WO2004081879A1 - Método para la determinación de las propiedades físico-químicas de un cuerpo tridimensional - Google Patents

Método para la determinación de las propiedades físico-químicas de un cuerpo tridimensional Download PDF

Info

Publication number
WO2004081879A1
WO2004081879A1 PCT/ES2003/000117 ES0300117W WO2004081879A1 WO 2004081879 A1 WO2004081879 A1 WO 2004081879A1 ES 0300117 W ES0300117 W ES 0300117W WO 2004081879 A1 WO2004081879 A1 WO 2004081879A1
Authority
WO
WIPO (PCT)
Prior art keywords
database
data
dimensional
points
interpolation
Prior art date
Application number
PCT/ES2003/000117
Other languages
English (en)
French (fr)
Inventor
Cesar CASTAÑON FERNANDEZ
Original Assignee
Castanon Fernandez Cesar
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Castanon Fernandez Cesar filed Critical Castanon Fernandez Cesar
Priority to US10/549,395 priority Critical patent/US20060217947A1/en
Priority to AU2003216924A priority patent/AU2003216924A1/en
Priority to PCT/ES2003/000117 priority patent/WO2004081879A1/es
Priority to CA002518922A priority patent/CA2518922A1/en
Publication of WO2004081879A1 publication Critical patent/WO2004081879A1/es

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation

Definitions

  • the invention relates to the determination of the physicochemical properties of a three-dimensional body, specifically the invention relates to a method for the determination of the physical-chemical properties of a three-dimensional body. In particular, the invention relates to a method for determining the mineral resources or reserves of a mineral body or mineral layer.
  • Sections method from surveys located in sections that cut the mineral body calculations are made by which the laws in each section are obtained. Next, the area of each section is calculated and it is multiplied by half the distance to the previous and subsequent sections to obtain the volume.
  • Polygon method this method consists of projecting the centers of intersections on a plane and assign to each intersection a polygon defined by the perpendicular or angular bisectors method. Each polygon will have the laws and powers of the intersection that is in the center.
  • this method is easy to apply and computerize, it has the following disadvantages: it cannot be applied to folded layers; a calculation by interpolation of several surveys is not performed, so the laws obtained are too optimistic and, in addition, it does not work in three dimensions.
  • Triangles method this method consists in projecting the intersections of the mineral layer to a plane and defining the triangles that are formed by joining the vertices by triangulation. The power and laws of the means of the intersections at the vertices are applied to each triangle. Like the previous method, this method is easy to apply and computerize, but it cannot be applied to folded layers or work in three dimensions.
  • Block method this method consists of dividing the calculation area into blocks (parallelepiped) and calculating the properties of each block interpolating with the intersections around it. This method is the most commonly used, but it has the disadvantage that for mineral bodies with a layer shape, since they are parallelepiped, the geometric shape of the layer does not resemble the geometric shape that the blocks represent and in narrow layers it is Even more complicated.
  • the purpose of the present application is to provide an alternative method for the determination of the physical-chemical properties of a three-dimensional body, more specifically for the determination of the mineral resources or reserves of a mineral body or mineral layer.
  • the present method which meets the requirements of working in three dimensions and to be fully computerizable, it is based on the Iterative use of the triangulation method on extrapolation of the data obtained from the surveys.
  • the method of the invention has the following advantages over the methods known in the state of the art: - any change of calculation parameter does not need to redefine the units of calculation, define units of calculation in space, which can be used later to plan, draw and export to other programs, it can be interpolated by any of the existing methods, starting from the simplest method of assigning to each unit of calculation the value of the nearest intersection, to apply the inverse of the distance or geostatistical methods.
  • Figure 1 illustrates the perforations or probes that cross a three-dimensional body or layer.
  • Figure 2 illustrates the intersections caused by the sections of the boreholes or perforations that cut a body or mineral layer.
  • Figure 3 shows a calculation unit, which consists of a part of the body or three-dimensional layer that presents the same data (data 1, data 2, etc.) after interpolation.
  • Figure 4 illustrates the surface area of the body or three-dimensional layer at its midpoint defined by triangulation (T1), that is, a set of triangles linked in space that define a surface in the center of the body or three-dimensional layer.
  • T1 triangulation
  • Figure 5 shows a cloud of points (NPS) generated with regular spacings in the two main directions of the body or three-dimensional layer.
  • Figure 6 shows the new surface T2 (as well as a detail of said surface) defined by triangulation of the points that form the cloud of NPS points.
  • Figure 7 shows the three-dimensional representation obtained by applying the method of the present invention.
  • Figure 8 illustrates the layer T1 defined by triangulation of the data obtained from the probes and their interpolation from example 1.
  • Figure 9 shows the cloud of NPS points and the surface T2 obtained by triangulation in example 1.
  • Figure 10 illustrates the gold grade of the mineral layer of example 1.
  • Figure 11 shows the three-dimensional view of the mineral layer of Example 1.
  • Three-dimensional body space body, which can be predominant in two of the three dimensions.
  • Probes perforations made in bodies or layers in order to obtain samples for analysis and interpretation.
  • Intersection probe section that cuts a three-dimensional layer or body.
  • Interpolation method of calculation by which we define the data of a point of the three-dimensional layer or body using the information of the intersections that are around it. It can be used from the simplest method of giving the value at that point of the nearest intersection, such as the arithmetic mean of the intersections that are at a maximum distance, by the Inverse of the high distance a power; or using interpolation geo-statistical methods, Kriging, etc. ... You could also use intersection search ellipsoids giving preferred addresses as is usual in geo-statistics. Unit of calculation: It will be a part of the three-dimensional layer or body that for the purposes of calculation will have the same Datol, Dato2, etc .; that result from interpolation.
  • the invention provides in a first aspect a method for determining the physicochemical properties of a three-dimensional body comprising:
  • a) generate a database (BDS) that contains the data of the surveys that define the situation and physical-chemical properties of the three-dimensional body
  • b) define the surface (T1) in the spatial center of the three-dimensional body through triangulation
  • c) define on T1 a cloud of points (NPS) generated with regular spacing in the two main directions of the three-dimensional body
  • d) generate, by forming triangles linked between the NPS points, a new surface (T2), very similar to T1 but with the appropriate format for interpolation and graphic representation
  • e) calculate, by any interpolation method, the properties of the NPS points from the database of BDS probes
  • f) generate a new database (BDT2 ), starting from the triangles of the surface T2 and containing, for each triangle, the data of the coordinates of the vertices, the results of the interpolation of the vertices, as well as the ar ea of that triangle in space
  • g) generate reports with the desired information from the BDT2
  • the BDS database is generated in step a) from the information obtained at the intersections (see figures
  • coordinate data that define the position of each survey (s1, s2, etc.) in the three-dimensional body (intersection of the probes with the three-dimensional body) , where coordinates can define either only a point that defines the center of the body or an interval that defines the beginning and the end of the three-dimensional body, data on properties of the three-dimensional body such as data on the real width of the three-dimensional body (real power), analysis data, geotechnical, geological, etc. (data 1, data 2, etc.) for each survey (s1, s2, etc.).
  • step b) is performed, according to which the surface (T1) is generated in the spatial center of the three-dimensional body by applying the triangulation method to the BDS database (see figure 4), specifically based on:
  • the triangulation method consists of the formation of interlocking triangles between the points that make up the database.
  • An algorithm such as Delaunay's algorithm is preferably used
  • a cloud of points (NPS) generated by any algorithm based on regular spacing on the surface is defined on the surface T1, that is, on the two main directions of the three-dimensional body (see figure 5) .
  • NPS cloud of points
  • stage d by triangulating the points of the NPS point cloud a new surface, T2, very similar to T1 is generated but with the appropriate format for Interpolation and graphic representation (see figure 6). Then, in step e) of the procedure, the properties of the NPS points are calculated by any interpolation method, such as from the simplest method of giving the properties of the closest probe, that of the inverse of the distance raised to a power, or any statistical method, from the BDS survey database.
  • any interpolation method such as from the simplest method of giving the properties of the closest probe, that of the inverse of the distance raised to a power, or any statistical method, from the BDS survey database.
  • a new database (BDT2) is then generated, starting from the triangles of the previously generated surface T2 and containing, for each triangle, the data of the coordinates of the vertices, the results of the interpolation of the vertices, thus like the area of that triangle in space.
  • each triangle will be the center of a unit of calculation
  • each triangle will have at each vertex a segment that will measure the real power at that point and with the average direction perpendicular to the planes formed by all the triangles that share that vertex. In this way all the triangles that share a vertex also share this segment (edge), which will allow perfectly fit all the units of calculation in space, - the three mentioned segments, next to the two triangles that are formed by joining their extremes, we define the volume of each unit of calculation.
  • a second aspect of the invention is the application of the method set forth above for the determination, of the mining resources or reserves of a mineral body or mineral layer.
  • This method comprises the following stages: a) generate a database (BDS) that contains the data of the intersections of the soundings that define the mineral body or layer, this database comprising: data of the coordinates (x, y, z) that define the position of each sounding (s1, s2, etc.) in the body or mineral layer (Intersection of the soundings with the body or mineral layer), where the coordinates can only define a point that defines the center of the body or an interval that defines the Start and end of the three-dimensional body, data on properties of the body or mineral layer (data 1, data 2, etc.) for each survey (s1, s2, etc.).
  • b) define the surface in the space center of the body or mineral layer (T1) by forming linked triangles between the midpoints of each sounding position (s1, s2, etc.) or intersections, for this the following steps will be followed : - using the centers of the intersections of the soundings with the mineral layer, the information of possible outcrops of that layer and the geological interpretation regarding the situation of the layer in space, a set of points and lines will be defined that will be located on the central surface of the mineral layer or body, - with these points and lines, and by means of the triangulation method the surface they form will be defined, which will be a set of triangles linked in space, as many points and lines will be added as are necessary so that the surface generated by triangulation, is the most faithful representation of the center of the mineral layer or body and its extension covers the entire area that q we would include in the study; c) define on T1 a cloud of points (NPS) generated with regular spacing in the two main directions of the three-dimensional body, for which we will follow
  • BDT2. h generate a three-dimensional graphic representation from the BDT2 database using graphic software that allows the representation in three-dimensional form.
  • each triangle will be the center of a unit of calculation
  • each triangle will have at each vertex a segment that will measure the real power at that point and with the average direction perpendicular to the planes formed by all the triangles that share that vertex.
  • all the triangles that they share a vertex they also share this segment (edge), which will allow all the units of calculation to fit perfectly in the space, the three mentioned segments, together with the two triangles formed by joining their ends, define the volume of each unit of calculation
  • a calculation of gold (Au), silver (Ag), copper (Cu) and arsenic (As) reserves of a mineral layer, in particular the gold grade of said mineral layer, is made.
  • the following database (BDS; table 1) is generated from the data of the intersections of the drilling of the mineral layer from which it is intended to determine its reserves.
  • Table 1 Database of polling intersections (BDS)
  • (x1, y1, z1) and (x2, y2, z2) are the initial and final coordinates of the intersection of the surveys with the layer.
  • P_R is the real power of the layer at each intersection.
  • - ⁇ Au>, ⁇ Ag>, ⁇ Cu> and ⁇ As> are the properties of the layer at each intersection, in this case they are analytical data of the elements Au, Ag, Cu and As.
  • a surface (T1) representing the center of the layer is defined by triangulation (see figure 8).
  • each vertex we have its coordinates and the results of the interpolation, and for each triangle of T2 we will have the information of the three vertices that form it, so the triangle represented in the following table, would be formed by the vertices 30038000070, 30038500060 and 30039000060, where each vertex has values of real power (P_R) and of ⁇ Au>, ⁇ Ag>, ⁇ Cu> and ⁇ As> that come out of the interpolation of the Intersections of the probes that are around and that also They are represented in the table.
  • P_R real power
  • the interpolation has been carried out by the inverse of the distance raised to three and the distances (Dist. In the table) are the distances between the point and the centers of the Intersections of the surveys.
  • gi data of the intersection i.
  • d ⁇ distance from the center of the Intersection and the point that is being interpolated.
  • P 3
  • the last row of the previous table will represent the arithmetic mean of the values of P_R, ⁇ Au>, ⁇ Ag>, ⁇ Cu> and ⁇ As> in the three vertices of that triangle, which together with the area of the triangle we will complete all the necessary information for that triangle in the generation of the Reports with the calculations and for its three-dimensional graphic representation.
  • Figure 10 shows the triangles in the previous table according to the law of ⁇ Au>.
  • figure 11 a three-dimensional view of the calculation units generated with a 3D visualizer can be seen. For a better three-dimensional representation the units have separated slightly from each other.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Processing Or Creating Images (AREA)

Abstract

El método de la invención para determinar las propiedades físico-químicas de un cuerpo tridimensional comprende las siguientes etapas:a) generar una base de datos (BDS) que contiene los datos de los sondeos que definen la situación y propiedades físico-químicas del cuerpo tridimensional,b) definir la superficie (T1) en el centro espacial del cuerpo tridimensional mediante triangulación,c) definir sobre T1 una nube de puntos (NPS) generada con espaciamientos regulares en las dos direcciones principales del cuerpo tridimensional,d) generar, mediante la formación de triángulos enlazados entre los puntos NPS, una nueva superficie (T2), que será muy parecida a T1 pero con el formato adecuado para la interpolación y representación gráfica,e) calcular, por cualquier método de interpolación, las propiedades de los puntos de NPS a partir de la base de datos de los sondeos BDS,f) generar una nueva base de datos (BDT2), partiendo de los triángulos de la superficie T2 y que contiene, para cada triángulo, los datos de las coordenadas de los vértices, los resultados de la interpolación de los vértices, así como el área de ese triángulo en el espacio,g) generar informes con la información deseada a partir de la base de datos BDT2, yh) generar representaciones gráficas tridimensionales a partir de la base de datos BDT2.

Description

MÉTODO PARA LA DETERMINACIÓN DE LAS PROPIEDADES FÍSICO- QUÍMICAS DE UN CUERPO TRIDIMENSIONAL
CAMPO DE LA INVENCIÓN
La invención se relaciona con la determinación de las propiedades físico- químicas de un cuerpo tridimensional, concretamente la Invención se refiere a un método para la determinación de las propiedades físico-químicas de un cuerpo tridimensional. En particular, la invención se refiere a un método para la determinación de los recursos o reservas mineras de un cuerpo mineral o capa mineral.
ANTECEDENTES DE LA INVENCIÓN
En el estado de la técnica se conocen diferentes métodos para la determinación de las propiedades físico-químicas de cuerpos tridimensionales. En particular, para la determinación de los recursos o reservas mineras de un cuerpo mineral o capa mineral, es decir, para el cálculo de recursos geológicos o reservas mineras en cuerpos minerales en forma de capa, los métodos preferentemente utilizados son:
Método de las secciones: a partir de sondeos situados en secciones que cortan el cuerpo mineral se realizan cálculos mediante los cuales se obtienen las leyes en cada sección. A continuación se calcula el área de cada sección y ésta se multiplica por la mitad de la distancia a las secciones anterior y posterior para obtener así el volumen. Si bien este método presenta como ventaja el hecho que se puede aplicar a todo tipo de capas aunque estén muy plegadas, presenta bastantes desventajas como son que cada vez que se cambie un parámetro de cálculo, como puede ser la ley de corte, se necesita reiniciar todo el proceso; que como se realiza un cálculo de leyes en cada sección, no se puede utilizar una dirección de interpolación; que los sondeos que no estén en las secciones del cálculo se deben de proyectar a las más cercana, complicando el proceso y, finalmente, que el método de las secciones es muy difícil de informatizar.
Método de los polígonos: este método consiste en proyectar los centros de las intersecciones sobre un plano y asignar a cada intersección un polígono definido por el método de las bisectrices perpendiculares o angulares. Cada polígono tendrá las leyes y potencias de la intersección que está en el centro. Si bien este método es fácil de aplicar e informatizar, presenta las siguientes desventajas: no se puede aplicar a capas plegadas; no se realiza un cálculo por interpolación de varios sondeos, por lo que las leyes obtenidas son demasiado optimistas y, además, no trabaja en tres dimensiones.
Método de los triángulos: este método consiste en proyectar las intersecciones de la capa mineral a un plano y definir los triángulos que se forman uniendo los vértices por triangulación. A cada triangulo se le aplica la potencia y leyes de las medias de las intersecciones que están en los vértices. De igual forma que el método anterior, este método es fácil de aplicar e informatizar, pero no se puede aplicar a capas plegadas ni trabaja en tres dimensiones.
Método de los bloques: este método consiste en dividir la zona de cálculo en bloques (paralepípedos) y calcular las propiedades de cada bloque interpolando con las intersecciones que tiene alrededor. Este método es el más utilizado normalmente, pero tiene como desventaja el que para cuerpos minerales con forma de capa, al tratarse de paralepípedos, la forma geométrica de la capa no se parece a la forma geométrica que nos representan los bloques y en capas estrechas resulta aún mas complicado.
Así pues, existe en el estado de la técnica la necesidad de proporcionar un método alternativo para la determinación de las propiedades físico-químicas de un cuerpo tridimensional que pueda suponer la mejora de los métodos comúnmente empleados.
El objeto de la presente solicitud consiste en proporcionar un método alternativo para la determinación de las propiedades físico-químicas de un cuerpo tridimensional, más concretamente para la determinación de los recursos o reservas mineras de un cuerpo mineral o capa mineral.
El presente método, que cumple los requisitos de trabajar en tres dimensiones y ser plenamente informatizable, se basa en el empleo Iterativo del método de triangulación sobre la extrapolación de los datos obtenidos a partir de los sondeos. Más aún, el método de la invención presenta las siguientes ventajas con respecto a los métodos conocidos en el estado de la técnica: - cualquier cambio de parámetro de cálculo no necesita redefinir las unidades de cálculo, define unidades de cálculo en el espacio, las cuales pueden ser utilizadas posteriormente para planificar, dibujar y exportar a otros programas, se puede interpolar por cualquiera de los métodos existentes, partiendo desde el método más sencillo de asignar a cada unidad de cálculo el valor de la intersección más cercana, a aplicar el inverso de la distancia o métodos geoestadísticos.
Representa fielmente la potencia de la capa o cuerpo mineral, dato fundamental en capas estrechas.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 ilustra las perforaciones o sondeos que atraviesan un cuerpo o capa tridimensional. La figura 2 ilustra las intersecciones originadas por los tramos de los sondeos o perforaciones que cortan un cuerpo o capa mineral.
La figura 3 muestra una unidad de cálculo, que consiste en una parte del cuerpo o capa tridimensional que presenta los mismos datos (dato 1 , dato 2, etc.) después de la interpolación. La figura 4 ilustra la superficie en el espacio del cuerpo o capa tridimensional en su punto medio definida por triangulación (T1), es decir, un conjunto de triángulos enlazados en el espacio que nos definen una superficie en el centro del cuerpo o capa tridimensional.
La figura 5 muestra una nube de puntos (NPS) generada con espaciamentos regulares en las dos direcciones principales del cuerpo o capa tridimensional.
La figura 6 muestra la nueva superficie T2 (así como un detalle de dicha superficie) definida por triangulación de los puntos que forman la nube de puntos NPS. La figura 7 muestra la representación tridimensional obtenida al aplicar el método de la presente invención.
La figura 8 ilustra la capa T1 definida por triangulación de los datos obtenidos a patir de los sondeos y de su interpolación del ejemplo 1. La figura 9 muestra la nube de puntos NPS y la superficie T2 obtenida por triangulación en el ejemplo 1.
La figura 10 ilustra la ley de oro de la capa mineral del ejemplo 1.
Finalmente, la figura 11 muestra la vista tridimensional de la capa mineral del ejemplo 1.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Para facilitar la comprensión de la presente Invención, se expone a continuación el significado de algunos de los conceptos empleados en el presente texto:
Cuerpo tridimensional: cuerpo espacial, que puede ser predominante en dos de las tres dimensiones. Cuando el método se aplique para calcular recursos geológicos nos encontraremos ante un cuerpo o capa mineral.
Sondeos: perforaciones realizadas en los cuerpos o capas con el fin de obtener muestras para su análisis e interpretación.
Intersección: tramo de sondeo que corta una capa o cuerpo tridimensional. Interpolación: método de cálculo mediante el cual definimos los datos de un punto de la capa o cuerpo tridimensional utilizando la información de las intersecciones que estén a su alrededor. Puede utilizarse desde el método más sencillo de darle el valor en ese punto de la intersección más cercana, como la media aritmética de las intersecciones que están a una distancia máxima, por el Inverso de la distancia elevado una potencia; o bien utilizando métodos geo- estadísticos de interpolación, Kriging, etc.. También se podrían utilizar elipsoides de búsqueda de intersecciones dando direcciones preferentes como suele ser habitual en geo-estadística. Unidad de cálculo: Será una parte del la capa o cuerpo tridimensional que a efectos de cálculo tendrá los mismos Datol , Dato2, etc.; que resultan de la interpolación.
La invención proporciona en un primer aspecto un método para la determinación de las propiedades físico-químicas de un cuerpo tridimensional que comprende:
a) generar una base de datos (BDS) que contiene los datos de los sondeos que definen la situación y propiedades físico-químicas del cuerpo tridimensional, b) definir la superficie (T1) en el centro espacial del cuerpo tridimensional mediante triangulación, c) definir sobre T1 una nube de puntos (NPS) generada con espaciamientos regulares en las dos direcciones principales del cuerpo tridimensional, d) generar, mediante la formación de triángulos enlazados entre los puntos NPS, una nueva superficie (T2), muy parecida a T1 pero con el formato adecuado para la interpolación y representación gráfica, e) calcular, por cualquier método de interpolación, las propiedades de los puntos de NPS a partir de la base de datos de los sondeos BDS, f) generar una nueva base de datos (BDT2), partiendo de los triángulos de la superficie T2 y que contiene, para cada triángulo, los datos de las coordenadas de los vértices, los resultados de la interpolación de los vértices, así como el área de ese triángulo en el espacio, g) generar informes con la Información deseada a partir de la base de datos BDT2 y h) generar representaciones gráficas tridimensionales a partir de la base de datos BDT2
Según el método de la presente invención, la base de datos BDS se genera en la etapa a) a partir de la información obtenida en las intersecciones (ver figuras
1 y 2) y comprende los siguientes datos: datos de las coordenadas (x,y,z) que definen la posición de cada sondeo (s1 , s2, etc.) en el cuerpo tridimensional (intersección de los sondeos con el cuerpo tridimensional), donde las coordenadas pueden definir bien únicamente un punto que defina el centro del cuerpo o bien un intervalo que defina el inicio y el final del cuerpo tridimensional, datos sobre propiedades del cuerpo tridimensional como pueden ser datos del ancho real del cuerpo tridimensional (potencia real), datos de análisis, geotécnicos, geológicos, etc. (dato 1 , dato 2, etc.) para cada sondeo (s1 , s2, etc.).
A continuación se efectúa la etapa b), según la cual se genera la superficie (T1 ) en el centro espacial del cuerpo tridimensional aplicando el método de triangulación a la base de datos BDS (ver figura 4), concretamente en base a:
las coordenadas de los centros de los sondeos, la interpretación tridimensional de los datos conocidos de ese cuerpo, conocimiento previo de la forma que suele tener ese tipo de cuerpos.
El método de triangulación consiste en la formación de triángulos entrelazados entre los puntos que forman la base de datos. Se emplea preferiblemente un algoritmo como puede ser el algoritmo de Delaunay
En la siguiente etapa, c), se define sobre la superficie T1 una nube de puntos (NPS) generada mediante cualquier algoritmo en base a espaciamientos regulares sobre la superficie, es decir, sobre las dos direcciones principales del cuerpo tridimensional (ver figura 5). Un algoritmo posible puede ser:
- generar las lineas que definen la intersección entre la superficie y secciones paralelas equidistantes en uno de los planos principales, a partir de esas líneas dividirlas en segmentos iguales, - el conjunto de vértices que definen las lineas en cada sección serán una nube de puntos equidistantes en una dirección a la separación entre las secciones y en la otra dirección en el tamaño de los segmentos.
Según la etapa d), efectuando una triangulación de los puntos de la nube de puntos NPS se genera una nueva superficie, T2, muy parecida a T1 pero con el formato adecuado para la Interpolación y representación gráfica (ver figura 6). A continuación, en la etapa e) del procedimiento se calculan las propiedades de los puntos de NPS por cualquier método de interpolación, como por ejemplo desde el método más sencillo de darle las propiedades del sondeo más cercano, el del inverso de la distancia elevado a una potencia, o cualquier método estadístico, a partir de la base de datos de sondeos BDS.
Se genera entonces una nueva base de datos (BDT2), partiendo de los triángulos de la superficie T2 generada con anterioridad y que contiene, por cada triángulo, los datos de las coordenadas de los vértices, los resultados de la interpolación de los vértices, así como el área de ese triángulo en el espacio.
Finalmente, a partir de la base de datos BDT2 es posible generar informes o representaciones gráficas de la capa o cuerpo tridimensional (ver figura 7). Para la obtención de las representaciones gráficas se puede utilizar software gráfico, y se tendrán en cuenta las siguientes consideraciones (ver figura 3):
- cada triángulo será el centro de una unidad de cálculo, cada triángulo tendrá en cada vértice un segmento que medirá la potencia real en ese punto y con dirección la media de las perpendiculares a los planos formados por todos los triángulos que comparten ese vértice. De esta forma todos los triángulos que comparten un vértice, también comparten este segmento (arista), lo que permitirá que encajen perfectamente todas las unidades de cálculo en el espacio, - los tres segmentos mencionados, junto a los dos triángulos que se forman uniendo sus extremos, nos definen el volumen de cada unidad de cálculo.
Un segundo aspecto de la invención consiste la aplicación del método anteriormente expuesto para la determinación, de los recursos o reservas mineras de un cuerpo mineral o capa mineral. Este método comprende las siguientes etapas: a) generar una base de datos (BDS) que contiene los datos de las intersecciones de los sondeos que definen el cuerpo o capa mineral, comprendiendo esta base de datos: datos de las coordenadas (x,y,z) que definen la posición de cada sondeo (s1 , s2, etc.) en el cuerpo o capa mineral (Intersección de los sondeos con el cuerpo o capa mineral), donde las coordenadas pueden definir bien únicamente un punto que defina el centro del cuerpo o bien un intervalo que defina el Inicio y el final del cuerpo tridimensional, datos sobre propiedades del cuerpo o capa mineral (dato 1 , dato 2, etc.) para cada sondeo (s1 , s2, etc.). b) definir la superficie en el centro espacial del cuerpo o capa mineral (T1) mediante la formación de triángulos enlazados entre los puntos medios de cada posición de sondeo (s1 , s2, etc.) o intersecciones, para ello se seguirán los siguientes pasos: - utilizando los centros de las intersecciones de los sondeos con la capa mineral, la información de posibles afloramientos de esa capa y la interpretación geológica en cuanto a la situación de la capa en el espacio, se definirán un conjunto de puntos y líneas que estarán situados en la superficie central de la capa o cuerpo mineral, - con dichos puntos y líneas, y mediante el método de triangulación se definirá la superficie que forman, que será un conjunto de triángulos enlazados en el espacio, se añadirán tantos puntos y líneas como sean necesarios como para que la superficie generada por triangulación, sea la más fiel representación del centro de la capa o cuerpo mineral y su extensión cubra toda la zona que queramos incluir en el estudio; c) definir sobre T1 una nube de puntos (NPS) generada con espaciamientos regulares en las dos direcciones principales del cuerpo tridimensional, para lo cual seguiremos los siguientes pasos: - mediante un algoritmo se rellena la superficie T1 con puntos más o menos equidistantes entre sí, la distancia entre puntos se definirá según el detalle del cálculo que se requiera y de tal forma que su representación tridimensional final sea concordante con la interpretación inicial de la capa, en función del algoritmo se utilice, la distancia real entre puntos no es necesariamente siempre la misma; d) generar, mediante la formación de triángulos enlazados entre los puntos NPS, una nueva superficie (T2), que será muy parecida a T1 pero con el formato adecuado para la interpolación y representación gráfica; para lo cual se utilizará un algoritmo de triangulación a partir de esa nube de puntos, e) calcular, por cualquier método de Interpolación, las propiedades de los puntos de NPS a partir de la base de datos de los sondeos BDS, al Interpolar estaremos calculando para cada punto de NPS las propiedades de ese cuerpo tridimensional en ese punto utilizando la información de las intersecciones de los sondeos que tenga alrededor, la interpolación puede ser desde el método más sencillo de darle las propiedades de la intersección más cercana, el del inverso de la distancia elevado a una potencia, o utilizando métodos geoestadísticos como kriging u otros, f) generar una nueva base de datos (BDT2), partiendo de los triángulos de la superficie T2 y que contiene, para cada triangulo, los datos de las coordenadas de los vértices, los resultados de la interpolación' de los vértices, así como el área de ese triangulo en el espacio, g) generar informes con la información deseada a partir de la base de datos
BDT2. h) generar una representación gráfica tridimensional a partir de la base de datos BDT2 mediante software gráfico que permite la representación en forma tridimensional.
Del mismo modo que se menciona para el método general, para efectuar la representación gráfica tridimensional a partir de la base de datos BDT2 se tendrán en cuenta las siguientes consideraciones:
- cada triángulo será el centro de una unidad de cálculo, cada triángulo tendrá en cada vértice un segmento que medirá la potencia real en ese punto y con dirección la media de las perpendiculares a los planos formados por todos los triángulos que comparten ese vértice. De esta forma todos los triángulos que comparten un vértice, también comparten este segmento (arista), lo que permitirá que encajen perfectamente todas las unidades de cálculo en el espacio, los tres segmentos mencionados, junto a los dos triángulos que se forman uniendo sus extremos, nos definen el volumen de cada unidad de cálculo.
El siguiente ejemplo sirve para ilustrar la invención.
EJEMPL0 1
Se efectúa un cálculo de reservas de oro (Au), plata (Ag), cobre (Cu) y arsénico (As) de una capa mineral, en particular de la ley de oro de dicha capa mineral. Para ello, se genera la siguiente base de datos (BDS; tabla 1) a partir de los datos de las intersecciones de los sondeos de la capa de mineral de la cual se pretende determinas sus reservas.
ω o IV) n o 01 01
Tabla 1 : Base de datos de las intersecciones de los sondeo (BDS)
Figure imgf000013_0001
Figure imgf000014_0001
donde:
(x1 ,y1 ,z1 ) y (x2,y2,z2), son las coordenadas inicial y final de la intersección del sondeos con la capa. P_R es la potencia real de la capa en cada intersección. - <Au>, <Ag>, <Cu> y <As> son las propiedades de la capa en cada intersección, en este caso son datos analíticos de los elementos Au, Ag, Cu y As.
En base a las coordenadas de los centros de las intersecciones y la interpretación geológica se define por triangulación una superficie (T1) que representa el centro de la capa (ver figura 8).
A continuación, sobre la superficie anterior T1 se define la nube de puntos (NPS) y acto seguido la triangulación T2 (ver figura 9).
Así para cada vértice tenemos sus coordenadas y los resultados de la interpolación, y para cada triangulo de T2 tendremos la información de los tres vértices que lo forman, así el triangulo representado en la tabla siguientes, sería el formado por los vértices 30038000070, 30038500060 y 30039000060, donde cada vértice tiene unos valores de potencia real (P_R) y de <Au>, <Ag>, <Cu> y <As> que salen de la interpolación de las Intersecciones de los sondeos que están a su alrededor y que también se representan en la tabla.
En este caso la interpolación se ha realizado por el inverso de la distancia elevado a tres y las distancias (Dist. en la tabla) son las distancias entre el punto y los centros de las Intersecciones de los sondeos.
g = [ gi / ( di )p ] / [ i / ( d¡ )p ] g = resultado de la interpolación. g i = dato de la intersección i. d¡ = distancia desde el centro de la Intersección i y el punto que se está Interpolando. P = 3
Figure imgf000016_0001
La fila última de la de la tabla anterior representará la media aritmética de los valores de P_R, <Au>, <Ag>, <Cu> y <As> en los tres vértices de ese triangulo, que junto con el área del triangulo nos completará toda la información necesaria para ese triangulo en la generación de los Informes con los cálculos y para su representación gráfica tridimensional.
Así por ejemplo separando de la base de datos BDT2 las unidades de cálculo (triángulos) que cumplen que tienen una ley de <Au> mayor de 4000 y agrupando por categorías, según la intersección más cercana tendremos la tabla de datos siguientes:
Figure imgf000017_0001
En la figura 10 se puede apreciar según la ley de <Au> los triángulos de la tabla anterior. Finalmente, en la figura 11 se puede ver una vista tridimensional de las unidades de cálculo generada con un visualizador 3D. Para una mejor representación tridimensional las unidades se han separado ligeramente entre si.

Claims

REIVINDICACIONES
1. Método para determinar las propiedades físico-químicas de un cuerpo tridimensional que comprende las siguientes etapas:
a) generar una base de datos (BDS) que contiene los datos de los sondeos que definen la situación y propiedades físico-químicas del cuerpo tridimensional, b) definir la superficie (T1) en el centro espacial del cuerpo tridimensional mediante triangulación, c) definir sobre T1 una nube de puntos (NPS) generada con espaciamientos regulares en las dos direcciones principales del cuerpo tridimensional, d) generar, mediante la formación de triángulos enlazados entre los puntos NPS, una nueva superficie (T2), que será muy parecida a T1 pero con el formato adecuado para la interpolación y representación gráfica, e) calcular, por cualquier método de interpolación, las propiedades de los puntos de NPS a partir de la base de datos de los sondeos BDS, f) generar una nueva base de datos (BDT2), partiendo de los triángulos de la superficie T2 y que contiene, para cada triángulo, los datos de las coordenadas de los vértices, los resultados de la interpolación de los vértices, así como el área de ese triángulo en el espacio, g) generar informes con la información deseada a partir de la base de datos
BDT2, y h) generar representaciones gráficas tridimensionales a partir de la base de datos BDT2.
2. Método según la reivindicación 1 , caracterizado porque la base de datos BDS generada en la etapa a) comprende los siguientes datos:
datos de las coordenadas (x,y,z) que definen la posición de cada sondeo (s1 , s2, etc.) en el cuerpo tridimensional (intersección de los sondeos con el cuerpo tridimensional), donde las coordenadas pueden definir bien únicamente un punto que defina el centro del cuerpo o bien un intervalo que defina el inicio y el final del cuerpo tridimensional, - datos sobre propiedades del cuerpo tridimensional dato 1 , dato 2, etc.) para cada sondeo (s1 , s2, etc.).
3. Método según las reivindicaciones anteriores caracterizado porque la superficie T1 definida en la etapa b) se genera aplicando el método de triangulación a partir de: las coordenadas de los centros de los sondeos, de la interpretación tridimensional de los datos conocidos de ese cuerpo, por conocimiento previo de la forma que suele tener ese tipo de cuerpos.
4. Método según las reivindicaciones anteriores caracterizado porque la nube de puntos NPS definida en la etapa c) se genera con cualquier algoritmo en base a espaciamientos regulares sobre la superficie.
5. Método según las reivindicaciones anteriores caracterizada porque para la generación de la superficie T2 de acuerdo con la etapa d) se utiliza un algoritmo de triangulación a partir de la NPS.
6. Método según las reivindicaciones anteriores caracterizado porque en la interpolación efectuada en la etapa e) a partir de la base de datos de sondeos BDS se utiliza la información de los sondeos de alrededor y el método de interpolación empleado puede ser desde el método más sencillo de darle las propiedades del sondeo más cercano, el del inverso de la distancia elevado a una potencia, o cualquier método estadístico.
7. Método según las reivindicaciones anteriores caracterizado porque la representación gráfica generada en la etapa h) a partir de la base de datos BDT2 se efectúa mediante software gráfico que permite la representación tridimensional de su forma y propiedades.
8. Método según las reivindicaciones anteriores para la determinación de los recursos o reservas mineras de un cuerpo mineral o capa mineral que comprende las siguientes etapas: a) generar una base de datos (BDS) que contiene los datos de las intersecciones de los sondeos que definen el cuerpo o capa mineral, comprendiendo esta base de datos: datos de las coordenadas (x,y,z) que definen la posición de cada sondeo (s1 , s2, etc.) en el cuerpo o capa mineral (intersección de los sondeos con el cuerpo o capa mineral), donde las coordenadas pueden definir bien únicamente un punto que defina el centro del cuerpo o bien un intervalo que defina el inicio y el final del cuerpo tridimensional, datos sobre propiedades del cuerpo o capa mineral (dato 1 , dato 2, etc.) para cada sondeo (s1 , s2, etc.). b) definir la superficie en el centro espacial del cuerpo o capa mineral (T1) mediante la formación de triángulos enlazados entre los puntos medios de cada posición de sondeo (s1 , s2, etc.) o intersecciones, para ello se seguirán los siguientes pasos: - utilizando los centros de las Intersecciones de los sondeos con la capa mineral, la información de posibles afloramientos de esa capa y la interpretación geológica en cuanto a la situación de la capa en el espacio, se definirán un conjunto de puntos y líneas que estarán situados en la superficie central de la capa o cuerpo mineral, - con dichos puntos y líneas, y mediante el método de triangulación se definirá la superficie que forman, que será un conjunto de triángulos enlazados en el espacio, se añadirán tantos puntos y líneas como sean necesarios como para que la superficie generada por triangulación, sea la más fiel representación del centro de la capa o cuerpo mineral y su extensión cubra toda la zona que queramos incluir en el estudio; c) definir sobre T1 una nube de puntos (NPS) generada con espaciamientos regulares en las dos direcciones principales del cuerpo tridimensional, para lo cual seguiremos los siguientes pasos: - mediante un algoritmo se rellena la superficie T1 con puntos más o menos equidistantes entre sí, la distancia entre puntos se definirá según el detalle del cálculo que se requiera y de tal forma que su representación tridimensional final sea concordante con la interpretación inicial de la capa, - en función del algoritmo se utilice, la distancia real entre puntos no es necesariamente siempre la misma; d) generar, mediante la formación de triángulos enlazados entre los puntos NPS, una nueva superficie (T2), que será muy parecida a T1 pero con el formato adecuado para la interpolación y representación gráfica; para lo cual se utilizará un algoritmo de triangulación a partir de esa nube de puntos, e) calcular, por cualquier método de interpolación, las propiedades de los puntos de NPS a partir de la base de datos de los sondeos BDS, al interpolar estaremos calculando para cada punto de NPS las propiedades de ese cuerpo tridimensional en ese punto utilizando la información de las intersecciones de los sondeos que tenga alrededor, la Interpolación puede ser desde el método más sencillo de darle las propiedades de la intersección más cercana, el del inverso de la distancia elevado a una potencia, o utilizando métodos geoestadísticos como kriglng u otros, f) generar una nueva base de datos (BDT2), partiendo de los triángulos de la superficie T2 y que contiene, para cada triangulo, los datos de las coordenadas de los vértices, los resultados de la interpolación' de los vértices, así como el área de ese triangulo en el espacio, g) generar informes con la información deseada a partir de la base de datos
BDT2. h) generar una representación gráfica tridimensional a partir de la base de datos BDT2 mediante software gráfico que permite la representación en forma tridimensional.
PCT/ES2003/000117 2003-03-14 2003-03-14 Método para la determinación de las propiedades físico-químicas de un cuerpo tridimensional WO2004081879A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/549,395 US20060217947A1 (en) 2003-03-14 2003-03-14 Method for determining the physicochemical properties of a three-dimensional body
AU2003216924A AU2003216924A1 (en) 2003-03-14 2003-03-14 Method of determining the physicochemical properties of a three-dimensional body
PCT/ES2003/000117 WO2004081879A1 (es) 2003-03-14 2003-03-14 Método para la determinación de las propiedades físico-químicas de un cuerpo tridimensional
CA002518922A CA2518922A1 (en) 2003-03-14 2003-03-14 Method of determining the physicochemical properties of a three-dimensional body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2003/000117 WO2004081879A1 (es) 2003-03-14 2003-03-14 Método para la determinación de las propiedades físico-químicas de un cuerpo tridimensional

Publications (1)

Publication Number Publication Date
WO2004081879A1 true WO2004081879A1 (es) 2004-09-23

Family

ID=32982074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2003/000117 WO2004081879A1 (es) 2003-03-14 2003-03-14 Método para la determinación de las propiedades físico-químicas de un cuerpo tridimensional

Country Status (4)

Country Link
US (1) US20060217947A1 (es)
AU (1) AU2003216924A1 (es)
CA (1) CA2518922A1 (es)
WO (1) WO2004081879A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090022388A1 (en) * 2006-02-28 2009-01-22 Nicola Dioguardi Method and apparatus for analyzing clusters of objects

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7446777B2 (en) * 2003-09-26 2008-11-04 Rensselaer Polytechnic Institute System and method of computing and displaying property-encoded surface translator descriptors
CN104200528B (zh) * 2014-09-04 2017-08-11 电子科技大学 基于矢量闭合的三维建模方法
CN110851930A (zh) * 2019-10-12 2020-02-28 天津大学 基于WebGL的地表布线设计方法及系统
US11348131B2 (en) * 2020-01-08 2022-05-31 Vento Energy, Llc Data processing systems for processing land tract data

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5740342A (en) * 1995-04-05 1998-04-14 Western Atlas International, Inc. Method for generating a three-dimensional, locally-unstructured hybrid grid for sloping faults
US5844564A (en) * 1996-04-12 1998-12-01 Institute Francais Du Petrole Method for generating a 3D-grid pattern matching the geometry of a body in order to achieve a model representative of this body
US6256603B1 (en) * 1996-12-19 2001-07-03 Schlumberger Technology Corporation Performing geoscience interpretation with simulated data
US20010056339A1 (en) * 1998-12-16 2001-12-27 James Robinson Hydrocarbon reservoir testing
US20020072883A1 (en) * 2000-06-29 2002-06-13 Kok-Thye Lim Method and system for high-resolution modeling of a well bore in a hydrocarbon reservoir

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6430547B1 (en) * 1999-09-22 2002-08-06 International Business Machines Corporation Method and system for integrating spatial analysis and data mining analysis to ascertain relationships between collected samples and geology with remotely sensed data
CN1671944B (zh) * 2001-10-24 2011-06-08 国际壳牌研究有限公司 可拆卸加热器在含烃地层内的安装与使用
US6969123B2 (en) * 2001-10-24 2005-11-29 Shell Oil Company Upgrading and mining of coal
US6694264B2 (en) * 2001-12-19 2004-02-17 Earth Science Associates, Inc. Method and system for creating irregular three-dimensional polygonal volume models in a three-dimensional geographic information system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5740342A (en) * 1995-04-05 1998-04-14 Western Atlas International, Inc. Method for generating a three-dimensional, locally-unstructured hybrid grid for sloping faults
US5844564A (en) * 1996-04-12 1998-12-01 Institute Francais Du Petrole Method for generating a 3D-grid pattern matching the geometry of a body in order to achieve a model representative of this body
US6256603B1 (en) * 1996-12-19 2001-07-03 Schlumberger Technology Corporation Performing geoscience interpretation with simulated data
US20010056339A1 (en) * 1998-12-16 2001-12-27 James Robinson Hydrocarbon reservoir testing
US20020072883A1 (en) * 2000-06-29 2002-06-13 Kok-Thye Lim Method and system for high-resolution modeling of a well bore in a hydrocarbon reservoir

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090022388A1 (en) * 2006-02-28 2009-01-22 Nicola Dioguardi Method and apparatus for analyzing clusters of objects
US8503798B2 (en) * 2006-02-28 2013-08-06 Humanitas Mirasole S.P.A. Method and apparatus for analyzing clusters of objects

Also Published As

Publication number Publication date
AU2003216924A1 (en) 2004-09-30
CA2518922A1 (en) 2004-09-23
US20060217947A1 (en) 2006-09-28

Similar Documents

Publication Publication Date Title
Nguyen et al. Use of terrestrial laser scanning for engineering geological applications on volcanic rock slopes–an example from Madeira island (Portugal)
CN104008570A (zh) 一种矿山的双三维建模方法
EP1672591A3 (en) Method and apparatus for three-dimensionally transforming two-dimensional linear data in accordance with three-dimensional topography data in real time
CN101162555B (zh) 数字地图中街道的现实高度表示
Holenstein et al. Watertight surface reconstruction of caves from 3D laser data
Gillings et al. GIS-based visibility analysis
KR100657870B1 (ko) 항공 레이저 측량 데이터를 이용한 지반고 추출 방법
CN103884291A (zh) 基于nurbs参数曲面的建筑物表面柔性变形监测方法
KR20180069547A (ko) 2차원 도면기반 라인정보를 이용한 3차원 모델 구성방법 및 시스템
WO2004081879A1 (es) Método para la determinación de las propiedades físico-químicas de un cuerpo tridimensional
US10108172B2 (en) Spiral toolpaths for high-speed machining of polygonal pockets
Algarni Comparison of thin plate spline, polynomial, CI—Function and Shepard’s interpolation techniques with GPS-derived DEM
Carrell Tools and techniques for 3D geologic mapping in Arc Scene: Boreholes, cross sections, and block diagrams
JP2016142535A (ja) 測量データ処理装置
GB2352746A (en) Method of producing impact point position probability maps for a well
Ochałek et al. Modeling and analysis of integrated bathymetric and geodetic data for inventory surveys of mining water reservoirs
Flanagin et al. Hydraulic splines: A hybrid approach to modeling river channel geometries
JP3572253B2 (ja) 3次元モデル生成方法及び装置、並びにこの方法の実行プログラムを記録した記録媒体
Liu et al. Study on a computing technique suitable for true 3D modeling of complex geologic bodies
Yilmaz Comparing the volume methods through using digital elevation models created by different interpolation methods
Nevalainen et al. Detecting stony areas based on ground surface curvature distribution
Kim et al. Estimating highway earthwork cross sections by using vector and parametric representation
Schuchardt Quick 3D cave maps using Cavewhere
Koch An Integrated semantically correct 2, 5 dimensional object oriented TIN
Herbei et al. Modelling of surfaces in order to protect them.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003216924

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2518922

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006217947

Country of ref document: US

Ref document number: 10549395

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10549395

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP