WO2004082828A1 - Tubular column structure - Google Patents

Tubular column structure Download PDF

Info

Publication number
WO2004082828A1
WO2004082828A1 PCT/JP2004/003674 JP2004003674W WO2004082828A1 WO 2004082828 A1 WO2004082828 A1 WO 2004082828A1 JP 2004003674 W JP2004003674 W JP 2004003674W WO 2004082828 A1 WO2004082828 A1 WO 2004082828A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
ion exchange
exchange resin
column
cylindrical
Prior art date
Application number
PCT/JP2004/003674
Other languages
French (fr)
Japanese (ja)
Inventor
Keiichi Hirano
Original Assignee
Nihon Medi-Physics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Medi-Physics Co., Ltd. filed Critical Nihon Medi-Physics Co., Ltd.
Publication of WO2004082828A1 publication Critical patent/WO2004082828A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/022Column or bed processes characterised by the construction of the column or container
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6004Construction of the column end pieces
    • G01N30/6021Adjustable pistons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6004Construction of the column end pieces
    • G01N30/603Construction of the column end pieces retaining the stationary phase, e.g. Frits

Definitions

  • the present invention relates to a cylindrical column structure in which an ion exchange resin is sealed in a cylindrical column.
  • the cylindrical column structure according to the present invention can be applied to, for example, an ion exchange column or a column used for an organic compound labeling reaction. Background technology
  • ion-exchange column uniformly packed with 100% of the capacity of the ion exchange resin to the column tube volume, although the flow resistance of even the solvent polarity by injecting the same solvent is about 1 Kg f Zcm 2 Thereafter, when a solvent having a different polarity is injected into the ion exchange column, the ion exchange resin expands, causing a problem that the solvent cannot pass even when a pressure of 15 OKg f / cm 2 is applied.
  • the fluorine has been made to use ion exchange resins in the production of radioisotope-labeled organic compound 8 F-labeled organic compound), as such I-exchange resins, Nu cl. Me d. B iol. Vol. 17, No. 3, p. 273-279 (1990)
  • I-exchange resins Nu cl. Me d. B iol. Vol. 17, No. 3, p. 273-279 (1990)
  • a 4-aminopyridinium resin prepared using the Merrifield resin described in Non-Patent Document 1. . Since the pyridinium salt of the above 4-aminopyridinium resin is a hydrophilic group, this 4-aminopyridinium resin is highly hydrophilic and swells in a highly polar solvent. On the other hand, when a solvent having low polarity is passed, the resin shrinks.
  • the swelling state of the 4-aminopyridinium resin changes according to the polarity of the solvent.
  • the back pressure increases when passing the solution through this column, and the fluidity deteriorates.
  • the resin shrinks the column efficiency decreases.
  • Patent Document 1 discloses that a phosphonium resin is used as an ion exchange resin used for producing an 18 F-labeled organic compound. Since the phosphonium resin has low hydrophilicity, it has a low degree of swelling in polar solvents such as water, acetonitrile, and dimethyl sulfoxide.
  • polar solvents such as water, acetonitrile, and dimethyl sulfoxide.
  • the solvent uptake of a 4-aminopyridinium resin (active group; pyridinium salt content: 1.2 mmol Zg) synthesized from a conventional commercially available Merrifield resin is 0.6 gZg for acetonitrile, In the case of 1. It is 1.1 g / g.
  • the solvent uptake amount of a phosphonium resin containing a phosphonium salt as an active group in a range of 0.5 to 1.6 mmo1 / g is 0.3 g / g or less for acetonitrile, 0.5 gZg or less for water.
  • the phosphonium resin has a low density of the phosphonium salt on the resin, the steric hindrance that hinders the flow of the polar solvent is small. For this reason, the back pressure of the column is prevented from rising, and the flowability of the polar solvent is good. Also, phosphonium tree Since the fat does not easily shrink, the column efficiency does not easily decrease. Thus the content of phosphate Honiumu salt 0. 5 ⁇ 1. 6mmo 1 Zg phosphonium ⁇ resinless is in the range of, easy to handle, and c are suitable for use in packed in a column container, fiber Since there is no need to use a state cation exchange resin, the production cost can be reduced. It is also stated that there is no risk of yield reduction due to mixing of fibrous cation exchange resin.
  • Patent Literature 2 JP-A-8-155207 discloses a method of using a movable stopper to expand and contract a resin in order to prevent the solvent from flowing due to the expansion of the ion exchange resin in the ion exchange resin sealed input ram.
  • a movable stopper to expand and contract a resin in order to prevent the solvent from flowing due to the expansion of the ion exchange resin in the ion exchange resin sealed input ram.
  • the movable tap moves by the force of the spring, frequent or large movement may cause a failure.
  • the sealing performance is reduced and leakage may occur.
  • the ion-exchange resin pushed into the limited rigid space expands due to solvents having different polarities. As a result, the flow resistance of the solvent increases, and it becomes difficult to pass the solvent.
  • the present invention has been made in view of the above circumstances, and the volume of a space filled with an ion exchange resin increases as the ion exchange resin expands and decreases as the ion exchange resin contracts, thereby reducing the resin content.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, in a cylindrical column in which an ion exchange resin is sealed, a pair of filters are arranged in a cylindrical force ram so as to sandwich the ion exchange resin.
  • at least one of the filters described above has a function that can be moved by the expansion force of the ion-exchange resin and a function that can be moved by the force of the solvent or gas in accordance with the contraction of the ion-exchange resin. It has been found that the above-mentioned object can be achieved by providing.
  • the present invention has been made based on the above findings, and has a cylindrical column structure in which an ion exchange resin is sealed in a cylindrical column, wherein a pair of filters are cylindrical so as to sandwich the ion exchange resin.
  • a cylindrical column structure wherein the cylindrical column structure is arranged in a column, and at least one of the pair of filters is slidably provided along an inner peripheral surface of the cylindrical column. I will provide a.
  • the cylindrical column structure of the present invention fills the cylindrical column with an amount of ion exchange resin that does not exceed the column capacity even if it expands to the maximum, and the slidable filters provided on both sides of the ion exchange resin move.
  • the filler moves by the force of the solvent or gas and returns to the best column state while collecting the shrinked resin with gaps.
  • the volume of the space filled with the ion exchange resin increases following the expansion of the ion exchange resin due to the sliding of the filter.
  • the flow resistance of the solvent increases due to the expansion of the resin, making it difficult to pass the solvent through the resin, and the shrinkage of the resin creates a gap between the resins.
  • Column efficiency can be prevented from lowering.
  • the cylindrical column structure of the present invention can flexibly cope with expansion and contraction of the ion exchange resin, does not require special mechanical functions to move the filter, does not cause clogging, and has a high column efficiency. This is an extremely simple and advanced invention that can obtain a column that does not impair the performance. Brief explanation of drawings
  • FIG. 1 is a longitudinal sectional view schematically showing one example of a cylindrical column structure according to the present invention.
  • FIG. 2 is a longitudinal sectional view showing an example of use of the cylindrical column structure according to the present invention.
  • FIG. 3 is an explanatory diagram showing a state where the column having the structure of FIG. 1 is incorporated in a line.
  • FIG. 4 is a longitudinal sectional view schematically showing another example of the cylindrical column structure according to the present invention.
  • FIG. 5 are each a longitudinal sectional view schematically showing still another example of the cylindrical column structure according to the present invention.
  • FIG. 6 is a vertical sectional view schematically showing still another example of the cylindrical column structure according to the present invention.
  • FIG. 7 is a longitudinal sectional view schematically showing still another example of the cylindrical column structure according to the present invention.
  • FIG. 8 is a longitudinal sectional view schematically showing still another example of the cylindrical column structure according to the present invention.
  • FIG. 1 shows an example of a cylindrical column structure according to the present invention.
  • FIG. 1 fixed plugs 6 having communication holes 4 are provided at both ends of the cylindrical column 2, and a granular ion exchange resin 8 is sealed inside the cylindrical column 2.
  • Filters 10 and 12 are arranged before and after the ion exchange resin 8 so as to be in contact with the inner peripheral surface of the column 2.
  • One filter 10 is arranged so as to be freely slidable along the inner peripheral surface of the mirror-finished column 2.
  • the other filter 12 may be freely movable like the one filter 10, may be substantially fixed to the inner peripheral surface of the force ram 2, and is mounted so as to have a certain sliding resistance. May be.
  • Fig. 1 shows the ion-exchange resin 8 in a contracted state, and a gap between one filter 10 and the fixing plug 6 is equal to or 2-3 times the volume of the contracted ion-exchange resin 8. Is formed.
  • Fig. 2 partially shows how the resin column of Fig. 1 is incorporated into a line.
  • the resin column is installed in the vertical direction, and connecting pipes 16 and 18 are connected to fixing plugs 6 and 6, respectively.
  • an aqueous solution containing [ 18 F] fluoride ion is injected into the ion exchange column from the A direction, and the solvent is discharged from the C direction.
  • a solvent having a different polarity from the B direction for example, acetonitrile is injected here, and the ion exchange column is dehydrated, and the solvent is similarly discharged from the C direction.
  • the term ion exchange resin is used in the broadest sense. That is, the ion exchange resin in the present invention includes a cation exchange resin (CER), an anion exchange resin (AER), an ion retardation resin (IRR), a phase transfer catalyst resin (PTC), and the like.
  • CER cation exchange resin
  • AER anion exchange resin
  • IRR ion retardation resin
  • PTC phase transfer catalyst resin
  • PTC include a phosphonium resin having an active group of tributylphosphonium (the carrier is a crosslinked chloromethylstyrene-styrene copolymer; JP-A-8-325169).
  • Ammonium resin with triptylmethylammonium carrier is a crosslinked chloromethylstyrene-styrene copolymer
  • pyridinum resin with active groups of 4-dimethylaminopyridinium carrier is crosslinked
  • Chloromethylstyrene-styrene copolymer Merrifield resin (Non-patent document 1), and the like.
  • the ion exchange resin granules having a particle size of 50 to 400 mesh are preferably used, but fibrous materials having other particle sizes and other sizes can also be used.
  • a polytetrafluoroethylene filter for example, a polytetrafluoroethylene filter, a polyethylene filter, a polypropylene filter, a sintered filter, a glass filter, and the like can be used. It needs to be changed depending on the mesh size. For example, since the diameter of a resin of 400 mesh is 63.5 m, a filter having a pore diameter of 50 m or less is selected. Since the diameter of the 50-mesh resin is 508 m, a filter having a pore diameter of 500 m or less is selected. Therefore, the applicable filter pore size differs depending on the size of the resin, but usually a filter having a pore size of about 10 to 500 is used.
  • the thickness of the filter is in the range of 1 Z 15 to 1 Z 1 of the column diameter, or 1.5 mm or more. Further, it is appropriate that the diameter of the filter is 2 mm or more.
  • the most preferable example of the filter is a polytetrafluoroethylene filter having a diameter of 6 mm, a thickness of 2 mm, and a pore diameter of 10 m. Filters can be of any shape, such as triangular, square, polygonal, circular, etc., if manufacturable.
  • the material of the cylindrical column is metal, plastic, glass, etc. that does not change shape significantly at around 100 ° C and has the property of conducting heat, such as iron, copper, stainless steel, glassy carbon, carbon, Examples include silicon, titanium, silver, polyethylene, polypropylene, polyetheretherketone, and the like. In addition, materials other than the above may be selected in consideration of solvent invasion and the like. It is desirable that the inner surface of the cylindrical column be mirror-finished in order to reduce the sliding resistance in the filter. As a method of manufacturing a cylindrical column, a method of making a hole, shaving, or processing a thread using a machine such as a lathe can be adopted.
  • FIG. 3 is an example that incorporates a production line of 18 F-labeled organic compound cylindrical column of FIG.
  • reference numeral 51 denotes a target box
  • 52 denotes an evening water container
  • 53 denotes a syringe pump
  • 54 denotes a three-way valve
  • 55 denotes a resin column for labeling reaction
  • 56 denotes a collection container
  • 57 denotes a syringe pump
  • 58 denotes a syringe pump.
  • Acetonitrile container, 59 is a three-way valve, 60 is a three-way valve, 61 is a waste liquid container, 62 is a triflate container, 63 is a three-way valve, 64 is a three-way valve, 65 is a cation exchange resin column, and 66 is sterile water.
  • a container, 17 is a syringe pump, 68 is a 3-way valve, 69 is a 3-way valve, and 20 is a purification column.
  • reaction resin column 55 is Do to the present invention tubular column structure, 18 0 water containing [18 F] water of the raw material rarely charged in the target box 51, the cation exchange resin column 65 The hydrolysis takes place in the desired [ 18
  • TATM (1,3,4,6-tetra-O-acetyl-2 - ⁇ -trifluoromethanesulfonyl 3-D-mannopyranose) together with acetonitrile, a nucleophilic substitution reaction is performed.
  • TATM is 1 8 F-labeled, finally hydrolyzed to the 1 8 F- FDG ([1 8 F] one 2- Dokishi) 3- D-glucose) is purified.
  • the movable filter having the cylindrical column structure according to the present invention effectively works, and moves upward in the space of the cylindrical column in accordance with the expansion of the ion exchange resin, but the density of the resin is maintained.
  • the flow resistance of the solvent does not increase. That is, no clogging occurs.
  • the filter responds flexibly to the ion-exchange resin, which expands and increases its volume, and then contracts with dehydration, returning it to its original, uniformly filled state. Power ram efficiency can be ensured.
  • FIG. 4 shows another example of the tubular column structure of the present invention.
  • a granular ion exchange resin 8 is sealed inside the column 2 .
  • Filters 10 and 12 are arranged before and after the ion exchange resin 8 in the same state as in the example of FIG.
  • a male screw 20 is attached to the outer peripheral surface of the cylindrical force ram 2
  • a female screw 24 is provided at an end of the connect pipe 22 connected to the line.
  • the fixing plug 6 is sandwiched between the cylindrical column 2 and the connecting pipe 22 and is not directly fixed to the cylindrical column 2.
  • FIGS. 5A to 5E show still another example of the tubular column structure of the present invention.
  • a granular ion exchange resin 8 is sealed inside the cylindrical force ram 2.
  • Filters 10 and 12 are arranged before and after the ion exchange resin 8 in the same state as in the example of FIG.
  • These tubular column structures are made in consideration of the resin and filter stability, connection to the line, and reaction efficiency.
  • FIG. 6 shows still another example of the cylindrical column structure of the present invention.
  • a granular ion exchange resin 8 is sealed inside the cylindrical column 2.
  • filters 10 and 12 are arranged in the same state as in the example of FIG.
  • This example has a structure without a fixed stopper.
  • reference numeral 26 denotes packing between the connect tube 28 and the cylindrical column 2.
  • FIG. 7 shows still another example of the cylindrical column structure of the present invention.
  • a granular ion exchange resin 8 is sealed inside the cylindrical column 2.
  • filters 10 and 12 are arranged in the same state as in the example of FIG.
  • one of the filters 12 has a flange portion 13 formed on the outer edge thereof, is sandwiched between the cylindrical column 2 and the connect pipe 30 and does not slide, and also has a function of a fixing plug. I have.
  • FIG. 8 shows still another example of the cylindrical column structure of the present invention.
  • a granular ion exchange resin 8 is sealed inside the cylindrical column 2.
  • Filters 10 and 12 are arranged before and after the ion exchange resin 8 in the same state as in the example of FIG.
  • the cylindrical column 2 has a packing function.
  • reference numeral 32 also serves as a fixing stopper. It is a connecting pipe that is connected to the connection pipe. Since the cylindrical column 2 in this example is to be held in the connect tube 32, there is no disadvantage in strength even if it is made of a plastic such as polyetheretherketone resin.

Abstract

A tubular column structure formed by sealing an ion exchange resin in a tubular column capable of preventing problems with a conventional structure wherein solvent is hard to pass the resin due to an increase in flow resistance of solvent by the expansion of the resin and a column efficiency is lowered by clearances in the resin due to the shrinkage of the resin. A pair of filters (10) and (12) are disposed in the tubular column (2) so as to hold the ion exchange resin (8), and at least one of the filters is slidably installed along the inner peripheral surface of the tubular column. Thus, the volume of a space filled with the ion exchange resin can be increased according to the expansion of the ion exchange resin and decreased according to the shrinkage thereof.

Description

明 細 筒状カラム構造 技 術 分 野  Mechanized cylindrical column structure
本発明は、 筒状カラム内にイオン交換樹脂を封入してなる筒状カラム構造 に関する。 本発明に係る筒状カラム構造は、 例えばイオン交換カラムや有機 化合物標識反応に用いるカラム等に適用することができる。 背 景 技 術  The present invention relates to a cylindrical column structure in which an ion exchange resin is sealed in a cylindrical column. The cylindrical column structure according to the present invention can be applied to, for example, an ion exchange column or a column used for an organic compound labeling reaction. Background technology
従来、 カラム管内容量に対して 100%の容量のイオン交換樹脂を均一に 充填したイオン交換カラムに、 極性が同じ溶媒を注入してもその溶媒の流動 抵抗は 1 Kg f Zcm2程度であるが、 その後、 極性の異なる溶媒をイオン 交換カラムに注入するとイオン交換樹脂が膨張し、 1 5 OKg f /cm2の 圧力をかけてもその溶媒が通らなくなる問題が発生していた。 Conventionally, ion-exchange column uniformly packed with 100% of the capacity of the ion exchange resin to the column tube volume, although the flow resistance of even the solvent polarity by injecting the same solvent is about 1 Kg f Zcm 2 Thereafter, when a solvent having a different polarity is injected into the ion exchange column, the ion exchange resin expands, causing a problem that the solvent cannot pass even when a pressure of 15 OKg f / cm 2 is applied.
また、 イオン交換樹脂の膨張率を考慮に入れてイオン交換樹脂をカラムに 充填した場合であって、 極性の異なる溶媒をイオン交換カラムに注入した場 合、 その直後からイオン交換樹脂の膨張が始まるが、 この場合はイオン交換 樹脂が完全に膨張しても樹脂の密度が高くならないため溶媒の流動性は衰え ない。 しかしながら、 極性の異なる溶媒によって膨張したイオン交換樹脂は、 極性の異なる溶媒が流れ終えるとその場所で収縮するため、 イオン交換樹脂 同士の隙間が空くことにより、 カラムでのイオン交換樹脂と溶媒との接触効 率、 反応効率が低下する問題が発生する。  In addition, when the column is filled with the ion exchange resin taking into account the expansion rate of the ion exchange resin, and when a solvent with a different polarity is injected into the ion exchange column, the expansion of the ion exchange resin starts immediately after that. However, in this case, even if the ion exchange resin expands completely, the density of the resin does not increase and the fluidity of the solvent does not decrease. However, the ion-exchange resin that has been swollen by solvents of different polarities contracts when the solvents of different polarities finish flowing. A problem occurs in that the contact efficiency and reaction efficiency decrease.
ところで、 フッ素放射性同位元素標識有機化合物 8 F標識有機化合 物) の製造にイオン交換樹脂を使用することが行われており、 このようなィ オン交換樹脂として、 Nu c l . Me d. B i o l . Vo l . 1 7、 No. 3、 p p. 273 - 279 ( 1990) 〔非特許文献 1〕 に記載されている メリフィールド樹脂を用いて調製された 4ーァミノピリジニゥム樹脂がある。 上記 4—アミノビリジニゥム樹脂のピリジニゥム塩は親水基であるため、 こ の 4ーァミノピリジニゥム樹脂は親水性が高く、 極性が高い溶媒で膨潤を起 こす。 一方、 極性が低い溶媒を通した場合には樹脂は収縮を起こす。 Incidentally, the fluorine has been made to use ion exchange resins in the production of radioisotope-labeled organic compound 8 F-labeled organic compound), as such I-exchange resins, Nu cl. Me d. B iol. Vol. 17, No. 3, p. 273-279 (1990) There is a 4-aminopyridinium resin prepared using the Merrifield resin described in Non-Patent Document 1. . Since the pyridinium salt of the above 4-aminopyridinium resin is a hydrophilic group, this 4-aminopyridinium resin is highly hydrophilic and swells in a highly polar solvent. On the other hand, when a solvent having low polarity is passed, the resin shrinks.
上述のように、 4ーァミノピリジニゥム樹脂は溶媒の極性に応じて膨潤状 態が変化する。 カラムに充填した樹脂が膨潤を起こすと、 このカラムに溶液 を通す際に背圧が高くなり、 流動性が悪化する。 一方、 樹脂が収縮を起こす と、 カラム効率の低下を引き起こす。  As described above, the swelling state of the 4-aminopyridinium resin changes according to the polarity of the solvent. When the resin packed in the column swells, the back pressure increases when passing the solution through this column, and the fluidity deteriorates. On the other hand, when the resin shrinks, the column efficiency decreases.
これに対し、 前述の文献 Nu c 1. Me d. B i o l. Vo l. 17、 N o. 3、 pp. 273 - 279 ( 1990) では、 4 _アミノピリジニゥム 樹脂の流動特性を改善するために、 繊維状陽イオン交換樹脂をカラムに添加 している。 しかし、 繊維状陽イオン交換樹脂の添加により、 カラムの製造コ ストが高くなる。 また、 繊維状陽イオン交換樹脂の配合割合を低く、 すなわ ち 4ーァミノピリジニゥム樹脂の配合割合を高くし、 [18F] フッ化物ィ オンの捕集率を高くすると、 基質との反応に寄与しない [18F] フッ化物 イオンが結合した樹脂の比率が高くなり、 反応収率が低下する欠点がある。 また、 特開平 8— 325169号公報 〔特許文献 1〕 には、 18F標識有 機化合物の製造に用いるイオン交換樹脂として、 ホスホニゥム樹脂を使用す ることが記載されている。 このホスホニゥム樹脂は、 親水性が低いため、 水、 ァセトニトリル、 ジメチルスルホキシド等の極性溶媒に対する膨潤度が低い。 例えば、 従来の市販のメリフィールド樹脂から合成した 4—ァミノピリジニ ゥム樹脂 (活性基; ピリジニゥム塩含有量 1. 2mmo l Zg) の溶媒取込 量は、 ァセトニトリルの場合 0. 6 gZgであり、 水の場合 1. 1 g/gで ある。 これに対して、 活性基としてホスホニゥム塩を 0. 5~1. 6mmo 1 /gの範囲内で含有するホスホニゥム樹脂の溶媒取込量は、 ァセトニトリ ルの場合 0. 3 g/g以下であり、 水の場合 0. 5 gZg以下である。 On the other hand, in the aforementioned literature Nuc 1. Med. Biol. Vol. 17, No. 3, pp. 273-279 (1990), the flow characteristics of 4_aminopyridinium resin were To improve, a fibrous cation exchange resin is added to the column. However, the addition of fibrous cation exchange resin increases the production cost of the column. Also, when the compounding ratio of the fibrous cation exchange resin is low, that is, the compounding ratio of 4-aminopyridinium resin is high, and the collection rate of [ 18 F] fluoride ion is high, the substrate The ratio of the resin to which [ 18 F] fluoride ion which does not contribute to the reaction with the resin is increased, and the reaction yield is disadvantageously reduced. Also, Japanese Patent Application Laid-Open No. 8-325169 [Patent Document 1] discloses that a phosphonium resin is used as an ion exchange resin used for producing an 18 F-labeled organic compound. Since the phosphonium resin has low hydrophilicity, it has a low degree of swelling in polar solvents such as water, acetonitrile, and dimethyl sulfoxide. For example, the solvent uptake of a 4-aminopyridinium resin (active group; pyridinium salt content: 1.2 mmol Zg) synthesized from a conventional commercially available Merrifield resin is 0.6 gZg for acetonitrile, In the case of 1. It is 1.1 g / g. On the other hand, the solvent uptake amount of a phosphonium resin containing a phosphonium salt as an active group in a range of 0.5 to 1.6 mmo1 / g is 0.3 g / g or less for acetonitrile, 0.5 gZg or less for water.
さらに、 上記ホスホニゥム樹脂は、 樹脂上のホスホニゥム塩の密度が低い ので、 極性溶媒の流動を妨げる立体障害が少ない。 このため、 カラムの背圧 の上昇が防止され、 極性溶媒の流動性が良好である。 また、 ホスホニゥム樹 脂は収縮も起き難いため、 カラム効率の低下も起こし難い。 このようにホス ホニゥム塩の含有量が 0. 5〜1. 6mmo 1 Zgの範囲内であるホスホニ ゥム樹脂は、 取り扱い易く、 カラム容器に充填して使用するのに適している c さらに、 繊維状陽イオン交換樹脂を使用する必要が無いので製造コストを低 減できる。 また、 繊維状陽イオン交換樹脂の混合による収率低下のおそれも ないと記されている。 Further, since the phosphonium resin has a low density of the phosphonium salt on the resin, the steric hindrance that hinders the flow of the polar solvent is small. For this reason, the back pressure of the column is prevented from rising, and the flowability of the polar solvent is good. Also, phosphonium tree Since the fat does not easily shrink, the column efficiency does not easily decrease. Thus the content of phosphate Honiumu salt 0. 5~1. 6mmo 1 Zg phosphonium © resinless is in the range of, easy to handle, and c are suitable for use in packed in a column container, fiber Since there is no need to use a state cation exchange resin, the production cost can be reduced. It is also stated that there is no risk of yield reduction due to mixing of fibrous cation exchange resin.
しかしながら、 本発明者が特許文献 1に記載されたのと同種のホスホニゥ ム樹脂を入手し実験を行ったところ、 極性の異なる溶媒を流すと樹脂が約 2 倍に膨張したため、 1 50 k g/ cm2の圧力をかけても溶媒が流れないこ とが確認された。 However, the inventor obtained a phosphonium resin of the same kind as described in Patent Document 1 and conducted an experiment.When flowing a solvent having a different polarity, the resin swelled about twice, so that 150 kg / cm It was confirmed that the solvent did not flow even when the pressure of 2 was applied.
ィォン交換樹脂封入力ラムにおける、 ィォン交換樹脂の膨張による溶媒の 流通阻害に対して、 特開平 8— 1 5 5207号公報 〔特許文献 2〕 では、 可 動栓を活用して樹脂の膨張、 収縮に追随するカラムが提案されている。 しか し、 このカラムでは前後の栓の間にイオン交換樹脂をほぼカラム一杯に封入' するものであるため、 樹脂の 2倍もの膨張には追随できない恐れがある。 ま た、 可動栓はスプリングの力で移動するため、 移動が頻繁に発生したり、 大 きな移動があったりすると、 故障の発生も考えられる。 特に、 ガスの流通も あるカラム系ではシール性が低下し、 洩れが生じることもあり得る。  JP-A-8-155207 (Patent Literature 2) discloses a method of using a movable stopper to expand and contract a resin in order to prevent the solvent from flowing due to the expansion of the ion exchange resin in the ion exchange resin sealed input ram. Have been proposed. However, in this column, since the ion exchange resin is almost completely filled between the front and rear stoppers, it may not be able to follow the expansion twice as much as the resin. In addition, since the movable tap moves by the force of the spring, frequent or large movement may cause a failure. In particular, in a column system where gas flows, the sealing performance is reduced and leakage may occur.
Nu c 1. Me d. B i o l . Vo l . 1 7、 No. 3、 p p. 2 7 3 - 2 7 9 ( 1 9 90)  Nu c 1. Med. B i o l. Vo l. 17, No. 3, p p. 27 3-27 9 (1 90 90)
特開平 8— 3 2 5 1 6 9号公報  Japanese Patent Application Laid-Open No. H8-32 25 16 9
特開平 8— 1 5 52 0 7号公報  Japanese Patent Application Laid-Open No. 8-1555007
前述したように、 制限されたリジットな空間に押し込められたイオン交換 樹脂は、 極性の異なる溶媒によって膨張する。 その結果、 溶媒の流動抵抗が 増大し、 溶媒を通すことが困難となる。  As described above, the ion-exchange resin pushed into the limited rigid space expands due to solvents having different polarities. As a result, the flow resistance of the solvent increases, and it becomes difficult to pass the solvent.
また、 イオン交換樹脂の膨張係数を考慮に入れて調製されたカラムの場合、 イオン交換樹脂が膨張した後、 その場所で収縮したイオン交換樹脂同士の隙 間が生じることにより、 力ラム効率が極端に低下する問題が生じる。 発 明 の 開 示 In addition, in the case of a column prepared taking into account the expansion coefficient of the ion exchange resin, after the ion exchange resin expands, a gap between the contracted ion exchange resins occurs at that location, resulting in extremely low power ram efficiency. The problem that it falls is produced. Disclosure of the invention
本発明は、 前述した事情に鑑みてなされたもので、 イオン交換樹脂を充填 した空間の容積がイオン交換樹脂の膨張に追随して増大するとともに、 収縮 に追随して減少することで、 樹脂の膨張により溶媒の流動抵抗が増大して樹 脂に溶媒を通すことが困難となったり、 樹脂の収縮により樹脂同士の隙間が 生じてカラム効率が低下したりすることを防止することが可能な筒状カラム 構造を提供することを目的とする。  The present invention has been made in view of the above circumstances, and the volume of a space filled with an ion exchange resin increases as the ion exchange resin expands and decreases as the ion exchange resin contracts, thereby reducing the resin content. A tube that can prevent the flow resistance of the solvent from increasing due to expansion, making it difficult to pass the solvent through the resin, and preventing the column efficiency from decreasing due to gaps between the resins due to resin contraction. It is intended to provide a columnar structure.
本発明者は、 前記目的を達成するために鋭意検討を行った結果、 イオン交 換樹脂を封入した筒状カラムにおいて、 イオン交換樹脂を挟むように一対の フィルタが筒状力ラム内に配置するとともに、 上記フィル夕の少なくとも一 方に、 イオン交換榭脂の膨張力によって移動が可能な機能と、 イオン交換樹 脂の収縮に合わせて溶媒やガスの力によつて移動が可能な機能とを付与する ことにより、 前記目的を達成できることを見出した。  The present inventors have conducted intensive studies to achieve the above object, and as a result, in a cylindrical column in which an ion exchange resin is sealed, a pair of filters are arranged in a cylindrical force ram so as to sandwich the ion exchange resin. In addition, at least one of the filters described above has a function that can be moved by the expansion force of the ion-exchange resin and a function that can be moved by the force of the solvent or gas in accordance with the contraction of the ion-exchange resin. It has been found that the above-mentioned object can be achieved by providing.
本発明は、 上記知見に基づいてなされたもので、 筒状カラム内にイオン交 換樹脂を封入してなる筒状カラム構造であって、 前記イオン交換樹脂を挟む ように一対のフィルタが筒状カラム内に配置されているとともに、 前記一対 のフィルタの内の少なくとも一方のフィルタは、 筒状カラムの内周面に沿つ て摺動自在に設けられていることを特徴とする筒状カラム構造を提供する。 本発明の筒状カラム構造は、 最大に膨張してもカラム容量以上にならない 量のイオン交換樹脂を筒状カラム内に充填し、 イオン交換樹脂の両側に設け た摺動可能なフィル夕が移動することで、 イオン交換樹脂が膨張した場合で もイオン交換樹脂の密度が保たれ、 溶媒の流動抵抗を低く抑えることができ る。 また、 イオン交換樹脂が膨張した後に収縮した場合は、 溶媒やガス等の 力でフィル夕が移動し、 隙間の空いた収縮した樹脂をかき集めながら最良の カラム状態に戻る。  The present invention has been made based on the above findings, and has a cylindrical column structure in which an ion exchange resin is sealed in a cylindrical column, wherein a pair of filters are cylindrical so as to sandwich the ion exchange resin. A cylindrical column structure, wherein the cylindrical column structure is arranged in a column, and at least one of the pair of filters is slidably provided along an inner peripheral surface of the cylindrical column. I will provide a. The cylindrical column structure of the present invention fills the cylindrical column with an amount of ion exchange resin that does not exceed the column capacity even if it expands to the maximum, and the slidable filters provided on both sides of the ion exchange resin move. By doing so, even when the ion exchange resin expands, the density of the ion exchange resin is maintained, and the flow resistance of the solvent can be kept low. If the ion-exchange resin shrinks after expanding, the filler moves by the force of the solvent or gas and returns to the best column state while collecting the shrinked resin with gaps.
