、 本発明の実施形態 7に係るアル力リィオン整水器の要部断面図で ある。 本発明を実施す ための最良の形態 FIG. 19 is a cross-sectional view of an alkali ion water purifier according to Embodiment 7 of the present invention. FIG. 20 is a cross-sectional view of a main part of an Al-Lion water purifier according to Embodiment 7 of the present invention. is there. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を用いて本発明を実施するための最良の形態について説明する。 な お、 本実施形態の説明は例示であり、 本発明の構成は以下の説明に限定されない  Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. The description of the present embodiment is an exemplification, and the configuration of the present invention is not limited to the following description.
(実施形態 1 ) ' (Embodiment 1) ''
第 1図は、 本発明の実施形態 1に係るアル力リイオン整水器の側面図であり、 第 2図は、 その Α _ Α' 新面図であり、 第 3図は、 アルカリイオン整水器の概略 構成を示す図である。  FIG. 1 is a side view of an Al-Li-ion water purifier according to Embodiment 1 of the present invention, FIG. 2 is a new front view of the water purifier, and FIG. 3 is an alkali-ion water purifier. It is a figure which shows the schematic structure of a container.
図示するように、 本実施形態のアル力リィオン整水器 1 0の外枠を構成する整 水器本体 1 1内には、 内部で水道水が電離されてアルカリイオン水と酸性イオン 水とが生成される複数の電解槽 1 2が保持されている。 また、 整水器本体 1 1に は、 原水管からの水道水を内部に導入する水道水導入口 1 1 aと、 電解槽 1 2内 で生成されたアル力リィオン水を吐水するアル力リ水吐水口 1 1 bと、 酸性ィォ ン水を排出する酸性水排出口 1 1 cとを具備する。  As shown in the figure, tap water is ionized inside the water purifier body 11 constituting the outer frame of the water force water purifier 10 of the present embodiment, and alkaline ionized water and acidic ionized water are formed therein. A plurality of electrolytic cells 12 to be generated are held. The water purifier body 11 also has a tap water inlet 11a for introducing tap water from the raw water pipe into the inside, and an AL water outlet for discharging the AL water produced in the electrolytic cell 12. A water spout 11b and an acid water outlet 11c for discharging acid ion water are provided.
具体的には、 整水器本体 1 1の水道水導入口 1 1 aと連通する水道水供給パイ プ 1 3が各電解槽 1 2の下端部側に接続され、 また電解槽 1 2の上端部側には、 アル力リ水吐水口 1 1 bと連通するアル力リ水吐水パイプ 1 4と、 酸性水排出口 1 1 cと連通する酸性水排出パイプ 1 5とが電解槽 1 2の上端部側にそれぞれ接 続されている。 そして、 これらの各パイプ 1 3、 1 4、 1 5が整水器本体 1 1に 固定されることで、 各電解槽 1 2が整水器本体 1 1内に保持されている。  Specifically, a tap water supply pipe 13 communicating with the tap water inlet 11 a of the water purifier body 11 is connected to the lower end side of each electrolytic tank 12, and the upper end of the electrolytic tank 12 On the side of the electrolysis tank 1 2, there are an AL water discharge pipe 14 communicating with the AL water discharge port 1 1 b and an acid water discharge pipe 15 communicating with the acid water discharge port 1 1 c. Each is connected to the upper end. Each of the pipes 13, 14, and 15 is fixed to the water conditioner main body 11, so that each electrolytic cell 12 is held in the water conditioner main body 11.
各電解槽 1 2内には、 それぞれイオン交換膜 1 6が固定されており、 このィォ ン交換膜 1 6によって電解槽 1 2内が 2つの空間 1 2 a、 1 2 bに区切られてい る。 また、 電解槽 1 2内のイオン交換膜 1 6に対向する領域には、 一対の電極 1 7 a、 1 7 がそれぞれ設けられており、 各電極 1 7 a、 1 7 bは、 整水器本体 1 1に設けられた端子部 1 8と接続配線 1 9によって接続されている。 本実施形 態では、 これらの各電極 1 7 a、 1 7 bは、 例えば、 メッシュ状のプラスチック. シート等がらなりイオン交換膜と同等の大きさを有する固定部材 2 0の一方の面 にそれぞれ取り付けられている。 そして、 これらの固定部材 2 0が、 各空間 1 2 a、 1 2 bにイオン交換膜 1 6を挟持するように配置されることで、 イオン交換 膜 1 6に対向する領域に電極 1 7 a、 1 7 bが設けられている。 An ion exchange membrane 16 is fixed in each electrolytic cell 12, and the ion exchange membrane 16 divides the inside of the electrolytic cell 12 into two spaces 12 a and 12 b. You. Further, a pair of electrodes 17a and 17 are provided in a region facing the ion exchange membrane 16 in the electrolytic cell 12 respectively, and each electrode 17a and 17b is provided with a water conditioner. The terminal part 18 provided on the main body 11 is connected to the connection wiring 19. In the present embodiment, each of the electrodes 17a and 17b is, for example, a mesh-shaped plastic. One surface of a fixing member 20 which is formed of a sheet or the like and has a size equivalent to an ion exchange membrane. Is attached to each. Then, these fixing members 20 are arranged so as to sandwich the ion exchange membrane 16 in each of the spaces 12 a and 12 b, so that the electrode 17 a is formed in a region opposed to the ion exchange membrane 16. , 17b are provided.
このような電解槽 1 2の少なくともイオン交換膜 1 6に対向する領域の一部、 本実施形態では、 電角?槽 1 2全体が所定の柔軟性を有する可撓膜によって形成さ れている。 例えば、 本実施形態では、 電解槽 1 2が、 厚さが 0 . 3 mm程度のプ ラスチックシートによって形成されている。  At least a part of the region facing the ion exchange membrane 16 of the electrolytic cell 12, in the present embodiment, the whole of the electrolytic cell 12 is formed of a flexible film having a predetermined flexibility. . For example, in the present embodiment, the electrolytic cell 12 is formed of a plastic sheet having a thickness of about 0.3 mm.
また、 このような複数の電解槽 1 2が保持された整水器本体 1 1内、 すなわち 、 各電解槽 1 2と整水器本体 1 1との間の空間には水道水が供給され、 整k器本 体 1 1内に貯まつた水道水 (貯留水) 2 1中に各電解槽 1 2が保持されている。 また、 整水罨本体 1 1内には、 電解槽 1 2に接触しない領域の一部、 例えば、 本 実施形態では、 酸性水排出パイプ 1 5の上部に空気が残留している空気部 2 2が 存在する。 このように内部に水道水が供給される整水器本体 1 1は、 水道水の水 圧に耐えられる程度の剛性を有する材料、 例えば、 ステンレス鋼等で形成する必 要力ある。  Further, tap water is supplied to the inside of the water conditioner main body 11 in which such a plurality of electrolytic baths 12 are held, that is, the space between each electrolytic bath 12 and the water conditioner main body 11, Each electrolytic cell 12 is held in the tap water (retained water) 21 stored in the body 11 of the regulator. Further, in the water adjusting pack main body 11, a part of the area not in contact with the electrolytic cell 12, for example, in this embodiment, an air part 2 2 in which air remains at the upper part of the acidic water discharge pipe 15. Exists. The water conditioner main body 11 into which the tap water is supplied as described above needs to be formed of a material having rigidity enough to withstand the water pressure of the tap water, for example, stainless steel or the like.
また、 貯留水 2 1は、 本実施形態では、 整水器本体 1 1の水道水導入口 1 1 a からの水道水が電解槽 1 2と共に整水器本体 1 1内に供給されたものである。 す なわち、 水道水供給パイプ 1 3の先端部に、 整水器本体 1 1内に連通する微小な 連通孔 2 3が設けられており、 この連通孔 2 3を介して整水器本体 1 1内に水道 水 (貯留水 2 1 ) が供給されている。 そして、 本実施形態では、 酸性水排出パイ プ 1 5の先端部にも、 整水器本体 1 1内に連通する微小な連通孔 2 4が設けられ ており、 貯留水 2 1はこの連通孔 2 4を介して酸性水排出パイプ 1 5に排出され るようになっている。 このため、 本実施形態では、 整水器本体 1 1内の酸性水排 出パイプ 1 5の上部、 すなわち、 連通孔 2 4の上部側は、 空気が残留している空 気部 2 2となっている。  Further, in this embodiment, the stored water 21 is a supply of tap water from the tap water inlet 11 a of the water purifier body 11 along with the electrolytic cell 12 into the water purifier body 11. is there. That is, at the end of the tap water supply pipe 13, a minute communication hole 23 communicating with the water conditioner main body 11 is provided, and the water conditioner main body 1 is connected through the communication hole 23. Tap water (reserved water 21) is supplied within 1. In the present embodiment, a fine communication hole 24 communicating with the water conditioner main body 11 is also provided at the distal end of the acidic water discharge pipe 15, and the stored water 21 is formed by the communication hole. The water is discharged to the acidic water discharge pipe 15 through 24. For this reason, in the present embodiment, the upper part of the acidic water discharge pipe 15 in the water conditioner main body 11, that is, the upper side of the communication hole 24 becomes the air part 22 in which air remains. ing.
なお、 本実施形態では、 連通孔 2 4を介して貯留水 2 1を酸性ィォ :水と共に 外部に排出するようにしたが、 勿論、 貯留水 2 1を外部に排出する貯留水排出口 を整水器本体 1 1に設け、 酸性イオン水とは別に外部に排出するようにしてもよ い。 このようなアルカリイオン整水器 1 0は、 第 3図に示すように、 水道水供給パ イブ 1 3力 原水側の水道管 1 1 0 Aに接続され、 アル力リ水吐水パイプ 1 4が 、 蛇口 1 0 0側の水道管 1 1 0 Bに接続される。 また、 酸性水排出パイプ 1 5の 一端は、 電解槽 1 2によって生成された酸性イオン水が排出される排出口 1 2 0 と接続される。 なお、 酸性水排出パイプ 1 5の途中には電磁バルブ 3ひが設けら れ、 酸性水の排出量はこの電磁パルプ 3 0の開閉によって制御されている。 例え ば、 本実施形態では、 アル力リ水吐水パイプ 1 4と水道管 1 1 0 Bとの接続部分 に流量スィツチ 4 0が設けられおり、 この流量スィツチ 4 0からの信号に基づい て電磁パルプ 3 0が開閉されるようになっている。 また、 このような流量スイツ チ 4 0及ぴ電磁バルブ 3 0の制御、 あるいは各電解槽 1 2内の電極 1 7 a、 1 7 bに供給する電圧の制御等は、 図示しなレ、制御部によって制御されている。 以下、 このようなアルカリイオン整水器の動作について説明する。 In the present embodiment, the stored water 21 is discharged to the outside together with the acidic water through the communication hole 24. Of course, the stored water discharge port for discharging the stored water 21 to the outside is provided. It may be provided in the water conditioner body 11 so that it is discharged to the outside separately from the acidic ionized water. As shown in Fig. 3, such an alkali ion water purifier 10 is connected to a tap water supply pipe 13 and a water pipe 110A on the raw water side, and an It is connected to the water pipe 110B on the faucet 100 side. One end of the acidic water discharge pipe 15 is connected to a discharge port 120 from which the acidic ionic water generated by the electrolytic cell 12 is discharged. An electromagnetic valve 3 is provided in the middle of the acidic water discharge pipe 15, and the discharge amount of the acidic water is controlled by opening and closing the electromagnetic pulp 30. For example, in the present embodiment, a flow switch 40 is provided at a connection portion between the water discharge pipe 14 and the water pipe 110B, and electromagnetic pulp is provided based on a signal from the flow switch 40. 30 is opened and closed. Further, such control of the flow rate switch 40 and the electromagnetic valve 30 or control of the voltage supplied to the electrodes 17a and 17b in each electrolytic cell 12 is not shown in FIG. Is controlled by the department. Hereinafter, the operation of such an alkali ion water conditioner will be described.
上述したように、 アルカリイオン整水器 1 0は水道管の途中に配設されている ため、 電解槽 1 2内には水道水供給パイプ 1 3から水道水が常に所定の圧力で供 給されている。 そして、 利用者が蛇口 1 0 0部分に設けられた水栓 1 0 1を開く と、 電解槽 1 2内で生成されたアル力リィオン水がアル力リ水吐水パイプ 1 4を 介して蛇口 1 0 0から所定の流量で供給され始める。 また同時に、 アルカリ水吐 水パイプ 1 4と水道管 1 1 0 Bとの間に設けられた流量スィツチ 4 0が、 アル力 リィオン水が流れ始めたことを検出し、 この流量スィツチ 4 0からの信号に基づ いて、 電解槽 1 2内の電極 1 7 a、 1 7 b間には所定の電圧が印加される。 さら に、 酸性水排出パイプ 1 5に設けられた電磁バルブ 3 0が開放されて排出口 1 2 0から酸性ィオン水が排出される。  As described above, since the alkali ion water conditioner 10 is provided in the middle of the water pipe, tap water is always supplied to the electrolytic tank 12 from the water supply pipe 13 at a predetermined pressure. ing. Then, when the user opens the faucet 101 provided in the faucet 100, the Al-Lion water generated in the electrolytic cell 12 is discharged from the faucet 1 through the Al-Ly water spouting pipe 14. It starts to be supplied at a predetermined flow rate from 00. At the same time, the flow switch 40 provided between the alkaline water discharge pipe 14 and the water pipe 110B detects that the AL-ion water has begun to flow. A predetermined voltage is applied between the electrodes 17a and 17b in the electrolytic cell 12 based on the signal. Further, the electromagnetic valve 30 provided in the acidic water discharge pipe 15 is opened, and the acidic ion water is discharged from the discharge port 120.
ここで、 水道水供給パイプ 1 3を介して電解槽 1 2の下端部側から電解槽 1 2 内に供給された水道水は、 イオン交換膜 1 6で区切られた両側の空間 1 2 a、 1 2 にそれぞれ流れ込む。 そして、 両電極 1 7 a、 1 7 b間には所定の電圧が印 加されているため、 電解槽 1 2内、 すなわち、 イオン交換膜 1 6と電極との間を 通過する際に、 水道水は水素イオン H+ と水酸イオン O H— とに電離し、 水素ィ オン H+がイオン交換膜 1 6を介して一方の空間に集まることで、 アルカリィォ ン水と酸性イオン水とが生成される。 すなわち、 2つの空間のうちの一電極 (陰 極) 1 7 b側の空間 1 2 bでは、 イオン交換膜 1 6を通過して水素イオン H+力 S 集まり、 水道水 (2 H 2 O) は、 電子 (2 e— ) により H 2 + 2 O H—に整水され 、 アルカリイオン水が生成される。 一方、 +電極 (陽極) 1 7 a側の空間 1 2 a では、 水道水 (2 H 2 O) は、 0 2 + 4 H+ + 4 e に整水され、 酸性イオン水 が生成される。 このように水道水は、 この電解槽 1 2を通過する際に連続的に電 離され、 これにより生成されたアルカリイオン水が蛇口 1 0 0から供給されると 共に、 酸性イオン水が排出口 1 2 0から排出される。 Here, the tap water supplied into the electrolytic cell 12 from the lower end side of the electrolytic cell 12 via the tap water supply pipe 13 is supplied to the space 12 a on both sides separated by the ion exchange membrane 16. Flow into 1 and 2 respectively. Since a predetermined voltage is applied between both electrodes 17a and 17b, when passing through the electrolytic cell 12, that is, between the ion exchange membrane 16 and the electrode, Water is ionized into hydrogen ions H + and hydroxyl ions OH—, and hydrogen ions H + collect in one space via the ion exchange membrane 16 to generate alkali ion water and acidic ion water. That is, one electrode of two spaces (shade Pole) In the space 1 2 b on the 17 b side, hydrogen ions H + force S gather through the ion exchange membrane 16, and tap water (2 H 2 O) is converted into H 2 + 2 by electrons (2 e—). The water is adjusted to OH- and alkaline ionized water is generated. On the other hand, + the electrode (anode) 1 7 a side of the space 1 2 a, tap water (2 H 2 O) is water conditioner to 0 2 + 4 H + + 4 e, acidic ionized water is produced. In this way, the tap water is continuously ionized when passing through the electrolytic cell 12, and the alkaline ion water generated thereby is supplied from the faucet 100 and the acidic ion water is discharged from the outlet. Emitted from 120.
また、 利用者が水栓 1 0 1を閉めることでアルカリイオン水の供給が停止され 、 これに伴いアルカリ水吐水パイプ 1 4内の流れが止まると、 流量スィッチ 4 0 の信号によつて酸性水排出パイプ 1 5に設けられた電磁パルプ 3 0が閉じられ、 酸性水の排出も停止される。  Also, when the user closes the faucet 101, the supply of the alkaline ionized water is stopped. When the flow in the alkaline water discharge pipe 14 is stopped, the acid water is stopped by the signal of the flow rate switch 40. The electromagnetic pulp 30 provided in the discharge pipe 15 is closed, and the discharge of the acidic water is also stopped.
ここで、 水栓 1 0 1の開閉によりアル力リ水吐水パイプ 1 4内の流れが発生又 は停止する時刻と、 流量スィツチ 4 0がそれを感知して電磁バルブ 3 0が開閉さ れる時刻とは、 若干のタイムラグが存在する。 このタイムラグによって生じる流 水の慣性作用により、 電解槽 1 2内のアルカリィォン水側の空間 1 2 bと酸性ィ オン水側の空間 1 2 aとの内部圧力に差が生じてしまう。 イオン交換膜は、 例え ば、 膜厚が 1 2 m程度であるため、 この圧力差によってイオン交換膜 1 6が変 形して破損する虡がある。  Here, the time at which the flow in the water discharge pipe 14 is generated or stopped by the opening and closing of the faucet 101, and the time at which the flow rate switch 40 detects it and the electromagnetic valve 30 is opened and closed. And there is a slight time lag. Due to the inertial action of the flowing water caused by this time lag, a difference occurs between the internal pressure of the space 12 b on the alkali ion water side and the space 12 a of the acid ion water side in the electrolytic cell 12. Since the ion exchange membrane has, for example, a thickness of about 12 m, the pressure difference may cause the ion exchange membrane 16 to be deformed and damaged.
しかしながら、 本実施形態では電解槽 1 2が可撓膜で形成されているため、 例 えば、 水栓 1 0 1を開ける際に 2つの空間 1 2 a、 1 2 bに圧力差が生じたとし ても、 第 4図に示すように、 電解槽 1 2自体が内側に変形することでこの圧力差 が吸収されるため、 イオン交換膜 1 6の変形による破損を防止することができる 。 なお、 水栓 1 0 1を閉じた際には、 電解槽 1 2自体が外側に変形することで'内 部の圧力差が吸収される。  However, in the present embodiment, since the electrolytic cell 12 is formed of a flexible membrane, for example, when the faucet 101 is opened, a pressure difference is generated between the two spaces 12 a and 12 b. However, as shown in FIG. 4, this pressure difference is absorbed by the electrolytic cell 12 itself deforming inward, so that the ion exchange membrane 16 can be prevented from being damaged by deformation. When the faucet 101 is closed, the internal pressure difference is absorbed by the electrolytic cell 12 itself deforming outward.
また、 電解槽 1 2内には、 上述したように、 その內面の電極 1 7 a、 1 7 bと. イオン交換膜 1 6との間に挟持されるように固定部材 2 0が設けられている。 す なわち、 これらの固定部材 2 0によってイオン交換膜 1 6が挟持されている。 し たがって、 これらの固定部材 2 0によってもイオン交換膜 1 6の変形が抑えられ 、 電解槽 1 2の内部圧力差によるイオン交換膜 1 6の破損をより確実に防止する ことができる。 ここで、 固定部材 2 0は、 例えば、 二つの部品間などを一定間隔 に保つことが可能なスぺーサである。 なお、 本実施形態では、 電解槽 1 2全体が 可撓膜で形成されているが、 勿論、 電解槽 1 2内の圧力差を吸収できれば、 可撓 膜からなる可撓部を電解槽 1 2のイオン交換膜に対向する領域の一部に設けるよ うにしてもよレ、。 Further, in the electrolytic cell 12, as described above, the fixing member 20 is provided so as to be sandwiched between the electrodes 17 a and 17 b on the other side and the ion exchange membrane 16. ing. That is, the ion exchange membrane 16 is sandwiched by these fixing members 20. Accordingly, the deformation of the ion exchange membrane 16 is also suppressed by these fixing members 20, and the breakage of the ion exchange membrane 16 due to the internal pressure difference of the electrolytic cell 12 is more reliably prevented. be able to. Here, the fixing member 20 is, for example, a spacer that can keep a constant interval between two parts or the like. In the present embodiment, the entire electrolytic cell 12 is formed of a flexible film. Of course, if the pressure difference in the electrolytic cell 12 can be absorbed, the flexible portion made of the flexible film can be used as the electrolytic cell 12. Alternatively, it may be provided in a part of the region facing the ion exchange membrane.
また、 電解槽 1 2の変形によって 2つの空間 1 2 a、 1 2 bの圧力差を吸収す るためにほ、 電角军槽 1 2は、 比較的高い柔軟性を有する必要があり、 例えば、 ィ オン交換膜 1 6よりも柔軟性を有することが好ましい。 この条件を満たすために 、 電解槽 1 2は、 比較的膜厚の薄いプラスチックフィルムからなる可撓膜で形成 されている。 このため、 電解槽 1 2は、 それ自体では水道水供給パイプ 1 3を介 して電解槽 1 2内に供給される水道水の圧力、 例えば、 1〜6 k g / c m 2程度 の圧力に耐えられず破壊されてしまう虞がある。 In addition, in order to absorb the pressure difference between the two spaces 12a and 12b due to the deformation of the electrolytic cell 12, the electric angle tank 12 needs to have relatively high flexibility. It is preferable to have more flexibility than the ion exchange membrane 16. In order to satisfy this condition, the electrolytic cell 12 is formed of a flexible film made of a relatively thin plastic film. Therefore, the electrolytic cell 12 itself withstands the pressure of tap water supplied into the electrolytic cell 12 via the tap water supply pipe 13, for example, a pressure of about 1 to 6 kg / cm 2. There is a risk of being destroyed without being crushed.
しかしながら、 本実施形態では、 水道水供給パイプ 1 3を介して電解槽 1 2内 に水道水が供給される際、 水道水供給パイプ 1 3の先端部の連通孔 2 3から整水 器本体 1 1内にも水道水が供給され、 整水器本体 1 1内に貯まつた貯留水 2 1内 に各電解槽 1 2が保持されている。 このため、 整水器本体 1 1内の貯留水 2 1の 圧力は、 電解槽 1 2内に供給された水道水と略同一の圧力に保持され、 電解槽 1 2の外面にも、 その内面と略同一の水圧がかかる。 したがって、 電解槽 1 2内に 供給される水道水によつて電解槽 1 2の内面に比較的高い圧力がかかった場合で も、 電解層 1 2の外面にも略同一の圧力がかかることになり、 電解槽 1 2自体も 水圧の変化に伴う変形によって破損することはない。  However, in the present embodiment, when tap water is supplied into the electrolytic cell 12 through the tap water supply pipe 13, the tap water supply main body 1 is connected to the communication hole 23 at the tip of the tap water supply pipe 13. Tap water is also supplied to the inside 1, and each electrolytic cell 12 is held in the stored water 21 stored in the water purifier body 11. For this reason, the pressure of the stored water 21 in the water conditioner main body 11 is maintained at substantially the same pressure as the tap water supplied to the electrolytic cell 12, and the inner surface of the electrolytic cell 12 is Approximately the same water pressure is applied. Therefore, even when relatively high pressure is applied to the inner surface of the electrolytic cell 12 by the tap water supplied into the electrolytic cell 12, substantially the same pressure is applied to the outer surface of the electrolytic layer 12. Thus, the electrolytic cell 12 itself is not damaged by deformation due to a change in water pressure.
また、 本実施形態では、 貯留水 2 1は、 酸性水排出パイプ 1 5に設けられた連 通孔 2 4から酸性イオン水と共に外部に排出されるようになっている。 すなわち 、 整水器本体 1 1内には水道水が満充填されておらず、 連通孔 2 4の上部側には 空気が残留している空気部 2 2が存在する。 このため、 上述した電解槽 1 2内の 圧力差に伴う電解槽 1 2の変形が貯留水 2 1によって妨げられることがなく、 ィ オン交換膜 1 6の破損を防止することができる。  Further, in the present embodiment, the stored water 21 is discharged to the outside together with the acidic ion water from the communication hole 24 provided in the acidic water discharge pipe 15. That is, the water purifier body 11 is not fully filled with tap water, and an air portion 22 in which air remains is present above the communication hole 24. Therefore, the deformation of the electrolytic cell 12 due to the pressure difference in the electrolytic cell 12 described above is not hindered by the stored water 21, and the ion exchange membrane 16 can be prevented from being damaged.
すなわち、 上述したように電解槽 1 2内の圧力差により電解槽 1 2が変形した 場合、 整水器本体 1 1内の容積が変化する。 このとき、 貯留水 2 1自体は実質的 に容積変化しないため、 整水器本体 1 1内に貯留水が満充填されていると、 貯留 水 2 1によって電解槽 1 2の変形が妨げられる。 しかしながら、 本実施形態では 、 整水器本体 1 1内に空気部 2 2が存在し、 電解槽 1 2が変形した場合にこの空 気部 2 2が容積変化するため、 電解槽 1 2の変形が妨げられることがない。 した がって、 整水器本体 1 1内に空気部 2 2を設けておくことで、 イオン交換膜 1 6 の破損をより確実に防止することができる。 That is, as described above, when the electrolytic cell 12 is deformed due to the pressure difference in the electrolytic cell 12, the volume in the water conditioner main body 11 changes. At this time, the stored water 2 1 itself is substantially When the water storage unit 11 is fully filled with the stored water, the stored water 21 prevents the electrolytic cell 12 from being deformed. However, in the present embodiment, since the air part 22 is present in the water conditioner main body 11 and the volume of the air part 22 changes when the electrolytic cell 12 is deformed, the deformation of the electrolytic cell 12 is performed. Is not disturbed. Therefore, by providing the air part 22 in the water conditioner body 11, damage to the ion exchange membrane 16 can be prevented more reliably.
なお、 このような空気部 2 2の容積は、 特に限定されないが、 整水器本体 1 1 内の容積の 2 0〜3 0 %程度の大きさであることが好ましい。  The volume of the air portion 22 is not particularly limited, but is preferably about 20 to 30% of the volume in the water conditioner main body 11.
このように本実施形態のアルカリイオン整水器 1 0では、 水道水を比較的高い 水圧で供給してもイオン交換膜 1 6及び電解槽 1 2が破損することがないため、 所定数の電解槽 1 2を並設することで、 水道水と同等の流量、 例えば、 一般家庭 用では 2 0〜3 0 ( L/分) 程度、 業務用では 1 0 0 ( L/分) 程度の流量でァ ルカリィォン水を利用者に供給することができる。  As described above, in the alkali ion water purifier 10 of the present embodiment, even if tap water is supplied at a relatively high water pressure, the ion exchange membrane 16 and the electrolytic cell 12 are not damaged, so that a predetermined number of By arranging tanks 12 side by side, at a flow rate equivalent to that of tap water, for example, about 20 to 30 (L / min) for general household use, and about 100 (L / min) for commercial use Alcalyon water can be supplied to users.
したがって、 このようなアル力リィオン整水器 1 0によって生成したアル力リ ィオン水を電気温水器等の給湯器に供給して温水として利用者に提供することも でき、 アルカリイオン水を、 例えば、 入浴やシャワーに利用することができる。 なお、 アルカリイオン整水器 1 0から給湯器にアルカリイオン水を供給する場合 Therefore, the allion water generated by the allion water dispenser 10 can be supplied to a water heater such as an electric water heater and provided to the user as hot water. Can be used for bathing and showering. In the case where alkaline ionized water is supplied from the alkali ion water conditioner 10 to the water heater
、 給湯器に供給されるアル力リイオン水の水圧が若干低下する。 このため、 例え ば、 第 5図に示すように、 酸性水排出パイプ 1 5内にこの排出流路の一部を遮断 する流量調整部材 5 0を設けることにより、 給湯器に供給されるアルカリイオン 水の水圧を調整するようにしてもよい。 However, the water pressure of the water supplied to the water heater is slightly reduced. For this reason, for example, as shown in FIG. 5, by providing a flow rate adjusting member 50 in the acidic water discharge pipe 15 to block a part of this discharge flow path, the alkali ion supplied to the water heater is provided. The water pressure of the water may be adjusted.
なお、 上述したアル力リィオン整水器 1 0では、 内部の流路抵抗等を調整する ことにより、 アル力リイオン水と酸性イオン水との割合が約 1 0対 2になるよう に設定されており、 従来の 1対 1のものと比較して酸性ィオン水の排出量が極め て小さくなつているが、 この割合は適宜設定することができる。  In the above-described Al-Rion water conditioner 10, the ratio of Al-Lion water to acidic ionic water is set to about 10 to 2 by adjusting the internal flow resistance and the like. Therefore, the discharge of acid ion water is extremely small as compared with the conventional one-to-one system, but this ratio can be set as appropriate.
また、 本実施形態のアルカリイオン整水器 1 0では、 酸性イオン水は利用する ことなく排出管に流すようにしているが、 例えば、 専用タンク等に貯留すること により酸性イオン水も利用できるようにすることもできる。 なお、 この場合には 、 酸性イオン水とは別に貯留水 2 1を外部に排出するようにすることが望ましい また、 本実施形態のアル力リィオン整水器 1 0では、 複数の電解槽 1 2が、 整 水器本体 1 1内に所定の間隔で並設されるようにしたが、 特にこれに限定されず 、 例えば、 隣接する各電解槽 1 2の間に間隔を空けずに、 外周面が接触するよう に並設するようにしてもよい。 このように隣接する各電解槽 1 2に間隔を空けず に、 並設するようにしても、 接触していない可撓膜によって電解槽内の圧力差の 吸収を行わせることができると共に、 整水器本体 1 1を小型化することができる Further, in the alkali ion water purifier 10 of the present embodiment, the acidic ion water is allowed to flow to the discharge pipe without being used, but for example, the acidic ion water can be used by storing it in a dedicated tank or the like. You can also In this case, it is desirable to discharge the stored water 21 outside the acidic ionized water separately. Further, in the Al-Rion water conditioner 10 of the present embodiment, the plurality of electrolytic cells 12 are arranged side by side at predetermined intervals in the water conditioner main body 11, but the invention is not particularly limited to this. Instead, for example, the electrolytic cells 12 may be juxtaposed so that the outer peripheral surfaces are in contact with each other without leaving a space between the adjacent electrolytic cells 12. Even if the adjacent electrolyzers 12 are arranged side by side without leaving an interval as described above, the pressure difference in the electrolyzer can be absorbed by the flexible membrane that is not in contact with the electrolyzer, and the adjustment can be performed. Water main unit 1 1 can be downsized
'上述したように、 本実施形態のアル力リイオン整水器 1 0では、 水栓 1 0 1の 開閉によって生じた圧力差を電解槽 1 2 Aの可撓膜によって吸収することができ るため、 水道水と同等の流量でアルカリイオン水を吐水させることができる。 また、 従来のアル力リイオン整水器では、 アル力リイオン水と酸性イオン水の 排出割合が 1対 1程度であり、 アル力リィオン水の吐水に伴い酸性ィオン水 (捨 て水) の排出が半分程度であったが、 本実施形態のアルカリイオン整水器 1 0に よれば、 その酸性イオン水の排出量を極めて少なくできるという利点がある。 一方、 電解槽の構造も上述したものに限定されるものではなく、 例えば、 第 6 図に示すような電解槽 1 2 Aを用いたアルカリイオン整水器を構成してもよい。 なお、 第 6図において、 上述した実施形態 1と同様の部材には同一の符号を付し て重複する説明については省略する。 As described above, in the Al-Lion water purifier 10 of the present embodiment, the pressure difference caused by the opening and closing of the faucet 101 can be absorbed by the flexible membrane of the electrolytic cell 12A. However, alkaline ionized water can be spouted at the same flow rate as tap water. In addition, in the conventional Al-Lion water purifier, the discharge ratio of Al-Lion water and acidic ionic water is about 1 to 1, and the discharge of acid-ion water (discarded water) is accompanied by the discharge of Al-Lion water. Although it was about half, the alkali ion water purifier 10 of the present embodiment has an advantage that the discharge amount of the acidic ion water can be extremely reduced. On the other hand, the structure of the electrolytic cell is not limited to that described above. For example, an alkaline ionizer using an electrolytic cell 12A as shown in FIG. 6 may be configured. In FIG. 6, the same members as those in the first embodiment described above are denoted by the same reference numerals, and redundant description will be omitted.
第 6図に示すように、 電解槽 1 2 Aには、 イオン交換膜 1 6と、 イオン交換膜 1 6に対向するように、 —対の電極 1 7 a、 1 7 bが設けられている。 また、 電 解槽 1 2 Aは、 上述した実施形態 1と同様に、 全体が所定の柔軟性を有する可撓 膜によって形成されている。  As shown in FIG. 6, the electrolytic cell 12 A is provided with an ion exchange membrane 16 and a pair of electrodes 17 a and 17 b so as to face the ion exchange membrane 16. . Further, the electrolytic cell 12A is entirely formed of a flexible film having a predetermined flexibility, as in Embodiment 1 described above.
各電極 1 7 a 1 7 bのそれぞれは、 電解槽 1 2 Aの内面に設けられた 4つの 固定部材 2 O Aによって固定されている。 この固定部材 2 O Aは、 電解槽 1 2 A の内面と電極 1 7 a、 1 7 bとの間に設けられて、 例えば、 1 mmの隙間を形成 する円筒形状を有するスぺーサ 2 0 aと、 スぺーサ 2 0 aとの間で電極 1 7 a、 1 7 bを挟持する円筒形状を有するスリープ 2 0 bと、 スぺーサ 2 0 a及ぴスリ 一ブ 2 0 bを揷通して一端が電解槽 1 2 Aに固定されたリベット 2 0 cとで構成 されている。 . Each of the electrodes 17a and 17b is fixed by four fixing members 2OA provided on the inner surface of the electrolytic cell 12A. The fixing member 2OA is provided between the inner surface of the electrolytic cell 12A and the electrodes 17a, 17b, and has a cylindrical spacer 20a forming a gap of 1 mm, for example. And a sleeper 20b having a cylindrical shape sandwiching the electrodes 17a and 17b between the spacer 20a and a spacer 20a and a sleeve 20b. With a rivet 20 c fixed at one end to the electrolytic cell 12 A Have been. .
また、 ィオン交換膜 1 6は、 電極 1 7 aを保持するスリーブ 2 0 bと電極 1 7 bを保持するスリーブ 2 0 bとの間で挟持されている。 すなわち、 イオン交換膜 1 6は、'各電極 1 7 a、 1 7 bを固定するスリーブ 2 0 bによって 4箇所で挟持 されて、 これにより、 各電極 1 7 a、 1 7 bのそれぞれが、 イオン交換膜 1 6と 所定間隔離されて配設されている。 このとき、 本実施形態では、 各電極 1 7 a、 1 7 bとイオン交換膜 1 6間が、 例えば、 それぞれ 3 mmの隙間となるようにし た。  Further, the ion exchange membrane 16 is sandwiched between a sleeve 20b holding the electrode 17a and a sleeve 20b holding the electrode 17b. That is, the ion exchange membrane 16 is sandwiched at four places by a sleeve 20b for fixing the electrodes 17a and 17b, whereby each of the electrodes 17a and 17b is It is provided separated from the ion exchange membrane 16 by a predetermined distance. At this time, in the present embodiment, the gap between each of the electrodes 17a and 17b and the ion exchange membrane 16 is, for example, 3 mm.
このような電解槽 1 2 Aは、 イオン交換膜 1 6が 4つの固定部材 2 O Aによつ て点で挟持されていても、 水栓 1 0 1の開閉により圧力差が生じた際に、 可撓膜 によって 力差を吸収することができるため、 イオン交換膜 1 6が破損するのを 防止することができる。  Even when the ion exchange membrane 16 is sandwiched at points by the four fixing members 2OA, such an electrolytic cell 12A is not affected by a pressure difference caused by opening and closing the faucet 101. Since the force difference can be absorbed by the flexible membrane, the ion exchange membrane 16 can be prevented from being damaged.
すなわち、 上述した実施形態 1では、 メッシュ状の固定部材 2 0を用いてィォ ン交換膜 1 6を挟持することで、 ィオン交換膜 1 6の変形を抑制していた。 しか しながら、 本発明の実施は、 電解槽の構造おょぴ電解槽内のイオン交換膜 1 6を 挟持する固定部材またはその固定方法には限定されず、 例えば、 本実施形態のよ うに、 4つの固定部材 2 O Aを用いることによつても同様にイオン交換膜 1 6の 変形を抑制することができる。  That is, in Embodiment 1 described above, the deformation of the ion exchange membrane 16 is suppressed by sandwiching the ion exchange membrane 16 using the mesh-shaped fixing member 20. However, the implementation of the present invention is not limited to the structure of the electrolytic cell and the fixing member for holding the ion exchange membrane 16 in the electrolytic cell or the fixing method. For example, as in the present embodiment, The use of the four fixing members 2 OA can also suppress the deformation of the ion exchange membrane 16.
以上のように、 上述のような電解槽 1 2 Aを用いたアル力リィオン整水器を構 成しても、 上述した実施形態 1と同様に、 水栓 1 0 1の開閉によって生じた圧力 差を電解槽 1 2 Aの可撓膜によって吸収することができるため、 水道水と同等の 流量でアル力リイオン水を吐水させることができると共に、 酸性イオン水の排出 量を極めて少なくできるという利点がある。  As described above, even when an Al-forced water conditioner using the electrolytic cell 12 A as described above is configured, the pressure generated by opening and closing the faucet 101 is the same as in the first embodiment. Since the difference can be absorbed by the flexible membrane of the electrolytic cell 12 A, it is possible to discharge the alkaline ionized water at the same flow rate as tap water, and the discharge amount of the acidic ionized water can be extremely reduced. There is.
. (実施形態 2 )  (Embodiment 2)
第 7図は、 本発明の実施形態 2に係るアルカリイオン整水器の概略構成を示す 図であり、 第 8図は、 本発明の実|形態 2に係るアル力リィオン整水器の制御系 を示すブロック図である。 なお、 本実施形態 2においても、 標準的なアルカリィ オン水の吐水に際して、 アル力リイオン整水器の構造上の設計により、 アル力リ イオン水と酸性ィオン水との割合が 1 0対 2となるように設定してある。 本実施形態は、 制御装置 6 0の制御によって、 アルカリイオン水の吐水量に対 する酸性ィオン水の排出量が所定の割合となるように流量調整バルブ 3 0 Aを制 御する例示である。 FIG. 7 is a diagram showing a schematic configuration of an alkali ion water purifier according to Embodiment 2 of the present invention, and FIG. 8 is a control system of an Al-Rion water purifier according to Embodiment 2 of the present invention. FIG. In the second embodiment as well, at the time of discharging the standard alkaline water, the ratio of the alkaline water to the acidic water is 10: 2 due to the structural design of the alkaline water ionizer. It is set to be. The present embodiment is an example in which the flow control valve 30A is controlled by the control of the control device 60 such that the discharge amount of the acidic ion water with respect to the discharge amount of the alkaline ion water becomes a predetermined ratio.
このような制御に際し、 本実施形態は、 酸性水排出パイプ 1 5の途中に流量セ ンサ 4 0 Bが設けられている点が上述した実施形態 1と異なっている。 また、 上 述した実施形態 1では、 所定の信号に基づいて開閉する機能を有する電磁バルブ 3 0を採用しているが、 本実施形態では、 さらに流量が調整可能な流量調整バル プ 3 O Aを採用している点でも異なっている。  In such control, the present embodiment is different from the above-described first embodiment in that a flow sensor 40B is provided in the middle of the acidic water discharge pipe 15. Further, in the above-described first embodiment, the electromagnetic valve 30 having a function of opening and closing based on a predetermined signal is employed. However, in the present embodiment, a flow rate adjusting valve 3 OA that can further adjust the flow rate is used. They differ in their adoption.
図示するように、 制御装置 6 0は、 整水器本体 1 1の外部に設置されていると 共に、 整水器本体 1 1に設けられた端子部 1 8と図示しない接続配線によって電 気的に接続されており、'各電解槽 1 2内の電極 1 7 a、 1 7 bに供給する電圧を 制御している。 このような制御装置 6 0としては、 入力信号に基づいて演算可能 であり、 その演算結果に基づいて信号を出力する機能を持つものであれば、 その 構成は問わない。 なお、 制御装置 6 0は、 整水器本体 1 1の外部に設置されてい るが、 整水器本体 1 1の内部に保持させるようにしてもよい。  As shown in the figure, the control device 60 is installed outside the water conditioner body 11 and electrically connected to a terminal 18 provided on the water conditioner body 11 and connection wiring (not shown). And controls the voltage supplied to the electrodes 17a and 17b in each electrolytic cell 12. The configuration of the control device 60 is not limited as long as it can perform calculations based on input signals and has a function of outputting signals based on the calculation results. The control device 60 is installed outside the water purifier main body 11, but may be held inside the water purifier main body 11.
なお、 本実施形態では、 上述した構成以外の他の構成は、 上述した実施形態 1 と同様のため、 その説明は省略する。  Note that, in the present embodiment, other configurations than the above-described configuration are the same as those of the above-described first embodiment, and a description thereof will be omitted.
このような構成からなるアル力リィオン整水器 1 0 Aでは、 利用者が蛇口 1 0 0部分に設けられた水栓 1 0 1を開くと、 電解槽 1 2内で生成されたアル力リィ オン水がアル力リ水吐水パイプ 1 4を介して蛇口 1 0 0から所定の流量で吐水さ れ始める。 また同時に、 アル力リ水吐水パイプ 1 4と水道管 1 1 0 Bとの間に設 けられた流量センサ 4 O Aが、 アルカリイオン水が流れ始めたことを検出し、 こ の流量センサ 4 O Aからの信号に基づいて、 電解槽 1 2内の電極 1 7 a、 1 7 b 間には所定の電圧が印加される。 さらに、 酸性水排出パイプ 1 5に設けられた流 量調整バルブ 3 O Aが駆動することにより、 排出口 1 2 0から排出される酸性ィ オン水量が調整される。 すなわち、 第 8図に示す一例のように、 制御装置 6 0は 、 流量センサ 4 O Aが検出したアルカリイオン水の吐水量を取得し、 アルカリィ オン水の吐水量が変化しても、 常に排出する酸性イオン水量がアルカリイオン水 量の 2 0 %前後になるように演算して流量調整パルプ 3 0 Aを駆動する。 また、 本実施形態では、 制御装置 6 0は、 酸性水排出パイプ 1 5に設けられた流量セン サ 4 0 Bが検出する酸性イオン水量を取得し、 この排出量に基づいて流量調整バ ルブ 3 O Aをフィードパック制御しているので、 実際に排出されている酸性ィォ ン水量がアルカリイオン水量の 2 0 %前後であるか否かを確認しながら制御する ことができる。 In the AL-RION water purifier 10 A having such a configuration, when the user opens the faucet 101 provided in the faucet 100, the AL-RION generated in the electrolytic cell 12 is opened. The ON water starts to be spouted at a predetermined flow rate from the faucet 100 via the water spouting pipe 14. At the same time, the flow sensor 4 OA provided between the water discharge pipe 14 and the water pipe 110 B detects that the alkaline ionized water has begun to flow, and the flow sensor 4 OA A predetermined voltage is applied between the electrodes 17a and 17b in the electrolytic cell 12 based on the signal from Further, the amount of acidic ion water discharged from the outlet 120 is adjusted by driving the flow rate adjusting valve 3 OA provided in the acidic water discharge pipe 15. That is, as in the example shown in FIG. 8, the control device 60 obtains the amount of discharged alkaline ionized water detected by the flow rate sensor 4OA, and always discharges the discharged alkaline ionized water even if the discharged amount changes. The flow control pulp 30A is driven by calculating so that the amount of acidic ion water is about 20% of the amount of alkali ion water. Also, In the present embodiment, the control device 60 obtains the amount of acidic ionic water detected by the flow sensor 40 B provided in the acidic water discharge pipe 15, and controls the flow control valve 3 OA based on the discharged amount. Since feed-pack control is used, control can be performed while confirming whether or not the amount of acid ion water actually discharged is about 20% of the amount of alkali ion water.
なお、 ここでいうアルカリイオン水量の 2 0 %という数値は、 当初からの設計 値であり、 本実施形態の装置がアル力リィオン水を所定の整水濃度で吐水させな がら、 酸性イオン永の排出量を最小限に保持することができる値であるが、 これ に限定されず、 装置規格に応じて変更できるものである。  The numerical value of 20% of the amount of alkaline ionized water here is a design value from the beginning, and the apparatus of the present embodiment discharges acidic force water at a predetermined water-concentration concentration while maintaining the acid ion elongation. This is a value that can keep the emission amount to a minimum, but is not limited to this, and can be changed according to the equipment standard.
また、 従来のアル力リイオン整水器では、 アルカリイオン水と酸性イオン水の 排出割合が 1対 1程度であり、 アル力リィオン水の吐水に伴い酸性ィオン水 (捨 て水) の排出が半分程度であつたが、 本実施形態のアル力リイオン整水器 1 0 A によれば、 その酸性ィオン水の排出量を極めて少なくできるという利点は上述し た通りであるが、 本実施形態では、 アル力リイオン水の吐水量が非常に少ない状 態でもこの割合が変化せず、 常に無駄な酸性ィォン水を排出しないという利点が ¾>る。  In addition, the discharge rate of alkaline ionized water and acidic ionized water is about 1 to 1 in the conventional Al-Lion water conditioner, and the discharge of acid-ion water (discarded water) is reduced by half with the discharge of Al-Lion water. Although the degree of discharge of the acidic ion water can be extremely reduced according to the Al-Lion water purifier 10 A of the present embodiment, as described above, in the present embodiment, The advantage is that this ratio does not change even when the amount of spouted Li-ion water is very small, and wasteful acid ion water is not always discharged.
上述した制御例では、 制御装置 6 0が各流量センサ 4 0 A、 4 O Bが検出した 流量をそれぞれ取得していたが、 これに限定されず、 例えば、 各流量センサ 4 0 A、 4 0 Bが検出した流量を制御装置 6 0に通知するように制御してもよい。 また、 上述した実施形態 1と同様に、 利用者が水栓 1 0 1を閉めることでアル 力リイオン水の供給が停止され、 これに伴いアル力リ水吐水パイプ 1 4内の流れ が止まると、 流量センサ 4 O Aの信号によって酸性水排出パイプ 1 5に設けられ た流量調整バルブ 3 O Aが駆動し、 酸性水の排出が停止される。  In the control example described above, the control device 60 acquires the flow rates detected by the flow sensors 40A and 4OB, respectively. However, the present invention is not limited to this. For example, the flow sensors 40A and 40B May be controlled so as to notify the control device 60 of the detected flow rate. Further, similarly to Embodiment 1 described above, when the user closes the faucet 101, the supply of the alkaline water is stopped, and accordingly, the flow in the hydraulic water discharge pipe 14 stops. The flow control valve 3 OA provided in the acidic water discharge pipe 15 is driven by the signal of the flow sensor 4 OA, and the discharge of the acidic water is stopped.
このとき、 排出する酸性イオン水量を常にアル力.リイオン水量の 2 0 %前後に 制御すると、 電解槽 1 2が破損し易くなる。 すなわち、 アルカリイオン水量と酸 性イオン水量が 1 0対 2の排出割合に保持されることにより、 電解槽 1 2内では 、 アル力リィオン水側の空間 1 2 bと酸性ィオン水側の空間 1 2 aとの内部圧力 に差が生じてしまう。 イオン交換膜 1 6は、 例えば、 膜厚が 1 2 111程度である ため、 この圧力差によってイオン交換膜 1 6が変形して破損する虞がある。 しかしながら、 本実施形態では電解槽 1 2が可撓膜で形成されているため、 例 えば、 上述のように水栓 1 0 1を開ける際に 2つの空間 1 2 a、 1 2 bに圧力差 が生じたとしても、 上述した実施形態 1と同様に、 電解槽 1 2自体が内側に変形 することでこの圧力差が吸収されるため、 イオン交換膜 1 6の変形による破損を 防止することができる。 したがって、 上述のようにアルカリイオン水量と酸性ィ オン水量の排出割合を 1 0対 2に保持することによって生じる圧力差についても 、 比較的容易に吸収することができる。 At this time, if the amount of the acidic ionized water to be discharged is always controlled to be about 20% of the total amount of the ionized water, the electrolytic cell 12 is easily damaged. That is, by maintaining the amount of alkaline ionized water and the amount of acidic ionic water at a discharge ratio of 10 to 2, in the electrolytic cell 12, the space 1 b on the Al-ion water side and the space 1 b on the acid-ion water side There will be a difference between 2a and the internal pressure. Since the ion exchange membrane 16 has, for example, a film thickness of about 11211, the pressure difference may cause the ion exchange membrane 16 to be deformed and damaged. However, in this embodiment, since the electrolytic cell 12 is formed of a flexible film, for example, when the faucet 101 is opened as described above, a pressure difference is generated between the two spaces 12a and 12b. Even in the case where the pressure difference occurs, similarly to Embodiment 1 described above, since the electrolytic cell 12 itself deforms inward, this pressure difference is absorbed, so that the ion exchange membrane 16 can be prevented from being damaged by deformation. it can. Therefore, the pressure difference caused by maintaining the discharge ratio of the amount of the alkali ion water and the amount of the acidic ion water to 10 to 2 as described above can be relatively easily absorbed.
上述したように、 本実施形態のアルカリイオン整水器 1 O Aでは、 アルカリィ オン水の吐水量に対する酸性ィオン水の排出量を常に所定の比率に保持すること ができるため、 アルカリイオン水の吐水量に対する酸性イオン水の排出量を最小 限に抑えることができると共に、 アル力リイオン水の吐水量の変動により変化す るアル力リイオン水の整水濃度を一定に保つことができる。 そして、 本実施形態 のアル力リィオン整水器 1 0 Aでは、 電解槽 1 2が所定の柔軟性を有する可撓膜 によって形成されているため、 アルカリイオン水と酸性ィォン水の排出割合を所 定の比率に保持することにより生じる内部の圧力差も容易に吸収することができ る。  As described above, in the alkali ion water purifier 1 OA of the present embodiment, the discharge amount of the acidic ion water with respect to the discharge amount of the alkaline ion water can always be maintained at a predetermined ratio. The discharge of acidic ionized water can be minimized, and the water conditioning concentration of Alion deionized water, which changes due to fluctuations in the amount of spouted Alion deionized water, can be kept constant. In the water pressure regulator 10A of the present embodiment, since the electrolytic cell 12 is formed of a flexible film having a predetermined flexibility, the discharge ratio of the alkaline ionized water and the acidic ionized water is determined. The internal pressure difference caused by maintaining a constant ratio can be easily absorbed.
以上、 本発明の一実施形態を説明したが、 本宪明の基本的な構成は上述したも のに限定されず、 次のような変形構成が可能である。  As described above, one embodiment of the present invention has been described. However, the basic configuration of the present invention is not limited to the above, and the following modified configuration is possible.
例えば、 第 8図に示した制御系は一例であり、 アル力リィオン水の吐水量に応 じて酸性ィオン水の排出量を制御するものであればよく、 上述した実施形態 2の 酸性イオン水の流量センサ 4 0 Bは必ずしも設ける必要はない。 すなわち、 流量 センサ 4 0 Bを有しない場合でも、 フィードバック制御しない以外は、 上述した 制御と同様な制御が実行できる。  For example, the control system shown in FIG. 8 is an example, and any control system may be used as long as it controls the discharge amount of acid ion water in accordance with the amount of spouted water. It is not always necessary to provide the flow sensor 40B. That is, even when the flow rate sensor 40B is not provided, the same control as the above-described control can be executed except that the feedback control is not performed.
また、 流量センサ 4 0 Bを設けた場合にも、 必ずしもフィードバック制御する 必要はなく、 例えば、 制御装置 6 0が、 流量センサ 4 O A及び 4 0 Bの流量を取 得し、 これに基づいて両者の比が所定の範囲となるように流量調整バルブ 3 O A を制御するようにしてもよい。  Also, even when the flow sensor 40B is provided, it is not always necessary to perform feedback control. For example, the control device 60 obtains the flow rates of the flow sensors 4OA and 40B, and The flow control valve 3OA may be controlled so that the ratio of the flow control valve 3OA falls within a predetermined range.
また、 制御装置 6 Qは、 常に流量調整パルプ 3 O Aを制御する必要はなく、 ァ ルカリイオン水の吐水量と酸性イオン水の排出量の比が、 例えば、 1 0 : 2 ± 1 0 %〜2 0 %の範囲を外れたときのみに制御するようにしてもよい。 Also, the controller 6Q does not need to constantly control the flow control pulp 3OA, and the ratio of the discharge amount of alkaline ion water to the discharge amount of acidic ion water is, for example, 10: 2 ± 1. Control may be performed only when the value is out of the range of 0% to 20%.
また、 制御装置 6 0が行う流量調整バルブ 3 0 Aの駆動は、 連続的な駆動では なく、 段階的な駆動であってもよい。 すなわち、 酸性イオン水の排出量は、 アル カリイオン水の吐水量を複数のレベルに設定しておき、 そのレベルに合わせて段 階的に制御させるものであってもよい。  Further, the drive of the flow control valve 30A performed by the control device 60 may be a stepwise drive instead of a continuous drive. That is, the discharge amount of the acidic ionized water may be such that the discharge amount of the alkaline ionized water is set at a plurality of levels, and the discharge amount is controlled stepwise according to the level.
(実施形態 3 )  (Embodiment 3)
第 9図は、 本発明の実施形態 3に係るアル力リイオン整水器の制御系を示す概 略ブロック図である。  FIG. 9 is a schematic block diagram showing a control system of an Al-Li-ion water purifier according to Embodiment 3 of the present invention.
本実施形態は、 第 3図の構成を前提として、 アルカリイオン水の吐水が停止し た際に、 電解槽 1 2内に残された酸性ィオン水側 1 2 aの電解水を水道水に置換 するように制御する例示である。  In this embodiment, based on the configuration shown in Fig. 3, when the discharge of alkaline ionized water stops, the electrolytic water on the acidic ion water side 12a remaining in the electrolytic cell 12 is replaced with tap water. FIG.
このような制御に際し、 本実施形態は、 第 9図に示すように、 制御部 6 0 Bに 水道水置換手段 5 0が備わっている点が上述した実施形態 1と異なっている。 こ の制御部 6 0 Bが主体となって、 電極 1 7 a、 1 7 への電圧の印加を含む電源 系、 流量スィツチ 4 0及ぴ電磁パルプ 3 0を制御し、 水道水置換手段 5 0は、 流 量スィツチ 4 0及び電磁パルプ 3 0を制御して酸性イオン水側 1 2 aの水を置換 する。 そして、 この水道水置換手段 5 0は、 例えば、 アル力リイオン水の吐水の 停止を検出してからの酸性イオン水の排出が所定量となるまで電磁バルブ 3 0を 閉にする動作を遅延させる機能を備えている。 このような制御部 6 0 Bとしては 、 入力信号または出力信号に基づいてその周辺機器の全体あるいは一部の動作を 制御することが可能な機能を持つものであれば、 その構成は問わない。 例えば、 制御部 6 0 Bとして、 一般的なマイクロプロセッサ及ぴメモリなどを具備する制 御装置が挙げられる。 · なお、 本実施形態では、 上述した構成以外の他の構成は、 上述した実施形態 1 と同様のため、'その説明は省略する。  In such control, the present embodiment is different from the above-described first embodiment in that a tap water replacement means 50 is provided in the control section 60B as shown in FIG. The control section 60 B mainly controls the power supply system including the application of voltage to the electrodes 17 a and 17, the flow switch 40 and the electromagnetic pulp 30, and the tap water replacement means 50 0 Controls the flow switch 40 and the electromagnetic pulp 30 to replace the water on the acidic ion water side 12a. Then, the tap water replacement means 50 delays the operation of closing the electromagnetic valve 30 until the discharge of the acidic ion water reaches a predetermined amount after detecting the stoppage of the discharge of the ionized water. Has functions. The configuration of the control section 60B is not limited as long as it has a function capable of controlling the operation of all or a part of the peripheral device based on an input signal or an output signal. For example, the control unit 60B includes a control device including a general microprocessor and a memory. · In the present embodiment, since the configuration other than the above-described configuration is the same as that of the above-described first embodiment, the description thereof is omitted.
このようなアル力リイオン整水器 1 0 Bでは、 水栓 1 0 1が停止されると、 制 御部 6 0 Bは、 流量スィツチ 4 0が検出したアル力リィオン水の吐水の停止を示 す信号を取得する。 これにより、 電極 1 7 a、 1 7 bへの電圧の印加は停止され る。 一方、 水道水置換手段 5 0は取得した信号に基づいて、 酸性イオン水の排出 が所定量となるまで電磁パルプ 3 0を閉にする動作を遅延させる。 これにより、 電解槽 1 2内のアル力リィオン水側 1 2 bへの水道水の導入は停止された状態で 、 酸性イオン水側 1 2 aへの水道水の導入は II続される。 ― そして、 水道水置換手段 5 0は、 排出口 1 2 0から酸性イオン水が所定量排出 された後、 電磁バルブ 3 0に対し酸性イオン水の排出を停止するように f|示信号 を送出する。 電磁バルブ 3 0は、 その指示信号を受け取ると酸性水排出パイプ 1 5上の流路を閉じるようにする。 これにより、 電解槽 1 2内の酸性イオン水側 1 2 aの電解水'が全て水道水に置換される。 本実施形態では 酸性イオン水側 1 2 aの停留量が約 0 . 4 5リツトルあり、 約 1 5秒遅延させることにより、 酸性ィ オン水側 1 2 a内の水は完全に水道水に置換されている。 In such an AL-RION water conditioner 10B, when the faucet 101 is stopped, the control unit 60B indicates that the discharge of the AL-RION water detected by the flow switch 40 is stopped. Get the signal. Thus, the application of the voltage to the electrodes 17a and 17b is stopped. On the other hand, the tap water replacement means 50 discharges acidic ionized water based on the acquired signal. The operation of closing the electromagnetic pulp 30 is delayed until a predetermined amount is reached. Thus, the introduction of tap water to the acidic ionized water side 12a is continued while the introduction of tap water to the alkaline water side 12b in the electrolytic cell 12 is stopped. -Then, the tap water replacement means 50 sends an f | signal to the electromagnetic valve 30 so as to stop the discharge of the acidic ion water after a predetermined amount of the acidic ion water is discharged from the outlet 120. I do. Upon receiving the instruction signal, the electromagnetic valve 30 closes the flow path on the acidic water discharge pipe 15. As a result, all the electrolytic water ′ on the acidic ionized water side 12 a in the electrolytic cell 12 is replaced with tap water. In the present embodiment, the retention amount on the acidic ion water side 12a is about 0.45 liter, and by delaying about 15 seconds, the water in the acidic ion water side 12a is completely replaced with tap water. Have been.
上述したように、 本実施形態のアル力リィオン整水器 1 0 Bでは、 アル力リィ オン水の吐水が停止した際に、 電解槽 1 2内に残された酸性イオン水側 1 2 aの 電解水だけを水道水で押し流して、 その電解水を水道水に置換させることができ る。 このため、 電解槽 1 2内に残されたアル力リイオン水側 1 2 bの電解水は、 酸性ィオン水などに変化することなくアル力リィオン水のままの状態で保持され る。 したがって、 例えば、 利用者が再び水栓を開いた場合などは、 捨て水を待つ ことなく直ちにアル力リイオン水を利用することが可能となる。  As described above, in the Al-Lion water conditioner 10 B of the present embodiment, when the spouting of the Al-Lion water stops, the side of the acidic ionized water 12a left in the electrolytic cell 12 is stopped. Only the electrolyzed water can be flushed with the tap water, and the electrolyzed water can be replaced with the tap water. For this reason, the electrolyzed water remaining in the electrolyzed water side 12 b in the electrolyzer 12 is maintained as it is without being changed to acidic ionized water or the like. Therefore, for example, when the user opens the faucet again, it becomes possible to use Al-Ion deionized water immediately without waiting for waste water.
以上、 本発明の一実施形態を説明したが、 本発明の基本的な構成は上述したも のに限定されず、 次のような変形構成が可能である。  The embodiment of the present invention has been described above. However, the basic configuration of the present invention is not limited to the above, and the following modified configurations are possible.
第 9図に示した制御系は一例であり、 例えば、 酸性水排出パイプ 1 5に酸性ィ オン水の排出量を検出する流量スィツチ (以下、 流量スィツチ 4 0 aとする ;図 示せず) を設け、 これにより、 制御部 6 0 Bは、 流量スィツチ 4 0 aが検出した 実際の酸性ィオン水の排出量を取得して、 水道水置換手段 5 0が実際に酸性ィォ ン水 1 2 aの水が置換されたことを確認した後、 電磁バルブ 3 0を制御するよう にしてもよい。 すなわち、 例えば、 水道水置換手段 5 0は、 流量スィッチ 4 0 a によって検出された酸性イオン水の排出量の積算値が所定量となったタイミング で電磁バルブ 3 0に指示信号を送出するようにすればよい。 これにより、 水栓 1 0 1が停止されてから排出すべき酸性イオン水が所定量であるか否かを確認して 、 電磁バルブ 3 0の開閉の度合いを調整しながら確実に制御することができる。 また、 流量スィツチ 4 0及ぴ 4 0 aが検出した信号は、 必ずしも制御部 6 0 B が取得する必要はなく、 流量スィツチ 4 0または 4 0 aが信号を検出した際に、 制御部 6 0 Bに通知するようにしてもよい。 The control system shown in FIG. 9 is an example. For example, a flow switch (hereinafter, referred to as a flow switch 40a; not shown) for detecting the discharge amount of the acidic ion water is provided to the acidic water discharge pipe 15. Accordingly, the control unit 60B obtains the actual discharge amount of the acidic ion water detected by the flow rate switch 40a, and the tap water replacing means 50 actually performs the acidic ion water 12a After confirming that the water has been replaced, the electromagnetic valve 30 may be controlled. That is, for example, the tap water replacement means 50 sends an instruction signal to the electromagnetic valve 30 at a timing when the integrated value of the discharge amount of the acidic ionic water detected by the flow rate switch 40a becomes a predetermined amount. do it. Accordingly, it is possible to confirm whether or not the amount of the acidic ion water to be discharged after the faucet 101 is stopped is a predetermined amount, and to control reliably while adjusting the degree of opening and closing of the electromagnetic valve 30. it can. The signals detected by the flow switches 40 and 40a do not necessarily need to be acquired by the control unit 60B. When the flow switch 40 or 40a detects the signal, the control unit 60 B may be notified.
また、 上述した制御系では、 アルカリイオン整水器 1 0 Bの外部に制御部 6 0 Bおよび水道水置換手段 5 0が設置されているが、 これに限定されず、 アルカリ イオン整水器' 1 0 Bの内部に設けるようにしてもよい。 ― また、 上述した実施形態 3は、 上述した実施形態 2にそのまま適用してもよい  In the control system described above, the control unit 60B and the tap water replacement means 50 are provided outside the alkali ion water conditioner 10B. However, the present invention is not limited to this. It may be provided inside 10 B. -In addition, the third embodiment described above may be applied to the second embodiment as it is.
(実施形態 4 ) (Embodiment 4)
第 1 0図は、 本発明の実施形態 4に係るアル力リイオン整水器の概略構成を示 す図であり、 第 1 1図は、 本発明の実施形態 4に係るアル力リイォン整水器の制 御系を示す概略プロック図であり、 第 1 2図は、 本発明の実施形態 4に係る電極 及ぴ電磁パルプの動作例を示す図である。  FIG. 10 is a diagram showing a schematic configuration of an Al-Lion water purifier according to Embodiment 4 of the present invention. FIG. 11 is an Al-Lion water purifier according to Embodiment 4 of the present invention. FIG. 12 is a schematic block diagram showing the control system of FIG. 12, and FIG. 12 is a diagram showing an operation example of the electrode and the electromagnetic pulp according to Embodiment 4 of the present invention.
本実施形態は、 アルカリイオン水の利用インターバル毎に、 電極 1 7 a 、 1 7 に印加する電圧の極性を反転させると共に、 アル力リ水吐水パイプ 1 4と酸性 水排出パイプ 1 5とを相互に接続する接続流路を反転させるように制御する例示 In the present embodiment, the polarity of the voltage applied to the electrodes 17a and 17 is inverted at each use interval of the alkaline ionized water, and the water discharge pipe 14 and the acidic water discharge pipe 15 are connected to each other. Example of controlling to reverse the connection flow path connected to
C、あ 。 C, oh.
このような制御に際し、 本実施形態では、 アル力リ水吐水パイプ 1 4は空間 1 2 b へ、 酸性水排出パイプ 1 5は空間 1 2 aへ、 それぞれ、 第 1及ぴ第 2の連結 パイプ 1 4 A及び 1 5 Aを介して接続されており、 第 1の連結パイプ 1 4 Aには 、 その上流側から分岐して第 2の連結パイプ 1 5 Aへ連通する第 3の連結パイプ 1 4 Bが設けられ、 第 2の連結パイプ 1 5 Aには、 その上流側から分岐して第 1 の連結パイプ 1 4 Aへ連通する第 4の連結パイプ 1 5 Bが設けられている点が上 述した実施形態 1と異なっている。 そして、 これら第 1〜第 4の連結パイプ 1 4 A、 1 4 B、 1 5 A、 及ぴ 1 5 Bの途中には、 電磁バルブ 3 1 〜 3 4が設けられ ており、 蛇口 1 0 0または排出口 1 2 0に繋がる流路は、 これら各電磁パルプ 3 1 〜 3 4の開閉によって制御される。  In such control, in the present embodiment, the water discharge pipe 14 is connected to the space 12b and the acid water discharge pipe 15 is connected to the space 12a. The first connecting pipe 14A is connected via the first connecting pipe 14A and the second connecting pipe 15B which is branched from the upstream side and communicates with the second connecting pipe 15A. 4B, and the second connecting pipe 15A is provided with a fourth connecting pipe 15B that branches off from the upstream side and communicates with the first connecting pipe 14A. This is different from the first embodiment described above. In the middle of the first to fourth connecting pipes 14A, 14B, 15A and 15B, solenoid valves 31 to 34 are provided, and a faucet 100 is provided. Alternatively, the flow path connected to the discharge port 120 is controlled by opening and closing the electromagnetic pulp 31 to 34.
また、 本実施形態は、 第 1 1図に示すように、 制御部 6 0 Cに反転手段 5 O A が備わっている点も上述した実施形態 1と異なっている。 この制御部 6 0 Cが主 体となって、 電極 1 7 a、 1 7 bへの電圧の印加を含む電源系、 流量スィッチ 4 0、 電磁バルブ 3 1〜3 4、 及ぴ電磁パルプ 3 0が制御される。 そして、 反転手 段 5 O Aは、 電極 1 7 a、 1 7 bに印加する電圧の極性を反転させると共に、 電 解槽 1 2内の何れかの空間 1 2 a、 1 2 bから蛇口 1 0 0に至るまでの接続流路 または電解槽 1 2内の何れかの空間 1 2 a、 1 2 bから排出口 1 2 0に至るまで の接続流路をそれぞれ反転させる機能を備えている。 このような制御部 6 0 Cと しては、 入力信号または出力信号に基づいてその周辺機器の全体あるいは一部の 動作を制御することが可能な機能を持つものであれば、 その構成は問わない。 例 えば、 制御部 6 0 Cとして、 一般的なマイクロプロセッサ及びメモリなどを具備 する制御装置などが挙げられる。 The present embodiment also differs from the above-described first embodiment in that the control unit 60C is provided with an inversion means 5OA as shown in FIG. This control unit 60 C is mainly As a body, the power supply system including the application of voltage to the electrodes 17a and 17b, the flow switch 40, the electromagnetic valves 31 to 34, and the electromagnetic pulp 30 are controlled. Then, the inversion means 5 OA inverts the polarity of the voltage applied to the electrodes 17 a and 17 b, and switches the faucet 10 from any of the spaces 12 a and 12 b in the electrolytic cell 12. It has a function of inverting the connection flow path leading to 0 or the connection flow path leading from any one of the spaces 12 a and 12 b in the electrolytic cell 12 to the outlet 120. The configuration of the control unit 60C is not limited as long as it has a function capable of controlling the operation of all or a part of the peripheral device based on an input signal or an output signal. Absent. For example, the control unit 60C includes a control device including a general microprocessor and a memory.
なお、 本実施形態では、 上述した構成以外の他の構成は、 上述した実施形態 1 と同様のため、 その説明は省略する。  Note that, in the present embodiment, other configurations than the above-described configuration are the same as those of the above-described first embodiment, and a description thereof will be omitted.
このようなアル力リィオン整水器 1 0 Cでは、 水栓 1 0 1が開かれると、 制御 部 6 0 Cは、 流量スィツチ 4 0が検出したアル力リィオン水の吐水の開始を示す 信号を取得して、 電極 1 7 a、 1 7 b間に所定の電圧を印加すると共に、 電磁パ ルブ 3 0を開放し排出口 1 2 0から酸性イオン水を排出させるように制御する。 このときの状態は、 第 1 2図の "第 1の切替状態" に示すように、 電極 1 7 a には +電圧が印加され、 電極 1 7 bには一電圧が印加され、 電磁パルプ 3 1及び 3 2は開放され、 電磁バルブ 3 3及ぴ 3 4は閉じられている状態である。 すなわ ち、 第 1の連結パイプ 1 4 Aと第 2の連結パイプ 1 5 Aが開放された状態 (以下 、 「第 1の切替状態」 とする) である。  When the faucet 101 is opened in such an Al-Rion water purifier 10C, the control unit 60C sends a signal indicating the start of spouting of the Al-Rion water detected by the flow switch 40. After obtaining the voltage, a predetermined voltage is applied between the electrodes 17a and 17b, and the electromagnetic valve 30 is opened so that the acidic ion water is discharged from the discharge port 120. At this time, as shown in the “first switching state” in FIG. 12, a positive voltage is applied to the electrode 17a, a voltage is applied to the electrode 17b, and the electromagnetic pulp 3 1 and 32 are open, and the solenoid valves 33 and 34 are closed. That is, the first connection pipe 14A and the second connection pipe 15A are open (hereinafter, referred to as a "first switching state").
ここで、 利用者によって水栓 1 0 1が閉じられると、 アルカリイオン水の吐水 が停止されると共に、 電解槽 1 2内への各電極 1 7 a、 1 7 bに印加する電圧の 極性が反転されて、 電解槽 1 2から接続されるアル力リ水吐水パイプ 1 4及び酸 性水排出パイプ 1 5までの接続流路が反転されるように電磁バルブ 3 1〜 3 4の 開閉動作が制御される。 すなわち、 制御部 6 0 Cが、 流量スィッチ 4 0が検出し たアル力リィオン水の吐水の停止を示す信号を取得すると、 反転手段 5 0 Aは、 第 1 2図の "第 2の切替状態" に示すように、 電極 1 7 aを—電極とし、 電極 1 7 を +電極とするように印加する電圧の極性を反転させると共に、 電磁バルブ 3 3及び 3 4を開放し、 電磁バルブ 3 1および 3 2を閉じるようにアルカリィォ ン水と酸性ィオン水と 通過する流路をそれぞれ反転させる。 Here, when the faucet 101 is closed by the user, the discharge of the alkaline ionized water is stopped, and the polarity of the voltage applied to the electrodes 17a and 17b into the electrolytic cell 12 is changed. The solenoid valves 31 to 34 are opened and closed so that the connection flow paths to the water discharge pipe 14 and the acid water discharge pipe 15 connected from the electrolytic cell 12 are inverted. Controlled. That is, when the control unit 60C obtains a signal indicating the stoppage of the water discharge of the AL force water detected by the flow rate switch 40, the reversing means 50A performs the “second switching state” of FIG. As shown in the figure, the polarity of the applied voltage is reversed so that the electrode 17a is the negative electrode and the electrode 17 is the positive electrode, and the solenoid valve is 33 and 34 are opened, and the flow paths passing through the alkaline water and the acidic ion water are reversed so that the electromagnetic valves 31 and 32 are closed.
このとき、 第 3の連結パイプ 1 4 Bと第 4の連結パイプ 1 5 Bとが開放された 状態 (以下、 「第 2の切替状態」 とする) となり、 極性の反転に連動して、 接続 流路も第 1の切替状態から第 2の切替状態に反転されることになる。 これにより 、 再び電解槽 1 2内に水道水が導入された際には、 空間 1 2 aでアルカリイオン 水が生成され、 空間 1 2 bで酸性イオン水が生成されることになり、 これに伴つ て、 アル力リィオン水は第 2の連結パイプ 1 5 A及び第 4の違結パイプ 1 5 Bを 介してアル力リ水吐水パイプ 1 4を経て蛇口 1 0 0から吐水され、 酸性ィオン水 は第 1の連結パイプ 1 4 A及ぴ第 3の連結パイプ 1 4 Bを介して酸性水排出パイ プ 1 5を経て排出口 1 2 0から排出される。  At this time, the third connection pipe 14 B and the fourth connection pipe 15 B are in an open state (hereinafter, referred to as a “second switching state”), and the connection is made in conjunction with the reversal of the polarity. The flow path is also inverted from the first switching state to the second switching state. Thereby, when tap water is introduced again into the electrolytic cell 12, alkaline ionized water is generated in the space 12 a and acidic ionized water is generated in the space 12 b. Accordingly, Alion water is discharged from the faucet 100 through the Alion water spouting pipe 14 via the second connecting pipe 15A and the fourth connecting pipe 15B, and the acid ion is discharged. Water is discharged from the outlet 120 through the acidic water discharge pipe 15 via the first connection pipe 14A and the third connection pipe 14B.
また、 制御部 6 0 Cは、 流量スィツチ 4 0が検出したアル力リイオン水の吐水 の停止を示す信号を取得し、 電圧の極性及ぴ各流路が反転されたことを確認した 後、 電極 1 7 a、 1 7 bに対する電圧印加を停止すると共に、 電磁バルブ 3 0に 対し酸性イオン水の排出を停止するように指示信号を送出する。 これにより、 酸 性イオン水の排出も停止される。  Further, the control unit 60C obtains a signal indicating the stop of the discharge of the ionized water detected by the flow rate switch 40, and after confirming that the polarity of the voltage and each flow path have been inverted, the electrode 60C The application of a voltage to 17a and 17b is stopped, and an instruction signal is sent to the electromagnetic valve 30 to stop the discharge of the acidic ionized water. As a result, the discharge of the acidic ionic water is also stopped.
ここで、 各電極 1 7 a、 1 7 bの極性及び接続流路は、 上述したように第 2の 切替状態となっているため、 再ぴ利用者が水栓 1 0 1を開くと、 電解槽 1 2内の 空間 1 2 aで生成されたアル力リイオン水が第 2の連結パイプ 1 5 A及ぴ第 4の 連結パイプ 1 5 Bを介してアル力リ水吐水パイプ 1 4を経て蛇口 1 0 0から所定 の流量で供給され始める。 また同時に、 酸性水排出パイプ 1 5に設けられた電磁 バルブ 3 0が開放されて、 電解槽 1 2内の空間 1 2 bで生成された酸性ィオン水 が第 1の違結パイプ 1 4 A及び第 3の連結パイプ 1 4 Bを介して酸性水排出パイ プ 1 5を経て排出口 1 2 0から排出される。  Here, since the polarities and connection flow paths of the electrodes 17a and 17b are in the second switching state as described above, when the user opens the water faucet 101, the electrolysis is performed. Al-ion water produced in the space 12 a in the tank 12 is supplied to the faucet via the second connection pipe 15 A and the fourth connection pipe 15 B via the Al-force water discharge pipe 14. It starts to be supplied at a predetermined flow rate from 100. At the same time, the electromagnetic valve 30 provided in the acidic water discharge pipe 15 is opened, and the acidic ion water generated in the space 12 b in the electrolytic cell 12 is discharged into the first connection pipe 14 A and The acid water is discharged from the outlet 120 through the acidic water discharge pipe 15 via the third connecting pipe 14B.
そして、 再び利用者が水栓 1 0 1を閉めることで、 制御部 6 0 Cが、 流量スィ ツチ 4 0が検出したアルカリイオン水の吐水の停止を示す信号を取得すると、 反 転手段 5 O Aは、 極性を反転させると共に、 接続流路を第 2の切替状態から第 1 の切替状態へと反転させる。 すなわち、 電極 1 7 aが +電極となり、 電極 1 7 b が一電極となるように極性が反転されると共に、 電磁バルブ 3 1及ぴ 3 2が開放 され、 電磁バルブ 3 3及ぴ 3 4が閉じられるように制御される。 これにより、 再 び電解槽 1 2内に水道水が導入された^には、 空間 1 2 bでアル力リィオン水が 生成され、 空間 1 2 aで酸性イオン水が生成されることになり、 これに伴って、 アルカリイオン水は電磁パルプ 3 1が備わる第 1の連結パイプ 1 4 Aを経て蛇口 1 0 0から吐水され、 酸性イオン水は電磁バルブ 3 2が備わる第 2の連結パイプ 1 5 Aを経て排出口 1 2 0から排出されることになる。 Then, when the user closes the faucet 101 again, and the control unit 60C obtains a signal indicating the stoppage of the discharge of the alkaline ionized water detected by the flow rate switch 40, the inverting means 5OA Reverses the polarity and reverses the connection flow path from the second switching state to the first switching state. That is, the polarity is reversed so that the electrode 17a becomes a positive electrode and the electrode 17b becomes one electrode, and the electromagnetic valves 31 and 32 are opened. Then, the electromagnetic valves 33 and 34 are controlled so as to be closed. As a result, when tap water is introduced again into the electrolytic cell 12, Al force water is generated in the space 12 b, and acidic ion water is generated in the space 12 a. Along with this, the alkaline ionized water is discharged from the faucet 100 through the first connecting pipe 14 A provided with the electromagnetic pulp 31, and the acidic ionized water is discharged from the second connecting pipe 15 provided with the electromagnetic valve 32. It will be discharged from outlet 120 through A.
このように本実施形態では、 アルカリイオン水の利用インターパル毎に、 各電 極 1 7 a、 1 7 bに印加する電圧の極性の反転、 アル力リィオン水及ぴ酸性ィォ ン水の接続流路の反転が繰り返され、 電極 1 7 a、 1 7 b , 電解槽 1 2内の空間 1 2 a、 1 2 b、 電磁バルブ 3 1〜 3 4などの各機能が交互に使用される。 これ により、 本実施形態では、 電極 1 7 a、 1 7 bおよぴィオン交換膜 1 6の寿命が 、 一方の機能を連続して使用する場合に比べて 2倍に延びると考えられている。 上述したように、 本実施形態のアル力リィオン整水器 1 0 Cでは、 各電極 1 7 a、 1 7 bに印加する電圧の極性の反転に連動して、 アル力リ水吐水パイプ 1 4 及ぴ酸性水排出パイプ 1 5に至るまでの接続流路を反転させているため、 電極 1 7 a、 1 7 bを反転したままの状態であっても通常のようにアル力リイオン水を 利用することができると共に、 各機能を同じような時間間隔で交互に使用させる ことができる。 これにより、 電極 1 7 a , 1 7 bおよぴィオン交換膜 1 6の一方 に不純物が付着すること、 また各機能の消耗や動作負担が一方に偏ることがなく なるため、 バランスよく各機能の性能を維持することができると共に、 使用当初 の整水能力を長期に亘り維持することが可能となる。  As described above, in the present embodiment, the polarity of the voltage applied to each of the electrodes 17a and 17b is inverted for each interpal using the alkaline ionized water, and the connection between the alkaline water and the acidic ionized water is performed. The reversal of the flow path is repeated, and the functions of the electrodes 17a and 17b, the spaces 12a and 12b in the electrolytic cell 12 and the electromagnetic valves 31 to 34 are used alternately. Thus, in the present embodiment, the lifetimes of the electrodes 17 a and 17 b and the ion exchange membrane 16 are considered to be doubled as compared with the case where one of the functions is used continuously. . As described above, in the Al-Rion water purifier 10 C of the present embodiment, the Al-Lyr water spouting pipe 14 is linked to the reversal of the polarity of the voltage applied to the electrodes 17 a and 17 b. Since the connection flow path leading to the acidic water discharge pipe 15 is reversed, the ionized water is used as usual even when the electrodes 17a and 17b remain inverted. And each function can be used alternately at similar time intervals. This prevents impurities from adhering to one of the electrodes 17a and 17b and the ion-exchange membrane 16 and prevents the wear and operation burden of each function from being biased to one side. In addition to maintaining the water quality, it is possible to maintain the water conditioning capacity at the beginning of use for a long time.
以上、 本発明の一実施形態を説明したが、 本発明の基本的な構成は上述したも のに限定されず、 次のような変形構成が可能である。  The embodiment of the present invention has been described above. However, the basic configuration of the present invention is not limited to the above, and the following modified configurations are possible.
上述した実施形態 4では、 アル力リィオン水の吐水が停止された際に、 極性お よび接続流.路を反転していたが、 これに限定されず、 例えば、 頻繁に停止する時 などは予め時間を決めておき、 所定時間毎に反転させるようにしてもよい。 また、 上述した実施形態 3では、 極性および接続流路を同じタイミングで反転 させていたが、 これに限定されず、 例えば、 水栓 1 0 1が停止した際に、 極性の みを反転させておき、 再び水栓 1 0 1が開けられた際に、 接続流路を反転させる ように制御してもよい。 すなわち、 極性の反転と接続流路の反転は実質的な使用 状態で連動していればよく、 時間的なタイミングが一致する必要はなく、 各々の 反転のタイミングは適宜制御するようにすればよい。 In the fourth embodiment described above, the polarity and the connecting flow path were reversed when the discharge of the water was stopped, but the present invention is not limited to this. The time may be determined in advance, and the time may be reversed every predetermined time. In the above-described third embodiment, the polarity and the connection flow path are reversed at the same timing. However, the present invention is not limited to this. For example, when the faucet 101 stops, only the polarity is reversed. When the faucet 101 is opened again, the connection flow path is reversed. May be controlled as follows. In other words, the polarity reversal and the connection channel reversal need only be linked in a practical use state, and there is no need for the temporal timings to match, and the timing of each reversal may be appropriately controlled. .
また、 上述した実施形態 4は、 上述した実施形態 2又は 3にそのまま適用して あよい。  Embodiment 4 described above may be applied to Embodiment 2 or 3 described above as it is.
(実施形態 5 )  (Embodiment 5)
第 1 3図は、 本発明の実施形態 5に係るアル力リイオン整水器の断面図であり 、 第 1 4図は、 本発明の実施形態 5に係るアルカリイオン整水器の側面図であり 、 第 1' 5図は、 本発明の実施形態 5に係るアルカリイオン整水器の動作例を示す 概略プロック図であり、 第 1 6図は、 本発明の実施形態 5に係る各電解槽間の接 続構成を示す概略図である。  FIG. 13 is a cross-sectional view of an Al-ion water purifier according to Embodiment 5 of the present invention. FIG. 14 is a side view of an alkali ion water purifier according to Embodiment 5 of the present invention. FIG. 1 is a schematic block diagram showing an operation example of an alkali ion water purifier according to Embodiment 5 of the present invention, and FIG. FIG. 2 is a schematic diagram showing a connection configuration of FIG.
本実施形態は、 アル力リイオン水と酸性イオン水との生成割合を一定に保ちな がら、 段階的に酸性イオン水を電気分解することで、 吐水させるアルカリイオン 水の整水濃度を著しく低下させることなく酸性イオン水の排出量を大幅に削減さ せるように制御する例示である。  In the present embodiment, while maintaining the generation ratio of the alkaline ionized water and the acidic ionized water at a constant level, the acidic ionized water is electrolyzed in a stepwise manner, thereby significantly reducing the prepared water concentration of the alkaline ionized water to be discharged. This is an example in which control is performed such that the discharge amount of acidic ionized water is greatly reduced without any problem.
このような制御に際し、 本実施形態では、 整水器本体 1 1 D内部で電解槽が少 なくとも二段以上の多段で構成されて保持されている点が上述した実施形態 1と 異なっている。 詳しくは、 この電解槽は、 水道水が供給される第 1段目 (前段) の電解槽 (以下、 主電解槽 1 2 Dとする) と、 第 1段目の電解槽内で生成された 酸性イオン水が供給される第 2段目以降 (後段) の電解槽 (以下、 捕助電解槽 1 1 2 Dとする) とで構成される。 なお、 本実施形態では、 生成した酸性イオン水 を供給する電解槽を前段と位置づけ、 酸性イオン水が供給される電解槽を後段と 位置づけて説明する。  In such control, the present embodiment is different from the above-described first embodiment in that the electrolyzer is configured and held in at least two or more stages inside the water purifier body 11D. . Specifically, this electrolytic cell consists of a first (previous) electrolytic cell (hereinafter referred to as a main electrolytic cell 12D) to which tap water is supplied, and an electrolytic cell generated in the first electrolytic cell. It consists of the second and subsequent (later stage) electrolytic cells to which acidic ionized water is supplied (hereinafter referred to as an auxiliary electrolytic cell 1 12 D). In the present embodiment, the electrolytic cell for supplying the generated acidic ionized water will be described as the first stage, and the electrolytic cell for supplying the acidic ionized water will be described as the second stage.
図示するように、 本実施形態では、 6つの電解槽が併設されており、 このうち 右側 5つの電解槽が第 1段目 (前段) の主電解槽 1 2 Dに相当し、 左側 1つの電 解槽が第 2段目以降 (後段) の補助電解槽 1 1 2 Dに相当する。 なお、 以降の説 明において、 右側 5つの電解槽を総称して主電解槽 1 2 D、 右側 1つの電解槽を 捕助電解槽 1 1 2 Dともいう。  As shown in the figure, in the present embodiment, six electrolytic cells are provided side by side, of which five electrolytic cells on the right correspond to the main electrolytic cell 12 D of the first stage (front stage), and one electrolytic cell on the left. The dissolving tank corresponds to the second and subsequent (later) auxiliary electrolytic cells 1 1 2D. In the following description, the five electrolytic cells on the right side are collectively referred to as a main electrolytic cell 12D, and the one electrolytic cell on the right side is also referred to as an auxiliary electrolytic cell 112D.
これら主電解槽 1 2 Dと補助電解槽 1 1 2 Dにおける双方の処理能力の比、 す なわちアル力リィオン水と酸性ィオン水との生成割合は、 ほぼ一致するようにな つている。 この場合、 アルカリイオン水と酸性イオン水との生成割合を 1 0対 2 とすることで、 各電解槽 1 2 D、 1 1 2 Dにおいて生成されるアルカリイオン水 に対する酸性ィオン水を最小限に抑えることができ、 最も効率的に酸性ィオン水 の排出量を削減させることができる。 The ratio of the processing capacity of the main electrolytic cell 1 2D to that of the auxiliary electrolytic cell 1 12 D In other words, the production rates of Al-Karion water and acid-ion water are almost the same. In this case, by making the generation ratio of the alkaline ionized water and the acidic ionized water 10: 2, the acid ionized water with respect to the alkali ionized water generated in each of the electrolytic cells 12D and 112D is minimized. It is possible to reduce the emission of acid ion water most efficiently.
また、 本実施形態では、 アルカリ水吐水パイプ 1 4と酸性水排出パイプ 1 5と が連通するように分岐パイプ Xが設けられており、 この分岐パイプ Xの途中に電 磁バルブ 3 0 bが設けられて、 各電極 1 7 a、 1 7 bの洗浄時に機能するように なっている。  In this embodiment, the branch pipe X is provided so that the alkaline water discharge pipe 14 and the acidic water discharge pipe 15 communicate with each other. An electromagnetic valve 30 b is provided in the middle of the branch pipe X. Thus, the electrodes 17a and 17b function when they are washed.
ここで、 各電解槽間の接続構成は、 具体的に、 第 1 6図に示すような構成とな る。 第 1 6図に示すように、 右側 5つの電解槽、 すなわち、 主電解槽 1 2 Dは、 その下流側が水道水供給パイプ 1 3と連通しており下流側から水道水が供給され るようになっていると共に、 上流側がアル力リ水吐水パイプ 1 4と連通しており 主電解槽 1 2 D内で生成されたアル力リイオン水が吐水されるようになっている 。 さらに、 主電解槽 1 2 Dは、 上流側が酸性水排出パイプ 1 5と連通しており主 電解槽 1 2 D内で生成された酸性ィォン水が排出されるようになつている。 また、 左側 1つの電解槽、 すなわち、 補助電解槽 1 1 2 Dは、 酸性水排出パイ プ 1 5の途中に設けられており、 当該捕助電解槽 1 1 2 Dの下流側から内部へ酸 性イオン水が供給されるようになっていると共に、 上流側にアル力リ水吐水パイ プ 1 4と連通する補助吐水パイプ 1 4 bが設けられており、 捕助電解槽 1 1 2 D 内で生成されたアルカリィォン水が吐水されるようになっている。  Here, the connection configuration between the electrolytic cells is specifically as shown in FIG. As shown in Fig. 16, the five electrolyzers on the right, namely the main electrolyzer 12D, are connected to the tap water supply pipe 13 on the downstream side so that tap water is supplied from the downstream side. At the same time, the upstream side is in communication with the water discharge pipe 14 and the water discharged from the main electrolytic cell 12D is discharged. Further, the upstream side of the main electrolytic cell 12D communicates with the acidic water discharge pipe 15 so that the acidic ion water generated in the main electrolytic cell 12D is discharged. Also, one electrolytic cell on the left side, that is, the auxiliary electrolytic cell 1 12D is provided in the middle of the acidic water discharge pipe 15 and the acid is introduced from the downstream side of the auxiliary electrolytic cell 1 12D to the inside. Water is supplied, and an auxiliary water discharge pipe 14b communicating with the water discharge pipe 14 is provided upstream. Alkaline water generated in the above is discharged.
なお、 本実施形態では、 上述した構成以外の他の構成は、 上述した実施形態 1 と同様のため、 その説明は省略する。  Note that, in the present embodiment, other configurations than the above-described configuration are the same as those of the above-described first embodiment, and a description thereof will be omitted.
このような構成からなるアル力リィオン整水器 1 0 Dでは、 利用者によつて水 栓 1 0 1が開かれると、 主電解槽 1 2 D、 すなわち、 右側 5つの電解槽の全てに 水道水が供給される。 そして、 供給された水道水は、 それぞれの主電解槽 1 2 D 内でアルカリィォン水と酸性ィォン水とに電気分解される。  In the AL-RION water conditioner 10 D having such a configuration, when the user opens the water faucet 101, the main electrolytic cell 12 D, that is, water is supplied to all of the five electrolytic cells on the right side. Water is supplied. Then, the supplied tap water is electrolyzed into alkali ion water and acid ion water in each main electrolytic cell 12D.
そして、 それぞれの主電解槽 1 2 D内で生成されたアル リイオン水は、 アル 力リ水吐水パイプ 1 4を経て蛇口 1 0 0から吐水される。 一方で、 主電解槽 1 2 D内で生成された酸性イオン水は、 酸性水排出パイプ 1 5の途中に設けられた補 助電解槽 1 1 2Dに供給される。 ここで供給された酸性イオン水は、 補助電解槽 1 1 2D内で再びアルカリイオン水と酸性イオン水とに電気分解される。 このと き本実施形態では、 主電解槽 1 2D内において、 pH7. 1からなる 1 20 Lの 水道水に対して、 pH9. 7〜9. 8からなる 1 00 Lのアルカリイオン水及び ρΗ4. 2〜ρΗ4·. 5からなる 20 Lの酸性イオン水が生成され、 それらが蛇 口 1 00から吐水あるいは補助電解槽 1 1 2D内に供給されている。 Then, the alkaline ion water generated in each of the main electrolytic cells 12 D is discharged from the faucet 100 through the alkaline water discharge pipe 14. On the other hand, the main electrolyzer 1 2 The acidic ion water generated in D is supplied to the auxiliary electrolytic cell 112D provided in the middle of the acidic water discharge pipe 15. The acidic ion water supplied here is electrolyzed again into alkaline ion water and acidic ion water in the auxiliary electrolytic cell 112D. At this time, in the present embodiment, in the main electrolytic cell 12D, with respect to 120 L of tap water of pH 7.1, 100 L of alkaline ionized water of pH 9.7 to 9.8 and ρ 84. Twenty liters of acidic ionized water consisting of 2 to ρ 、 4.5 are generated, and they are supplied from the faucet 100 to the spouting water or the auxiliary electrolytic cell 112D.
そして、 補助電解槽 1 1 2D内で生成されたアルカリイオン水は、 補助吐水パ ィプ 1 4 bからアルカリ水吐水パイプ 1 4を経て蛇口 1 00から吐水される。 一 方で、 捕助電解槽 1 1 2D内で生成された酸性イオン水は、 酸性水排出パイプ 1 5を経て排出口 1 20から排出される。 このとき本実施形態では、 主電解槽 1 2 Dで生成された pH4. 2〜pH4. 5からなる 20 Lの酸性イオン水に対して 、 H9. 4〜9. 5からなる 1 6. 7 Lのアルカリイオン水及ぴ p H 3. 6〜 3. 7からなる 3. 3 Lの酸性イオン水が生成され、 それらが蛇口 1 00から吐 水あるいは排出口 1 20から排出されている。 . このとき、 例えば、 分岐パイプ Xに設けられた電磁バルブ 30 bを機能させて 、 各電極 1 7 a、 1 7 bを洗浄するようにしてもよい。 すなわち、 アル力リイォ ン水の吐水が停止される際、 各段の電解槽 1 2D、 1 1 2D内の各電極 1 7 a、 1 7 bに印加する電圧の極性 (十、 一) を反転させて各電極 1 7 a、 1 7 bを洗 浄すると共に、 アル力リ水吐水パイプ 1 4側の水が酸性水排出パイプ 1 5側へ移 動するように電磁バルブ 30 bを開放して、 各段の電解槽 1 2 D、 1 1 2D内の 全ての水 (洗浄に使用した水) を排出口 1 20から排出させるようにしてもよい 上述したように、 本実施形態のアル力リィオン整水器 1 0 Dでは、 各段の電解 槽 1 2D、 1 1 2Dで生成された全てのアルカリイオン水を蛇口 1 00から吐水 させ、 最も後段の電解槽 (本実施形態では、 補助電解槽 1 1 2D) で生成された 酸性イオン水のみを排出口 1 20から排出させることができる。 そして、 本実施 形態では、 前段の電解槽 (主電解槽 1 2 D) で生成された酸性イオン水を後段の 電解槽 (補助電解槽 1 1 2D) に供給してさらにアルカリイオン水と酸性イオン 水を生成しているため、 最終的に排出口 1 2 0から排出させる酸性イオン水の排 出量を削減させることができる。 Then, the alkaline ionized water generated in the auxiliary electrolytic cell 112D is discharged from the faucet 100 through the auxiliary water discharge pipe 14b, the alkaline water discharge pipe 14, and the like. On the other hand, the acidic ionic water generated in the auxiliary electrolytic cell 112D is discharged from the outlet 120 through the acidic water discharge pipe 15. At this time, in the present embodiment, for 20 L of acidic ionized water composed of pH 4.2 to pH 4.5 generated in the main electrolytic cell 12 D, 16.7 L composed of H9.4 to 9.5 is used. 3.3 L of acidic ionic water consisting of the alkaline ionized water and the pH of 3.6 to 3.7 was generated, and these were discharged from the faucet 100 or discharged from the outlet 120. At this time, for example, the electrodes 17a and 17b may be cleaned by operating the electromagnetic valve 30b provided in the branch pipe X. In other words, when the water discharge is stopped, the polarity (10, 1) of the voltage applied to the electrodes 17a, 17b in the electrolytic cells 12D, 112D of each stage is reversed. To clean the electrodes 17a and 17b, and open the solenoid valve 30b so that the water from the water discharge pipe 14 moves to the acid water discharge pipe 15 side. However, all the water (water used for cleaning) in the electrolytic cells 12 D and 12 D of each stage may be discharged from the discharge port 120. In the water conditioner 10D, all the alkaline ionized water generated in the electrolytic cells 12D and 112D in each stage is discharged from the faucet 100, and the electrolytic cell in the last stage (in this embodiment, the auxiliary electrolytic cell Only the acidic ionized water generated in 1 1 2D) can be discharged from the outlet 120. In this embodiment, the acidic ionic water generated in the preceding electrolytic cell (main electrolytic cell 12D) is supplied to the subsequent electrolytic cell (auxiliary electrolytic cell 112D) to further supply the alkaline ionized water and the acidic ion water. Since water is generated, it is possible to reduce the amount of acidic ionized water finally discharged from the outlet 120.
結果的に、 本実施形態では、 p H 9 . 5〜9 . 6からなる 1 1 6 . 7 Lのアル カリイオン水が蛇口 1 0 0から吐水されると共に、 ρ Η 3 . 6〜3 . 7からなる 3 . 3 Lの酸性イオン水が排出口 1 2 0から排出されることになる。 したがって 、 従来のように一段のみからなる電解槽構造に比べて、 本実施形態のように、 多 段からなる電解槽構造の方が酸性イオン水の排出量を、 例えば、 2 0 %〜3 . 3 %にまで大幅に低減させることができる。  As a result, in this embodiment, 16.7 L of alkaline ionized water consisting of pH 9.5 to 9.6 is discharged from the faucet 100 and ρ Η 3.6 to 3.7. 3.3 L of acidic ionized water consisting of Therefore, as compared with the conventional electrolytic cell structure having only one stage, the electrolytic cell structure including multiple stages as in the present embodiment can reduce the discharge amount of acidic ion water, for example, from 20% to 3.0%. It can be greatly reduced to 3%.
また、 従来の装置では、 例えば、 流量調整用電磁弁などを酸性イオン水側の排 出口付近に設けて酸性イオン水の排出量を制御していたが、 本実施形態では、 酸 性ィオン水の排出量が 3 . 3 %と比較的少量となるため、 排出口 1 2 0付近への 流量調整用電磁弁の設置を必要とせず、 例えば、 酸性水排出パイプ 1 5内に排出 流路の一部を遮断する抵抗部材などを設けて酸性イオン水の排出を調整するよう にすることもできる。 これにより、 従来の装置に比べて電磁バルブの部品点数が 少なくなり、 コストを低減させることも可能となる。  In the conventional apparatus, for example, a flow rate adjusting solenoid valve or the like is provided near the discharge outlet on the acidic ion water side to control the discharge amount of the acidic ion water. Since the discharge amount is relatively small at 3.3%, it is not necessary to install a flow rate adjustment solenoid valve near the discharge port 120.For example, one of the discharge passages in the acidic water discharge pipe 15 It is also possible to adjust the discharge of acidic ionized water by providing a resistance member or the like that blocks the section. As a result, the number of parts of the electromagnetic valve is reduced as compared with the conventional device, and the cost can be reduced.
以上、 本発明の一実施形態を説明したが、 本発明の基本的な構成は上述したも のに限定されず、 次のような変形構成が可能である。  The embodiment of the present invention has been described above. However, the basic configuration of the present invention is not limited to the above, and the following modified configurations are possible.
上述した実施形態 5では、 電解槽の多段構造として、 二段からなる電解槽構造 を例示しているが、 これに限定されず、 二段以上の電解槽構造でもよく、 例えば 、 三段あるいは四段からなる電解槽構造を採用してもよい。 すなわち、 酸性水排 出パイプ 1 5上で段階的に酸性ィオン水が電気分解されて、 アルカリイオン水と 酸性イオン水とが生成される構成であればよい。 この場合にも同様に、 前段の電 解槽で生成された酸性イオン水が後段の電解槽に供給され、 最も後段の電解槽で 生成された酸性イオン水のみが排出口 1 2 0から排出されることになる。  In Embodiment 5 described above, the multistage structure of the electrolytic cell is exemplified by a two-stage electrolytic cell structure. However, the present invention is not limited to this. For example, a three-stage or four-stage electrolytic cell structure may be used. An electrolytic cell structure composed of steps may be employed. That is, any configuration may be used as long as the acidic ion water is electrolyzed stepwise on the acidic water discharge pipe 15 to generate alkaline ionized water and acidic ionized water. Similarly, in this case, the acidic ionic water generated in the preceding electrolytic cell is supplied to the latter electrolytic cell, and only the acidic ionic water generated in the latter electrolytic cell is discharged from the outlet 120. Will be.
また、 上述した実施形態 5では、 電磁バルブ 3 0を設けて酸性イオン水の排出 量を確実に制御することを想定しているが、 このような電磁バルブ 3 0を設けず 、 例えば、 酸性イオン水がアルカリイオン水の吐水に伴って排出口 1 2 0から自 然に排出されるようにしてもよい。  Further, in the above-described fifth embodiment, it is assumed that the electromagnetic valve 30 is provided to reliably control the discharge amount of the acidic ionized water. The water may be naturally discharged from the outlet 120 with the discharge of the alkaline ionized water.
また、 上述した実施形態 5は、 上述した実施形態 2〜4にそのまま適用しても よい。 Further, the fifth embodiment described above can be applied to the second to fourth embodiments as they are. Good.
(実施形態 6 )  (Embodiment 6)
第 1 7図は、 本発明の実施形態 6に係るアル力リィオン整水器の概略断面図で あり、 第 1 8図は、 本発明の実施形態 6に係る電解槽内の各流路を説明する概略 図である。 なお、 第 1 8図は、 第 1 7図を A矢印方向から目視した場合の電解槽 内部を簡略ィ匕して概略的に示している。  FIG. 17 is a schematic sectional view of an Al-Rion water conditioner according to Embodiment 6 of the present invention, and FIG. 18 illustrates each flow path in the electrolytic cell according to Embodiment 6 of the present invention. FIG. FIG. 18 schematically shows the inside of the electrolytic cell when FIG. 17 is viewed from the direction of arrow A.
本実施形態は、 流量を低下させることなく電解効率を向上させると共にアル力 リイオン整水器を小型化するように構成する例示である。  The present embodiment is an example in which the electrolysis efficiency is improved without reducing the flow rate and the size of the Al-Lion water conditioner is reduced.
このような構成に際し、 本実施形態では、 電解槽 1 2 E内に折流板 2 7を複数 個設けることで、 折流板 2 7の一端部側で蛇行する流路と、 その他端部側にもう 一つの流路を形成している点が上述した実施形態 1と異なっている。  In such a configuration, in the present embodiment, by providing a plurality of folding plates 27 in the electrolytic cell 12 E, the flow path meandering at one end of the folding plate 27 and the other end The second embodiment is different from the first embodiment in that another flow path is formed.
具体的には、 電解槽 1 2 E内に、 イオン交換膜 1 6が折流板 2 7の設けられた 固定部材 2 0 Eによって保持されることで、 2つの空間 1 2 a、 1 2 bに区画さ れている。 また、 電解槽 1 2 Eのイオン交換膜 1 6に対向する領域には、 一対の 電極 1 7 a、 1 7 bが固定部材 2 0 Eによって固定されている。 すなわち、 電解 槽 1 2 E内には、 折流板 2 7の設けられた固定部材 2 0 Eによって、 イオン交換 膜 1 6と各電極 1 7 a、 1 7 bとが一体的に保持されている。 また、 各電極 1 7 a、 1 7 bは、 電解槽 1 2 Eの内面に設けられたスぺーサ 2 0 eによって、 電解 槽 1 2 Eの内面と電極 1 7 a、 1 7 bとの間に 1 mmの隙間を形成している。 な お、 電極 1 7 a、 1 7 bは、 整水器本体 1 1 Eに設けられた端子部 1 8と接続配 線 1 9によって電気的に接続されている。  Specifically, the ion exchange membrane 16 is held in the electrolytic cell 12 E by the fixing member 20 E provided with the folding plate 27, so that the two spaces 12 a and 12 b are formed. It is divided into A pair of electrodes 17a and 17b is fixed by a fixing member 20E in a region of the electrolytic cell 12E facing the ion exchange membrane 16. That is, in the electrolytic cell 12 E, the ion exchange membrane 16 and the respective electrodes 17 a and 17 b are integrally held by the fixing member 20 E provided with the folding plate 27. I have. The electrodes 17a and 17b are connected to the inner surface of the electrolytic cell 12E and the electrodes 17a and 17b by spacers 20e provided on the inner surface of the electrolytic cell 12E. A gap of 1 mm is formed between them. The electrodes 17a and 17b are electrically connected to the terminal 18 provided on the water purifier main body 11E by connection wiring 19.
ここで、 固定部材 2 0 Eは、 図示するように、 電解槽 1 2 Eの原水導入孔 2 6 aからアル力リィオン水流出孔 2 6 b及び酸性ィオン水吐水孔 2 6 cに向かつた 基準方向 2 0 0と直交する幅方向 2 0 1の两側に設けられた一対の部材からなる 。  Here, as shown in the figure, the fixing member 20E extends from the raw water introduction hole 26a of the electrolytic cell 12E to the Alion water outlet hole 26b and the acid ion water discharge hole 26c. It is composed of a pair of members provided on the 两 side of the width direction 201 orthogonal to the reference direction 200.
この固定部材 2 0 Eには、 基準方向 2ひ.0に亘つて複数の折流板 2 7が保持部 材 2 8を介して所定の間隔で保持されている。 本実施形態では、 固定部材 2 0 E に 3つの折流板 2 7を均等な間隔で設けるようにした。  A plurality of folding plates 27 are held by the fixing member 20E at predetermined intervals via a holding member 28 over the reference direction 2.0. In the present embodiment, three folding plates 27 are provided at equal intervals on the fixing member 20E.
折流板 2 7を保持する保持部材 2 8は、 固定部材 2 0 Eのィオン交換膜 1 6側 の面及ぴ電極 1 7 a又は 1 7 b側の面のそれぞれに、 幅方向 2 0 1に固定部材 2 0 Eを構成する一対の板状部材に跨って設けられており、 固定部材 2 0 Eの両面 に設けられた一対の保持部材 2 8の間で折流板 2 7をその長手方向が幅方向 2 0 1となるように保持している。 このような折流板 2 7は、 その両端部が固定部材 2 0 Eに当接しないように、 固定部材 2 0 Eを構成する一対の板状部材の間隔よ りも短く形成されることで、 電解槽 1 2 E内を流れる水道水の基準方向 2 0 0に 対して幅方向 2 0 1の一部の流れをせき止めるようになつている。 The holding member 28 holding the folding plate 27 is provided on the ion exchange membrane 16 side of the fixing member 20 E. And a pair of plate-like members constituting the fixing member 20E in the width direction 201, on each of the surfaces on the electrode 17a or 17b side. The folding plate 27 is held between a pair of holding members 28 provided on both sides of E such that the longitudinal direction thereof is the width direction 201. Such a folding plate 27 is formed to be shorter than the interval between a pair of plate members constituting the fixing member 20E so that both ends thereof do not contact the fixing member 20E. However, a part of the flow in the width direction 201 is restricted against the reference direction 200 of the tap water flowing in the electrolytic cell 12 E.
すなわち、 折流板 2 7を、 交互に幅方向 2 0 1の一端部側に固定部材 2 0 Eに 当接しないように偏位させることで、 折流板 2 7の幅方向 2 0 1の他端部と固定 部材 2 0 Eとの間に第 1の流路 2 9 aが交互に形成されている。 また、 折流板 2 7は、 一端部が固定部材 2 0 Eに当接しないように偏位されているため、 この一 端部と固定部材 2 0 Eとの間に第 2の流路 2 9 bが交互に形成されている。 この ような第 2の流路 2 9 bは、 第 1の流路 2 9 aよりも幅狭で設けられており、 第 1の流路 2 9 aを通過する水道水の流量よりも小さな流量で水道水が通過するよ うになつている。  That is, the deflection plate 27 is alternately displaced to one end side of the width direction 201 so as not to abut the fixing member 20E, so that the deflection plate 27 in the width direction 201 of the deflection plate 27 is First flow paths 29a are alternately formed between the other end and the fixing member 20E. Further, since one end of the folding plate 27 is deflected so as not to abut on the fixing member 20E, the second flow path 2 is provided between the one end and the fixing member 20E. 9 b are alternately formed. Such a second flow path 29b is provided to be narrower than the first flow path 29a, and has a smaller flow rate than the flow rate of tap water passing through the first flow path 29a. And tap water is passing through.
そして、 電解槽 1 2 E内に電源導入孔 2 6 aから導入された水道水は、 折流板 2 7によつて画成された第 1の流路 2 9 aが第 2の流路 2 9 bよりも幅広に設け られているため、 この第 1の流路 2 9 aに沿って蛇行した折流 2 1 0が形成され る。 また、 第 1の流路 2 9 aよりも幅狭の第 2の流路 2 9 bにも水道水が流れる ため、 この第 2の流路 2 9 bを通過する渦流防止流 2 1 1が形成される。 すなわ ち、 原水導入孔 2 6 aから空間 1 2 a、 1 2 b内のそれぞれに供給された水道水 は、 折流 2 1 0と渦流防止流 2 1 1とを流れて、 アルカリイオン水流出孔 2 6 b 及び酸性イオン水流出路 2 6 cから流出されるようになっている。  Then, the tap water introduced from the power supply introduction hole 26 a into the electrolytic cell 12 E is converted into the first flow path 29 a defined by the folding plate 27 and the second flow path 2 a. Since it is provided wider than 9b, a meandering flow 210 is formed along the first flow path 29a. Further, since tap water also flows through the second flow path 29b, which is narrower than the first flow path 29a, the eddy current prevention flow 2 1 1 passing through the second flow path 29b is formed. It is formed. In other words, the tap water supplied to each of the spaces 12a and 12b from the raw water introduction hole 26a flows through the folding flow 210 and the eddy current prevention flow 211, and the alkaline ionized water flows. Outflow holes 26b and acidic ionized water outflow channels 26c flow out.
なお、 本実施形態では、 上述した構成以外の他の構成は、 上述した実施形態 1 と同様のため、 その説明は省略十る。 また、 アルカリイオン整水器 1 0 Eの基本 的な動作についても、 上述した実施形態 1と同様のため、 その説明を省略する。 上述したように、 本実施形態のアルカリイオン整水器 1 0 Eでは、 電解槽 1 2 E内に折流板 2 7を設けることによって、 内部の流路を蛇行した折流 2 1 0と渦 流防止流 2 1 1とにすることで、 電解槽 1 2 E内に止水域が発生するのを防止し て水道水を電極 1 7 a、 1 7 bの全面に亘つて流すことができ、 電極 1 7 a、 1 7 bによる電解効率を向上することができる。 これにより、 電解槽 1 2 Eを流れ る流量を多くしても、 水道水を確実に電^させてアルカリイオン水を生成するこ とができる。 また、 隣接する折流板 2 7の幅方向 2 0 1で重なり合う領域を狭く して、 折流 2 1 0の蛇行を直線に近く、 緩やかな蛇行としても、 渦流防止流 2 1 1によって止水域が形成されないため、 電解効率を向上した状態で、 電解槽 1 2 E内の圧力損失が低減するのを防止することができる。 これにより、 電解槽 1 2 E内の流量が低下するのを防止することができる。 また、 電解効率を向上した状 態で、 流量の低下を防止することができるため、 電解槽 1 2 Eを小型化すること ができると共に、 アルカリイオン整水器 1 0 Eを小型ィ匕することができる。 以上、 本発明の一実施形態を説明したが、 本発明の基本的な構成は上述したも のに限定されず、 次のような変形構成が可能である。 In the present embodiment, other configurations than the above-described configuration are the same as those of the above-described first embodiment, and thus description thereof will be omitted. Further, the basic operation of the alkali ion water purifier 10E is the same as that of the above-described first embodiment, and a description thereof will be omitted. As described above, in the alkali ion water purifier 10 E of the present embodiment, by providing the folding plate 27 in the electrolytic cell 12 E, the vortex 2 10 meandering in the internal flow path and the vortex are formed. By setting the flow prevention flow to 2 1 1, it is possible to prevent the occurrence of water stoppage in the electrolytic cell 1 2 E. Thus, tap water can flow over the entire surface of the electrodes 17a and 17b, and the electrolysis efficiency by the electrodes 17a and 17b can be improved. Thereby, even if the flow rate flowing through the electrolytic cell 12 E is increased, it is possible to reliably generate electricity from the tap water and generate alkali ion water. In addition, by narrowing the overlapping area in the width direction 201 of the adjacent flow plate 27, the meandering of the folding flow 210 is almost straight, and even if the meandering is gentle, the water is stopped by the eddy current prevention flow 211. Since no is formed, it is possible to prevent the pressure loss in the electrolytic cell 12E from being reduced in a state where the electrolytic efficiency is improved. This can prevent the flow rate in the electrolytic cell 12E from decreasing. In addition, since the flow rate can be prevented from being reduced in a state where the electrolysis efficiency is improved, the size of the electrolytic cell 12 E can be reduced, and the size of the alkali ion water conditioner 10 E can be reduced. Can be. The embodiment of the present invention has been described above. However, the basic configuration of the present invention is not limited to the above, and the following modified configurations are possible.
例えば、 上述した実施形態 6では、 折流板 2 7を基準方向 2 0 0に直交する幅 方向 2 0 1に配置するようにしたが、 特にこれに限定されず、 例えば、 折流板 2 7を基準方向 2 0 0と交差して、 幅方向 2 0 1に対して傾斜するように配置して もよい。  For example, in Embodiment 6 described above, the folding plate 27 is arranged in the width direction 201 orthogonal to the reference direction 200. However, the present invention is not particularly limited to this. For example, the folding plate 27 May intersect with the reference direction 200 and may be arranged so as to be inclined with respect to the width direction 201.
また、 上述した実施形態 6では、 電解槽 1 2 E内の固定部材 2 0 Eに折流板 2 7を設けるようにしたが、 特にこれに限定されず、 例えば、 電解槽 1 2 E内に固 定部材 2 0 Eを設けずに、 直接、 折流板 2 7を設けるようにしてもよい。 この場 合、 例えば、 空間 1 2 a、 1 2 bのそれぞれの折流板の一方面を電極 1 7 a、 1 7 bに保持させ、 各空間 1 2 a、 1 2 bの折流板の他方面側でイオン交換膜 1 6 を狭持させると共に各空間 1 2 a、 1 2 bの折流板同士をイオン交換膜 1 6を貫 通するように連結するようにすればよい。 このように電角科曹 1 2 E内に固定部材 2 0 Eを設けなくても、 折流板 2 7のみでイオン交換膜 1 6を固定することがで きる。  Further, in Embodiment 6 described above, the folding plate 27 is provided on the fixing member 20E in the electrolytic cell 12E. However, the present invention is not particularly limited thereto. The folding plate 27 may be provided directly without providing the fixing member 20E. In this case, for example, the electrodes 17a and 17b hold one surface of each of the folding plates of the spaces 12a and 12b, and the folding plates of the spaces 12a and 12b are held. On the other surface side, the ion exchange membrane 16 may be sandwiched, and the folding plates of the spaces 12a and 12b may be connected so as to penetrate the ion exchange membrane 16. As described above, the ion-exchange membrane 16 can be fixed only by the folding plate 27 without providing the fixing member 20E in the electroporation casket 12E.
さらに、 上述した実施形態 6では、 折流板 2 7の両端部が固定部材 2 0 Eに当 接しないように配置することで、 第 1及び第 2の流路 2 9 a、 2 9 bを設けるよ うにしたが、 特にこれに限定されず、 例えば、 折流板をその両端部が固定部材 2 0 Eに当接するようにして、 折流板の両端部に貫通した開口部を設けることによ り第 1及ぴ第 2の流路を形成するようにしてもよい。 Further, in the sixth embodiment described above, the first and second flow paths 29a and 29b are arranged by disposing the both ends of the folding plate 27 so as not to contact the fixing member 20E. However, the present invention is not limited to this. For example, it is possible to provide an opening that penetrates both ends of the folding plate so that both ends of the folding plate contact the fixing member 20E. Yo Alternatively, the first and second flow paths may be formed.
また、 上述した実施形態 6では、 第 1及び第 2の空間 1 2 a、 1 2 bのそれぞ れに 3つの折流板 2 7を設けるようにしたが、 第 1及ぴ第 2の空間 1 2 a、 1 2 bのそれぞれの折流板 2 7の数を変えることによって第 1及び第 2の空間 1 2 a 、 1 2 bの流量を調整するようにしてもよい。 なお、 第 1及び第 2の空間 1 2 a 、 1 2 bのそれぞれに同じ数の折流板 2 7を設け、 隣接する折流板 2 7の幅方向 2 0 1で重なり合う領域を変更することで流量の調整をするようにしてもよい。 また、 上述した実施形態 6は、 上述した実施形態 2〜 5にそのまま適用しても よい。  In the above-described sixth embodiment, the three flow plates 27 are provided in each of the first and second spaces 12a and 12b. However, the first and second spaces are provided. The flow rates of the first and second spaces 12a and 12b may be adjusted by changing the number of the flow plates 27 of 12a and 12b. In addition, the same number of folding plates 27 are provided in each of the first and second spaces 12a and 12b, and the overlapping area of the adjacent folding plates 27 in the width direction 201 is changed. May be used to adjust the flow rate. Embodiment 6 described above may be directly applied to Embodiments 2 to 5 described above.
(実施形態 7 )  (Embodiment 7)
第 1 9図は、 本発明の実施形態 7に係るアル力リイオン整水器の断面図であり 、 第 2 0図は、 本発明の実施形態 7に係るアルカリイオン整水器の要部断面図で ある。  FIG. 19 is a cross-sectional view of an Al-ion water purifier according to Embodiment 7 of the present invention. FIG. 20 is a cross-sectional view of a main part of an alkali ion water purifier according to Embodiment 7 of the present invention. It is.
本実施形態は、 原水への力ルシゥムの添加を容易に且つ確実に行つて、 医療用 及ぴ美容用として用いることができるアルカリイオン整水器を構成する例示であ る。  The present embodiment is an example of configuring an alkali ion water conditioner that can be used for medical and cosmetic purposes by easily and surely adding power calcium to raw water.
このような構成に際し、 水道水供給パイプ 1 3から分岐して外部からカルシゥ ムが充填可能な力ルシゥム添加室 1 6 0が設けられている点が上述した実施形態 1と異なっている。  In such a configuration, the present embodiment differs from the first embodiment in that a power calcium addition chamber 160 that is branched from the tap water supply pipe 13 and can be filled with calcium from the outside is provided.
具体的には、 水道水供給パイプ 1 3に、 水道水供給パイプ 1 3から分岐された 分岐路 1 5 0が設けられている。 この分岐路 1 5 0は、 原水管 1 0 0と水道水供 給パイプ 1 3との継ぎ手であるチーズ 1 3 0により形成されている。  Specifically, the tap water supply pipe 13 is provided with a branch 150 that is branched from the tap water supply pipe 13. The branch 150 is formed by a cheese 130 serving as a joint between the raw water pipe 100 and the tap water supply pipe 13.
また、 チーズ 1 3 0の分岐路 1 5 0側には、 一端が分岐路 1 5 0に連通する力 ルシゥム化合物 1 5 1が保持されたカルシウム添加室 1 6 0が設けられている。 このカルシウム添加室 1 6 0は、 分岐路 1 5 0とは反対側に、 外部に対して開閉 自在となる開口部 1 6 1を有する。 このようなカルシウム添加室 1 6 0内に保持 されたカルシウム化合物 1 5 1としては、 例えば、 乳酸カルシウム、 グリセロリ ン酸カルシウム等の食品添加物として認められた安全性の高いカルシウム化合物 が挙げられる。 本実施形態では、 メッシュ状の袋からなるカルシウム保持部材 1 5 2にカルシウム化合物 1 5 1を保持させ、 カルシウム保持部材 1 5 2をカルシ ゥム添加室 1 6 0に配置することで、 カルシウム添加室 1 6 0内にカルシウム化 合物 1 5 1を保持するようにした。 このようにカル -ゥム保持部材 1 5 2によつ てカルシウム化合物 1 5 1を保持させることで、 水道水がカルシウム添加室 1 6 0内 侵入した際に、 水道水中にカルシウム化合物 1 5 1を所望の比率で添加す ることができる。 Further, on the branch 150 side of the cheese 130, a calcium addition chamber 160 is provided in which a calcium compound 15 1 having one end communicating with the branch 150 is held. The calcium addition chamber 160 has an opening 161 on the opposite side of the branch passage 150 so as to be freely opened and closed with respect to the outside. Examples of the calcium compound 151 held in the calcium addition chamber 160 include highly safe calcium compounds recognized as food additives such as calcium lactate and calcium glycerophosphate. In the present embodiment, a calcium holding member 1 made of a mesh bag is used. By holding calcium compound 15 1 in 52 and placing calcium holding member 15 2 in calcium addition chamber 160, calcium compound 15 1 is held in calcium addition chamber 160 I did it. In this way, by holding the calcium compound 15 1 by the cal-pum holding member 15 2, when the tap water enters the calcium addition chamber 160, the calcium compound 15 1 Can be added in a desired ratio.
また、 分岐路 1 5 0のカルシウム添加室 1 6 0側には、 分岐路 1 5 0よりも大 きな内径を有する封止部材保持部 1 6 2が設けられている。 この封止部材保持部 1 6 2内には、 球形状を有する封止部材 1 7 0が移動自在に保持されている。 封 止部材 1 7 0は、 分岐路 1 5 0の内径よりも大径の外径を有することで、 原水管 1 0 0側への移動が規制されている。  Further, on the calcium addition chamber 160 side of the branch 150, a sealing member holding part 162 having an inner diameter larger than that of the branch 150 is provided. A sealing member 170 having a spherical shape is movably held in the sealing member holding portion 162. Since the sealing member 170 has an outer diameter larger than the inner diameter of the branch passage 150, movement toward the raw water pipe 100 is restricted.
また、 封止部材保持部 1 6 2のカルシウム添加室 1 6 0側には、 封止部材 1 7 0よりも小さな内径を有する連通孔 1 6 3が設けられており、 連通孔 1 6 3を介 して封止部材保持部 1 6 2とカルシウム添加室 1 6 0とが連通されている。 この 違通孔 1 6 3の封止部材保持部 1 6 2側の開口縁部には、 封止部材 1 7 0が当接 して連通孔 1 6 3を封止した際に、 水道水がカルシウム添加室 1 6 0内に侵入す るのを防止するシール部材 1 6 4が設けられている。 このシール部材 1 6 4の材 科としては、 例えば、 金属、 プラスチック、 ゴム、 エラストマ等を挙げることが できる。 また、 封止部材 1 7 0の材料としては、 例えば、 金属、 プラスチック、 ゴム、 エラストマ等を挙げることができる。  Further, a communication hole 163 having an inner diameter smaller than that of the sealing member 170 is provided on the calcium addition chamber 160 side of the sealing member holding portion 162, and the communication hole 163 is formed. The sealing member holding part 162 and the calcium addition chamber 160 communicate with each other through the intermediary of the sealing member. When the sealing member 170 comes into contact with the opening edge of the opening 163 on the side of the sealing member holding portion 162 of the through hole 163 to seal the communication hole 163, tap water is supplied. A seal member 164 is provided to prevent the calcium from entering the chamber 164. Examples of the material of the sealing member 164 include metal, plastic, rubber, and elastomer. Examples of the material of the sealing member 170 include metal, plastic, rubber, and elastomer.
ここで、 本実施形態のアル力リィオン整水器 1 0 Fは、 原水管 1 0 0に直接接 続されているため、 水道水供給パイプ 1 3内には、 水道水が常に所定の水圧で供 給されている。 このため、 封止部材 1 7 0は、 上方から力を受けない限り、 原水 管 1 0 0から供給された水道水の水圧によって、 連通孔 1 6 3側に付勢されて、 カルシウム添加室 1 6 0の開口を封止する。  Here, since the water pressure regulator 10 F of the present embodiment is directly connected to the raw water pipe 100, the tap water is always supplied at a predetermined water pressure in the tap water supply pipe 13. Supplied. For this reason, the sealing member 170 is urged toward the communication hole 163 by the water pressure of the tap water supplied from the raw water pipe 100 unless a force is applied from above, so that the calcium addition chamber 1 The 60 openings are sealed.
また、 封止部材 1 7 0には、 一端が封止部材 1 7 0に固定されると共に、 封止 部材 1 7 0が連通孔 1 6 3のシール部材 1 6 4に当接した状態で他端がカルシゥ ム添加室 1 6 0の開口部 1 6 1から所定量突出するように設けられた棒状の押圧 部材 1 7 1が設けられている。 さらに、 カルシウム添加室 1 6 0の開口部 1 6 1側には、 蓋部材 1 6 5が着脱 自在に嵌合しており、 蓋部材 1 6 5に iつてカルシウム添カ卩室 1 6 0の開口部 1 6 1が封止されている。 本実施形態では、 蓋部材 1 6 5がカルシウム添加室 1 6 0の開口部 1 6 1側に螺合することでカルシウム添加室 1 6 0を封止するように した。 One end of the sealing member 170 is fixed to the sealing member 170, and the sealing member 170 is in contact with the sealing member 164 of the communication hole 163. There is provided a rod-shaped pressing member 171 provided so that an end protrudes from the opening 161 of the calcium addition chamber 160 by a predetermined amount. Further, a lid member 165 is removably fitted to the opening 161 side of the calcium addition chamber 160, and the lid member 1665 is connected to the calcium addition chamber 160 The opening 161 is sealed. In the present embodiment, the lid 165 is screwed into the opening 161 side of the calcium addition chamber 160 to seal the calcium addition chamber 160.
この蓋部材 1 6 5によってカルシウム添加室 1 6 0の開口部 1 6 1を封止する と、 開口部 1 6 1から突出した押圧部材 1 7 1の他端部が蓋部材 1 6 5によって 下方に押圧され、 封止部材 1 7 0が原水管 1 0 0からの水圧に抗して分岐路 1 5 0铷に移動される。 これにより、 封止部材 1 7 0とカルシウム添加室 1 6 0との 間に隙間が生じ、 カルシウム添加室 1 6 0の一端側、 すなわち、 連通孔 1 6 3が 開放される。 そして、 開放された連通孔 1 6 3からは、 原水管 1 0 0からの水道 水が、 水圧によりカルシウム添加室 1 6 0内に侵入し、 カルシウム添加室 1 6 0 内のカルシウム化合物 1 5 1に接触してカルシウムは水道水中に拡散される。 そ して、 カルシウムの添加された水道水は、 水道水供給パイフ。 1 3を介して電解槽 1 2に供給さ; τる。  When the opening 161 of the calcium addition chamber 160 is sealed by the lid member 1665, the other end of the pressing member 171, which projects from the opening 161, is lowered by the lid member 165. , And the sealing member 170 is moved to the branch 150 ° against the water pressure from the raw water pipe 100. As a result, a gap is created between the sealing member 170 and the calcium addition chamber 160, and one end of the calcium addition chamber 160, that is, the communication hole 163 is opened. Then, from the opened communication hole 16 3, tap water from the raw water pipe 100 intrudes into the calcium addition chamber 160 by water pressure, and the calcium compound 15 1 in the calcium addition chamber 16 0 Calcium is diffused into tap water upon contact. And the tap water to which calcium is added is a tap water supply pif. Supplied to the electrolytic cell 12 via 13;
このとき、 連通孔 1 6 3を開放する封止部材 1 7 0と連通孔 1 6 3との隙間の 大きさは、 押圧部材 1 7 1のカルシウム添加室 1 6 0の開口部 1 6 1からの突出 量によって決まる。 また、 封止部材 1 7 0と連通孔 1 6 3との隙間の大きさによ つて、 水道水がカルシウム添加室 1 6 0に侵入する流量が決まる。 このため、 押 圧部材 1 7 1の開口部 1 6 1からの突出量は、 水道水へのカルシウムの添加量が 所定の比率となるように適宜決定すればよい。  At this time, the size of the gap between the sealing member 170 opening the communication hole 163 and the communication hole 163 is determined from the opening 161 of the calcium addition chamber 160 of the pressing member 171. Is determined by the amount of protrusion. The flow rate of tap water entering the calcium addition chamber 160 is determined by the size of the gap between the sealing member 170 and the communication hole 163. For this reason, the amount of protrusion of the pressing member 17 1 from the opening 16 1 may be appropriately determined so that the amount of calcium added to tap water has a predetermined ratio.
ここで、 水道水への力ルシゥムの添加及び力ルシゥム添加室 1 6 0へのカルシ ゥム化合物 1 5 1の充填について詳細に説明する。 なお、 第 2 0図は、 カルシゥ ムの添加及び充填方法を示すアル力リィオン整水器 1 0 Fの要部断面図である。 まず、 第 2 0図 (a ) に示すように、 蓋部材 1 6 5をカルシウム添加室 1 6 0 の開口部 1 6 1側から取り外すと、 原水管から供給された水道水の圧力によって 封止部材 1 7 0は、 カルシウム添加室 1 6 0側に押圧されてシール部材 1 6 4に 当接し、 封止部材 1 7 0が連通孔 1 ,6 3を封止してカルシウム添加室 1 6 0の一 端側を封止する。 これにより、 原水管 1 0 0内の水道水は'、 カルシウム添加室' 1 6 0内に侵入す ることができず、 カルシウム添加室 1 6 0の開口部 1 6 1から水道水が漏れ出る のを防止することができる。 そして、 この状態で、 カルシウム化合物 1 5 1を開 口部 1 6 1からカルシウム添加室 1 6 0に充填する。 また、 このとき、 封止部材 1 7 0に一端が固定された押圧部材 1 7 1の他端部側は、 開口部 1 6 1から所定 量突出した状態となる。 Here, the addition of potash to tap water and the filling of the potash compound into the potash addition chamber 160 will be described in detail. FIG. 20 is a cross-sectional view of a main part of an AL-force water regulator 10F showing a method of adding and filling calcium. First, as shown in Fig. 20 (a), when the lid member 165 is removed from the opening 161 side of the calcium addition chamber 160, the sealing is performed by the pressure of tap water supplied from the raw water pipe. The member 170 is pressed to the calcium addition chamber 160 side and abuts on the seal member 16 4, and the sealing member 170 seals the communication holes 1, 63 to form the calcium addition chamber 160. Seal one end. As a result, tap water in the raw water pipe 100 cannot enter the calcium addition chamber 160, and tap water leaks from the opening 160 of the calcium addition chamber 160. Can be prevented. Then, in this state, the calcium compound 151 is filled into the calcium addition chamber 160 from the opening part 161. At this time, the other end of the pressing member 171, one end of which is fixed to the sealing member 170, protrudes from the opening 161 by a predetermined amount.
また、 カルシウム添加室 1 6 0内のカルシウム化合物 1 5 1が無くなった場合 にも、 同様に、 蓋部材 1 6 5を外した状態で、 カルシウム添加室 1 6 0内にカル シゥム化合物 1 5 1を補充することができる。  Similarly, when the calcium compound 151 in the calcium addition chamber 160 has been used up, the calcium compound 1501, in the calcium addition chamber 160, with the lid member 165 removed, is also provided. Can be replenished.
このように、 カルシウム添加室 1 6 0の開口部 1 6 1を塞ぐ蓋部材 1 6 5を開 口した際に、 封止部材 1 7 0が水道水の水圧によってカルシウム添加室 1 6 0の 一端を塞ぐため、 カルシウム添加室 1 6 0の開口部 1 6 1から水道水が漏れ出る ことがなく、 カルシウム化合物 1 5 1をカルシウム添加室 1 6 0内に容易に且つ 確実に充填することができる。  As described above, when the lid member 165 that closes the opening 161 of the calcium addition chamber 160 is opened, the sealing member 170 is closed at one end by the water pressure of the tap water. The tap water does not leak from the opening 16 1 of the calcium addition chamber 160, and the calcium compound 15 1 can be easily and reliably filled into the calcium addition chamber 160. .
次に、 第 2 0図 (b ) に示すように、 蓋部材 1 6 5でカルシウム添加室 1 6 0 の開口部 1 6 1を封止すると、 蓋部材 1 6 5は、 押圧部材 1 7 1を介して封止部 材 1 7 0を水道圧に抗して押圧し、 封止部材 1 7 0を原水管 1 0 0側に移動させ る。 これにより封止部材 1 7 0が封止していたカルシウム添加室 1 6 0の一端側 の連通孔 1 6 3を開放する。 このとき、 原水管 1 0 0から供給された水道水は、 水圧によりカルシウム添加室 1 6 0内に侵入し、 カルシウム添加室 1 6 0内で力 ルシゥム化合物 1 5 1に接触することで、 カルシウムが添加される。 そして、 力 ルシゥムが添加された水道水は、 連通孔 1 6 3を通り、 水道水供給パイプ 1 3を 介して電解槽 1 2に供給される。  Next, as shown in FIG. 20 (b), when the opening 161 of the calcium adding chamber 1650 is sealed with the lid member 165, the lid member 165 is pressed by the pressing member 171 The sealing member 170 is pressed against the tap water pressure via the, and the sealing member 170 is moved to the raw water pipe 100 side. Thereby, the communication hole 163 on one end side of the calcium addition chamber 160 sealed by the sealing member 170 is opened. At this time, the tap water supplied from the raw water pipe 100 intrudes into the calcium addition chamber 160 by water pressure, and contacts the calcium compound 1501 in the calcium addition chamber 160, so that calcium is supplied. Is added. Then, the tap water to which the potassium hydroxide is added passes through the communication hole 16 3 and is supplied to the electrolytic cell 12 via the tap water supply pipe 13.
このように、 カルシウム添加室 1 6 0の開口部 1 6 1を蓋部材 1 6 5で塞ぐだ けで、 封止部材 1 7 0が押圧部材 1 7 1により下方に押圧されて、 カルシウム添 加室 1 6 0の一端を開放することができ、 水道水にカルシウムを容易に且つ確実 に添加することができる。 " なお、 本実施形態では、 上述した構成以外の他の構成は、 上述した実施形態 1 と同様のため、 その説明は省略する。 また、 上述した動作以外の基本的な動作に ついても、 上述した実施形態 1と同様のため、 その説明は省略する。 In this way, the sealing member 170 is pressed downward by the pressing member 171 just by closing the opening 161 of the calcium adding chamber 160 with the lid member 165, so that calcium is added. One end of the chamber 160 can be opened, and calcium can be easily and reliably added to tap water. Note that, in the present embodiment, the configuration other than the above-described configuration is the same as that of the above-described first embodiment, and a description thereof will not be repeated. Since the same applies to the first embodiment, the description thereof is omitted.
上述したように、 本実施形態のアルカリイオン整水器 1 0 Fでは、 カルシウム 添加室 1 6 0の開口 1 6 1を塞ぐ蓋部材 1 6 5を開口した際に、 封止部材 1 7 0が水道水の水圧によってカルシウム添加室 1 6 0の一端を塞ぐため、 カルシゥ ム添加室 1 6 0の開口部 1 6 1から水道水が漏れ出ることがなく、 カルシウム化 合物 1 5 1をカルシウム添加室 1 6 0内に容易に且つ ¾実に充填することができ る。 また、 カルシウム添加室 1 6 0の開口部 1 6 1を蓋部材 1 6 5で塞ぐだけで 、 封止部材 1 7 0が押圧部材 1 7 1により押圧されてカルシウム添加室 1 6 0の 一端を開放することができ、 水道水にカルシウムを容易に且つ確実に添加するこ とができる。  As described above, in the alkali ion water purifier 10 F of the present embodiment, when the lid member 165 that closes the opening 161 of the calcium addition chamber 160 is opened, the sealing member 170 One end of the calcium addition chamber 160 is closed by the water pressure of the tap water, so that the tap water does not leak out from the opening 161 of the calcium addition chamber 160, and the calcium compound 1501 is added with calcium. The chamber 160 can be easily and reliably filled. Further, by simply closing the opening 161 of the calcium addition chamber 1660 with the lid member 1665, the sealing member 170 is pressed by the pressing member 171, and one end of the calcium addition chamber 1610 is closed. It can be opened and calcium can be easily and reliably added to tap water.
以上、 本発明の一実施形態を説明したが、 本発明の基本的な構成は上述したも のに限定されず、 次のような変形構成が可能である。  The embodiment of the present invention has been described above. However, the basic configuration of the present invention is not limited to the above, and the following modified configurations are possible.
上述した実施形態 7では、 押圧部材 1 7 1の一端を封止部材 1 7 0に固定し、 他端が蓋部材 1 6 5に当接して押圧されるようにしたが、 これに限定されず、 例 えば、 棒状の押圧部材の一端を蓋部材に固定し、 他端を封止部材に当接させて、 封止部材を蓋部材に固定された押圧部材で下方に押圧するようにしてもよい。 また、 上述した実施形態 7では、 封止部材 1 7 0を球形状を有する部材とした が、 特にこれに限定されず、 例えば、 シール部材 1 6 4に当接する側が球面に形 成された半球形状としてもよい。  In the above-described seventh embodiment, one end of the pressing member 17 1 is fixed to the sealing member 170, and the other end is pressed against the lid member 16 5. For example, one end of the rod-shaped pressing member may be fixed to the lid member, and the other end may be brought into contact with the sealing member so that the sealing member is pressed downward by the pressing member fixed to the lid member. Good. Further, in Embodiment 7 described above, the sealing member 170 is a member having a spherical shape. However, the present invention is not particularly limited to this. For example, a hemisphere in which the side abutting on the sealing member 164 is formed as a spherical surface It may be shaped.
また、 上述した実施形態 7では、 カルシウムの添加された水道水を電解槽 1 2 と整水器本体 1 1との間の空間に充填することを想定しているが、 チーズ 1 3 0 の原水管側に、 原水管を分岐するチーズを新たに設け、 このカルシウムの添加さ れていない水道水を電解槽 1 2と整水器本体 1 1の間の空間に充填するようにし てもよい。 この場合、 整水器本体 1 1内に充填される水道水が供給される水道管 にも、 流量スィッチ 4 0からの信号に基づいて開閉する電磁バルブを設けるよう にすればよい。 これにより、 カルシウム化合物 1 5 1の無駄な消費を防止して、 コストを削減することも可能となる。  Further, in the above-described Embodiment 7, it is assumed that tap water to which calcium is added is filled in the space between the electrolytic cell 12 and the water conditioner main body 11. On the water pipe side, a cheese for branching the raw water pipe may be newly provided, and the tap water to which calcium has not been added may be filled in the space between the electrolytic cell 12 and the water conditioner main body 11. In this case, an electromagnetic valve that opens and closes based on a signal from the flow rate switch 40 may also be provided in the water pipe to which the tap water filled in the water regulator body 11 is supplied. As a result, wasteful consumption of the calcium compound 151 can be prevented, and the cost can be reduced.
また、 上述した実施形態 7は、 上述した実施形態 2〜 6にそのまま適用しても よい。 産業上の利用可能性 Embodiment 7 described above may be directly applied to Embodiments 2 to 6 described above. Industrial applicability
本発明は、 水の電気分解作用によりアル力リイオン水と酸性イオン水を分離生 成する装置などに適用可能である。  INDUSTRIAL APPLICABILITY The present invention is applicable to an apparatus that separates and generates ionic water and acidic ionic water by the electrolysis of water.

Claims

請 求 の 範 囲 The scope of the claims
1 . イオン交換膜とこのイオン交換膜の両側に配置される一対の電極とを具備 する電解槽内に水道水を導入しこの水道水を電離することによ'りアル力リイオン 水及び酸性イオン水を生成するアル力リイオン整水器において、 1. Tap water is introduced into an electrolytic cell having an ion-exchange membrane and a pair of electrodes disposed on both sides of the ion-exchange membrane, and the tap water is ionized to thereby obtain an alkaline ionized water and an acidic ion. In the AL force water ionizer that produces water,
前記電解槽の少なくとも前記イオン交換膜に対向する領域の一部を可撓膜によ つて形成すると共に当該電解槽を整水器本体内に配置し、 前記電解槽内に供給す る水道水を前記電解槽と前記整水器本体との間の空間にも供給して、 前記電解槽 を水道水中に保持するようにしたことを特徴とするアル力リイオン整水器。  At least a part of a region facing the ion exchange membrane of the electrolytic cell is formed by a flexible membrane, and the electrolytic cell is disposed in a water conditioner main body, and tap water supplied to the electrolytic cell is supplied. The water supply device according to claim 1, wherein the water is also supplied to a space between the electrolytic cell and the water conditioner main body, and the electrolytic cell is held in tap water.
2 . 請求の範囲 1において、 前記空間の前記電解槽とは接触しない領域の少な くとも一部に空気が残留している空気部を有することを特徴とするアル力リイォ ン整水器。 2. The water purifier according to claim 1, further comprising an air portion in which air remains in at least a part of a region of the space that is not in contact with the electrolytic cell.
3 . 請求の範囲 1又は 2において、 前記電解槽の全面が前記可撓膜で構成され ていることを特徴とするアル力リイオン整水器。 3. The water purifier according to claim 1, wherein the entire surface of the electrolytic cell is formed of the flexible membrane.
4 . 請求の範囲 1〜 3の何れかにおいて、 前記可撓膜がプラスチックシートか らなることを特徴とするアル力リィオン整水器。 4. The water purifier according to any one of claims 1 to 3, wherein the flexible film is made of a plastic sheet.
5 . 請求の範囲 1〜 4の何れかにおいて、 前記整水器本体に前記電解槽内に水 道水を供給する水道水供給路と、 前記電解槽で生成されたアル力リィオン水を吐 水するアルカリ水吐水路と、 前記電解槽で生成された酸性ィオン水を排出する酸 性水排出路とを具備し、 且つ前記供給路からの水道水を前記電解槽と共に当該電 解槽と前記整水器本体との間の空間にも供給するようにしたことを特徴とするァ ルカリイオン整水器。 5. In any one of claims 1 to 4, a tap water supply path for supplying tap water to the water conditioner main body into the electrolytic cell, and discharging water discharged from the electrolytic cell in the electrolytic cell. An alkaline water discharge channel for discharging the acidic ion water generated in the electrolytic cell, and an acidic water discharge channel for discharging the acidic ion water generated in the electrolytic cell. Alkali ion water purifier characterized in that it is also supplied to the space between the water main unit.
6 . 請求の範囲 5において、 前記空間に供給された水道水を外部に排出する水 道水排出路を具備することを特徴とするアル力リイオン整水器。 6. The water purifier according to claim 5, further comprising a water discharge passage for discharging tap water supplied to the space to the outside.
... ...
7 . 請求の範囲 6において、 前記水道水排出路と前記酸性水排出路とを連通さ せ、 前記電解槽と前記整水器本体との間の空間に供給された水道水を、 前記酸性 水排出路から酸性ィオン水と共に外部に排出するようにしたことを特徴とするァ7. In Claim 6, the tap water discharge path and the acid water discharge path are communicated with each other, and the tap water supplied to the space between the electrolytic cell and the water conditioner main body is replaced with the acidic water. Characterized by being discharged to the outside together with the acidic ion water from the discharge passage.
5 ルカリイオン整水器。 5 Lucari ion water purifier.
8 . 請求の範囲 1〜7の何れかにおいて、 前記一対の電極のそれぞれが、 多孔 性材料からなるスぺーサの一'方面にそれぞれ固定され、 これらのスぺーサが前記8. In any one of claims 1 to 7, each of the pair of electrodes is fixed to one side of a spacer made of a porous material, and the spacer is
' ィオン交換膜を挟持するように前記電解槽内に配設されていることを特徴とする 10 アル力リイォン整水器。 'A 10-inch power water conditioner, which is disposed in the electrolytic cell so as to sandwich the ion exchange membrane.
9 . 請求の範囲 1〜7の何れかにおいて、 前記一対の電極のそれぞれが、 前記 電解槽内に前記ィオン交換膜と所定間隔離れて配設されていることを特徴とする アルカリイオン整水器。 9. The alkali ion water purifier according to any one of claims 1 to 7, wherein each of the pair of electrodes is disposed at a predetermined distance from the ion exchange membrane in the electrolytic cell. .
15  15
1 0 . 請求の範囲 1〜 9の何れかにおいて、 前記氷道水供給路が水道水の原水 管に接続されると共に、 前記アル力リ水吐水路が力ランに接続され、 該カランの 水栓を開閉することによりアル力リイォン水の吐水量が制御されていることを特 徴とするアル力リィオン整水器。  10. In any one of claims 1 to 9, the icy water supply channel is connected to a raw water pipe of tap water, the water supply channel is connected to a power run, and An AL-powered water conditioner characterized by controlling the amount of spouted water by opening and closing the stopper.
20  20
1 1 . 請求の範囲 1〜 1 0の何れかにおいて、 前記アル力リ水吐水路が給湯器 に接続されることを特徴とするアルカリィォン整水器。  11. The alkaline water conditioner according to any one of claims 1 to 10, wherein the water discharge channel is connected to a water heater.
1 2 . 請求の範囲 1〜 1 1の何れかにおいて、 前記アル力リ水吐水路に設はら 25 れて前記アルカリイオン水の吐水量を検出する吐水量検出手段と、 前記酸性水排 出路に設けられて前記酸性ィオン水の排出量を調整する流量調整手段と、 前記吐 水量検出手段が検出した実際の吐水量に基づいて、 アル力リィオン水の吐水量に 対する酸性イオン水の排出量が所定の割合となるように前記流量調整手段を制御 する制御手段とを具備することを特徴とするアル力リイオン整水器。 12. In any one of claims 1 to 11, a water discharge amount detecting means provided in the water discharge passage for detecting the discharge amount of the alkaline ionized water, and a discharge amount detecting means for discharging the acidic water. A flow rate adjusting unit provided to adjust the discharge amount of the acidic ion water; and a discharge amount of the acidic ion water with respect to the discharge amount of the Alion water, based on an actual discharge amount detected by the discharge amount detection unit. Control means for controlling the flow rate adjusting means so as to have a predetermined ratio.
1 3 . 請求の範囲 1〜 1 2の何れかにおいて、 前記アル力リ水吐水路からのァ ルカリイオン水の吐水を停止する際、 前記電解槽への電圧印加を停止した後、 前 記電解槽の少なくとも酸性イオン水側の水を水道水と置換する水道水置換手段を 具備する とを特徴とするアルカリイオン整水器。 13. In any one of claims 1 to 12, when stopping the discharge of alkali ion water from the alkaline water discharge channel, after stopping the voltage application to the electrolytic cell, the electrolytic cell described above. A tap water replacing means for replacing at least water on the acidic ion water side with tap water.
1 4 . 請求の範囲 1〜 1 3の何れかにおいて、 前記ィオン交換膜の両側に前記 一対の電極の何れか一方を有する第 1及び第 2の空間を具備し、 当該一対の電極 に印加きれる電圧の極性に応じて前記第 1及び第 2の空間でそれぞれアル力リィ オン水及び酸性イオン水を生成する際に、 前記一対の電極に印加する電圧の極性 を反転させると共に、 前記電解槽の前記第 1及ぴ第 2の空間と、 前記アルカリ水 吐水路及び前記酸性水排出路とを相互に接続する接続流路を接続状態が反転する ように切り替える反転手段を具備することを特徴とするアル力リィオン整水器。 14. In any one of claims 1 to 13, comprising a first space and a second space having either one of the pair of electrodes on both sides of the ion-exchange membrane, and applying the voltage to the pair of electrodes. When generating Al force ion water and acidic ion water in the first and second spaces according to the polarity of the voltage, respectively, the polarity of the voltage applied to the pair of electrodes is reversed, and It has a reversing means for switching a connection flow path for interconnecting the first and second spaces and the alkaline water discharge passage and the acidic water discharge passage so that the connection state is reversed. Al power Lion water purifier.
1 5 . 請求の範囲 1〜 1 4の何れかにおいて、 前記電解槽を二段以上の多段に し、 第 1段電解槽には前記水道水供給路から直接水道水を供給するようにすると 共に第 2段以降の後段電解槽には、 その前段の電解槽が生成した酸性イオン水を 供給するようにし、 各段の電解槽で生成されたアル力リィオン水を前記アル力リ 水吐水路から吐水するようにすると共に、 最も後段の電解槽で生成された酸性ィ オン水を前記酸性水排出路から排出するようにしたことを特徴とするアル力リィ オン整水器。 15. In any one of claims 1 to 14, the electrolytic cell is provided in two or more stages, and the first-stage electrolytic cell is supplied with tap water directly from the tap water supply path. The acidic electrolyzed water generated by the preceding electrolyzer is supplied to the subsequent electrolyzers of the second and subsequent stages. A water purifier, wherein water is spouted and the acid ion water generated in the electrolytic cell at the last stage is discharged from the acid water discharge passage.
1 6 . 請求の範囲 1〜1 5の何れかにおいて、 前記電解槽内には、 前記水道水 が導入される一端から前記アル力リイオン水及び前記酸性イオン水が流出される 他端に向かった基準方向に交差する幅方向に配置されて、 当該幅方向の一部の流 れをせき止める折流板を前記基準方向に亘つて複数個所定の間隔で設け、 且つ前 記折流板の幅方向一端側に第 1の流路を交互に形成することにより、 前記基準方 向に対して蛇行した折流を形成すると共に、 前記折流板の他端部側に前記第 1の 流路よりも小さな流量となる第 2の流路を形成したことを特徴とするアルカリィ オン整水器。 16. In any one of claims 1 to 15, in the electrolytic cell, one end from which the tap water was introduced was directed to the other end from which the alkaline water and the acidic ionic water were discharged. A plurality of folding plates arranged in a width direction intersecting the reference direction and blocking a part of the flow in the width direction at predetermined intervals over the reference direction; and By alternately forming the first flow path on one end side, a meandering flow with respect to the reference direction is formed, and the first flow path is formed on the other end side of the folding plate more than the first flow path. An alkali water conditioner, wherein a second flow path having a small flow rate is formed.
1 7 . 請求の範囲 1〜 1 6の何れかにおいて、 前記水道水供給路から分岐され た分岐路と、 該分岐路に一端が連通すると共に他端側に外部に対して開閉自在と なる開口部を有し且 ό外部からカルシゥムが充填可能なカルシゥム添加室と、 前 記分岐路内に設けられて当該分岐路内の水道水の水圧により前記カルシウム添加 室側に付勢されて当該カルシウム添加室の一端側を封止する封止部材と、 前記力 ルシゥム添加室内に設けられて前記封止部材に一端が当接すると共に他端が前記 開口部から突出し且つ前記開口部を蓋部材で封止する際に当該蓋部材により押圧 されて前記カルシウム添加室の一端側を開放する押圧部材とを具備することを特 徴とするアルカリィォン整水器。 17. The branch according to any one of claims 1 to 16, wherein the branch is branched from the tap water supply path, and an opening communicates with the branch at one end and is openable and closable to the outside at the other end. A calcium addition chamber having a portion and capable of being filled with calcium from the outside; and a calcium addition chamber provided in the branch passage and urged toward the calcium addition chamber by the water pressure of tap water in the branch passage. A sealing member for sealing one end side of the chamber; and a sealing member provided in the force adding chamber, one end of which abuts the sealing member and the other end protrudes from the opening, and seals the opening with a lid member. And a pressing member that is pressed by the lid member to open one end of the calcium addition chamber.
PCT/JP2004/003261 2003-03-18 2004-03-12 Alkali ion water conditioner WO2004083127A1 (en)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2003074460 2003-03-18
JP2003-074460 2003-03-18
JP2004-022103 2004-01-29
JP2004-022102 2004-01-29
JP2004022103 2004-01-29
JP2004022104A JP3611847B1 (en) 2004-01-29 2004-01-29 Alkaline ion water conditioner
JP2004-022105 2004-01-29
JP2004-022104 2004-01-29
JP2004022105A JP4442752B2 (en) 2004-01-29 2004-01-29 Alkaline ion water conditioner
JP2004022102A JP3611846B1 (en) 2004-01-29 2004-01-29 Alkaline ion water conditioner
JP2004027040A JP3611848B1 (en) 2004-02-03 2004-02-03 Alkaline ion water conditioner
JP2004027039A JP4462607B2 (en) 2004-02-03 2004-02-03 Alkaline ion water conditioner
JP2004-027039 2004-02-03
JP2004-027040 2004-02-03

Publications (1)

Publication Number Publication Date
WO2004083127A1 true WO2004083127A1 (en) 2004-09-30

Family

ID=33033374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003261 WO2004083127A1 (en) 2003-03-18 2004-03-12 Alkali ion water conditioner

Country Status (1)

Country Link
WO (1) WO2004083127A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328628A (en) * 1994-06-15 1995-12-19 Kyushu Hitachi Maxell Ltd Electrolytic water regulator
JPH08173967A (en) * 1994-12-22 1996-07-09 Tadamasa Nakamura Electrolytic water-producing apparatus
JPH10156364A (en) * 1996-10-03 1998-06-16 Yoshiya Okazaki Front end stopping type electrolytic water generation device of non-pressure resistance type
JPH10286572A (en) * 1997-04-16 1998-10-27 Permelec Electrode Ltd Water electrolyzing tank
JP2001029954A (en) * 1999-07-23 2001-02-06 Matsushita Electric Ind Co Ltd Apparatus for producing electrolytic water
JP2003225665A (en) * 2002-02-06 2003-08-12 Aiken Kogyo Kk End stop system electrolyzed water producing equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328628A (en) * 1994-06-15 1995-12-19 Kyushu Hitachi Maxell Ltd Electrolytic water regulator
JPH08173967A (en) * 1994-12-22 1996-07-09 Tadamasa Nakamura Electrolytic water-producing apparatus
JPH10156364A (en) * 1996-10-03 1998-06-16 Yoshiya Okazaki Front end stopping type electrolytic water generation device of non-pressure resistance type
JPH10286572A (en) * 1997-04-16 1998-10-27 Permelec Electrode Ltd Water electrolyzing tank
JP2001029954A (en) * 1999-07-23 2001-02-06 Matsushita Electric Ind Co Ltd Apparatus for producing electrolytic water
JP2003225665A (en) * 2002-02-06 2003-08-12 Aiken Kogyo Kk End stop system electrolyzed water producing equipment

Similar Documents

Publication Publication Date Title
US5944978A (en) Cleaning method of an electrolyzed water forming apparatus and an electrolyzed water forming apparatus having mechanism for conducting the method
JP2558567B2 (en) Continuous electrolyzed water generator with flow path switching valve device
KR101215811B1 (en) Electrolyzed-water system having Non_diaphragm electrolysis apparatus
JPH08257561A (en) Electrolytic water generating device
WO2004083127A1 (en) Alkali ion water conditioner
JP4106788B2 (en) Alkaline ion water conditioner
JP2001198574A (en) Device for producing ozonic water
KR100947760B1 (en) Water ionizer having intergrated supply and drain valve
JPH01203097A (en) Apparatus for producing electrolytic ionic water
JP4502714B2 (en) Ion water conditioner
JP3581362B1 (en) Alkaline ion water purifier
JPS6351991A (en) System for producing sterilizable electrolytic ionic water
JP3611848B1 (en) Alkaline ion water conditioner
KR20130062647A (en) Apparatus for providing purified water and ionized water
JP2004313977A (en) Water reformer
JPS6351990A (en) System for producing sterilizable electrolytic ionic water
JPH06335679A (en) Alkaline ion water regulator
JPH07251177A (en) Ionized water generator
KR100576257B1 (en) Electrolytic cell equipped with device controlling the flow volume of outflow water
JP4442752B2 (en) Alkaline ion water conditioner
JP2005211799A (en) Alkali ion water generator
JP4182559B2 (en) Calcium feeder for ion water conditioner
JP3283938B2 (en) Stopped continuous electrolyzed water generator
JPH0550066A (en) Ionized water supplying device
JP3760611B2 (en) Calcium feeder for ion water conditioner

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase