多肽捡测方法、 检测装置和含纳米徼粒的配基复合物 技术领域 Polypeptide pick-up and detection method, detection device and ligand complex containing nanometer particles
本发明涉及多肽定量或 /和定性检测方法及检测装置、 特别是分析芯片、 酶标板、 平面层析条、 及它们的试剂盒。 本发明还涉及检测装置和分离装置 中的固定化配基及其制备方法。本发明还涉及配基 /纳米微粒 /分子标记物质复 合物及其制备方法。 本发明还涉及微载体包被载体及其制备方法。 背景技术 The invention relates to a method and a device for quantitative or / and qualitative detection of a polypeptide, in particular an analysis chip, a microplate, a flat chromatography strip, and a kit thereof. The invention also relates to an immobilized ligand in a detection device and a separation device and a preparation method thereof. The present invention also relates to a ligand / nanoparticle / molecularly labeled substance complex and a method for preparing the same. The invention also relates to a microcarrier-coated carrier and a preparation method thereof. Background technique
具有选择性反应活性的固定化配基, 在很多方面、 尤其是在对样品中的 目标物进行定性和 /或定量检测分析和分离方面获得了广泛的应用。 分离方面 应用的固定化配基, 可以举层析凝胶为例。 检测方面应用的固定化配基, 可 以举分析芯片为例。 此外, 在定性和 /或定量检测分析中, 含有配基的标记系 统是最广泛使用的标记系统。 由于固定化配基或 /和配基标记系统的不同, 可 以有不同的分析检测方法。 在生物检测分析中, 根椐样品目标物不同可以分 为核酸检测、 多肽检测、 等等。 下面以生物芯片检测为例来简单地说明现有 多肽检测方法及装置尚待解决的问题。 The immobilized ligand with selective reactivity has been widely used in many aspects, especially in the qualitative and / or quantitative detection, analysis and separation of target substances in samples. For immobilized ligands used in separation, chromatographic gels can be taken as an example. An example of an immobilized ligand for detection is an analysis chip. In addition, in qualitative and / or quantitative detection analysis, labeling systems containing ligands are the most widely used labeling systems. Due to the different immobilized ligands and / or ligand labeling systems, different analytical methods can be used. In bioassay analysis, the target of root samples can be divided into nucleic acid detection, peptide detection, and so on. In the following, biochip detection is used as an example to briefly explain the problems that need to be solved with existing peptide detection methods and devices.
生物芯片是将二种或二种以上的微量配基以可寻址的方式固定在片基上 形成的检测装置。 生物芯片由于其高通量和微型化特点, 有着广泛的应用范 围, 包括基因表达检测、 基因筛选、 药物筛选、 疾病诊断治疗、 环境监测和 治理、 司法鉴定等领域。 生物芯片检测的主要指标之一是灵敏度。 而固定化 配基是决定灵敏度的关键之一。 目前的芯片固定化配基, 主要是将配基直接 固定在平面片基上形成的。 所用片基主要是玻璃、 金属、 塑料等材料及其衍 生物制作的矩形、 圆形或其它形状的含有活性衍生基团的平面载体, 其中玻 璃及其衍生物, 例如胺基玻片、 醛基玻片、 环氧基玻片和聚氨基酸包被玻片 等, 是目前使用的主要片基。 目前的另一类芯片固定化配基是将配基固定在 膜、 微颗粒等具有较高比表面的片基 (例如膜一玻璃片基、 颗粒一粘合剂一 玻璃片基、 等等) 上形成的。 第一种芯片固定化配基, 由于固定化配基比表 面较小等原因, 其反应动力学条件尚待优化, 表现为灵敏度尚待提高、 或 /和
反应时间尚待缩短。 第二种芯片固定化配基, 理论上讲较高的比表面可以改 善灵敏度, 然而实际情况却并非总是如此。 例如, 至少部分以膜为片基的反 应器由于其背景噪音高而降低了灵敏度。 而且, 以膜、 微颗粒等为片基的反 应器还有其它实际问题 (例如膜的清洗、 微颗粒的粘结等) , 结果是目前其 应用甚至不如第一种方法制备的反应器。 决定灵敏度和检测时间的另一关键 因素是标记系统。 目前芯片多肽检测中使用的标记系统主要是分子分散标记 系统, 其灵敏度尚待提高。 由于灵敏度尚待提高, 对芯片片基的选择自由度 亦有待提高, 可用的芯片片基的种类不多。 目前, 其它含片基的检测装置, 例如酶标板等等, 也都有与生物芯片同样的问题。 A biochip is a detection device formed by fixing two or more kinds of microligands in an addressable manner on a substrate. Because of its high throughput and miniaturization, biochips have a wide range of applications, including gene expression detection, gene screening, drug screening, disease diagnosis and treatment, environmental monitoring and governance, and judicial identification. One of the main indicators of biochip detection is sensitivity. The immobilized ligand is one of the keys to determine the sensitivity. The current chip-immobilized ligands are mainly formed by directly fixing the ligands on a flat substrate. The substrate used is mainly a rectangular, circular or other shape flat carrier containing active derivatization groups made of glass, metal, plastic and other materials and their derivatives. Among them, glass and its derivatives, such as amino glass slides, aldehyde groups, etc. Slides, epoxy-based slides, and polyamino acid-coated slides are the main substrates currently used. At present, another type of chip-immobilized ligand is a substrate having a high specific surface, such as a film, a glass substrate, a particle-adhesive, a glass substrate, etc. On the formation. The first type of chip-immobilized ligand, due to the smaller surface area of the immobilized ligand, etc., its reaction kinetics conditions need to be optimized, and its performance is still to be improved, or / and The response time has yet to be shortened. The second kind of chip immobilized ligand, theoretically speaking, a higher specific surface can improve sensitivity, but the actual situation is not always the case. For example, reactors that are at least partially film-based have reduced sensitivity due to their high background noise. In addition, reactors based on membranes, microparticles, etc. have other practical problems (such as cleaning of membranes, adhesion of microparticles, etc.). As a result, their current applications are not even as good as those of the first method. Another key factor in determining sensitivity and detection time is the marking system. At present, the labeling system used in the detection of chip peptides is mainly a molecular dispersion labeling system, and its sensitivity needs to be improved. Since the sensitivity needs to be improved, the degree of freedom in selecting the chip substrate also needs to be improved, and there are not many types of chip substrates available. At present, other detection devices containing a substrate, such as microplate readers, have the same problems as biochips.
此外, 在分离装置例如层析装置中也大量使用固定化配基, 例如亲和层 析固定相。 尽管用作层析固定相基质的微粒比之基片有更大的比表面积, 然 而在层析时间和层析收率等方面, 仍有待改进。 In addition, immobilized ligands such as affinity chromatography stationary phases are also widely used in separation devices such as chromatography devices. Although the microparticles used as the matrix of the chromatography stationary phase have a larger specific surface area than the substrate, there is still room for improvement in terms of chromatography time and chromatography yield.
肉眼可辩识的粒子形态的固定化配基是检测和分离中最常用的反应介质 之一。 最典型的例子是亲和层析, 其中配基载体为尺寸 5— 100 μ ηι、 孔径 0.05 -0.5 nm的凝胶粒子。 在一种市售膜-玻片片基中, 孔径分布自 nm级至 μ πι级 的多孔膜被用作配基载体。 然而, 在国际专利申请公开 WO 0183825中, 将胶 体、 特别是尺寸 100 nm— 500 nm的有机粒子用作配基载体, 其目的以及所要 达到的效果仅为减小芯片的加工劳动量例如加工步骤以加工出探针点均匀的 芯片。 此外, 在美国专利申请号 20030207296中, 纳米微粒仅被用作用于核酸 捡测的配基载体。 此外, 在分析芯片检测中, 核酸检测多用基因芯片, 多肽 检测多用多肽芯片。尽管使用基因芯片的核酸检测已经取得了公认的进步(例 如人基因组测序工程中的核酸检测) , 芯片多肽检测则尚在发展中。 发明内容 One of the most commonly used reaction media in detection and separation is the immobilized ligand in the form of particles recognizable by the naked eye. The most typical example is affinity chromatography, where the ligand carrier is a gel particle with a size of 5-100 μηι and a pore size of 0.05-0.5 nm. In a commercially available film-slide base, a porous membrane having a pore size distribution from nm to μm is used as a ligand carrier. However, in International Patent Application Publication WO 0183825, colloids, especially organic particles having a size of 100 nm to 500 nm, are used as a ligand carrier, and the purpose and effect to be achieved is only to reduce the processing labor of the chip, such as processing steps. To process chips with uniform probe points. In addition, in U.S. Patent Application No. 20030207296, nanoparticles are used only as a ligand carrier for nucleic acid detection. In addition, in the analysis chip detection, a gene chip is used for nucleic acid detection, and a polypeptide chip is used for polypeptide detection. Although recognized advances have been made in nucleic acid detection using gene chips (such as nucleic acid detection in the human genome sequencing project), chip peptide detection is still in development. Summary of the Invention
本发明的主要目的, 是提高多肽检测、 特别是多肽芯片检测和酶标检测 装置中的配基反应效率, 从而提高检测灵敏度或 /和降低检测时间或 /和提供更 多种类的具有足够高灵敏度的片基。 本发明的目标通过对固定化配基和标记 系统的开发来实现。 由于对固定化配基的研究, 本发明的另一个目的是提高 分离介质的分离效率。 The main objective of the present invention is to improve the efficiency of ligand reaction in peptide detection, especially in peptide chip detection and enzyme-labeled detection devices, thereby increasing detection sensitivity or / and reducing detection time or / and providing more species with sufficiently high sensitivity Film base. The object of the present invention is achieved by the development of immobilized ligands and labeling systems. As a result of research on immobilized ligands, another object of the present invention is to improve the separation efficiency of the separation medium.
根据本发明的一个方面, 提供一种多肽定量或 /和定性检测方法, 其至少
包括以下步骤: According to one aspect of the present invention, a method for quantitative or / and qualitative detection of a polypeptide is provided, which at least It includes the following steps:
(a)提供一种亲和纳米结构载体, 所述亲和纳米结构载体包括固相载体 和分布于其表面的亲和纳米结构,其中所述亲和纳米结构是以亲和纳米微粒 为单元在所述表面上构建的、 保留了主要的纳米现象特性从而具有比配基更 高反应效率的结构,所述亲和纳米微粒包括纳米微粒和固定于其上的一种或 多种配基,且所述亲和纳米结构固相载体中一种或多种纳米微粒与固相载体 之间有一重或多重配基、 或 /和一种或多种配基与固相载体之间有一重或多重 纳米微粒、 或 /和所述至少一重纳米微粒与另一重纳米微粒之间有一重或多重 配基, 所述配基选自以下组中能与目标多肽作用的物质: 多肽、 多糖、 维生 素、 抗生素、 病毒、 细胞和功能有机物, 所述纳米微粒为在三维空间中至少 有一维为大于 1 nm且小于 100 nm、 优选大于 1 nm且小于 50 nm的非磁微粒; (a) An affinity nanostructure carrier is provided. The affinity nanostructure carrier includes a solid phase carrier and an affinity nanostructure distributed on a surface thereof, wherein the affinity nanostructure uses affinity nanoparticles as a unit. A structure constructed on the surface that retains the main nanophenomenon characteristics and thus has a higher reaction efficiency than ligands, the affinity nanoparticles include nanoparticles and one or more ligands immobilized thereon, There is a heavy or multiple ligand between one or more nanoparticles in the affinity nanostructure solid phase support and the solid phase support, or / and a heavy or multiple between one or more ligands and the solid phase support Nanoparticles, or / and a heavy or multiple ligand between the at least one heavy nanoparticle and another heavy nanoparticle, the ligand is selected from the group of substances that can interact with the target polypeptide: polypeptide, polysaccharide, vitamin, antibiotic Viruses, cells, and functional organic matter, the nanoparticles are non-magnetic particles in at least one dimension in three-dimensional space of greater than 1 nm and less than 100 nm, preferably greater than 1 nm and less than 50 nm;
(b)将待检测样品与所述亲和纳米结构载体接触并进行所述复合物与所 述样品中的目标多肽之间的反应; (b) contacting the sample to be detected with the affinity nanostructure carrier and performing a reaction between the complex and the target polypeptide in the sample;
(c) 提供一种配基 /纳米微粒 /分子标记物质复合物并对步骤(b) 中的反 应结果进行标记, 所述配基 /纳米微粒 /分子标记物质复合物含有一种或多种分 子标记物质、 一种或多种纳米微粒、 一种或多种配基以及任选的封闭剂, 所 述纳米微粒 /配基 /分子标记物质为混合物或纯化物, 所述配基选自以下组中能 与目标多肽作用的物质: 多肽、 多糖、 维生素、 抗生素、 病毒、 细胞和功能 有机物, 所述纳米微粒为在三维空间中至少有一维为大于 1 nm且小于 100 nm、 优选大于 1 nm且小于 10 nm且本身不是标记物质增强剂的非磁性无机非金属 微粒或其衍生物, 所述衍生物包括表面含衍生基团的表面修饰或 /和功能有机 物包被衍生物。 (c) providing a ligand / nanoparticle / molecular labeling substance complex and labeling the reaction result in step (b), said ligand / nanoparticle / molecular labeling substance complex containing one or more molecules A labeling substance, one or more nanoparticles, one or more ligands, and an optional blocking agent, the nanoparticle / ligand / molecular labeling substance is a mixture or a purified substance, the ligand is selected from the following group Substances capable of interacting with the target polypeptide: peptides, polysaccharides, vitamins, antibiotics, viruses, cells, and functional organics, the nanoparticles are at least one dimension in a three-dimensional space greater than 1 nm and less than 100 nm, preferably greater than 1 nm and Non-magnetic inorganic non-metallic microparticles or derivatives thereof that are smaller than 10 nm and are not themselves labeling substance enhancers, the derivatives including surface-modified or functional organic-coated derivatives containing derivative groups on the surface.
根据本发明的另一个方面, 其提供一种多肽检测装置, 其包括如上所述 的亲和纳米结构载体和配基 /纳米微粒 /分子标记物质复合物。 According to another aspect of the present invention, it provides a polypeptide detection device comprising the affinity nanostructure carrier and the ligand / nanoparticle / molecular labeling substance complex as described above.
根据本发明的再一个方面, 其提供一种制备用于多肽检测或组分分离的 微载体包被载体的方法以及用该方法制得的微载体包被载体。 所述方法包括 以下步骤: According to still another aspect of the present invention, it provides a method for preparing a microcarrier-coated carrier for polypeptide detection or component separation, and a microcarrier-coated carrier prepared by the method. The method includes the following steps:
(a)准备一种或多种微载体, 所述微载体包括纳米微粒或 /和胶体,所述 纳米微粒为在三维空间中至少有一维为大于 lnm且小于 100nm、优选大于 lnm
且小于 10 nm的非磁无机微粒, 所述胶体为 100— 600 nm的有机物分散体系;(a) preparing one or more microcarriers, said microcarriers comprising nanoparticles or colloids, said nanoparticles being at least one dimension in a three-dimensional space greater than lnm and less than 100nm, preferably greater than lnm And non-magnetic inorganic particles smaller than 10 nm, the colloid is an organic matter dispersion system of 100-600 nm;
(b)准备载体, 所述载体包括由以下材料或其衍生物制成的片基和载体 粒子: 玻璃、 硅片、 硅胶、 陶瓷、 金属氧化物、 金属、 聚合物材料及它们的 复合物, 所述衍生物包括表面含衍生基团的表面修饰或 /和功能有机物包被衍 生物; (b) preparing a carrier, which comprises a base and carrier particles made of the following materials or their derivatives: glass, silicon wafers, silica gel, ceramics, metal oxides, metals, polymer materials, and composites thereof, The derivatives include surface-modified or functional organic-coated derivatives containing derivatizing groups on the surface;
(c)将所述胶体或 /和所述纳米微粒结合到所述载体上, 其中所述纳米微 粒与所述载体的结合包括下述一种或多种方式: 包被在包被于所述载体的所 述胶体粒子上, 通过常温物理化学吸咐、 常温化学键合、 纳米微粒交联、 或 它们之间的组合包被在所述载体上。 (c) binding the colloid or / and the nanoparticle to the carrier, wherein the combination of the nanoparticle and the carrier includes one or more of the following methods: coating on the coating The colloidal particles of the carrier are coated on the carrier by physicochemical adsorption at room temperature, chemical bonding at room temperature, cross-linking of nanoparticles, or a combination thereof.
根据本发明的另一个方面, 其提供一种检测装置或分离介质, 其包括如 上所述的微载体包被载体及固定在所述微载体包被载体上的探针。 According to another aspect of the present invention, it provides a detection device or a separation medium, which includes the microcarrier-coated carrier as described above and a probe fixed on the microcarrier-coated carrier.
根据本发明的又一个方面, 其提供一种制备用于多肽检测或组分分离的 亲和纳米结构载体的方法, 其包括以下步骤: According to another aspect of the present invention, it provides a method for preparing an affinity nanostructure carrier for polypeptide detection or component separation, which includes the following steps:
(a)准备载体、 一种或多种配基、 以及一种或多种纳米微粒, 所述配基 选自以下组中能与目标多肽作用的物质: 多肽、 多糖、 维生素、 抗生素、 病 毒、 细胞、 及功能有机物, 所述纳米微粒为在三维空间中至少有一维为大于 lnm且小于 100nm、 优选大于 lnm且小于 10nm的非磁微粒; (a) preparing a carrier, one or more ligands, and one or more nanoparticles, said ligands being selected from the group consisting of substances capable of interacting with the target polypeptide: polypeptides, polysaccharides, vitamins, antibiotics, viruses, Cells, and functional organics, the nanoparticles are non-magnetic particles in at least one dimension in a three-dimensional space of greater than 1 nm and less than 100 nm, preferably greater than 1 nm and less than 10 nm;
(b)将所述配基与所述纳米微粒的高稀释度悬浮液混合制成一种或多种 纳米微粒体积浓度为五百分之一至十万分之一之间的亲和纳米微粒液, 所述 亲和纳米微粒液包括混合物和纯化物, 而且其纯化物中一种纳米微粒上固定 一种或多种配基; (b) mixing the ligand with the highly-diluted suspension of the nanoparticles to make one or more nanoparticles having a volume concentration of between 5% and 1 / 100,000; The affinity nanoparticle liquid includes a mixture and a purified substance, and one or more kinds of ligands are immobilized on a nanoparticle in the purified substance;
( c) 将步骤 (b) 中制备的亲和纳米微粒以液态或固态固定到载体上形 成所述亲和纳米结构载体,其中所述一种或多种纳米微粒与载体之间有一重 或多重配基、 或 /和所述一种或多种配基与载体之间有一重或多重纳米微粒、 或 /和至少一重纳米微粒与另一重纳米微粒之间有一重或多重配基。 (c) fixing the affinity nanoparticles prepared in step (b) to the carrier in a liquid or solid state to form the affinity nanostructure carrier, wherein there is a double or multiple between the one or more nanoparticles and the carrier; A ligand, or / and one or more nanoparticles between the one or more ligands and the carrier, or / and one or more ligands between at least one heavy nanoparticle and another heavy nanoparticle.
根据本发明的另一个方面, 其提供一种用于多肽检测或组分分离的亲和 纳米结构载体, 其中所述亲和纳米结构载体包括固相载体和分布于其表面的 亲和纳米结构,其中所述亲和纳米结构是以亲和纳米微粒为单元在所述表面 上构建的、 保留了主要的纳米现象特性从而具有比配基更高反应效率的结构,
所述亲和纳米微粒包括纳米微粒和固定于其上的一种或多种配基,且所述亲 和纳米结构固相载体中一种或多种纳米微粒与固相载体之间有一重或多重配 基、或 /和一种或多种配基与固相载体之间有一重或多重纳米微粒、或 /和所述 至少一重纳米微粒与另一重纳米微粒之间有一重或多重配基, 所述配基选自 以下组中能与目标多肽作用的物质: 多肽、 多糖、 维生素、 抗生素、 病毒、 细胞和功能有机物, 所述纳米微粒为在三维空间中至少有一维为大于 1 rnn且 小于 100 腿、 优选大于 1 nm且小于 50 nm的非磁微粒。 According to another aspect of the present invention, it provides an affinity nanostructure carrier for polypeptide detection or component separation, wherein the affinity nanostructure carrier includes a solid phase carrier and an affinity nanostructure distributed on a surface thereof, Wherein the affinity nanostructure is constructed on the surface with affinity nanoparticles as a unit, and retains the main nano-phenomenon characteristics and has a higher reaction efficiency than the ligand, The affinity nanoparticle includes a nanoparticle and one or more ligands fixed thereon, and there is a heavy or Multiple ligands, or / and one or more nanoparticles between one or more ligands and the solid support, or / and one or more ligands between the at least one heavy nanoparticle and another heavy nanoparticle, The ligand is selected from the group of substances that can interact with the target polypeptide in the following groups: polypeptides, polysaccharides, vitamins, antibiotics, viruses, cells, and functional organics, and the nanoparticles are at least one dimension in a three-dimensional space greater than 1 rnn and less than Non-magnetic particles of 100 legs, preferably greater than 1 nm and less than 50 nm.
根据本发明的另一个方面,其提供一种制备配基 /纳米微粒 /分子标记物质 复合物的方法, 其包括以下步骤: According to another aspect of the present invention, it provides a method for preparing a ligand / nanoparticle / molecular labeling substance complex, which includes the following steps:
(a)准备一种或多种配基、一种或多种纳米微粒、 和一种或多种所述分 子标记物质, 所述纳米微粒 /配基 /分子标记物质为混合物或纯化物, 所述配基 选自以下组中能与目标多肽作用的物质: 多肽、 多糖、 维生素、 抗生素、 病 毒、 细胞、 及功能有机物, 所述纳米微粒为在三维空间中至少有一维为大于 1 nm且小于 100 ran, 优选大于 1 nm且小于 10 nm且本身不是标记物质增强剂的 非磁性无机非金属微粒或其衍生物, 所述衍生物包括表面含衍生基团的表面 修饰或 /和功能有机物包被衍生物; (a) preparing one or more ligands, one or more nanoparticles, and one or more of said molecular marker substances, wherein said nanoparticles / ligands / molecule marker substances are mixtures or purified substances, The ligand is selected from the group consisting of substances capable of interacting with the target polypeptide in the following groups: polypeptides, polysaccharides, vitamins, antibiotics, viruses, cells, and functional organics, and the nanoparticles are at least one dimension in a three-dimensional space greater than 1 nm and less than 100 ran, preferably greater than 1 nm and less than 10 nm, and non-magnetic inorganic non-metallic microparticles or derivatives thereof that are not labeling substance enhancers, the derivatives include surface modification or / and functional organic coatings containing derivatizing groups on the surface Derivative
(b ) 将所述一种或多种配基、 一种或多种纳米微粒、 以及一种或多种所 述分子标记物质按下列之一种方式结合: 将所述配基与所述纳米微粒结合再 与所述分子标记物质结合、 将所述纳米微粒与所述分子标记物质结合再与所 述配基结合、 将所述配基与所述分子标记物质结合再与所述纳米微粒结合、 将所述配基与所述分子标记物质和所述纳米微粒同时结合、 及基于这些方式 的组合。 (b) combining the one or more ligands, one or more nanoparticles, and one or more of the molecular markers in one of the following ways: combining the ligand with the nanometer Particles are then bound to the molecular labeling substance, the nanoparticle is bound to the molecular labeling substance and then to the ligand, the ligand is bound to the molecular labeling substance and then to the nanoparticle , Simultaneously combining the ligand with the molecularly labeled substance and the nanoparticle, and combinations based on these methods.
根据本发明的另一个方面, 其提供一种用于多肽检测的配基 /纳米微粒 /分 子标记物质复合物, 其含有一种或多种分子标记物质、 一种或多种纳米微粒 以及一种或多种配基, 所述纳米微粒 /配基 /分子标记物质为混合物或纯化物, 所述配基选自以下组中能与目标多肽作用的物质: 多肽、 多糖、 维生素、 抗 生素、 病毒、 细胞、 及功能有机物, 所述纳米微粒为在三维空间中至少有一 维为大于 1 nm且小于 100 mn、优选大于 1 nm且小于 10 nm的非磁性无机非金属 微粒或其衍生物, 所述衍生物包括表面含衍生基团的表面修饰或 /和功能有机
物包被衍生物。 According to another aspect of the present invention, it provides a ligand / nanoparticle / molecular labeling substance complex for polypeptide detection, which contains one or more molecular labeling substances, one or more nanoparticles, and a Or a plurality of ligands, said nanoparticle / ligand / molecular labeling substance is a mixture or a purified substance, said ligand is selected from the group of substances which can interact with the target polypeptide in the following group: polypeptide, polysaccharide, vitamin, antibiotic, virus, Cells, and functional organic matter, the nanoparticle is a non-magnetic inorganic non-metal particle or a derivative thereof in at least one dimension in a three-dimensional space of greater than 1 nm and less than 100 mn, preferably greater than 1 nm and less than 10 nm, said derivative Surface modification or functional organic Physically coated derivatives.
根据本发明的再一个方面, 其提供一种多肽检测装置, 其包含如上所述 的亲和纳米结构载体和 /或配基 /纳米微粒 /分子标记物质复合物。 According to yet another aspect of the present invention, it provides a polypeptide detection device comprising the affinity nanostructure carrier and / or the ligand / nanoparticle / molecular labeling substance complex as described above.
根据本发明的另一个方面, 其提供一种多肽定量或 /定性检测方法, 其包 括用如上所述的亲和纳米结构载体去捕获样品中的目标多肽。 According to another aspect of the present invention, it provides a method for quantitative or qualitative detection of a polypeptide, which comprises using an affinity nanostructure carrier as described above to capture a target polypeptide in a sample.
根据本发明的另一个方面, 其提供一种多肽定量或 /定性检测方法, 其包 括用如上所述的配基 /纳米微粒 /分子标记物质复合物去标记。 According to another aspect of the present invention, it provides a method for quantitative or qualitative detection of a polypeptide, which includes delabeling with a ligand / nanoparticle / molecular labeling substance complex as described above.
根据本发明的另一个方面, 其提供一种多肽定量或 /和定性的芯片检测方 法, 其至少包括下述一个、 二个、 三个或四个步骤: According to another aspect of the present invention, it provides a chip detection method for quantitative or / and qualitative polypeptides, which includes at least one, two, three or four steps as follows:
(a) 将样品与磁微粒或 /和磁微片混合; (a) mixing the sample with magnetic particles or / and magnetic flakes;
(b) 将样品与配基 /磁纳米微粒混合, 所述配基选自以下组中能与目标 多肽作用的物质: 多肽、 多糖、 维生素、 抗生素、 病毒、 细胞、 及功能有机 物;所述磁纳米微粒在三维空间中至少有一维为 1一 200 nm、优选 1一 100 nm、 更优选 1一 50 nm; (b) mixing the sample with a ligand / magnetic nanoparticle, said ligand being selected from the group consisting of substances capable of interacting with the target polypeptide in the following group: peptides, polysaccharides, vitamins, antibiotics, viruses, cells, and functional organics; said magnetic Nanoparticles have at least one dimension in the three-dimensional space of 1 to 200 nm, preferably 1 to 100 nm, and more preferably 1 to 50 nm;
(c) 将样品与配基 /磁纳米微粒 /片基复合物接触并反应, 在反应时可任 选存在外加磁场, 所述配基 /磁纳米微粒 /片基复合物含有载体、一种或多种磁 纳米微粒和一种或多种配基, 且所述一种或多种磁纳米微粒与载体之间有一 重或多重配基、 或 /和所述一种或多种配基与载体之间有一重或多重磁纳米微 粒、 或 /和至少一重磁纳米微粒与另一重磁纳米微粒之间有一重或多重配基, 所述配基选自以下组中能与目标多肽作用的物质: 多肽、 多糖、 维生素、 抗 生素、 病毒、 细胞、 及功能有机物, 所述磁纳米微粒在三维空间中至少有一 维为 1一 200 nm、 优选 1一 100 nm、 更优选 1一 50 nm, 所述片基选自下述材料 组及它们的衍生物: 玻璃、 硅片、 陶瓷、 金属氧化物、 金属、 聚合物材料及 它们的复合物, 所述衍生物包括表面含衍生基团的表面修饰或 /和功能有机物 包被衍生物; (c) contacting and reacting the sample with the ligand / magnetic nanoparticle / platelet complex, and optionally an external magnetic field may be present during the reaction, the ligand / magnetic nanoparticle / platelet complex containing a carrier, one or A plurality of magnetic nanoparticles and one or more ligands, and there is a heavy or multiple ligand between the one or more magnetic nanoparticles and a carrier, or / and the one or more ligands and a carrier There is a heavy or multiple magnetic nanoparticle in between, or / and at least one heavy magnetic nanoparticle and another heavy magnetic nanoparticle have a heavy or multiple ligand, the ligand is selected from the group of substances that can interact with the target polypeptide: Peptides, polysaccharides, vitamins, antibiotics, viruses, cells, and functional organic matter, the magnetic nanoparticles have at least one dimension in a three-dimensional space of 1 to 200 nm, preferably 1 to 100 nm, and more preferably 1 to 50 nm. The base is selected from the following group of materials and their derivatives: glass, silicon wafers, ceramics, metal oxides, metals, polymer materials and their composites, said derivatives including surface modifications with derivatizing groups on the surface / Functional organic coating and derivatives thereof;
(d) 将配基 /磁纳米微粒 /分子标记物质复合物用于标记反应, 在标记时 可任选存在外加磁场,所述配基 /磁纳米微粒 /分子标记物质复合物含有一种或 多种分子标记物质、 一种或多种磁纳米微粒、 一种或多种配基以及任选的封 闭剂,所述配基 /分磁纳米微粒 /子标记物质为混合物或纯化物,所述配基选自
以下组中能与多肽作用的物质: 多肽、 多糖、 维生素、 抗生素、 病毒、 细胞、 及功能有机物, 所述磁纳米微粒在三维空间中至少有一维为 1 -200 nm、优选 1 - 100 nm、 更优选 1一 50 nm且其本身不是分子标记物质增强剂。 (d) a ligand / magnetic nanoparticle / molecular labeling substance complex is used for the labeling reaction, and an external magnetic field may optionally be present during labeling; Molecular labeling substance, one or more magnetic nanoparticles, one or more ligands, and optionally a blocking agent, said ligand / magnetic nanoparticles / sub-labeling substance is a mixture or a purified substance, said ligand Base selected Substances capable of interacting with peptides in the following groups: peptides, polysaccharides, vitamins, antibiotics, viruses, cells, and functional organic matter, the magnetic nanoparticles have at least one dimension in a three-dimensional space of 1-200 nm, preferably 1-100 nm, More preferably, it is 1 to 50 nm and is not itself a molecular marker substance enhancer.
根据本发明的另一个方面, 其提供一种多肽检测芯片, 其至少包括一种 或多种配基 /磁纳米微粒 /片基复合物, 所述配基 /磁纳米微粒 /片基复合物含有 载体、 一种或多种磁纳米微粒和一种或多种配基, 且所述一种或多种磁纳米 微粒与载体之间有一重或多重配基、 或 /和所述一种或多种配基与载体之间有 一重或多重磁纳米微粒、 或 /和至少一重磁纳米微粒与另一重磁纳米微粒之间 有一重或多重配基, 所述配基选自以下组中能与目标多肽作用的物质: 多肽、 多糖、 维生素、 抗生素、 病毒、 细胞、 及功能有机物; 所述磁纳米微粒选自 于在三维空间中至少有一维为 1一 200 nm、 优选 1一 100 nm、 更优选 1一 50 nm 的包括四氧化三铁、 三氧化二铁在内的铁氧体及其衍生物, 所述衍生物包括 表面含衍生基团的表面修饰或 /和功能有机物包被衍生物; 所述片基选自下述 材料组及它们的衍生物: 玻璃、 硅片、 陶瓷、 金属氧化物、 金属、 聚合物材 料及它们的复合物。 According to another aspect of the present invention, it provides a polypeptide detection chip, which at least includes one or more ligands / magnetic nanoparticles / sheet-based complexes, and the ligands / magnetic nanoparticles / sheet-based complexes contain A carrier, one or more magnetic nanoparticles, and one or more ligands, and there is a heavy or multiple ligand between the one or more magnetic nanoparticles and the carrier, or / and the one or more There is a heavy or multiple magnetic nanoparticle between the ligand and the carrier, and / or there is a heavy or multiple magnetic ligand between at least one heavy magnetic nanoparticle and another heavy magnetic nanoparticle, the ligand is selected from the group consisting of Substances acting on peptides: peptides, polysaccharides, vitamins, antibiotics, viruses, cells, and functional organics; the magnetic nanoparticles are selected from at least one dimension in a three-dimensional space of 1 to 200 nm, preferably 1 to 100 nm, more preferably 1-50 nm ferrite and its derivatives including ferric tetroxide and ferric oxide, the derivatives including surface-modified or functional organic-coated derivatives containing derivatizing groups on the surface; Said sheet substrate selected from the following group of materials and their derivatives: glass, silicon, ceramics, metal oxides, metals, polymeric materials and composite materials thereof.
根据本发明的另一个方面, 其提供一种如上所述的多肽检测芯片的制备 方法, 其包括以下步骤: According to another aspect of the present invention, it provides a method for preparing a polypeptide detection chip as described above, which includes the following steps:
(a)准备所述片基、 一种或多种所述配基、 以及一种或多种所述磁纳米 微粒; (a) preparing the substrate, one or more of the ligands, and one or more of the magnetic nanoparticles;
(b) 将所述磁纳米微粒与所述配基结合形成一种或多种亲和磁纳米微 粒, 所述亲和磁纳米微粒包括混合物和纯化物; (b) combining the magnetic nanoparticles with the ligand to form one or more affinity magnetic nanoparticles, the affinity magnetic nanoparticles including a mixture and a purified substance;
(c) 将在步骤 (b) 中制备的亲和磁纳米微粒结合到所述载体上, 结合 时提供外加磁场。 (c) binding the affinity magnetic nanoparticles prepared in step (b) to the carrier, and applying an external magnetic field when binding.
根据本发明的另一个方面, 其提供一种多肽检测芯片试剂盒, 其包括如 上所述的亲和纳米结构载体、 或如上所述的多肽检测芯片, 还包括至少一种 下述磁物质: 磁微粒或 /和微片、 亲和磁纳米微粒、 和配基 /磁纳米微粒 /分子 标记物质复合物, 所述配基选自以下组中能与目标多肽作用的物质: 多肽、 多糖、 维生素、 抗生素、 病毒、 细胞、 及功能有机物, 所述磁纳米微粒为在 三维空间中至少有一维为 1一 200 腿、 优选 1— 100 nm、 更优选 l—50 nm的磁
微粒及其衍生物,且在配基 /纳米微粒 /分子标记物质复合物中的所述磁微粒本 身不是分子标记物质增强剂。 According to another aspect of the present invention, it provides a polypeptide detection chip kit, which includes the affinity nanostructure carrier as described above, or the polypeptide detection chip as described above, and further includes at least one of the following magnetic substances: magnetic Microparticles and / or microchips, affinity magnetic nanoparticles, and ligands / magnetic nanoparticles / molecular labeling substance complexes, said ligands being selected from the group of substances that can interact with the target polypeptide: peptides, polysaccharides, vitamins, Antibiotics, viruses, cells, and functional organic matter, the magnetic nanoparticles are magnetic particles having at least one dimension of 1 to 200 legs in a three-dimensional space, preferably 1 to 100 nm, and more preferably 1 to 50 nm. Microparticles and their derivatives, and the magnetic microparticles in the ligand / nanoparticle / molecular labeling substance complex are not themselves molecular labeling substance enhancers.
根据本发明的再一个方面, 其提供一种多肽检测芯片试剂盒, 其包括至 少一种下述含磁纳米微粒的物质: 磁纳米微粒、 亲和磁纳米微粒、 和配基 /磁 纳米微粒 /分子标记物质复合物, 所述配基选自以下组中能与目标多肽作用的 物质: 多肽、 多糖、 维生素、 抗生素、 病毒、 细胞、 及功能有机物, 所述磁 纳米微粒为在三维空间中至少有一维为 1一 200 nm、优选 1一 100 mn、更优选 1 -50 nm的磁微粒及其衍生物, 且在配基 /纳米微粒 /分子标记物质复合物中的 所述微粒本身不是分子标记物质增强剂。 According to yet another aspect of the present invention, it provides a peptide detection chip kit, which includes at least one of the following magnetic nanoparticle-containing substances: magnetic nanoparticle, affinity magnetic nanoparticle, and ligand / magnetic nanoparticle / A molecularly labeled substance complex, the ligand is selected from the group of substances capable of interacting with the target polypeptide in the following group: polypeptides, polysaccharides, vitamins, antibiotics, viruses, cells, and functional organics, and the magnetic nanoparticles are at least in a three-dimensional space Magnetic particles and their derivatives having a dimension of 1 to 200 nm, preferably 1 to 100 mn, more preferably 1 to 50 nm, and said particles in the ligand / nanoparticle / molecular labeling substance complex are not themselves molecular markers Substance enhancer.
根据本发明的另一个方面, 其提供一种使用如上所述的多肽检测芯片试 剂盒进行检测的芯片检测仪, 其特征在于还包括在检测中反应或 /和标记时提 供磁场的装置。 具体实施方式 According to another aspect of the present invention, there is provided a chip detector for performing detection using the polypeptide detection chip reagent kit as described above, further comprising a device for supplying a magnetic field during a reaction or / and a label during detection. detailed description
术语定义 Definition of Terms
本发明术语 "检测装置" 是指定量或 /和定性检测过程中所用的包含有用 以同样品目标物作用的配基的用品, 例如含有捕获配基的仪器、 耗材和含有 捕获配基和标记配基的标记试剂盒。例子有分析芯片、 酶标板、 亲和电泳条、 亲和层析柱、 平面层析试剂条、 分析芯片试剂盒、 酶标板试剂盒、 亲和电泳 试剂盒、等等。定量或 /和定性检测过程可以在体外进行、也可以在体内进行。 The term "detection device" according to the present invention is an article containing a ligand useful for interacting with a sample target, such as a device containing a capture ligand, a consumable, and a reagent containing a capture ligand and a labeling reagent, used in a specified amount or / and qualitative detection process. -Based labeling kit. Examples include analysis chips, microplates, affinity electrophoresis strips, affinity columns, planar chromatography reagent strips, analysis chip kits, microplate readers, affinity electrophoresis kits, and the like. Quantitative or / and qualitative testing can be performed in vitro or in vivo.
本发明术语 "分离装置" 是指分离过程中所用的包含有具有分离功能的 物质的分离用品。 分离过程是通过分离方法获得样品的全部或部分组分的过 程, 分离装置的例子可举层析装置, 具有分离功能的物质的例子有层析载体 等。 The term "separation device" used in the present invention refers to a separation product used in a separation process and containing a substance having a separation function. The separation process is a process in which all or part of the components of a sample are obtained by a separation method. Examples of the separation device include a chromatography device, and examples of a substance having a separation function include a chromatographic carrier.
本发明术语 "亲和纳米结构载体"是指一种至少包含有配基、纳米微粒、 和载体的复合物, 其包括固相载体和分布于其表面的亲和纳米结构,其中所述 亲和纳米结构是以亲和纳米微粒为单元在所述表面上构建的、 保留了主要的 纳米现象特性从而具有比配基更高反应效率的结构,所述亲和纳米微粒包括 纳米微粒和固定于其上的一种或多种配基,且其中配基、 纳米微粒、 载体间的 结合可以有不同的形式, 包括直接结合 (例如纳米微粒与配基直接结合)和
间接结合 (例如实施例中纳米微粒与芯片片基间通过固定在纳米微粒上的配 基而结合) , 例如: 配基一纳米微粒一载体、 配基一纳米微粒一配基一载体、 配基一纳米微粒一配基一纳米微粒一载体、 配基 2—微粒一配基 1一载体、 配 基 2—微粒一配基 2—配基 1一微粒一配基 1一载体、 等等。 The term "affinity nanostructure carrier" in the present invention refers to a complex containing at least a ligand, a nanoparticle, and a carrier, which includes a solid phase carrier and an affinity nanostructure distributed on a surface thereof, wherein the affinity Nanostructures are constructed on the surface with affinity nanoparticles as a unit, which retains the main nanophenomenon characteristics and have a higher reaction efficiency than ligands. The affinity nanoparticles include nanoparticles and immobilized on them. One or more ligands, and the binding between the ligands, nanoparticles, and carriers can have different forms, including direct binding (such as direct binding of nanoparticles to ligands) and Indirect binding (for example, in the embodiment, the nanoparticle and the chip substrate are bonded by a ligand fixed on the nanoparticle), for example: ligand-nanoparticle-carrier, ligand-nanoparticle-ligand-carrier, ligand A nanoparticle, a ligand, a nanoparticle, a carrier, a ligand 2—a microparticle—a ligand 1—a carrier, a ligand 2—a microparticle—a ligand 2—a ligand 1—a microparticle—a ligand 1—a carrier, and so on.
本发明术语"配基 /磁纳米微粒 /固相载体" 是指一种至少包含有配基、磁 纳米微粒、 和载体的复合物, 其中配基、 磁纳米微粒、 载体间的结合可以有 不同的形式, 包括直接结合和间接结合。 The term "ligand / magnetic nanoparticle / solid phase support" in the present invention refers to a complex containing at least a ligand, a magnetic nanoparticle, and a carrier, wherein the binding between the ligand, the magnetic nanoparticle, and the carrier may be different The forms include direct binding and indirect binding.
本发明术语 "配基"相当于英文的 Ligand, 是指用以通过相互作用 (包 括亲和作用、离子交换、亲油作用、等等)捕获其配体(相当于英文的 Ligate) 的物质, 其既可以与载体、 例如片基结合形成反应器, 又可以与分子标记物 质结合形成标记物。 可用作配基的物质很多, 例如下述之一种或多种物质: 二乙氨乙基(DEAE)、二乙基一(2—羟丙基)氨乙基(QAE)、羧甲基(CM)、 磺酸丙基 (SP) 、 巯乙基吡啶基 (MEP) 、 一 NR3+、 一 RCOOH、 硅氧烷基、 硫醇基、 烷基、 抗原、 抗体、 配体、 配体指数增强系统进化技术筛选的适配 分子、 配基、 多肽、 多糖、 共酶、 辅因子、 抗生素、 类固醇、 病毒、 细胞、 生物素、 亲和素等。 The term "ligand" in the present invention is equivalent to Ligand in English, and refers to a substance for capturing its ligand (equivalent to Ligate in English) through interaction (including affinity, ion exchange, lipophilicity, etc.), It can be combined with a carrier, such as a substrate, to form a reactor, or it can be combined with a molecular labeling substance to form a label. There are many substances that can be used as a ligand, such as one or more of the following: diethylaminoethyl (DEAE), diethylmono (2-hydroxypropyl) aminoethyl (QAE), carboxymethyl (CM), sulfopropyl (SP), mercaptoethylpyridyl (MEP), one NR 3+ , one RCOOH, siloxane group, thiol group, alkyl group, antigen, antibody, ligand, ligand Exponential enhancement of phylogenetic technology for screening of adaptive molecules, ligands, peptides, polysaccharides, coenzymes, cofactors, antibiotics, steroids, viruses, cells, biotin, avidin, etc.
本发明术语 "多肽" 相当于英语中的 "polypeptide ", 包括天然或合成蛋 白质、 蛋白质片断、 合成肽、 等等, 免疫检测中通常的目标物和检测中通用 的配基、 例如抗原、 抗体、 等等都属于多肽。 The term "polypeptide" in the present invention is equivalent to "polypeptide" in English, and includes natural or synthetic proteins, protein fragments, synthetic peptides, and the like. Common targets in immunoassays and commonly used ligands in tests, such as antigens, antibodies, And so on are all peptides.
本发明术语 "纳米微粒" 是指在三维空间中至少有一维小于 500 nm、 优 选为 1一 90 nm、 更优选小于 50 nm的固相载体微粒。 The term "nanoparticle" in the present invention refers to a solid-phase carrier particle having a dimension of less than 500 nm, preferably 1 to 90 nm, and more preferably less than 50 nm in at least one dimension in a three-dimensional space.
本发明术语 "载体" , 简称载体, 是指具有固相形态的、 尺寸大于上述 纳米微粒的载体, 例如: 分析芯片片基、 酶标板片基、 酶标小球载体、 层析 载体、 电泳胶、 生物传感器配基载体等。 The term “carrier” in the present invention, referred to as the carrier, refers to a carrier having a solid phase morphology and having a size larger than the above-mentioned nanoparticles, for example, an analysis chip substrate, an enzyme-labeled plate substrate, an enzyme-labeled bead carrier, a chromatography carrier, and electrophoresis Glue, biosensor ligand carrier, etc.
本发明术语 "片基" 是指其固定功能的一面具有宏观平面的固相载体, 例如: 分析芯片片基、 酶标板片基、 电泳胶片、 平面层析载体等。 The term “film substrate” in the present invention refers to a solid-phase carrier having a macroscopic plane on one side of its fixed function, for example, an analysis chip substrate, an enzyme-labeled plate substrate, an electrophoresis film, and a planar chromatography carrier.
本发明术语 "配基 /纳米微粒 /片基复合物" 是指包含有配基、 纳米微粒、 片基的一种复合组成, 其中配基、 纳米微粒、 片基间的结合可以有不同的形 式, 例如: 配基一纳米微粒一片基、 配基一纳米微粒一配基一片基、 配基一
纳米微粒一配基一纳米微粒一片基、 配基一纳米微粒一配基一纳米微粒一配 基一片基等。 The term “ligand / nanoparticle / tablet complex” in the present invention refers to a composite composition comprising a ligand, a nanoparticle, and a tablet, and the binding between the ligand, the nanoparticle, and the tablet may have different forms. For example: Ligand-nanoparticles, Ligand-nanoparticles, Ligands, Ligands Nanoparticles-ligands-nanoparticles-based, ligand-nanoparticles-ligands-nanoparticles-ligand-based-groups, etc.
本发明术语 "亲和纳米微粒" , 是指配基与纳米微粒通过共价或 /和非共 价结合形成的复合物。 The term "affinity nanoparticle" in the present invention refers to a complex formed by the ligand and the nanoparticle by covalent or / and non-covalent bonding.
本发明术语 "反应器" 是指其中固定有用以同样品中的目标分子发生特 异反应的配基, 是配基与目标分子发生特异性反应的场所及与其连通的其它 相关结构, 例如开放式多反应器生物芯片中的反应池和相关的隔离结构和进 出液结构等、 96孔酶标板中的孔、 快速检测试剂盒的试剂条等。 The term “reactor” in the present invention refers to a ligand in which a specific reaction with a target molecule in a sample is immobilized, a place where the ligand reacts specifically with the target molecule, and other related structures communicating with it, such as an open The reaction cell in the biochip of the reactor, the related isolation structure, the structure of the inlet and outlet liquid, the wells in a 96-well microtiter plate, the reagent strips of the rapid detection kit, etc.
本发明术语 "基片" 是指以片基为基础的、 结合有无其它结构 (例如隔 离结构) 的用以在固定配基后形成芯片的产品。 基片上可以有一个或多个片 基池。 单片基池基片上通常没有隔离结构, 此时基片既是片基 (例如市售的 氨基玻片) 。 多片基池基片上有隔离结构, 此时基片包括片基和隔离结构。 片基池在固定上配基后形成反应器, 多片基池片基形成多反应器芯片。 片基 是用以固定配基及其它助剂 (假如有的话) 的片基, 其表面化学性质和光学 性质是影响芯片性能及成本的重要因素。 The term "substrate" in the present invention refers to a product based on a substrate and combined with the presence or absence of other structures (such as an isolation structure) to form a chip after fixing the substrate. There can be one or more substrate pools on the substrate. Monolithic substrates usually have no isolation structure on them. In this case, the substrate is both a substrate (such as a commercially available amino slide). The multi-chip base substrate has an isolation structure. At this time, the substrate includes a base and an isolation structure. After the substrate base is fixed on the substrate, a reactor is formed, and the multiple substrate bases form a multi-reactor chip. The substrate is a substrate for fixing the ligand and other auxiliary agents (if any), and its surface chemical and optical properties are important factors affecting chip performance and cost.
本发明术语 "片基池" 是指片基与其隔离结构形成的结构。 The term “film base pool” in the present invention refers to a structure formed by a film base and its isolation structure.
本发明术语"分析芯片" 简称为 "芯片",包括但不限于英语中的 Bi0chip、 Microarray, Bioarray, 是指定性和 /或定量分析中的一种检测装置, 其反应器 中微量配基同样品中的目标分子发生特异反应的结果可以以可寻址的方式进 行识别。 芯片的核心是其中的反应器, 反应器的核心是其中的芯片片基和固 定在芯片片基上的配基。芯片包括微通道芯片(相当于英语中的 Microchamel Bioc ip) 和微阵列芯片 (相当于英语中的 Biochip、 Microarray, Bioarray) , 但众所周知不包括现有的快检试剂条。 本发明的芯片含有单反应器或多反应 器且有无标记系统, 反应器中配基在片基上的分布密度大于 10点 /cm2、 优选 方案大于 20点 /cm2、更优选方案大于 40点 /cm2, 且每个配基点的面积不大于 1 mm2 o The term "analysis chip" in the present invention is referred to as "chip" for short, and includes, but is not limited to, Bi 0 chip, Microarray, and Bioarray in English. It is a detection device in designated and / or quantitative analysis. The results of specific reactions of target molecules in the same product can be identified in an addressable manner. The core of the chip is the reactor therein, and the core of the reactor is the chip substrate and the ligand fixed on the chip substrate. The chip includes a microchannel chip (equivalent to Microchamel Bioc ip in English) and a microarray chip (equivalent to Biochip, Microarray, Bioarray in English), but it is well known that it does not include existing rapid test reagent strips. The chip of the present invention contains a single reactor or multiple reactors and has a labeling system. The distribution density of the ligands on the substrate in the reactor is greater than 10 points / cm 2 , the preferred solution is greater than 20 points / cm 2 , and the more preferred solution is greater than 40 points / cm 2 , and the area of each ligand point is not more than 1 mm 2 o
本发明术语 "层析" 相当于英语" Chromatogmpliy" , 包括亲和层析、反 相层析、 疏水层析、 离子交换层析、 等等, 其分为平面层析 (例如快检试剂 条和快检试剂盒〉 和柱层析等。
本发明术语 "分子标记物质" 是指用以形成或参与形成检出信号、 并在 标记时具有分子形态的物质, 例如芯片检测常用标记物中的罗丹明、 CY3、 CY5等。 我们在研究中'惊奇地发现, 当将配基与尺寸为 1一 90 nm的无机微粒结合 形成亲和纳米微粒并用以制作多肽检测芯片时, 在检测灵敏度和检测时间方 面均表现出不同寻常的优点。 本发明无意进入理论探讨, 只假设此时亲和纳 米微粒本身已完全不同于经典的亲和载体。 实际上, 纳米科学揭示的某些特 别的 "纳米现象" 也许可以部分地解释本发明的特异性: The term "chromatography" in the present invention is equivalent to "Chromatogmpliy" in English, and includes affinity chromatography, reversed phase chromatography, hydrophobic chromatography, ion exchange chromatography, and the like, which are divided into planar chromatography (such as quick detection reagent strips and Quick test kits> and column chromatography. The term “molecularly labeled substance” in the present invention refers to a substance that is used to form or participate in the formation of a detection signal and has a molecular form at the time of labeling, such as rhodamine, CY3, CY5, etc., which are commonly used in chip detection. In our research, we were surprised to find that when ligands were combined with inorganic particles with a size of 1 to 90 nm to form affinity nanoparticles and used to make peptide detection chips, they showed unusual detection sensitivity and detection time. advantage. The present invention is not intended to enter the theoretical discussion, it is only assumed that the affinity nanoparticle itself is completely different from the classic affinity carrier at this time. In fact, some special "nano phenomena" revealed by nanoscience may partially explain the specificity of the present invention:
1 ) 、 表面效应: 随着微粒粒径尺寸的减小, 表面原子占其总原子数的百 分比增大, 表面活性高, 易与配基分子结合; 特别是其比表面积大, 单位体 积载体中可以固定更多的配基, 并为固定在其上的配基提供了更为有利的反 应动力学条件,其结果是观察到明显降低了反应时间和提高了检测灵敏度(参 考实施例) 。 1) Surface effect: As the particle size decreases, the percentage of surface atoms in the total number of atoms increases, the surface activity is high, and it is easy to bind with ligand molecules; especially its large specific surface area, in a unit volume carrier More ligands can be immobilized, and more favorable reaction kinetic conditions are provided for the ligands immobilized thereon. As a result, it is observed that the reaction time is significantly reduced and the detection sensitivity is improved (Reference Examples).
2) 、 小尺寸效应: 随着微粒粒径尺寸的减小, 还引起了某些宏观性质的 变化, 特别是其光学性质的变化, 可以使得某些固定在基片上的亲和微粒, 不但不明显增大、 还可能减小基片的本底噪声, 这就为提高检测灵敏度开辟 了一条新的道路。 实际上, 某些纳米材料的超常吸光性和超常透光性, 已经 在其它领域得到应用。 2) Small size effect: With the reduction of particle size, some macroscopic properties change, especially the change in optical properties, which can make certain affinity particles fixed on the substrate, not only Obviously, it is also possible to reduce the background noise of the substrate, which opens a new way to improve the detection sensitivity. In fact, the superabsorbency and translucency of some nanomaterials have been used in other fields.
3 ) 、 固着稳定性: 随着微粒粒径尺寸的减小, 其在载体(例如片基)上 固着条件向有利于固着和固着稳定性的方向发展。 3) Fixing stability: As the particle size of the particles decreases, the fixing conditions on the carrier (for example, the substrate) develop in a direction favorable to the fixing and the fixing stability.
4) 、 粒子均匀性: 同有机粒子、 特别是胶体粒子比较, 尺寸 1一 90 nm的 无机粒子容易更均匀地制备出来。 4) Particle uniformity: Compared with organic particles, especially colloidal particles, inorganic particles with a size of 1 to 90 nm are easier to prepare more uniformly.
同样, 含有微粒的标记物也引起人们的广泛注意。 但是主要是有机微粒 (例如公开号为 1392097的中国专利申请中的氨基化有机硅钠米颗粒) 、 和用 于核酸检测的纳米标记物。 近期的一项工作中, 一些具有标记物质增强性质 的金属纳米微粒与配基和标记物质的复合物被成功用于标记 ( Surface enhanced raman scattering from metal nanoparticle-analyte-noble metal substrate sandwiches, 美国专利号 6,149,868) 。 而我们在研究中惊奇地发现, 不具有标 记物质增强性质的非金属纳米微粒与配基和标记物质的复合物的应用, 可提
高检测、 特别是芯片检测的灵敏度。 Similarly, microparticle-containing labels have attracted widespread attention. But mainly organic particles (such as the aminated organosilicon sodium rice particles in Chinese Patent Application Publication No. 1392097), and nano-labels for nucleic acid detection. In a recent work, some complexes of metal nanoparticles with ligand-enhancing properties and ligands and labeling substances were successfully used for labeling (Surface enhanced raman scattering from metal nanoparticle-analyte-noble metal substrate sandwiches, US Patent No. 6,149,868). In our research, we were surprised to find that the application of the complex of non-metallic nanoparticles without ligand-enhancing properties with ligands and labeling substances can improve High detection sensitivity, especially chip detection sensitivity.
特别是, 我们更为'惊奇地发现在多肽检测中, 尽管独立地分别利用亲和 纳米结构载体和配基 /纳米微粒 /分子标记物质复合物已经大大地提高了检测 灵敏度, 而将它们联合使用则还可更加提高检测灵敏度。 同样地, 本发明无 意进入理论探讨, 只假设此时纳米结构 (例如亲和纳米结构载体一目标分子 一配基 /纳米微粒 /分子标记物质复合物) 的形成自有其特性。 In particular, we are even more surprised to find that in the detection of peptides, although the use of affinity nanostructure carriers and ligand / nanoparticle / molecular labeling substance complexes independently has greatly improved detection sensitivity, they have been used in combination. The detection sensitivity can be further improved. Similarly, the present invention does not intend to enter the theoretical discussion, it is only assumed that the formation of the nanostructure (such as the affinity nanostructure carrier-target molecule-ligand / nanoparticle / molecular labeling substance complex) at this time has its own characteristics.
本发明的一个主题是一种多肽定量或 /和定性捡测方法, 其至少包括以下 步骤: A subject of the present invention is a method for quantitative or / and qualitative peptide detection, which includes at least the following steps:
( a) 提供一种亲和纳米结构载体,所述亲和纳米结构载体包括固相载体 和分布于其表面的亲和纳米结构,其中所述亲和纳米结构是以亲和纳米微粒 为单元在所述表面上构建的、 保留了主要的纳米现象特性从而具有比配基更 高反应效率的结构,所述亲和纳米微粒包括纳米微粒和固定于其上的一种或 多种配基,且所述亲和纳米结构固相载体中一种或多种纳米微粒与固相载体 之间有一重或多重配基、 或 /和一种或多种配基与固相载体之间有一重或多重 纳米微粒、 或 /和所述至少一重纳米微粒与另一重纳米微粒之间有一重或多重 配基, 所述配基选自以下组中能与目标多肽作用的物质: 多肽、 多糖、 维生 素、 抗生素、 病毒、 细胞和功能有机物, 所述纳米微粒为在三维空间中至少 有一维为大于 1 nm且小于 100 nm、 优选大于 1 nm且小于 50 nm的非磁微粒; (a) providing an affinity nanostructure support, the affinity nanostructure support comprising a solid phase support and an affinity nanostructure distributed on a surface thereof, wherein the affinity nanostructure is made of affinity nanoparticles as a unit; A structure constructed on the surface that retains the main nanophenomenon characteristics and thus has a higher reaction efficiency than a ligand, the affinity nanoparticle includes a nanoparticle and one or more ligands immobilized thereon, and There is a heavy or multiple ligand between one or more nanoparticles in the affinity nanostructured solid phase support and the solid phase support, or / and a heavy or multiple between one or more ligands and the solid phase support. Nanoparticles, or / and a heavy or multiple ligand between the at least one heavy nanoparticle and another heavy nanoparticle, the ligand is selected from the group of substances that can interact with the target polypeptide: polypeptide, polysaccharide, vitamin, antibiotic Viruses, cells, and functional organic matter, the nanoparticles are non-magnetic particles in at least one dimension in three-dimensional space of greater than 1 nm and less than 100 nm, preferably greater than 1 nm and less than 50 nm;
(b)将待检测样品与所述亲和纳米结构载体接触并进行所述复合物与所 述样品中的目标多肽之间的反应; (b) contacting the sample to be detected with the affinity nanostructure carrier and performing a reaction between the complex and the target polypeptide in the sample;
(c)提供一种配基 /纳米微粒 /分子标记物质复合物并对步骤(b)中的反 应结果进行标记,所述配基 /纳米微粒 /分子标记物质复合物含有一种或多种分 子标记物质、 一种或多种纳米微粒、 一种或多种配基以及任选的封闭剂, 所 述纳米微粒 /配基 /分子标记物质为混合物或纯化物,所述配基选自以下组中能 与目标多肽作用的物质: 多肽、 多糖、 维生素、 抗生素、 病毒、 细胞和功能 有机物,所述纳米微粒为在三维空间中至少有一维为大于 1 nm且小于 100 nm、 优选大于 1 nm且小于 10 nm且本身不是标记物质增强剂的非磁性无机非金属 微粒或其衍生物, 所述衍生物包括表面含衍生基团的表面修饰或 /和功能有机 物包被衍生物。
本发明的检测方法为双纳米微粒复合物夹心检测方法, 包括样品中的目 标物被亲和纳米结构捕获、且被配基 /纳米微粒 /标记物质复合物进行标记。特 别要强调的是,本发明中的亲和纳米结构载体不同于一般意义上固定有亲和 载体的载体。 亲和纳米微粒在固相载体上构成纳米结构是关健 (例如在显微 镜下观察到的独立分布的亲和纳米微粒和 /或亲和纳米微粒的松散聚集体) 。 某些高浓度纳米微粒 (例如体积浓度大于 1 % ) /配基混合液点样在芯片片基 上形成的亲和纳米微粒的高密度聚集5是难以观察到灵敏度提高的。总之,固定 有亲和纳米微粒的片基仅在检测灵敏度方面比仅固定有相同配基的片基高、 优选高 25 %、 更优选高 50%时, 才被认为其为亲和纳米结构载体。 (c) providing a ligand / nanoparticle / molecular labeling substance complex and labeling the reaction result in step (b), said ligand / nanoparticle / molecular labeling substance complex containing one or more molecules A labeling substance, one or more nanoparticles, one or more ligands, and an optional blocking agent, the nanoparticle / ligand / molecular labeling substance is a mixture or a purified substance, the ligand is selected from the group Substances capable of interacting with the target polypeptide: peptides, polysaccharides, vitamins, antibiotics, viruses, cells and functional organics, the nanoparticles are at least one dimension in a three-dimensional space greater than 1 nm and less than 100 nm, preferably greater than 1 nm and Non-magnetic inorganic non-metallic microparticles or derivatives thereof that are smaller than 10 nm and are not themselves labeling substance enhancers, the derivatives including surface-modified or functional organic-coated derivatives containing derivative groups on the surface. The detection method of the present invention is a double-nanoparticle composite sandwich detection method, which includes a target in a sample being captured by an affinity nanostructure and labeled with a ligand / nanoparticle / labeling substance complex. It is particularly emphasized that the affinity nanostructure carrier in the present invention is different from a carrier in which an affinity carrier is immobilized in a general sense. It is critical that the affinity nanoparticles form nanostructures on a solid support (eg, independently distributed affinity nanoparticles and / or loose aggregates of affinity nanoparticles observed under a microscope). Some high-density nanoparticles (for example, a volume concentration greater than 1%) / ligand mixed solution spotted high-density aggregation of affinity nanoparticles formed on the chip substrate 5 is difficult to observe an increase in sensitivity. In summary, a substrate to which affinity nanoparticles are immobilized is considered to be an affinity nanostructure carrier only when its detection sensitivity is higher than that of the substrate to which only the same ligand is immobilized, preferably 25%, more preferably 50%. .
在本发明的多肽定量或 /和定性检测方法中, 其中所述非磁微粒包括非磁 性无机微粒、 非磁性有机微粒及它们的衍生物, 所述非磁性无机微粒包括非 磁性无机非金属微粒和非磁性金属微粒, 所述衍生物包括表面含衍生基团的 表面修饰或 /和功能有机物包被衍生物。 In the polypeptide quantitative or / and qualitative detection method of the present invention, the non-magnetic particles include non-magnetic inorganic particles, non-magnetic organic particles and their derivatives, and the non-magnetic inorganic particles include non-magnetic inorganic non-metal particles and Non-magnetic metal microparticles, the derivatives include surface-modified or functional organic-coated derivatives containing derivatizing groups on the surface.
在本发明的多肽定量或 /和定性检测方法中, 所述非磁性无机非金属微粒 包括包括氧化硅、 氧化钛、 氧化铝在内的氧化物微粒, 而所述金属微粒包括 金、 银、 铜、 和铝微粒。 尽管微粒金等金属粒子已被用于快检试剂条, 但它 是作为微粒分子标记物质, 而不是本发明方法的固相载体使用的。 In the polypeptide quantitative or / and qualitative detection method of the present invention, the non-magnetic inorganic non-metal particles include oxide particles including silicon oxide, titanium oxide, and alumina, and the metal particles include gold, silver, and copper , And aluminum particles. Although metal particles such as microparticle gold have been used for rapid detection reagent strips, they are used as microparticle molecular markers, not as solid phase carriers in the method of the present invention.
在本发明的多肽定量或 /和定性检测方法中, 含所述亲和纳米结构载体的 检测装置包括分析芯片、 酶标板和平面层析试剂条,而含所述配基 /纳米微粒 / 分子标记物质复合物的标记物包括分析芯片标记物、 酶标板标记物、 和平面 层析试剂条标记物。 In the polypeptide quantitative or / and qualitative detection method of the present invention, the detection device containing the affinity nanostructure carrier includes an analysis chip, a microplate, and a planar chromatography reagent strip, and the ligand / nanoparticle / molecule is contained. The label of the labeling substance complex includes an analysis chip label, an enzyme plate label, and a planar chromatography reagent strip label.
在本发明的多肽定量或 /和定性检测方法中, 其中所述固相载体包括由以 下材料或其衍生物制成的片基和载体粒子: 玻璃、 硅片、 硅胶、 陶瓷、 金属 氧化物、 金属、 聚合物材料及它们的复合物, 所述衍生物包括表面含衍生基 团的表面修饰或 /和功能有机物包被衍生物、 以及微载体包被载体。 In the polypeptide quantitative or / and qualitative detection method of the present invention, the solid-phase carrier includes a substrate and carrier particles made of the following materials or derivatives thereof: glass, silicon wafer, silica gel, ceramic, metal oxide, Metals, polymer materials, and their composites, the derivatives include surface-modified or / and functional organic-coated derivatives containing derivative groups on the surface, and microcarrier-coated carriers.
所述衍生基团包括长臂衍生基团 R— (CH2)X—, 其中 R是衍生基团, X等于 或大于 2、优选大于 4、更优选大于 6。所述衍生基团包括下述一种或多种有机 基团: 氨基、 醛基、环氧基、氨基肼、二乙氨基乙基 (DEAE)、 二乙基一 (2 一羟丙基)氨乙基 (QAE) 、 羧甲基 (CM) 、 磺酸丙基 (SP) 、 巯乙基吡
啶基 (MEP) 、 硅氧烷基、 硫醇基、 垸基。 The derivatizing group includes a long-arm derivatizing group R— (CH 2 ) X— , where R is a derivatizing group, and X is equal to or greater than 2, preferably greater than 4, and more preferably greater than 6. The derived group includes one or more of the following organic groups: amino, aldehyde, epoxy, aminohydrazine, diethylaminoethyl (DEAE), diethylmono (2-hydroxypropyl) ammonia Ethyl (QAE), carboxymethyl (CM), sulfopropyl (SP), mercaptoethylpyridine Pyridyl (MEP), siloxane, thiol, fluorenyl.
所述功能有机物包括下述一种或多种有机物: 表面活性剂如聚乙烯吡咯 垸酮、 吐温类表面活性剂, 聚电解质如聚氨基酸, 亲油有机物如聚硅氧垸, 离子交换聚合物如葡聚糖衍生物、 琼脂糖衍生物、 纤维素衍生物、 聚丙烯酰 胺, 以及亲和物质如蛋白质 A (SPA) 、 蛋白质 G (SPG) 、 肝素钠、 生物素、 亲和素。 The functional organics include one or more of the following: surfactants such as polyvinylpyrrolidone, Tween-type surfactants, polyelectrolytes such as polyamino acids, lipophilic organics such as polysiloxanes, ion exchange polymers Such as dextran derivatives, agarose derivatives, cellulose derivatives, polyacrylamides, and affinity substances such as protein A (SPA), protein G (SPG), heparin sodium, biotin, avidin.
在本发明中, 特别是由于包被衍生物的制备, 使得纳米微粒表面可以引 入的活性有机基团的范围很大。 例如在本发明实施例中, 纳米微粒衍生物如 超疏水氧化硅 (CS7) 上有垸基, 包被衍生物表面有包被有机物的基团, 例 如聚氨基酸具有氨基、氨基肼 -聚氨基酸具有氨基和氨基肼基、 DEAE-Dextran 具有二乙氨乙基、 等等。 另一方面, 表面活性剂如聚乙烯吡咯烷酮、 聚电解 质如聚氨基酸、 离子交换聚合物如 DEAE-Dextran、 亲和物质如蛋白质 A等均 用在本发明方法中制备配基 /纳米微粒 /片基复合物和配基 /纳米微粒 /分子标记 物质复合物。 实际上, 微粒衍生物的重要方面是包被衍生物。 本发明方法中 的包被衍生物可以是一重或多重包被衍生物。 例如, 包被有分散剂或 /和分散 稳定剂的氧化硅粒子上 (一重包被) , 还可以包被 PVP (二重包被) , 继续 还可以包被蛋白质 A (三重包被) 等等。 因此, 可以选择的包被有机物的范 围是非常的大。 In the present invention, especially due to the preparation of the coated derivative, the range of active organic groups that can be introduced on the surface of the nanoparticle is large. For example, in the embodiment of the present invention, a nanoparticle derivative such as superhydrophobic silica (CS7) has a fluorenyl group, and the surface of the coated derivative has an organic coating group, for example, a polyamino acid has an amino group and an aminohydrazine-polyamino acid has Amino and aminohydrazine, DEAE-Dextran has diethylaminoethyl, and so on. On the other hand, surfactants such as polyvinylpyrrolidone, polyelectrolytes such as polyamino acids, ion-exchange polymers such as DEAE-Dextran, and affinity substances such as protein A are used in the method of the present invention to prepare ligands / nanoparticles / tablets. Complex and ligand / nanoparticle / molecular labeling substance complex. In fact, an important aspect of microparticle derivatives is the coated derivative. The coated derivative in the method of the present invention may be a single or multiple coated derivative. For example, silica particles coated with a dispersant or / and dispersion stabilizer (one coat) can also be coated with PVP (double coat), and can continue to be coated with protein A (triple coat), etc. . Therefore, the range of organic coatings that can be selected is very large.
在本发明的多肽定量或 /和定性检测方法中, 所述分子标记物质选自以下 组中: 荧光物质、 化学发光物质、 化学发光催化剂、 有色金属盐、 染料和颜 料。 具体而言, 这些分子标记物质包括下述物质之一种或多种: 荧光素、 罗 丹明、 海藻蛋白、 银盐、 酶、 碱性黑、 碱性紫、 胺基黑、 考马斯亮蓝、 结晶 紫。 In the polypeptide quantitative or / and qualitative detection method of the present invention, the molecularly labeled substance is selected from the group consisting of a fluorescent substance, a chemiluminescent substance, a chemiluminescent catalyst, a non-ferrous metal salt, a dye, and a pigment. Specifically, these molecularly labeled substances include one or more of the following: fluorescein, rhodamine, seaweed protein, silver salts, enzymes, basic black, basic violet, amino black, Coomassie brilliant blue, crystals purple.
本发明还涉及一种多肽检测装置, 其包括如上所述的亲和纳米结构载体 和配基 /纳米微粒 /分子标记物质复合物。具体而言,该多肽检测装置包括含有 上述亲和纳米结构载体和配基 /纳米微粒 /分子标记物质复合物的芯片试剂盒、 酶标板试剂盒、 和平面层析试剂盒。 The invention also relates to a polypeptide detection device, which comprises an affinity nanostructure carrier and a ligand / nanoparticle / molecular labeling substance complex as described above. Specifically, the polypeptide detection device includes a chip kit, a microplate reader, and a planar chromatography kit containing the affinity nanostructure carrier and the ligand / nanoparticle / molecular labeling substance complex.
本发明还涉及一种制备用于多肽检测或组分分离的微载体包被载体的方 法, 其包括以下步骤:
(a) 准备一种或多种微载体, 所述微载体包括纳米微粒或 /和胶体, 所 述纳米微粒为在三维空间中至少有一维为大于 1 nm且小于 100 nm、优选大于 1 nm且小于 10 nm的非磁无机微粒, 所述胶体为 100— 600 nm的有机物分散体 系; The invention also relates to a method for preparing a microcarrier-coated carrier for polypeptide detection or component separation, which comprises the following steps: (a) preparing one or more microcarriers, said microcarriers comprising nanoparticles or colloids, said nanoparticles being at least one dimension in a three-dimensional space greater than 1 nm and less than 100 nm, preferably greater than 1 nm and Non-magnetic inorganic particles smaller than 10 nm, the colloid is an organic matter dispersion system of 100-600 nm;
(b ) 准备载体, 所述载体包括由以下材料或其衍生物制成的片基和载 体粒子: 玻璃、 硅片、 硅胶、 陶瓷、 金属氧化物、 金属、 聚合物材料及它们 的复合物, 所述衍生物包括表面含衍生基团的表面修饰或 /和功能有机物包被 衍生物; (b) preparing a carrier, which includes a base and carrier particles made of the following materials or derivatives thereof: glass, silicon wafer, silica gel, ceramic, metal oxide, metal, polymer material, and composites thereof, The derivatives include surface-modified or functional organic-coated derivatives containing derivatizing groups on the surface;
( c )将所述胶体或 /和所述纳米微粒结合到所述载体上,其中所述纳米微 粒与所述载体的结合包括下述一种或多种方式: 包被在包被于所述载体的所 述胶体粒子上, 通过常温物理化学吸咐、 常温化学键合、 纳米微粒交联、 或 它们之间的组合包被在所述载体上。 (c) binding the colloid or / and the nanoparticle to the carrier, wherein the combination of the nanoparticle and the carrier includes one or more of the following methods: coating on the coating The colloidal particles of the carrier are coated on the carrier by physicochemical adsorption at room temperature, chemical bonding at room temperature, cross-linking of nanoparticles, or a combination thereof.
在本发明之制备用于多肽检测或组分分离的微载体包被载体的方法中, 其中所述微载体包被载体包括用于多肽检测的分析芯片片基、 酶标板片基、 平面层析试剂条片基, 和用于组分分离的层析固定相基质。 In the method for preparing a microcarrier-coated carrier for polypeptide detection or component separation according to the present invention, the microcarrier-coated carrier includes an analysis chip substrate, an enzyme-labeled plate substrate, and a planar layer for polypeptide detection. Analytical reagent strips, and chromatographic stationary phase matrix for component separation.
在本发明之制备用于多肽检测或组分分离的微载体包被载体的方法中, 所述胶体包括包括聚多糖、 硝基纤维素在内的聚合物胶体及它们的衍生物, 所述衍生物包括表面含衍生基团的表面修饰或 /和功能有机物包被衍生物。 其 中所述非磁微粒包括非磁性无机微粒、 非磁性有机微粒及它们的衍生物, 所 述非磁性无机微粒包括非磁性无机非金属微粒和非磁性金属微粒, 所述衍生 物包括表面含衍生基团的表面修饰或 /和功能有机物包被衍生物。 例如, 其中 所述氧化物微粒包括氧化硅、氧化钛、和氧化铝微粒, 所述金属微粒包括金、 银、 铜、 和铝微粒。 In the method for preparing a microcarrier-coated carrier for polypeptide detection or component separation of the present invention, the colloid includes a polymer colloid including polysaccharide and nitrocellulose and derivatives thereof, and the derivative Substances include surface-modified or functional organic-coated derivatives containing derivatizing groups on the surface. The non-magnetic fine particles include non-magnetic inorganic fine particles, non-magnetic organic fine particles, and derivatives thereof. The non-magnetic inorganic fine particles include non-magnetic inorganic non-metal fine particles and non-magnetic metal fine particles, and the derivatives include derivative groups on the surface. Surface-modified or functional organic-coated derivatives of the group. For example, wherein the oxide particles include silicon oxide, titanium oxide, and aluminum oxide particles, and the metal particles include gold, silver, copper, and aluminum particles.
在此所述的衍生基团和功能有机物可参考在上述多肽定量或 /和定性检 测方法中的描述。 The derivatizing groups and functional organics described herein can be referred to those described in the above-mentioned polypeptide quantitative or / and qualitative detection methods.
本发明还涉及一种微载体包被载体, 其是通过上述制备用于多肽检测或 组分分离的微载体包被载体的方法而制备的, 该微载体包被载体包括微载体 包被芯片片基、 微载体包被酶标板片基、 微载体包被平面层析试剂条和纳米 微粒包被层析载体。
本发明还涉及一种检测装置或分离介质, 其包括如上所述的微载体包被 载体及固定在所述微载体包被载体上的探针。 该检测装置或分离介质包括含 有所述微载体包被载体的芯片、 酶标板、 和平面层析试剂条。 The present invention also relates to a microcarrier-coated carrier, which is prepared by the above-mentioned method for preparing a microcarrier-coated carrier for polypeptide detection or component separation. The microcarrier-coated carrier includes a microcarrier-coated chip. Substrate, microcarrier-coated microtiter plate substrate, microcarrier-coated planar chromatography reagent strip, and nanoparticle-coated chromatography carrier. The present invention also relates to a detection device or a separation medium, which includes the microcarrier-coated carrier as described above and a probe fixed on the microcarrier-coated carrier. The detection device or separation medium includes a chip containing the microcarrier-coated carrier, a microplate, and a flat chromatography reagent strip.
本发明还涉及一种制备用于多肽检测或组分分离的亲和纳米结构载体的 方法, 其包括以下步骤: The invention also relates to a method for preparing an affinity nanostructured carrier for polypeptide detection or component separation, which comprises the following steps:
( a )准备载体、 一种或多种配基、 以及一种或多种纳米微粒, 所述配基 选自以下组中能与目标多肽作用的物质: 多肽、 多糖、 维生素、 抗生素、 病 毒、 细胞、及功能有机物, 所述纳米微粒为在三维空间中至少有一维为大于 1 rnn且小于 100 nm、 优选大于 1 nm且小于 10 nm的非磁微粒。 所述纳米微粒和 配基可以是以与其它物质的混合物的方式被准备, 例如含有着色剂或 /和粘结 剂的纳米微粒悬浮液、 含有稳定剂的配基溶液等。 本发明所述的载体也可以 是以与其它结构共存的方式被准备, 例如多片基池基片中的片基等; (a) preparing a carrier, one or more ligands, and one or more nanoparticles, the ligands being selected from the group of substances that can interact with the target polypeptide: polypeptides, polysaccharides, vitamins, antibiotics, viruses, Cells, and functional organic matter, the nanoparticles are non-magnetic particles with at least one dimension in a three-dimensional space of greater than 1 rnn and less than 100 nm, preferably greater than 1 nm and less than 10 nm. The nanoparticles and the ligand may be prepared as a mixture with other substances, such as a nanoparticle suspension containing a coloring agent and / or a binder, a ligand solution containing a stabilizer, and the like. The carrier according to the present invention may also be prepared in a manner coexisting with other structures, such as a substrate in a multi-chip base substrate;
(b)将所述配基与所述纳米微粒的高稀释度悬浮液混合制成一种或多种 纳米微粒体积浓度为五百分之一至十万分之一之间的亲和纳米微粒液, 所述 亲和纳米微粒液包括混合物 (例如纳米微粒与配基混合反应后的未纯化物) 和纯化物 (例如纳米微粒与配基混合反应后结离心分离去除自由配基的纯化 物) , 而且其纯化物中一种纳米微粒上固定一种或多种配基。 需要特别强调 的是, 当纳米微粒不够稀释或过分稀释时, 利用某些纳米微粒制备的所述复 合物观察不到灵敏度的提高; (b) mixing the ligand with the highly-diluted suspension of the nanoparticles to make one or more nanoparticles having a volume concentration of between 5% and 1 / 100,000; The affinity nanoparticle liquid includes a mixture (for example, an unpurified substance after the nanoparticle and the ligand are mixed and reacted) and a purified substance (for example, the nanoparticle and the ligand are subjected to centrifugal separation to remove a purified substance with a free ligand) Moreover, one or more kinds of ligands are immobilized on a nanoparticle in the purified product. It should be particularly emphasized that when the nanoparticles are not sufficiently diluted or over-diluted, no increase in sensitivity is observed for the complexes prepared using certain nanoparticles;
(c) 将步骤 (b) 中制备的亲和纳米微粒以液态或固态固定到载体上形 成所述亲和纳米结构载体,其中所述一种或多种纳米微粒与载体之间有一重 或多重配基、 或 /和所述一种或多种配基与载体之间有一重或多重纳米微粒、 或 /和至少一重纳米微粒与另一重纳米微粒之间有一重或多重配基。 例如, 纳 米微粒悬浮液与配基溶液混合反应后形成亲和纳米微粒、 通过点样将混合液 点至芯片基片片基上进行结合反应等。 或者, 配基与纳米微粒结合再与一重 或多重纳米微粒结合然后再与片基结合, 配基与纳米微粒结合再与片基结合 然后再与一重或多重纳米微粒、 或配基一纳米微粒复合物结合, 等等。 (c) fixing the affinity nanoparticles prepared in step (b) to the carrier in a liquid or solid state to form the affinity nanostructure carrier, wherein there is a heavy or multiple between the one or more nanoparticles and the carrier; A ligand, or / and one or more nanoparticles between the one or more ligands and the carrier, or / and one or more ligands between at least one heavy nanoparticle and another heavy nanoparticle. For example, the nanoparticle suspension is mixed with the ligand solution to form affinity nanoparticles, and the mixed solution is spotted on the chip substrate to perform a binding reaction. Alternatively, the ligand is combined with the nanoparticles and then with one or more nanoparticles and then with the substrate, the ligand is combined with the nanoparticles and then with the substrate and then is compounded with the one or more nanoparticles or the ligand-nanoparticle Combination of things, etc.
一种或多种纳米微粒与载体之间有多重配基的亲和纳米结构载体例如是 如下制备的: 分别将载体包被一重配基 1形成配基 1包被载体, 并将纳米微粒
包被一重另一种配基 2 (配基 1和 2之间可发生配对反应)形成配基 2/纳米微粒 复合物, 再将配基 2/纳米微粒复合物包被或点样至配基 1包被载体上, 形成配 基 2—纳米微粒一配基 2—配基 1一载体形式的复合物。 当配基层数大于 2时以 此类推。 Affinity nanostructured carriers having multiple ligands between one or more nanoparticles and a carrier are prepared, for example, as follows: the carrier is coated with a reassortant 1 to form a ligand 1 coated carrier, and the nanoparticles are prepared. Coated with another ligand 2 (pairing reaction can occur between ligands 1 and 2) to form a ligand 2 / nanoparticle complex, and then coat or spot the ligand 2 / nanoparticle complex to the ligand 1 coats the carrier to form a complex in the form of ligand 2-nanoparticles-ligand 2-ligand 1-carrier. When the number of ligand layers is greater than 2, and so on.
同样的方法还可制备至少一重纳米微粒与另一层纳米微粒之间有多重配 基的亲和纳米结构载体,例如配基 3—纳米微粒一配基 3—配基 2—纳米微粒一 配基 2—配基 1一载体或配基 2—纳米微粒一配基 2—配基 1一纳米微粒一配基 1 一载体等。 The same method can also be used to prepare affinity nanostructure carriers with multiple ligands between at least one heavy nanoparticle and another layer of nanoparticles. 2—ligand 1—carrier or ligand 2—nanoparticles—ligand 2—ligand 1—nanoparticles—ligand 1—carrier, etc.
一种或多种配基与载体之间有多重纳米微粒的亲和纳米结构载体可如下 制备: 先将一种或一种以上所述纳米微粒与多种所述配基结合在一起形成多 种亲和纳米微粒(例如配基 2—纳米微粒一配基 2、配基 3—纳米微粒一配基 2、 配基 1一纳米微粒一配基 1等) , 再将这些亲和纳米微粒先后或同时结合在所 述载体上, 形成诸如配基 2—纳米微粒一配基 2—配基 1一纳米微粒一配基 1一 载体、 配基 3—纳米微粒一配基 2—配基 1—纳米微粒—配基 1一载体等形式的 亲和纳米结构载体。 An affinity nanostructured carrier having multiple nanoparticles between one or more ligands and a carrier can be prepared as follows: First, one or more of the nanoparticles are combined with a plurality of the ligands to form a plurality of Affinity nanoparticles (for example, ligand 2—nanoparticles—ligand 2, ligand 3—nanoparticles—ligand 2, ligand 1—nanoparticles—ligand 1), and then the affinity nanoparticles are successively or At the same time, it is bound to the carrier to form, for example, ligand 2-nanoparticles-ligand 2-ligand 1-nanoparticles-ligand 1-carrier, ligand 3-nanoparticles-ligand 2-ligand 1-nano Affinity nanostructure carriers in the form of microparticles-ligand 1-carriers and the like.
在本发明的亲和纳米结构载体的制备方法中, 还包括先将一种或多种所 述纳米微粒和所述载体在 38°C以下进行基于吸咐的冷结合、 或包括加入化学 交联剂在内的交联结合形成纳米微粒 /固相载体, 再在其上结合一种或多种配 基。 In the method for preparing an affinity nanostructured carrier of the present invention, it further includes firstly cold-binding one or more of the nanoparticles and the carrier at 38 ° C or lower based on adsorption, or including adding chemical cross-linking. The cross-linking and binding of the agent forms a nanoparticle / solid phase support, and then one or more ligands are bound thereto.
在本发明之制备用于多肽检测或组分分离的亲和纳米结构载体的方法 中, 其中所述亲和纳米微粒液中纳米微粒体积浓度为千分之一至二万分之一 之间。 In the method for preparing an affinity nanostructure carrier for polypeptide detection or component separation of the present invention, the volume concentration of the nanoparticles in the affinity nanoparticle liquid is between 1/1000 and 20,000.
在本发明之制备用于多肽检测或组分分离的亲和纳米结构载体的方法 中, 所述无机微粒选自于氧化物微粒、 金属微粒、 及它们的衍生物, 所述衍 生物包括表面含衍生基团的表面修饰或 /和功能有机物包被衍生物。 所述氧化 物微粒包括氧化硅、 氧化钛、 和氧化铝微粒, 所述金属微粒包括金、 银、 铜、 和铝微粒。 在此所述的衍生基团和功能有机物可参考在上述多肽定量或 /和定 性检测方法中的描述。 In the method for preparing an affinity nanostructured carrier for polypeptide detection or component separation of the present invention, the inorganic fine particles are selected from oxide fine particles, metal fine particles, and derivatives thereof, and the derivatives include a surface containing Derivative groups are surface modified or / and functional organic coated derivatives. The oxide particles include silicon oxide, titanium oxide, and aluminum oxide particles, and the metal particles include gold, silver, copper, and aluminum particles. The derivatizing groups and functional organics described herein can be referred to the description in the above-mentioned method for quantitative or / and qualitative detection of polypeptides.
在本发明之制备用于多肽检测或组分分离的亲和纳米结构载体的方法
中, 其中所述载体包括由以下材料或其衍生物制成的片基和载体粒子: 玻璃、 硅片、 硅胶、 陶瓷、 金属氧化物、 金属、 聚合物材料及它们的复合物, 所述 衍生物包括表面含衍生基团的表面修饰或 /和功能有机物包被衍生物、 以及上 述的微载体包被载体。 Method for preparing affinity nanostructure carrier for polypeptide detection or component separation in the present invention Wherein, the carrier includes a base and carrier particles made of the following materials or derivatives thereof: glass, silicon wafer, silica gel, ceramic, metal oxide, metal, polymer material, and composites thereof, and the derivative The substance includes a surface-modified or / and functional organic-coated derivative containing a derivative group on the surface, and the above-mentioned microcarrier-coated carrier.
本发明还涉及一种用于多肽检测或组分分离的亲和纳米结构载体, 其中 所述亲和纳米结构载体包括固相载体和分布于其表面的亲和纳米结构 5其中 所述亲和纳米结构是以亲和纳米微粒为单元在所述表面上构建的、 保留了主 要的纳米现象特性从而具有比配基更高反应效率的结构,所述亲和纳米微粒 包括纳米微粒和固定于其上的一种或多种配基,且所述亲和纳米结构固相载 体中一种或多种纳米微粒与固相载体之间有一重或多重配基、 或 /和一种或多 种配基与固相载体之间有一重或多重纳米微粒、 或 /和所述至少一重纳米微粒 与另一重纳米微粒之间有一重或多重配基, 所述配基选自以下组中能与目标 多肽作用的物质: 多肽、 多糖、 维生素、 抗生素、 病毒、 细胞和功能有机物, 所述纳米微粒为在三维空间中至少有一维为大于 1 nm且小于 100 nm、 优选大 于 1 nm且小于 50 nm的非磁微粒。在此所述的衍生基团和功能有机物可参考在 上述多肽定量或 /和定性检测方法中的描述。 The invention also relates to an affinity nanostructure carrier for polypeptide detection or component separation, wherein the affinity nanostructure carrier comprises a solid phase carrier and an affinity nanostructure distributed on its surface. 5 wherein the affinity nanostructure The structure is constructed on the surface with affinity nanoparticles as a unit, which retains the main nano-phenomenon characteristics and has a higher reaction efficiency than ligands. The affinity nanoparticles include nanoparticles and immobilized thereon. One or more ligands, and there is a heavy or multiple ligand between one or more nanoparticles in the affinity nanostructure solid phase support and the solid phase support, or / and one or more ligands There is a heavy or multiple nanoparticle between the solid phase carrier and / or a heavy or multiple ligand between the at least one heavy nanoparticle and another heavy nanoparticle. The ligand is selected from the group consisting of capable of interacting with the target polypeptide. Substances: peptides, polysaccharides, vitamins, antibiotics, viruses, cells, and functional organics, the nanoparticles are at least one dimension in a three-dimensional space greater than 1 nm and less than 100 nm, preferably greater than 1 nm and less than 50 nm. The derivatizing groups and functional organics described herein can be referred to the description in the above quantitative or / and qualitative detection method for polypeptides.
优选的是, 该用于多肽检测或组分分离的亲和纳米结构载体是通过以上 制备用于多肽检测或组分分离的亲和纳米结构载体的方法而制得的含所述亲 和纳米微粒的亲和纳米结构载体, 而且包括用于检测的分析芯片、 酶标板、 平面层析试剂条以及用于分离的层析固定相。 Preferably, the affinity nanostructure carrier for polypeptide detection or component separation is an affinity nanoparticle containing the affinity nanoparticle prepared by the above method for preparing an affinity nanostructure carrier for polypeptide detection or component separation. Affinity nanostructure carrier, and includes an analysis chip for detection, a microplate, a flat chromatography reagent strip, and a chromatography stationary phase for separation.
本发明还涉及一种制备配基 /纳米微粒 /分子标记物质复合物的方法,其包 括以下步骤: · The invention also relates to a method for preparing a ligand / nanoparticle / molecularly labeled substance complex, which comprises the following steps:
(a)准备一种或多种配基、 一种或多种纳米微粒、 和一种或多种所述分 子标记物质, 所述纳米微粒 /配基 /分子标记物质为混合物或纯化物, 所述配基 选自以下组中能与目标多肽作用的物质: 多肽、 多糖、 维生素、 抗生素、 病 毒、 细胞、及功能有机物, 所述纳米微粒为在三维空间中至少有一维为大于 1 nm且小于 100 nm、 优选大于 1 nm且小于 10 nm且本身不是标记物质增强剂的 非磁性无机非金属微粒或其衍生物, 所述衍生物包括表面含衍生基团的表面 修饰或 /和功能有机物包被衍生物;
(b)将所述一种或多种配基、一种或多种纳米微粒、 以及一种或多种所 述分子标记物质按下列之一种方式结合: 将所述配基与所述纳米微粒结合再 与所述分子标记物质结合、 将所述纳米微粒与所述分子标记物质结合再与所 述配基结合、 将所述配基与所述分子标记物质结合再与所述纳米微粒结合、 将所述配基与所述分子标记物质和所述纳米微粒同时结合、 及基于这些方式 的组合。 例如, 纳米微粒悬浮液与配基溶液混合反应后形成亲和纳米微粒、 然后将混合液与分子标记物质混合反应, 将纳米微粒与分子标记物质结合再 与配基结合 (例如将罗丹明标记的抗抗体溶液与纳米微粒悬浮液混合反应 等) , 将配基与分子标记物质和纳米微粒同时结合 (例如纳米微粒悬浮液、 配基溶液与分子标记物质溶液混合反应等) 。 (a) preparing one or more ligands, one or more nanoparticles, and one or more of said molecular marker substances, and said nanoparticles / ligands / molecular marker substances are mixtures or purified substances, The ligand is selected from the group consisting of substances capable of interacting with the target polypeptide in the following groups: polypeptides, polysaccharides, vitamins, antibiotics, viruses, cells, and functional organics, and the nanoparticles are at least one dimension in a three-dimensional space greater than 1 nm and less than 100 nm, preferably greater than 1 nm and less than 10 nm, non-magnetic inorganic non-metallic microparticles or derivatives thereof that are not themselves labeling substance enhancers, said derivatives including surface modification or / and functional organic coatings containing derivatizing groups on the surface derivative; (b) combining the one or more ligands, one or more nanoparticles, and one or more of the molecular markers in one of the following ways: combining the ligand with the nanometer Particles are then bound to the molecular labeling substance, the nanoparticle is bound to the molecular labeling substance and then to the ligand, the ligand is bound to the molecular labeling substance and then to the nanoparticle , Simultaneously combining the ligand with the molecularly labeled substance and the nanoparticle, and combinations based on these methods. For example, a nanoparticle suspension is mixed with a ligand solution to form an affinity nanoparticle, and the mixed solution is then mixed with a molecular labeling substance to combine the nanoparticle with the molecular labeling substance and then with the ligand (for example, rhodamine-labeled The anti-antibody solution is mixed with the nanoparticle suspension, etc.), and the ligand is combined with the molecular labeling substance and the nanoparticle at the same time (for example, the nanoparticle suspension, the ligand solution is mixed with the molecular labeling substance solution, etc.).
在本发明之制备配基 /纳米微粒 /分子标记物质复合物的方法中,所述述无 机非金属微粒包括非磁氧化物微粒, 所述非磁氧化物微粒包括氧化硅、 氧化 钛、 氧化铝。 而其衍生物中的衍生基团和功能有机物可参考在上述多肽定量 或 /和定性检测方法中的描述。 In the method for preparing a ligand / nanoparticle / molecular labeling substance complex of the present invention, the inorganic non-metal particles include non-magnetic oxide particles, and the non-magnetic oxide particles include silicon oxide, titanium oxide, and aluminum oxide . For the derivatizing groups and functional organics in the derivatives, reference may be made to the description in the above-mentioned polypeptide quantitative or / and qualitative detection method.
在本发明之制备配基 /纳米微粒 /分子标记物质复合物的方法中, 所述分子 标记物质选自以下组中: 荧光物质、 化学发光物质、 化学发光催化剂、 有色 金属盐、 染料和颜料。 具体而言, 所述分子标记物质包括下述之一种或多种: 荧光素、 罗丹明、 海藻蛋白、 银盐、 酶、 碱性黑、 碱性紫、 胺基黑、 考马斯 亮蓝、 结晶紫。 In the method for preparing a ligand / nanoparticle / molecular labeling substance complex of the present invention, the molecular labeling substance is selected from the group consisting of a fluorescent substance, a chemiluminescent substance, a chemiluminescent catalyst, a non-ferrous metal salt, a dye, and a pigment. Specifically, the molecular labeling substance includes one or more of the following: fluorescein, rhodamine, seaweed protein, silver salt, enzyme, basic black, basic violet, amino black, Coomassie brilliant blue, crystal purple.
本发明还涉及一种用于多肽检测的配基 /纳米微粒 /分子标记物质复合物, 其至少含有一种或多种分子标记物质、 一种或多种纳米微粒以及一种或多种 配基,所述纳米微粒 /配基 /分子标记物质为混合物或纯化物,所述配基选自以 下组中能与目标多肽作用的物质: 多肽、 多糖、 维生素、 抗生素、 病毒、 细 胞、 及功能有机物, 所述纳米微粒为在三维空间中至少有一维为大于 1 nm小 于 100 nm、优选大于 l nm小于 10 nm的非磁性无机非金属微粒或其衍生物,所 述衍生物包括表面含衍生基团的表面修饰或 /和功能有机物包被衍生物。 在此 所述的衍生基团和功能有机物可参考在上述多肽定量或 /和定性检测方法中 的描述。 The invention also relates to a ligand / nanoparticle / molecular labeling substance complex for polypeptide detection, which contains at least one or more molecular labeling substances, one or more nanoparticles, and one or more ligands. The nanoparticle / ligand / molecular labeling substance is a mixture or a purified substance, and the ligand is selected from substances that can interact with the target polypeptide in the following groups: polypeptides, polysaccharides, vitamins, antibiotics, viruses, cells, and functional organics The nano-particles are non-magnetic inorganic non-metallic particles or derivatives thereof in at least one dimension of more than 1 nm and less than 100 nm, preferably more than 1 nm and less than 10 nm in a three-dimensional space, and the derivatives include a surface containing a derivative group Surface-modified or / and functional organic-coated derivatives. The derivatized groups and functional organics described herein can be referred to those described in the above quantitative or / and qualitative detection methods for polypeptides.
在此方面中,本发明的配基 /纳米微粒 /分子标记物质复合物不同于配基一
纳米微粒复合物,例如配基一微粒配基(申请号 CN02137418.X、 CN02115771.5 和 CN01133527.0的文件) 、 配基一纳米磁性微粒 (申请号 CN02103867.8的文 件) 、 分子标记物质一微粒配基(申请号 CN0211411903的文件)等。 本发明 将分子标记物质与配基和纳米微粒结合形成配基 /纳米微粒 /分子标记物质复 合物,也不同于配基一微球一荧光微粒复合物(申请号 CN02121391.7的文件), 因为本发明复合物中的标记物质是分子标记物质(例如罗丹明)而不是微粒, 本发明的复合物中的载体是纳米微粒 (例如胶体或纳米氧化硅)而不是尺寸 较大的微球。本发明的复合物的制备方法简单、制备物水溶性好且灵敏度高。 本发明中的纳米微粒为非磁的微粒或 /和超细棒, 而在本发明优先权日以后公 开的一份文件中 (Nanoparticles having oligonucleotides attached thereto and uses theefore, '美国专利申请号 20030207296) 则使用磁性氧化物。 本发明中的纳 米微粒为非磁的无机非金属微粒或 /和超细棒, 而在本发明优先权日以后公开 的 一 份 文 件 中 ( Surface enhanced raman scattering from metal nanoparticle-analyte-noble metal substrate sandwiches, 美国专禾 Ij6, 149,868) 贝 !j 使用可加强分子标记物质的金属纳米微粒。 In this aspect, the ligand / nanoparticle / molecular labeling substance complex of the present invention is different from the ligand- Nanoparticle complexes, such as ligand-microparticle ligands (documents CN02137418.X, CN02115771.5 and CN01133527.0), ligand-nanomagnetic particles (document CN02103867.8), molecular marker substances 1 Microparticle ligands (document No. CN0211411903) and the like. The present invention combines a molecular labeling substance with a ligand and a nanoparticle to form a ligand / nanoparticle / molecular labeling substance complex, which is also different from a ligand-microsphere-fluorescent microparticle complex (document No. CN02121391.7) because The labeling substance in the composite of the present invention is a molecular labeling substance (such as rhodamine) rather than a microparticle, and the carrier in the complex of the present invention is a nanoparticle (such as a colloid or a nano-silica) instead of a larger-sized microsphere. The preparation method of the complex of the invention is simple, the preparation has good water solubility and high sensitivity. The nanoparticles in the present invention are non-magnetic particles or / and ultrafine rods, and in a document published after the priority date of the present invention (Nanoparticles having oligonucleotides attached disclosure and uses theefore, 'US Patent Application No. 20030207296) Use magnetic oxide. The nanoparticles in the present invention are non-magnetic inorganic non-metal particles or superfine rods, and in a document disclosed after the priority date of the present invention (Surface enhanced raman scattering from metal nanoparticle-analyte-noble metal substrate sandwiches , US Patent Ij6, 149,868) Be! J uses metal nanoparticles that enhance molecular markers.
优选的是,本发明之用于多肽检测的配基 /纳米微粒 /分子标记物质复合物 通过上述制备配基 /纳米微粒 /分子标记物质复合物的方法而制得的。该用于多 肽检测的配基 /纳米微粒 /分子标记物质复合物可为用于以下之一种检测的标 记物: 芯片检测、 酶标检测和平面层析试剂条检测。 Preferably, the ligand / nanoparticle / molecular labeling substance complex for polypeptide detection of the present invention is prepared by the above method for preparing a ligand / nanoparticle / molecular labeling substance complex. The ligand / nanoparticle / molecular labeling substance complex for peptide detection can be a marker for one of the following detections: chip detection, enzyme-labeled detection, and planar chromatography reagent strip detection.
本发明还涉及一种多肽检测装置, 其含有如上所述的亲和纳米结构载体 和 /或如上所述的配基 /纳米微粒 /分子标记物质复合物。 该多肽检测装置可以 为含有如上所述的亲和纳米结构载体和如上所述的配基 /纳米微粒 /分子标记 物质复合物的芯片试剂盒, 或者是含有如上所述的亲和纳米结构载体的芯片 试剂盒,或者是含有如上所述的配基 /纳米微粒 /分子标记物质复合物的芯片试 剂盒, 或者是含有如上所述的亲和纳米结构载体和 /或配基 /纳米微粒 /分子标 记物质复合物的酶标板试剂盒, 或者是含有如上所述的亲和纳米结构载体和 / 或配基 /纳米微粒 /分子标记物质复合物的平面层析试剂条试剂盒。同时,本发 明还涉及一种用该多肽检测装置进行多肽定量或 /定性捡测的方法 The present invention also relates to a polypeptide detection device comprising the affinity nanostructure carrier as described above and / or the ligand / nanoparticle / molecular labeling substance complex as described above. The polypeptide detection device may be a chip kit containing the affinity nanostructure carrier as described above and the ligand / nanoparticle / molecular labeling substance complex as described above, or a kit containing the affinity nanostructure carrier as described above. The chip kit, or the chip kit containing the ligand / nanoparticle / molecular labeling substance complex as described above, or the affinity nanostructure carrier and / or the ligand / nanoparticle / molecular label as described above Substrate plate kits for substance complexes, or flat chromatography reagent strip kits containing affinity nanostructure carriers and / or ligands / nanoparticles / molecularly labeled substance complexes as described above. At the same time, the present invention also relates to a method for quantitative or / qualitative peptide detection using the peptide detection device.
本发明还涉及一种多肽定量或 /定性检测方法, 其中包括用如上所述的亲
和纳米结构载体去捕获样品中的目标多肽。 The present invention also relates to a method for quantitative or qualitative detection of a polypeptide, which includes And nanostructured carriers to capture the target polypeptide in the sample.
本发明还涉及一种多肽定量或 /定性检测方法, 其中包括用如上所述的所 述配基 /纳米微粒 /分子标记物质复合物去标记目标多肽。 The present invention also relates to a method for quantitative or qualitative detection of a polypeptide, which comprises labeling a target polypeptide with the ligand / nanoparticle / molecular labeling substance complex as described above.
本发明还涉及一种多肽定量或 /和定性的芯片检测方法,其至少包括下述 一个、 二个、 三个或四个步骤: The present invention also relates to a chip detection method for quantitative or / and qualitative polypeptides, which includes at least one, two, three or four steps as follows:
( a)将样品与磁微粒或 /和磁微片混合; (a) mixing the sample with magnetic particles or / and magnetic microchips;
(b) 将样品与配基 /磁纳米微粒混合, 所述配基选自以下组中能与目标 多肽作用的物质: 多肽、 多糖、 维生素、 抗生素、 病毒、 细胞、 及功能有机 物; 所述磁纳米微粒在三维空间中至少有一维为 1 -200 nm、优选 1— 100 nm、 更优选 1一 50 nm; (b) mixing the sample with a ligand / magnetic nanoparticle, said ligand being selected from the group consisting of substances that can interact with the target polypeptide in the following group: polypeptides, polysaccharides, vitamins, antibiotics, viruses, cells, and functional organics; said magnetic Nanoparticles have at least one dimension in the three-dimensional space of 1-200 nm, preferably 1-100 nm, and more preferably 1-50 nm;
( c)将样品与配基 /磁纳米微粒 /片基复合物接触并反应, 在反应时可任 选存在外加磁场, 所述配基 /磁纳米微粒 /片基复合物含有载体、一种或多种磁 纳米微粒和一种或多种配基, 且所述一种或多种磁纳米微粒与载体之间有一 重或多重配基、 或 /和所述一种或多种配基与载体之间有一重或多重磁纳米微 粒、 或 /和至少一重磁纳米微粒与另一重磁纳米微粒之间有一重或多重配基, 所述配基选自以下组中能与目标多肽作用的物质: 多肽、 多糖、 维生素、 抗 生素、 病毒、 细胞、 及功能有机物, 所述磁纳米微粒在三维空间中至少有一 维为 1一 200 nm、 优选 1一 100 nm、 更优选 1一 50 mn, 所述片基选自下述材料 组及它们的衍生物: 玻璃、 硅片、 陶瓷、 金属氧化物、 金属、 聚合物材料及 它们的复合物, 所述衍生物包括表面含衍生基团的表面修饰或 /和功能有机物 包被衍生物; (c) contacting and reacting the sample with the ligand / magnetic nanoparticle / sheet-based composite, and optionally an external magnetic field may be present during the reaction, the ligand / magnetic nanoparticle / sheet-based composite containing a carrier, one or A plurality of magnetic nanoparticles and one or more ligands, and there is a heavy or multiple ligand between the one or more magnetic nanoparticles and a carrier, or / and the one or more ligands and a carrier There is a heavy or multiple magnetic nanoparticle in between, or / and at least one heavy magnetic nanoparticle and another heavy magnetic nanoparticle have a heavy or multiple ligand, the ligand is selected from the group of substances that can interact with the target polypeptide: Peptides, polysaccharides, vitamins, antibiotics, viruses, cells, and functional organics, the magnetic nanoparticles have at least one dimension in a three-dimensional space of 1-200 nm, preferably 1-100 nm, more preferably 1-50 nm, the sheet The base is selected from the following group of materials and their derivatives: glass, silicon wafers, ceramics, metal oxides, metals, polymer materials and their composites, said derivatives including surface modifications with derivatizing groups on the surface / Functional organic coating and derivatives thereof;
(d)将配基 /磁纳米微粒 /分子标记物质复合物用于标记反应, 在标记时 可任选存在外加磁场,所述配基 /磁纳米微粒 /分子标记物质复合物含有一种或 多种分子标记物质、 一种或多种磁纳米微粒、 一种或多种配基以及任选的封 闭剂,所述配基 /分磁纳米微粒 /子标记物质为混合物或纯化物, 所述配基选自 以下组中能与多肽作用的物质: 多肽、 多糖、 维生素、 抗生素、 病毒、 细胞、 及功能有机物, 所述磁纳米微粒在三维空间中至少有一维为 1一 200 nm、优选 1 - 100 nm、 更优选 1 -50 nm且其本身不是分子标记物质增强剂。 (d) A ligand / magnetic nanoparticle / molecular labeling substance complex is used for the labeling reaction, and an external magnetic field may optionally be present during labeling, and the ligand / magnetic nanoparticle / molecular labeling substance complex contains one or more Molecular labeling substance, one or more magnetic nanoparticles, one or more ligands, and optionally a blocking agent, said ligand / magnetic nanoparticles / sub-labeling substance is a mixture or a purified substance, said ligand The base is selected from substances capable of interacting with polypeptides in the following groups: polypeptides, polysaccharides, vitamins, antibiotics, viruses, cells, and functional organics, and the magnetic nanoparticles have at least one dimension of 1-200 nm in a three-dimensional space, preferably 1- 100 nm, more preferably 1 to 50 nm, and is not itself a molecularly labeled substance enhancer.
本发明之上述定量或 /和定性的芯片检测方法中, 所述外加磁场的优选是
脉冲式磁场。 In the above-mentioned quantitative or / and qualitative chip detection method of the present invention, the external magnetic field is preferably Pulsed magnetic field.
本发明还涉及一种多肽检测芯片, 其至少包括一种或多种配基 /磁纳米微 粒 /片基复合物, 所述配基 /磁纳米微粒 /片基复合物含有载体、 一种或多种磁 纳米微粒和一种或多种配基, 且所述一种或多种磁纳米微粒与载体之间有一 重或多重配基、 或 /和所述一种或多种配基与载体之间有一重或多重磁纳米微 粒、 或 /和至少一重磁纳米微粒与另一重磁纳米微粒之间有一重或多重配基, 所述配基选自以下组中能与目标多肽作用的物质: 多肽、 多糖、 维生素、 抗 生素、 病毒、 细胞、 及功能有机物; 所述磁纳米微粒选自于在三维空间中至 少有一维为 l _200 nm、优选 1— 100 nm、更优选 1一 50 nm的包括四氧化三铁、 三氧化二铁在内的铁氧体及其衍生物, 所述衍生物包括表面含衍生基团的表 面修饰或 /和功能有机物包被衍生物; 所述片基选自下述材料组及它们的衍生 物: 玻璃、 硅片、 陶瓷、 金属氧化物、 金属、 聚合物材料及它们的复合物。 The invention also relates to a polypeptide detection chip, which at least comprises one or more ligands / magnetic nanoparticles / sheet-based complexes, and the ligands / magnetic nanoparticles / sheet-based complexes contain a carrier, one or more A magnetic nanoparticle and one or more ligands, and there is a heavy or multiple ligand between the one or more magnetic nanoparticles and a carrier, or / and between the one or more ligands and the carrier There is a heavy or multiple magnetic nanoparticle in between, and / or at least one heavy magnetic nanoparticle and another heavy magnetic nanoparticle has a heavy or multiple ligand, the ligand is selected from the group of substances that can interact with the target polypeptide: peptide , Polysaccharides, vitamins, antibiotics, viruses, cells, and functional organics; the magnetic nanoparticles are selected from the group consisting of at least one dimension in a three-dimensional space of 1 to 200 nm, preferably 1 to 100 nm, and more preferably 1 to 50 nm. Ferrites including ferric oxide and ferric oxide, and derivatives thereof, the derivatives including surface-modified or functional organic-coated derivatives containing derivatized groups on the surface; the base is selected from the following Material group Their derivatives: glass, silicon, ceramics, metal oxides, metals, polymeric materials and their composites.
该检测芯片可以是亲和磁纳米结构芯片, 所述亲和磁纳米结构芯片包括 片基和分布于其表面的亲和磁纳米结构,其中所述亲和磁纳米结构是以亲和 磁纳米微粒为单元在所述表面上构建的、 保留了主要的纳米现象特性从而具 有比配基更高反应效率的结构,所述亲和磁纳米微粒包括上述磁纳米微粒和 固定于其上的一种或多种上述配基。 The detection chip may be an affinity magnetic nanostructure chip. The affinity magnetic nanostructure chip includes a substrate and an affinity magnetic nanostructure distributed on a surface thereof, wherein the affinity magnetic nanostructure is an affinity magnetic nanoparticle. A structure constructed for a unit on the surface, which retains the main nano-phenomenon characteristics and thus has a higher reaction efficiency than a ligand, the affinity magnetic nanoparticles include the above-mentioned magnetic nanoparticles and one or more immobilized thereon or A variety of the aforementioned ligands.
该检测芯片可如下制备: The detection chip can be prepared as follows:
(a)准备所述片基、 一种或多种所述配基、 和一种或多种所述磁纳米微 粒; (a) preparing the substrate, one or more of the ligands, and one or more of the magnetic nano-particles;
( b ) 将所述磁纳米微粒与所述配基结合形成一种或多种亲和磁纳米微 粒, 所述亲和磁纳米微粒包括混合物和纯化物; (b) combining the magnetic nanoparticles with the ligand to form one or more affinity magnetic nanoparticles, the affinity magnetic nanoparticles including a mixture and a purified substance;
( c ) 将在步骤 (b ) 中制备的亲和磁纳米微粒结合到所述载体上, 结合 时提供外加磁场。 (c) binding the affinity magnetic nanoparticles prepared in step (b) to the carrier, and providing an external magnetic field when binding.
在该多肽检测芯片中, 所述磁纳米微粒选自于包括四氧化三铁、 三氧化 二铁在内的铁氧体及其衍生物, 所述衍生物包括表面含衍生基团的表面修饰 或 /和功能有机物包被衍生物。 In the polypeptide detection chip, the magnetic nanoparticles are selected from ferrite including ferric oxide, ferric oxide, and derivatives thereof, and the derivatives include surface modification or / And functional organic coating derivatives.
在此所述的衍生基团、 功能有机物和微载体包被载体可参考在以上的描 述。
本发明还涉及一种多肽检测芯片试剂盒, 其中的芯片为不含纳米微粒的 芯片、 或如上所述的检测芯片, 还包括至少一种下述磁物质: 磁微粒或 /和微 片、亲和磁纳米微粒、和配基 /磁纳米微粒 /分子标记物质复合物, 所述配基选 自以下组中能与目标多肽作用的物质: 多肽、 多糖、 维生素、 抗生素、 病毒、 细胞、及功能有机物,所述磁纳米微粒在三维空间中至少有一维为 1一 200 nm、 优选卜 100 醒、 更优选 1—50 nm, 且在配基 /纳米微粒 /分子标记物质复合物 中的所述磁微粒本身不是分子标记物质增强剂。 在该试剂盒, 所述磁微粒或 / 和微片用以产生反应介质混合, 配基 /磁纳米微粒用以浓缩样品目标物, 配基The derivatizing groups, functional organics, and microcarrier-coated carriers described herein can be referred to the description above. The invention also relates to a peptide detection chip kit, wherein the chip is a chip containing no nano particles, or a detection chip as described above, and further includes at least one of the following magnetic substances: magnetic particles or / and microchips, And a magnetic nanoparticle, and a ligand / magnetic nanoparticle / molecular labeling substance complex, the ligand is selected from the group of substances that can interact with the target polypeptide in the following group: polypeptide, polysaccharide, vitamin, antibiotic, virus, cell, and function Organic matter, the magnetic nanoparticle has at least one dimension in the three-dimensional space of 1 to 200 nm, preferably at least 100 nm, more preferably 1 to 50 nm, and the magnetic substance in the ligand / nanoparticle / molecular labeling substance complex The microparticles themselves are not molecular marker substance enhancers. In the kit, the magnetic particles or / and microchips are used to generate a reaction medium mixture, and the ligand / magnetic nanoparticle is used to concentrate a sample target, the ligand is
/磁纳米微粒 /分子标记物质复合物用以标记反应。 / Magnetic nanoparticle / Molecular labeling substance complex is used to label the reaction.
本发明还涉及一种多肽检测芯片试剂盒, 一种多肽检测芯片试剂盒, 其 包括至少一种下述含磁纳米微粒的物质: 磁纳米微粒、 亲和磁纳米微粒、 和 配基 /磁纳米微粒 /分子标记物质复合物,所述配基选自以下组中能与目标多肽 作用的物质: 多肽、 多糖、 维生素、 抗生素、 病毒、 细胞、 及功能有机物, 所述磁纳米微粒为在三维空间中至少有一维为 1一 200 nm、 优选 1一 100 nm、 更优选 1一 50 nm的磁微粒及其衍生物,且在配基 /纳米微粒 /分子标记物质复合 物中的所述微粒本身不是分子标记物质增强剂。 The present invention also relates to a polypeptide detection chip kit, and a polypeptide detection chip kit, which includes at least one of the following magnetic nanoparticle-containing substances: magnetic nanoparticle, affinity magnetic nanoparticle, and ligand / magnetic nanoparticle A particle / molecular labeling substance complex, the ligand is selected from the group of substances that can interact with the target polypeptide in the following group: polypeptides, polysaccharides, vitamins, antibiotics, viruses, cells, and functional organics, and the magnetic nanoparticles are in three dimensions Magnetic particles and their derivatives in at least one dimension of 1 to 200 nm, preferably 1 to 100 nm, more preferably 1 to 50 nm, and the particles themselves in the ligand / nanoparticle / molecular labeling substance complex are not Molecular marker substance enhancer.
在上述试剂盒中, 所述磁微粒选自于包括四氧化三铁、 三氧化二铁在内 的铁氧体及其衍生物, 所述衍生物包括表面含衍生基团的表面修饰或 /和功能 有机物包被衍生物, 而所述衍生基团和功能有机物可参考本文中的描述。 In the above kit, the magnetic particles are selected from the group consisting of ferrite and ferric oxide, and derivatives thereof, and the derivatives include surface modification or / and Functional organics coated derivatives, and the derivatizing groups and functional organics can be referred to the description herein.
最后, 本发明涉及一种使用如上所述的多肽检测芯片试剂盒进行检测的 芯片检测仪, 其包括在检测中反应或 /和标记时提供磁场、 优选脉冲式磁场的 装置。 Finally, the present invention relates to a chip detector for performing detection using a polypeptide detection chip kit as described above, which includes a device that provides a magnetic field, preferably a pulsed magnetic field, during a reaction or / and a label during detection.
本发明的多肽定量或 /和定性检测方法的优点是既利用亲和纳米结构载 体捕捉样品中的目标多肽,又利用配基 /纳米微粒 /分子标记物质复合物进行标 记, 大大提高了检测灵敏度或 /和大大提高了检测速度。 The advantage of the polypeptide quantitative or / and qualitative detection method of the present invention is that not only the target polypeptide in the sample is captured by the affinity nanostructure carrier, but also the ligand / nanoparticle / molecular labeling substance complex is used for labeling, which greatly improves the detection sensitivity or / And greatly improved the detection speed.
本发明的多肽检测装置的优点是既含有亲和纳米结构载体捕捉样品中的 目标多肽, 又含有配基 /纳米微粒 /分子标记物质复合物进行标记, 大大提高了 检测灵敏度、 或 /和大大提高了检测速度。 The advantage of the polypeptide detection device of the present invention is that it contains an affinity nanostructure carrier to capture the target polypeptide in the sample, and also contains a ligand / nanoparticle / molecular labeling substance complex for labeling, which greatly improves detection sensitivity, or / and greatly improves The detection speed.
本发明之制备用于多肽检测或组分分离的微载体包被载体的方法的优点
是不需加热的包被使宏观固相载体表面受到的变化更小。 Advantages of the method of the present invention for preparing a microcarrier-coated carrier for polypeptide detection or component separation It is the coating that does not need to be heated that makes the surface of the macroscopic solid phase carrier undergo less change.
本发明的微载体包被载体的优点是更容易制备成本低廉、 灵敏度足够高 的各种活性载体。 The advantage of the microcarrier-coated carrier of the present invention is that it is easier to prepare various active carriers with low cost and sufficient sensitivity.
本发明的制备亲和纳米结构载体的方法的优点是简便有效。 The method for preparing the affinity nanostructure carrier of the present invention has the advantage of being simple and effective.
本发明之用于多肽检测或组分分离的亲和纳米结构载体的优点是与样品 目标物反应效率更高, 可检出目标物的浓度下限更低, 而且反应速度更高。 The advantages of the affinity nanostructured carrier for polypeptide detection or component separation of the present invention are higher reaction efficiency with sample target, lower concentration limit of detectable target, and higher reaction speed.
本发明之制备配基 /纳米微粒 /分子标记物质复合物的方法的优点是简便 有效。 The method for preparing the ligand / nanoparticle / molecular labeling substance complex of the present invention has the advantage of being simple and effective.
本发明之用于多肽检测的配基 /纳米微粒 /分子标记物质复合物的优点是 与被标记物的反应效率更高。 The advantage of the ligand / nanoparticle / molecular labeling substance complex for peptide detection of the present invention is that the reaction efficiency with the labeled substance is higher.
本发明之含亲和纳米结构载体的检测装置或分离装置的优点是与样品目 标物反应效率更高、 可检出目标物的浓度下限更低、 反应速度更高。 The detection device or separation device containing the affinity nanostructure carrier of the invention has the advantages of higher reaction efficiency with the target substance of the sample, lower concentration limit of the detectable target substance, and higher reaction speed.
本发明之含配基 /纳米微粒 /分子标记物质复合物的检测装置的优点是含 有配基 /纳米微粒 /分子标记物质复合物进行标记, 提高了检测灵敏度或 /和提 高了检测速度。 The detection device of the ligand-containing / nanoparticle / molecular labeling substance complex of the present invention has the advantage of containing the ligand / nanoparticle / molecular-labeling substance complex for labeling, which improves detection sensitivity or / and increases detection speed.
本发明之多肽定量或 /定性检测方法的优点是至少利用亲和纳米结构载 体捕捉样品中的目标多肽, 提高了检测灵敏度或 /和提高了检测速度。 An advantage of the method for quantitative or qualitative detection of a polypeptide of the present invention is that at least an affinity nanostructure carrier is used to capture a target polypeptide in a sample, thereby increasing detection sensitivity or / and increasing detection speed.
本发明之多肽定量或 /定性检测方法的优点是至少利用配基 /纳米微粒 /分 子标记物质复合物进行标记, 提高了检测灵敏度或 /和提高了检测速度。 An advantage of the method for quantitative or qualitative detection of a polypeptide of the present invention is that at least the ligand / nanoparticle / molecular labeling substance complex is used for labeling, which improves detection sensitivity or / and increases detection speed.
本发明之多肽定量或 /和定性的芯片检测方法的优点是快速和高灵敏度。 本发明的多肽检测芯片和试剂盒的优点是快速和高灵敏度。 The advantages of the chip quantitative and / or qualitative chip detection method of the present invention are fast and high sensitivity. The peptide detection chip and kit of the present invention have the advantages of fastness and high sensitivity.
本发明的芯片检测仪的优点是快速和高灵敏度。 The advantages of the chip detector of the present invention are fast and high sensitivity.
以下将通过实施例更为详细地说明本发明。 具体实施例 Hereinafter, the present invention will be described in more detail through examples. Specific embodiment
在以下实施例使用的粒径为 l - 100nm的外购无机非磁纳米微粒及其衍 生物如以下表 1所示。
表 1 The purchased inorganic non-magnetic nanoparticles and their derivatives with a particle size of 1-100 nm used in the following examples are shown in Table 1 below. Table 1
在以下实施例中所用的片基如下表 2所示。 The substrates used in the following examples are shown in Table 2 below.
表 2: 片基 (常规) Table 2: Film base (conventional)
*: 制作方法参考 Melnyk 0等, Peptide arrays for highly sensitive and special antibody-binding fluorescence arrays, Bioconjug Cliem.13 :713-20.2002。 *: For the preparation method, refer to Melnyk 0, etc., Peptide arrays for highly sensitive and special antibody-binding fluorescence arrays, Bioconjug Cliem. 13: 713-20.2002.
制作方法参考中国专利申请号 03135618.4
实施例 1: 纳米微粒包被衍生物的制备 For the production method, please refer to Chinese Patent Application No. 03135618.4 Example 1: Preparation of Nanoparticle-Coated Derivatives
本实施例所制备的纳米微粒包被衍生物, 所用纳米微粒包括在表 1中的纳 米微粒, 所用的包被物列于下表 3 中, 包括聚离子型有机物 (聚赖氨酸) 、 离子型衍生高聚物 (DEAE-葡聚糖、 QAE-纤维素、 氨基肼-聚赖氨酸)、 高分 子表面活性剂 (聚乙烯吡咯烷酮) 。 The nanoparticle-coated derivatives prepared in this example, the nanoparticles used are included in Table 1, and the coatings used are listed in Table 3 below, including polyionic organic substances (polylysine), ions Derived polymers (DEAE-dextran, QAE-cellulose, aminohydrazine-polylysine), polymer surfactants (polyvinylpyrrolidone).
有机物包被纳米微粒的制备方法为: 将纳米微粒在超声振荡下分散配制成 浓度 1/2000— 1/4000 (v/v) 的纳米微粒液, 再与等体积的浓度 1/2000 (w/v) 的有机物溶液混合, 在超声振荡下在 37°C反应 1小时。 反应产物滴入装有凝 胶的旋转管, 在 4000 r/min条件下离心, 取收集管液体备用 (在所有条件优 化后, 也可以略去离心分离步骤)。 The method for preparing organic-coated nanoparticles is: dispersing the nanoparticles under ultrasonic oscillation to prepare a nanoparticle solution with a concentration of 1 / 2000—1 / 4000 (v / v), and then equalizing the volume with a concentration of 1/2000 (w / v) The organic solution was mixed and reacted at 37 ° C for 1 hour under ultrasonic vibration. The reaction product was dropped into a rotating tube containing gel, centrifuged at 4000 r / min, and the liquid in the collection tube was reserved for use (after all conditions are optimized, the centrifugation step can be omitted).
本发明制备的纳米微粒包被衍生物也列于下表 3中。 表 3 The nanoparticle-coated derivatives prepared by the present invention are also listed in Table 3 below. table 3
实施例 2:微载体包被芯片片基和含微载体包被芯片片基的芯片的制备及应用 Example 2: Preparation and application of microcarrier-coated chip substrate and chip containing microcarrier-coated chip substrate
1 ) 微载体包被芯片片基的制备 1) Preparation of microcarrier-coated chip substrate
本实施例所用纳米微粒、 胶体及片基列于表 4中。
( 1 ) 胶体包被芯片片基的制备 The nanoparticles, colloids, and substrates used in this example are listed in Table 4. (1) Preparation of colloid-coated chip substrate
将玻片先用 10%浓度的 NaOH及 HN03处理并洗净后,将 Q-葡聚糖胶体(晨 光化工研究院提供) (w/v浓度 1/5000)包被在其表面, 然后烘干。胶体 Q-葡聚 糖胶体包被玻片, 再接本发明发明人之一公开的方法进行葡聚糖交联 (参考 F. L. ZHOU等人, COATED SILICA SUPPORTS FOR HIGH-PERFORMANCE AFFINFTY CHROMATOGRAPHY OF PROTEINS, Journal of Chromatography, 476 (1989) 195-203 )。 所制得胶体包被芯片片基记为片基 1 (表 4)。 After the slide was treated with 10% NaOH and HN0 3 and washed, Q-glucan colloid (provided by Chenguang Chemical Research Institute) (w / v concentration 1/5000) was coated on the surface, and then dried. dry. Colloidal Q-dextran colloid coated glass slides, followed by the method disclosed by one of the inventors for cross-linking of dextran (refer to FL ZHOU et al., COATED SILICA SUPPORTS FOR HIGH-PERFORMANCE AFFINFTY CHROMATOGRAPHY OF PROTEINS, Journal of Chromatography, 476 (1989) 195-203). The obtained gel-coated chip base was designated as base 1 (Table 4).
(2) 纳米微粒包被芯片片基的制备 (2) Preparation of nanoparticle-coated chip substrate
将浓度为 1/5000至 1/10000 (v/v) 的纳米微粒液(表 4) 与片基接触, 在室 温下反应 15小时, 再用蒸熘水反复清洗, 干燥后用电子显微镜检测在玻璃基 质表面上分布的纳米微粒(四川大学分析测试中心检测), 玻片表面上的纳米 微粒的分布密度大于 10个 /mm2。 所制备的纳米微粒包被片基分别记为片基 2、 3、 4、 5 (表 4) 。 The nanoparticle liquid (Table 4) with a concentration of 1/5000 to 1/10000 (v / v) was brought into contact with the substrate, reacted at room temperature for 15 hours, and then repeatedly washed with distilled water. After drying, it was detected by an electron microscope. Nanoparticles distributed on the surface of the glass substrate (detected by the Analysis and Testing Center of Sichuan University), the density of nanoparticle distribution on the surface of the glass slide is greater than 10 particles / mm 2 . The prepared nanoparticle-coated substrates are denoted as substrates 2, 3, 4, and 5 (Table 4).
(3 ) 纳米微粒 /胶体包被芯片片基的制备 (3) Preparation of nanoparticle / colloid coated chip substrate
将玻片先用浓度为 10 %的 NaOH及 HN03处理并洗净后,将含 Q-葡聚糖胶体 (w/v浓度 1/2000)和表 4中的纳米微粒(v/v浓度 1/5000)的混合液包被在其表 面,然后烘干, 然后再按上述葡聚糖交联方法进行葡聚糖交联。 所制得包被芯 片片基记为片基 6 (表 4)。 After the slide was treated with 10% NaOH and HN0 3 and washed, the Q-glucan-containing colloid (w / v concentration 1/2000) and the nanoparticles in Table 4 (v / v concentration 1 / 5000) mixture was coated on the surface, then dried, and then dextran cross-linking was performed according to the dextran cross-linking method described above. The resulting coated chip base was designated as base 6 (Table 4).
2) 含微载体包被芯片片基的多片基池基片的制备 2) Preparation of multi-chip substrates containing microcarrier-coated chip substrates
本实施例中的多片基池基片是如下制备的: 用高疏水有机硅涂料 (成都 晨光化工研究院)涂在片基上, 然后干燥成膜 (膜厚小于 0.05 mm) , 由此在 片基上形成片基池的隔离结构 (参考我们的另一项发明: 《一种反应池隔离结 构高度最小化的生物芯片及制备方法》 , 中国专利申请号 03117397.7) 。 每 1 个基片上有 8个片基池, 每个片基池尺寸为 4.5 mm X 4.5 mm, 片基池间隔离结 构宽度为 4.5 mm。
3 ) 含微载体包被芯片片基的多反应池芯片的制备 The multi-basin substrate in this embodiment is prepared as follows: a high-hydrophobic silicone coating (Chengdu Chenguang Chemical Research Institute) is applied to the substrate, and then dried to form a film (film thickness less than 0.05 mm). The isolation structure of the substrate pool is formed on the substrate (refer to our another invention: "A biochip with a highly minimized isolation structure of a reaction cell and a preparation method", Chinese Patent Application No. 03117397.7). There are 8 substrate cells on each substrate, and the size of each substrate cell is 4.5 mm X 4.5 mm. The width of the isolation structure between the substrate cells is 4.5 mm. 3) Preparation of a multi-reaction cell chip containing a microcarrier-coated chip substrate
本实施例所用配基为 HCV抗原(中国北京人民医院肝病研究所)和 HIV1+2 抗原(中国北京人民医院肝病研究所) 。 在上述 2) 中制备的基片的一个片基 池中, 分别将 HCV抗原 (1.0 mg/ml) 和 HIV1+2抗原溶液(1.0 mg/ml) 按照 通用的点样方法点样在片基池中,两种抗原各点 3个直径为 200 μ ηι的点, 间 点距为 600— 700 μ ηι, 形成 2X3阵列。 反应池片基上的配基密度大于 96点 /cm2。 所制备的芯片列于表 4中。 The ligands used in this example are HCV antigen (Institute of Liver Diseases, Beijing People's Hospital, China) and HIV 1 + 2 antigen (Institute of Liver Diseases, Beijing People's Hospital, China). In a substrate pool of the substrate prepared in 2) above, HCV antigen (1.0 mg / ml) and HIV 1 + 2 antigen solution (1.0 mg / ml) were spotted on the substrate according to a general spotting method. In the pool, two kinds of antigens each have three points with a diameter of 200 μm, and the distance between them is 600-700 μm, forming a 2X3 array. The density of the ligand on the substrate of the reaction cell is greater than 96 points / cm 2 . The prepared chips are listed in Table 4.
4) 纳米微粒包被多反应池芯片的应用 4) Application of nanoparticle-coated multi-reaction cell chip
在本实施例中, 1号样为 HCV抗体阳性血清, 2号样为 HIV1+2抗体阳性 人血清, 3号样为阴性对照物 (HCV抗体和 HIV1+2抗体都为阴性的血清对照 物)。所有的样品均经使用经典的 ELISA方法在血清 20倍稀释反应条件下预 先检测。 本实施例的标记物为罗丹明标记羊抗人二抗 (美国 Jackson ImmunoRresearch Laboratories公司)。 In this example, sample 1 is HCV antibody-positive serum, sample 2 is HIV 1 + 2 antibody-positive human serum, and sample 3 is a negative control (both HCV antibody and HIV 1 + 2 antibody are negative serum controls Thing). All samples were pre-tested using the classic ELISA method under serum 20-fold dilution reaction conditions. The label in this example is a rhodamine-labeled goat anti-human secondary antibody (American Jackson ImmunoRresearch Laboratories).
实验时前述 3种样品分别加入表 4中所述芯片的反应池中。其中对照片为 表 1中的氨基玻片, 加样量均为 15 μ 1。 反应 30分钟后洗涤 5次, 洗涤液每 次加入量为 25 μ 1。 标记物加入量为 15 μ ΐ, 反应后洗涤 5次, 洗涤液每次加 入量为 25 μ 1, 干燥后在 35/50 下进行扫描。 扫描仪为共聚焦激光扫描仪 (Afymetrix公司 GMS 418芯片扫描仪) , 扫描激发光波长 532 nm, 发射光 波长 570 nm, 读取的信号经处理软件 (JAGUARII ) 处理, 然后取平均值后 根据 Cut-off值判定阴 (一) 阳 (+) 性得到结果如表 4。
During the experiment, the aforementioned three samples were respectively added to the reaction cell of the chip described in Table 4. Among them, the photos are the amino slides in Table 1, and the amount of sample added was 15 μ1. After 30 minutes of reaction, the product was washed five times, and the washing solution was added in an amount of 25 μ1 each time. The labeling amount was 15 μΐ, and the reaction was washed 5 times. The washing solution was added 25 μ 1 each time. After drying, scanning was performed at 35/50. The scanner is a confocal laser scanner (Afymetrix GMS 418 chip scanner), which scans the excitation light wavelength of 532 nm and the emission light wavelength of 570 nm. The read signal is processed by the processing software (JAGUARII), and then the average value is calculated according to Cut -off value judges the yin (one) yang (+) sex. The results are shown in Table 4.
表 4 Table 4
实施例 3: 纳米微粒包被酶标板片基的制备及应用 Example 3: Preparation and application of nanoparticle-coated enzyme-labeled plate substrate
1 ) 纳米微粒包被微孔板的制备 1) Preparation of nanoparticle-coated microplates
本实施例所用片基为 96孔聚苯乙烯板(深圳金灿华实业有限公司), 所用 纳米微粒分别为胶体金、氧化硅纳米微粒(STN-3)和氧化硅(LUDOX AS-40) (表 1 ) 。 The substrate used in this embodiment is a 96-well polystyrene plate (Shenzhen Jincanhua Industrial Co., Ltd.), and the nanoparticles used are colloidal gold, silicon oxide nanoparticles (STN-3), and silicon oxide (LUDOX AS-40) (Table 1). ).
本实施例纳米微粒包被微孔板的制备方法为: 将浓度为 1/5000至 1/10000 (v/v) 的纳米微粒液与聚苯乙烯板微孔底部接触, 在室温下反应 15小时, 再 用蒸馏水反复清洗。 所制备的纳米微粒包被片基列于表 5中。 In this embodiment, a method for preparing a nanoparticle-coated microwell plate is as follows: a nanoparticle liquid having a concentration of 1/5000 to 1/10000 (v / v) is contacted with the bottom of a microwell of a polystyrene plate, and reacted at room temperature for 15 hours , And then repeatedly washed with distilled water. The prepared nanoparticle-coated tablets are listed in Table 5.
2)微载体包被酶标板的制备 2) Preparation of microcarrier coated microplate
本实施例所用配基为合成肽,其为根据以下文献中公开的方法方法制得 的 EBV-VCA-P18 抗原: Tranchand-Bunel, D., Auriault, C, Diesis, E., Gras-Masse, H. (1998) Detection of human antibodies using "convergent" combinatorial peptide libraries or "mixotopes55 designed form a nonvariable
antigen: Application to the EBV viral capsid antigen pi 8, J. Peptide Res. 52, 1998, 495-508。 本实施例中所用的微载体包被酶标板是通过在上述纳米微粒包被微 孔板的微孔底部固定配基而成。 The ligand used in this example is a synthetic peptide, which is an EBV-VCA-P18 antigen prepared according to the methods disclosed in the following documents: Tranchand-Bunel, D., Auriault, C, Diesis, E., Gras-Masse, H. (1998) Detection of human antibodies using "convergent" combinatorial peptide libraries or "mixotopes 55 designed form a nonvariable antigen: Application to the EBV viral capsid antigen pi 8, J. Peptide Res. 52, 1998, 495-508. The microcarrier-coated microtiter plate used in this embodiment is formed by immobilizing a ligand on the bottom of the microwells of the nanoparticle-coated microwell plate.
将浓度为 0.3 g/ml 的合成肽按照通常的酶标板制作方法分别包被到上 述纳米微粒包被微孔板 (胶体金包被微孔板、 氧化硅包被微孔板和氧化硅包 被微孔板)和对照微孔板上(96孔聚苯乙烯板),每一种微孔板上包被 8个孔。 包被后用牛血清白蛋白溶液封闭后备用。所制备的微载体包被酶标板列于表 6 中, 本实施例中的对照酶标板为以 96 孔板为片基按照上述包被方法包被有 EBV-VCA-P18抗原的酶标板。 The synthetic peptides with a concentration of 0.3 g / ml were coated onto the above nanoparticle-coated microwell plates (colloidal gold-coated microwell plates, silica-coated microwell plates, and silica-coated plates, respectively) according to the usual method of making microplates. Microplates) and control microplates (96-well polystyrene plates), each well was coated with 8 wells. After coating, block with bovine serum albumin solution before use. The prepared microcarrier-coated microtiter plate is listed in Table 6. The control microtiter plate in this example is a microtiter plate coated with the EBV-VCA-P18 antigen using the 96-well plate as the base and coated according to the above coating method. board.
3 ) 微载体包被酶标板的应用 3) Application of microcarrier coated microplate
在本实施例中, 所用样品为 EBV-VCA-P18抗 IgA阳性血清、 EBV-VCA- P18抗 IgA阴性血清。所有的样品均经使用经典的 ELISA方法在血清 20倍稀 释反应条件下预先检测。 In this embodiment, the samples used are EBV-VCA-P18 anti-IgA positive serum and EBV-VCA-P18 anti-IgA negative serum. All samples were pre-tested using the classic ELISA method under serum 20-fold dilution conditions.
实验时 2种样品分别加入上述对照酶标板及 3个微载体包被酶标板中, 每种样品加 4个反应池。 加样时样品作适当稀释, 加样量为 100 μ ΐ, 反应温 度 37°C。 洗涤液每次加入量为 300 μ 1, 洗涤 3次。 标记物为酶标记的羊抗人 IgA (北京天坛生物制品股分有限公司), 加入量为 ΙΟΟ μ Ι, 反应温度 37度, 反应时间 30分钟。加入底物的反应条件和与经典的 ELISA法相同。利用酶标 仪(Thermo Labsystems, 上海雷勃分析仪器有限公司)进行比色分析, 8孔平 均结果根据 Cut-off值判定阴 (一) 阳 (+) 性, 结果见表 5。
During the experiment, two kinds of samples were added to the control plate and three microcarrier-coated plates, and each sample was added to four reaction cells. The sample was appropriately diluted during sample loading, the sample volume was 100 μΐ, and the reaction temperature was 37 ° C. The washing solution was added 300 μl each time and washed 3 times. The marker was an enzyme-labeled goat anti-human IgA (Beijing Tiantan Biological Products Co., Ltd.), the amount was 100 μl, the reaction temperature was 37 ° C, and the reaction time was 30 minutes. The reaction conditions for adding the substrate were the same as those of the classical ELISA method. A microplate reader (Thermo Labsystems, Shanghai Leibo Analytical Instrument Co., Ltd.) was used for colorimetric analysis. The average results of 8 wells were used to determine the yin (one) and yang (+) characteristics according to the Cut-off value. The results are shown in Table 5.
表 5 table 5
由表 5中的结果可见, 微载体包被酶标板比对照酶标板至少具有较高的灵 敏度, 还有更快的反应速度。 实施例 4: 微载体包被平面层析试纸条的制备及应用 It can be seen from the results in Table 5 that the microcarrier-coated microplate has at least higher sensitivity and a faster reaction speed than the control microplate. Example 4: Preparation and application of microcarrier-coated planar chromatography test strips
1 ) 微载体包被平面层析试纸条的制备 1) Preparation of microcarrier-coated planar chromatography test strips
本实施例所用的片基为硝酸纤维膜条(福建泉州长立生化有限公司)和尼 龙纤维膜条 (福建泉州长立生化有限公司) , 所用的纳米微粒分别为氧化硅 纳米微粒 ( STN-3 ) (浙江舟山明日纳米材料有限公司 ) 和氧化硅 (LUDOX AS- 40) ( Sigma-Aldrich公司) 。 The substrates used in this embodiment are nitrocellulose membrane strips (Fujian Quanzhou Changli Biochemical Co., Ltd.) and nylon fiber membrane strips (Fujian Quanzhou Changli Biochemical Co., Ltd.). The nanoparticles used are silicon oxide nanoparticles (STN-3 ) (Zhejiang Zhoushan Mingri Nano Materials Co., Ltd.) and silicon oxide (LUDOX AS-40) (Sigma-Aldrich).
本实施例中所用的纳米微粒 /片基复合物的制备方法为: 将浓度为 1/5000 至 1/10000 (v/v) 的纳米微粒液与片基接触, 在室温下反应 5小时, 再用蒸馏 水反复清洗。 所制备的微载体包被平面层析带列于表 6中。 The preparation method of the nanoparticle / tablet composite used in this embodiment is: contacting the nanoparticle liquid with a concentration of 1/5000 to 1/10000 (v / v) with the substrate, reacting at room temperature for 5 hours, and then Wash repeatedly with distilled water. The prepared microcarrier-coated planar chromatography bands are shown in Table 6.
对照片基为未用含纳米微粒缓冲液处理的硝酸纤维膜条和尼龙纤维膜条。 The photographs are based on nitrocellulose membrane strips and nylon fiber membrane strips not treated with nanoparticle-containing buffer.
2) 纳米微粒包被快检试剂条的制备 2) Preparation of nanoparticle-coated rapid detection reagent strip
本实施例所用配基为 HCV抗原 (中国北京人民医院肝病研究所)。 The ligand used in this example is HCV antigen (Institute of Liver Diseases, Beijing People's Hospital, China).
将浓度 0.5 mg/ml的 HCV抗原分别在上述制备的 4种微载体包被平面层
析带和 2种对照片基上进行点样(检测线),再按常规方法分别点上兔抗羊 IgG 质控线后用牛血清白蛋白溶液封闭, 再组装上加样区、 胶体金标记羊抗人标 记物区、 吸水区组合而成 (表 7) 。 The HCV antigen at a concentration of 0.5 mg / ml was coated on the planar layers of the four kinds of microcarriers prepared above. Band analysis and two kinds of spotting (detection line) on the basis of photos, and then point the rabbit anti-goat IgG quality control line according to conventional methods, then block with bovine serum albumin solution, reassemble the sample area, colloidal gold mark Sheep anti-human marker area and water absorption area are combined (Table 7).
对照快检试剂条为其中以对照片基制备的快检试剂条。 The control quick test reagent strip is a quick test reagent strip prepared based on the photo.
3 ) 纳米微粒包被快检试剂条的应用 3) Application of Nanoparticle Coated Quick Test Reagent Strip
在本实施例中, 样品 1和 2分别为 HCV抗体阳性血清和 HCV抗体阴性 血清, 所有的样品均预先用经典的 ELISA方法检测确定其阴、 阳性。 In this example, samples 1 and 2 are HCV antibody-positive serum and HCV antibody-negative serum, respectively, and all samples were tested for yin and positive by a classic ELISA method in advance.
实验时, 2种样品分别加入上述制备的 6种快检试纸条。加样时样品作适 当稀释,加样量为 50 μ 1,加样后接着加入洗涤液试纸条缓慢吸至质控线出现。 结果见表 6。 表 6 During the experiment, two kinds of samples were added to the six kinds of quick test strips prepared above. The sample was appropriately diluted during sample loading, and the sample volume was 50 μ1. After the sample was added, the washing solution test strip was slowly sucked until the quality control line appeared. The results are shown in Table 6. Table 6
由以上表 6的结果可以看出, 纳米微粒包被快检试剂条比对照试剂条仅需 要短一倍的时间。
实施例 5: 配基 /纳米微粒 /芯片片基复合物的制备及应用 From the results in Table 6 above, it can be seen that the nanoparticle-coated rapid detection reagent strip takes only twice as much time as the control reagent strip. Example 5: Preparation and application of ligand / nanoparticles / chip-chip composites
1 )配基 /纳米微粒 /芯片片基复合物的制备 1) Preparation of Ligand / Nanoparticle / Chip Chip Complex
本实施例所制备的配基 /纳米微粒 /片基复合物为多反应池芯片。 The ligand / nanoparticle / tablet composite prepared in this embodiment is a multi-reaction cell chip.
本实施例的配基为实施例 2中的 HCV抗原和 HIV1+2抗原。 本实施例的纳米 微粒包括金属纳米微粒、 氧化物纳米微粒、 纳米微粒疏水衍生物、 纳米微粒 表面修饰衍生物、 聚离子型有机物包被纳米微粒、 离子型衍生高聚物包被纳 米微粒、 高分子表面活性剂包被纳米微粒 (见表 1、 3 ) 。 本实施例的片基包 括未进行表面修饰的玻片、 表面修饰玻片和表面包被有机物玻片 (见表 2) 。 The ligands of this example are the HCV antigen and HIV 1 + 2 antigen in Example 2. The nanoparticles in this embodiment include metal nanoparticles, oxide nanoparticles, nanoparticle hydrophobic derivatives, nanoparticle surface modified derivatives, polyionic organic-coated nanoparticles, ion-derived polymer-coated nanoparticles, and Molecular surfactant coated nanoparticles (see Tables 1, 3). The film base of this embodiment includes a glass slide without surface modification, a surface modified glass slide, and a surface-coated organic glass slide (see Table 2).
( 1 ) 多片基池基片的制备 (1) Preparation of multi-chip base substrate
本实施例含片基的基片为多片基池基片。 其制备方法如同实施例 2中的多 片基池基片制备方法。 The substrate containing the substrate in this embodiment is a multi-chip base substrate. The preparation method is the same as that of the multi-chip base substrate in Example 2.
(2) 亲和纳米微粒的制备 (2) Preparation of affinity nanoparticles
本实施例亲和纳米微粒制备方法为: 将纳米微粒在超声振荡下分散配制成 浓度为 1/2500 (v/v) 的纳米微粒液, 再将浓度为 2 mg/ml的配基溶液分别与 其作 1 : 1混合, 在室温下反应 1小时。 除其中 2种亲和纳米微粒 (HIV抗原 一氧化硅纳米微粒(STN-3 )和 HCV抗原一氧化硅纳米微粒(STN-3 )) (表 8 ) 系纯化外, 其它混合反应的产物均为混合物。 纯化方法为: 混^产物滴入装 有凝胶的旋转管, 在 4000 r/rnin条件下离心, 取收集管中的液体。 所获亲和 纳米微粒见表 7。 The method for preparing affinity nanoparticles in this embodiment is as follows: the nanoparticles are dispersed and formulated into a nanoparticle solution with a concentration of 1/2500 (v / v) under ultrasonic oscillation, and the ligand solution with a concentration of 2 mg / ml is separately Mix 1: 1, and react for 1 hour at room temperature. Except for two kinds of affinity nanoparticles (HIV antigen silicon monoxide nanoparticles (STN-3) and HCV antigen silicon monoxide nanoparticles (STN-3)) (Table 8) are purified, the products of other mixed reactions are mixture. The purification method is as follows: The mixed product is dropped into a rotating tube containing a gel, centrifuged at 4000 r / rnin, and the liquid in the collection tube is taken. The obtained affinity nanoparticles are shown in Table 7.
(3 ) 配基一纳米微粒一配基一片基复合物的制备 (3) Preparation of ligand-nanoparticle-ligand one-sheet complex
本实施例配基一纳米微粒一配基一片基复合物的制备方法为: 将上述亲和 纳米微粒按通常的点样方法点样至上述制备的多片基池基片(表 7)片基池中, 每种亲和纳米微粒点 3个点, 形成 3 X2配基一纳米微粒阵列。 配基包被后, 用牛血清白蛋白溶液封闭后备用。 所得芯片为表 7中芯片 201至芯片 222。 In this embodiment, the preparation method of the ligand-nanoparticle-ligand one-chip composite is as follows: the above-mentioned affinity nanoparticles are spotted according to the usual spotting method to the multi-chip base substrate (Table 7) prepared above. In the cell, 3 spots of each affinity nanoparticle were formed to form a 3 × 2 ligand-nanoparticle array. After coating with ligand, block with bovine serum albumin solution before use. The chips obtained are chips 201 to 222 in Table 7.
(4) 配基一纳米微粒一配基一纳米微粒一片基复合物的制备 (4) Preparation of ligand-nanoparticle-ligand-nanoparticle one-chip composite
本实施例配基一纳米微粒一配基一纳米微粒一片基复合物的制备方法为:
将上述亲和纳米微粒按通常的点样方法点样至实施例 2所制备的纳米微粒包 被芯片片基 (片基 2)上, 每种亲和纳米微粒点 3个点, 形成 3 X2配基一纳 米微粒阵列。配基包被后, 用牛血清白蛋白溶液封闭后备用。所得芯片如表 7 中芯片 223至芯片 224。 In this embodiment, the preparation method of the ligand-nanoparticle-ligand-nanoparticle one-chip composite is as follows: The above-mentioned affinity nanoparticles were spotted in the usual spotting method onto the nanoparticle-coated chip substrate (the substrate 2) prepared in Example 2. Each affinity nanoparticle was spotted at 3 points to form a 3 X 2 complex. Based-nanoparticle array. After coating with ligand, block with bovine serum albumin solution before use. The chips obtained are shown in Table 7 as chips 223 to 224.
2) 纳米微粒包被多反应池芯片的应用 2) Application of nanoparticle-coated multi-reaction cell chip
在本实施例中, 1号样为 HCV抗体阳性血清, 2号样为 HW1+2抗体阳性 人血清, 3号样为阴性对照物(HCV抗体、 HIV1+2抗体阴性的血清对照物) 。 所有的样品,均经使用经典的 ELISA方法在血清 20倍稀释反应条件下预先检 测。 本实施例的标记物为罗丹明标记羊抗人二抗 (美国 Jackson ImmunoRresearch Laboratories公司)。 In this example, sample 1 is HCV antibody-positive serum, sample 2 is HW 1 + 2 antibody-positive human serum, and sample 3 is a negative control (HCV antibody, HIV 1 + 2 antibody-negative serum control) . All samples were pre-tested using the classic ELISA method under serum 20-fold dilution reaction conditions. The label in this example is a rhodamine-labeled goat anti-human secondary antibody (American Jackson ImmunoRresearch Laboratories).
实验时前述 4种样品分别加入表 7 中所述芯片的反应池中。 加样量均为 15 μ 1。 反应 30分钟后洗涤 5次,洗涤液每次加入量为 25 μ 1。 标记物加入量 为 15 μ 1, 反应后洗涤 5次,洗涤液每次加入量为 25 μ 1,干燥后在 35/50下进 行扫描。扫描仪为共聚焦激光扫描仪 (Afymetrix公司的 GMS 418芯片扫描仪), 扫描激发光波长 532 nm, 发射光波长 570 nm, 读取的信号经处理软件 During the experiment, the aforementioned four samples were respectively added to the reaction cell of the chip described in Table 7. The sample volume was 15 μ1. After 30 minutes of reaction, the product was washed 5 times, and the washing solution was added in an amount of 25 μ1 each time. The labeling amount was 15 μ1, and the reaction was washed 5 times. The washing solution was added 25 μl each time. After drying, the scanning was performed at 35/50. The scanner is a confocal laser scanner (Afymetrix's GMS 418 chip scanner), scanning the excitation light wavelength 532 nm, the emission light wavelength 570 nm, and the read signal is processed by software
(JAGUAR II ) 处理, 然后取平均值后根据 Cut-off 值判定阴 (―) 阳 (+) 性, 得到结果如表 7。
(JAGUAR II) processing, and then take the average value to determine the yin (―) yang (+) according to the Cut-off value. The results are shown in Table 7.
表 7 Table 7
口 mouth
心斤 配基 /纳米微粒 /片基复合物 检测结果 片基 配基或亲和纳米微粒 样品 1 样品 2 样品 3 「样品稀释 对照片 醛基玻片 配基 + + ― 100倍 对照片 醛基玻片 配基 —— ― ― ,倍 配基一纳米微粒一配 ¾一片基复合物 Test results of Cardiac Ligand / Nanoparticles / Substrate Complexes Substrate Ligand or Affinity Nanoparticles Sample 1 Sample 2 Sample 3 "Sample dilution vs. photo aldehyde-based slide ligand + +-100 times Ligands —— ——, Hydrobenes, Nanoparticles, and ¾ One-sheet Complex
201 醛基玻片 配基胶体金 - + ― 500倍 201 Aldehyde glass with colloidal gold-+-500 times
202 醛基玻片 配基胺基胶体金 (2020) + + ― 500倍202 Aldehyde slides Ligand amine based colloidal gold (2020) + + ― 500 times
203 醛基玻片 配基 DEAE—葡聚糖包被 + + 500倍 纳米微粒 203 Aldehyde slide Ligand DEAE—dextran coating + 500 times Nanoparticles
204 醛基玻片 配基聚乙烯吡咯烷酮包被 + + 500倍 纳米微粒 204 Aldehyde slide Ligand polyvinylpyrrolidone coating + 500 times Nanoparticles
205 醛基玻片 配基氨基肼一聚赖氨酸包 + + 500倍 被纳米微粒 205 Aldehyde slide Ligand aminohydrazine-polylysine package + 500 times by nanoparticles
206 醛基玻片 配基疏水氧化硅纳米微粒 + + 500倍 206 Aldehyde glass slide Ligand hydrophobic silica nanoparticles + 500 times
(CDS1 ) (CDS1)
207 环氧基玻片 配基氧化硅纳米微粒(STN + + 500倍 207 Epoxy glass slide Ligand silica nanoparticles (STN + 500 times
-3) -3)
208 环氧基玻片 配基氧化硅 (LUDOX AS + + 500倍 208 Epoxy based glass slide with silica (LUDOX AS + + 500 times
-40) -40)
209 环氧基玻片 配基多孔氧化硅 + + 500倍 209 Epoxy glass slide Lithium porous silica + 500 times
(AEROSIL 200) (AEROSIL 200)
210 环氧基玻片 配基氧化钛纳米微粒 + + ― 500倍 210 Epoxy glass slide Ligand titanium oxide nanoparticles + + ― 500 times
211 环氧基玻片 配基 DEAE—葡聚糖包被 + + 500倍 纳米微粒 211 Epoxy glass slide ligand DEAE—dextran coating + 500 times nanoparticle
212 环氧基玻片 配基聚乙烯吡咯烷酮包被 + + 500倍 纳米微粒 212 Epoxy glass slide Ligand polyvinylpyrrolidone coating + 500 times Nanoparticles
213 环氧基玻片 配基氨基肼一聚赖氨酸包 + + 500倍 被纳米微粒 213 Epoxy glass slide Ligidine aminohydrazine-polylysine package + 500 times by nanoparticles
214 环氧基玻片 配基疏水氧化硅纳米微粒 + + 500倍 214 Epoxy glass slide Ligand hydrophobic silica nanoparticles + 500 times
(CDS1 ) (CDS1)
215 氨基肼玻片 配基疏水氧化硅纳米微粒 + + 500倍 215 Aminohydrazine slide Ligand hydrophobic silica nanoparticles + 500 times
(CDS1 )
216 氨基肼玻片 配基氧化硅纳米微粒(STN + + 500倍 (CDS1) 216 Aminohydrazine slides with silica nanoparticles (STN + 500 times
-3 ) -3)
217 氨基肼玻片 配基氧化硅 (LUD0X AS + + 500倍 一 40) 217 Aminohydrazine slide Ligand silica (LUD0X AS + + 500 times a 40)
218 氨基肼玻片 配基氨基肼一聚赖氨酸包 + + 500倍 被纳米微粒 218 Aminohydrazine slide Ligand aminohydrazine-polylysine package + 500 times by nanoparticles
219 PVP包被玻 配基疏水氧化硅纳米微粒 + + 500倍 片 (CDS1 ) 219 PVP Coated Glass Ligand Hydrophobic Silica Nanoparticles + 500 times (CDS1)
220 PVP包被玻 配基氧化硅纳米微粒(STN + + 500倍 片 一 3) 220 PVP coated vitreous silica nanoparticles (STN + + 500 times tablets one 3)
221 PVP包被玻 配基氧化硅 (LUDOX AS + + 500倍 片 -40) 221 PVP Coated Glass Lithium Silica (LUDOX AS + + 500 times -40 pieces)
222 PVP包被玻 配基氨基肼一聚赖氨酸包 + + 500倍 片 被纳米微粒 · 222 PVP Coated with Hydrazine-Polylysine + 500 times Tablets Nanoparticles
配基一纳米微粒一配基一纳米微粒一片基复合物 Ligand-nanoparticles-ligand-nanoparticles
223 片基 2 配基氧化硅 (LUD0X AS— + + 500倍 223 substrate 2 ligand silicon oxide (LUD0X AS— + + 500 times
40) 40)
224 片基 2 配基氨基肼一聚赖氨酸包被 + + 500倍 纳米微粒 实施例 6: 多重配基 /纳米微粒 /片基复合物的制备及应用 224 Tablets 2 Ligidine aminohydrazine-polylysine coating + 500 times Nanoparticles Example 6: Preparation and application of multiple ligand / nanoparticles / tablets composites
本实施例中配基 1的例子为 HBsAg (中国北京人民医院肝病研究所), 配 基 2的例子为 HBsAb (中国北京人民医院肝病研究所) 。 本实施例中的片基 为表 2中的氨基玻片。 In this embodiment, the example of Ligand 1 is HBsAg (Institute of Liver Diseases, Beijing People's Hospital, China), and the example of Ligand 2 is HBsAb (Institute of Liver Diseases, Beijing People's Hospital, China). The base in this example is the amino slide in Table 2.
1 ) 多重配基 /纳米微粒 /片基复合物芯片的制备 1) Preparation of multiple ligand / nanoparticle / chip-based composite chips
( 1 )亲和纳米微粒的制备 (1) Preparation of affinity nanoparticles
制备方法同实施例 5 ψ亲和纳米微粒的制备。 The preparation method is the same as in Example 5 for the preparation of ψ affinity nanoparticles.
(2)配基 2—纳米微粒一配基 2—配基 1一纳米微粒一配基 1一片基复合物的 制备 (2) Ligand 2-nanoparticles-ligands 2-ligands 1-nanoparticles-ligands 1-sheet composites
本实施例配基 2—纳米微粒一配基 2—配基 1一纳米微粒一配基 1一片基复
合物的制备方法为:按上述亲和纳米微粒制备方法分别制备配基 2—纳米微粒 一配基 2和配基 1一纳米微粒一配基 1。其中配基 1可以与配基 2进行配对反 应且配基 1比配基 2更易与片基结合。将配基 2—纳米微粒一配基 2和配基 1 一纳米微粒一配基 1作 1 : 1混合后, 按通常的点样方法点样至片基上。 每种 亲和纳米微粒点 2个点, 形成 3 X2阵列, 然后用牛血清白蛋白溶液封闭后备 用。 所得芯片记作芯片 601。 点样时 HBsAb浓度为 3 mg/ml。 In this embodiment, Ligand 2-Nanoparticles-Ligand 2-Ligand 1-Nanoparticles-Ligand 1 The preparation method of the compound is as follows: according to the above-mentioned preparation method of the affinity nano-particles, ligands 2-nano-particles-ligand 2 and ligand 1-nanoparticles-ligand 1 are prepared respectively. Among them, the ligand 1 can perform a pairing reaction with the ligand 2, and the ligand 1 is easier to bind to the base than the ligand 2. After mixing Ligand 2-Nanoparticles-Ligand 2 and Ligand 1-Nanoparticles-Ligand 1 as 1: 1, spotting onto the substrate according to the usual spotting method. Two spots of each affinity nanoparticle were formed to form a 3 × 2 array, and then blocked with a bovine serum albumin solution before use. The obtained chip is referred to as a chip 601. The HBsAb concentration was 3 mg / ml when spotted.
(3 ) 配基 2—纳米微粒一配基 2—配基 1一片基复合物的制备 (3) Preparation of ligand 2-nanoparticles-ligand 2-ligand 1 one-sheet complex
制备方法为: 按上述配基 2—纳米微粒一配基 2和配基 1作 1: 1混合后, 按通常的点样方法点样至片基上。 每种亲和纳米微粒点 2个点, 形成 3 X2阵 列, 然后用牛血清白蛋白溶液封闭后备用。 所得芯片记作芯片 602。 点样时 HBsAb浓度为 3 mg/mlo The preparation method is as follows: after mixing the above-mentioned ligand 2—nanoparticles-ligand 2 and ligand 1 as 1: 1, spotting onto the substrate according to the usual spotting method. Two spots of each affinity nanoparticle were formed to form a 3 × 2 array, and then blocked with a bovine serum albumin solution for later use. The obtained chip is referred to as a chip 602. HBsAb concentration at the spot is 3 mg / mlo
2) 多重配基 /纳米微粒 /片基复合物芯片的应用 · 2) Application of multiple ligands / nanoparticles / chip-based composite chips
在本实施例中, 1号样为乙肝表面抗原 (HBsAg) 阳性血清, 2号样为乙 肝表面抗原 (HBsAg) 阴性人血清。 所有的样品, 均经使用经典的 ELISA方 法在血清 20倍稀释反应条件下预先检测。 本实施中所用的对照芯片为同相同点样方法在表 2中的氨基玻片上点 HBsAb (3 mg/ml) 所制得的芯片。 利用本实施例对照芯片和制备多重配基 / 纳米微粒 /片基复合物芯片的检测方法,先将样品稀释 500倍,其余步骤与实施 例 5中利用配基 /纳米微粒 /片基复合物芯片的检测方法同, 但本实施例所用标 记物为按公知方法自制的罗丹明标记的鼠单抗, 结果列于表 8中。 表 8 In this example, sample No. 1 is hepatitis B surface antigen (HBsAg) positive serum, sample No. 2 is hepatitis B surface antigen (HBsAg) negative human serum. All samples were pre-tested using the classic ELISA method under serum 20-fold dilution reaction conditions. The control chip used in this implementation was a chip prepared by spotting HBsAb (3 mg / ml) on the amino slide in Table 2 in the same manner as in the spotting method. Using the detection chip of this embodiment and the detection method of preparing a multi-ligand / nanoparticle / chip-based composite chip, the sample is first diluted 500 times, and the remaining steps are the same as in Example 5 using the ligand / nanoparticle / chip-based composite chip The detection method is the same, but the label used in this example is a rhodamine-labeled murine monoclonal antibody made according to a known method. The results are shown in Table 8. Table 8
芯片 片基 有无亲和纳米微粒 1号样 2号样 对照芯片 氨基玻片 无 ― 一 Chip base with or without affinity nanoparticle No. 1 sample No. 2 control chip amino slide no-1
芯片 601 氨基玻片 有 + 一 Chip 601 amino slides have + one
芯片 602 氨基玻片 有 + ―
实施例 7: 配基 /纳米微粒 /片基复合物酶标板的制备及应用 Chip 602 amino slides have + ― Example 7: Preparation and application of ligand / nanoparticle / sheet-based complex microplate
1 ) 配基 /纳米微粒 /片基复合物酶标板的制备 1) Preparation of Ligand / Nanoparticle / Substrate Complex Plate
本实施例所用配基为合成肽 (EBV-VCA-P18抗原, 其制备方法同实施例 3 )。 含有 EBV-VCA-P18抗原和氧化硅纳米微粒(STN-3 ) 的亲和纳米微粒的 制备方法同例 5中亲和纳米微粒的制备方法。 The ligand used in this example is a synthetic peptide (EBV-VCA-P18 antigen, and the preparation method is the same as in Example 3). The preparation method of the affinity nanoparticles containing the EBV-VCA-P18 antigen and the silicon oxide nanoparticles (STN-3) is the same as the method for preparing the affinity nanoparticles in Example 5.
将 EBV-VCA-P18抗原浓度为 0.1 μ g/ml的亲和纳米微粒中的纳米微粒浓 度为 1 : 4000, 按公知的酶标板包被方法包被到表 2中的 96孔板微孔内, 包被 8 个孔, 包被后用牛血清白蛋白溶液封闭后备用。 The nanoparticle concentration in the affinity nanoparticle with an EBV-VCA-P18 antigen concentration of 0.1 μg / ml was 1: 4000, and the microwells of the 96-well plate in Table 2 were coated according to the well-known microplate coating method. Inside, 8 wells were coated, and after being coated, they were blocked with bovine serum albumin solution and used.
2) 对配基 /纳米微粒 /片基复合物酶标板的应用 2) Application of Ligand / Nanoparticle / Substrate Complex Plate
本实施例中所用的血清样品、 检测方法均同于实施例 3, 所用对照酶标 板为用相同浓度、相同方法包被的 EBV-VCA-P18抗原酶标板。结果是, 在抗 EBV-VCA-P18 IgA阳性血清 1000倍稀释时,利用对照酶标板的检测结果为阴 性,而利用本实施例制备的配基 /纳米微粒 /片基复合物酶标板其检测结果仍为 阳性。 实施例 8: 配基 /纳米微粒 /分子标记物质复合物的制备及应用 The serum sample and detection method used in this example are the same as those in Example 3. The control enzyme plate used is an EBV-VCA-P18 antigen enzyme plate coated with the same concentration and the same method. As a result, when the anti-EBV-VCA-P18 IgA-positive serum was diluted 1000-fold, the detection result using the control enzyme plate was negative, and the ligand / nanoparticle / platelet complex enzyme plate prepared in this example was negative. The test result is still positive. Example 8: Preparation and application of a ligand / nanoparticle / molecularly labeled substance complex
1 ) 配基 /纳米微粒 /分子标记物质复合物的制备 1) Preparation of Ligand / Nanoparticle / Molecular Marker Substance Complex
本实施例所制备的配基 /纳米微粒 /分子标记物质复合物为用于芯片的纳米 微粒标记物。 The ligand / nanoparticle / molecular labeling substance complex prepared in this example is a nanoparticle labeling substance for a chip.
本实施例的纳米微粒包括氧化物纳米微粒及其衍生物 (表 9) , 所用分子 标记物质为罗丹明 (Sigma公司), 所用配基为羊抗人二抗 (北京天坛生物制 品股份有限公司)。 The nanoparticles in this example include oxide nanoparticles and their derivatives (Table 9). The molecular marker used is rhodamine (Sigma), and the ligand used is goat anti-human secondary antibody (Beijing Tiantan Biological Products Co., Ltd.). .
本实施例对照标记物为未用含纳米微粒液体处理的常规标记物(罗丹明标 记羊抗人二抗, 美国 Jackson ImmunoRresearch Laboratories公司) 。 The control marker in this example is a conventional marker (rhodamine-labeled goat anti-human secondary antibody, Jackson ImmunoRresearch Laboratories, USA) that has not been treated with a nanoparticle-containing liquid.
( 1 ) 亲和纳米微粒的制备 (1) Preparation of affinity nanoparticles
本实施例中所用的亲和纳米微粒制备方法为: 将纳米微粒在超声振荡下分 散配制成浓度为 1/2500 (v/v) 的纳米微粒液,再将浓度为 2 mg/ml的配基溶液 分别与其作 1 : 1混合,在室温下反应 1小时。混合物的纯化方法为, 混合产物
滴入装有凝胶的旋转管, 在 4000 r/min条件下离心, 取收集管液体。 The method for preparing the affinity nanoparticles used in this embodiment is: dispersing the nanoparticles under ultrasonic oscillation to prepare a nanoparticle solution with a concentration of 1/2500 (v / v), and then preparing a ligand with a concentration of 2 mg / ml The solutions were mixed 1: 1 with them and reacted for 1 hour at room temperature. The purification method of the mixture is as follows: Drop into a rotating tube containing the gel, centrifuge at 4000 r / min, and take the liquid from the collection tube.
(2) 纳米微粒一分子标记物质的制备 (2) Preparation of nanoparticle-molecular labeling substance
本实施例纳米微粒一分子标记物质复合物制备方法为: 将纳米微粒在超声 振荡下分散配制成浓度为 1/2500 (v/v) 的纳米微粒液, 再将浓度为 2 mg/ml 的分子标记物质溶液分别与其作 1 : 1混合, 在室温下反应 1小时。 如有必要 纯化, 混合物的纯化方法为:混合产物滴入装有凝胶的旋转管, 在 4000 r/min 条件下离心, 取收集管液体。 In this embodiment, a nanoparticle-molecular labeling substance complex is prepared by dispersing the nanoparticle under ultrasonic vibration to prepare a nanoparticle liquid with a concentration of 1/2500 (v / v), and then dissolving the molecule with a concentration of 2 mg / ml The labeling substance solution was mixed 1: 1 with it, and reacted at room temperature for 1 hour. If necessary, purify the mixture by dripping the mixed product into a gel-filled spin tube, centrifuge at 4000 r / min, and take the liquid from the collection tube.
(3 ) 配基一分子标记物质的制备 (3) Preparation of a ligand-labeled substance
本实施例配基一分子标记物质复合物制备方法为公知的罗丹明标记抗抗 体的制备方法。 The preparation method of the ligand-molecular labeling substance complex in this embodiment is a well-known preparation method of rhodamine-labeled antibody.
(4) 配基 /纳米微粒 /分子标记物质复合物的制备 (4) Preparation of ligand / nanoparticle / molecular labeling substance complex
本实施例制备方法, 其中所述配基、 分子标记物质和纳米微粒的结合, 包括下列一种或多种方式: 将上述亲和纳米微粒与分子标记物质结合 (A) 、 将上述纳米微粒 -分子标记物质与配基结合 (B) 、 将按公知方法制备的分子 标记物质标记配基与纳米微粒结合(C)、 将配基与分子标记物质和纳米微粒 同时结合 (D) , 其中所述结合其产物为混合物和纯化物均可。 The preparation method of this embodiment, wherein the combination of the ligand, the molecularly labeled substance and the nanoparticle includes one or more of the following methods: combining the above-mentioned affinity nanoparticle with the molecularly labeled substance (A), and combining the above-mentioned nanoparticle- Binding of a molecularly labeled substance to a ligand (B), binding of a molecularly labeled substance labeled ligand prepared with a known method to a nanoparticle (C), simultaneous binding of a ligand with a molecularly labeled substance and nanoparticle (D), wherein The product can be combined as a mixture and a purified product.
2) 配基 /纳米微粒 /分子标记物质复合物的应用 2) Application of Ligand / Nanoparticle / Molecular Labeling Substance Complex
本实施例所用芯片是以实施例 2中的 HCV抗原和 HIV抗原为配基、 以 表 2中的醛基玻片为片基、 按公知芯片制备方法制成的芯片。 The chip used in this example is a chip made according to a known chip preparation method using the HCV antigen and HIV antigen in Example 2 as ligands, and the aldehyde-based glass slide in Table 2 as a base.
本实施例所用样品、 检测方法与实施例 5同, 所得结果如表 9所示。
表 9 The sample and detection method used in this example are the same as those in Example 5. The obtained results are shown in Table 9. Table 9
实施例 9:含配基 /纳米微 片基复合物和配基 /纳米微粉分子标记物质复合物 的试剂盒的制备及应用 Example 9: Preparation and application of a kit containing a ligand / nanomicrochip-based complex and a ligand / nanomicron molecular marker substance complex
1 )含配基 /纳米微粒 /片基复合物和配基 /纳米微粒 /分子标记物质复合物的试剂 盒的制备 1) Preparation of a kit containing a ligand / nanoparticle / tablet complex and a ligand / nanoparticle / molecular labeling substance complex
本实施例中, 试剂盒为芯片试剂盒, 包括配基 /纳米微粒 /片基复合物(芯 片)和配基 /纳米微粒 /分子标记物质复合物(标记物) 。 其中, 配基 /纳米微粒 /片基复合物的制备同实施例 5和 6,配基 /纳米微粒 /分子标记物质复合物同实施 例 8。 因此, 本实施例可以形成数量众多的不同试剂盒。 In this embodiment, the kit is a chip kit, which includes a ligand / nanoparticle / tablet complex (chip) and a ligand / nanoparticle / molecular labeling substance complex (label). Wherein, the preparation of the ligand / nanoparticle / tablet complex was the same as in Examples 5 and 6, and the ligand / nanoparticle / molecular labeling substance complex was the same as in Example 8. Therefore, this embodiment can form a large number of different kits.
2)含配基 /纳米微粒 /片基复合物和配基 /纳米微粒 /分子标记物质复合物的试剂 盒的应用 2) Application of a kit containing a ligand / nanoparticle / sheet complex and a ligand / nanoparticle / molecular labeling substance complex
本实施例试剂盒的应用,仅将实施例 5中制备的芯片 207与实施例 8中制备 的标记物 3组成的试剂为例。 所用对照片为实施例 5中的对照芯片, 所用对照
标记物为实施例 8中的对照标记物。 In the application of the kit of this embodiment, only the reagent composed of the chip 207 prepared in Example 5 and the marker 3 prepared in Example 8 is taken as an example. The pair of photos used is the control chip in Example 5, and the control used The marker was the control marker in Example 8.
本实施例中, 所用样品及检测方法同实施例 8中的样品和检测方法相同, 所得结果如表 10所示。 表 10 In this embodiment, the samples and detection methods used are the same as those in Example 8. The results obtained are shown in Table 10. Table 10
实施例 10: 磁芯片和磁芯片试剂盒的制备及应用 Example 10: Preparation and application of magnetic chip and magnetic chip kit
本实施例中所用磁纳米粒子为表 1中的水基磁液(NG-21A), 所用片式为 表面化中的醛基玻片,所用的配基为实施例 2中所用配基 HCV抗原和 HIV1+2 抗原。 The magnetic nanoparticles used in this example are the water-based magnetic fluids (NG-21A) in Table 1. The sheet used is an aldehyde-based glass slide in the surfaceization. The ligand used is the ligand HCV antigen and HIV 1 + 2 antigen.
1 ) 磁纳米微粒芯片的制备 1) Preparation of magnetic nanoparticle chip
本实施例中的磁纳米微粒芯片为一种配基 /磁纳米微粒 /片基复合物。 The magnetic nanoparticle chip in this embodiment is a ligand / magnetic nanoparticle / sheet-based composite.
本实施例中的磁纳米芯片为多反应器芯片, 其中多片基池基片的制备与 实施例题中多片基池基片的制备相同。 本实施例的亲和磁纳米微粒的制备与 实施例如中亲和纳米微粒的制备。 The magnetic nanochip in this embodiment is a multi-reactor chip, and the preparation of the multi-chip base substrate is the same as the preparation of the multi-chip base substrate in the embodiment. The preparation and implementation of affinity magnetic nanoparticles in this embodiment are as follows.
将制备好的分别含 HCV抗原 (1 mg/ml) 和含 HIV1+2抗原 (1 mg/ml) 的 亲和磁纳米微粒点样至多片基池基片的片基池中, 每种亲和磁纳米微粒点 2 个点, 形成 2 X2陈列。然后在外磁场作用下于 37°C反应一小时。外磁场的作 用在于有利亲和磁纳米微粒向片基的移动及固定。 色被完成后, 用中血清蛋 白溶液封闭后备用。
本实施例中的对照芯片为以醛基为片基,按公知的点样方法点有不含磁纳 米微粒的 HCV抗原 ( l mg/ml) 和含 HIV1+2抗原 ( l mg/ml) 制备的芯片。 The prepared affinity magnetic nanoparticles containing HCV antigen (1 mg / ml) and HIV 1 + 2 antigen (1 mg / ml) were spotted into a multi-substrate base substrate, and And magnetic nanoparticle dots to form a 2 X2 display. Then reacted at 37 ° C for one hour under the external magnetic field. The role of the external magnetic field is to facilitate the movement and fixation of the affinity magnetic nanoparticles to the substrate. After the color is completed, block with medium serum protein solution and set aside. The control chip in this example is based on an aldehyde group, and according to a known spotting method, HCV antigen (l mg / ml) without magnetic nanoparticles and HIV 1 + 2 antigen (l mg / ml) are spotted. Preparation of chips.
2) 磁纳米标记物的制备 2) Preparation of magnetic nano-labels
本实施例中的磁纳米标记物为一种配基 /磁纳米微粒 /分子标记物质复合 物。 其中酉己基为羊抗人二抗 (Jackson ImmnoResearch Laboratories公司)。 The magnetic nanomarker in this embodiment is a ligand / magnetic nanoparticle / molecular labeling substance complex. Among them, hexyl is a goat anti-human secondary antibody (Jackson ImmnoResearch Laboratories).
3 ) 磁芯片试剂盒的制备 3) Preparation of magnetic chip kit
本实施例中的磁芯片试剂盒, 其中可含一种、 二种、 三种或四种含水量 磁粒子组分。 所述含磁粒子组分分别为: 上述制备的磁纳米微粒芯片, 上述 制备的磁纳米微粒标记物, 上述制备的亲和磁纳米微粒 (已用小牛血清白蛋 白封闭)和磁纳米微粒(已用小牛血清白蛋白封闭)。 因其不同组合而形成的 不同试剂盒见表 11。 The magnetic chip kit in this embodiment may contain one, two, three, or four magnetic particle components with a water content. The magnetic particle-containing components are: the magnetic nanoparticle chip prepared above, the magnetic nanoparticle label prepared above, the affinity magnetic nanoparticle (closed with calf serum albumin) and magnetic nanoparticle ( Has been blocked with calf serum albumin). The different kits for different combinations are shown in Table 11.
4) 磁芯片试剂盒的应用 4) Application of magnetic chip kit
' 本实施例中磁芯片试剂盒用于检测样品血清中的 HIV1+2抗体和 HCV抗 体的阴 (一)、 阳 (+) 性。 所用血清样品与实施例 2中的血清样品同。 检测 方法与公知的芯片检测方法不同之处在于, 当试剂盒中除磁芯片外尚含有含 磁粒子组分 (例如磁纳米粒子) 时, 检测反应是在芯片底部有外界磁场的条 件下进行的。 特别是定脉冲磁场。 在外磁场作用下, 有利于磁纳米微粒标记 物及亲和磁纳米微粒捕捉的目标物向反应器底部的运动。 而加入样品中的磁 纳米微粒在脉动磁场的作用下有利于加入芯片反应器中的液相样品内部产生 流动以有利于样品的混合。 由于试剂盒种类多, 下面取一个试剂盒为例来说 明其使用方法, 其它试剂盒的使用方法可根据此例类推。 '' In this example, the magnetic chip kit is used to detect the negative (a) and positive (+) of HIV 1 + 2 antibody and HCV antibody in the serum of the sample. The serum sample used was the same as the serum sample in Example 2. The difference between the detection method and the known chip detection method is that when the kit contains magnetic particle components (such as magnetic nanoparticles) in addition to the magnetic chip, the detection reaction is performed under the condition of an external magnetic field at the bottom of the chip. . Especially the fixed pulse magnetic field. Under the action of an external magnetic field, it is beneficial to the movement of the magnetic nanoparticle label and the target captured by the affinity magnetic nanoparticle to the bottom of the reactor. The magnetic nanoparticles added to the sample are conducive to the flow inside the liquid sample added to the chip reactor under the action of the pulsating magnetic field to facilitate the mixing of the sample. Since there are many types of kits, one kit is taken as an example to illustrate its use method, and other kits can be used according to this example.
本例中使用试剂盒的组成为: 对照芯片, 磁纳米粒子, 亲和磁纳米粒子 与四种血清样品分别混合 [混合后的磁纳米粒子浓度为 1/2000 (W/V),亲和磁 纳米粒子浓度为 1/4000 (W/V) ]; 将 15 μ 1血清样品加入芯片反应池中并在 脉动磁场作用下于 37°C反应 10分钟; 洗涤; 加入 15 μ 1磁纳米标记物并在脉 动磁场作用下于 37。C反应 10分钟; 洗涤并干燥; 然后按与实施例 2中相同的 扫描及分析方法进行扫描及分析。 所得结果见表 11。
表 11 The composition of the kit used in this example is: control chip, magnetic nanoparticles, affinity magnetic nanoparticles and four serum samples were mixed [the magnetic nanoparticle concentration after mixing is 1/2000 (W / V), affinity magnetic Nanoparticle concentration is 1/4000 (W / V)]; 15 μ 1 serum sample is added to the chip reaction cell and reacted at 37 ° C for 10 minutes under the action of a pulsating magnetic field; washing; 15 μ 1 magnetic nano-marker and At 37 under a pulsating magnetic field. C was reacted for 10 minutes; washed and dried; and then scanned and analyzed according to the same scanning and analysis method as in Example 2. The results are shown in Table 11. Table 11
其中: I一对照芯片, II一磁纳米微粒芯片, III一磁纳米微粒, IV—亲和磁 纳米微粒, V—磁纳米微粒标记物, VI—对照标记物 实施例 11: 配基 /纳米微粒 /载体复合物分离介质的制备及应用 Among them: I—control chip, II—magnetic nanoparticle chip, III—magnetic nanoparticle, IV—affinity magnetic nanoparticle, V—magnetic nanoparticle label, VI—control label Example 11: Ligand / nanoparticle And application of carrier / carrier composite separation medium
本实施例制备的复合物为层析固定相。 The complex prepared in this embodiment is a chromatographic stationary phase.
1 ) 配基 /纳米微粒 /载体复合物分离介质的制备 1) Preparation of ligand / nanoparticle / carrier complex separation media
本实施例中所用配基为 DEAE-葡聚糖 (Pharmacia公司) 、 所用纳米微粒 为表 1中的氧化硅纳米微粒(STN-3 )、 所用载体为平均粒径 60 μ ιη的用于层析 的硅胶粒子 (中国科学院化学研究所) 。 The ligand used in this example is DEAE-dextran (Pharmacia), the nanoparticles used are silicon oxide nanoparticles (STN-3) in Table 1, and the carrier used is an average particle size of 60 μm for chromatography. Silica particles (Institute of Chemistry, Chinese Academy of Sciences).
将浓度为 1/2500 (w/v) 的 DEAE-葡聚糖溶液与浓度 1/2500 (w/v) 的氧 化硅纳米微粒(STN-3 ) 混合并在室温下搅拌 4小时,然后将预干燥的硅胶粒子 浸泡于其中,再按照本发明之一发明人发表的方法 (参考本发明发明人之一的 文章 (COATED SILICA SUPPORTS FOR HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY OF PROTEIN, Journal of Chromatography, 476 , (1989) 195-203 )进行葡聚糖交联并得 DEAE-葡聚糖 /纳米微粒 /硅胶粒子复合物。实际
上, 由于在纳米葡聚糖的引入, 其还可以应用经典的葡聚糖衍生方法衍生出 多种层析固定相出来。 A DEAE-dextran solution at a concentration of 1/2500 (w / v) was mixed with silica nanoparticles (STN-3) at a concentration of 1/2500 (w / v) and stirred at room temperature for 4 hours. Dried silica gel particles were immersed in it, and then according to the method published by one of the inventors (refer to the article of one of the inventors (COATED SILICA SUPPORTS FOR HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY OF PROTEIN, Journal of Chromatography, 476, (1989 ) 195-203) Dextran cross-linking to obtain DEAE-dextran / nanoparticles / silica gel particle composites. Actual In addition, due to the introduction of nano-dextran, it can also be used to derive a variety of chromatographic stationary phases using classical dextran-derived methods.
作为对比的 DEAE-葡聚糖 /硅胶粒子复合物的制备方法参考本发明之一发 明人发表的方法 (同上) 。 As a comparative method for preparing the DEAE-dextran / silica gel particle composite, refer to the method published by one inventor of the present invention (ibid.).
2) 配基 /纳米微粒 /载体复合物分离介质的应用 2) Application of ligand / nanoparticle / carrier complex separation media
本实施例检测了上述硅胶粒子、 DEAE-葡聚糖 /硅胶粒子复合物和 DEAE- 葡聚糖 /纳米微粒 /硅胶粒子复合物的动力学吸附容量。 动力学吸附容量检测 中, 用于填充上述介质的柱子内径 0.5 cm和长度 2 cm,缓冲液为 0.01M Tris-HCl/pH 7.40,流速为 lml/min,所用层析仪为 HP 1090, 所用样品为人白蛋 白。 按照公知的人白蛋白动力学吸附容量分别为 1.2 mg/m 7.8 mg/ml和 13.5 mg/ml, 其中 DEAE-葡聚糖 /纳米微粒 /硅胶粒子复合物是有最高的动力学吸附
In this example, the kinetic adsorption capacity of the above silica gel particles, DEAE-dextran / silica gel particle complex, and DEAE-dextran / nanoparticles / silica gel particle complex were tested. In the kinetic adsorption capacity test, the column used to fill the above media has an inner diameter of 0.5 cm and a length of 2 cm, a buffer solution of 0.01 M Tris-HCl / pH 7.40, a flow rate of 1 ml / min, a chromatography instrument used for HP 1090, and the sample used For human albumin. According to the known kinetic adsorption capacity of human albumin, 1.2 mg / m, 7.8 mg / ml and 13.5 mg / ml, respectively, of which the DEAE-dextran / nanoparticle / silica particle complex has the highest kinetic adsorption.