以上のように、 本発明の筒状カラム構造は、 フィルタの摺動によって、 ィ オン交換樹脂を充填した空間の容積がイオン交換樹脂の膨張に追随して増大 するとともに、 収縮に追随して減少することで、 樹脂の膨張により溶媒の流 動抵抗が増大して樹脂に溶媒を通すことが困難となったり、 樹脂の収縮によ り樹脂同士の隙間が生じてカラム効率が低下したりすることを防止すること ができる。 本発明の筒状カラム構造は イオン交換樹脂の膨張や収縮に柔軟 に対応することができ、 しかもフィル夕の移動に特殊な機械機能を必要とす ることなく、 詰まりが発生しない上にカラム効率を損なわないカラムを得る ことができる極めてシンプルで高度な発明である。 図 面 の 簡 単 な 説 明 As described above, in the tubular column structure of the present invention, the volume of the space filled with the ion exchange resin increases following the expansion of the ion exchange resin due to the sliding of the filter. As the resin shrinks, the flow resistance of the solvent increases due to the expansion of the resin, making it difficult to pass the solvent through the resin, and the shrinkage of the resin creates a gap between the resins. Column efficiency can be prevented from lowering. The cylindrical column structure of the present invention can flexibly cope with expansion and contraction of the ion exchange resin, does not require special mechanical functions to move the filter, does not cause clogging, and has a high column efficiency. This is an extremely simple and advanced invention that can obtain a column that does not impair the performance. Brief explanation of drawings
図 1は、 本発明に係る筒状カラム構造の一例を概略的に示す縦断面図であ る。  FIG. 1 is a longitudinal sectional view schematically showing one example of a cylindrical column structure according to the present invention.
図 2は、 本発明に係る筒状カラム構造の使用例を示す縦断面図である。 図 3は、 図 1の構造のカラムをラインに組み込んだ状態を示す説明図であ る。  FIG. 2 is a longitudinal sectional view showing an example of use of the cylindrical column structure according to the present invention. FIG. 3 is an explanatory diagram showing a state where the column having the structure of FIG. 1 is incorporated in a line.
図 4は、 本発明に係る筒状カラム構造の別の例を概略的に示す縦断面図で める。  FIG. 4 is a longitudinal sectional view schematically showing another example of the cylindrical column structure according to the present invention.
図 5の (a ) 〜 (e ) は、 それぞれ本発明に係る筒状カラム構造のさらに 別の例を概略的に示す縦断面図である。  (A) to (e) of FIG. 5 are each a longitudinal sectional view schematically showing still another example of the cylindrical column structure according to the present invention.
図 6は、 本発明に係る筒状カラム構造のさらに別の例を概略的に示す縦断 面図である。  FIG. 6 is a vertical sectional view schematically showing still another example of the cylindrical column structure according to the present invention.
図 7は、 本発明に係る筒状カラム構造のさらに別の例を概略的に示す縦断 面図である。  FIG. 7 is a longitudinal sectional view schematically showing still another example of the cylindrical column structure according to the present invention.
図 8は、 本発明に係る筒状カラム構造のさらに別の例を概略的に示す縦断 面図 発明を実施するための最良の形態  FIG. 8 is a longitudinal sectional view schematically showing still another example of the cylindrical column structure according to the present invention.
次に、 図面を参照して本発明の実施の形態を説明するが、 本発明は下記例 に限定されるものではない。 図 1は本発明に係る筒状カラム構造の一例を示 す概略断面図である。 Next, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following examples. FIG. 1 shows an example of a cylindrical column structure according to the present invention. FIG.
図 1において、 筒状カラム 2の両端には、 連通孔 4を有する固定栓 6が設 けられ、 筒状カラム 2の内部には粒状のイオン交換樹脂 8が封入されている。 該イオン交換榭脂 8の前後にはフィルタ 1 0および 1 2がカラム 2内周面に 接触した状態で配置されている。 一方のフィルタ 1 0は、 鏡面に仕上げられ たカラム 2内周面に沿って自在に摺動できるように配置されている。 他方の フィルタ 1 2は、 一方のフィルタ 1 0と同様に搐動自在であってもよく、 力 ラム 2内周面に実質上固定されていてもよく、 ある程度摺動抵抗を有するよ うに装着されていてもよい。  In FIG. 1, fixed plugs 6 having communication holes 4 are provided at both ends of the cylindrical column 2, and a granular ion exchange resin 8 is sealed inside the cylindrical column 2. Filters 10 and 12 are arranged before and after the ion exchange resin 8 so as to be in contact with the inner peripheral surface of the column 2. One filter 10 is arranged so as to be freely slidable along the inner peripheral surface of the mirror-finished column 2. The other filter 12 may be freely movable like the one filter 10, may be substantially fixed to the inner peripheral surface of the force ram 2, and is mounted so as to have a certain sliding resistance. May be.
図 1は、 イオン交換樹脂 8が収縮した状態であり、 一方のフィルタ 1 0と 固定栓 6との間には、 収縮状態のイオン交換樹脂 8の容積と同等か 2〜 3倍 容積の空隙 14が形成されている。  Fig. 1 shows the ion-exchange resin 8 in a contracted state, and a gap between one filter 10 and the fixing plug 6 is equal to or 2-3 times the volume of the contracted ion-exchange resin 8. Is formed.
図 2は、 図 1の樹脂カラムをラインに組み込んだ様子を部分的に示してい る。 樹脂カラムは縦方向に組み込まれ、 連結管 1 6、 1 8が固定栓 6、 6に 接続されている。 そして、 例えば A方向から [18F] フッ化物イオンを含 む水溶液をイオン交換カラムに注入し、 C方向からその溶媒を流出させる。 引き続き、 B方向から極性の異なる溶媒を、 ここでは例としてァセトニトリ ルを注入し、 イオン交換カラムの脱水をすることとし、 同じく C方向からそ の溶媒を流出させる。 Fig. 2 partially shows how the resin column of Fig. 1 is incorporated into a line. The resin column is installed in the vertical direction, and connecting pipes 16 and 18 are connected to fixing plugs 6 and 6, respectively. Then, for example, an aqueous solution containing [ 18 F] fluoride ion is injected into the ion exchange column from the A direction, and the solvent is discharged from the C direction. Subsequently, a solvent having a different polarity from the B direction, for example, acetonitrile is injected here, and the ion exchange column is dehydrated, and the solvent is similarly discharged from the C direction.
本発明において、 イオン交換樹脂の用語は、 最も広い意味で用いられる。 すなわち、 本発明におけるイオン交換樹脂には、 陽イオン交換樹脂 (CE R) 、 陰イオン交換樹脂 (AER) 、 イオン遅滞樹脂 ( I RR) 、 相間移動 触媒樹脂 (PTC) 等が包含される。  In the present invention, the term ion exchange resin is used in the broadest sense. That is, the ion exchange resin in the present invention includes a cation exchange resin (CER), an anion exchange resin (AER), an ion retardation resin (IRR), a phase transfer catalyst resin (PTC), and the like.
PTCの具体例としては、 活性基をトリブチルホスホニゥムとするホスホ 二ゥム澍脂 (担体は架橋クロロメチルスチレン一スチレン共重合体;特開平 8 - 3 2 5 1 6 9) 、 活性基をトリプチルメチルアンモニゥムとするアンモ ニゥム樹脂 (担体は架橋クロロメチルスチレン一スチレン共重合体) 、 活性 基を 4ージメチルァミノピリジニゥムとするピリジニゥム樹脂 (担体は架橋 クロロメチルスチレン一スチレン共重合体、 メリフィールド樹脂 (非特許文 献 1 ) などが挙げられる。 イオン交換樹脂の形態は、 5 0〜4 0 0メッシュ の粒径の粒状体が好適に使用されるが、 それ以外の粒径、 繊維状のものでも 使用可能である。 Specific examples of PTC include a phosphonium resin having an active group of tributylphosphonium (the carrier is a crosslinked chloromethylstyrene-styrene copolymer; JP-A-8-325169). Ammonium resin with triptylmethylammonium (carrier is a crosslinked chloromethylstyrene-styrene copolymer), pyridinum resin with active groups of 4-dimethylaminopyridinium (carrier is crosslinked) Chloromethylstyrene-styrene copolymer, Merrifield resin (Non-patent document 1), and the like. As the form of the ion exchange resin, granules having a particle size of 50 to 400 mesh are preferably used, but fibrous materials having other particle sizes and other sizes can also be used.
本発明におけるフィルタについては、 例えばポリテトラフルォロエチレン 製フィル夕、 ポリエチレン製フィルタ、 ポリプロピレン製フィルタ、 焼結フ ィル夕、 ガラスフィルタなどを用いることができるが、 その孔径は使用する 樹脂のメッシュサイズによって変える必要がある。 例えば、 4 0 0メッシュ の樹脂の直径は 6 3 . 5 mであるため、 5 0 m以下の孔径のフィルタを 選定する。 また、 5 0メッシュの樹脂の直径は 5 0 8 mであるため、 5 0 0 m以下の孔径のフィルタを選定する。 したがって、 適用できるフィルタ の孔径は樹脂のサイズによって異なるが、 通常は 1 0〜5 0 0 程度の孔 径のフィルタとする。  As the filter in the present invention, for example, a polytetrafluoroethylene filter, a polyethylene filter, a polypropylene filter, a sintered filter, a glass filter, and the like can be used. It needs to be changed depending on the mesh size. For example, since the diameter of a resin of 400 mesh is 63.5 m, a filter having a pore diameter of 50 m or less is selected. Since the diameter of the 50-mesh resin is 508 m, a filter having a pore diameter of 500 m or less is selected. Therefore, the applicable filter pore size differs depending on the size of the resin, but usually a filter having a pore size of about 10 to 500 is used.
また、 フィルタの厚みは、 カラムの直径の 1 Z 1 5〜1 Z 1の範囲とする か、 1 . 5 mm以上とすることが適当である。 さらに、 フィルタの直径は 2 mm以上とすることが適当である。 フィルタの最も好ましい例としては、 直 径 6 mm、 厚み 2 mm、 孔径 1 0 mのポリテトラフルォロエチレン製フィ ル夕が挙げられる。 フィルタは製作が可能であれば、 三角形、 四角形、 多角 形、 円形等の任意の形状とすることができる。  It is appropriate that the thickness of the filter is in the range of 1 Z 15 to 1 Z 1 of the column diameter, or 1.5 mm or more. Further, it is appropriate that the diameter of the filter is 2 mm or more. The most preferable example of the filter is a polytetrafluoroethylene filter having a diameter of 6 mm, a thickness of 2 mm, and a pore diameter of 10 m. Filters can be of any shape, such as triangular, square, polygonal, circular, etc., if manufacturable.
筒状カラムの材料については、 1 0 0 °C付近でも形状が著しく変化せず、 熱を伝える性質を持ち合わせる金属、 プラスチック、 ガラスなどで、 例えば 鉄、 銅、 ステンレス鋼、 グラッシ一カーボン、 炭素、 珪素、 チタン、 銀、 ポ リエチレン、 ポロプロピレン、 ポリエーテルエ一テルケトンなどが挙げられ る。 また、 これ以外の材料であっても、 溶媒の浸襲等を考慮に入れて選定さ れた材料を用いることができる。 筒状カラムの内面は、 フィル夕の摺動抵抗 を低くするために鏡面仕上げを施すことが望ましい。 筒状カラムの製作方法 としては、 旋盤等の機械を用いて穴を開けたり、 削ったり、 ねじ山を加工し たりする方法を採ることができる。 また、 筒状カラム管は製作が可能であれ ば、 Ξ角形、 四角形、 多角形、 円形等の任意の形状とすることができる。 図 3は、 図 1の筒状カラムを18 F標識有機化合物の製造ラインに組み込 んだ例である。 図 3において、 51はターゲットボックス、 52は夕一ゲッ ト水容器、 53はシリンジポンプ、 54は 3方バルブ、 55は標識反応用樹 脂カラム、 56は回収容器、 57はシリンジポンプ、 58はァセトニトリル 容器、 59は 3方バルブ、 60は 3方バルブ、 61は廃液容器、 62はトリ フレート容器、 63は 3方バルブ、 64は 3方バルブ、 65は陽イオン交換 樹脂カラム、 66は無菌水容器、 1 7はシリンジポンプ、 68は 3方バルブ、 69は 3方バルブ、 20は精製カラムを示す。 The material of the cylindrical column is metal, plastic, glass, etc. that does not change shape significantly at around 100 ° C and has the property of conducting heat, such as iron, copper, stainless steel, glassy carbon, carbon, Examples include silicon, titanium, silver, polyethylene, polypropylene, polyetheretherketone, and the like. In addition, materials other than the above may be selected in consideration of solvent invasion and the like. It is desirable that the inner surface of the cylindrical column be mirror-finished in order to reduce the sliding resistance in the filter. As a method of manufacturing a cylindrical column, a method of making a hole, shaving, or processing a thread using a machine such as a lathe can be adopted. Also, if a cylindrical column tube can be manufactured, For example, an arbitrary shape such as a rectangle, a rectangle, a polygon, and a circle can be used. Figure 3 is an example that incorporates a production line of 18 F-labeled organic compound cylindrical column of FIG. In FIG. 3, reference numeral 51 denotes a target box, 52 denotes an evening water container, 53 denotes a syringe pump, 54 denotes a three-way valve, 55 denotes a resin column for labeling reaction, 56 denotes a collection container, 57 denotes a syringe pump, and 58 denotes a syringe pump. Acetonitrile container, 59 is a three-way valve, 60 is a three-way valve, 61 is a waste liquid container, 62 is a triflate container, 63 is a three-way valve, 64 is a three-way valve, 65 is a cation exchange resin column, and 66 is sterile water. A container, 17 is a syringe pump, 68 is a 3-way valve, 69 is a 3-way valve, and 20 is a purification column.
詳述は避けるが、 標識反応用樹脂カラム 55が本発明筒状カラム構造にな され、 原料の [18F] 水を含む 180—水はターゲットボックス 51に仕込 まれ、 陽イオン交換樹脂カラム 65で加水分解が行われて、 目的の [18 Detailed avoid, but labeling reaction resin column 55 is Do to the present invention tubular column structure, 18 0 water containing [18 F] water of the raw material rarely charged in the target box 51, the cation exchange resin column 65 The hydrolysis takes place in the desired [ 18
F] — 2—デォキシー ]3— D—グルコース (18F— FDG) が精製される。 図 1〜3の筒状カラムの使用状況について、 [18F] イオンの捕集、 グ ルコ一スの18 F標識 ( [1 SF] — 2—デォキシー ;3— D—グルコース) の 例によって説明する。 F] - 2-Dokishi] 3- D-glucose (18 F- FDG) is purified. Regarding the usage of the cylindrical columns in Figs. 1-3, [ 18 F] ion collection and 18 F labeling of glucose ([ 1 SF] —2-dexoxy; 3-D—glucose) explain.
1. カラム 55の中には、 前記のホスホニゥム樹脂 0. 2 mLが封入されて いる。  1. In the column 55, 0.2 mL of the above-mentioned phosphonium resin is sealed.
2. 180—水にプロトン照射されて製造された 1 OmLの [18F] H2〇 がカラム 55に通され、 18 Fイオンが樹脂に捕集される。 2.18 0 water of 1 OML produced is proton irradiation [18 F] H 2 〇 is passed through the column 55, 18 F ions are trapped in the resin.
3. 樹脂へのフッ素の捕集が完了した状態では、 樹脂は充填したときと同じ 状態で、 樹脂の容積は変化しない。  3. When the collection of fluorine into the resin is completed, the resin remains in the same state as when it was filled, and the volume of the resin does not change.
4. ヘリウムガス、 窒素ガス等をカラムに導入し、 樹脂から 180—水を排 出させる。 この水は、 次なる再使用のために回収される。 4. Introduce helium gas, nitrogen gas, etc. into the column to discharge 180- water from the resin. This water is recovered for subsequent reuse.
5. 次に、 脱水されたァセトニトリルをカラム 55に注入する。 5. Next, the dehydrated acetonitrile is injected into column 55.
6. すると、 ァセ卜二トリルと接触した樹脂には、 水では入り込めない樹脂 の隙間にァセトニトリルが浸透し、 樹脂が膨張を始める。  6. Then, the acetonitrile penetrates into the gaps between the resins that cannot contact with water, and the resin starts to expand.
7. さらに、 ァセトニトリルがカラム内を下流に進むに連れ、 ァセトニ卜リ ルと樹脂が次々と接触膨張し、 樹脂が 2倍程度膨張し、 カラム一杯まで樹脂 が広がる。 フィルタは樹脂の膨張に押され、 カラム内を摺動し、 固定栓に近 づく。 これにより、 樹脂層の圧密化は避けられ、 ァセトニトリルの流動抵抗 は殆ど上昇することなく、 反応が継続される。 7. Further, as the acetonitrile proceeds downstream in the column, The resin and resin expand contact one after another, the resin expands about twice, and the resin spreads to the full column. The filter is pushed by the expansion of the resin, slides inside the column, and approaches the stopper. This avoids consolidation of the resin layer, and the reaction is continued with almost no increase in the flow resistance of acetonitrile.
8 . 水はァセトニトリルに無限に溶解するため、 無水ァセトニトリルの適量 を樹脂に接触させることで、 樹脂の持つ水分が脱水される。 8. Since water is infinitely soluble in acetonitrile, contacting an appropriate amount of anhydrous acetonitrile with the resin dehydrates the water contained in the resin.
9 . 0 . 2 c cのイオン交換樹脂に対して約 5倍量のァセトニトリルを接触 させると、 樹脂中の水分が減少し樹脂の収縮が始まり、 さらに、 約 5倍量の ァセトニトリルを樹脂に接触させると樹脂の収縮が終了する。 この際、 樹脂 層に隙間が生じるように働くが、 ァセトニトリルに押されて、 フィルタは力 ラム内を摺動し、 元の位置に戻ろうとする。 したがって、 樹脂層に隙間が生 じてイオン交換の反応効率が落ちることはない。  When about 5 times the amount of acetonitrile is brought into contact with 90.2 cc of ion exchange resin, the water in the resin decreases and the resin starts to shrink, and further, about 5 times the amount of acetonitrile is brought into contact with the resin. Then, the shrinkage of the resin ends. At this time, the resin layer acts to create a gap, but is pushed by acetonitrile, and the filter slides in the force ram and attempts to return to the original position. Therefore, no gap is formed in the resin layer and the reaction efficiency of ion exchange does not decrease.
1 0 . 最後に、 ァセトニトリルと共に T A T M ( 1, 3 , 4, 6—テトラー O—ァセチルー 2—〇—トリフルォロメタンスルホ二ルー 3— D—マンノピ ラノース) を通過させることにより、 求核置換反応で T A T Mが1 8 F標識 され、 最終的に加水分解されて1 8 F— F D G ( [ 1 8 F ] 一 2—デォキシー )3— D—グルコース) が精製される。 10. Lastly, by passing through TATM (1,3,4,6-tetra-O-acetyl-2 -〇-trifluoromethanesulfonyl 3-D-mannopyranose) together with acetonitrile, a nucleophilic substitution reaction is performed. TATM is 1 8 F-labeled, finally hydrolyzed to the 1 8 F- FDG ([1 8 F] one 2- Dokishi) 3- D-glucose) is purified.
ここで、 本発明に係る筒状カラム構造の可動式フィル夕が有効に作用し、 イオン交換樹脂の膨張に合わせて筒状カラムの空間内で上方向に移動するが、 樹脂の密度は保たれたままであるため、 溶媒の流動抵抗は高くはならない。 すなわち、 詰まりが生じない。  Here, the movable filter having the cylindrical column structure according to the present invention effectively works, and moves upward in the space of the cylindrical column in accordance with the expansion of the ion exchange resin, but the density of the resin is maintained. The flow resistance of the solvent does not increase. That is, no clogging occurs.
溶媒をある程度注入し、 イオン交換樹脂の膨張が限界まで達した以降は、 イオン交換樹脂の収縮が始まる。 これは、 イオン交換樹脂中の水分が脱水さ れることによるものであるが、 さらに注入されるァセトニトリルによって引 き起こされる樹脂の収縮と、 ァセトニトリルの圧力によつて可動式フィル夕 が下方へ押し戻されるタイミングとが同じとなる。 その結果、 一旦膨張し体 積が増えた後に、 脱水に伴い収縮するイオン交換樹脂にもフィルタは柔軟に 対応し、 均一に充填された元の状態にまで戻されることとなり、 きちんとし た力ラム効率を確保することができる。 After the solvent is injected to some extent and the expansion of the ion exchange resin reaches the limit, contraction of the ion exchange resin starts. This is due to the dehydration of the water in the ion-exchange resin. The timing is the same. As a result, the filter responds flexibly to the ion-exchange resin, which expands and increases its volume, and then contracts with dehydration, returning it to its original, uniformly filled state. Power ram efficiency can be ensured.
図 4は、 本発明筒状カラム構造の別の例を示す。 筒状カラム 2の内部には 粒状のィォン交換樹脂 8が封入されている。 該ィォン交換樹脂 8の前後には フィルタ 1 0および 1 2が図 1の例と同様の状態で配置されている。 筒状力 ラム 2の外周面には雄ネジ 2 0が付され、 ラインとつなぐコネクト管 2 2は 端部に雌ネジ 2 4が施されている。 固定栓 6は筒状カラム 2とコネクト管 2 2との間に挟持され、 直接筒状カラム 2に固着されてはいない。  FIG. 4 shows another example of the tubular column structure of the present invention. Inside the column 2, a granular ion exchange resin 8 is sealed. Filters 10 and 12 are arranged before and after the ion exchange resin 8 in the same state as in the example of FIG. A male screw 20 is attached to the outer peripheral surface of the cylindrical force ram 2, and a female screw 24 is provided at an end of the connect pipe 22 connected to the line. The fixing plug 6 is sandwiched between the cylindrical column 2 and the connecting pipe 22 and is not directly fixed to the cylindrical column 2.
図 5 ( a ) 〜 ( e ) は、 それぞれ本発明筒状カラム構造のさらに別の例を 示す。 筒状力ラム 2の内部には粒状のィォン交換樹脂 8が封入されている。 該イオン交換樹脂 8の前後にはフィルタ 1 0および 1 2が図 1の例と同様の 状態で配置されている。 これらの筒状カラム構造は、 樹脂、 フィル夕の安定 保持と、 ラインへの接続、 反応効率を考慮して作製される。  FIGS. 5A to 5E show still another example of the tubular column structure of the present invention. A granular ion exchange resin 8 is sealed inside the cylindrical force ram 2. Filters 10 and 12 are arranged before and after the ion exchange resin 8 in the same state as in the example of FIG. These tubular column structures are made in consideration of the resin and filter stability, connection to the line, and reaction efficiency.
図 6は、 本発明筒状カラム構造のさらに別の例を示す。 筒状カラム 2の内 部には粒状のィォン交換樹脂 8が封入されている。 該ィォン交換樹脂 8の前 後にはフィルタ 1 0および 1 2が図 1の例と同様の状態で配置されている。 本例は、 固定栓を持たない構造となされている。 図中 2 6はコネクト管 2 8 と筒状カラム 2との間のパッキングである。  FIG. 6 shows still another example of the cylindrical column structure of the present invention. A granular ion exchange resin 8 is sealed inside the cylindrical column 2. Before and after the ion exchange resin 8, filters 10 and 12 are arranged in the same state as in the example of FIG. This example has a structure without a fixed stopper. In the figure, reference numeral 26 denotes packing between the connect tube 28 and the cylindrical column 2.
図 7は、 本発明筒状カラム構造のさらに別の例を示す。 筒状カラム 2の内 部には粒状のィォン交換樹脂 8が封入されている。 該ィオン交換樹脂 8の前 後にはフィルタ 1 0および 1 2が図 1の例と同様の状態で配置されている。 本例では、 一方のフィルタ 1 2は外縁に鍔部 1 3が形成され、 筒状カラム 2 とコネクト管 3 0との間に挟持され、 摺動はすることなく、 固定栓の機能を 兼ね備えている。  FIG. 7 shows still another example of the cylindrical column structure of the present invention. A granular ion exchange resin 8 is sealed inside the cylindrical column 2. Before and after the ion exchange resin 8, filters 10 and 12 are arranged in the same state as in the example of FIG. In this example, one of the filters 12 has a flange portion 13 formed on the outer edge thereof, is sandwiched between the cylindrical column 2 and the connect pipe 30 and does not slide, and also has a function of a fixing plug. I have.
図 8は、 本発明筒状カラム構造のさらに別の例を示す。 筒状カラム 2の 内部には粒状のイオン交換樹脂 8が封入されている。 該イオン交換樹脂 8の 前後にはフィルタ 1 0および 1 2が図 1の例と同様の状態で配置されている。 本例では、 筒状カラム 2はパッキング機能を合わせ持っている。 また、 図中 3 2は固定栓を兼ね、 筒状カラム 2を収容して他方のコネクト管 3 4とねじ 込み連結されるコネクト管である。 この例の筒状カラム 2は、 コネクト管 3 2の中に包持されるものとなされているので、 ポリエーテルエ一テルケトン 樹脂のようなプラスチックで製しても強度上不利になることはない。 FIG. 8 shows still another example of the cylindrical column structure of the present invention. A granular ion exchange resin 8 is sealed inside the cylindrical column 2. Filters 10 and 12 are arranged before and after the ion exchange resin 8 in the same state as in the example of FIG. In this example, the cylindrical column 2 has a packing function. In the figure, reference numeral 32 also serves as a fixing stopper. It is a connecting pipe that is connected to the connection pipe. Since the cylindrical column 2 in this example is to be held in the connect tube 32, there is no disadvantage in strength even if it is made of a plastic such as polyetheretherketone resin.

Claims

請 求 の 範 囲 筒状カラム内にイオン交換樹脂を封入してなる筒状カラム構造であ つて、 前記ィォン交換樹脂を挾むように一対のフィルタが筒状力ラ ム内に配置されているとともに、 前記一対のフィル夕の内の少なく とも一方のフィルタは、 筒状カラムの内周面に沿って摺動自在に設 けられていることを特徴とする筒状力ラム構造。 ) 前記筒状カラムの内周面に沿って摺動自在に装着されているフィル タは、 イオン交換樹脂の膨張および収縮に追随して摺動することを 特徴とする請求項 1に記載の筒状カラム構造。 ) イオン交換樹脂は、 粒状イオン交換樹脂および/または繊維状ィォ ン交換樹脂であることを特徴とする請求項 1または 2に記載の筒状 カラム構造。 ) イオン交換樹脂の収縮時において、 イオン交換樹脂の収縮時の容積 と同等以上の容積の空隙が筒状カラム内に形成されていることを特 徵とする請求項 1〜 3のいずれか 1項に記載の筒状カラム構造。 Scope of Claim A cylindrical column structure in which an ion exchange resin is sealed in a cylindrical column, and a pair of filters are arranged in the cylindrical force column so as to sandwich the ion exchange resin. A cylindrical force ram structure, wherein at least one of the pair of filters is slidably provided along the inner peripheral surface of the cylindrical column. The tube according to claim 1, wherein the filter slidably mounted along the inner peripheral surface of the cylindrical column slides following expansion and contraction of the ion exchange resin. Column structure. 3. The cylindrical column structure according to claim 1, wherein the ion exchange resin is a granular ion exchange resin and / or a fibrous ion exchange resin. 4. The method according to claim 1, wherein when the ion exchange resin shrinks, a void having a volume equal to or greater than the volume of the ion exchange resin shrinkage is formed in the cylindrical column. 2. The cylindrical column structure according to 1.
L2 L2
PCT/JP2004/003674 2003-03-19 2004-03-18 Tubular column structure WO2004082828A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-075650 2003-03-19
JP2003075650A JP2004283647A (en) 2003-03-19 2003-03-19 Cylindrical column structure

Publications (1)

Publication Number Publication Date
WO2004082828A1 true WO2004082828A1 (en) 2004-09-30

Family

ID=33027867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003674 WO2004082828A1 (en) 2003-03-19 2004-03-18 Tubular column structure

Country Status (3)

Country Link
JP (1) JP2004283647A (en)
TW (1) TW200505539A (en)
WO (1) WO2004082828A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005030677A1 (en) * 2003-09-30 2005-04-07 Nihon Medi-Physics Co., Ltd. Process for producing radioactive fluorine compound
US11881307B2 (en) 2012-05-24 2024-01-23 Deka Products Limited Partnership System, method, and apparatus for electronic patient care

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4671272B2 (en) * 2004-12-15 2011-04-13 オルガノ株式会社 Method and apparatus for detecting anion in liquid
DE102005019703A1 (en) * 2005-04-21 2006-11-30 Atoll Gmbh chromatography column
JP2009154133A (en) * 2007-12-27 2009-07-16 Dkk Toa Corp Chemicals charging unit
CN110170339B (en) * 2019-06-20 2022-07-12 北京机械设备研究所 Resin filling method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0016408A1 (en) * 1979-03-20 1980-10-01 Karl Spiegl Hardness sensor for a water softening device and device for softening water
WO1996028252A1 (en) * 1995-03-14 1996-09-19 Usf Limited Apparatus for purification of liquids
JP2001252576A (en) * 2000-03-13 2001-09-18 Japan Organo Co Ltd Ion exchange resin tower and liquid treating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0016408A1 (en) * 1979-03-20 1980-10-01 Karl Spiegl Hardness sensor for a water softening device and device for softening water
WO1996028252A1 (en) * 1995-03-14 1996-09-19 Usf Limited Apparatus for purification of liquids
JP2001252576A (en) * 2000-03-13 2001-09-18 Japan Organo Co Ltd Ion exchange resin tower and liquid treating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005030677A1 (en) * 2003-09-30 2005-04-07 Nihon Medi-Physics Co., Ltd. Process for producing radioactive fluorine compound
US11881307B2 (en) 2012-05-24 2024-01-23 Deka Products Limited Partnership System, method, and apparatus for electronic patient care

Also Published As

Publication number Publication date
JP2004283647A (en) 2004-10-14
TW200505539A (en) 2005-02-16

Similar Documents

Publication Publication Date Title
WO2004082828A1 (en) Tubular column structure
Cox et al. The preparation, properties and some applications of bonded ion-exchange packings based on microparticulate silica gel for high-performance liquid chromatography
KR100441461B1 (en) Method and Apparatus for Producing Deionized Water
Gu et al. Efficient polymer monolith for strong cation-exchange capillary liquid chromatography of peptides
JP6788028B2 (en) Affinity chromatograph device
US20190152811A1 (en) Fluidized bed and hybrid suspension electrodes for energy storage and water desalination systems
CA2763197C (en) Electrochemical phase transfer devices and methods
Yang et al. Supramolecular proton conductors self-assembled by organic cages
EP1297332A1 (en) Method for producing monolithic chromatography columns
Huang et al. A hollow-fiber membrane extraction process for recovery and separation of lactic acid from aqueous solution
Shahbabaei et al. Effect of hourglass-shaped nanopore length on osmotic water transport
NL2015572B1 (en) Method for fluidized bed capacitive de-ionization of a fluid and de-ionization device there for.
Ishizuka et al. Preparation and chromatographic application of macroporous silicate in a capillary
JP4979945B2 (en) Method for producing radioactive fluorine compound
CN104611475B (en) A kind of method of fructose separation
Su et al. Gyroid Liquid Crystals as Quasi-Solid-State Electrolytes Toward Ultrastable Zinc Batteries
CN203547022U (en) Improved thin-wall specially-shaped steel pipe concrete column
라나 et al. Double Crosslinked Ionogel Electrolyte for Solid State Energy Storage under Extreme Conditions
US20070071671A1 (en) Process for producing radioactive-fluorine-labeled compound
CN1303052C (en) Process for preparing Danshensu
CN103194509A (en) Method for preparing high-purity beta-limit dextrin
CN217783758U (en) Plunger type booster pump
CN202410235U (en) Purification column for purifying positron radiopharmaceuticals 18F-FDG (fluorodeoxyglucose)
JP6588476B2 (en) Process for operating a simulated moving bed reactor
Ying et al. Application of metal-organic frameworks in adsorption and separation of uranium from water

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase