WO2004082810A1 - Membrane plate module - Google Patents

Membrane plate module Download PDF

Info

Publication number
WO2004082810A1
WO2004082810A1 PCT/EP2004/002844 EP2004002844W WO2004082810A1 WO 2004082810 A1 WO2004082810 A1 WO 2004082810A1 EP 2004002844 W EP2004002844 W EP 2004002844W WO 2004082810 A1 WO2004082810 A1 WO 2004082810A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
plates
module according
membrane module
carbon
Prior art date
Application number
PCT/EP2004/002844
Other languages
German (de)
French (fr)
Inventor
Andreas Noack
Jürgen Kunstmann
Christian Gnabs
Jörg RATHENOW
Andreas Bán
Original Assignee
Blue Membranes Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10311950A external-priority patent/DE10311950A1/en
Priority claimed from DE10335130A external-priority patent/DE10335130A1/en
Application filed by Blue Membranes Gmbh filed Critical Blue Membranes Gmbh
Publication of WO2004082810A1 publication Critical patent/WO2004082810A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/249Plate-type reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/061Manufacturing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/081Manufacturing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/082Flat membrane modules comprising a stack of flat membranes
    • B01D63/0821Membrane plate arrangements for submerged operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/14Pleat-type membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0072Inorganic membrane manufacture by deposition from the gaseous phase, e.g. sputtering, CVD, PVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1218Layers having the same chemical composition, but different properties, e.g. pore size, molecular weight or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/145Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing embedded catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0212Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • C01B13/0255Physical processing only by making use of membranes characterised by the type of membrane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/08Flow guidance means within the module or the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/08Patterned membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00018Construction aspects
    • B01J2219/0002Plants assembled from modules joined together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2453Plates arranged in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2456Geometry of the plates
    • B01J2219/2459Corrugated plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2475Separation means, e.g. membranes inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2477Construction materials of the catalysts
    • B01J2219/2479Catalysts coated on the surface of plates or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2483Construction materials of the plates
    • B01J2219/249Plastics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen

Definitions

  • the present invention relates to membrane modules comprising at least three membrane plates arranged parallel to one another, and to the use thereof for separating fluid mixtures and / or as a catalyst carrier
  • US Pat. No. 5,695,818 describes asymmetrical carbon-based membranes, wherein symmetrical hollow fiber membranes are modified using CVD methods.
  • US Pat. No. 5,925,591 also describes processes for producing symmetrical carbon membranes consisting of hollow carbon fibers. These carbon hollow fiber membranes are combined into bundles in order to produce corresponding carbon fiber bundle modules. The fiber bundle modules described are up to one meter long.
  • the cited carbon fiber membranes which are combined in modules to form bundles, prove to be problematic in particular because they require complex repairs and processes for their production in order to achieve a homogeneous carbonization of the bundled cellulose fibers from which the
  • Carbon fiber membranes are manufactured.
  • these have the Technology membrane systems and modules have the disadvantage that, due to their thickness, they build up mass transfer resistances and flow resistances that are too high, which affects the economics of separations.
  • Another object of the present invention is to provide a method for separating fluid mixtures which enables the enrichment or depletion of certain fluid components, a membrane module according to the invention being used.
  • a membrane module which comprises: a dense packing of a plurality of membrane plates arranged parallel to one another and spaced apart from one another, the regions between the membrane plates being alternately connected to one of two devices for the passage of two separate fluid flows through the respective regions, and the regions between the membrane plates being separated from one another in a fluid-tight manner, so that a mass transfer between two fluid flows through the areas between the membrane plates is essentially only possible through permeation of fluid components through the membrane plates.
  • fluid denotes substances or mixtures of substances which are in the liquid or gaseous state of aggregation at the application temperatures of the membrane module according to the invention or the separation process of the present invention.
  • the membrane module or the fluid separation process of the present invention is particularly preferred used in the separation of gases and gas mixtures.
  • This simplest basic embodiment of the membrane module of the present invention ensures two flow areas for fluid flows which lie on two sides of a membrane and can be flowed through in two different directions.
  • This arrangement ensures that a fluid flow, which is introduced into or passed through the first intermediate region and consists of one or more fluid components, comes into contact with the membrane surface, with fluid components passing through the membrane in the second
  • Intermediate area can pass, which is flowed through in a second direction by another identical or different fluid, which can be enriched in this way with the permeated fluid components.
  • intermediate area denotes a cavity through which fluid flows can be directed through the module from an inlet opening to an outlet opening of the cavity.
  • the first and second intermediate regions according to the invention consist of a multiplicity of channels which are separated or connected to one another, in most cases essentially parallel, which together form an intermediate region between two membrane plates.
  • the membrane plates used in modules according to the invention can be very thin, with a thickness of less than 1 mm, preferably less than 100 ⁇ m, particularly preferably less than 10 ⁇ m.
  • the membrane module as defined above, will be designed so that it comprises a large number of membrane plates, as a result of which a large number of alternating first and second intermediate areas are created in the module. Since the directions in which the first and second intermediate regions can flow through form an angle to one another, that is to say are not identical, the membrane module will consequently form outer surfaces on the edge side with respect to the membrane plates, first outer surfaces of this type being formed which are arranged on both sides of the open ends of the first intermediate regions and two further outer surfaces on the edge side with respect to the membrane plates, which are arranged on both sides of the open ends of the second intermediate regions.
  • the membrane module will have two further outer surfaces, each of which corresponds to the outer surface of the membrane plates that are located to the extreme.
  • this type of module construction ensures a first inflow surface of the module, which allows fluid to pass through the membrane module only through the first intermediate regions between the respective membrane plates.
  • the membrane module comprises a second inflow surface for a second fluid flow, which ensures that the fluid flow only passes through the second intermediate regions to the other end of the membrane module. Since in the interior of the module each membrane plate, with its faces on both sides, adjoins both intermediate areas and thus both fluid flows which are passed through the membrane module, a mass transfer between the first and the second intermediate area or the fluid flows guided thereby can only be achieved by the passage of individual fluid components the membrane is made by permeation.
  • the second intermediate areas can pass through
  • Applying a vacuum can be sucked off continuously or discontinuously.
  • the second Intermediate areas of the membrane module are flushed continuously or discontinuously, with fluid components of the first fluid mixture permeated through the membrane plates being removed from the first intermediate areas with the second fluid stream.
  • the second fluid stream may have the same composition as the first fluid stream or a different one before the separation begins.
  • fluid as used herein includes liquid or gaseous substances, mixtures of substances, solutions, suspensions, emulsions, aerosols and the like.
  • the membrane plates of the membrane module are structured on one or both sides, preferably on both sides.
  • a preferred structuring of the membrane plates is in the form of an embossed or otherwise introduced groove pattern with grooves or channel-like depressions arranged essentially equidistant from one another over the entire surface of the membrane plates.
  • the groove patterns can run parallel to the edges of the membrane plates, can be arranged at any angle to them, can have zigzag patterns or can be wavy.
  • the membrane plates, if structured on both sides can be identical on both sides
  • the membrane plates have a uniform complementary structure on both sides, that is to say that the groove depressions on one side of the membrane plate correspond to a corresponding increase in the profile of the other side of the membrane plate.
  • the membrane plates are arranged in the module so that the groove patterns of two adjacent membrane plates run essentially parallel to one another.
  • the membrane plates are arranged in such a way that the groove patterns of two adjacent membrane plates intersect at an angle, so that when the membrane plates are placed one on top of the other, a plurality of points of contact between the adjacent plates at the points of intersecting raised edges of the groove structures of adjacent plates. In this way, membrane modules are obtained which, due to the connection at many points corresponding to the points of contact of the intersecting groove patterns, have a significantly increased mechanical stability.
  • Groove structures are preferably chosen so that when two membrane plates are placed one on top of the other in the intermediate regions, a structure results which corresponds to a multiplicity of channels or tubes which ensure a suitable flow resistance in the module which is as low as possible.
  • the person skilled in the art will dimension and select the groove patterns in a suitable manner.
  • customary groove structures in embossed membrane plates lead to channel-like or tube-like structures in the first and second intermediate spaces, the cross-sectional area of which can be adapted to the respective intended use.
  • additional spacing elements can be introduced or provided between the membrane plates.
  • Corresponding spacer elements serve to ensure sufficiently large first and second spaces between the membrane plates, which ensure a suitable flow resistance of the module.
  • Corresponding spacer elements can be porous, open-pore flat structures in the form of intermediate layers, network structures, or also on the Membrane plates spacers arranged on the edge, which ensure a certain minimum distance between the plates.
  • the fluid-tight edge connection of two membrane plates in each case can also be connected in a suitable manner with a correspondingly dimensioned spacer, so that the plates are kept at a defined distance from one another.
  • the spacing of the membrane plates from one another is ensured in that, by appropriately dimensioned groove embossments and a crossing of the groove patterns of two adjacent membrane plates at a certain angle, as mentioned above, a large number of points of contact between the adjacent plates at the points of intersecting raised edges of the groove structures, which ensure that spaces are formed along the groove depressions in the form of a multiplicity of channel-like structures.
  • the spacing elements can also be formed by alternately providing groove embossments of different depths on the membrane plates, which leads to elevations of individual groove edges of different heights, so that the number of points of contact between the adjacent plates at the points of intersecting edges Groove structures as a whole is suitably reduced compared to the total number of groove edges present.
  • Membrane module ensures and a favorable flow resistance of the first and second intermediate areas lying between the plates.
  • the membrane module according to the invention is preferably designed such that the angle between the first and second directions through which the first and second intermediate regions can flow is greater than 0 degrees, and is preferably between 1 and 90 degrees, preferably more than 5 degrees, preferably more than 10 degrees, particularly preferably more than 30 degrees and particularly preferably 45-90 degrees.
  • the membrane plates are in the form of rectangular plates, that is to say in the form of squares or rectangles, an angle between the first and second flow direction can be ensured which is approximately 90 degrees, i.e. the two fluid streams flow through the membrane module approximately vertically to each other, the first and second intermediate areas, which are each separated by a membrane plate.
  • the angle between the first and second flow directions can be reduced accordingly and take up any range between 1 and 90 degrees.
  • the membrane plates can also have a trapezoidal shape, for example, so that in at least one direction of flow
  • Flow through the membrane module results in a narrowing or expansion in the reverse direction of the flow through the intermediate areas.
  • flow resistances and the contact times of the fluid flow used with the membrane plates can be additionally controlled and varied in a suitable manner.
  • the membrane plates used in the membrane module of the present invention consist essentially of carbon.
  • Membrane plates made of carbon-based are particularly preferred Composite material, which may contain other additives such as silicon oxides, aluminum oxides, aluminum silicates, boron oxides, glasses, titanium and zirconium oxides, ceramic materials and the like in different proportions.
  • membrane plates made of a carbon-based material, possibly also carbon composite material, which is produced by pyrolysis of carbon-containing starting materials and essentially corresponds to a type of carbon ceramic or carbon-based ceramic.
  • Appropriate materials can be produced, for example, from paper-like starting materials by pyrolysis and an exhaust gas condition at high temperatures.
  • Corresponding production processes, in particular also for carbon composite materials are described in international patent application WO 01/80981, page 14, line 10 to page 18, line 14 and can be used in the present case.
  • the carbon-based membrane plates according to the invention, or membrane modules formed therefrom, can also be produced according to those in international patent application WO 02/32558 page 6, line 5 to page 24, line 9. The disclosure of these international applications is hereby fully incorporated by reference.
  • Membrane modules according to the invention can also be obtained in a simple manner by pyrolysis of suitably prefabricated polymer films or three-dimensionally arranged or folded polymer film packages, as described in DE 103 22 182, the disclosure of which is hereby fully incorporated by reference.
  • particularly preferred embodiments of the membrane module according to the invention can be produced in particular by carbonizing corrugated cardboard, the Corrugated cardboard layers are suitably fixed to one another before carbonization, so that there is a body through which flow can occur in at least two directions.
  • preferred embodiments of the membrane module according to the invention also result from winding paper or polymer film stacks arranged in a cross-current fashion into tubes, and their subsequent pyrolysis by the above-mentioned processes.
  • These winding modules can be arranged such that the first intermediate regions extend in the pipe direction, with the pipe cross section as the first inflow surface, and the second intermediate regions extend transversely to the pipe direction.
  • the membrane modules can be parylenized by known methods before or after a carbonation step. In the case of paryleneation after carbonization, it can then be pyrolyzed again with the exclusion of oxygen. These treatment steps enable a targeted modification of the surface and porosity properties of the membrane modules according to the invention.
  • membrane modules according to the invention can be fluoridated by processes known per se, for example by lipophilic ones
  • membrane modules according to the invention can also be manufactured from membrane plates made of polycarbonate, polysulfone,
  • Polytetrafluoroethylene PTFE
  • polyacrylonitrile copolymer cellulose, cellulose acetate, cellulose butyrate, cellulose nitrate, viscose, polyetherimide, polyoctylmethylsilane, polyvinylidene chloride, polyamide, polyurea, polyfuran, polyethylene, Polypropylene and / or copolymers thereof, as well as mixed matrix systems which, in addition to the polymer component, also contain inorganic components such as activated carbon, carbon molecular sieve or zeolites.
  • inorganic components such as activated carbon, carbon molecular sieve or zeolites.
  • the fluid-tight edge connections between individual membrane plates in the membrane module according to the invention can be ensured by gluing the edges of the membrane plates by means of adhesives, glass, possibly filled epoxy resins, lacquers and polymer materials.
  • adhesives glass, possibly filled epoxy resins, lacquers and polymer materials.
  • the plate-like starting materials it is particularly preferred for the plate-like starting materials to be glued to the corresponding edges at the corresponding edges, and for the membrane module thus prefabricated to be completely subjected to pyrolysis, the actual carbon membrane module being produced becomes.
  • essentially fluid-tight edges can also be formed by fold edges along folds, in that flat starting materials are folded on top of one another in an accordion-like manner before pyrolysis, so that some of the fluid-tight edge connections are predetermined by folds and result in essentially fluid-tight connections along the folds after pyrolysis ,
  • sealing compound blocks for example made of epoxy resin, which are applied by immersion or extrusion.
  • An edge seal of the module can thus be guaranteed, or also a seal between the membrane module and, for example, a housing in which the module is installed in order to obtain a functional fluid separation device.
  • the sealing compound applied in this way can, for example, be cut or sanded at suitable points after the pyrolysis of the module precursor, so that there is on the edge-side outer surface of the module the structure according to the invention of alternating openings of the one intermediate region and the fluid-tightly closed edge regions of the other intermediate regions results.
  • the sealing compound block can also be selectively opened only at individually selected points.
  • Membrane modules according to the invention can be dimensioned in any way related to the intended application, for example with module volumes in the range from 1 cm 3 , preferably about 10 cm 3 to 1 m 3 . In cases where this is desired, the membrane modules are also significantly larger or can be dimensioned on an even smaller micro scale.
  • the present invention ensures a method for the separation of fluid mixtures by means of a membrane module according to the invention, comprising the following steps: - Application of a fluid mixture to one of the two
  • Membrane plates edge-side outer surfaces of the module, so that the fluid mixture flows through the first intermediate areas between the membrane plates in the first direction through the module; Separate removal of fluid components permeated through the membrane plates from the first into the second intermediate regions.
  • the permeated fluid components are discharged from the second intermediate regions with a second fluid stream, the rinsing stream, which is led through these intermediate regions.
  • This second fluid stream can have the same or a different composition than the applied (first) fluid mixture.
  • a continuous or discontinuous discharge of the permeated fluid components from the second intermediate areas can also be used be provided, for example by suction using vacuum or vacuum devices.
  • the fluid mixture to be separated can be applied by means of pressure or without pressure, discontinuously or preferably continuously.
  • the membrane module according to the invention and the method according to the invention can advantageously be used for a large number of fluid separation tasks or can be adapted to them.
  • fluid separation tasks include, but are not limited to, vapor permeation, pervaporation, dehumidification and / or disinfection of air and gases, or for supply or exhaust air filtration, for the production of hydrogen or methane from industrial gases, for the depletion of CO 2 from air or Exhaust gases, for humidifying or dehumidifying gases, for depleting solvent vapors from exhaust air, or for removing CO 2 from natural gas, in gas separation, preferably the separation of CO 2 from natural gas, the separation of methane and / or carbon dioxide from hydrogen Separation of oxygen and nitrogen and / or for the separation or enrichment of oxygen from oxygen-nitrogen mixtures, in particular in the presence of atmospheric moisture, and for the enrichment or depletion of hydrogen from hydrogen-containing hydrocarbon mixtures.
  • the membrane modules of the present invention are used as carrier material for immobilizing catalytic units.
  • the modules can thus be used advantageously as bioreactors in biological and / or biotechnological substance production processes.
  • catalytic unit (s) here encompasses any catalytically active substance, in particular organometallic complexes and enzymes, and in particular microorganisms, algae, bacteria, viruses and cells.
  • non-tissue-forming mammalian cells are preferred as cells, but the membrane modules can also be used for tissue culture systems can be used as a carrier for tissue-forming plant and mammalian cells.
  • the membrane modules of the present invention can have excellent biocompatibility as support materials for microorganisms or cells, are dimensionally stable and extremely variable in terms of their structure, such as pore sizes, internal structure and external shape. Furthermore, the membrane modules according to the invention can be easily sterilized and offer a good adhesive base for microorganisms and cells. Due to these properties, these membrane modules can be tailored for a variety of applications.
  • the membrane modules of the present invention essentially consist of carbon, such as activated carbon, sintered activated carbon, amorphous, crystalline or partially crystalline carbon, graphite, pyrolytic or carbon-containing material, carbon fiber or carbides, carbonitrides, oxycarbides or oxycarbonitrides from Metals or non-metals, as well as from suitable mixtures of these materials.
  • the membrane modules preferably consist of amorphous, graphitic and / or pyrolytic carbon.
  • the membrane module can contain further substances selected from organic and inorganic substances or compounds.
  • Substances such as or compounds of are preferred Iron, cobalt, copper, zinc, manganese, potassium, magnesium, calcium, sulfur or phosphorus.
  • the incorporation of these additional compounds can be used, for example, to promote the growth of certain microorganisms or cells.
  • An impregnation or coating of the membrane module with carbohydrates, lipids, purines, pyromidines, pyrimidines, vitamins, proteins, growth factors, amino acids and / or sulfur or nitrogen sources is also suitable for promoting growth.
  • the following substances can be used to stimulate cell growth: bisphosphonates (e.g. risedronate, pamidronate, ibandronate, zoledronic acid, clodronic acid, etidronic acid, alendronic acid, tiludronic acid), fluorides (disodium fluorophosphate, sodium fluoride); Calcitonin, dihydrotachystyrene, as well as all growth factors and cytokines (epidermal growth factor (EGF), platelet-derived growth factor (PDGF), fibroblast growth factors (FGFs), transforming growth factors-b TGFs-b), transforming growth factor -a (TGF-a), erythropoietin (Epo), insulin-like growth factor-I (IGF-I), insulin-like growth factor-II (IGF-II), interleukin-1 (IL-1), interleukin 2 (IL-2), Interleukin-6 (IL-6), Interleukin-8 (IL-8), Tumor
  • the average pore size of the membrane module is preferably for
  • Bioreactor systems between 2 angstroms and 1 millimeter, preferably between 1 nanometer and 400 micrometers, particularly preferably between 10 nanometers and 100 micrometers.
  • the membranes of the membrane module according to the invention for use in biological or chemical reactions are essentially impermeable for the catalytic units and the reaction products immobilized on the module and essentially permeable for the reaction medium and the reaction educts, and for the rest, if the remaining outer surface is present, if appropriate sealed.
  • chemical reactions comprises all responses without the aid of living organisms.
  • biological response includes ⁇ reactions with the aid of living organisms such as cells or microorganisms.
  • reaction medium encompasses any fluid, gaseous or liquid, such as water, organic solvents, inorganic solvents, supercritical gases and conventional carrier gases.
  • starting material comprises the starting materials for a chemical or biological reaction or nutrients, oxygen and possibly carbon dioxide, in particular in the case of biological ones
  • reaction products relate to the reaction products of a chemical reaction or the reaction products or metabolic products in the case of biological reactions, regardless of the state of aggregation.
  • reaction mixture includes a mixture of the
  • the membrane modules of the present invention have the advantage that the catalytic units can no longer leave them due to the semi-permeable separating layer and / or the sealing of the module units.
  • Membrane surfaces of the module according to the invention are particularly suitable for the immobilization of microorganisms and tissue cultures.
  • the microorganisms or tissue cultures settle on the membrane surfaces and can be supplied with liquid or gaseous nutrients via the flow channels in the intermediate areas, while metabolic products can be easily removed if necessary.
  • the catalytic units preferably microorganisms or cell or tissue cultures, are supplied with the reactants such as nutrients via the first intermediate regions of the membrane module, while the products are removed or retained via the second intermediate spaces and, if appropriate, can be separated from the module in a later step , Furthermore, the catalytic units are protected from the discharge and from possible harmful environmental influences, such as mechanical loads.
  • the corresponding modules which are loaded with different microorganisms or cell cultures, can For example, for the production of active substances, they are immersed in a single nutrient medium and after a certain time are removed from the nutrient medium and removed to remove the active substance, or the products are removed continuously.
  • the membrane modules can also be designed so that they have to be destroyed to remove the active substance or that they can be opened or closed reversibly.
  • the modules can preferably be opened and closed reversibly.
  • the membrane modules can, if desired or necessary, be cleaned, sterilized and reused.
  • the continuous embodiment has the advantage that the catalytic units can no longer leave the carrier material due to the membrane and an external seal, but a mass transfer via the semipermeable membrane is permitted.
  • the catalytic units are supplied with the reactants and the reaction products can be removed continuously or discontinuously, but the catalytic units are protected from the discharge and from possible harmful environmental influences, such as mechanical loads.
  • a large number of membrane modules can also be operated in series or in parallel.
  • the reaction educts and products each diffuse through the membrane due to a concentration gradient that builds up between the first intermediate regions on one side of the membrane and the second intermediate regions on the other side of the membrane.
  • the diffusion path is made up of the laminar boundary film on the first side of the membrane, the membrane itself and the second side of the membrane, without wishing to be bound to any particular theory Membrane together.
  • the further mass transport takes place either also by diffusion or by flow processes.
  • the concentration gradient between the first and the second gaps of the membrane module is preferably maintained by the continuous feed of educt and, if appropriate, product removal.
  • the person skilled in the art knows that the turbulent flow with increasing Reynolds (Re) number causes the laminar boundary film on the outer surface of the membranes to become thinner and the mass transfer to be faster.
  • the semipermeable membrane can be modified in a suitable manner, for example by fluoridation, parylenation, with carbon fibers, activated carbon, pyrolytic carbon, single- or multi-walled carbon nanotubes,
  • Carbon molecular sieve material deposited by means of CVD or PVD such as C, Si, metals, etc.
  • Outer surfaces of the membrane module that are not necessary for mass transport are preferably sealed in accordance with the present invention.
  • the sealing can be accomplished by an impermeable layer.
  • This impermeable layer can consist of the same materials as the membrane itself and differ from the semipermeable membrane only in the pore size.
  • any means of sealing can be used which ensures that essentially no mass transfer can take place over sealed areas, apart from the mass transfer via the semipermeable membrane.
  • the seal can be reversible or irreversible.
  • the seal is preferably irreversible.
  • the membrane modules according to the invention are before or optionally sealed after the introduction of the catalytically active peculiarities.
  • the membrane module can be loaded or equipped with catalytic units for use in biological or chemical reactions by means of a large number of measures which are usually known to the person skilled in the art. It is preferred to bring the membrane module into contact with a solution, emulsion or suspension containing the catalytic unit by immersing, spraying, coating or the like in order to cause the catalytic units to be embedded in the porous body, and then removing the solvent and optionally drying ,
  • These methods can also be used to feed only the first or only the second intermediate regions of the membrane module, and are particularly preferred in many embodiments in order to separate educts or products through the membrane from the catalytic units.
  • the module is preferably immersed in such a solution, emulsion or suspension for a period of 1 second to 90 days in order to remove the catalytic
  • the membrane modules thus produced with the catalytic units can contain from 10 "5 wt .-% to 99 wt .-% catalytic units, in particular at
  • Metal catalysts based on the total weight of the loaded module.
  • the weight of the biomass can exceed that of the module itself many times over, for example up to 10 6 times the module weight.
  • the cell density in bioreactor modules can be in the range from 1 to 10 23 cells per ml volume, in particular reactor volume, preferably up to 10 2 , preferably 10 5 , in particular up to 10 9 cells per ml.
  • the catalyst-containing membrane modules according to the invention can be used in reactors for chemical and / or biological reactions. These reactors can be operated continuously or in batches. For batch reactions, stirred tank reactors are preferred. These stirred tank reactors are equipped with an agitator and, if necessary, with a continuous educt addition device.
  • the membrane modules are optionally immersed in a container in the reaction mixture comprising the reaction medium and the starting materials. If comparatively small modules are used, they are preferably immersed in the reaction mixture in a container. Good convection is necessary in these systems. Educts must always be supplied in sufficient quantities. The person skilled in the art recognizes that measures which lead to thorough mixing and good convection are suitable for the present invention.
  • Continuous process control has the advantage that educts can be fed continuously and products can be discharged continuously. In this way, a concentration gradient between the first and the second intermediate regions of the membrane module can be maintained particularly well, as stated above.
  • the educt stream can preferably be circulated, suitable measuring and control devices being provided, for example for temperature, pH value, To control nutrient or educt concentration. Products can be withdrawn from the cycle stream continuously or discontinuously.
  • the membrane modules according to the invention can also be used in bioreactors for the preparation, separation or purification of product streams.
  • protein coatings on the membrane module can be used for the selective removal of antibodies and the like, porous bodies loaded with microorganisms can be used for cleaning waste streams, etc.
  • membrane modules according to the invention are particularly suitable for use in bioreactors, for membrane separation processes, virus separation or in online reactor systems for the production of active substances, in particular pharmaceutical active substances or vaccines, by colonizing the membrane modules with suitable active substance-producing microorganisms, cells or tissues.
  • the cross-flow arrangement of the modules according to the invention enables, for example, a particularly simple supply of the organisms with nutrients through the flow channels.
  • the discharge of products through the membrane or the flow channels can also be carried out in a simple manner with suitable material cycle management, if necessary also separately from the nutrient media.
  • the use of the membrane modules according to the invention as a substrate or carrier for colonization with microorganisms and cell cultures is therefore particularly preferred.
  • the membrane modules produced according to the invention as carrier and / or rearing systems (TAS) for the cultivation of primary cell cultures such as eukaryotic tissue, for example bones, cartilage, Liver, kidneys, as well as for the cultivation or immobilization of xenogeneic, allogeneic, syngeneic or autologous cells and cell types, and possibly also of genetically modified cell lines.
  • TAS carrier and / or rearing systems
  • the membrane modules according to the invention can also be used especially as support and rearing systems for nerve tissue. It is particularly advantageous that the modules are particularly adaptable and suitable for this, in particular through the suitable selection of the materials and manufacturing processes. For example, the use of carbon-based membrane modules enables simple adjustment of the conductivity of the modules themselves and the application of pulse currents for the cultivation of nerve tissue.
  • the membrane modules according to the invention can be particularly useful for the microorganism, cell, tissue or organ growth, in particular also by means of adjustable provision, distribution and replenishment, by suitable adjustment of the porosity, by the flow channel design and the three-dimensional shaping Nutrient solution or medium at the place of consumption, as well as by supporting or promoting cell and tissue proliferation and differentiation.
  • the membrane modules can be used as TAS for cultivation in existing bioreactor systems, e.g. B. passive systems without continuous control technology, but also active systems with gas supply, nutrient supply, product discharge and automatic setting of parameters (acidity, temperature, nutrient content), i.e. in the broadest sense reactor systems with measurement and control technology.
  • existing bioreactor systems e.g. B. passive systems without continuous control technology, but also active systems with gas supply, nutrient supply, product discharge and automatic setting of parameters (acidity, temperature, nutrient content), i.e. in the broadest sense reactor systems with measurement and control technology.
  • modules according to the invention can be used as TAS by providing suitable devices such as connections for perfusion with nutrient solutions and the Gas exchange can be operated as a reactor system, in particular also modularly in corresponding row reactor systems and tissue cultures.
  • Membrane modules according to the invention can also be used in or as ex vivo reactor systems, e.g. extracorporeal assistance systems, or used as organ reactors, e.g. so-called liver assist systems or liver replacement systems; or also in vivo or in vitro for encapsulated islet cells, e.g. B. as an artificial Pancreas, encapsulated urothelial cells, e.g. as an artificial Kidney and the like, which are preferably implantable.
  • ex vivo reactor systems e.g. extracorporeal assistance systems, or used as organ reactors, e.g. so-called liver assist systems or liver replacement systems
  • organ reactors e.g. so-called liver assist systems or liver replacement systems
  • encapsulated islet cells e.g. B. as an artificial Pancreas
  • encapsulated urothelial cells e.g. as an artificial Kidney and the like, which are preferably implantable.
  • the modules according to the invention can also be modified by impregnation and / or adsorption of growth factors, cytokines, interferons and / or adhesion factors.
  • suitable growth factors are PDGF, EGF, TGF- ⁇ , FGF, NGF, erythropoietin, TGF-ß, IGF-I and IGF-II.
  • Suitable cytokines include, for example, IL-1- ⁇ and -ß, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL -11, IL-12, IL-13.
  • Suitable interferons include e.g. INF- ⁇ and -ß, EMF- ⁇ .
  • suitable adhesion factors are fibronectin, laminin, vitronectin, fetuin, poly-D-lysine and the like.
  • modules according to the invention can also be used as microarray systems for e.g. Drag discovery, tissue screening, tissue engineering etc.
  • FIG. 1 shows a perspective view of a section of a membrane module according to the invention with a vertical cross-flow arrangement.
  • FIG. 2 shows a perspective view of a schematic membrane module structure using cross-grooved membrane plates.
  • the module of Figure 1 consists of a plurality of membrane plates 3, which have a groove-shaped embossed pattern on both sides, which leads to a kind of honeycomb structure of the front outer surface of the module on the edge with respect to the membrane plates 3 when the plates are placed one on top of the other.
  • this front outer surface there are alternately arranged inlet openings 5 into the first intermediate areas and closed ones
  • Edge surface portions 4 (shown in dark), which correspond to the edge seals of the second intermediate areas.
  • a first fluid flow can flow through the module in a first direction x through the first intermediate regions.
  • a second fluid flow can be conducted in a second direction y, perpendicular to the first direction x, through the second intermediate regions.
  • the edge-side seals 7 of the membrane plates on the underside of the module alternate with the free openings for entry into the second, through-going spaces in the y-direction, between the membrane plates 3, which are the first
  • the optional, sealed and planned sealing surface 2 on the upper side seals the first intermediate regions upwards and simultaneously opens the second intermediate regions upwards, in the sense of an outflow surface 1 with respect to the flow in the y direction, on the module opposite the inflow surface 8 in the y direction.
  • FIG. 2 also shows a section of a membrane module according to the invention in a schematic form.
  • the module section consists of eight membrane plates 1 arranged one above the other, which are provided with a diagonally running regular pattern of semicircular recess grooves 2.
  • the membrane plates 1 are arranged one above the other in such a way that the groove structures of two adjacent plates always run crosswise, so that there are a large number of contact points 3 between the individual plates at which the plates are connected to one another.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The invention relates to a membrane plate module comprising at least three membrane plates (3) arranged in parallel with respect to each other. Each membrane plate has at least 4 arrests, at least two arrests of each membrane plate being shifted from each other two-by-two. The first membrane plate is practically liquid-tightly connected (4) to a second adjacent membrane plate along the two shifted from each other two-by-two arrests, respectively in such a way that a first intermediate area transversable by a flow in a first direction x is arranged. The second membrane plate is practically liquid-tightly connected (7) to the third membrane plate along two other arrests in such a way that a second intermediate area transversable by a flow in a second direction y is arranged and forms an angle with the first direction. Said invention also relates to the use of the inventive membrane plate module for fluid separation, for immobilising catalytic unites for chemical, biological and/or biotechnological substance production as a supporting material, for reactor systems for producing active pharmaceutical substances, vaccines or tissue cultures.

Description

MEMBRANPLATTENMODUL REED PLATE MODULE
Die vorliegende Erfindung betrifft Membranmodule umfassend mindestens drei parallel zueinander angeordnete Membranplatten, sowie dessen Verwendung zur Trennung von Fluidgemischen und/oder als KatalysatorenträgerThe present invention relates to membrane modules comprising at least three membrane plates arranged parallel to one another, and to the use thereof for separating fluid mixtures and / or as a catalyst carrier
Die Trennung von flüssigen gasförmigen und dampfförmigen Fluidgemischen an Membranen ist in vielfaltigen Verfahrensformen bekannt. Im Stand der Technik bekannte Membranen sind beispielsweise aus der EP 428 052 bekannt, welche semipermeable Kompositmembranen beschreibt, die aus einem mit porösem Absorptionsmaterial überzogenen dünnen porösen Substrat besteht. Nachteil derartiger Kompositmembranen sind insbesondere deren große Dicke, die einerseits zwar für die Stabilität der Membran erforderlich ist, andererseits einen hohen Strömungswiderstand zur Folge hat. Die US-Patentschrift 4,699,892 beschreibt asymmetrische Kompositmembranen mit einer ultradünnen Schicht Zeolith auf porösen Trägersubstraten.The separation of liquid gaseous and vaporous fluid mixtures on membranes is known in a variety of process forms. Membranes known in the prior art are known, for example, from EP 428 052, which describes semi-permeable composite membranes which consist of a thin porous substrate coated with porous absorption material. The disadvantage of such composite membranes is, in particular, their large thickness, which on the one hand is necessary for the stability of the membrane but on the other hand results in a high flow resistance. US Pat. No. 4,699,892 describes asymmetrical composite membranes with an ultra-thin layer of zeolite on porous carrier substrates.
Die US-Patentschrift 5,695,818 beschreibt asymmetrische Membranen auf Kohlenstoffbasis, wobei symmetrische Hohlfasermembranen mit CVD-Methoden modifiziert werden. Auch die US-Patentschrift 5,925,591 beschreibt Verfahren zur Herstellung von symmetrischen Kohlenstoffmembranen bestehend aus hohlen Kohlenstofffasern. Diese Kohlenstoffhohlfasermembranen werden zu Bündeln vereinigt, um entsprechende Kohlenstofffasernbündelmodule zu produzieren. Die beschriebenen Faserbündelmodule sind bis zu einem Meter lang.US Pat. No. 5,695,818 describes asymmetrical carbon-based membranes, wherein symmetrical hollow fiber membranes are modified using CVD methods. US Pat. No. 5,925,591 also describes processes for producing symmetrical carbon membranes consisting of hollow carbon fibers. These carbon hollow fiber membranes are combined into bundles in order to produce corresponding carbon fiber bundle modules. The fiber bundle modules described are up to one meter long.
Die zitierten Kohlefasermembranen, die in Modulen zu Bündeln zusammengefasst werden erweisen sich insbesondere deshalb als problematisch, weil sie für ihre Herstellung aufwendige Reparaturen und Verfahren erfordern, um eine homogene Karbonisierung der gebündelten Zellulosefasern zu erreichen, aus welchen dieThe cited carbon fiber membranes, which are combined in modules to form bundles, prove to be problematic in particular because they require complex repairs and processes for their production in order to achieve a homogeneous carbonization of the bundled cellulose fibers from which the
Kohlenfasermembranen hergestellt werden. Darüber hinaus haben diese Stand der Technik-Membranen- Systeme und Module den Nachteil, dass sie aufgrund ihrer Dicke zu große Stofftransportwiderstände und Strömungswiderstände aufbauen, worunter die Wirtschaftlichkeit damit durchgeführter Trennungen leidet.Carbon fiber membranes are manufactured. In addition, these have the Technology membrane systems and modules have the disadvantage that, due to their thickness, they build up mass transfer resistances and flow resistances that are too high, which affects the economics of separations.
Gegenüber dem Stand der Technik besteht daher ein Bedarf nach einfach aufgebauten Membranmodulen mit einer geeigneten Modulgeometrie, die bei geringem Strömungswiderstand eine effektive Trennwirkung für verschiedenste Fluidtrennaufgaben zeigen.Compared to the prior art, there is therefore a need for simply constructed membrane modules with a suitable module geometry which, with low flow resistance, show an effective separation effect for a wide variety of fluid separation tasks.
Es ist auch eine Aufgabe der vorliegenden Erfindung unter Überwindung der aus dem Stand der Technik bekannten Nachteile neue Membranmodule und Modulgeometrien zur Verfügung zu stellen, die bei hinreichender Stabilität des Moduls hohe Packungsdichten bei gleichzeitig optimalen Strömungsprofilen und hoher Trennselektivität zur Verfügung zu stellen.It is also an object of the present invention, while overcoming the disadvantages known from the prior art, to provide new membrane modules and module geometries which, with sufficient stability of the module, provide high packing densities with, at the same time, optimal flow profiles and high separation selectivity.
Eine weitere Aufgabe der vorliegenden Erfindung besteht in der Bereitstellung eines Verfahrens zur Trennung von Fluidgemischen, welches die An- oder Abreicherung bestimmter Fluidkomponenten ermöglicht, wobei ein erfindungsgemäßes Membranmodul eingesetzt wird.Another object of the present invention is to provide a method for separating fluid mixtures which enables the enrichment or depletion of certain fluid components, a membrane module according to the invention being used.
Die genannten Aufgaben werden durch die Gegenstände der unabhängigen Ansprüche gelöst. Bevorzugte Ausfuhrungsformen der Erfindung ergeben sich durch Kombination mit den Merkmalen der unabhängigen Unter ansprüche.The stated tasks are solved by the subjects of the independent claims. Preferred embodiments of the invention result from combination with the features of the independent sub-claims.
Gemäß der vorliegenden Erfindung wird ein Membranmodul zur Verfügung gestellt, welches umfasst: eine dichte Packung aus mehreren parallel zueinander angeordneten und voneinander beabstandeten Membranplatten, wobei die Bereiche zwischen den Membranplatten alternierend mit jeweils einer von zwei Vorrichtungen zur Durchleitung von zwei separaten Fluidströmen durch die jeweiligen Bereiche verbunden sind, und die Bereiche zwischen den Membranplatten fluiddicht voneinander getrennt sind, so dass ein Stoffaustausch zwischen zwei durch die Bereiche zwischen den Membranplatten geführten Fluidströmen im wesentlichen nur durch Permeation von Fluidkomponenten durch die Membranplatten möglich ist.According to the present invention, a membrane module is provided which comprises: a dense packing of a plurality of membrane plates arranged parallel to one another and spaced apart from one another, the regions between the membrane plates being alternately connected to one of two devices for the passage of two separate fluid flows through the respective regions, and the regions between the membrane plates being separated from one another in a fluid-tight manner, so that a mass transfer between two fluid flows through the areas between the membrane plates is essentially only possible through permeation of fluid components through the membrane plates.
Mit dem Begriff „Fluid" werden in der vorliegenden Anmeldung Stoffe bzw. Stoffgemische bezeichnet, die bei den Anwendungstemperaturen des erfindungsgemäßen Membranmoduls bzw. des Trennverfahrens der vorliegenden Erfindung im flüssigen oder gasförmigen Aggregatszustand vorliegen. Besonders bevorzugt wird das Membranmodul bzw. das Fluidtrennverfahren der vorliegenden Erfindung bei der Trennung von Gasen und Gasgemischen eingesetzt.In the present application, the term “fluid” denotes substances or mixtures of substances which are in the liquid or gaseous state of aggregation at the application temperatures of the membrane module according to the invention or the separation process of the present invention. The membrane module or the fluid separation process of the present invention is particularly preferred used in the separation of gases and gas mixtures.
Diese einfachste grundlegende Ausführungsform des Membranmoduls der vorliegenden Erfindung gewährleistet zwei Strömungsbereiche für Fluidströme, die auf zwei Seiten einer Membran liegen und in zwei unterschiedlichen Richtungen durchströmbar sind.This simplest basic embodiment of the membrane module of the present invention ensures two flow areas for fluid flows which lie on two sides of a membrane and can be flowed through in two different directions.
Diese Anordnung gewährleistet, dass ein in den ersten Zwischenbereich eingebrachter bzw. dadurch hindurchgeleiteter Fluidstrom bestehend aus einer oder mehreren Fluidkomponenten in Kontakt mit der Membranfläche kommt, wobei durch die Membran hindurchtretende Fluidkomponenten in den zweitenThis arrangement ensures that a fluid flow, which is introduced into or passed through the first intermediate region and consists of one or more fluid components, comes into contact with the membrane surface, with fluid components passing through the membrane in the second
Zwischenbereich gelangen können, der in einer zweiten Richtung von einem weiteren gleichen oder verschiedenem Fluid durchströmt wird, das auf diese Weise mit den permeierten Fluidkomponenten angereichert werden kann. Der Begriff "Zwischenbereich" bezeichnet einen Hohlraum, durch welchen Fluidströme von einer Eintrittsöffhung bis zu einer Austrittsöffnung des Hohlraums durch das Modul geleitet werden können. Die erfindungsgemäßen ersten und zweiten Zwischenbereiche bestehen in bevorzugten Fällen aus einer Vielzahl von separierten oder miteinander verbundenen, in den meisten Fällen im Wesentlichen parallelen Kanälen, die zusammengenommen einen Zwischenbereich zwischen zwei Membranplatten bilden.Intermediate area can pass, which is flowed through in a second direction by another identical or different fluid, which can be enriched in this way with the permeated fluid components. The term “intermediate area” denotes a cavity through which fluid flows can be directed through the module from an inlet opening to an outlet opening of the cavity. In preferred cases, the first and second intermediate regions according to the invention consist of a multiplicity of channels which are separated or connected to one another, in most cases essentially parallel, which together form an intermediate region between two membrane plates.
Die in erfindungsgemäßen Modulen verwendeten Membranplatten können bauartbedingt in bevorzugten Ausführungsformen, insbesondere im Fall von Kohlenstoff- bzw. Kohlenstoffbasierten Membranen sehr dünn sein, mit einer Dicke von unter 1 mm, vorzugsweise unter 100 μm, besonders bevorzugt unter 10 μ.In preferred embodiments, in particular in the case of carbon or carbon-based membranes, the membrane plates used in modules according to the invention can be very thin, with a thickness of less than 1 mm, preferably less than 100 μm, particularly preferably less than 10 μm.
Durch geeignete Vorrichtungen wird man gewährleisten, dass die Fluidströme in geeigneter Weise separiert voneinander dem Modul zu und nach Durchtritt durch das Modul separat wieder abgeführt werden. Im Regelfall wird man das Membranmodul wie oben definiert so gestalten, dass es eine Vielzahl von Membranplatten umfasst, wodurch im Modul eine Vielzahl von alternierenden ersten und zweiten Zwischenbereichen entsteht. Da die Richtungen, in denen die ersten und zweiten Zwischenbereiche durchströmbar sind, zueinander einen Winkel bilden, also nicht identisch sind, wird das Membranmodul folglich bezüglich der Membranplatten kantenseitige Außenflächen ausbilden, wobei erste derartige Außenflächen entstehen, die beiderseits der offenen Enden der ersten Zwischenbereiche angeordnet ist, sowie weitere zwei bezüglich der Membranplatten kantenseitigen Außenflächen, die beiderseits der offenen Enden der zweiten Zwischenbereiche angeordnet sind. Darüber hinaus wird das Membranmodul zwei weitere Außenflächen aufweisen, die jeweils der Außenfläche der jeweils zu äußerst liegenden Membranplatten entsprechen. Diese Art von Modulaufbau gewährleistet mit den ersten bezüglich der Membranplatten kantenseitigen Außenflächen eine erste Anströmfläche des Moduls, die einen Fluiddurchtritt durch das Membranmodul nur durch die ersten Zwischenbereiche zwischen den jeweiligen Membranplatten ermöglicht.Suitable devices will ensure that the fluid flows are separated from the module in a suitable manner and are discharged again separately after passing through the module. As a rule, the membrane module, as defined above, will be designed so that it comprises a large number of membrane plates, as a result of which a large number of alternating first and second intermediate areas are created in the module. Since the directions in which the first and second intermediate regions can flow through form an angle to one another, that is to say are not identical, the membrane module will consequently form outer surfaces on the edge side with respect to the membrane plates, first outer surfaces of this type being formed which are arranged on both sides of the open ends of the first intermediate regions and two further outer surfaces on the edge side with respect to the membrane plates, which are arranged on both sides of the open ends of the second intermediate regions. In addition, the membrane module will have two further outer surfaces, each of which corresponds to the outer surface of the membrane plates that are located to the extreme. With the first outer surfaces on the edge side with respect to the membrane plates, this type of module construction ensures a first inflow surface of the module, which allows fluid to pass through the membrane module only through the first intermediate regions between the respective membrane plates.
Ferner umfasst das Membranmodul eine zweite Anströmfläche für einen zweiten Fluidstrom, der einen Durchtritt des Fluidstroms ausschließlich durch die zweiten Zwischenbereiche zum anderen Ende des Membranmoduls gewährleistet. Da im Inneren des Moduls jede Membranplatte mit ihren beiderseitigen Flächen an beide Zwischenbereiche und somit an beide Fluidströme angrenzt, die durch das Membranmodul geleitet werden, kann ein Stoffaustausch zwischen dem ersten und den zweiten Zwischenbereich bzw. den dadurch geführten Fluidströmen nur mittels Durchtritt einzelner Fluidkomponenten durch die Membran im Wege der Permeation erfolgen.Furthermore, the membrane module comprises a second inflow surface for a second fluid flow, which ensures that the fluid flow only passes through the second intermediate regions to the other end of the membrane module. Since in the interior of the module each membrane plate, with its faces on both sides, adjoins both intermediate areas and thus both fluid flows which are passed through the membrane module, a mass transfer between the first and the second intermediate area or the fluid flows guided thereby can only be achieved by the passage of individual fluid components the membrane is made by permeation.
Auf diese Weise ist es möglich, ein Fluidgemisch durch Anströmung einer der ersten bezüglich der Membranplatten kantenseitigen Außenflächen in das Membranmodul zu fuhren und vorzugsweise am anderen Ende der ersten Zwischenbereiche wieder austreten zu lassen, und durch die Membranen hindurch permeierende Fluidkomponenten aus den zweiten Zwischenbereichen separat abzuführen.In this way, it is possible to guide a fluid mixture into the membrane module by flowing against one of the first outer surfaces on the edge side with respect to the membrane plates and preferably to let it exit again at the other end of the first intermediate regions, and to separate fluid components permeating through the membranes from the second intermediate regions separately ,
Für diese Abführung permeierter Komponenten sind verschiedene Möglichkeiten verwendbar. So können beispielsweise die zweiten Zwischenbereiche durchVarious options can be used for this removal of permeated components. For example, the second intermediate areas can pass through
Anlegung eines Unterdrucks kontinuierlich oder diskontinuierlich abgesaugt werden. Alternativ hierzu kann durch Anströmen der bezüglich der Membranplatten kantenseitigen zweiten Außenflächen mittels eines zweiten Fluidstromes die zweiten Zwischenbereiche des Membranmoduls kontinuierlich oder diskontinuierlich gespült werden, wobei aus den ersten Zwischenbereichen durch die Membranplatten permeierte Fluidkomponenten des ersten Fluidgemisches mit dem zweiten Fluidstrom abgeführt werden.Applying a vacuum can be sucked off continuously or discontinuously. As an alternative to this, by flowing onto the second outer surfaces on the edge side with respect to the membrane plates by means of a second fluid flow, the second Intermediate areas of the membrane module are flushed continuously or discontinuously, with fluid components of the first fluid mixture permeated through the membrane plates being removed from the first intermediate areas with the second fluid stream.
Der zweite Fluidstrom kann beispielsweise vor Beginn der Trennung die gleiche Zusammensetzung haben wie der erste Fluidstrom, oder eine unterschiedliche.For example, the second fluid stream may have the same composition as the first fluid stream or a different one before the separation begins.
Der Begriff "Fluid" wie hier verwendet umfasst flüssige oder gasförmige Stoffe, Stoffgemische, Lösungen, Suspensionen, Emulsionen, Aerosole und dergleichen.The term "fluid" as used herein includes liquid or gaseous substances, mixtures of substances, solutions, suspensions, emulsions, aerosols and the like.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden die Membranplatten des Membranmoduls ein oder beidseitig, vorzugsweise beidseitig strukturiert. Eine bevorzugte Strukturierung der Membranplatten besteht in Form eines aufgeprägten oder sonst wie eingebrachten Rillenmusters mit über die gesamte Fläche der Membranplatten im Wesentlichen äquidistant zueinander angeordneten Rillen bzw. kanalartigen Vertiefungen. Die Rillenmuster können bezüglich der Kanten der Membranplatten parallel verlaufen, in einem beliebigen Winkel hierzu angeordnet sein, Zickzack- Muster aufweisen oder wellenförmig sein. Ferner können die Membranplatten, sofern beidseitig strukturiert, auf beiden Seiten identischeIn a preferred embodiment of the present invention, the membrane plates of the membrane module are structured on one or both sides, preferably on both sides. A preferred structuring of the membrane plates is in the form of an embossed or otherwise introduced groove pattern with grooves or channel-like depressions arranged essentially equidistant from one another over the entire surface of the membrane plates. The groove patterns can run parallel to the edges of the membrane plates, can be arranged at any angle to them, can have zigzag patterns or can be wavy. Furthermore, the membrane plates, if structured on both sides, can be identical on both sides
Rillenmuster aufweisen, oder unterschiedliche Rillenmuster. Bevorzugt ist, dass die Membranplatten beidseitig gleichförmig komplementär strukturiert sind, das heißt, dass die Rillenvertiefungen auf einer Seite der Membranplatte einer entsprechenden Erhöhung im Profil der anderen Seite der Membranplatte entsprechen.Have groove patterns, or different groove patterns. It is preferred that the membrane plates have a uniform complementary structure on both sides, that is to say that the groove depressions on one side of the membrane plate correspond to a corresponding increase in the profile of the other side of the membrane plate.
In einer bevorzugten Ausfuhrungsform des erfindungsgemäßen Membranmoduls werden die Membranplatten im Modul so angeordnet, dass die Rillenmuster zweier benachbarter Membranplatten im Wesentlichen parallel zueinander verlaufen. In einer alternativen, ebenfalls bevorzugten Ausführungsform des erfindungsgemäßen Membranmoduls werden die Membranplatten so angeordnet, dass sich die Rillenmuster zweier benachbarter Membranplatten in einem Winkel kreuzen, so dass sich bei Aufeinanderlegen der Membranplatten eine Vielzahl von Berührungspunkten zwischen den benachbarten Platten an den Stellen sich kreuzender erhabender Ränder der Rillenstrukturen benachbarter Platten ergibt. Auf diese Weise werden Membranmodule erhalten, die aufgrund der Verbindung an vielen Punkten entsprechend den Berührungspunkten der sich kreuzenden Rillenmuster eine deutlich erhöhte mechanische Stabilität aufweisen. DieIn a preferred embodiment of the membrane module according to the invention, the membrane plates are arranged in the module so that the groove patterns of two adjacent membrane plates run essentially parallel to one another. In an alternative, likewise preferred embodiment of the membrane module according to the invention, the membrane plates are arranged in such a way that the groove patterns of two adjacent membrane plates intersect at an angle, so that when the membrane plates are placed one on top of the other, a plurality of points of contact between the adjacent plates at the points of intersecting raised edges of the groove structures of adjacent plates. In this way, membrane modules are obtained which, due to the connection at many points corresponding to the points of contact of the intersecting groove patterns, have a significantly increased mechanical stability. The
Rillenstrukturen werden vorzugsweise so gewählt, dass sich beim Aufeinanderlegen zweier Membranplatten in den Zwischenbereichen eine Struktur ergibt, die einer Vielzahl von Kanälen oder Röhren entspricht, die einen geeigneten, möglichst geringen Strömungswiderstand im Modul gewährleisten. Der Fachmann wird die Rillenmuster in geeigneter Weise dimensionieren und auswählen.Groove structures are preferably chosen so that when two membrane plates are placed one on top of the other in the intermediate regions, a structure results which corresponds to a multiplicity of channels or tubes which ensure a suitable flow resistance in the module which is as low as possible. The person skilled in the art will dimension and select the groove patterns in a suitable manner.
Übliche Rillenstrukturen in geprägten Membranplatten führen im erfindungsgemäßen Membranmodul zu kanal- bzw. röhrenartigen Strukturen in den ersten und zweiten Zwischenräumen, deren Querschnittsfläche dem jeweiligen Verwendungszweck angepasst werden kann.In the membrane module according to the invention, customary groove structures in embossed membrane plates lead to channel-like or tube-like structures in the first and second intermediate spaces, the cross-sectional area of which can be adapted to the respective intended use.
In weiteren bevorzugten Ausführungsformen des Membranmoduls der vorliegenden Erfindung können zwischen die Membranplatten zusätzlich Abstandselemente eingebracht sein bzw. vorgesehen sein. Entsprechende Abstandselemente dienen der Gewährleistung ausreichend großer erster und zweiter Zwischenräume zwischen den Membranplatten, die einen geeigneten Strömungswiderstand des Moduls gewährleisten. Entsprechende Abstandselemente können poröse, offenporige Flächengebilde in Form von Zwischenlagen, Netzstrukturen sein, oder auch an den Membranplatten kantenseitig angeordnete Spacer, die einen bestimmten Mindestabstand zwischen den Platten gewährleisten.In further preferred embodiments of the membrane module of the present invention, additional spacing elements can be introduced or provided between the membrane plates. Corresponding spacer elements serve to ensure sufficiently large first and second spaces between the membrane plates, which ensure a suitable flow resistance of the module. Corresponding spacer elements can be porous, open-pore flat structures in the form of intermediate layers, network structures, or also on the Membrane plates spacers arranged on the edge, which ensure a certain minimum distance between the plates.
Die fluiddichte Randverbindung von jeweils zwei Membranplatten kann ebenfalls in geeigneter Weise mit einem entsprechend dimensionierten Spacer verbunden werden, so dass die Platten auf einem definierten Abstand zueinander gehalten werden.The fluid-tight edge connection of two membrane plates in each case can also be connected in a suitable manner with a correspondingly dimensioned spacer, so that the plates are kept at a defined distance from one another.
In einer besonders bevorzugten Ausfuhrungsform wird der Abstand der Membranplatten zueinander dadurch gewährleistet, dass durch entsprechend dimensionierte Rillenprägungen und ein Kreuzen der Rillenmuster zweier benachbarter Membranplatten in einem bestimmten Winkel sich wie oben erwähnt eine Vielzahl von Berührungspunkten zwischen den benachbarten Platten an den Stellen sich kreuzender erhabener Ränder der Rillenstrukturen ergibt, welche gewährleisten, dass entlang der Rillenvertiefungen Zwischenräume in Form einer Vielzahl von kanalartigen Strukturen entsteht.In a particularly preferred embodiment, the spacing of the membrane plates from one another is ensured in that, by appropriately dimensioned groove embossments and a crossing of the groove patterns of two adjacent membrane plates at a certain angle, as mentioned above, a large number of points of contact between the adjacent plates at the points of intersecting raised edges of the groove structures, which ensure that spaces are formed along the groove depressions in the form of a multiplicity of channel-like structures.
In einer besonders bevorzugten Ausführungsform können die Abstandselemente auch dadurch gebildet werden, dass auf den Membranplatten alternierend unterschiedlich tiefe Rillenprägungen vorgesehen werden, was zu unterschiedlich hohen Erhebungen einzelner Rillenränder führt, so dass die Zahl der Berührungspunkte zwischen den benachbarten Platten an den Stellen sich kreuzender Ränder der Rillenstrukturen insgesamt gegenüber der Gesamtzahl der vorhandenen Rillenränder in geeigneter Weise verringert wird. Durch Verbindung der Membranplatten an diesen Stellen wird eine ausreichende Festigkeit desIn a particularly preferred embodiment, the spacing elements can also be formed by alternately providing groove embossments of different depths on the membrane plates, which leads to elevations of individual groove edges of different heights, so that the number of points of contact between the adjacent plates at the points of intersecting edges Groove structures as a whole is suitably reduced compared to the total number of groove edges present. By connecting the membrane plates at these points, sufficient strength of the
Membranmoduls gewährleistet und ein günstiger Strömungswiderstand der zwischen den Platten liegenden ersten und zweiten Zwischenbereiche gewährleistet. Das erfindungsgemäße Membranmodul ist vorzugsweise so gestaltet, dass der Winkel zwischen der ersten und zweiten Richtung, welche die ersten und zweiten Zwischenbereiche durchströmbar sind, größer als 0 Grad ist, und bevorzugt zwischen 1 und 90 Grad liegt, vorzugsweise mehr als 5 Grad, bevorzugt mehr als 10 Grad, besonders bevorzugt mehr als 30 Grad und insbesondere bevorzugt von 45 - 90 Grad beträgt.Membrane module ensures and a favorable flow resistance of the first and second intermediate areas lying between the plates. The membrane module according to the invention is preferably designed such that the angle between the first and second directions through which the first and second intermediate regions can flow is greater than 0 degrees, and is preferably between 1 and 90 degrees, preferably more than 5 degrees, preferably more than 10 degrees, particularly preferably more than 30 degrees and particularly preferably 45-90 degrees.
Dies kann durch unterschiedliche Gestaltung der Membranplatten erreicht werden. So kann beispielsweise, wenn die Membranplatten in Form rechtwinkliger Platten, also in Form von Quadraten oder Rechtecken vorliegen, ein Winkel zwischen der ersten und zweiten Strömungsrichtung gewährleistet werden, der bei etwa 90 Grad liegt, das heißt die beiden Fluidströme durchströmen das Membranmodul in etwa senkrecht zueinander die ersten und zweiten Zwischenbereiche, die jeweils durch eine Membranplatte voneinander getrennt sind.This can be achieved by different design of the membrane plates. For example, if the membrane plates are in the form of rectangular plates, that is to say in the form of squares or rectangles, an angle between the first and second flow direction can be ensured which is approximately 90 degrees, i.e. the two fluid streams flow through the membrane module approximately vertically to each other, the first and second intermediate areas, which are each separated by a membrane plate.
Sofern Membranplatten in Form beispielsweise eines Parallelogramms verwendet werden, kann der Winkel zwischen der ersten und zweiten Strömungsrichtung entsprechend verringert werden und jeden Bereich zwischen 1 und 90 Grad einnehmen. Auch können die Membranplatten beispielsweise trapezförmig ausgestaltet sein, so dass sich in zumindest einer Strömungsrichtung bei derIf membrane plates in the form of, for example, a parallelogram are used, the angle between the first and second flow directions can be reduced accordingly and take up any range between 1 and 90 degrees. The membrane plates can also have a trapezoidal shape, for example, so that in at least one direction of flow
Durchströmung des Membranmoduls eine Verengung oder in umgekehrter Richtung Erweiterung der durchströmten Zwischenbereiche ergibt. Auf diese Weise können Strömungswiderstände und die Kontaktzeiten des verwendeten Fluidstroms mit den Membranplatten in geeigneter Weise zusätzlich gesteuert und variiert werden.Flow through the membrane module results in a narrowing or expansion in the reverse direction of the flow through the intermediate areas. In this way, flow resistances and the contact times of the fluid flow used with the membrane plates can be additionally controlled and varied in a suitable manner.
Die im Membranmodul der vorliegenden Erfindung verwendeten Membranplatten bestehen in bevorzugten Ausführungsformen im Wesentlichen aus Kohlenstoff. Besonders bevorzugt sind Membranplatten aus Kohlenstoff-basierten Kompositmaterial, welches gegebenenfalls weitere Zusatzstoffe wie beispielsweise Siliziumoxide, Aluminiumoxide, Aluminiumsilikate, Boroxide, Gläser, Titan- und Zirkoniumoxide, Keramikmaterialien und dergleichen in unterschiedlichen Mengenanteilen enthalten kann.In preferred embodiments, the membrane plates used in the membrane module of the present invention consist essentially of carbon. Membrane plates made of carbon-based are particularly preferred Composite material, which may contain other additives such as silicon oxides, aluminum oxides, aluminum silicates, boron oxides, glasses, titanium and zirconium oxides, ceramic materials and the like in different proportions.
Besonders bevorzugt sind Membranplatten aus einem kohlenstoffbasierten Material, ggf. auch Kohlenstoff-Kompositmaterial, das durch Pyrolyse von kohlenstoffhaltigen Ausgangsstoffen hergestellt wird, und im wesentlichen einer Art Kohlenstoffkeramik bzw. kohlenstoffbasierten Keramik entspricht. Die Herstellung entsprechender Materialien kann beispielsweise ausgehend von papierartigen Ausgangsstoffen durch Pyrolyse und eine Abgasbedingung bei hohen Temperaturen erfolgen. Entsprechende Herstellungsverfahren, insbesondere auch für Kohlenstoff-Kompositmaterialien, sind in der internationalen Patentanmeldung WO 01/80981, Seite 14, Zeile 10 bis Seite 18, Zeile 14 beschrieben und vorliegend anwendbar. Die erfindungsgemäßen kohlenstoffbasierten Membranplatten, bzw. daraus gebildete Membranmodule können femer auch nach den in der internationalen Patentanmeldung WO 02/32558 Seite 6, Zeile 5 bis Seite 24, Zeile 9 hergestellt werden. Die Offenbarung dieser internationalen Anmeldungen wird hiermit vollständig per Referenz einbezogen.Particularly preferred are membrane plates made of a carbon-based material, possibly also carbon composite material, which is produced by pyrolysis of carbon-containing starting materials and essentially corresponds to a type of carbon ceramic or carbon-based ceramic. Appropriate materials can be produced, for example, from paper-like starting materials by pyrolysis and an exhaust gas condition at high temperatures. Corresponding production processes, in particular also for carbon composite materials, are described in international patent application WO 01/80981, page 14, line 10 to page 18, line 14 and can be used in the present case. The carbon-based membrane plates according to the invention, or membrane modules formed therefrom, can also be produced according to those in international patent application WO 02/32558 page 6, line 5 to page 24, line 9. The disclosure of these international applications is hereby fully incorporated by reference.
Auch durch Pyrolyse von geeignet vorgefertigten Polymerfilmen bzw. dreidimensional angeordneten oder gefalteten Polymerfilmpaketen, wie in der DE 103 22 182 beschrieben deren Offenbarung hiermit vollständig per Referenz einbezogen wird, lassen sich erfindungsgemäße Membranmodule auf einfache Weise erhalten.Membrane modules according to the invention can also be obtained in a simple manner by pyrolysis of suitably prefabricated polymer films or three-dimensionally arranged or folded polymer film packages, as described in DE 103 22 182, the disclosure of which is hereby fully incorporated by reference.
Nach den in den oben genannten Patentanmeldungen Pyrolyseverfahren lassen sich besonders bevorzugte Ausführungsformen des erfindungsgemäßen Membranmoduls insbesondere auch durch Karbonisierung von Wellpappe herstellen, wobei die Wellpappschichten vor der Karbonisierung geeignet aufeinander fixiert werden, so dass sich ein in mindestens zwei Richtungen durchströmbarer Körper ergibt.According to the pyrolysis processes mentioned in the patent applications mentioned above, particularly preferred embodiments of the membrane module according to the invention can be produced in particular by carbonizing corrugated cardboard, the Corrugated cardboard layers are suitably fixed to one another before carbonization, so that there is a body through which flow can occur in at least two directions.
Darüber hinaus ergeben sich bevorzugte Ausführungsformen des erfindungsgemäßen Membranmoduls auch durch Wickeln von kreuzstromartig angeordneten Papieroder Polymerfilmstapeln zu Rohren, sowie deren anschließende Pyrolyse nach oben genannten Verfahren. Diese Wickelmodule können so angeordnet sein, dass sich die ersten Zwischenbereiche in Rohrrichtung erstrecken, mit dem Rohrquerschnitt als erste Anströmfläche, und die zweiten Zwischenbereiche sich quer zur Rohrrichtung erstrecken.In addition, preferred embodiments of the membrane module according to the invention also result from winding paper or polymer film stacks arranged in a cross-current fashion into tubes, and their subsequent pyrolysis by the above-mentioned processes. These winding modules can be arranged such that the first intermediate regions extend in the pipe direction, with the pipe cross section as the first inflow surface, and the second intermediate regions extend transversely to the pipe direction.
In bevorzugten Ausführungsformen können die Membranmodule vor oder nach einem Karbonisierungsschritt nach bekannten Verfahren paryleniert werden. Bei Parylenierung nach der Karbonisierung kann dann nochmals unter Sauerstoffausschluss nachpyrolysiert werden. Diese Behandlungsschritte ermöglichen eine gezielte Modifikation der Oberflächen- und Porositätseigenschaften der erfindungsgemäßen Membranmodule.In preferred embodiments, the membrane modules can be parylenized by known methods before or after a carbonation step. In the case of paryleneation after carbonization, it can then be pyrolyzed again with the exclusion of oxygen. These treatment steps enable a targeted modification of the surface and porosity properties of the membrane modules according to the invention.
Ferner kann die Oberfläche erfindungsgemäßer Membranmodule nach an sich bekannten Verfahren fluoridiert werden, beispielsweise um lipophileFurthermore, the surface of membrane modules according to the invention can be fluoridated by processes known per se, for example by lipophilic ones
Oberflächeneigenschaften zu erzielen, wie sie in einigen Bioreaktionsverfahren erforderlich sind.To achieve surface properties as required in some bioreaction processes.
Darüber hinaus können erfindungsgemäße Membranmodule auch aus Membranplatten gefertigt werden, die aus Polycarbonat, Polysulfon,In addition, membrane modules according to the invention can also be manufactured from membrane plates made of polycarbonate, polysulfone,
Polytetrafluorethylen (PTFE), Polyacrylnitril-Copolymer, Cellulose, Celluloseacetat, Cellulosebutyrat, Cellulosenitrat, Viskose, Polyetherimid, Polyoktylmethylsilan, Polyvinylidenchlorid, Polyamid, Polyharnstoff, Polyfuran, Polyethylen, Polypropylen, und/oder Copolymerisate davon, sowie Mixed-Matrix-Systemen die neben der Polymerkomponente auch anorganische Komponenten wie Aktivkohle, Kohlenstoffmolekularsieb oder Zeolithe enthalten, aufgebaut sind.Polytetrafluoroethylene (PTFE), polyacrylonitrile copolymer, cellulose, cellulose acetate, cellulose butyrate, cellulose nitrate, viscose, polyetherimide, polyoctylmethylsilane, polyvinylidene chloride, polyamide, polyurea, polyfuran, polyethylene, Polypropylene and / or copolymers thereof, as well as mixed matrix systems which, in addition to the polymer component, also contain inorganic components such as activated carbon, carbon molecular sieve or zeolites.
Die fluiddichten Kantenverbindungen zwischen einzelnen Membranplatten im erfindungsgemäßen Membranmodul können durch Verklebung der Kanten der Membranplatten mittels Klebstoffen, Glas, ggf. gefüllten Epoxidharzen, Lacken und Polymermaterialien gewährleistet werden. Besonders bevorzugt ist es im Fall kunstoffbasierter Materialien, die durch Pyrolyse aus kohlenstoffhaltigen Ausgangsstoffen hergestellt werden, dass die plattenförmigen Ausgangsstoffe an den entsprechenden Kanten mit oben genannten Materialien verklebt werden, und anschließend das so vorgefertigte Membranmodul vollständig der Pyrolyse unterworfen wird, wobei das eigentliche Kohlenstoffmembranmodul erzeugt wird.The fluid-tight edge connections between individual membrane plates in the membrane module according to the invention can be ensured by gluing the edges of the membrane plates by means of adhesives, glass, possibly filled epoxy resins, lacquers and polymer materials. In the case of plastic-based materials which are produced from carbon-containing starting materials by pyrolysis, it is particularly preferred for the plate-like starting materials to be glued to the corresponding edges at the corresponding edges, and for the membrane module thus prefabricated to be completely subjected to pyrolysis, the actual carbon membrane module being produced becomes.
Femer können im wesentlichen fluiddichte Kanten auch durch Falzkanten entlang von Faltungen gebildet werden, indem vor einer Pyrolyse flächige Ausgangsmaterialien Ziehharmonika-artig aufeinandergefaltet werden, so dass einige der fluiddichten Kantenverbindungen durch Falze vorgegeben sind, und nach der Pyrolyse im wesentlichen fluiddichte Verbindungen entlang der Falze ergeben.In addition, essentially fluid-tight edges can also be formed by fold edges along folds, in that flat starting materials are folded on top of one another in an accordion-like manner before pyrolysis, so that some of the fluid-tight edge connections are predetermined by folds and result in essentially fluid-tight connections along the folds after pyrolysis ,
Die Abdichtung einzelner Kantenseiten des Moduls kann beispielsweise durch im Tauch- oder Extrusionsverfahren aufgebrachte Dichtmassenblöcke, z.B. aus Epoxidharz, erfolgen. Damit kann eine Randabdichtung des Moduls gewährleistet werden, oder auch eine Abdichtung zwischen dem Membranmodul und beispielsweise einem Gehäuse, in welchem das Modul eingebaut wird, um eine funktioneile Fluidtrennvorrichtung zu erhalten. Die so aufgebrachte Dichtmasse kann z.B. nach der Pyrolyse des Modulvorläufers an geeigneten Stellen geschnitten oder aufgeschliffen werden, so dass sich auf der kantenseitigen Außenfläche des Moduls die erfindungsgemäße Struktur alternierender Öffnungen der einen Zwischenbereiche und der fluiddicht verschlossenen Randbereiche der anderen Zwischenbereiche ergibt. Alternativ kann der Dichtmassenblock auch selektiv nur an einzelnen ausgewählten Stellen geöffnet werden.Individual edge sides of the module can be sealed, for example, by means of sealing compound blocks, for example made of epoxy resin, which are applied by immersion or extrusion. An edge seal of the module can thus be guaranteed, or also a seal between the membrane module and, for example, a housing in which the module is installed in order to obtain a functional fluid separation device. The sealing compound applied in this way can, for example, be cut or sanded at suitable points after the pyrolysis of the module precursor, so that there is on the edge-side outer surface of the module the structure according to the invention of alternating openings of the one intermediate region and the fluid-tightly closed edge regions of the other intermediate regions results. As an alternative, the sealing compound block can also be selectively opened only at individually selected points.
Erfindungsgemäße Membranmodule können in beliebiger Weise auf die vorgesehene Anwendung bezogen dimensioniert werden, beispielsweise mit Modulvolumen im Bereich von ab 1 cm3, bevorzugt etwa 10 cm3 bis 1 m3. In Fällen wo dies erwünscht ist, sind die Membranmodule auch deutlich größer oder auch im noch kleineren Mikromaßstab dimensionierbar.Membrane modules according to the invention can be dimensioned in any way related to the intended application, for example with module volumes in the range from 1 cm 3 , preferably about 10 cm 3 to 1 m 3 . In cases where this is desired, the membrane modules are also significantly larger or can be dimensioned on an even smaller micro scale.
Die vorliegende Erfindung gewährleistet fe er ein Verfahren zur Trennung von Fluidgemischen mittels eines erfindungsgemäßen Membranmoduls, umfassend folgende Schritte: - Aufbringen eines Fluidgemisches auf eine der bezüglich derThe present invention ensures a method for the separation of fluid mixtures by means of a membrane module according to the invention, comprising the following steps: - Application of a fluid mixture to one of the two
Membranplatten kantenseitige Außenflächen des Moduls, so dass das Fluidgemisch durch die ersten Zwischenbereiche zwischen den Membranplatten in der ersten Richtung durch das Modul strömt; Separates Abführen von durch die Membranplatten aus den ersten in die zweiten Zwischenbereiche permeierten Fluidkomponenten.Membrane plates edge-side outer surfaces of the module, so that the fluid mixture flows through the first intermediate areas between the membrane plates in the first direction through the module; Separate removal of fluid components permeated through the membrane plates from the first into the second intermediate regions.
In einer bevorzugten Ausführungsform werden die permeierten Fluidkomponenten aus den zweiten Zwischenbereichen mit einem durch diese Zwischenbereiche geführten zweiten Fluidstrom, dem Spülstrom, abgeführt. Dies ist insbesondere bei Gastrennungen die bevorzugte Betriebsart. Dieser zweite Fluidstrom kann die gleiche, oder eine andere Zusammensetzung aufweisen als das aufgebrachte (erste) Fluidgemisch. Femer kann alternativ eine kontinuierliche oder diskontinuierliche Abführung der permeierten Fluidkomponenten aus den zweiten Zwischenbereichen vorgesehen sein, etwa durch Absaugung mittels Unterdruck bzw. Vakuumeinrichtungen.In a preferred embodiment, the permeated fluid components are discharged from the second intermediate regions with a second fluid stream, the rinsing stream, which is led through these intermediate regions. This is the preferred mode of operation, particularly for gas separations. This second fluid stream can have the same or a different composition than the applied (first) fluid mixture. Alternatively, a continuous or discontinuous discharge of the permeated fluid components from the second intermediate areas can also be used be provided, for example by suction using vacuum or vacuum devices.
Die Aufbringung des zu trennenden Fluidgemisches kann mittels Druck oder drucklos, diskontinuierlich oder bevorzugt kontinuierlich erfolgen.The fluid mixture to be separated can be applied by means of pressure or without pressure, discontinuously or preferably continuously.
Das erfindungsgemäße Membranmodul bzw. das erfindungsgemäße Verfahren kann vorteilhaft für eine Vielzahl von Fluidtrennaufgaben verwendet werden, bzw. daran angepasst werden. Darunter sind beispielsweise, ohne darauf beschränkt zu sein, die Dampfpermeation, Pervaporation, Entfeuchtung und/oder Entkeimung von Luft und Gasen, oder für die Zu- oder Abluftfiltration, zur Gewinnung von Wasserstoff oder Methan aus Industriegasen, zur Abreicherung von CO2 aus Luft oder Abgasen, zur Befeuchtung oder Entfeuchtung von Gasen, zur Abreicherung von Lösungsmitteldämpfen aus Abluft, oder zur Entfernung von CO2 aus Erdgas, in der Gastrennung, vorzugsweise der Abtrennung von CO2 aus Erdgas, der Abtrennung von Methan und/oder Kohlendioxid von Wasserstoff, zur Trennung von Sauerstoff und Stickstoff und/oder für die Abtrennung oder Anreicherung von Sauerstoff aus Sauerstoff-Stickstoff-Gemischen, insbesondere in Gegenwart von Luftfeuchtigkeit, sowie für die An- oder Abreicherung von Wasserstoff aus wasserstoffhaltigen Kohlenwasserstoff-Gemischen.The membrane module according to the invention and the method according to the invention can advantageously be used for a large number of fluid separation tasks or can be adapted to them. These include, but are not limited to, vapor permeation, pervaporation, dehumidification and / or disinfection of air and gases, or for supply or exhaust air filtration, for the production of hydrogen or methane from industrial gases, for the depletion of CO 2 from air or Exhaust gases, for humidifying or dehumidifying gases, for depleting solvent vapors from exhaust air, or for removing CO 2 from natural gas, in gas separation, preferably the separation of CO 2 from natural gas, the separation of methane and / or carbon dioxide from hydrogen Separation of oxygen and nitrogen and / or for the separation or enrichment of oxygen from oxygen-nitrogen mixtures, in particular in the presence of atmospheric moisture, and for the enrichment or depletion of hydrogen from hydrogen-containing hydrocarbon mixtures.
Die Membranmodule der vorliegenden Erfindung, insbesondere solche auf Kohlenstoffbasis, werden in einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung als Trägermaterial zur Immobilisierung von katalytischen Einheiten verwendet. Damit lassen sich die Module als Bioreaktoren in biologischen und/oder biotechnologischen Stoffproduktionsverfahren vorteilhaft nutzen. Der Ausdruck „katalytische Einheit(en)" umfasst hier jegliche katalytisch aktive Substanz, insbesondere metallorganische Komplexe und Enzyme sowie insbesondere Mikroorganismen, Algen, Bakterien, Viren und Zellen. Als Zellen werden in bestimmten Ausführungsformen nichtgewebebildende Säugetierzellen bevorzugt, jedoch können für Gewebeaufzuchtsysteme die Membranmodule auch als Träger für gewebebildende Pflanzen- und Säugetierzellen verwendet werden.In a particularly preferred embodiment of the present invention, the membrane modules of the present invention, in particular those based on carbon, are used as carrier material for immobilizing catalytic units. The modules can thus be used advantageously as bioreactors in biological and / or biotechnological substance production processes. The expression “catalytic unit (s)” here encompasses any catalytically active substance, in particular organometallic complexes and enzymes, and in particular microorganisms, algae, bacteria, viruses and cells. In certain embodiments, non-tissue-forming mammalian cells are preferred as cells, but the membrane modules can also be used for tissue culture systems can be used as a carrier for tissue-forming plant and mammalian cells.
Die Membranmodule der vorliegenden Erfindung können als Trägermaterialien für Mikroorganismen oder Zellen eine hervorragende Biokompatibilität aufweisen, sind formstabil und äußerst variabel bezüglich ihres Aufbaus, wie etwa Porengrößen, innere Struktur und äußere Form herstellbar. Femer lassen sich die erfindungsgemäßen Membranmodule leicht sterilisieren und bieten einen guten Haftuntergrund für Mikroorganismen und Zellen. Aufgrund dieser Eigenschaften lassen sich diese Membranmodule für eine Vielzahl von Anwendungen maßschneidern.The membrane modules of the present invention can have excellent biocompatibility as support materials for microorganisms or cells, are dimensionally stable and extremely variable in terms of their structure, such as pore sizes, internal structure and external shape. Furthermore, the membrane modules according to the invention can be easily sterilized and offer a good adhesive base for microorganisms and cells. Due to these properties, these membrane modules can be tailored for a variety of applications.
In bevorzugten Ausführungsformen bestehen die Membranmodule der vorliegenden Erfindung im wesentlichen aus Kohlenstoff, wie Aktivkohle, gesinterte Aktivkohle, amorpher, kristalliner oder teilkristalliner Kohlenstoff, Graphit, pyrolytisch bzw. durch Karbonisierung erzeugtes Kohlenstoffhaltiges Material, Kohlefaser, oder Carbide, Carbonitride, Oxycarbide bzw. Oxycarbonitride von Metallen oder Nichtmetallen, sowie aus geeigneten Mischungen dieser Materialien. Bevorzugt bestehen die Membranmodule aus amorphem, graphitischem und/oder pyrolytischem Kohlenstoff.In preferred embodiments, the membrane modules of the present invention essentially consist of carbon, such as activated carbon, sintered activated carbon, amorphous, crystalline or partially crystalline carbon, graphite, pyrolytic or carbon-containing material, carbon fiber or carbides, carbonitrides, oxycarbides or oxycarbonitrides from Metals or non-metals, as well as from suitable mixtures of these materials. The membrane modules preferably consist of amorphous, graphitic and / or pyrolytic carbon.
In besonders bevorzugten Ausführungsformen kann das Membranmodul weitere Substanzen, ausgewählt aus organischen und anorganischen Stoffen oder Verbindungen, enthalten. Bevorzugt werden Stoffe wie oder Verbindungen von Eisen, Kobalt, Kupfer, Zink, Mangan, Kalium, Magnesium, Kalzium, Schwefel oder Phosphor. Der Einbau dieser weiteren Verbindungen kann beispielsweise dazu genutzt werden, das Wachstum bestimmter Mikroorganismen oder Zellen fördern.In particularly preferred embodiments, the membrane module can contain further substances selected from organic and inorganic substances or compounds. Substances such as or compounds of are preferred Iron, cobalt, copper, zinc, manganese, potassium, magnesium, calcium, sulfur or phosphorus. The incorporation of these additional compounds can be used, for example, to promote the growth of certain microorganisms or cells.
Zur Wachstumsförderung femer geeignet ist eine Imprägnierung oder Beschichtung des Membranmoduls mit Kohlehydraten, Lipiden, Purinen, Pyromidinen, Pyrimidinen, Vitaminen, Proteinen, Wachstumsfaktoren, Aminosäuren und/oder Schwefel- oder Stickstoffquellen.An impregnation or coating of the membrane module with carbohydrates, lipids, purines, pyromidines, pyrimidines, vitamins, proteins, growth factors, amino acids and / or sulfur or nitrogen sources is also suitable for promoting growth.
Fe er können zur Stimulation des Zellwachstums folgende Stoffe verwendet werden: Bisphosphonate (z.B. Risedronate, Pamidronate, Ibandronate, Zoledronsäure, Clodronsäure, Etidronsäure, Alendronsäure, Tiludronsäure), Fluoride (Dinatriumfluorophosphat, Natriumfluorid); Calcitonin, Dihydrotachystyrol, sowie alle Wachstumsfaktoren (Growth Factors) und Zytokine (Epidermal Growth Factor (EGF), Platelet-Derived Growth Factor (PDGF), Fibroblast Growth Factors (FGFs), Transforming Growth Factors-b TGFs-b), Transforming Growth Factor-a (TGF-a), Erythropoietin (Epo), Insulin-Like Growth Factor-I (IGF-I), Insulin-Like Growth Factor-II (IGF-II), Interleukin-1 (IL-1), Interleukin-2 (IL-2), Interleukin-6 (IL-6), Interleukin-8 (IL-8), Tumor Necrosis Factor-a (TNF-a), Tumor Necrosis Factor-b (TNF-b), Interferon-g (INF-g), Monocyte chemotactic protein, fibroblast stimulating factor 1, Histamin, Fibrin oder Fibrinogen, Endothelin-1, Angiotensin II, Kollagene, Bromocriptin, Methylsergid, Methotrexat, Kohlenstofftetrachlorid, Thioacetamid, Ethanol.The following substances can be used to stimulate cell growth: bisphosphonates (e.g. risedronate, pamidronate, ibandronate, zoledronic acid, clodronic acid, etidronic acid, alendronic acid, tiludronic acid), fluorides (disodium fluorophosphate, sodium fluoride); Calcitonin, dihydrotachystyrene, as well as all growth factors and cytokines (epidermal growth factor (EGF), platelet-derived growth factor (PDGF), fibroblast growth factors (FGFs), transforming growth factors-b TGFs-b), transforming growth factor -a (TGF-a), erythropoietin (Epo), insulin-like growth factor-I (IGF-I), insulin-like growth factor-II (IGF-II), interleukin-1 (IL-1), interleukin 2 (IL-2), Interleukin-6 (IL-6), Interleukin-8 (IL-8), Tumor Necrosis Factor-a (TNF-a), Tumor Necrosis Factor-b (TNF-b), Interferon-g (INF-g), monocyte chemotactic protein, fibroblast stimulating factor 1, histamine, fibrin or fibrinogen, endothelin-1, angiotensin II, collagens, bromocriptine, methylsergide, methotrexate, carbon tetrachloride, thioacetamide, ethanol.
Bevorzugt beträgt die mittlere Porengröße des Membranmoduls fürThe average pore size of the membrane module is preferably for
Bioreaktorsysteme zwischen 2 Ängström und 1 Millimeter, bevorzugt zwischen 1 Nanometer und 400 Mikrometer, besonders bevorzugt zwischen 10 Nanometer und 100 Mikrometer. Die Membranen des erfindungsgemäßen Membranmoduls für den Einsatz in biologischen oder chemischen Reaktionen ist für die auf dem Modul immobilisierten katalytischen Einheiten und die Reaktionsprodukte im wesentlichen impermeabel und für das Reaktionsmedium sowie die Reaktionsedukte im wesentlichen permeabel, und im übrigen, sofern restliche äußere Fläche vorhanden, gegebenenfalls versiegelt.Bioreactor systems between 2 angstroms and 1 millimeter, preferably between 1 nanometer and 400 micrometers, particularly preferably between 10 nanometers and 100 micrometers. The membranes of the membrane module according to the invention for use in biological or chemical reactions are essentially impermeable for the catalytic units and the reaction products immobilized on the module and essentially permeable for the reaction medium and the reaction educts, and for the rest, if the remaining outer surface is present, if appropriate sealed.
Der Ausdruck „chemische Reaktionen" umfasst alle Reaktionen ohne Zuhilfenahme von lebenden Organismen. Der Ausdruck „biologische Reaktionen" umfasst Reaktionen unter Zuhilfenahme von lebenden Organismen wie etwa Zellen oder Mikroorganismen.The term "chemical reactions" comprises all responses without the aid of living organisms. The term "biological response" includes reactions with the aid of living organisms such as cells or microorganisms.
Der Ausdruck „Reaktionsmedium" umfasst jedes Fluid, gasförmig oder flüssig, wie etwa Wasser, organische Lösungsmittel, anorganische Lösungsmittel, überkritische Gase sowie übliche Trägergase.The term “reaction medium” encompasses any fluid, gaseous or liquid, such as water, organic solvents, inorganic solvents, supercritical gases and conventional carrier gases.
Der Ausdruck „Edukt" umfasst unabhängig von deren Aggregatszustand die Ausgangsstoffe einer chemischen oder biologischen Reaktion bzw. Nährstoffe, Sauerstoff und ggf. Kohlendioxid, insbesondere im Falle von biologischenRegardless of their aggregate state, the expression “starting material” comprises the starting materials for a chemical or biological reaction or nutrients, oxygen and possibly carbon dioxide, in particular in the case of biological ones
Reaktionen. Der Ausdruck „Produkt" betrifft unabhängig vom Aggregatszustand die Reaktionsprodukte einer chemischen Reaktion bzw. die Reaktionsprodukte oder Stoffwechselprodukte im Falle von biologischen Reaktionen.Reactions. The term “product” relates to the reaction products of a chemical reaction or the reaction products or metabolic products in the case of biological reactions, regardless of the state of aggregation.
Der Ausdruck „Reaktionsmischung" umfasst eine Mischung aus demThe term "reaction mixture" includes a mixture of the
Reaktionsmedium, gegebenenfalls den Edukten und gegebenenfalls den Produkten. Die Membranmodule der vorliegenden Erfindung weisen den Vorteil auf, dass die katalytischen Einheiten aufgrund der semipermeablen Trennschicht und/oder der Versiegelung der Moduleinheiten diese nicht mehr verlassen können, ein Stoffaustausch bezüglich der Edukte, wie z. B. Nährstoffe, der Produkte und/oder des Reaktionsmediums über die semipermeable Trennschicht aber möglich ist. DieReaction medium, optionally the starting materials and optionally the products. The membrane modules of the present invention have the advantage that the catalytic units can no longer leave them due to the semi-permeable separating layer and / or the sealing of the module units. B. nutrients, the products and / or the reaction medium via the semipermeable separating layer is possible. The
Membranoberflächen des erfindungsgemäßen Moduls eignen sich insbesondere zur Immobilisierung von Mikroorganismen und Gewebekulturen. Hierbei siedeln sich die Mikroorganiscmen bzw. Gewebekulturen auf den Membranflächen an und können über die Strömungskanäle in den Zwischenbereichen mit flüssigen oder gasförmigen Nährstoffen versorgt, während ggf. Stoffwechselprodukte einfach abgeführt werden können. Beispielsweise werden die katalytischen Einheiten, vorzugsweise Mikroorganismen oder Zeil- bzw. Gewebekulturen über die ersten Zwischenbereiche des Membranmoduls mit den Reaktionsedukten wie Nährstoffen versorgt, während die Produkte über die zweiten Zwischenräume abgeführt oder aber zurückgehalten und ggf. in einem späteren Arbeitschritt aus Modul abgetrennt werden können. Femer sind die katalytischen Einheiten vor dem Austrag und vor eventuellen schädlichen Umwelteinflüssen, wie etwa mechanische Belastungen, geschützt.Membrane surfaces of the module according to the invention are particularly suitable for the immobilization of microorganisms and tissue cultures. The microorganisms or tissue cultures settle on the membrane surfaces and can be supplied with liquid or gaseous nutrients via the flow channels in the intermediate areas, while metabolic products can be easily removed if necessary. For example, the catalytic units, preferably microorganisms or cell or tissue cultures, are supplied with the reactants such as nutrients via the first intermediate regions of the membrane module, while the products are removed or retained via the second intermediate spaces and, if appropriate, can be separated from the module in a later step , Furthermore, the catalytic units are protected from the discharge and from possible harmful environmental influences, such as mechanical loads.
Femer ist es gemäß der Erfindung z.B. möglich mehrere Membranmodule mit verschiedenen katalytischen Einheiten in eine Reaktionsmischung, enthaltend das Reaktionsmedium und die Reaktionsedukte, zu tauchen ohne dass es zur Vermischung der verschiedenen Produkte kommt, wenn die Produktabführungskanäle geeignet voneinander separiert oder versiegelt werden.Furthermore, according to the invention it is e.g. It is possible to immerse several membrane modules with different catalytic units in a reaction mixture containing the reaction medium and the reaction starting materials without the different products being mixed if the product discharge channels are suitably separated or sealed from one another.
Diese Ausfύhrungsform ist besonders Vorteilhaft für die Verwendung von verschiedenen Mikroorganismen oder Zellkulturen. Die entsprechenden Module, die mit unterschiedlichen Mikroorganismen oder Zellkulturen beladen sind, können beispielsweise zur Wirkstoffproduktion in ein einziges Nährmedium getaucht werden und nach gewisser Zeit zur Wirkstoffentfemung aus dem Nährmedium genommen und geöffnet werden, oder die Produkte werden kontinuierlich entfernt. Die Membranmodule können auch wahlweise so gestaltet sein, dass sie zur Wirkstoffentfemung zerstört werden müssen oder dass sie reversibel geöffnet oder verschlossen werden können. Bevorzugt können die Module reversibel geöffnet und wieder verschlossen werden.This embodiment is particularly advantageous for the use of different microorganisms or cell cultures. The corresponding modules, which are loaded with different microorganisms or cell cultures, can For example, for the production of active substances, they are immersed in a single nutrient medium and after a certain time are removed from the nutrient medium and removed to remove the active substance, or the products are removed continuously. The membrane modules can also be designed so that they have to be destroyed to remove the active substance or that they can be opened or closed reversibly. The modules can preferably be opened and closed reversibly.
Nach der Wirkstoffentfemung durch beispielsweise Extraktion können die Membranmodule sofern erwünscht oder erforderlich gereinigt, sterilisiert und wiederverwendet werden.After removal of the active ingredient, for example by extraction, the membrane modules can, if desired or necessary, be cleaned, sterilized and reused.
Die kontinuierliche Ausführungsform weist den Vorteil auf, dass die katalytischen Einheiten aufgrund der Membran und einer äußeren Versiegelung das Trägermaterial nicht mehr verlassen können, ein Stoffaustausch über die semipermeable Membran aber zugelassen wird. Dadurch werden die katalytischen Einheiten mit den Reaktionsedukten versorgt und die Reaktionsprodukte können kontinuierlich oder diskontinuierlich abgeführt werden, die katalytischen Einheiten sind aber vor dem Austrag und vor eventuellen schädlichen Umwelteinflüssen, wie etwa mechanische Belastungen, geschützt. Auch können hier eine Vielzahl von Membranmodulen in Reihe oder parallel geschaltet betrieben werden.The continuous embodiment has the advantage that the catalytic units can no longer leave the carrier material due to the membrane and an external seal, but a mass transfer via the semipermeable membrane is permitted. As a result, the catalytic units are supplied with the reactants and the reaction products can be removed continuously or discontinuously, but the catalytic units are protected from the discharge and from possible harmful environmental influences, such as mechanical loads. A large number of membrane modules can also be operated in series or in parallel.
In der Regel diffundieren die Reaktionsedukte und -produkte jeweils aufgrund eines Konzentrationsgradienten, der sich zwischen den ersten Zwischenbereichen auf der einen Seite der Membran und den zweiten Zwischenbereichen auf der anderen Seite der Membran aufbaut, durch die Membran. Der Diffusionsweg setzt sich, ohne auf eine bestimmte Theorie festgelegt werden zu wollen, aus dem laminaren Grenzfilm an der ersten Seite der Membran, der Membran selbst und der zweiten Seite der Membran zusammen. Im Inneren der ersten und zweiten Zwischenräume findet der weitere Stofftransport entweder ebenfalls durch Diffusion oder durch Strömungsvorgänge statt.As a rule, the reaction educts and products each diffuse through the membrane due to a concentration gradient that builds up between the first intermediate regions on one side of the membrane and the second intermediate regions on the other side of the membrane. The diffusion path is made up of the laminar boundary film on the first side of the membrane, the membrane itself and the second side of the membrane, without wishing to be bound to any particular theory Membrane together. In the interior of the first and second intermediate spaces, the further mass transport takes place either also by diffusion or by flow processes.
Der Konzentrationsgradient zwischen den ersten und den zweiten Zwischenräumen des Membranmoduls wird vorzugsweise durch die kontinuierliche Eduktzufuhr und gegebenenfalls Produktabfuhr aufrechterhalten. Der Fachmann weiß, dass durch turbulente Strömung mit steigender Reynolds-(Re)-Zahl der laminare Grenzfilm an der äußeren Oberfläche der Membranen dünner und der Stofftransport schneller wird.The concentration gradient between the first and the second gaps of the membrane module is preferably maintained by the continuous feed of educt and, if appropriate, product removal. The person skilled in the art knows that the turbulent flow with increasing Reynolds (Re) number causes the laminar boundary film on the outer surface of the membranes to become thinner and the mass transfer to be faster.
Um die Stoffübergänge im Membranmodul zu optimieren, kann die semipermeable Membran in geeigneter Weise modifiziert werden, beispielsweise durch Fluoridierung, Parylenierung, mit Kohlefasem, Aktivkohle, pyrolytischem Kohlenstoff, ein- oder mehrwandigen Kohlenstoff-Nanotubes,In order to optimize the mass transfers in the membrane module, the semipermeable membrane can be modified in a suitable manner, for example by fluoridation, parylenation, with carbon fibers, activated carbon, pyrolytic carbon, single- or multi-walled carbon nanotubes,
Kohlenstoffmolekularsieb, mittels CVD oder PVD abgeschiedenem Material wie etwa C, Si, Metalle, etc.Carbon molecular sieve, material deposited by means of CVD or PVD such as C, Si, metals, etc.
Bevorzugt werden nicht für den Stofftransport notwendige äußere Flächen des Membranmoduls gemäß der vorliegenden Erfindung versiegelt. Die Versiegelung kann durch eine impermeable Schicht bewerkstelligt werden. Diese impermeable Schicht kann aus denselben Materialien wie die Membran selbst bestehen und sich von der semipermeablen Membran lediglich durch die Porengröße unterscheiden. Alternativ kann jegliches Mittel zur Versiegelung verwendet werden, welches sicherstellt, dass im Wesentlichen kein Stoffaustausch über versiegelte Bereiche stattfinden kann, abgesehen von dem Stoffaustausch über die semipermeable Membran. Die Versiegelung kann reversibel oder irreversibel sein. Bevorzugt ist die Versiegelung irreversibel. Die erfindungsgemäßen Membranmodule werden vor oder nach der Einbringung der katalytisch aktiven Eigenheiten gegebenenfalls versiegelt.Outer surfaces of the membrane module that are not necessary for mass transport are preferably sealed in accordance with the present invention. The sealing can be accomplished by an impermeable layer. This impermeable layer can consist of the same materials as the membrane itself and differ from the semipermeable membrane only in the pore size. Alternatively, any means of sealing can be used which ensures that essentially no mass transfer can take place over sealed areas, apart from the mass transfer via the semipermeable membrane. The seal can be reversible or irreversible. The seal is preferably irreversible. The membrane modules according to the invention are before or optionally sealed after the introduction of the catalytically active peculiarities.
Das Membranmodul kann für die Verwendung für biologische oder chemische Reaktionen mittels einer Vielzahl von dem Fachmann üblicherweise bekannten Maßnahmen mit katalytischen Einheiten beladen bzw. ausgestattet werden. Bevorzugt ist das in Kontakt bringen des Membranmoduls mit einer die katalytische Einheit enthaltende Lösung, Emulsion oder Suspension mittels eintauchen, besprühen, beschichten oder dergleichen, um eine Einlagerung der katalytischen Einheiten in den porösen Körper zu bewirken, und anschließendes Entfernen des Lösungsmittels sowie ggf. Trocknung.The membrane module can be loaded or equipped with catalytic units for use in biological or chemical reactions by means of a large number of measures which are usually known to the person skilled in the art. It is preferred to bring the membrane module into contact with a solution, emulsion or suspension containing the catalytic unit by immersing, spraying, coating or the like in order to cause the catalytic units to be embedded in the porous body, and then removing the solvent and optionally drying ,
Im Anschluss daran kann teilweise versiegelt werden, wie bei einigen Anwendungen erforderlich. Auch die Beschickung nur der ersten oder nur der zweiten Zwischenbereiche des Membranmoduls ist mit diesen Verfahren auf einfache Weise möglich und in vielen Ausführungsformen besonders bevorzugt, um Edukte bzw. Produkte durch die Membran von den katalytischen Einheiten zu trennen.This can be partially sealed as required for some applications. These methods can also be used to feed only the first or only the second intermediate regions of the membrane module, and are particularly preferred in many embodiments in order to separate educts or products through the membrane from the catalytic units.
Bevorzugt wird das Modul in eine solche Lösung, Emulsion oder Suspension für einen Zeitraum von 1 Sekunde bis zu 90 Tagen getaucht, um den katalytischenThe module is preferably immersed in such a solution, emulsion or suspension for a period of 1 second to 90 days in order to remove the catalytic
Einheiten die Möglichkeit zu geben, in das Modul hinein zu diffundieren und sich anzusiedeln bzw. zu haften.To give units the opportunity to diffuse into the module and to settle or stick.
Die so hergestellten Membranmodule mit den katalytischen Einheiten können von 10"5 Gew.-% bis 99 Gew.-% katalytische Einheiten enthalten, insbesondere beiThe membrane modules thus produced with the catalytic units can contain from 10 "5 wt .-% to 99 wt .-% catalytic units, in particular at
Metallkatalysatoren, basierend auf dem gesamten Gewicht des beladenen Moduls. Bei mit Mikroorganismen oder Zellen besiedelten Bioreaktormodulen kann das Gewicht der Biomasse das des Moduls selbst um ein Vielfaches übersteigen, beispielsweise bis zum 106-fachen des Modulgewichts. Die Zelldichte bei Bioreaktormodulen kann im Bereich von 1 bis 1023 Zellen pro ml Volumen, insbesondere Reaktorvolumen, vorzugsweise bis zu 102, bevorzugt 105, insbesondere bis zu 109 Zellen pro ml liegen.Metal catalysts based on the total weight of the loaded module. In the case of bioreactor modules populated with microorganisms or cells, the weight of the biomass can exceed that of the module itself many times over, for example up to 10 6 times the module weight. The cell density in bioreactor modules can be in the range from 1 to 10 23 cells per ml volume, in particular reactor volume, preferably up to 10 2 , preferably 10 5 , in particular up to 10 9 cells per ml.
Die erfindungsgemäßen Katalysator-haltigen Membranmodule können in Reaktoren für chemische und/oder biologische Reaktionen eingesetzt werden. Diese Reaktoren können kontinuierlich oder Batchweise betriebenen werden. Für Batchweise betriebene Reaktionen werden Rührkesselreaktoren bevorzugt. Diese Rührkesselreaktoren sind mit einem Rührwerk ausgestattet und gegebenenfalls mit einer kontinuierlichen Edukt-Zugabevorrichtung. Die Membranmodule werden gegebenenfalls in einem Behälter in die Reaktionsmischung, umfassend das Reaktionsmedium und die Edukte getaucht. Wenn vergleichsweise kleine Module eingesetzt werden, werden diese bevorzugt in einem Behälter in das Reaktionsgemisch getaucht. Eine gute Konvektion ist in diesen Systemen notwendig. Edukte müssen immer in ausreichender Menge zugeführt werden. Der Fachmann erkennt, dass Maßnahmen die zur guten Durchmischung und zur guten Konvektion fuhren, geeignet sind für die vorliegende Erfindung.The catalyst-containing membrane modules according to the invention can be used in reactors for chemical and / or biological reactions. These reactors can be operated continuously or in batches. For batch reactions, stirred tank reactors are preferred. These stirred tank reactors are equipped with an agitator and, if necessary, with a continuous educt addition device. The membrane modules are optionally immersed in a container in the reaction mixture comprising the reaction medium and the starting materials. If comparatively small modules are used, they are preferably immersed in the reaction mixture in a container. Good convection is necessary in these systems. Educts must always be supplied in sufficient quantities. The person skilled in the art recognizes that measures which lead to thorough mixing and good convection are suitable for the present invention.
Alternativ kann eine kontinuierliche Prozessführung verwendet werden. Eine kontinuierliche Prozessführung bringt den Vorteil, dass Edukte kontinuierlich zugeführt und Produkte kontinuierlich abgeführt werden können. So kann besonders gut, wie oben ausgeführt, ein Konzentrationsgradient zwischen den ersten und den zweiten Zwischenbereichen des Membranmoduls aufrechterhalten werden.Alternatively, continuous process control can be used. Continuous process control has the advantage that educts can be fed continuously and products can be discharged continuously. In this way, a concentration gradient between the first and the second intermediate regions of the membrane module can be maintained particularly well, as stated above.
Vorzugsweise kann der Eduktstrom im Kreislauf geführt werden, wobei geeignete Meß- und Regelvorrichtungen vorgesehen werden um z.B. Temperatur, pH- Wert, Nährstoff- oder Eduktkonzentration zu steuern. Produkte können aus dem Kreislaufstrom kontinuierlich oder diskontinuierlich entnommen werden.The educt stream can preferably be circulated, suitable measuring and control devices being provided, for example for temperature, pH value, To control nutrient or educt concentration. Products can be withdrawn from the cycle stream continuously or discontinuously.
In bestimmten Ausführungsformen können die erfindungsgemäßen Membranmodule in Bioreaktoren auch zur Aufbereitung, Auftrennung oder Reinigung von Produktströmen verwendet werden. Beispielsweise lassen sich Proteinbeschichtungen auf dem Membranmodul zur selektiven Entfernung von Antikörpern und dergleichen verwenden, mit Mikroorganismen beladene poröse Körper können zur Reinigung von Abfallströmen verwendet werden, etc.In certain embodiments, the membrane modules according to the invention can also be used in bioreactors for the preparation, separation or purification of product streams. For example, protein coatings on the membrane module can be used for the selective removal of antibodies and the like, porous bodies loaded with microorganisms can be used for cleaning waste streams, etc.
Darüber hinaus eignen sich die erfindungsgemäßen Membranmodule besonders für die Verwendung in Bioreaktoren, für Membranseparationsverfahren, Virentrennung oder in Online-Reaktorsystemen zur Produktion von Wirkstoffen, insbesondere pharmazeutischen Wirkstoffen oder Vakzinen, durch Besiedlung der Membranmodule mit geeigneten Wirkstoffproduzierenden Mikroorganismen, Zellen oder Geweben.In addition, the membrane modules according to the invention are particularly suitable for use in bioreactors, for membrane separation processes, virus separation or in online reactor systems for the production of active substances, in particular pharmaceutical active substances or vaccines, by colonizing the membrane modules with suitable active substance-producing microorganisms, cells or tissues.
Die Kreuzstromanordnung der erfindungsgemäßen Module ermöglicht hierbei beispielsweise eine besonders einfache Versorgung der Organismen mit Nährstoffen durch die Strömungskanäle. Auch die Abführung von Produkten durch die Membran oder die Strömungskanäle kann bei geeigneter Stoffkreislaufführung auf einfache Weise erfolgen, ggf. auch getrennt von den Nährmedien. Die Verwendung der erfindungsgemäßen Membranmodule als Substrat bzw. Träger für die Besiedlung mit Mikroorganismen und Zellkulturen ist daher besonders bevorzugt.The cross-flow arrangement of the modules according to the invention enables, for example, a particularly simple supply of the organisms with nutrients through the flow channels. The discharge of products through the membrane or the flow channels can also be carried out in a simple manner with suitable material cycle management, if necessary also separately from the nutrient media. The use of the membrane modules according to the invention as a substrate or carrier for colonization with microorganisms and cell cultures is therefore particularly preferred.
Insbesondere bevorzugt ist die Verwendung der erfindungsgemäß hergestellten Membranmodule auch als Träger- und oder Aufzuchtsysteme (TAS) für die Kultivierung primärer Zellkulturen wie eukaryote Gewebe, z.B. Knochen, Knorpel, Leber, Nieren, sowie zur Kultivierung bzw. Immobilisierung von xenogenen, allogenen, syngenen oder autologen Zellen und Zelltypen, sowie gegebenenfalls auch von genetisch modifizierte Zelllinien.Particularly preferred is the use of the membrane modules produced according to the invention as carrier and / or rearing systems (TAS) for the cultivation of primary cell cultures such as eukaryotic tissue, for example bones, cartilage, Liver, kidneys, as well as for the cultivation or immobilization of xenogeneic, allogeneic, syngeneic or autologous cells and cell types, and possibly also of genetically modified cell lines.
Die erfindungsgemäßen Membranmodule können speziell auch als Träger- und Aufzuchtsysteme für Nervengewebe verwendet werden. Besonders vorteilhaft ist, dass die Module hier insbesondere durch die geeignete Auswahl der Materialien und Herstellungsverfahren hierfür besonders anpassbar und geeignet sind. Beispielsweise ermöglicht die Verwendung kohlenstoffbasierter Membranmodule eine einfache Einstellung der Leitfähigkeit der Module selbst und die Applikation von Impulsströmen zur Kultivierung von Nervengewebe.The membrane modules according to the invention can also be used especially as support and rearing systems for nerve tissue. It is particularly advantageous that the modules are particularly adaptable and suitable for this, in particular through the suitable selection of the materials and manufacturing processes. For example, the use of carbon-based membrane modules enables simple adjustment of the conductivity of the modules themselves and the application of pulse currents for the cultivation of nerve tissue.
Die erfindungsgemäßen Membranmodule können bei Verwendung als TAS durch geeignete Einstellung der Porosität, durch das Flow-Channel-Design und die dreidimensionale Formgebung das Mikroorganismen- Zeil-, Gewebe- bzw. Organwachstum besonders nützlich sein, insbesondere auch durch einstellbare Bereitstellung, Verteilung und Nachschub von Nährlösung bzw. -medium am Verbrauchsort, sowie durch Unterstützung bzw. Förderung der Zeil- und Gewebsproliferation und -Differenzierung.When used as a TAS, the membrane modules according to the invention can be particularly useful for the microorganism, cell, tissue or organ growth, in particular also by means of adjustable provision, distribution and replenishment, by suitable adjustment of the porosity, by the flow channel design and the three-dimensional shaping Nutrient solution or medium at the place of consumption, as well as by supporting or promoting cell and tissue proliferation and differentiation.
Erfindungsgemäß können die Membranmodule als TAS zur Kultivierung in existierenden Bioreaktorsystemen verwendet werden, z. B. passive Systeme ohne kontinuierliche Regeltechnik, aber auch aktive Systeme mit Gaszufuhr, Nährstoffzuführ, Produktabführung und automatischer Einstellung von Parametern (Azidität, Temperatur, Nährstoffgehalt), also im weitesten Sinne Reaktorsysteme mit Mess- und Regeltechnik.According to the invention, the membrane modules can be used as TAS for cultivation in existing bioreactor systems, e.g. B. passive systems without continuous control technology, but also active systems with gas supply, nutrient supply, product discharge and automatic setting of parameters (acidity, temperature, nutrient content), i.e. in the broadest sense reactor systems with measurement and control technology.
Femer können die erfindungsgemäßen Module als TAS durch Vorsehung geeigneter Vorrichtungen wie z.B. Anschlüsse für die Perfusion mit Nährlösungen und den Gasaustausch als Reaktorsystem betrieben werden, insbesondere auch modular in entsprechenden Reihenreaktorsystemen und Gewebekulturen.Furthermore, the modules according to the invention can be used as TAS by providing suitable devices such as connections for perfusion with nutrient solutions and the Gas exchange can be operated as a reactor system, in particular also modularly in corresponding row reactor systems and tissue cultures.
Erfindungsgemäße Membranmodule können darüber hinaus in oder als ex vivo Reaktorsysteme, z.B. extrakorporale Assistenzsysteme, oder als Organreaktoren verwendet werden, z.B. sogenannten liver assist Systems oder liver replacement Systems; oder auch in vivo oder in vitro für verkapselte (engl. encapsulated) Inselzellen, z. B. als künstl. Pankreas, verkapselte Urothelzellen, z.B. als künstl. Niere und dergleichen, die vorzugsweise implantierbar sind.Membrane modules according to the invention can also be used in or as ex vivo reactor systems, e.g. extracorporeal assistance systems, or used as organ reactors, e.g. so-called liver assist systems or liver replacement systems; or also in vivo or in vitro for encapsulated islet cells, e.g. B. as an artificial Pancreas, encapsulated urothelial cells, e.g. as an artificial Kidney and the like, which are preferably implantable.
Gegebenenfalls können die erfindungsgemäßen Module femer durch Imprägnierung und/oder Adsorption von Wachstumsfaktoren, Cytokinen, Interferone und/oder Adhäsionsfaktoren modifiziert werden. Beispiele geeigneter Wachstumsfaktoren sind PDGF, EGF, TGF-α, FGF, NGF, Erythropoietin, TGF-ß, IGF-I und IGF-II. Geeignete Cytokine umfassen beispielsweise IL-l-α und -ß, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13. Geeignete Interferone umfassen z.B . INF-α und -ß, EMF-γ. Beispiele geeigneter Adhäsionsfaktoren sind Fibronectin, Laminin, Vitronectin, Fetuin, Poly-D-Lysin und dergleichen.Optionally, the modules according to the invention can also be modified by impregnation and / or adsorption of growth factors, cytokines, interferons and / or adhesion factors. Examples of suitable growth factors are PDGF, EGF, TGF-α, FGF, NGF, erythropoietin, TGF-ß, IGF-I and IGF-II. Suitable cytokines include, for example, IL-1-α and -ß, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL -11, IL-12, IL-13. Suitable interferons include e.g. INF-α and -ß, EMF-γ. Examples of suitable adhesion factors are fibronectin, laminin, vitronectin, fetuin, poly-D-lysine and the like.
Femer sind die erfindungsgemäßen Module, insbesondere bei Verwendung als TAS auch anwendbar als Microarray-Systeme für z.B. Drag Discovery, Tissue screening, Tissue engineering etc.Furthermore, the modules according to the invention, particularly when used as TAS, can also be used as microarray systems for e.g. Drag discovery, tissue screening, tissue engineering etc.
Die Membranmodule der vorliegenden Erfindung werden nun im Folgenden anhand von spezifischen bevorzugten Ausführungsformen beispielhaft näher erläutert.The membrane modules of the present invention will now be explained in more detail below using specific preferred embodiments.
Die Figur 1 zeigt eine perspektivische Ansicht eines Ausschnitts eines erfindungsgemäßen Membranmoduls mit senkrechter Kreuzstromanordnung. Die Figur 2 zeigt eine perspektivische Ansicht eines schematischen Membranmodulaufbaus unter Verwendung kreuzweise Rillengeprägter Membranplatten.FIG. 1 shows a perspective view of a section of a membrane module according to the invention with a vertical cross-flow arrangement. FIG. 2 shows a perspective view of a schematic membrane module structure using cross-grooved membrane plates.
Das Modul der Figur 1 besteht aus einer Vielzahl von Membranplatten 3, die beidseitig ein rillenförmiges Prägemuster aufweisen, welches bei aufeinandergelegten Platten in der frontalen Draufsicht zu einer Art Wabenstruktur der vorderen bezüglich der Membranplatten 3 kantenseitigen Außenfläche des Moduls führt. In dieser vorderen Außenfläche ergeben sich alternierend angeordnete Eintrittsöffhungen 5 in die ersten Zwischenbereiche und verschlosseneThe module of Figure 1 consists of a plurality of membrane plates 3, which have a groove-shaped embossed pattern on both sides, which leads to a kind of honeycomb structure of the front outer surface of the module on the edge with respect to the membrane plates 3 when the plates are placed one on top of the other. In this front outer surface there are alternately arranged inlet openings 5 into the first intermediate areas and closed ones
Kantenflächenanteile 4 (dunkel dargestellt), welche den randseitigen Abdichtungen der zweiten Zwischenbereiche entsprechen.Edge surface portions 4 (shown in dark), which correspond to the edge seals of the second intermediate areas.
Das Modul kann von einem ersten Fluidstrom in einer ersten Richtung x durch die ersten Zwischenbereiche durchströmt werden. Ein zweiter Fluidstrom kann in einer zweiten Richtung y, senkrecht zur ersten Richtung x, durch die zweiten Zwischenbereiche geleitet werden. Die randseitigen Abdichtungen 7 der Membranplatten an der Modulunterseite liegen im Wechsel mit den freien Öffnungen zum Eintritt in die zweiten, in y-Richtung durchgehenden Zwischenräume, zwischen den Membranplatten 3, welche die erstenA first fluid flow can flow through the module in a first direction x through the first intermediate regions. A second fluid flow can be conducted in a second direction y, perpendicular to the first direction x, through the second intermediate regions. The edge-side seals 7 of the membrane plates on the underside of the module alternate with the free openings for entry into the second, through-going spaces in the y-direction, between the membrane plates 3, which are the first
Zwischenbereiche begrenzen, die in x-Richtung durchströmt werden. Analog gewährleistet die optionale, versiegelte und geplante Dichtfläche 2 an der Oberseite eine Abdichtung der ersten Zwischenbereiche nach oben, sowie eine gleichzeitige Öffnung der zweiten Zwischenbereiche nach oben, im Sinne einer Abströmfläche 1 bezüglich der Durchströmung in y-Richtung, am Modul gegenüberliegend der Einströmfläche 8 in y-Richtung. Durch diagonal gegeneinander versetzte Rillenprägungen der Membranplatten 3 ergeben sich an den Kreuzstellen Berührungspunkte zuwischen jeweils zwei aufeinanderliegenden Membranplatten, die sogenannten Prägewinkelversatzstellen 6.Limit intermediate areas that are flowed through in the x direction. Analogously, the optional, sealed and planned sealing surface 2 on the upper side seals the first intermediate regions upwards and simultaneously opens the second intermediate regions upwards, in the sense of an outflow surface 1 with respect to the flow in the y direction, on the module opposite the inflow surface 8 in the y direction. Due to diagonally offset groove embossing of the membrane plates 3, there are points of contact between the two membrane plates lying on top of one another, the so-called embossing angle offset points 6.
Die Figur 2 zeigt ebenfalls einen Ausschnitt aus einem erfindungsgemäßen Membranmodul in schematisierter Form. Der Modulausschnitt besteht aus acht übereinander angeordneten Membranplatten 1, die mit einem diagonal verlaufenden regelmäßigen Muster aus halbkreisförmigen Vertiefungsrillen 2 versehen sind. Die Membranplatten 1 sind so übereinander angeordnet, dass die Rillenstrukturen zweier benachbarter Platten stets kreuzweise verlaufen, so dass sich eine Vielzahl von Berührungspunkten 3 zwischen den einzelnen Platten ergibt, an denen die Platten miteinander verbunden sind.FIG. 2 also shows a section of a membrane module according to the invention in a schematic form. The module section consists of eight membrane plates 1 arranged one above the other, which are provided with a diagonally running regular pattern of semicircular recess grooves 2. The membrane plates 1 are arranged one above the other in such a way that the groove structures of two adjacent plates always run crosswise, so that there are a large number of contact points 3 between the individual plates at which the plates are connected to one another.
Jeweils zwei benachbarte Membranplatten 1 sind kantenseitig 4, 5 alternierend an verschiedenen Außenseiten des Moduls miteinander fluiddicht verbunden. Hierdurch entstehen zwei in verschiedene Richtungen durchströmbare Zwischenbereiche 6,7, wobei in der Figur 2 beispielsweise die ersten Zwischenbereiche 6 von links vorne nach links hinten verlaufen, und die zweiten Zwischenbereiche 7 von rechts vome nach links hinten. In each case two adjacent membrane plates 1 are connected to one another in a fluid-tight manner on the edge side 4, 5 on alternate outer sides of the module. This creates two intermediate regions 6, 7 through which flow can occur in different directions, the first intermediate regions 6 in FIG. 2, for example, running from the left front to the left rear, and the second intermediate regions 7 from the right from the left to the rear.

Claims

Ansprüche Expectations
1. Membranmodul umfassend mindestens drei parallel zueinander angeordnete Membranplatten, von denen jede mindestens 4 Kanten aufweist, und jeweils zwei Kanten jeder Membranplatte paarweise zueinander beabstandet sind, und wobei eine erste Membranplatte mit einer benachbarten zweiten Membranplatte entlang jeweils zwei der paarweise beabstandeten Kanten im wesentlichen fluiddicht verbunden ist, so dass zwischen der einen ersten und der einen zweiten Membranplatte ein erster Zwischenbereich entsteht, der in einer ersten Richtung durchströmbar ist, und wobei die eine zweite Membranplatte mit einer dritten Membranplatte entlang der beiden anderen Kanten der zweiten Membranplatte im wesentlichen fluiddicht verbunden ist, so dass sich zwischen der einen zweiten und der einen dritten Membranplatte ein zweiter Zwischenbereich ergibt, der in einer zweiten Richtung durchströmbar ist, die einen Winkel mit der ersten Richtung bildet.1. Membrane module comprising at least three membrane plates arranged parallel to one another, each of which has at least 4 edges, and two edges of each membrane plate are spaced apart in pairs, and wherein a first membrane plate with an adjacent second membrane plate along two of the paired edges is substantially fluid-tight is connected, so that a first intermediate region is formed between the first and the second membrane plate, through which flow is possible in a first direction, and wherein the second membrane plate is connected to a third membrane plate along the other two edges of the second membrane plate in a substantially fluid-tight manner , so that there is a second intermediate area between the second and the third membrane plate, through which a second direction can flow, which forms an angle with the first direction.
2. Membranmodul nach Ansprach 1, umfassend eine Vielzahl von Membranplatten, wodurch eine Vielzahl von alternierenden ersten und zweiten Zwischenbereichen entsteht.2. Membrane module according spoke 1, comprising a plurality of membrane plates, whereby a plurality of alternating first and second intermediate areas is formed.
3. Membranmodul nach Ansprach 1 oder 2, umfassend zwei bezüglich der3. Membrane module according spoke 1 or 2, comprising two with respect to
Membranplatten kantenseitige erste Außenflächen, die beiderseits der offenen Enden der ersten Zwischenbereiche angeordnet sind, zwei weitere bezüglich der Membranplatten kantenseitige Außenflächen, die beiderseits der offenen Enden der zweiten Zwischenbereiche angeordnet sind, sowie zwei weitere Außenflächen, die jeweils der Außenfläche der beiderseits außenliegenden Membranplatten entsprechen. Membrane plates edge-side first outer surfaces, which are arranged on both sides of the open ends of the first intermediate regions, two further outer surfaces with respect to the membrane plates, which are arranged on both sides of the open ends of the second intermediate regions, and two further outer surfaces, each of which corresponds to the outer surface of the membrane plates lying on both sides.
4. Membranmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Membranplatten ein- oder beidseitig strukturiert sind.4. Membrane module according to one of the preceding claims, characterized in that the membrane plates are structured on one or both sides.
5. Membranmodul nach Anspruch 4, dadurch gekennzeichnet, dass die Strakturierang in Form eines geprägten Rillenmusters mit im Wesentlichen äquidistant zueinander angeordneten Rillen vorliegt.5. Membrane module according to claim 4, characterized in that the Strakturierang is in the form of an embossed groove pattern with substantially equidistant grooves.
6. Membranmodul nach Ansprach 5, dadurch gekennzeichnet, dass die Rillenmuster zweier benachbarter Membranplatten parallel zueinander verlaufen.6. membrane module according spoke 5, characterized in that the groove pattern of two adjacent membrane plates run parallel to each other.
7. Membranmodul nach Ansprach 5, dadurch gekennzeichnet, dass sich die Rillenmuster zweier benachbarter Membranplatten in einem Winkel kreuzen, so dass sich eine Vielzahl von Berührungspunkten zwischen den benachbarten Platten an den Stellen sich kreuzender erhabener Ränder der Rillenstrakturen benachbarter Platten ergibt.7. membrane module according spoke 5, characterized in that the groove pattern of two adjacent membrane plates intersect at an angle, so that there are a plurality of points of contact between the adjacent plates at the points of intersecting raised edges of the groove structures of adjacent plates.
8. Membranmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen den Membranplatten zusätzlich Abstandselemente vorgesehen sind.8. Membrane module according to one of the preceding claims, characterized in that additional spacing elements are provided between the membrane plates.
9. Membranmodul nach Ansprach 8, dadurch gekennzeichnet, dass die Abstandselemente ausgewählt sind aus porösen, offenporigen Flächengebilden bzw. Zwischenlagen, Netzstrukturen, sowie kantenseitig angeordneten linearen Spacem. 9. Membrane module according to spoke 8, characterized in that the spacer elements are selected from porous, open-pore planar structures or intermediate layers, network structures, and linear spacers arranged on the edge side.
10. Membranmodul nach Ansprach 8, dadurch gekennzeichnet, dass die Abstandselemente durch alternierend unterschiedlich tiefe Rillenprägungen auf den Membranplatten gebildet werden.10. Membrane module according spoke 8, characterized in that the spacer elements are formed by alternately different depth embossments on the membrane plates.
11. Membranmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Winkel zwischen der ersten und zweiten Richtung, in welcher die ersten und zweiten Zwischenbereiche durchströmbar sind, zwischen 1° und 90° liegt, und vorzugsweise mehr als 5 °, bevorzugt mehr als 10°, besonders bevorzugt mehr als 30° und insbesondere bevorzugt von 45° bis 90° beträgt, und besonders bevorzugt bei etwa 90° liegt.11. Membrane module according to one of the preceding claims, characterized in that the angle between the first and second direction, in which the first and second intermediate areas can be flowed through, is between 1 ° and 90 °, and preferably more than 5 °, preferably more than 10 °, particularly preferably more than 30 ° and particularly preferably from 45 ° to 90 °, and particularly preferably at approximately 90 °.
12. Membranmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Membranplatten aus Polycarbonat, Polysulfon, Polytetrafluorethylen (PTFE), Polyacrylnitril-Copolymer, Cellulose, Celluloseacetat, Cellulosebutyrat, Cellulosenitrat, Viskose, Polyetherimid, Polyoktylmethylsilan, Polyvinylidenchlorid, Polyamid, Polyhamstoff, Polyfuran, Polyethylen, Polypropylen, und oder Copolymerisate davon, sowie Mixed-Matrix-Systemen die neben der Polymerkomponente auch anorganische Komponenten wie Aktivkohle, Kohlenstoffmolekularsieb oder Zeolithe enthalten, aufgebaut sind.12. Membrane module according to one of the preceding claims, characterized in that the membrane plates made of polycarbonate, polysulfone, polytetrafluoroethylene (PTFE), polyacrylonitrile copolymer, cellulose, cellulose acetate, cellulose butyrate, cellulose nitrate, viscose, polyetherimide, polyoctylmethylsilane, polyvinylidene chloride, polyfuran, polyurea , Polyethylene, polypropylene, and or copolymers thereof, and mixed matrix systems which, in addition to the polymer component, also contain inorganic components such as activated carbon, carbon molecular sieve or zeolites.
13. Membranmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Membranplatten aus Kohlenstoff, Kohlenstoff- Komposit, oder einem Kohlenstoff-basierten Material, insbesondere eines durch Pyrolyse aus kohlenstoffhaltigen Ausgangsstoffen, insbesondere Papier, Pappe oder Polymerfilm hergestellten Kohlenstoff-Kompositmaterials bestehen. 13. Membrane module according to one of the preceding claims, characterized in that the membrane plates consist of carbon, carbon composite, or a carbon-based material, in particular a carbon composite material produced by pyrolysis from carbon-containing starting materials, in particular paper, cardboard or polymer film.
14. Membranmodul nach einem der vorhergehenden Ansprüche, herstellbar durch Pyrolyse unter Inertgas und bei erhöhter Temperatur eines aus kohlenstoffhaltigen Ausgangsstoffen vorgefertigten und gemäß Ansprach 1 aufgebauten Moduls.14. Membrane module according to one of the preceding claims, producible by pyrolysis under inert gas and at an elevated temperature of a module prefabricated from carbon-containing starting materials and constructed according to spoke 1.
15. Membranmodul nach Ansprach 14, dadurch gekennzeichnet, dass die fluiddichten Kantenverbindungen durch Verklebung der Kanten der Platten vor der Pyrolyse mittels Klebstoffen, Glas, ggf. gefüllten Epoxidharzen, Lacken und/oder Polymermaterialien gewährleistet werden.15. Membrane module according spoke 14, characterized in that the fluid-tight edge connections are ensured by gluing the edges of the plates before pyrolysis by means of adhesives, glass, possibly filled epoxy resins, lacquers and / or polymer materials.
16. Verwendung des Membranmoduls nach einem der Ansprüche 1 bis 15, zur Fluidtrennung, insbesondere für die Dampfpermeation, Pervaporation, Entfeuchtung und oder Entkeimung von Luft und Gasen, für die Zu- oder Abluftfiltration, zur Gewinnung von Wasserstoff oder Methan aus Industriegasen, zur Abreicherung von CO2 aus Luft oder Abgasen, zur Befeuchtung oder16. Use of the membrane module according to one of claims 1 to 15, for fluid separation, in particular for vapor permeation, pervaporation, dehumidification and or disinfection of air and gases, for supply or exhaust air filtration, for the production of hydrogen or methane from industrial gases, for depletion of CO 2 from air or exhaust gases, for humidification or
Entfeuchtung von Gasen, zur Abreicherung von Lösungsmitteldämpfen aus Abluft, der Abtrennung von CO2 aus Erdgas, der Abtrennung von Methan und/oder Kohlendioxid von Wasserstoff, zur Trennung von Sauerstoff und Stickstoff und/oder für die Abtrennung oder Anreicherung von Sauerstoff aus Sauerstoff-Stickstoff- Gemischen, insbesondere in Gegenwart von Luftfeuchtigkeit, sowie für die An- oder Abreicherung von Wasserstoff aus wasserstoffhaltigen Kohlenwasserstoff- Gemischen.Dehumidification of gases, for the depletion of solvent vapors from exhaust air, the separation of CO 2 from natural gas, the separation of methane and / or carbon dioxide from hydrogen, for the separation of oxygen and nitrogen and / or for the separation or enrichment of oxygen from oxygen-nitrogen - Mixtures, especially in the presence of atmospheric moisture, and for the enrichment or depletion of hydrogen from hydrocarbon mixtures containing hydrogen.
17. Verwendung des Membranmoduls nach einem der Ansprüche 1 bis 15, als Trägermaterial zur Immobilisierang von katalytischen Einheiten zur Anwendung in chemischen, biologischen und/oder biotechnologischen Stoffproduktionsverfahren. 17. Use of the membrane module according to one of claims 1 to 15, as a carrier material for immobilization of catalytic units for use in chemical, biological and / or biotechnological substance production processes.
18. Verwendung des Membranmoduls nach einem der Ansprüche 1 bis 15, in Reaktorsystemen zur Produktion von pharmazeutischen Wirkstoffen, Vakzinen, oder zur Aufzucht von Gewebekulturen. 18. Use of the membrane module according to one of claims 1 to 15, in reactor systems for the production of active pharmaceutical ingredients, vaccines, or for the cultivation of tissue cultures.
PCT/EP2004/002844 2003-03-18 2004-03-18 Membrane plate module WO2004082810A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10311950A DE10311950A1 (en) 2003-03-18 2003-03-18 Membrane module, useful for fluid separation, vapor permeation or pervaporation, comprises at least three parallel membrane plates each having at least four corners connected in pairs
DE10311950.7 2003-03-18
DE10335130A DE10335130A1 (en) 2003-07-31 2003-07-31 Membrane module, useful for fluid separation, vapor permeation or pervaporation, comprises at least three parallel membrane plates each having at least four corners connected in pairs
DE10335130.2 2003-07-31

Publications (1)

Publication Number Publication Date
WO2004082810A1 true WO2004082810A1 (en) 2004-09-30

Family

ID=33030903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/002844 WO2004082810A1 (en) 2003-03-18 2004-03-18 Membrane plate module

Country Status (1)

Country Link
WO (1) WO2004082810A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1954382A1 (en) * 2005-11-30 2008-08-13 3M Innovative Properties Company Cross-flow membrane module
CN100462131C (en) * 2004-10-26 2009-02-18 贡有成 Folding tubular membrane filter
CN112848616A (en) * 2019-11-28 2021-05-28 安世亚太科技股份有限公司 Micro-nano grade engineering stereo structure material and manufacturing method thereof
EP4223395A1 (en) * 2022-02-07 2023-08-09 Mann+Hummel Life Sciences & Environment Holding Singapore Pte. Ltd. Filter module, membrane bioreactor and use of the filter module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB479840A (en) * 1935-07-10 1938-02-10 Hans Behringer Improvements in or relating to heat exchange devices for fluids of the kind comprising a pile of superposed spaced partitions between which the fluids to be subjected tointerchange are caused to flow
EP0345393A1 (en) * 1986-06-09 1989-12-13 Arco Chemical Technology, Inc. Ceramic membrane and use thereof for hydrocarbon conversion
US5356728A (en) * 1993-04-16 1994-10-18 Amoco Corporation Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions
WO2001080981A1 (en) * 2000-04-20 2001-11-01 Membrana Mundi Gmbh Separation of fluid mixtures using membranized sorption bodies
DE10051910A1 (en) * 2000-10-19 2002-05-02 Membrana Mundi Gmbh Flexible, porous membranes and adsorbents, and processes for their manufacture
US20020104439A1 (en) * 2000-11-13 2002-08-08 Elena N. Komkova Gas separation device
US20030035901A1 (en) * 2001-08-17 2003-02-20 Eiji Tani Silicon carbide-based, porous, lightweight, heat-resistant structural material and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB479840A (en) * 1935-07-10 1938-02-10 Hans Behringer Improvements in or relating to heat exchange devices for fluids of the kind comprising a pile of superposed spaced partitions between which the fluids to be subjected tointerchange are caused to flow
EP0345393A1 (en) * 1986-06-09 1989-12-13 Arco Chemical Technology, Inc. Ceramic membrane and use thereof for hydrocarbon conversion
US5356728A (en) * 1993-04-16 1994-10-18 Amoco Corporation Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions
WO2001080981A1 (en) * 2000-04-20 2001-11-01 Membrana Mundi Gmbh Separation of fluid mixtures using membranized sorption bodies
DE10051910A1 (en) * 2000-10-19 2002-05-02 Membrana Mundi Gmbh Flexible, porous membranes and adsorbents, and processes for their manufacture
US20020104439A1 (en) * 2000-11-13 2002-08-08 Elena N. Komkova Gas separation device
US20030035901A1 (en) * 2001-08-17 2003-02-20 Eiji Tani Silicon carbide-based, porous, lightweight, heat-resistant structural material and manufacturing method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100462131C (en) * 2004-10-26 2009-02-18 贡有成 Folding tubular membrane filter
EP1954382A1 (en) * 2005-11-30 2008-08-13 3M Innovative Properties Company Cross-flow membrane module
EP1954382A4 (en) * 2005-11-30 2010-05-05 3M Innovative Properties Co Cross-flow membrane module
US7794593B2 (en) 2005-11-30 2010-09-14 3M Innovative Properties Company Cross-flow membrane module
KR101279284B1 (en) 2005-11-30 2013-06-26 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Cross-flow membrane module
CN112848616A (en) * 2019-11-28 2021-05-28 安世亚太科技股份有限公司 Micro-nano grade engineering stereo structure material and manufacturing method thereof
EP4223395A1 (en) * 2022-02-07 2023-08-09 Mann+Hummel Life Sciences & Environment Holding Singapore Pte. Ltd. Filter module, membrane bioreactor and use of the filter module
WO2023148690A1 (en) * 2022-02-07 2023-08-10 Mann+Hummel Life Sciences & Environment Holding Singapore Pte. Ltd. Filter module, membrane bioreactor and use of the filter module

Similar Documents

Publication Publication Date Title
EP2326364B1 (en) Gas transfer device
DE10335130A1 (en) Membrane module, useful for fluid separation, vapor permeation or pervaporation, comprises at least three parallel membrane plates each having at least four corners connected in pairs
DE3409501A1 (en) METHOD FOR CULTIVATING CELLS
DE10393754B4 (en) Hollow fiber cassette and modular cassette system
EP2396052B1 (en) Device for the treatment of a biological fluid
DE69608437T2 (en) BIOREACTOR
DE60026299T2 (en) DEVICE FOR BREEDING CELL CULTURES
EP1718409B1 (en) Device for microfluidic analyses
AT407047B (en) CELL CULTURE DEVICE
DE102008019691A1 (en) Semi-active microfluidic system for 3D cell culture as well as procedures for its perfusion
EP2024744A1 (en) Microtiter plate and use thereof
DE69022778T2 (en) Cell culture substrate, bioreactor with cell culture substrate and therapeutic device of the extracorporeal circulation type.
WO2004082810A1 (en) Membrane plate module
EP1297106B1 (en) Reactor module with capillary membranes
EP1226227B1 (en) Method for cultivating cells, a membrane module, utilization of a membrane module and reaction system for cultivation of said cells
EP1472336B1 (en) Method and device for cultivating cells in high densities and for obtaining products from said cells
EP1673443A1 (en) Cell cultivation and breeding method
EP1358926B1 (en) Devices for gas exchange and the separation of biological materials or the separation of mixtures and the use of nanocomposites
EP3705562A1 (en) Cell culture carrier for bioreactors
DE102022123877B4 (en) Basic body of a multi-chamber biochip, production of the multi-chamber biochip and its use for the establishment of organ and disease models and substance testing
DE19919241A1 (en) Porous cell carrier system for preparing 3-D implants or explants and for cultivating connective tissue, comprises segments connected with a channel system
EP1648591A1 (en) Support for immobilising catalytically active units
DE102008047902A1 (en) Kit for constructing reactor, comprises stackable elements, which are designed, so that they liquid-tightly release against each other finally to the reactor with integrated channels, reactor chamber with adaptable volumes and access links

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)