WO2004082060A1 - High current capacity battery - Google Patents

High current capacity battery Download PDF

Info

Publication number
WO2004082060A1
WO2004082060A1 PCT/JP2003/011154 JP0311154W WO2004082060A1 WO 2004082060 A1 WO2004082060 A1 WO 2004082060A1 JP 0311154 W JP0311154 W JP 0311154W WO 2004082060 A1 WO2004082060 A1 WO 2004082060A1
Authority
WO
WIPO (PCT)
Prior art keywords
air battery
active material
current capacity
electrode active
high current
Prior art date
Application number
PCT/JP2003/011154
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiko Hirata
Kazumi Fujiwara
Original Assignee
Apex Energy Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apex Energy Inc. filed Critical Apex Energy Inc.
Priority to JP2004569368A priority Critical patent/JP4575783B2/en
Priority to AU2003261869A priority patent/AU2003261869A1/en
Publication of WO2004082060A1 publication Critical patent/WO2004082060A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a battery having a high current capacity, that is, a battery having a long duration (discharge time). More specifically, the present invention relates to the electrolyte water and the positive electrode active material required for an electrochemical oxidation-reduction reaction. It is related to batteries that supplement oxygen and air from the air to sustain its redox reaction. Kyokyo technology
  • the principle of the battery is that a reducing agent and an oxidizing agent are reacted via an ionic conductor, and the free energy released during this oxidation-reduction reaction is directly converted into electric energy using two electrodes. Utilize the electromotive force.
  • a primary battery is a battery in which the oxidation-reduction reaction for extracting electrical energy proceeds in only one direction and cannot be charged.
  • primary batteries are disposable batteries, unlike secondary batteries.
  • Manganese batteries as an example of a primary battery generally comprises manganese dioxide as a positive electrode active material (Mn_ ⁇ 2), and zinc as a negative electrode active material (Zn).
  • the manganese dry cell also has a solid electrolyte of ammonium chloride (NH 4 C 1) solution as the electrolyte.
  • NH 4 C 1 ammonium chloride
  • Manganese batteries are widely used because they are inexpensive. However, manganese dry batteries cannot be easily disposed of because manganese dioxide is used as the positive electrode active material.
  • Aluminum batteries as examples of primary batteries generally include manganese dioxide as a positive electrode active material and an aluminum alloy as a negative electrode active material (eg, aluminum Chromium alloy) and an aqueous solution of aluminum chloride as an electrolyte.
  • the main oxidation-reduction reaction of an aluminum battery is expressed by the following equation.
  • Aluminum batteries that use an aluminum alloy instead of zinc as the negative electrode active material have a higher current capacity (higher wattage per unit weight) than manganese dry batteries. The reason is that the discharge characteristics of aluminum are higher than those of zinc.
  • zinc dissolves in the electrolyte on the negative electrode side, and as a result, 4 e- electrons are generated, while in the reaction of equation (2), aluminum dissolves on the negative electrode side in the electrolyte. Because, as a result, three times as many electrons as 1 2 e are generated.
  • the electrolyte (aluminum chloride aqueous solution) of the aluminum battery corrodes the negative electrode active material or the negative electrode (aluminum alloy), and hydrogen is generated on the negative electrode side along with the reaction of equation (2). This can cause the battery to swell and, in the worst case, cause the battery to burst.
  • the negative electrode active material of the aluminum battery is not an aluminum simple substance but an aluminum alloy.
  • the generation of hydrogen cannot be avoided to the extent that it can be marketed.
  • Japanese Patent Application Laid-Open No. H06-18979 discloses an aluminum battery in which a stabilizer such as an alkyl group is added to a negative electrode active material. .
  • a stabilizer such as an alkyl group
  • An air battery that uses oxygen (O 2 ) in the air instead of an oxidizing agent such as manganese dioxide as the positive electrode active material has a higher current capacity than a primary battery. The reason is that oxygen in the air as a positive electrode active material is not consumed.
  • the air battery further includes a metal (for example, zinc, aluminum, or the like) as a negative electrode active material, and an electrolytic solution (for example, an aqueous solution of potassium hydroxide, an aqueous solution of aluminum hydroxide, or the like) as an electrolyte.
  • oxygen in the air is reduced as expressed by the following equation. 0 2 + 2 H 2 0 + 4 e
  • an air battery requires water used for the oxidation-reduction reaction, and the water is supplied from the water in the electrolyte.
  • Such water consumption depends on the type and amount of the metal as the negative electrode active material.
  • the amount of such water supply depends on the type and amount of the electrolyte.
  • Air batteries are generally expected to improve discharge efficiency by promoting the oxygen reduction reaction.
  • An air battery is a battery in which the oxidation-reduction reaction for extracting electric energy proceeds in only one direction, and is essentially a primary battery.
  • a fuel cell using hydrogen (H 2 ) instead of a metal such as zinc or aluminum as the negative electrode active material has a higher current capacity than a primary battery or an air battery. The reason is that hydrogen as a negative electrode active material is not consumed.
  • the main oxidation-reduction reaction of a fuel cell is expressed by the following equation, and water is generated from hydrogen and oxygen.
  • Fuel cells are generally expected to improve discharge efficiency by promoting the oxygen reduction reaction and / or the hydrogen oxidation reaction. Disclosure of the invention
  • an object of the present invention is to solve the problem of dry-up in an air battery and to make the performance of the battery sufficiently function.
  • Another object of the present invention is to improve the safety of a battery by dealing with hydrogen generated on the negative electrode side of a primary battery or an air battery.
  • a further object of the present invention is to provide a commercially available air battery that uses aluminum or an aluminum alloy as the negative electrode active material by addressing the hydrogen generated on the negative electrode side.
  • the high current capacity air battery of the present invention has an air storage structure (4) for holding and passing oxygen, which is a positive electrode active material, and has a performance of inhaling moisture in the air.
  • At least one (4, 5) of the electrolytes (5) is provided.
  • the air containment structure (4) includes a plurality of granular porous ceramics (41) containing carbon as a main component.
  • the plurality of porous ceramics (41) are in contact with each other, and the air containment structure (4) contains oxygen, which is a positive electrode active material, in gaps (42) between the plurality of porous ceramics (41).
  • the electrolyte (5) includes at least one of aluminum chloride and calcium chloride.
  • the negative electrode active material (2) is aluminum or an aluminum alloy.
  • the gas storage structure for a battery according to the present invention includes a plurality of granular porous ceramics containing carbon as a main component for storing at least one of hydrogen and oxygen.
  • the electrolyte solution (5) for an air battery according to the present invention includes at least one of aluminum chloride and calcium chloride.
  • FIG. 1 is a perspective view showing the appearance of the air battery of the present invention.
  • FIG. 2 is a cross-sectional view of the air battery shown in FIG.
  • FIG. 3 is a detailed view of the air containment structure 4 shown in FIG.
  • FIG. 4 is a schematic cross-sectional view of an air battery of the present invention including a partition and a gas permeable membrane.
  • FIG. 5 is a schematic cross-sectional view of an air battery of the present invention including a semipermeable membrane as a separator.
  • FIG. 6 is a schematic sectional view of a primary battery of the present invention having a gas storage structure.
  • FIG. 7 is a schematic perspective view of a fuel cell of the present invention having a gas storage structure.
  • the air battery 1 of the present invention generally includes an air storage structure 4 for holding and passing oxygen as a positive electrode active material, a negative electrode active material (negative electrode) 2, and an electrolyte 5.
  • the air battery 1 further includes a collecting electrode (positive electrode) 8, a separator 3, a negative electrode terminal 6, a positive electrode terminal 7, and a container 10.
  • the negative electrode active material As the negative electrode active material (negative electrode) 2, metals, alloys, and other similar materials (for example, zinc, magnesium, lithium, and aluminum) can be used.
  • the negative electrode active material 2 is aluminum or an aluminum alloy having high discharge characteristics (for example, an alloy mainly composed of aluminum such as duralumin or an alloy of aluminum and iron).
  • the periphery of the negative electrode active material 2 is covered with a separator 3 to prevent direct contact with oxygen (positive electrode active material) in the air storage structure 4.
  • a hydrophilic or water-resistant separator eg, viscose, chemical fiber, foamed polymer, etc.
  • Separation area 3 shown in Fig. 2 is hydrophilic
  • the electrolyte 5 described below is retained inside the separator 3.
  • Separee 3 shown in FIG. 5 has water resistance and functions as a container for the electrolyte 5.
  • the air cell 1 that uses a hydrophilic separator as shown in Fig. 2 has a higher electrolyte retention property, and therefore has a longer duration than the air cell 1 that uses a water-resistant separator as shown in Fig. 5.
  • a small current can be passed over the entire area.
  • the air battery 1 employing a water-resistant separator as shown in FIG. 5 can pass a larger current than the air battery 1 employing a hydrophilic separator as shown in FIG.
  • the hydrophilic separator 3 shown in FIG. 2 for example, viscose, hydrophilic foamed polymer, or the like can be used.
  • the hydrophilic separator 3 is highly hygroscopic in order to bring the electrolyte 5 into uniform contact with the negative electrode active material 2.
  • the hydrophilic separator 3 prevents direct contact between the negative electrode active material 2 and oxygen (positive electrode active material) in the air storage structure 4 and also allows the electrolyte 5 to efficiently contact the negative electrode active material 2 with a separator. 3 requires a thickness, and the separator 3 works as long as it is 1 m or more. However, since the electrical resistance increases when the separator 3 is too thick, the thickness of the separator 3 is preferably 1 mm to 10 mm.
  • the area around Separe Night 3 is in contact with the air in the air containment structure 4 and the air in the container 10.
  • the water-resistant separator 3 shown in FIG. 5 for example, a chemical fiber, a water-resistant foamed polymer, or the like can be used.
  • the water-resistant separator 3 has a high ionic conductivity in order to promote a redox reaction.
  • the water-resistant separator 3 prevents separation of the negative electrode active material 2 from oxygen (positive electrode active material) in the air storage structure 4 directly, and separates the electrolyte 5 from the negative electrode active material 2.
  • 3 functions as a container for electrolyte 5.
  • the thickness of the separator 3 is preferably from 0.01 mm to 10 mm, since the electrical resistance increases when the separator 3 is too thick.
  • the area around Separee 3 is in contact with the air in the air containment structure 4 and the air in the container 10.
  • the air storage structure 4 holds and passes oxygen, which is a positive electrode active material.
  • the element 41 of the air containment structure 4 shown in FIG. 3 is, for example, a granular porous ceramic mainly composed of carbon.
  • element 41 is a spherical porous ceramic.
  • Methods for producing spherical porous ceramics include: a) for example, at least one of ground cuticle, ground coal, and tar refined from petroleum. And zinc chloride or copper sulfate are mixed and kneaded.b) The kneaded product is molded into, for example, a 0.5 mm particle size.c) The molded product is carbonized in an oxygen-free state. ) The carbonized material is activated by steam.
  • the activated spherical porous ceramic is, for example, $ 700 OH-3J available from Nippon Environmental Chemicals Co., Ltd.
  • the diameter of the spherical porous ceramic is approximately between 0.5 mm and 1.2 mm.
  • the porous ceramic is preferably as low in ash content as possible. This is because ash is a component of internal resistance. Although the internal resistance due to the presence of a large amount of ash deteriorates the discharge characteristics of the negative electrode active material, the ash content of a generally available porous ceramic is about 4% by weight. No deterioration is noticeable. Therefore, preferably, the ash content of the porous ceramic is not more than 4% by weight.
  • the specific surface area of the porous ceramic is preferably 1000 m 2 / g or more, more preferably 2000 m 2 Zg or more.
  • the hydrophilic separator 3 can continue to function. Since the powdery porous ceramic does not enter into the water-resistant separator 3, the activated granular (preferably spherical) porous ceramic does not need to be washed.
  • the elements 41 (granular (preferably spherical) porous ceramics) produced in this manner are brought into contact with each other, and oxygen 42, which is a positive electrode active material, is contained in the gaps between the elements 41.
  • the air containment structure 4 as shown is obtained.
  • the spherical elements 41 are arranged in a container 10 in a hexagonal close-packed structure.
  • the air storage structure 4 retains oxygen 42 in the air, and the oxygen 42 as the positive electrode active material passes through the air storage structure 4.
  • Such an air storage structure 4 makes it possible to promote the chemical reaction (reduction reaction of oxygen) of the air battery, thereby improving the discharge efficiency.
  • the air storage structure 4 in contact with the periphery of the separator 3 has a thickness of 1 mm or more based on the surface of the negative electrode active material 2-.
  • the oxygen contained in the air storage structure 4 is-. Function as In other words, the positive electrode active material is substantially consumed unless oxygen as the positive electrode active material is supplied to the positive electrode to some extent. Conversely, when oxygen as the positive electrode active material is continuously supplied to the positive electrode side, oxygen as the positive electrode active material is continuously reduced at the positive electrode side, and the positive electrode active material is not consumed. It was experimentally confirmed that the positive electrode active material continuously reacted when the thickness of the air containment structure 4 (element 41) was 10 mm or more with respect to the surface of the negative electrode active material 2.
  • the air containment structure 4 f) after drying the element 41 (porous ceramic), g) placing the element 41 in, for example, a 4% aqueous sodium chloride solution, or An aqueous solution of sodium chloride is impregnated into the element 41, thereby increasing the contact area between the elements 41.
  • This makes it easier for the electrons discharged from the negative electrode active material 2 to pass through the air storage structure 4 and lowers the internal resistance. Therefore, a high current capacity can be obtained.
  • the collector electrode (positive electrode) 8 is provided so as to be in contact with the positive electrode active material (air storage structure 4), so that current can be extracted from the collector electrode 8.
  • the container 10 houses the negative electrode active material 2, the separator 3, the air storage structure 4 (oxygen as the positive electrode active material), the electrolyte 5, and the collector 8.
  • Negative electrode terminal 6 and positive electrode terminal 7 are electrically connected to negative electrode active material 2 and collector electrode 8, respectively.
  • the negative electrode terminal 6 and the positive electrode terminal 7 are provided through the container 10. Since the gap between at least one of the negative electrode terminal 6 and the positive electrode terminal 7 and the container 10 is not closed, oxygen in the air outside the container 10 is taken into the outside of the container 10 from the gap. Can be. In addition, by closing the gap between the negative electrode terminal 6 and the positive electrode terminal 7 and the container 10 and providing the container 10 with a ventilation hole or a vent, oxygen in the air can be taken into the container 10. Good.
  • the element 41 of the air storage structure 4 is fixed to some extent, and the lead wire connecting the electrode and the terminal and the electrode are corroded (by the electrolyte 5).
  • a partition 11 covering the upper part of the air containment structure 4 can be provided.
  • the partition 11 is, for example, a non-corrosive substance (for example, plastic).
  • a part of the partition 11 is provided with a ventilation means 12 (for example, a ventilation film), and air (oxygen and moisture) taken in from the outside of the container 10 is supplied to the air through the ventilation means 12.
  • the ventilation means 12 is, for example, Goatex fiber.
  • the collecting electrode 8 is, for example, carbon or a carbon compound.
  • collector electrode 8 is graphitized carbon or a carbon compound.
  • the lower the ash content the better. This is because ash is a component of internal resistance.
  • the internal resistance due to the presence of a large amount of ash deteriorates the discharge characteristics of the negative electrode active material, usually available ash of carbon or carbon compound is about 4% by weight. No worsening is observed. Therefore, preferably, the ash content of the carbon or carbon compound is not more than 4% by weight.
  • Electrolyte 5 has the ability to inhale moisture in the air.
  • One example of the electrolyte 5 is an aqueous solution of aluminum chloride.
  • Another example of electrolyte 5 is an aqueous solution of calcium chloride.
  • Electrolyte 5 has the ability to inhale moisture in the air, so even if the amount of water used for the oxidation-reduction reaction is large, water corresponding to that amount can be taken in from the air. it can. In other words, the electrolyte 5 not only supplies water by its own internal moisture, but also removes the moisture in the air from the ventilation means of the container 10 (the connection between the negative electrode terminal 6 and the positive electrode terminal 7 and the container 10).
  • the air can be taken in through a gap between them, a vent or a vent provided in the container 10) and, if the vent 12 is provided, through the vent 12 of the partition 11.
  • the air containment structure (gas containment structure) 4 retains oxygen 42 in the air, The hydrogen generated on the side can be retained. Thereby, the safety of the battery can be improved.
  • the problem of hydrogen generated on the side can be avoided.
  • the problem of hydrogen generated in the container can be avoided by configuring the container 10 with a non-corrosive substance (eg, plastic) instead of a corrosive substance (eg, aluminum). can do.
  • the electrolytic solution 5 is an aqueous solution in which a substance capable of inhaling moisture is dissolved to a saturated concentration (for example, a saturated aluminum chloride aqueous solution, a saturated calcium chloride aqueous solution, and the like).
  • a saturated concentration for example, a saturated aluminum chloride aqueous solution, a saturated calcium chloride aqueous solution, and the like.
  • the concentration of the electrolyte 5 is constant at the saturation concentration. That is, when the concentration of the electrolytic solution 5 is stabilized, a stable current value and voltage value can be supplied.
  • the Shiridani calcium aqueous solution has a higher water absorption than the aluminum chloride aqueous solution, so that more stable current and voltage values can be supplied.
  • the electrolytic solution 5 is an aqueous solution in which both aluminum chloride and calcium chloride are dissolved to a saturation concentration.
  • the aqueous solution of calcium chloride takes in oxygen dioxide in the air and produces an aqueous solution of carbon dioxide, while the aqueous solution of calcium chloride reacts with carbon dioxide to produce a substance that inhibits electricity (calcium carbonate).
  • the Ph of an aqueous solution containing not only calcium chloride but also a chloride salt is smaller (more acidic) than the pH of an aqueous solution of carbon dioxide, aluminum chloride and chloride
  • An aqueous solution in which both calcium are dissolved has a property that aluminum chloride and carbon dioxide gas are unlikely to react with each other, and it is difficult to generate a current-carrying substance (calcium carbonate). Therefore, the discharge efficiency can be improved when the electrolytic solution 5 contains both aluminum chloride and calcium chloride.
  • the chloride salt is preferably aluminum chloride. Since the aqueous solution in which both aluminum chloride (chloride salt) and calcium chloride are dissolved has aluminum as an ion of the same element as the negative electrode, the redox reaction can be promoted. Thereby, the discharge efficiency can be improved.
  • the electrolyte 5 further comprises a neutral salt (eg, sodium chloride, calcium chloride, ammonium chloride, potassium chloride, and the like, and combinations thereof).
  • a neutral salt eg, sodium chloride, calcium chloride, ammonium chloride, potassium chloride, and the like, and combinations thereof.
  • concentration of neutral salt exceeds 0.1% by weight
  • the concentration of the neutral salt is a saturating concentration.
  • the electrolyte 5 When the electrolyte 5 is liquid and acidic More preferably, the electrolyte 5 further contains a compound of a halide and hydrogen (for example, hydrogen chloride).
  • a compound of a halide and hydrogen for example, hydrogen chloride.
  • hydrogen chloride When the concentration of hydrogen chloride is greater than 0.1% by weight, it functions to convert poorly soluble products (eg, A 1 (OH) 3 in the formula (2)) generated by the redox reaction into water soluble. be able to. That is, the poorly soluble product which is a current blocking substance is removed, thereby improving the discharge efficiency.
  • the concentration of hydrogen chloride is 0.1% by weight.
  • the electrolyte 5 is liquid and alkaline, more preferably, the electrolyte 5 further comprises a water-soluble base (e.g., sodium hydroxide, ammonium, calcium hydroxide, and the like, and combinations thereof). ) including.
  • the water-soluble base functions in the range of 0.1% by weight or more and 10% by weight or less to form a poorly soluble product (for example, A 1 (OH) 3 in the formula (2)) generated by the redox reaction. ) Can be changed to water-soluble. In other words, poorly soluble products that are current-disturbing substances are removed, thereby improving discharge efficiency.
  • the electrolyte 5 may be held inside the separator 3 and the air containment structure 4 as shown in FIG. 2, or may be stored inside the separator 3 as a container as shown in FIG. And may be held inside the air containment structure 4.
  • the air battery of the present invention is not limited to the above-described embodiment and examples described later, and it is needless to say that various changes can be made without departing from the gist of the present invention.
  • the air storage structure 4 of the air battery could be adopted as the gas storage structure 63 of the primary battery. This allows the primary battery electrolyte and 3 011154
  • a primary battery generally includes a positive electrode 61, a collector electrode 62, a gas storage structure 63 that holds oxygen as a positive electrode material, a separator 64, and a negative electrode active material (negative electrode) 65. I can.
  • the air storage structure 4 of the air cell could be adopted as the gas storage structure 72, 74 of the fuel cell.
  • the fuel cell generally includes a separator 71, a fuel electrode 72 using a gas storage structure, an electrolyte 73, and an air electrode 74 using a gas storage structure.
  • the negative electrode active material (negative electrode) 2 is an aluminum plate, the thickness is 3 mm, the width is 55 mm, the length is 90 mm, and the weight of the aluminum plate is 4 2 g.
  • Separe Ichi 3 is a hydrophilic separee, a 1 mm thick rayon fiber corroded cloth mainly composed of fibrous viscose.
  • the aluminum plate is covered with a rayon fiber corroded cloth to prevent direct contact with other components.
  • the aluminum plate covered with the rayon fiber corroded cloth is placed in a container 10 capable of securing a thickness of 10 mm or more in any direction from the surroundings of the rayon fiber corroded cloth.
  • the width of the container 10 is 57 mm, the thickness is 15 mm, and the height is 92 mm.
  • the element 41 of the air containment structure 4 is ⁇ 700 ⁇ -3 available from Nippon Environmental Chemicals Co., Ltd., and is a spherical porous ceramic.
  • the average diameter of the spherical porous ceramic is about 5 mm.
  • the spherical porous ceramic is washed with purified water, and the washed one is dried. 50 g of the spherical porous ceramic thus washed with the purified water is filled around an aluminum plate (rayon fiber corroded cloth) placed in the container 10.
  • the specific surface area of the porous ceramic spherical is 1 0 0 0 m 2 Z g .
  • the collector electrode 8 is a graphite plate mainly composed of carbon, has a thickness of 0.5 mm, a width of 55 mm, and a length of 90 mm. Place the graphite plate in the air containment structure 4 (required (Between element 41).
  • an electrolytic solution obtained by adding 1 weight of hydrochloric acid to an aqueous solution in which aluminum chloride is dissolved to a saturation concentration is used as the electrolyte 5.
  • the electrolyte is poured into the corroded rayon cloth at 40 cc so that the electrolyte is retained inside the corroded rayon fiber cloth covering the aluminum plate.
  • the electrolyte is also retained in the element 41 of the air containment structure 4.
  • One of the voltmeter clips was connected to an aluminum plate (negative electrode), and the other clip was connected to a graphite plate (positive electrode) . The electromotive voltage between both electrodes was measured, and an electromotive voltage of 1.2 V was obtained. .
  • an ammeter with a 0.1 ⁇ resistor connected to it (for example, a DC current / voltmeter 2012 available from Yokogawa Electric Corporation) was connected in parallel. A current of 1 A was obtained. When the 0.1 ⁇ resistor was removed and the short-circuit current was measured, a current of 2.8 A was obtained.
  • the weight of the aluminum plate was 38 g, which was 4 g less than before the reaction.
  • Example 2 With respect to another example of the air battery 10 shown in FIG. 2, only differences from the first embodiment will be described below. Instead of the electrolyte 5 of Example 1, the electrolyte 5 of Example 2 was prepared by adding 420 g / 'J liter of calcium chloride and 20 cc / liter of ammonia (a water-soluble base) to 1 liter of purified water. Use electrolyte. Pour 50 cc of this electrolyte into a rayon fiber corroded cloth.
  • One of the voltmeter clips was connected to an aluminum plate (negative electrode), and the other clip was connected to a graphite plate (positive electrode). The electromotive voltage between both electrodes was measured, and an electromotive voltage of 1.5 V was obtained. . Furthermore, when an ammeter connected to a 0.1 ⁇ resistor was connected in parallel to the voltmeter, a current of 1.1 A was obtained. When the 0.1 ⁇ resistor was removed and the short-circuit current was measured, a current of 2.2 A was obtained.
  • the starting voltage of both the air battery of Example 2 and the single battery of Comparative Example 1 was 1.5 V, and the current at the starting voltage was 0.5 A. In addition, the current at the final voltage was 0.34 A in both cases.
  • Discharge capacity ((1.5 + 1.0) / 2) X ((0.5 + 0.34) / 2) X (discharge time (hr))
  • the discharge capacity of the air battery of Example 2 was 89.4 Wh
  • the discharge capacity of the single battery of Comparative Example 1 was 3. OWh.
  • the weight of both the air battery of Example 2 and the single battery of Comparative Example 1 was 150 g. From the above, it can be seen that the air battery of Example 2 has about 30 times the discharge capacity in the practical range as compared with the single battery of Comparative Example 1. It turned out.
  • the thickness of the aluminum plate as the negative electrode active material (negative electrode) 2 is 5 mm, the width is 100 mm, the length (height) is 150 mm, and the weight of the aluminum plate is 2 10 g It is.
  • the width of the container 10 made of vinyl chloride is 50 mm, the thickness is 50 mm, and the height is 160 mm.
  • the hydrophilic separator 3 is a sponge made of a foamed melamine resin which is a fiber.
  • 940 cc (676 g) of spherical porous ceramic washed with purified water is filled.
  • the thickness of the graphite plate as the collecting electrode 8 is lmm, the width is 100 mm, and the length is 150 mm.
  • the same electrolytic solution as in Example 1 an electrolytic solution obtained by adding 1% by weight of hydrochloric acid to an aqueous solution in which aluminum chloride is dissolved to a saturation concentration
  • the aluminum plate was washed out and its weight was measured.
  • the weight of the aluminum plate was 10 g, which was 200 g less than before the experiment.
  • a discharge capacity of 2678 Wh could be obtained from 200 g of aluminum. That is, the air battery of Example 3 generated 13.4 Wh per g of aluminum.
  • the electrolyte 5 of the example 2 was prepared by adding 420 g, liter of calcium chloride and 20 cc, no liter of ammonia to 1 liter of purified water in the same manner as in the example 2. Electrolyte. Pour 150 cc of this electrolyte into the sponge. Six air cells manufactured in this way were prepared, and these air cells were connected in a state of being electrically connected in series. When three high-brightness white LEDs (operating at 5 V or more and 0.5 A) are connected in parallel to the air batteries connected in series in this way, the white LEDs are connected. Lights up. The white LED was on. The lighting test was continued for more than 100 days at 20 degrees Celsius, normal temperature of 1 atmosphere and normal pressure. After the 100th day, the white LED continued to light.
  • the separator in Example 5 is a natural pulp material.
  • the electrolyte 5 of the example 5 is obtained by adding 745 g / liter of calcium chloride and 450 gZ liter of aluminum chloride hexahydrate to 1 liter of purified water. Use the added electrolyte. That is, the electrolyte 5 of Example 5 is an aqueous solution in which both calcium chloride and aluminum chloride in a weight ratio of 5: 3 are dissolved to a saturation concentration. This electrolytic solution is poured into a natural pulp material at 42 cc.
  • the water-resistant separation 3 of Example 6 is cellophane.
  • the same electrolyte solution as in Example 5 chloride strength of 5: 3, an aqueous solution in which both calcium and aluminum chlorides were dissolved to a saturation concentration
  • Pour cc At this time, the surface of the aluminum plate in the cellophane is in contact with the electrolyte.
  • One of the voltmeter clips was connected to an aluminum plate (negative electrode), and the other was connected to a graphite plate (positive electrode). The electromotive voltage between both electrodes was measured. An electromotive voltage was obtained. Furthermore, an ammeter with a 0.1 ⁇ resistor connected in parallel to the voltmeter resulted in a current of 2.85 A. The 0.1 ⁇ resistor was removed, and the short-circuit current was measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Cells (AREA)
  • Inert Electrodes (AREA)

Abstract

A high current capacity air battery comprising at least one (4,5) of air storage structure (4) capable of retaining and passing oxygen as a positive electrode active material and electrolyte (5) capable of absorbing moisture from air. The air storage structure (4) comprises multiple particulate porous ceramics (41) composed mainly of carbon. The multiple porous ceramics (41) are in contact with each other, and the air storage structure (4) contains oxygen as a positive electrode active material in interstices (42) of the multiple porous ceramics (41). The electrolyte (5) comprises at least one of aluminum chloride and calcium chloride. Aluminum or an aluminum alloy is used as a negative electrode active material (2).

Description

'明 細 書 高電流容量電池 技術分野  'Specifications High current capacity batteries Technical field
本発明は、 高い電流容量を持つ電池、 即ち、 長い持続時間 (放電時間) を持つ 電池に関連し、 詳しくは、 電気化学的な酸化還元反応に必要な電解質の水分と正 極活物質である酸素とを空気から補充して、 その酸化還元反応を持続させる電池 に関連する。 背京技術  The present invention relates to a battery having a high current capacity, that is, a battery having a long duration (discharge time). More specifically, the present invention relates to the electrolyte water and the positive electrode active material required for an electrochemical oxidation-reduction reaction. It is related to batteries that supplement oxygen and air from the air to sustain its redox reaction. Kyokyo technology
電池の原理は、 還元剤と酸化剤とをイオン伝導体を介して反応させ、 この酸化 還元反応の際に放出される自由エネルギーを 2つの電極を用いて直接電気工ネル ギ一に変換し、 その起電力を利用する。  The principle of the battery is that a reducing agent and an oxidizing agent are reacted via an ionic conductor, and the free energy released during this oxidation-reduction reaction is directly converted into electric energy using two electrodes. Utilize the electromotive force.
1. 一次電池  1. Primary battery
一次電池は、 電気エネルギーを取り出すための酸化還元反応が、 一方向にしか 進まない電池であって、 充電できない電池である。 言い換えれば、 一次電池は、 二次電池と異なり、 使い切りタイプの電池である。  A primary battery is a battery in which the oxidation-reduction reaction for extracting electrical energy proceeds in only one direction and cannot be charged. In other words, primary batteries are disposable batteries, unlike secondary batteries.
一次電池の例としてのマンガン乾電池は、 概して、 正極活物質としての二酸化 マンガン (Mn〇2) と、 負極活物質としての亜鉛 (Zn) とを備える。 マンガ ン乾電池は更に、 電解質として、 塩化アンモニゥム (NH4C 1) 水溶液を固形 化したものを備える。 マンガン乾電池の酸化還元反応は、 次式で表される。 Manganese batteries as an example of a primary battery generally comprises manganese dioxide as a positive electrode active material (Mn_〇 2), and zinc as a negative electrode active material (Zn). The manganese dry cell also has a solid electrolyte of ammonium chloride (NH 4 C 1) solution as the electrolyte. The oxidation-reduction reaction of a manganese dry battery is expressed by the following equation.
Zn + 2NH4C 1 +2Mn02 Zn + 2NH 4 C 1 + 2Mn0 2
→Zn (NH3) 2C 12+ 2MnOOH ··· (1) → Zn (NH 3) 2 C 1 2 + 2MnOOH ··· (1)
マンガン乾電池は、 安価であるため、 広く用いられている。 しかしながら、 マ ンガン乾電池は、 正極活物質として二酸化マンガンを用いているため、 簡単に廃 棄することが出来ない。  Manganese batteries are widely used because they are inexpensive. However, manganese dry batteries cannot be easily disposed of because manganese dioxide is used as the positive electrode active material.
一次電池の例としてのアルミニウム電池は、 概して、 正極活物質としての二酸 化マンガンと、 負極活物質としてのアルミニウム合金 (例えば、 アルミニウム一 クロム合金) と、 電解質としての塩化アルミニウム水溶液とを備える。 アルミ二 ゥム電池の主な酸化還元反応は、 次式で表される。 Aluminum batteries as examples of primary batteries generally include manganese dioxide as a positive electrode active material and an aluminum alloy as a negative electrode active material (eg, aluminum Chromium alloy) and an aqueous solution of aluminum chloride as an electrolyte. The main oxidation-reduction reaction of an aluminum battery is expressed by the following equation.
A 1 + 3 02 + 6 H2A 1 + 3 0 2 + 6 H 2
-> 4 A 1 (OH) 3 … ( 2 )  -> 4 A 1 (OH) 3… (2)
負極活物質として、 亜鉛の代わりにアルミニウム合金を用いるアルミニウム電 池は、 マンガン乾電池と比べて、 高い電流容量 (単位重量当たりのワット数が大 きい) を持つ。その理由は.. アルミニウムの放電特性が、 亜鉛の放電特性よりも、 高いからである。言い換えれば、 ( 1 )式の反応において、 負極側で、亜鉛が電解 質に溶け込み、 その結果、 4 e—の電子が発生する一方、 ( 2 ) 式の反応において、 負極側で、 アルミニウムが電解質に溶け込み、 その結果、 3倍の電子である 1 2 e一の電子が発生するからである。 しかしながら、 アルミニウム電池の電解質(塩 化アルミニウム水溶液) は、 負極活物質ないし負極 (アルミニウム合金) を腐食 し、 (2 )式の反応とともに、 負極側で水素が発生する。 このため、 電池が膨張し、 最悪の場合、 電池が破裂する可能性がある。  Aluminum batteries that use an aluminum alloy instead of zinc as the negative electrode active material have a higher current capacity (higher wattage per unit weight) than manganese dry batteries. The reason is that the discharge characteristics of aluminum are higher than those of zinc. In other words, in the reaction of equation (1), zinc dissolves in the electrolyte on the negative electrode side, and as a result, 4 e- electrons are generated, while in the reaction of equation (2), aluminum dissolves on the negative electrode side in the electrolyte. Because, as a result, three times as many electrons as 1 2 e are generated. However, the electrolyte (aluminum chloride aqueous solution) of the aluminum battery corrodes the negative electrode active material or the negative electrode (aluminum alloy), and hydrogen is generated on the negative electrode side along with the reaction of equation (2). This can cause the battery to swell and, in the worst case, cause the battery to burst.
このような水素の発生を少なくするため、 アルミニウム電池の負極活物質は、 アルミニウムの単体ではなく、 アルミニウム合金が採用されている。 しかしなが ら、 市販できる程度にまで、 水素の発生を回避することができない。 また、 この ような水素の発生をさらに少なくするため、特開平 0 6— 1 8 7 9 9 5号公報は、 負極活物質に、 アルキル基等の安定剤を添加したアルミニウム電池を開示してい る。 しかしながら、 このアルミニウム電池も、 巿販できる程度にまで、 水素の発 生を回避することができないと考えられる。  In order to reduce such generation of hydrogen, the negative electrode active material of the aluminum battery is not an aluminum simple substance but an aluminum alloy. However, the generation of hydrogen cannot be avoided to the extent that it can be marketed. In order to further reduce such generation of hydrogen, Japanese Patent Application Laid-Open No. H06-18979 discloses an aluminum battery in which a stabilizer such as an alkyl group is added to a negative electrode active material. . However, it seems that this aluminum battery cannot avoid the generation of hydrogen to the extent that it can be sold.
2 . 空気電池  2. Air battery
正極活物質として、二酸ィ匕マンガンなどの酸化剤の代わりに、空気中の酸素(O 2) を用いる空気電池は、 一次電池と比べて、 高い電流容量を持つ。 その理由は、 正極活物質としての空気中の酸素が、 消耗しないからである。 空気電池は更に、 負極活物質としての金属 (例えば、 亜鉛、 アルミニウム等) と、 電解質としての 電解液 (例えば、 水酸化カリウム水溶液、 水酸化アルミニゥム水溶液等) とを備 える。 空気電池の正極側で、 空気中の酸素は、 次式で表されるように、 還元され る。 02 + 2 H 20 + 4 e An air battery that uses oxygen (O 2 ) in the air instead of an oxidizing agent such as manganese dioxide as the positive electrode active material has a higher current capacity than a primary battery. The reason is that oxygen in the air as a positive electrode active material is not consumed. The air battery further includes a metal (for example, zinc, aluminum, or the like) as a negative electrode active material, and an electrolytic solution (for example, an aqueous solution of potassium hydroxide, an aqueous solution of aluminum hydroxide, or the like) as an electrolyte. On the positive electrode side of the air battery, oxygen in the air is reduced as expressed by the following equation. 0 2 + 2 H 2 0 + 4 e
→4〇H— ··· ( 3 )  → 4〇H— (3)
式(3 ) に示すように、 空気電池は..酸化還元反応に用いられる水を必要とし、 その水は、 電解質の水分から供給される。 このような水の消費量は、 負極活物質 としての金属の種類及び量に依存する。 一方、 このような水の供給量は、 電解質 の種類及び量に依存する。従って、水の消費量が、水の供給量よりも大きい場合、 即ち、 電解質の水分が、 消耗する場合., 空気電池は、 その全電流容量を取り出さ れる前に、 動作しなくなる。 このような現象は、 ドライアップとして知られてい る。 例えば、 市販されているポタン型の空気亜鉛電池 (負極活物質:亜鉛) の場 合、 水の消費量が、 水の供給量よりも少ないため、 電解質の水分は、 ほとんど消 耗しない。 しかしながら、 負極活物質としての亜鉛の量を増加させ、 高電流容量 の空気電池を製造する場合、 ドライアップの問題を考慮する必要がある。或いは、 ドライアップの問題を回避するために、 亜鉛の量の増加に比例して、 電解質の量 を大きくする必要があり、 その結果、 空気電池が大きくなるという問題がある。 空気電池の例としての空気アルミニウム電池 (負極活物質:アルミニウム) に おいて、 一般に、 水の消費量は、 水の供給量よりも大きい。 このため、 空気アル ミニゥム電池は、 空気亜鉛電池と比べて、速くドライアップしてしまう。 さらに、 電解質として、 例えば、 水酸化アルミニウム水溶液を採用する場合、 負極側で水 素が発生する。  As shown in equation (3), an air battery requires water used for the oxidation-reduction reaction, and the water is supplied from the water in the electrolyte. Such water consumption depends on the type and amount of the metal as the negative electrode active material. On the other hand, the amount of such water supply depends on the type and amount of the electrolyte. Thus, if the water consumption is greater than the water supply, i.e., if the water content of the electrolyte is exhausted, the air cell will not operate before its full current capacity is removed. Such a phenomenon is known as dry-up. For example, in the case of a commercially available potan-type zinc-air battery (negative electrode active material: zinc), the amount of water consumed is less than the amount of water supplied, so that the water content of the electrolyte is hardly consumed. However, when increasing the amount of zinc as a negative electrode active material to produce an air battery with a high current capacity, it is necessary to consider the problem of dry-up. Alternatively, in order to avoid the problem of dry-up, it is necessary to increase the amount of the electrolyte in proportion to the increase in the amount of zinc. As a result, there is a problem that the air battery becomes large. In an air aluminum battery (negative electrode active material: aluminum) as an example of an air battery, water consumption is generally larger than water supply. For this reason, air aluminum batteries dry up faster than zinc air batteries. Furthermore, for example, when an aqueous solution of aluminum hydroxide is used as the electrolyte, hydrogen is generated on the negative electrode side.
空気電池は、 一般に、 酸素の還元反応を促進することにより、 放電効率を改善 することが期待されている。  Air batteries are generally expected to improve discharge efficiency by promoting the oxygen reduction reaction.
なお、 空気電池は、 電気エネルギーを取り出すための酸化還元反応が、 一方向 にしか進まない電池であって、 本質的には一次電池である。  An air battery is a battery in which the oxidation-reduction reaction for extracting electric energy proceeds in only one direction, and is essentially a primary battery.
3 . 燃料電池  3. Fuel cell
負極活物質として、 亜鉛、 アルミニウムなどの金属の代わりに、 水素 (H 2) を用いる燃料電池は、 一次電池又は空気電池と比べて、 一次電池又は空気電池と 比べて、 高い電流容量を持つ。 その理由は、 負極活物質としての水素が、 消耗し ないからである。 燃料電池の主な酸化還元反応は、 次式で表され、 水素と酸素か ら、 水が生成される。 負極: H2→2 H++ 2 e A fuel cell using hydrogen (H 2 ) instead of a metal such as zinc or aluminum as the negative electrode active material has a higher current capacity than a primary battery or an air battery. The reason is that hydrogen as a negative electrode active material is not consumed. The main oxidation-reduction reaction of a fuel cell is expressed by the following equation, and water is generated from hydrogen and oxygen. Negative electrode: H 2 → 2 H + + 2 e
正極: 2 H++ ( 1 / 2 ) 02 + 2 e→H20 … ( 4) Positive electrode: 2 H ++ (1/2) 0 2 + 2 e → H 2 0… (4)
燃料電池は、 一般に、 酸素の還元反応、 及び/又は、 水素の酸化反応を促進す ることにより、 放電効率を改善することが期待されている。 発明の開示  Fuel cells are generally expected to improve discharge efficiency by promoting the oxygen reduction reaction and / or the hydrogen oxidation reaction. Disclosure of the invention
従って、 本発明の目的は、 空気電池におけるドライアップの問題を解決するこ とにより、 電池の性能を十分に機能させることである。  Therefore, an object of the present invention is to solve the problem of dry-up in an air battery and to make the performance of the battery sufficiently function.
本発明のもう 1つ目的は、 一次電池又は空気電池の負極側で発生する水素に対 処することにより、 電池の安全性を向上させることである。  Another object of the present invention is to improve the safety of a battery by dealing with hydrogen generated on the negative electrode side of a primary battery or an air battery.
本発明の更なる目的は、 負極側で発生する水素に対処することにより、 負極活 物質としてアルミニウム又はアルミニウム合金を使用する市販可能な空気電池を 提供することである。  A further object of the present invention is to provide a commercially available air battery that uses aluminum or an aluminum alloy as the negative electrode active material by addressing the hydrogen generated on the negative electrode side.
本発明の更なる目的は、 空気電池又は燃料電池の化学反応を促進することによ り、 放電効率を改善することである。  It is a further object of the present invention to improve discharge efficiency by promoting a chemical reaction in an air cell or fuel cell.
本発明の更なる目的は、 二酸化マンガンの代替物を使用することにより、 環境 にやさしい電池を提供することである。  It is a further object of the present invention to provide an environmentally friendly battery by using an alternative to manganese dioxide.
本発明の他の目的は、 以下に説明する発明の実施の形態を参照することによつ て、 明らかになるであろう。  Other objects of the present invention will become apparent by referring to the embodiments of the invention described below.
上記した目的を達成するために、 本発明の高電流容量空気電池は、 正極活物質 である酸素を保持し通過させる空気格納構造(4)、 及び、 空気中の水分を吸入す る性能を持つ電解質(5 )のうち、少なくとも 1つ(4, 5 )を備える。空気格納構造 (4)は、 炭素を主成分とした複数の粒状の多孔質セラミック ( 4 1 ) を備える。 複数の多孔質セラミック (4 1 ) は、 互いに接触し、 空気格納構造(4)は、 複数 の多孔質セラミック (4 1 ) の隙間 (4 2 ) に正極活物質である酸素を含む。 電 解質(5 )は、 塩化アルミニウム、 及び、 塩化カルシウムのうち、 少なくとも 1つ を備える。 負極活物質 (2 ) は、 アルミニウム又はアルミニウム合金である。 本発明の、 電池用の気体格納構造は、 水素及び酸素のうちの少なくとも 1つを 格納するために、 炭素を主成分とした複数の粒状の多孔質セラミックを備える。 本発明の、 空気電池用の電解液 ( 5 ) は、 塩化アルミニウム、 及び、 塩化カル シゥムのうち、 少なくとも 1つを備える。 図面の簡単な説明 In order to achieve the above object, the high current capacity air battery of the present invention has an air storage structure (4) for holding and passing oxygen, which is a positive electrode active material, and has a performance of inhaling moisture in the air. At least one (4, 5) of the electrolytes (5) is provided. The air containment structure (4) includes a plurality of granular porous ceramics (41) containing carbon as a main component. The plurality of porous ceramics (41) are in contact with each other, and the air containment structure (4) contains oxygen, which is a positive electrode active material, in gaps (42) between the plurality of porous ceramics (41). The electrolyte (5) includes at least one of aluminum chloride and calcium chloride. The negative electrode active material (2) is aluminum or an aluminum alloy. The gas storage structure for a battery according to the present invention includes a plurality of granular porous ceramics containing carbon as a main component for storing at least one of hydrogen and oxygen. The electrolyte solution (5) for an air battery according to the present invention includes at least one of aluminum chloride and calcium chloride. BRIEF DESCRIPTION OF THE FIGURES
添付の図面の参照と、 以下に述べる発明の実施するための最良の形態の説明と により、 本発明の利点及び原理は、 当該技術分野における当業者にとって、 明ら かになるであろう。  The advantages and principles of the present invention will become apparent to those skilled in the art with reference to the accompanying drawings and the description of the best mode for carrying out the invention set forth below.
図 1は、 本発明の空気電池の外観を示す斜視図である。  FIG. 1 is a perspective view showing the appearance of the air battery of the present invention.
図 2は、 図 1に示される空気電池の断面図である。  FIG. 2 is a cross-sectional view of the air battery shown in FIG.
図 3は、 図 2に示される空気格納構造 4の詳細図である。  FIG. 3 is a detailed view of the air containment structure 4 shown in FIG.
図 4は、 隔壁及び通気膜を備える本発明の空気電池の概略断面図である。 図 5は、 セパレー夕としての半透膜を備える本発明の空気電池の概略断面図で ある。  FIG. 4 is a schematic cross-sectional view of an air battery of the present invention including a partition and a gas permeable membrane. FIG. 5 is a schematic cross-sectional view of an air battery of the present invention including a semipermeable membrane as a separator.
図 6は、 気体格納構造を備える本発明の一次電池の概略断面図である。  FIG. 6 is a schematic sectional view of a primary battery of the present invention having a gas storage structure.
図 7は、 気体格納構造を備える本発明の燃料電池の概略斜視図である。 発明を実施するための最良の形態  FIG. 7 is a schematic perspective view of a fuel cell of the present invention having a gas storage structure. BEST MODE FOR CARRYING OUT THE INVENTION
図 1〜図 3に示すように、 本発明の空気電池 1は、 概して、 正極活物質である 酸素を保持し通過させる空気格納構造 4と、 負極活物質 (負極) 2と、 電解質 5 とを備える。 空気電池 1は更に、 集電極 (正極) 8と、 セパレータ 3と、 負極端 子 6と、 正極端子 7と、 容器 1 0とを備える。  As shown in FIGS. 1 to 3, the air battery 1 of the present invention generally includes an air storage structure 4 for holding and passing oxygen as a positive electrode active material, a negative electrode active material (negative electrode) 2, and an electrolyte 5. Prepare. The air battery 1 further includes a collecting electrode (positive electrode) 8, a separator 3, a negative electrode terminal 6, a positive electrode terminal 7, and a container 10.
負極活物質 (負極) 2は、 金属、 合金、 その他の同様なもの (例えば、 亜鉛、 マグネシウム、 リチウム、 アルミニウムなど) を用いることができる。 好ましく は、負極活物質 2は、高い放電特性を持つアルミニウム又はアルミニウム合金(例 えば、 アルミニウムを主体とするジュラルミン等の合金又はアルミニウムと鉄の 合金) である。 負極活物質 2の周囲は、 空気格納構造 4内の酸素 (正極活物質) との直接接触を防ぐために、 セパレー夕 3で覆われている。  As the negative electrode active material (negative electrode) 2, metals, alloys, and other similar materials (for example, zinc, magnesium, lithium, and aluminum) can be used. Preferably, the negative electrode active material 2 is aluminum or an aluminum alloy having high discharge characteristics (for example, an alloy mainly composed of aluminum such as duralumin or an alloy of aluminum and iron). The periphery of the negative electrode active material 2 is covered with a separator 3 to prevent direct contact with oxygen (positive electrode active material) in the air storage structure 4.
セパレ一タ 3は、 親水性又は耐水性のセパレ一夕 (例えば、 ビスコース、 化学 繊維、 発泡高分子等) を用いることができる。 図 2に示すセパレー夕 3は、 親水 性を有し、 後述の電解質 5をセパレー夕 3の内部に保有する。 図 5に示すセパレ 一夕 3は、 耐水性を有し、 電解質 5の入れ物として機能する。 図 2に示すような 親水性のセパレー夕を採用する空気電池 1は、 電解質の保持性が高いため、 図 5 に示すような耐水性のセパレー夕を採用する空気電池 1と比べて、 長時間に渡つ て小さい電流を流すことができる。 図 5に示すような耐水性のセパレー夕を ί采用 する空気電池 1は、 図 2に示すような親水性のセパレー夕を採用する空気電池 1 と比べて、 大きい電流を流すことができる。 As the separator 3, a hydrophilic or water-resistant separator (eg, viscose, chemical fiber, foamed polymer, etc.) can be used. Separation area 3 shown in Fig. 2 is hydrophilic The electrolyte 5 described below is retained inside the separator 3. Separee 3 shown in FIG. 5 has water resistance and functions as a container for the electrolyte 5. The air cell 1 that uses a hydrophilic separator as shown in Fig. 2 has a higher electrolyte retention property, and therefore has a longer duration than the air cell 1 that uses a water-resistant separator as shown in Fig. 5. A small current can be passed over the entire area. The air battery 1 employing a water-resistant separator as shown in FIG. 5 can pass a larger current than the air battery 1 employing a hydrophilic separator as shown in FIG.
図 2に示す親水性のセパレー夕 3は、 例えば、 ビスコース、 親水性の発泡高分 子等を用いることができる。 好ましくは、 親水性のセパレ一夕 3は、 電解質 5を 負極活物質 2と均一に接触させるために、 高吸湿性である。 親水性のセパレータ 3は、 負極活物質 2と空気格納構造 4内の酸素 (正極活物質) との直接接触を防 ぎ、 また、 電解質 5を負極活物質 2に効率良く接触させるために、 セパレータ 3 は、 厚みが必要であり、 セパレー夕 3の厚さは、 1 m以上であれば機能する。 しかしながら、セパレー夕 3は、逆に厚過ぎると電気 ·抵抗が増大することから、 好ましくは、 セパレー夕 3の厚さは、 1 mmから 1 0 mmである。 セパレ一夕 3 の周囲は、 空気格納構造 4内の空気と、 容器 1 0内の空気とに接している。  As the hydrophilic separator 3 shown in FIG. 2, for example, viscose, hydrophilic foamed polymer, or the like can be used. Preferably, the hydrophilic separator 3 is highly hygroscopic in order to bring the electrolyte 5 into uniform contact with the negative electrode active material 2. The hydrophilic separator 3 prevents direct contact between the negative electrode active material 2 and oxygen (positive electrode active material) in the air storage structure 4 and also allows the electrolyte 5 to efficiently contact the negative electrode active material 2 with a separator. 3 requires a thickness, and the separator 3 works as long as it is 1 m or more. However, since the electrical resistance increases when the separator 3 is too thick, the thickness of the separator 3 is preferably 1 mm to 10 mm. The area around Separe Night 3 is in contact with the air in the air containment structure 4 and the air in the container 10.
図 5に示す耐水性のセパレ一タ 3は、 例えば、 化学繊維、 耐水性の発泡高分子 等を用いることができる。 好ましくは、 耐水性のセパレー夕 3は、 酸化還元反応 を促進させるために、 高イオン伝導性を有する。 耐水性のセパレ一夕 3は、 負極 活物質 2と空気格納構造 4内の酸素 (正極活物質) との直接接触を防ぎ、 また、 電解質 5を負極活物質 2に接触させるために、 セパレー夕 3は、 電解質 5の入れ 物として機能する。セパレー夕 3は、厚過ぎると電気'抵抗が増大することから、 好ましくは、 セパレー夕 3の厚さは、 0 . 0 l mmから 1 0 mmである。 セパレ 一夕 3の周囲は、空気格納構造 4内の空気と、容器 1 0内の空気とに接している。 空気格納構造 4は、 正極活物質である酸素を保持し通過させる。 図 3に示され る空気格納構造 4の要素 4 1は、 例えば、 炭素を主成分とした粒状の多孔質セラ ミックである。 好ましくは、 要素 4 1は、 球状の多孔質セラミックである。 球状 の多孔質セラミックを製造する方法は、 a ) 例えば、 クチクラを粉砕したもの、 石炭を粉碎したもの、 及び、 石油から精製されるタールのうちの少なくとも 1つ と、 塩化亜鉛若しくは硫酸銅とを混ぜて練合し、 b) 練合したものを、 例えば、 0 . 5 mm粒径に成型し、 c ) 成型されたものを無酸素状態で炭化し、 d ) 炭化 したものを水蒸気によつて陚活する。 賦活した球状の多孔質セラミックは 例え ば、 日本エンバイ口ケミカルズ株式会社から入手可能な ΓΧ 7 0 0 O H - 3 J で ある。 好ましくは、 球状の多孔質セラミックの直径は、 おおよそ、 0 . 5 mm〜 1 . 2 mmである。 また、 多孔質セラミックは、 灰分が少ない程良い。 その理由 は、 灰分が、 内部抵抗の成分となるからである。 灰分の多量存在による内部抵抗 は、 負極活物質の放電特性を悪化させるが、 通常入手可能な多孔質セラミックの 灰分は、 約 4重量%であり、 4重量%の灰分であれば、 放電特性の悪化は、 認め ちれない。 従って、 好ましくは、 多孔質セラミックの灰分は、 4重量%以下であ る。 加えて、 好ましくは、 多孔質セラミックの比表面積は、 1 0 0 0 m2/ g以 上であり、 さらに好ましくは、 2 0 0 0 m2Z g以上である。 As the water-resistant separator 3 shown in FIG. 5, for example, a chemical fiber, a water-resistant foamed polymer, or the like can be used. Preferably, the water-resistant separator 3 has a high ionic conductivity in order to promote a redox reaction. The water-resistant separator 3 prevents separation of the negative electrode active material 2 from oxygen (positive electrode active material) in the air storage structure 4 directly, and separates the electrolyte 5 from the negative electrode active material 2. 3 functions as a container for electrolyte 5. The thickness of the separator 3 is preferably from 0.01 mm to 10 mm, since the electrical resistance increases when the separator 3 is too thick. The area around Separee 3 is in contact with the air in the air containment structure 4 and the air in the container 10. The air storage structure 4 holds and passes oxygen, which is a positive electrode active material. The element 41 of the air containment structure 4 shown in FIG. 3 is, for example, a granular porous ceramic mainly composed of carbon. Preferably, element 41 is a spherical porous ceramic. Methods for producing spherical porous ceramics include: a) for example, at least one of ground cuticle, ground coal, and tar refined from petroleum. And zinc chloride or copper sulfate are mixed and kneaded.b) The kneaded product is molded into, for example, a 0.5 mm particle size.c) The molded product is carbonized in an oxygen-free state. ) The carbonized material is activated by steam. The activated spherical porous ceramic is, for example, $ 700 OH-3J available from Nippon Environmental Chemicals Co., Ltd. Preferably, the diameter of the spherical porous ceramic is approximately between 0.5 mm and 1.2 mm. In addition, the porous ceramic is preferably as low in ash content as possible. This is because ash is a component of internal resistance. Although the internal resistance due to the presence of a large amount of ash deteriorates the discharge characteristics of the negative electrode active material, the ash content of a generally available porous ceramic is about 4% by weight. No deterioration is noticeable. Therefore, preferably, the ash content of the porous ceramic is not more than 4% by weight. In addition, the specific surface area of the porous ceramic is preferably 1000 m 2 / g or more, more preferably 2000 m 2 Zg or more.
d) 炭化した多孔質セラミックを水蒸気によって賦活した後、 e ) 賦活したも のを精製水により洗浄し、 f ) 洗浄したものを乾燥させる。 e ) 精製水により洗 浄することにより、 粉末状の多孔質セラミック、 又は、 粒状化しなかった多孔質 セラミックを取り除くことができる。 空気格納構造 4の要素 4 1として、 粉末状 の多孔質セラミックを使用すると、 粉末状の多孔質セラミックが、 親水性のセパ レ一タ 3内に入り込み、 その結果、 粉末状の黒鉛セラミック内の酸素 (正極活物 質) と負極活物質 2とが直接接触してしまうという問題、 即ち、 親水性のセパレ 一夕 3が機能しなくなるという問題がある。 言い換えれば、 空気格納構造 4の要 素 4 1として、 粒状 (好ましくは球状) の多孔質セラミックを使用することによ り、 親水性のセパレー夕 3は、 機能し続けることができる。 なお、 粉末状の多孔 質セラミックは、耐水性のセパレー夕 3内に入り込まないため、賦活した粒状(好 ましくは球状) の多孔質セラミックを洗浄しなくても良い。  d) After activating the carbonized porous ceramic with steam, e) Wash the activated material with purified water, and f) Dry the washed material. e) By washing with purified water, powdery porous ceramics or non-granulated porous ceramics can be removed. If powdered porous ceramic is used as the element 41 of the air containment structure 4, the powdered porous ceramic enters the hydrophilic separator 3, resulting in the powdered graphite ceramic. There is a problem that oxygen (the positive electrode active material) and the negative electrode active material 2 come into direct contact with each other, that is, a problem that the hydrophilic separation 3 does not function. In other words, by using a granular (preferably spherical) porous ceramic as the element 41 of the air containment structure 4, the hydrophilic separator 3 can continue to function. Since the powdery porous ceramic does not enter into the water-resistant separator 3, the activated granular (preferably spherical) porous ceramic does not need to be washed.
このようにして製造した要素 4 1 (粒状 (好ましくは球状) の多孔質セラミツ ク) を互いに接触させ、 要素 4 1の隙間に正極活物質である酸素 4 2を含ませる ことにより、 図 3に示すような空気格納構造 4を得る。 好ましくは、 球状の要素 4 1は、 六方細密構造で容器 1 0内に配置される。 空気格納構造 4は、 空気中の 酸素 4 2を保持し、 正極活物質である酸素 4 2は、 空気格納構造 4を通過する。 このような空気格納構造 4によって、 空気電池の化学反応 (酸素の還元反応) を 促進することが可能となり、 これにより、 放電効率を改善することができる。 セパレー夕 3の周囲に接する空気格納構造 4 (要素 4 1 ) は、 負極活物質 2の 表面を基準として 1 mm以上の厚さで-. 空気格納構造 4に含まれる酸素が-. 正極 活物質として機能する。 言い換えれば、 正極活物質である酸素が、 ある程度、 正 極側に供給されないと、 正極活物質は、 実質的に消耗してしまうからである。 逆 に言えば、 正極活物質である酸素が、 正極側に連続的に供給されると、 正極活物 質である酸素は、 正極側で還元され続け、 正極活物質は、 消耗しない。 空気格納 構造 4 (要素 4 1 )の厚さが、負極活物質 2の表面を基準として 1 0 mm以上で、 正極活物質が連続的に反応することを実験的に確認した。 The elements 41 (granular (preferably spherical) porous ceramics) produced in this manner are brought into contact with each other, and oxygen 42, which is a positive electrode active material, is contained in the gaps between the elements 41. The air containment structure 4 as shown is obtained. Preferably, the spherical elements 41 are arranged in a container 10 in a hexagonal close-packed structure. The air storage structure 4 retains oxygen 42 in the air, and the oxygen 42 as the positive electrode active material passes through the air storage structure 4. Such an air storage structure 4 makes it possible to promote the chemical reaction (reduction reaction of oxygen) of the air battery, thereby improving the discharge efficiency. The air storage structure 4 (element 4 1) in contact with the periphery of the separator 3 has a thickness of 1 mm or more based on the surface of the negative electrode active material 2-. The oxygen contained in the air storage structure 4 is-. Function as In other words, the positive electrode active material is substantially consumed unless oxygen as the positive electrode active material is supplied to the positive electrode to some extent. Conversely, when oxygen as the positive electrode active material is continuously supplied to the positive electrode side, oxygen as the positive electrode active material is continuously reduced at the positive electrode side, and the positive electrode active material is not consumed. It was experimentally confirmed that the positive electrode active material continuously reacted when the thickness of the air containment structure 4 (element 41) was 10 mm or more with respect to the surface of the negative electrode active material 2.
好ましくは、 空気格納構造 4を製造する際に、 f ) 要素 4 1 (多孔質セラミツ ク) を乾燥させた後、 g) 要素 4 1を、 例えば 4 %の塩化ナトリウム水溶液中に 置き、 或いは、 要素 4 1中に塩化ナトリウム水溶液をしみ込ませ、 その結果、 要 素 4 1間の接触面積を増加させる。 これにより、 負極活物質 2から放電された電 子は、 空気格納構造 4中を通過し易くなり、 内部抵抗が下がる。 従って、 高い電 流容量を得ることができる。  Preferably, in producing the air containment structure 4, f) after drying the element 41 (porous ceramic), g) placing the element 41 in, for example, a 4% aqueous sodium chloride solution, or An aqueous solution of sodium chloride is impregnated into the element 41, thereby increasing the contact area between the elements 41. This makes it easier for the electrons discharged from the negative electrode active material 2 to pass through the air storage structure 4 and lowers the internal resistance. Therefore, a high current capacity can be obtained.
なお、 図 2に示すように、 集電極 (正極) 8は、 正極活物質 (空気格納構造 4 ) と接するように設けられ、 集電極 8から電流を取り出すことができる。 また、 容 器 1 0は、 負極活物質 2と、 セパレータ 3と、 空気格納構造 4 (正極活物質であ る酸素) と、 電解液 5と、集電極 8とを収納する。負極端子 6及び正極端子 7は、 それぞれ、 負極活物質 2及び集電極 8と電気的に接続される。 負極端子 6及び正 極端子 7は、 容器 1 0を貫通して設けられている。 負極端子 6及び正極端子 7の 少なくとも一方と容器 1 0との間の隙間を塞がないことにより、 その隙間から、 容器 1 0の外部にある空気中の酸素を容器 1 0の外部に取り込むことができる。 なお、 負極端子 6及び正極端子 7と容器 1 0との間の隙間を塞ぎ、 容器 1 0に通 気孔ないし通気口を設けることにより、 空気中の酸素を、 容器 1 0の内部に取り 込んでもよい。  As shown in FIG. 2, the collector electrode (positive electrode) 8 is provided so as to be in contact with the positive electrode active material (air storage structure 4), so that current can be extracted from the collector electrode 8. The container 10 houses the negative electrode active material 2, the separator 3, the air storage structure 4 (oxygen as the positive electrode active material), the electrolyte 5, and the collector 8. Negative electrode terminal 6 and positive electrode terminal 7 are electrically connected to negative electrode active material 2 and collector electrode 8, respectively. The negative electrode terminal 6 and the positive electrode terminal 7 are provided through the container 10. Since the gap between at least one of the negative electrode terminal 6 and the positive electrode terminal 7 and the container 10 is not closed, oxygen in the air outside the container 10 is taken into the outside of the container 10 from the gap. Can be. In addition, by closing the gap between the negative electrode terminal 6 and the positive electrode terminal 7 and the container 10 and providing the container 10 with a ventilation hole or a vent, oxygen in the air can be taken into the container 10. Good.
図 4に示すように、 本発明の空気電池 1は、 空気格納構造 4の要素 4 1をある 程度固定し、 また、 電極と端子とを繋ぐリード線及び電極の腐食 (電解質 5によ る腐食) を防止するために、 空気格納構造 4の上部を覆う隔壁 1 1を備えること ができる。 隔壁 1 1は、 例えば、 非腐食性の物質 (例えば、 プラスチック) であ る。 隔壁 1 1の一部には、 通気手段 1 2 (例えば、 通気膜) が設けられ、 容器 1 0の外部から内部に取り込んだ空気 (酸素及び水分) は、通気手段 1 2を介して、 空気格納構造 4内に取り込まれる。 通気手段 1 2は、 例えば、 ゴァテックス繊維 である。 As shown in FIG. 4, in the air battery 1 of the present invention, the element 41 of the air storage structure 4 is fixed to some extent, and the lead wire connecting the electrode and the terminal and the electrode are corroded (by the electrolyte 5). In order to prevent corrosion of the air, a partition 11 covering the upper part of the air containment structure 4 can be provided. The partition 11 is, for example, a non-corrosive substance (for example, plastic). A part of the partition 11 is provided with a ventilation means 12 (for example, a ventilation film), and air (oxygen and moisture) taken in from the outside of the container 10 is supplied to the air through the ventilation means 12. Taken into storage structure 4. The ventilation means 12 is, for example, Goatex fiber.
図 2に戻り、 集電極 8は 例えば、 炭素又は炭素化合物である。 好ましくは、 集電極 8は、黒鉛化している炭素又は炭素化合物である。炭素又は炭素化合物は.. 灰分が少ない程良い。 その理由は、 灰分が、 内部抵抗の成分となるからである。 灰分の多量存在による内部抵抗は、 負極活物質の放電特性を悪化させるが、 通常 入手可能な炭素又は炭素化合物の灰分は、 約 4重量%であり、 4重量%の灰分で あれば、 放電特性の悪化は、 認められない。 従って、 好ましくは、 炭素又は炭素 化合物の灰分は、 4重量%以下である。  Returning to FIG. 2, the collecting electrode 8 is, for example, carbon or a carbon compound. Preferably, collector electrode 8 is graphitized carbon or a carbon compound. For carbon or carbon compounds, the lower the ash content, the better. This is because ash is a component of internal resistance. Although the internal resistance due to the presence of a large amount of ash deteriorates the discharge characteristics of the negative electrode active material, usually available ash of carbon or carbon compound is about 4% by weight. No worsening is observed. Therefore, preferably, the ash content of the carbon or carbon compound is not more than 4% by weight.
電解質 5は、 空気中の水分を吸入する性能を持つ。 電解質 5の 1例は、 塩化ァ ルミニゥム水溶液である。 電解質 5のもう 1つの例は、 塩化カルシウム水溶液で ある。 電解質 5は、 空気中の水分を吸入する性能を持っため、 酸化還元反応に用 いられる水の消費量が多い場合であっても、 その量に対応する水を空気中から取 り込むことができる。 言い換えれば、 電解質 5は、 それ自身に内在する水分によ つて水を供給するだけでなく、 空気中の水分を、 容器 1 0の通気手段 (負極端子 6及び正極端子 7と容器 1 0との間の隙間、 容器 1 0に設けられた通気孔ないし 通気口など) と、 通気手段 1 2が設けられている場合には隔壁 1 1の通気手段 1 2とを介して、 取り込むことができる。 これにより、 水の消費量が、 水の供給量 と平衡し、 その結果、 ドライアップ現象を回避し、 電池の性能を十分に機能させ ることができる。  Electrolyte 5 has the ability to inhale moisture in the air. One example of the electrolyte 5 is an aqueous solution of aluminum chloride. Another example of electrolyte 5 is an aqueous solution of calcium chloride. Electrolyte 5 has the ability to inhale moisture in the air, so even if the amount of water used for the oxidation-reduction reaction is large, water corresponding to that amount can be taken in from the air. it can. In other words, the electrolyte 5 not only supplies water by its own internal moisture, but also removes the moisture in the air from the ventilation means of the container 10 (the connection between the negative electrode terminal 6 and the positive electrode terminal 7 and the container 10). The air can be taken in through a gap between them, a vent or a vent provided in the container 10) and, if the vent 12 is provided, through the vent 12 of the partition 11. As a result, the water consumption is balanced with the water supply, and as a result, the dry-up phenomenon can be avoided, and the performance of the battery can be fully functioned.
また、 電解質 5として、 塩化アルミニウム水溶液を使用し、 負極側で水素が発 生する場合であっても、 空気格納構造 (気体格納構造) 4は、 空気中の酸素 4 2 を保持するとともに、 負極側で発生する水素を保持することができる。 これによ り、 電池の安全性を向上させることができる。 言い換えれば、 負極活物質 2とし て、 高い放電特性を持つアルミニウム又はアルミニウム合金を使用しても、 負極 側で発生する水素の問題を回避することができる。 なお、 容器 1 0を、 腐食性の 物質 (例えば、 アルミニウム) の代わりに非腐食性の物質 (例えば、 プラスチッ ク) で構成することにより、 容器で発生する水素の問題 (容器の崩壊) を回避す ることができる。 In addition, even when hydrogen chloride is generated on the negative electrode side using an aqueous solution of aluminum chloride as the electrolyte 5, the air containment structure (gas containment structure) 4 retains oxygen 42 in the air, The hydrogen generated on the side can be retained. Thereby, the safety of the battery can be improved. In other words, even if aluminum or an aluminum alloy having high discharge characteristics is used as the negative electrode active material 2, The problem of hydrogen generated on the side can be avoided. The problem of hydrogen generated in the container (collapse of the container) can be avoided by configuring the container 10 with a non-corrosive substance (eg, plastic) instead of a corrosive substance (eg, aluminum). can do.
好ましくは、 電解液 5は、 水分を吸入する性能を持つ物質を飽和濃度まで溶解 した水溶液 (例えば、 飽和塩化アルミニウム水溶液、 飽和塩化カルシウム水溶液 など) である。 その理由は、 電解液 5が、 空気中の水分を吸入しても、 電解液 5 の濃度が、 飽和濃度で、 一定になるからである。 即ち、 電解液 5の濃度が安定す ることにより、 安定した電流値及び電圧値を供給することができる。 なお、 塩ィ匕 カルシウム水溶液は、塩化アルミニウム水溶液と比べて、高い吸水性を持っため、 より安定した電流値及び電圧値を供給することができる。  Preferably, the electrolytic solution 5 is an aqueous solution in which a substance capable of inhaling moisture is dissolved to a saturated concentration (for example, a saturated aluminum chloride aqueous solution, a saturated calcium chloride aqueous solution, and the like). The reason is that even if the electrolyte 5 inhales the moisture in the air, the concentration of the electrolyte 5 is constant at the saturation concentration. That is, when the concentration of the electrolytic solution 5 is stabilized, a stable current value and voltage value can be supplied. It should be noted that the Shiridani calcium aqueous solution has a higher water absorption than the aluminum chloride aqueous solution, so that more stable current and voltage values can be supplied.
さらに好ましくは、 電解液 5は、 塩化アルミニウム及び塩化カルシウムの双方 を飽和濃度まで溶解した水溶液である。 塩化カルシウム水溶液は、 空気中の二酸 化酸素を取り込み、 炭酸ガス水溶液を生成する一方、 塩化カルシウム水溶液は、 炭酸ガスと反応し、通電阻害物質(炭酸カルシウム) を生成する。 しかしながら、 塩化カルシウムだけでなく、 塩化物塩 (例えば、 塩化アルミニウム) も含む水溶 液の P hが、 炭酸ガス水溶液の p hと比べて、 より小さい (より酸性である) の で、 塩化アルミニウム及び塩化カルシウムの双方を溶解した水溶液は、 塩化アル ミニゥムと炭酸ガスとが反応し難く、 通電阻害物質 (炭酸カルシウム) を生成し 難い、 という性質を持つ。 従って、 電解液 5が、 塩化アルミニウム及び塩化カル シゥムの双方を含むことにより、 放電効率を改善することができる。 加えて、 負 極活物質 (負極) 2が、 アルミニウム又はアルミニウム合金である場合、 塩化物 塩は、 好ましくは、 塩化アルミニウムである。 塩化アルミニウム (塩化物塩) 及 ぴ塩化カルシゥムの双方を溶解した水溶液は、 負極と同じ元素のアルミニウムを イオンとして有するため、 酸化還元反応を促進することができる。 これにより、 放電効率を改善することができる。  More preferably, the electrolytic solution 5 is an aqueous solution in which both aluminum chloride and calcium chloride are dissolved to a saturation concentration. The aqueous solution of calcium chloride takes in oxygen dioxide in the air and produces an aqueous solution of carbon dioxide, while the aqueous solution of calcium chloride reacts with carbon dioxide to produce a substance that inhibits electricity (calcium carbonate). However, since the Ph of an aqueous solution containing not only calcium chloride but also a chloride salt (for example, aluminum chloride) is smaller (more acidic) than the pH of an aqueous solution of carbon dioxide, aluminum chloride and chloride An aqueous solution in which both calcium are dissolved has a property that aluminum chloride and carbon dioxide gas are unlikely to react with each other, and it is difficult to generate a current-carrying substance (calcium carbonate). Therefore, the discharge efficiency can be improved when the electrolytic solution 5 contains both aluminum chloride and calcium chloride. In addition, when the negative electrode active material (negative electrode) 2 is aluminum or an aluminum alloy, the chloride salt is preferably aluminum chloride. Since the aqueous solution in which both aluminum chloride (chloride salt) and calcium chloride are dissolved has aluminum as an ion of the same element as the negative electrode, the redox reaction can be promoted. Thereby, the discharge efficiency can be improved.
また、 好ましくは、 電解質 5は更に、 中性塩 (例えば、 塩化ナトリウム、 塩化 カルシウム、 塩化アンモニゥム、 塩化カリウム、 その他の同様なもの、 及びこれ らの組み合わせ) を含む。 中性塩の濃度が、 0 . 1重量%以上で飽和濃度までの 範囲で、 中性塩は、 機能して、 イオン伝導体を増加させ、 これにより、 放電効率 を改善することができる。 好ましくは、 中性塩の濃度は、 飽和濃度である。 Also, preferably, the electrolyte 5 further comprises a neutral salt (eg, sodium chloride, calcium chloride, ammonium chloride, potassium chloride, and the like, and combinations thereof). When the concentration of neutral salt exceeds 0.1% by weight To the extent neutral salts can function and increase the ionic conductor, thereby improving discharge efficiency. Preferably, the concentration of the neutral salt is a saturating concentration.
電解質 5が液体であり、 酸性である場合 更に好ましくは、 電解質 5は更に、 ハロゲン化物と水素との化合物(例えば、 塩化水素) を含む。塩化水素の濃度は、 0 . 1重量%以上で、機能して、酸化還元反応によって生じる難溶性の生成物(例 えば、 式 ( 2 ) における A 1 (O H) 3 ) を水溶性に変化させることができる。 即ち、 通電阻害物質である難溶性の生成物を取り除き、 これにより、 放電効率を 改善することができる。 しかしながら、 塩化水素が電解質 5中に多量に存在する ことは、 好ましくない。 その理由は、 多量の塩化水素が、 電池としての反応以外 に、 能動的に負極活物質 (例えば、 アルミニウム) を溶解させるためである。 従 つて、 好ましくは、 塩化水素の濃度は、 0 . 1重量%である。 When the electrolyte 5 is liquid and acidic More preferably, the electrolyte 5 further contains a compound of a halide and hydrogen (for example, hydrogen chloride). When the concentration of hydrogen chloride is greater than 0.1% by weight, it functions to convert poorly soluble products (eg, A 1 (OH) 3 in the formula (2)) generated by the redox reaction into water soluble. be able to. That is, the poorly soluble product which is a current blocking substance is removed, thereby improving the discharge efficiency. However, it is not preferable that a large amount of hydrogen chloride is present in the electrolyte 5. The reason is that a large amount of hydrogen chloride actively dissolves the negative electrode active material (eg, aluminum) in addition to the reaction as a battery. Thus, preferably, the concentration of hydrogen chloride is 0.1% by weight.
電解質 5が液体であり、 アルカリ性である場合、 更に好ましくは、 電解質 5は 更に、 水溶性の塩基 (例えば、 水酸化ナトリウム、 アンモニゥム、 水酸化カルシ ゥム、 その他の同様なもの、 及びこれらの組み合わせ) を含む。水溶性の塩基は、 0 . 1重量%以上で 1 0重量%以下の範囲で、 機能して、 酸化還元反応によって 生じる難溶性の生成物 (例えば、 式 (2 ) における A 1 (OH) 3) を水溶性に 変化させることができる。即ち、通電阻害物質である難溶性の生成物を取り除き、 これにより、 放電効率を改善することができる。 If the electrolyte 5 is liquid and alkaline, more preferably, the electrolyte 5 further comprises a water-soluble base (e.g., sodium hydroxide, ammonium, calcium hydroxide, and the like, and combinations thereof). ) including. The water-soluble base functions in the range of 0.1% by weight or more and 10% by weight or less to form a poorly soluble product (for example, A 1 (OH) 3 in the formula (2)) generated by the redox reaction. ) Can be changed to water-soluble. In other words, poorly soluble products that are current-disturbing substances are removed, thereby improving discharge efficiency.
なお、 電解質 5は、 図 2のように、 セパレ一タ 3の内部及び空気格納構造 4の 内部に保有されてもよく、 或いは、 図 5のように、 入れ物としてのセパレー夕 3 の中に格納され、 空気格納構造 4の内部に保有されてもよい。  The electrolyte 5 may be held inside the separator 3 and the air containment structure 4 as shown in FIG. 2, or may be stored inside the separator 3 as a container as shown in FIG. And may be held inside the air containment structure 4.
加えて、 正極活物質としての二酸化マンガンの代わりに、 空気中の酸素を使用 し、 さらに、 空気格納構造 4の要素 4 1.に二酸ィヒマンガンを使用しないことによ り、 環境にやさしい電池を提供することができる。  In addition, the use of oxygen in the air instead of manganese dioxide as the positive electrode active material, and the elimination of manganese dioxide for element 4 1. of the air containment structure 4 allows for environmentally friendly batteries. Can be provided.
なお、 本発明の空気電池は、 上述の実施形態及び後述の実施例にのみ限定され るものではなく、 本発明の要旨を逸脱しない範囲内において種々変更を加え得る ことは勿論である。  It should be noted that the air battery of the present invention is not limited to the above-described embodiment and examples described later, and it is needless to say that various changes can be made without departing from the gist of the present invention.
例えば、 図 6に示すように、 空気電池の空気格納構造 4を、 一次電池の気体格 納構造 6 3に採用することができるであろう。 これにより、 一次電池の電解質と 3 011154 For example, as shown in FIG. 6, the air storage structure 4 of the air battery could be adopted as the gas storage structure 63 of the primary battery. This allows the primary battery electrolyte and 3 011154
して塩化アルミニウム水溶液を使用し、 負極 6 5側で水素が発生する場合であつ ても、 気体格納構造 6 3は、 負極側で発生する水素を保持することができる。 な お 一次電池は、 概して、 正極 6 1と 集電極 6 2と、 正極物質である酸素を保 持する気体格納構造 6 3と、 セパレータ 6 4と、 負極活物質 (負極) 6 5とを備 える。 Even when hydrogen is generated on the negative electrode 65 side using an aluminum chloride aqueous solution, the gas storage structure 63 can hold the hydrogen generated on the negative electrode side. A primary battery generally includes a positive electrode 61, a collector electrode 62, a gas storage structure 63 that holds oxygen as a positive electrode material, a separator 64, and a negative electrode active material (negative electrode) 65. I can.
また、 図 7に示すように、 空気電池の空気格納構造 4を、 燃料電池の気体格納 構造 7 2 , 7 4に採用することができるであろう。 これにより、 燃料電池の酸化 還元反応を促進することができる。 なお、 燃料電池 (単セル) は、 概して、 セパ レー夕 7 1と、 気体格納構造を採用する燃料極 7 2と、 電解質 7 3と、 気体格納 構造を採用する空気極 7 4とを備える。  Also, as shown in FIG. 7, the air storage structure 4 of the air cell could be adopted as the gas storage structure 72, 74 of the fuel cell. Thereby, the oxidation-reduction reaction of the fuel cell can be promoted. The fuel cell (single cell) generally includes a separator 71, a fuel electrode 72 using a gas storage structure, an electrolyte 73, and an air electrode 74 using a gas storage structure.
実施例 1  Example 1
図 2に示す空気電池 1 0の 1例を、 以下に説明する。負極活物質(負極) 2は、 アルミニウム板であり、 その厚さは、 3 mmであり、 幅は、 5 5 mmであり、 長 さは、 9 0 mmであり、 アルミニウム板の重さは、 4 2 gである。 セパレ一夕 3 は、 親水性のセパレー夕であり、 繊維質であるビスコースを主体とする厚さ l m mのレーヨン繊維腐食布である。 アルミニウム板は、 他の構成要素と直接接触し ないように、 レーヨン繊維腐食布で覆われている。 レーヨン繊維腐食布で覆われ たアルミニウム板は、 レーヨン繊維腐食布の周囲からいずれの方向にも 1 0 mm 以上の厚さを確保できる容器 1 0に入れられている。 容器 1 0の幅は、 5 7 mm であり、 厚さは、 1 5 mmであり、 高さは、 9 2 mmである。  One example of the air battery 10 shown in FIG. 2 will be described below. The negative electrode active material (negative electrode) 2 is an aluminum plate, the thickness is 3 mm, the width is 55 mm, the length is 90 mm, and the weight of the aluminum plate is 4 2 g. Separe Ichi 3 is a hydrophilic separee, a 1 mm thick rayon fiber corroded cloth mainly composed of fibrous viscose. The aluminum plate is covered with a rayon fiber corroded cloth to prevent direct contact with other components. The aluminum plate covered with the rayon fiber corroded cloth is placed in a container 10 capable of securing a thickness of 10 mm or more in any direction from the surroundings of the rayon fiber corroded cloth. The width of the container 10 is 57 mm, the thickness is 15 mm, and the height is 92 mm.
空気格納構造 4の要素 4 1は、 日本エンバイ口ケミカルズ株式会社から入手可 能な ΓΧ 7 0 0 0 Η— 3」 であり、 球状の多孔質セラミックである。 球状の多孔 質セラミックの平均直径は、 ほぼ 5 mmであり、 この球状の多孔質セラミツ クを精製水により洗浄し、 洗浄したものを乾燥させる。 このようにして精製水に より洗浄された球状の多孔質セラミックを、 容器 1 0に入れられたアルミニウム 板 (レーヨン繊維腐食布) の周囲に、 5 0 g充填する。 球状の多孔質セラミック の比表面積は、 1 0 0 0 m2Z gである。 The element 41 of the air containment structure 4 is {700} -3 available from Nippon Environmental Chemicals Co., Ltd., and is a spherical porous ceramic. The average diameter of the spherical porous ceramic is about 5 mm. The spherical porous ceramic is washed with purified water, and the washed one is dried. 50 g of the spherical porous ceramic thus washed with the purified water is filled around an aluminum plate (rayon fiber corroded cloth) placed in the container 10. The specific surface area of the porous ceramic spherical is 1 0 0 0 m 2 Z g .
集電極 8は、 炭素を主体とする黒鉛板であり、 その厚さは、 0 . 5 mmであり、 幅は、 5 5 mmであり、長さは、 9 0 mmである。黒鉛板を、空気格納構造 4 (要 素 41間) の中に挿入する。 The collector electrode 8 is a graphite plate mainly composed of carbon, has a thickness of 0.5 mm, a width of 55 mm, and a length of 90 mm. Place the graphite plate in the air containment structure 4 (required (Between element 41).
電解質 5は、 飽和濃度まで塩化アルミニウムを溶解した水溶液に、 1重量 の 塩酸を加えた電解液を用いる。 この電解液が、 アルミニウム板を覆うレーヨン繊 維腐食布の内部に保有されるように、 電解液をレーヨン繊維腐食布に 40 c c流 し込む。 このとき、 電解液は、 空気格納構造 4の要素 41にも、 保有される。 電圧計のクリップの一方をアルミニウム板 (負極) に接続し、 クリップの他方 を黒鉛板 (正極) に接続し、 両極間の起電電圧を測定したところ、 1. 2Vの起 電電圧を得た。 さらに、 その電圧計に、 0. 1 Ωの抵抗を接続した電流計 (例え ば、 横河電気株式会社から入手可能な直流電流 ·電圧計「2012」) を並列に接 続したところ、 2. 1 Aの電流を得た。 0. 1 Ωの抵抗を取り外し、 短絡電流を 測定したところ、 2. 8 Aの電流を得た。  As the electrolyte 5, an electrolytic solution obtained by adding 1 weight of hydrochloric acid to an aqueous solution in which aluminum chloride is dissolved to a saturation concentration is used. The electrolyte is poured into the corroded rayon cloth at 40 cc so that the electrolyte is retained inside the corroded rayon fiber cloth covering the aluminum plate. At this time, the electrolyte is also retained in the element 41 of the air containment structure 4. One of the voltmeter clips was connected to an aluminum plate (negative electrode), and the other clip was connected to a graphite plate (positive electrode) .The electromotive voltage between both electrodes was measured, and an electromotive voltage of 1.2 V was obtained. . Furthermore, an ammeter with a 0.1 Ω resistor connected to it (for example, a DC current / voltmeter 2012 available from Yokogawa Electric Corporation) was connected in parallel. A current of 1 A was obtained. When the 0.1 Ω resistor was removed and the short-circuit current was measured, a current of 2.8 A was obtained.
さらに、 その電圧計に、 20Ωの抵抗を接続した電流計を並列に接続したとこ ろ、 50mAの電流を得た。 この状態を 30日間放置したところ、 起電電圧は、 IVとなり、 電流は、 50mAのままであった。  Furthermore, when an ammeter connected to a 20Ω resistor was connected in parallel to the voltmeter, a current of 50 mA was obtained. When this state was left for 30 days, the electromotive voltage was IV and the current remained at 50 mA.
これまでの放電容量を計算したところ、 実施例 1の放電容量は、 1. 1VX0. 05AX (24時間 X 30日間) =39. 6Whであった。  When the discharge capacity thus far was calculated, the discharge capacity of Example 1 was 1.1VX0.05AX (24 hours × 30 days) = 39.6 Wh.
このような酸化還元反応後のアルミニウム板を洗浄し、 その重量を測定したと ころ、 アルミニウム板の重量は、 38 gであり、 反応前と比べて、 4g減少した。  When the aluminum plate after such a redox reaction was washed and its weight was measured, the weight of the aluminum plate was 38 g, which was 4 g less than before the reaction.
比較例 1  Comparative Example 1
比較例として市販のマンガン単一電 を用いて同様の試験をしたところ、 起電 電圧は、 1. 5 Vであり、 48時間で、 1. 5 Vから 1. 0 Vへの電圧低下が認 められた。 電圧低下の際の電流は、 50mAであった。 この場合の放電容量を計 算したところ、 比較例 1の放電容量は、 1. 25VX0. 05mAX (24時間 X 2日間) =3Whであった。  As a comparative example, a similar test was conducted using a commercially available single manganese electrode. The electromotive voltage was 1.5 V, and a voltage drop from 1.5 V to 1.0 V was observed in 48 hours. Was called. The current during the voltage drop was 50 mA. When the discharge capacity in this case was calculated, the discharge capacity of Comparative Example 1 was 1.25 VX 0.05 mAX (24 hours × 2 days) = 3 Wh.
アルミニウム板を負極として採用する実施例 1の空気電池の構成要素の総重量 は、 150 gであった。 また、 比較例 1としての単一電池の重量も、 同様に 15 0 gであった。 したがって、 アルミニウムを負極として採用する実施例 1の空気 電池は、 一般に普及している単一電池の 13倍以上の放電容量が認められた。 実施例 2 図 2に示す空気電池 10のもう 1つの例に関して、 以下に、 実施例 1との相違 点のみを説明する。 実施例 1の電解質 5の代わりに、 実施例 2の電解質 5は、 精 製水 1リットルに、 塩化カルシウム 420 g/'Jットルと、 アンモニア (水溶性 の塩基) 20 c c/リットルとを加えた電解液を用いる。 この電解液をレーヨン 繊維腐食布に 50 c c流し込む。 The total weight of the components of the air battery of Example 1 employing an aluminum plate as the negative electrode was 150 g. The weight of the single battery as Comparative Example 1 was also 150 g. Therefore, the discharge capacity of the air battery of Example 1 employing aluminum as the negative electrode was 13 times or more that of a single battery that is widely used. Example 2 With respect to another example of the air battery 10 shown in FIG. 2, only differences from the first embodiment will be described below. Instead of the electrolyte 5 of Example 1, the electrolyte 5 of Example 2 was prepared by adding 420 g / 'J liter of calcium chloride and 20 cc / liter of ammonia (a water-soluble base) to 1 liter of purified water. Use electrolyte. Pour 50 cc of this electrolyte into a rayon fiber corroded cloth.
電圧計のクリップの一方をアルミニウム板 (負極) に接続し、 クリップの他方 を黒鉛板 (正極) に接続し、 両極間の起電電圧を測定したところ、 1. 5Vの起 電電圧を得た。 さらに、 その電圧計に、 0. 1 Ωの抵抗を接続した電流計を並列 に接続したところ、 1. 1 Aの電流を得た。 0. 1 Ωの抵抗を取り外し、 短絡電 流を測定したところ、 2. 2 Aの電流を得た。  One of the voltmeter clips was connected to an aluminum plate (negative electrode), and the other clip was connected to a graphite plate (positive electrode). The electromotive voltage between both electrodes was measured, and an electromotive voltage of 1.5 V was obtained. . Furthermore, when an ammeter connected to a 0.1 Ω resistor was connected in parallel to the voltmeter, a current of 1.1 A was obtained. When the 0.1 Ω resistor was removed and the short-circuit current was measured, a current of 2.2 A was obtained.
電流計に接続された 0. 1 Ωの抵抗を 3 Ωに取り替えた電圧及び電流測定器を 用意する。 即ち、 3 Ωの抵抗に電流計を直列に接続したものに、 電圧計を並列に 接続したものを用意し、 電圧計及び電流計用のクリップの一方をアルミニウム板 (負極) に接続し、 クリップの他方を黒鉛板(正極) に接続する。 終止電圧を 1. 0 Vとして、 起電電圧及び電流を計測した。 7日と 2時間 17分で、 実施例 2の 空気電池の起電電圧は、 終止電圧に達した。  Prepare a voltage and current measuring instrument with the 0.1 Ω resistor connected to the ammeter replaced by 3 Ω. That is, prepare one with a 3 Ω resistor connected in series with an ammeter in series with a voltmeter in parallel. Connect one of the clips for the voltmeter and the ammeter to the aluminum plate (negative electrode). Is connected to a graphite plate (positive electrode). The electromotive voltage and current were measured with a final voltage of 1.0 V. At 7 days, 2 hours and 17 minutes, the electromotive voltage of the air battery of Example 2 reached the cutoff voltage.
比較例 1のマンガン単一電池を用いて同様の試験をしたところ、 5時間 49分 で、 比較例 1の単位一電池の起電電圧は、 終止電圧に達した。  When a similar test was performed using the manganese single battery of Comparative Example 1, the electromotive voltage of the unit battery of Comparative Example 1 reached the cutoff voltage in 5 hours and 49 minutes.
実施例 2の空気電池及び比較例 1の単一電池の開始電圧は、 ともに 1. 5Vで あり、 開始電圧での電流は、 ともに 0. 5 Aであった。 また、 終止電圧での電流 は、 ともに 0. 34Aであった。  The starting voltage of both the air battery of Example 2 and the single battery of Comparative Example 1 was 1.5 V, and the current at the starting voltage was 0.5 A. In addition, the current at the final voltage was 0.34 A in both cases.
実施例 2の空気電池及び比較例 1の単一電池の放電容量を、 以下の式を用いて 計算した。  The discharge capacity of the air battery of Example 2 and the single battery of Comparative Example 1 were calculated using the following formula.
放電容量 = ( (1. 5 + 1. 0) /2) X ( (0. 5 + 0. 34) / 2) X (放 電時間 (h r) )  Discharge capacity = ((1.5 + 1.0) / 2) X ((0.5 + 0.34) / 2) X (discharge time (hr))
計算の結果、 実施例 2の空気電池の放電容量は、 89. 4Whであり、 比較例 1の単一電池の放電容量は、 3. OWhであった。 実施例 2の空気電池及び比較 例 1の単一電池の重量は、 ともに 150 gであった。 以上から、 実施例 2の空気 電池は、 比較例 1の単一電池に比べて、 実用域での放電容量が約 30倍となるこ とが判明した。 As a result of the calculation, the discharge capacity of the air battery of Example 2 was 89.4 Wh, and the discharge capacity of the single battery of Comparative Example 1 was 3. OWh. The weight of both the air battery of Example 2 and the single battery of Comparative Example 1 was 150 g. From the above, it can be seen that the air battery of Example 2 has about 30 times the discharge capacity in the practical range as compared with the single battery of Comparative Example 1. It turned out.
実施例 3  Example 3
図 2に示す空気電池 10のもう 1つの例に関して、 以下に、 実施例 1との相違 点のみを説明する。  With respect to another example of the air battery 10 shown in FIG. 2, only differences from the first embodiment will be described below.
負極活物質 (負極) 2としてのアルミニウム板の厚さは、 5 mmであり、 幅は、 100mmであり、 長さ (高さ) は、 150mmであり、 アルミニウム板の重さ は、 2 10 gである。 塩化ビニール製の容器 10の幅は、 50mmであり、 厚さ は、 50mmであり、 高さは、 160mmである。 親水性のセパレ一タ 3は、 繊 維質である発泡メラミン樹脂からなるスポンジである。 精製水により洗浄された 球状の多孔質セラミックを、 容器 10に入れられたアルミニウム板 (スポンジ) の周囲に、 940 c c (676 g)充填する。集電極 8としての黒鉛板の厚さは、 lmmであり、 幅は、 100mmであり、 長さは、 150mmである。 実施例 1 と同様の電解液 (飽和濃度まで塩化アルミニウムを溶解した水溶液に、 1重量% の塩酸を加えた電解液) を、 スポンジに 1 50 c c流し込む。  The thickness of the aluminum plate as the negative electrode active material (negative electrode) 2 is 5 mm, the width is 100 mm, the length (height) is 150 mm, and the weight of the aluminum plate is 2 10 g It is. The width of the container 10 made of vinyl chloride is 50 mm, the thickness is 50 mm, and the height is 160 mm. The hydrophilic separator 3 is a sponge made of a foamed melamine resin which is a fiber. Around the aluminum plate (sponge) placed in the container 10, 940 cc (676 g) of spherical porous ceramic washed with purified water is filled. The thickness of the graphite plate as the collecting electrode 8 is lmm, the width is 100 mm, and the length is 150 mm. The same electrolytic solution as in Example 1 (an electrolytic solution obtained by adding 1% by weight of hydrochloric acid to an aqueous solution in which aluminum chloride is dissolved to a saturation concentration) is poured into a sponge at 150 cc.
このようにして製造する空気電池を 6個用意し、 これらの空気電池を電気的に 直列を構成した状態で接続した。 このように直列接続された空気電池に、 豪雪地 帯で使用されている道路標識の LED発光型の矢羽根 (6 V ·平均 50mA消費 型) を接続したところ、 LEDは、 点灯した。 空気電池及び矢羽根を野外に設置 し、 LEDを連続点灯させたところ、 LEDは、 372日目に消灯した。  Six air cells manufactured in this way were prepared, and these air cells were connected in a state of being electrically connected in series. The LED was turned on when an air-battery connected in series was connected to an arrow wing (6 V, averaging 50 mA consumption type), which is a road sign used in heavy snowfall areas. An air battery and arrow blades were installed outdoors, and the LED was turned on continuously. The LED turned off on the 372th day.
この実験後、 アルミニウム板を洗?争し、 その重量を測定したところ、 アルミ二 ゥム板の重量は、 10gであり、 実験前と比べて、 200 g減少した。 したがつ て、 200 gのアルミニウムから、 2678 Whの放電容量を得ることができた。 即ち、 実施例 3の空気電池は、 アルミニウム 1 g当り 13. 4Whを発生した。  After this experiment, the aluminum plate was washed out and its weight was measured. The weight of the aluminum plate was 10 g, which was 200 g less than before the experiment. Thus, a discharge capacity of 2678 Wh could be obtained from 200 g of aluminum. That is, the air battery of Example 3 generated 13.4 Wh per g of aluminum.
実施例 4  Example 4
図 2に示す空気電池 10のもう 1つの例に関して、 以下に、 実施例 3との相違 点のみを説明する。 実施例 3の電解質 5の代わりに、 実施例 2の電解質 5は、 実 施例 2と同様に、 精製水 1リットルに、 塩化カルシウム 420 g,リットルと、 アンモニア 20 c c,ノリットルとを加えた電解液である。 この電解液をスポンジ に 1 50 c c流し込む。 このようにして製造する空気電池を 6個用意し、 これらの空気電池を電気的に 直列を構成した状態で接続した。 このように直列接続された空気電池に、 高輝度 型の白色 L E D ( 5 V以上、 0 . 5 Aで動作するもの) を 3個並列に接続した状 態で、 接続したところ、 白色 L E Dは.. 点灯した。 白色 L E Dは-. 摂氏 2 0度、 1気圧の常温、 常圧下で、 1 0 0日以上点灯試験を継続した。 1 0 0日目を過ぎ ても、 白色 L E Dは点灯し続けた。 With respect to another example of the air battery 10 shown in FIG. 2, only differences from the third embodiment will be described below. In place of the electrolyte 5 of the example 3, the electrolyte 5 of the example 2 was prepared by adding 420 g, liter of calcium chloride and 20 cc, no liter of ammonia to 1 liter of purified water in the same manner as in the example 2. Electrolyte. Pour 150 cc of this electrolyte into the sponge. Six air cells manufactured in this way were prepared, and these air cells were connected in a state of being electrically connected in series. When three high-brightness white LEDs (operating at 5 V or more and 0.5 A) are connected in parallel to the air batteries connected in series in this way, the white LEDs are connected. Lights up. The white LED was on. The lighting test was continued for more than 100 days at 20 degrees Celsius, normal temperature of 1 atmosphere and normal pressure. After the 100th day, the white LED continued to light.
実施例 5  Example 5
図 2に示す空気電池 1 0のもう 1つの例に関して、 以下に、 実施例 1との相違 点のみを説明する。 実施例 1のセパレー夕 3の代わりに、 実施例 5のセパレ一タ は、 天然パルプ素材である。 また、 実施例 1の電解質 5の代わりに、 実施例 5の 電解質 5は、 精製水 1リットルに、 塩化カルシウム 7 4 5 g/リツトルと、 塩化 アルミニウムの 6水和物 4 5 0 gZリットルとを加えた電解液を用いる。 即ち、 実施例 5の電解質 5は、 重量比 5 : 3の塩化カルシウム及び塩化アルミニウムの 双方を飽和濃度まで溶解した水溶液である。 この電解液を、 天然パルプ素材に 4 2 c c流し込む。  Regarding another example of the air battery 10 shown in FIG. 2, only differences from the first embodiment will be described below. Instead of the separator 3 in Example 1, the separator in Example 5 is a natural pulp material. Further, instead of the electrolyte 5 of the example 1, the electrolyte 5 of the example 5 is obtained by adding 745 g / liter of calcium chloride and 450 gZ liter of aluminum chloride hexahydrate to 1 liter of purified water. Use the added electrolyte. That is, the electrolyte 5 of Example 5 is an aqueous solution in which both calcium chloride and aluminum chloride in a weight ratio of 5: 3 are dissolved to a saturation concentration. This electrolytic solution is poured into a natural pulp material at 42 cc.
電圧計のクリップの一方をアルミニウム板 (負極) に接続し、 クリップの他方 を黒鉛板 (正極) に接続し、 両極間の起電電圧を測定したところ、 1 . 1 5 Vの 起電電圧を得た。 さらに、 その電圧計に、 0 . 1 Ωの抵抗を接続した電流計を並 列に接続したところ、 1 . 9 Aの電流を得た。 0 . 1 Ωの抵抗を取り外し、 短絡 電流を測定したところ、 2 . 1 Aの電流を得た。  When one of the voltmeter clips was connected to an aluminum plate (negative electrode) and the other clip was connected to a graphite plate (positive electrode), and the electromotive voltage between both electrodes was measured, the electromotive voltage of 1.15 V was measured. Obtained. Further, when an ammeter connected to a 0.1 Ω resistor was connected in parallel to the voltmeter, a current of 1.9 A was obtained. When the 0.1 Ω resistor was removed and the short-circuit current was measured, a current of 2.1 A was obtained.
実施例 6  Example 6
図 5に示す空気電池 1 0の 1例に関して、 以下に、 実施例 5との相違点のみを 説明する。 実施例 5のセパレー夕 3の代わりに、 実施例 6の耐水性のセパレ一夕 3は、 セロファンである。 また、 実施例 5と同じ電解液 (重量比 5 : 3の塩化力 ルシゥム及び塩化アルミニウムの双方を飽和濃度まで溶解した水溶液) を、 入れ 物としてのセロファンに 3 c c、空気格納構造 4に 3 9 c c流し込む。このとき、 セロファン内のアルミニゥム板の表面は、 電解液と接触している。  Regarding one example of the air battery 10 shown in FIG. 5, only differences from the fifth embodiment will be described below. Instead of the separation 3 of Example 5, the water-resistant separation 3 of Example 6 is cellophane. In addition, the same electrolyte solution as in Example 5 (chloride strength of 5: 3, an aqueous solution in which both calcium and aluminum chlorides were dissolved to a saturation concentration) was added to 3 cc of cellophane as a container and 39 cc to an air containment structure 4. Pour cc. At this time, the surface of the aluminum plate in the cellophane is in contact with the electrolyte.
電圧計のクリップの一方をアルミニウム板 (負極) に接続し、 クリップの他方 を黒鉛板 (正極) に接続し、 両極間の起電電圧を測定したところ、 1 . 4 0 Vの 起電電圧を得た。 さらに、 その電圧計に、 0. 1 Ωの抵抗を接続した電流計を並 列に接続したところ、 2. 85 Aの電流を得た。 0. 1 Ωの抵抗を取り外し、 短 絡電流を測定したところ、 3. OAの電流を得た。 One of the voltmeter clips was connected to an aluminum plate (negative electrode), and the other was connected to a graphite plate (positive electrode). The electromotive voltage between both electrodes was measured. An electromotive voltage was obtained. Furthermore, an ammeter with a 0.1 Ω resistor connected in parallel to the voltmeter resulted in a current of 2.85 A. The 0.1 Ω resistor was removed, and the short-circuit current was measured.

Claims

請求 の 範囲 The scope of the claims
1. 高電流容量空気電池であって、 1. a high current capacity air battery,
正極活物質である酸素を保持し通過させる空気格納構造(4)、 及び、 空気中の 水分を吸入する性能を持つ電解質 (5)のうち、少なくとも 1つ(4, 5)を備える高  An air storage structure (4) that holds and passes oxygen, which is the positive electrode active material, and an electrolyte (5) that has the ability to inhale moisture in the air.
2. 請求項 1に記載の高電流容量空気電池であって、 2. The high current capacity air battery according to claim 1, wherein
空気格納構造(4)が、 炭素を主成分とした複数の粒状の多孔質セラミック (4 1) を備える、 高電流容量空気電池。  A high current capacity air battery in which the air containment structure (4) includes a plurality of granular porous ceramics (41) containing carbon as a main component.
3. 請求項 2に記載の高電流容量空気電池であって、  3. The high current capacity air battery according to claim 2, wherein
複数の多孔質セラミック (41) が、 互いに接触し、  Multiple porous ceramics (41) contact each other,
空気格納構造(4)が、 複数の多孔質セラミック (41) の隙間 (42) に正極 活物質である酸素を含む、 高電流容量空気電池。  A high current capacity air battery in which the air storage structure (4) contains oxygen as a positive electrode active material in gaps (42) between a plurality of porous ceramics (41).
4. 請求項 3に記載の高電流容量空気電池であって、  4. The high current capacity air battery according to claim 3, wherein
該高電流容量空気電池は、 空気格納構造(4)と負極活物質 (2) との間に、 セ パレー夕 (3) を備え、  The high current capacity air battery includes a separator (3) between the air storage structure (4) and the negative electrode active material (2),
空気格納構造(4)の厚さが、 負極活物質 (2) の表面を基準として lmm以上 である、 高電流容量空気電池。  A high current capacity air battery in which the thickness of the air containment structure (4) is at least lmm based on the surface of the negative electrode active material (2).
5. 請求項 4に記載の高電流容量空気電池であって、  5. The high current capacity air battery according to claim 4, wherein
空気格納構造(4)の厚さが、 負極活物質 (2) の表面を基準として 1 Omm以 上である、 高電流容量空気電池。  A high-current-capacity air battery in which the thickness of the air containment structure (4) is 1 Omm or more based on the surface of the negative electrode active material (2).
6. 請求項 2に記載の高電流容量空気電池であって、  6. The high current capacity air battery according to claim 2, wherein
粒状の多孔質セラミック (41) が、 親水性を備える、 高電流容量空気電池。 A high current capacity air battery with a granular porous ceramic (41) that is hydrophilic.
7. 請求項 1に記載の高電流容量空気電池であって、 7. The high current capacity air battery according to claim 1, wherein
電解質(5)が、 塩化アルミニウム、 及び、 塩化カルシウムのうち、 少なくとも 1つを備える、 高電流容量空気電池。  A high current capacity air battery, wherein the electrolyte (5) comprises at least one of aluminum chloride and calcium chloride.
8. 請求項 7に記載の髙電流容量空気電池であつて、  8. The 髙 current capacity air battery according to claim 7, wherein
電解質(5)は、 塩化アルミニウム、 及び、 塩化カルシウムのうち、 少なくとも 1つが それぞれ、 飽和濃度まで溶解した水溶液である、 高電流容量空気電池。 The high current capacity air battery, wherein the electrolyte (5) is an aqueous solution in which at least one of aluminum chloride and calcium chloride is dissolved to a saturation concentration.
9. 請求項 1に記載の高電流容量空気電池であって、 該高電流容量空気電池の負極活物質 (2 ) は、 アルミニウム又はアルミニウム 合金である、 高電流容量空気電池。 9. The high current capacity air battery according to claim 1, wherein The high current capacity air battery, wherein the negative electrode active material (2) of the high current capacity air battery is aluminum or an aluminum alloy.
1 0 . 電池用の気体格納構造であって、  10. Gas storage structure for battery,
水素及び酸素のうちの少なくとも 1つを格納するために、 炭素を主成分とした 複数の粒状の多孔質セラミックを備える気体格納構造。  A gas storage structure comprising a plurality of granular porous ceramics containing carbon as a main component for storing at least one of hydrogen and oxygen.
1 1 . 請求項 1 0に記載の気体格納構造であって、  11. The gas containment structure according to claim 10, wherein
複数の多孔質セラミックが、 互いに接触し、  Multiple porous ceramics contact each other,
気体格納構造が、 複数の多孔質セラミックの隙間に、 正極活物質である酸素を 含む、 気体格納構造。  A gas storage structure in which the gas storage structure contains oxygen, which is a positive electrode active material, in gaps between a plurality of porous ceramics.
1 2 . 請求項 1 0に記載の気体格納構造であって、  12. The gas containment structure according to claim 10, wherein
複数の多孔質セラミックが、 互いに接触し、  Multiple porous ceramics contact each other,
気体格納構造が、 複数の多孔質セラミックの隙間に、 負極活物質である水素を 含む、 燃料電池用の気体格納構造。  A gas storage structure for a fuel cell, wherein the gas storage structure contains hydrogen, which is a negative electrode active material, in a gap between a plurality of porous ceramics.
1 3 . 空気電池用の電解液 (5 ) であって、  1 3. Electrolyte (5) for air battery,
塩化アルミニウム、 及び、 塩化カルシウムのうち、 少なくとも 1つを備える電 解液。  An electrolytic solution comprising at least one of aluminum chloride and calcium chloride.
PCT/JP2003/011154 2003-03-13 2003-09-01 High current capacity battery WO2004082060A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004569368A JP4575783B2 (en) 2003-03-13 2003-09-01 High current capacity battery
AU2003261869A AU2003261869A1 (en) 2003-03-13 2003-09-01 High current capacity battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003068482 2003-03-13
JP2003068483 2003-03-13
JP2003-68483 2003-03-13
JP2003-68482 2003-03-13

Publications (1)

Publication Number Publication Date
WO2004082060A1 true WO2004082060A1 (en) 2004-09-23

Family

ID=32992967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011154 WO2004082060A1 (en) 2003-03-13 2003-09-01 High current capacity battery

Country Status (4)

Country Link
JP (1) JP4575783B2 (en)
KR (1) KR101012086B1 (en)
AU (1) AU2003261869A1 (en)
WO (1) WO2004082060A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282586A (en) * 2007-05-08 2008-11-20 Sony Corp Fuel cell, manufacturing method of fuel cell, and electronic equipment
JP2010062073A (en) * 2008-09-05 2010-03-18 Kankyo Kagaku Kenkyusho:Kk Battery using acid electrolyte
JP2010129495A (en) * 2008-11-29 2010-06-10 Equos Research Co Ltd Air battery
WO2013164525A1 (en) * 2012-05-04 2013-11-07 IFP Energies Nouvelles System comprising accumulators and air-aluminium batteries
JP2015506079A (en) * 2011-12-14 2015-02-26 エオス エナジー ストレージ, エルエルシー Electrically rechargeable metal anode cell and battery system and method
CN106252770A (en) * 2016-08-11 2016-12-21 合肥国轩高科动力能源有限公司 Method for separating anode material and current collector of waste lithium ion battery
JP6085044B1 (en) * 2016-02-08 2017-02-22 株式会社ナカボーテック Aluminum air battery and aluminum air fuel cell
JP2017054743A (en) * 2015-09-10 2017-03-16 トヨタ自動車株式会社 Electrolytic solution for metal air battery, and metal air battery
US10211464B2 (en) 2015-04-29 2019-02-19 Albufera Energy Storage, S.L. Electrochemical cell aluminum-manganese

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY145390A (en) * 2009-10-27 2012-01-27 Mimos Berhad A cyclic electrolysis apparatus and a method thereof
KR20120112457A (en) * 2009-11-19 2012-10-11 헨리 레몬트 비난드 Compressed fluid vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113278A (en) * 1979-02-26 1980-09-01 Matsushita Electric Ind Co Ltd Water-injecting type air battery
JPS5835871A (en) * 1981-08-28 1983-03-02 Toshiba Battery Co Ltd Air cell
JPS6119078A (en) * 1984-07-06 1986-01-27 Einosuke Muraki Heating mat for heating and heat-retaining
US5079106A (en) * 1990-02-09 1992-01-07 Eveready Battery Company, Inc. Air assisted alkaline cells
JPH11345611A (en) * 1998-06-03 1999-12-14 Matsushita Electric Ind Co Ltd Negative electrode for battery and its manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113278A (en) * 1979-02-26 1980-09-01 Matsushita Electric Ind Co Ltd Water-injecting type air battery
JPS5835871A (en) * 1981-08-28 1983-03-02 Toshiba Battery Co Ltd Air cell
JPS6119078A (en) * 1984-07-06 1986-01-27 Einosuke Muraki Heating mat for heating and heat-retaining
US5079106A (en) * 1990-02-09 1992-01-07 Eveready Battery Company, Inc. Air assisted alkaline cells
JPH11345611A (en) * 1998-06-03 1999-12-14 Matsushita Electric Ind Co Ltd Negative electrode for battery and its manufacture

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282586A (en) * 2007-05-08 2008-11-20 Sony Corp Fuel cell, manufacturing method of fuel cell, and electronic equipment
JP2010062073A (en) * 2008-09-05 2010-03-18 Kankyo Kagaku Kenkyusho:Kk Battery using acid electrolyte
JP2010129495A (en) * 2008-11-29 2010-06-10 Equos Research Co Ltd Air battery
JP2015506079A (en) * 2011-12-14 2015-02-26 エオス エナジー ストレージ, エルエルシー Electrically rechargeable metal anode cell and battery system and method
WO2013164525A1 (en) * 2012-05-04 2013-11-07 IFP Energies Nouvelles System comprising accumulators and air-aluminium batteries
FR2990304A1 (en) * 2012-05-04 2013-11-08 IFP Energies Nouvelles ALUMINUM AIR STORAGE AND BATTERY SYSTEM
US10211464B2 (en) 2015-04-29 2019-02-19 Albufera Energy Storage, S.L. Electrochemical cell aluminum-manganese
JP2017054743A (en) * 2015-09-10 2017-03-16 トヨタ自動車株式会社 Electrolytic solution for metal air battery, and metal air battery
JP6085044B1 (en) * 2016-02-08 2017-02-22 株式会社ナカボーテック Aluminum air battery and aluminum air fuel cell
CN106252770A (en) * 2016-08-11 2016-12-21 合肥国轩高科动力能源有限公司 Method for separating anode material and current collector of waste lithium ion battery

Also Published As

Publication number Publication date
KR20050107500A (en) 2005-11-11
AU2003261869A1 (en) 2004-09-30
KR101012086B1 (en) 2011-02-07
JP4575783B2 (en) 2010-11-04
JPWO2004082060A1 (en) 2006-06-15

Similar Documents

Publication Publication Date Title
RU2236067C2 (en) Catalytic air cathode for air-metal battery
Pei et al. A high-energy-density and long-stable-performance zinc-air fuel cell system
KR20100084666A (en) Recombinant hybrid energy storage device
JP4575783B2 (en) High current capacity battery
CN100407481C (en) Alkaline cell with improved cathode
JP6461766B2 (en) Metal-air electrochemical cell, lithium-air battery, and vehicle
JP6314152B2 (en) Prevention of deterioration of solid alkali ion conductive membrane
KR20150018527A (en) System comprising accumulators and air-aluminium batteries
US3306776A (en) Galvanic primary cell
JP6836603B2 (en) Metal-air battery
US8304121B2 (en) Primary aluminum hydride battery
CN104425856B (en) Lithium-air battery and positive electrode
CN102057525A (en) Alkaline batteries
FI113417B (en) Water-activatable battery
ES2731234T3 (en) Gas diffusion electrode, manufacturing procedure of a gas diffusion electrode and battery
JP7191039B2 (en) metal air fuel cell
TWI532242B (en) Electrochemical cell
Wang et al. Research and development of metal-air fuel cells
US10211464B2 (en) Electrochemical cell aluminum-manganese
KR20160068415A (en) An anode of lithium-air battery and a method for producing thereof
JP2018195529A (en) Metal fuel cell
CN108269990A (en) A kind of anode material of lithium-ion battery and preparation method thereof and battery
JP2002252002A (en) Fuel cell
JP2018041670A (en) Aluminum battery
JP7008300B2 (en) Power device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020057016682

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004569368

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020057016682

Country of ref document: KR

122 Ep: pct application non-entry in european phase