WO2004081068A1 - Novel graft copolymer and process for producing the same - Google Patents

Novel graft copolymer and process for producing the same Download PDF

Info

Publication number
WO2004081068A1
WO2004081068A1 PCT/JP2004/003055 JP2004003055W WO2004081068A1 WO 2004081068 A1 WO2004081068 A1 WO 2004081068A1 JP 2004003055 W JP2004003055 W JP 2004003055W WO 2004081068 A1 WO2004081068 A1 WO 2004081068A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
repeating unit
copolymer
represented
Prior art date
Application number
PCT/JP2004/003055
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroo Muramoto
Takeshi Niitani
Original Assignee
Nippon Soda Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co. Ltd. filed Critical Nippon Soda Co. Ltd.
Priority to JP2005503529A priority Critical patent/JPWO2004081068A1/en
Publication of WO2004081068A1 publication Critical patent/WO2004081068A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F257/00Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00
    • C08F257/02Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00 on to polymers of styrene or alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F287/00Macromolecular compounds obtained by polymerising monomers on to block polymers

Definitions

  • the present invention relates to a polymer copolymer suitable for a polymer solid electrolyte suitable as a device material for electrochemical devices such as a battery, a capacitor, a sensor, a capacitor, an EC device, and a photoelectric conversion device.
  • a composition is known from a polymer obtained by graft polymerization of a polyether chain and an electrolyte salt.
  • a random copolymer is obtained from chloromethylstyrene and methyl methacrylate by a radical polymerization method
  • methoxy polyethylene glycol monomethacrylate is obtained by a living radical polymerization method using the random copolymer as an initiator and a copper complex as a catalyst.
  • An intrinsic polymer solid electrolyte having a matrix of a random daraft copolymer obtained by graft copolymerization of a polyethylene oxide component with a polyethylene oxide component of around 40% by weight and an ionic conductivity of 10 ⁇ 4 S / It is on the order of cm, and its Young's modulus is said to be several MPa at room temperature.
  • the value of the ionic conductivity of the polymer solid electrolyte film was poor in reproducibility and could not be said to be sufficiently satisfactory.
  • the above film was observed with an electron microscope, no phase-separated structure was observed and the film had a uniform structure.
  • the ionic conductivity of a polymer solid electrolyte having a polymer having a uniform structure as a matrix depends on the content of a polyethylene oxide component. is 4 about 0 ⁇ % content, it ion conductivity at a content of the degree is 1 0- 4 S / cm order was expected that normally is not considered.
  • the present invention provides a novel graft copolymer serving as a base for a solid electrolyte having high ionic conductivity having a polyether chain in a graft chain, and a solid electrolyte comprising the graft copolymer and an electrolyte salt.
  • the purpose is to:
  • a graft copolymer having a polyethylene glycol mono (meth) acrylate unit as a graft chain a non-polar and rigid repeating unit such as polystyrene is bonded as a block chain or the like to form a graft copolymer. It has been found that a separation structure is exhibited, and as a result, it is possible to achieve both high ionic conductivity and excellent membrane physical properties. Furthermore, by using two kinds of living radical polymerization methods together, such a graft copolymer can be obtained. It has been confirmed that it can be manufactured, and the present invention has been completed. That is, the present invention basically includes the following invention units (1) to (24).
  • R 4 represents a hydrogen atom or a C 1 to (: 10 hydrocarbon group which may have a substituent, and R 51 and R 52 each independently represent a hydrogen atom, or It represents C 1 ⁇ C4 alkyl group
  • R 6 represents a hydrogen atom, a hydrocarbon group, Ashiru group, a silyl group, a phosphoryl group, a hydrocarbon phosphoryl group or a hydrocarbon sulfonyl Le group
  • d is 1 to 1,000
  • R 4 , R 51 , R 52 , R 6 , and e may be the same or different
  • e is It represents an integer of 1-100, when e is 2 or more, R 5 i each other, and R 52 each other, repeatedly expressed by may be the same or different.
  • R 2 is the formula (IV)
  • R 9 and R 10 each independently represent a hydrogen atom, a halogen atom, or a C 1 -C 10 hydrocarbon group which may have a substituent, and b in the formula (I) represents (2 represents a bond to X.)
  • the copolymer according to (1) which is a functional group represented by the following formula:
  • the degree of polymerization of the repeating unit represented by the formula (II) is 5 or more, (1) to (4).
  • the block chains (B) and (C) having a repeating unit composed of a nonpolar moiety which may be the same as or different from the block chain (A) having a repeating unit represented by the formula (I) are represented by ( The copolymer according to any one of (1) to (6), which has an arrangement in the order of B), (A) and (C).
  • the repeating unit represented by the formula ( ⁇ ) Characterized in that the number of moles of the unit is in the range of 9.999 to 80%
  • copolymer according to any one of (1) to (9).
  • copolymer according to any one of (1) to (10).
  • R 7 represents a hydrogen atom or a C 1 -C 10 hydrocarbon group which may have a substituent
  • R 8 represents a hydrocarbon group which may have a substituent.
  • R represents a hydrogen atom or a C 1 to (: 10 hydrocarbon group which may have a substituent
  • R 12 represents a functional group capable of having an active halogen atom
  • R 13 represents a halogen atom or an organic group
  • al represents any integer from 1 to 3, and when al is 2 or more, R 12 and Y are the same.
  • bl may be the same or different, and bl represents 1 or 2.
  • Y may be the same or different, and 1 is 0 or 1.
  • (13-1 al) wherein when cl is 2 or more, R 13 's may be the same or different from each other.
  • R 17 represents a hydrogen atom or a C 1 -C 10 hydrocarbon group which may have a substituent
  • R 18 represents an aromatic hydrocarbon group which may have a substituent.
  • R 14 represents a hydrogen atom or an optionally substituted C 1 to (: 10 hydrocarbon group, and R 151 and R 152 each independently represent a hydrogen atom, or or represents C 1 ⁇ C4 alkyl group
  • R 16 is a hydrogen atom, a hydrocarbon group, Ashiru group, a silyl group, a phosphoryl group, a hydrocarbon phosphoryl group or a hydrocarbon sulfonyl group
  • el is 1 Represents an integer of 100 or more, and when el is 2 or more, R 151 and R 152 may be the same or different from each other.
  • R 12 is the formula (IX)
  • radical polymerization initiator is an organic peroxide or an azo compound.
  • a polymer solid electrolyte comprising the copolymer according to any one of (1) to (15) and an electrolyte salt.
  • electrolyte salt is at least one selected from the group consisting of an alkali metal salt, a quaternary ammonium salt, a quaternary phosphonium salt, a transition metal salt, and a protonic acid.
  • the electrolyte salt is at least one selected from the group consisting of an alkali metal salt, a quaternary ammonium salt, a quaternary phosphonium salt, a transition metal salt, and a protonic acid.
  • the block graft copolymer of the present invention is a copolymer having a repeating unit represented by the formula (I) and a repeating unit composed of a nonpolar moiety.
  • 1 ⁇ represents a hydrogen atom or a C 1 to C 10 hydrocarbon group which may have a substituent, and specifically, a hydrogen atom, a methyl group, an ethyl group, —Propyl group, isopropyl group, n-butyl group, sec—butyl group, isobutyl group, t-butyl group, phenyl group, naphthyl group, benzyl group and the like.
  • 1 ⁇ may have a substituent on an appropriate carbon atom, and specific examples of such a substituent include a halogen atom such as a fluorine atom, a chlorine atom, or a bromo atom, a methyl group, Hydrocarbon groups such as ethyl group, n-propyl group, phenyl group, naphthyl group, benzyl group, etc .; hydrocarbon groups such as acetyl group, benzoyl group, etc .; nitrile group, nitro group, nitro group, methoxy group, phenoxy group, etc. , A methylthio group, a methylsulfinyl group, a methylsulfonyl group, an amino group, a dimethylamino group, an argino group and the like.
  • a halogen atom such as a fluorine atom, a chlorine atom, or a bromo atom, a methyl group
  • R 2 represents a functional group capable of having an active halogen atom.
  • the “functional group capable of having an active halogen atom” is a functional group having a structure such that when a halogen atom is bonded to a constituent carbon atom, the halogen atom becomes an active halogen atom.
  • a functional group capable of having a halogen atom in a position such as an electron-withdrawing group such as a carbonyl group, an ester group, an amide group, a sulfonyl group, a nitrile group, or a nitro group. Examples can be given.
  • the halogen atom bonded to R 2 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom and a bromine atom are particularly preferable.
  • R 2 include the following functional groups.
  • R 2 a functional group represented by the formula (IV) can be preferably exemplified.
  • R 9 and R 1 Q each independently represent a hydrogen atom, a halogen atom, or a C 11 hydrocarbon group which may have a substituent, and in the formula (I) When b is 2, it represents a bond with X.
  • R 9 a hydrogen atom, a chlorine atom, a bromine atom, or To halogen atom such as nitrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group, t-butyl group, n-benzyl group, n- Examples thereof include hydrocarbon groups having 1 to 10 carbon atoms, such as a xyl group, a cyclohexyl group, a phenyl group, a naphthyl group, and a benzyl group.
  • a substituent can be provided on an appropriate carbon atom, and similar substituents can be exemplified.
  • R 3 represents a halogen atom or an organic group
  • c represents 0 or any integer from 1 to (4-a), and when c is 2 or more, R 3 is the same or May be different.
  • R 3 include a halogen atom such as a chlorine atom, a bromine atom, or an iodine atom, or a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group.
  • X represents a polymer chain having a repeating unit represented by the formula (II).
  • R 4 represents a hydrogen atom or a C 1 to (: 10 hydrocarbon group which may have a substituent, and specifically, is the same as the specific example represented by 1 ⁇
  • the following functional groups can be exemplified.
  • R 5 1, and R 5 2 are each independently a hydrogen atom or or C 1 through C 4, Represents an alkyl group.
  • a functional group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group and a t-butyl group. Examples can be given.
  • e represents an integer of from 1 to 1 0 0, if e is 2 or more, R 5 1 together and, and R 5 2 together may also be different from one phase in the same.
  • R 6 represents a hydrogen atom, a hydrocarbon group, an acyl group, a silyl group, a phosphoryl group, a hydrocarbon phosphoryl group, or a hydrocarbon sulfonyl group, specifically, a methyl group, an ethyl group, an n-propyl Group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group, t_butyl group, n-hexyl group, phenyl group, substituted phenyl group, hydrocarbon group such as naphthyl group, formyl group, acetyl group, Acyl groups such as propionyl group and butylyl group, trimethylsilyl group, silyl groups such as t-butyldimethylsilyl group, dimethylphenylsilyl group, hydrocarbon phosphoryl groups such as dimethylphosphoryl group and diphenylphosphoryl group, methylsulfonyl group,
  • d represents an integer of from 1 to 1 0 0 0, if d is 2 or more, R 4 together, R 5 1 together, R 5 2 together, R 6 to each other, and e each other are the same or or different phases, e represents an integer of from 1 to 1 0 0, if e is 2 or more, R 5 i and between, and R 5 2 each other, are identical or different You may.
  • repeating unit represented by the formula (II) include the following compounds. However, it is exemplified by a monomer which is considered to be derived from the repeating unit represented by the formula (II).
  • repeating units may be used alone or in a combination of two or more.
  • the repeating unit comprising a non-polar moiety contained in the copolymer of the present invention includes a functional group containing no polar group represented by a hydrocarbon group such as a phenyl group, a naphthyl group, a methyl group, and an ethyl group, and the entire repeating unit.
  • a functional group containing a polar group as long as it is not affected, or a functional group having a difference in polarity as compared with the repeating unit represented by the formula (I), there is no particular limitation.
  • a repeating unit represented by the formula (III) can be preferably exemplified.
  • R 7 represents a hydrogen atom or a C 1 to C 10 hydrocarbon group which may have a substituent. Functional groups similar to the examples can be exemplified.
  • R 8 represents a hydrocarbon group which may have a substituent, and specific examples include a methyl group, an ethyl group, a phenyl group, a naphthyl group, and an anthracenyl group. Preferred examples include aromatic hydrocarbon groups. R 8 may have a substituent on an appropriate carbon atom.
  • Examples of such a substituent include a halogen atom such as a fluorine atom, a chlorine atom, or a bromo atom, a methyl group, and a Hydrocarbon groups such as tyl group, n-propyl group, phenyl group, naphthyl group, benzyl group, etc., hydrocarbon groups such as acetyl group, benzoyl group, etc., nitrile group, nitro group, methoxy group, phenoxy group, etc. , Methylthio, methylsulfinyl, methylsulfonyl, amino, dimethylamino, anilino and the like.
  • repeating unit represented by the formula (III) include the following repeating units, and particularly preferably a repeating unit represented by the formula (V).
  • a monomer which is considered to be derived from the repeating unit represented by the formula (III) will be exemplified.
  • the repeating unit represented by the formula (III) may be a single type or a mixture of two or more types.
  • Styrene o-methylstyrene, p-methylstyrene, p-t-butylstyrene, ⁇ -methylstyrene, ⁇ -t-butoxystyrene, mt-butoxystyrene, 2,4-dimethylstyrene, m-chlorostyrene, p-Chlorostyrene, 1-vinylnaphthalene, 9-vinylanthracene, etc.
  • the degree of polymerization of the repeating unit represented by the formula (I) (which represents the number of moles of the repeating unit; the same applies hereinafter) is not particularly limited, but is preferably 3 or more. If it is less than 3, sufficient ion conductivity cannot be obtained.
  • the degree of polymerization of the repeating unit comprising a nonpolar moiety represented by the formula (III) is not particularly limited, but is preferably 5 or more. If it is less than 5, there is a problem that the film quality is degraded, and the film does not have a clear microphase separation structure at the time of film formation.
  • the degree of polymerization in the repeating unit represented by the formula (II) in the polymer chain having the repeating unit represented by the formula (II) is not particularly limited, but is preferably 5 or more. If it is less than 5, sufficient ionic conductivity cannot be obtained.
  • the copolymer of the present invention comprises a repeating unit represented by the formula (I), a repeating unit represented by the formula (II), and a total mole of a repeating unit composed of a nonpolar moiety represented by the formula ( ⁇ ) and the like.
  • the number of moles of the repeating unit represented by the formula (I) is preferably in the range of 0.001 to 50% based on the number (hereinafter referred to as the total mole number). If the content is less than 0.001%, sufficient ionic conductivity cannot be obtained, and if the content is more than 50%, a formed film is formed. Quality may be reduced.
  • the number of moles of the repeating unit represented by the formula (II) is preferably in the range of 9.999 to 80% based on the total number of moles. 9. If it is less than 999%, ion conductivity may be reduced, and if it is more than 80%, the film quality may be reduced.
  • the number of moles of the repeating unit composed of the nonpolar moiety represented by Formula (III) or the like is preferably in the range of 19.999 to 90% based on the total number of moles. 19. If less than 999%, the film quality deteriorates and a clear microphase separation structure cannot be obtained, and if it exceeds 90%, ion conductivity may decrease.
  • the bonding state of the polymer chain (A) containing a repeating unit represented by the formula (I) and the polymer chain (B) containing a repeating unit composed of a nonpolar moiety represented by the formula (III) are particularly Although not limited, it is preferable that they are linked by a block. By bonding with blocks, they exhibit a microphase-separated structure when formed or formed into a film, and exhibit good ionic conductivity even in a solid state.
  • being linked by a block means that the polymer chains (A;) and (B) are linked directly or indirectly by another polymer chain or a linking group.
  • a taper block in which the component ratio between repeating units constituting each polymer chain gradually changes is also included in the block connection in the present invention.
  • the other polymer chain may be a homopolymer or a binary or higher copolymer.
  • the bonding state therein is not particularly limited, and may be random, tapered block, It may be a block.
  • the polymer chain (A) containing a repeating unit represented by the formula (I) or the like means a polymer chain consisting only of the repeating unit represented by the formula (I) or the like and a polymer chain represented by the formula (I) or the like.
  • the polymer chains (A) and (B) and the polymer chain (C) which may be the same as or different from the polymer chain (B) are (B), (A), It is preferable to have the arrangement in the order of (C), and it is particularly preferable that the arrangement is a combination of (B)-(A)-(C).
  • each of the above block polymers is The copolymer may be a block copolymer in which the segments are extended or branched, as represented by the following formulas (1) to (3) via the residue of the drug.
  • w represents an integer of 1 or more
  • X represents a residue of a coupling agent.
  • the number average molecular weight of the copolymer having a repeating unit comprising a nonpolar moiety represented by formulas (I) and (III) is not particularly limited, but is preferably in the range of 10,000 to 5,000, 000. can do. If it is less than 10,000, thermal and physical properties may be reduced, and if it is more than 5,000,000, moldability or film formability may be reduced.
  • repeating units composed of a nonpolar moiety represented by the formula (1), the formula (11), and the formula (III) of the present invention, or between polymer chains, as necessary.
  • other repeating units can be included, and as such a repeating unit, a repeating unit derived from the following monomer can be exemplified. These repeating units can be used singly or as a mixture of two or more.
  • 1,3-butadiene isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentane, 2-methyl-1,3-pentene, 1,3-hexadiene, 1,6 —Hexadiene, 4, 5-Jetyl-1,3-octadiene, 3-Butyl-1,3-octadiene, conjugated gens such as chloroprene, ⁇ such as N-methylmaleimide and N-phenylmaleimide , / 3-unsaturated carboxylic imides,
  • the method for producing a block / graft copolymer of the present invention is characterized by using two types of living radical polymerization methods described in detail below. That is, a stable radical initiator is used.After obtaining a block copolymer by a living radical polymerization method, the obtained block copolymer is grafted by a living radical polymerization method using a macroinitiator and a transition metal complex as a catalyst. This is a method of performing copolymerization.
  • the monomer used in the method for producing a copolymer of the present invention is a compound represented by the formula (VI), the formula (VII), and the formula (VIII), and the compound represented by the formula (VI), the formula (VIII)
  • the compound represented by the formula (VII) corresponds to the repeating unit represented by the formula (I) and the repeating unit represented by the formula (II), and the compound represented by the formula (VII) is represented by the formula (III)
  • the contents of the functional groups represented by Ru to R 14 , R 15 or R 152 , and R 16 to R 18 are 1 ⁇ to 1 ⁇ 4 , R 51 , respectively.
  • Y represents a halogen atom, and specifically represents a chloro atom, a bromo atom, an iodine atom, or the like.
  • the functional group represented by formula (IX) corresponds to the functional group represented by the formula (IV), R 19,: .
  • the content of the functional group represented by R 9 corresponds to the content of the functional group represented by.
  • the method for producing the block / graft copolymer of the present invention will be described in more detail corresponding to the monomers.
  • the compound represented by the formula (VI) and the compound represented by the formula (VII) are block copolymerized by a living radical polymerization method using a stable radical initiator, and then the obtained block copolymer is subjected to a living radical polymerization method using a macroinitiator and a transition metal complex as a catalyst to obtain a compound represented by the formula (VIII). ) Is graft-polymerized.
  • Specific examples of the compound represented by the formula (VI) include 4-chloromethylstyrene, 3-chloromethylstyrene, 4-chloromethyl-10! -Methylstyrene, 3-chloromethyl- ⁇ -methylstyrene, and 4-chloromethylstyrene.
  • Dichloromethylstyrene and the like can be exemplified.
  • stable radical initiator examples include a mixture of a stable free radical compound and a radical polymerization initiator, or various alkoxyamines.
  • a stable free radical compound is one that exists as a stable free radical alone at room temperature or under polymerization conditions, and that can react with a growing terminal radical to form a re-dissociable bond during the polymerization reaction.
  • TMP ⁇ 2,2,6,6-tetramethyl-1-piperidinyloxy
  • 4-amino-1,2,2,6,6-tetramethyl-1-piberidinyloxy 4- Hydroxy-2,2,6,6-tetramethyl-1-biperdinyloxy
  • 2,2-di (4_t-octylphenyl) _1-picrylhydrazyl Nitroxide radical hydrazinyl Compounds 1 to plurality generate radical are exedi
  • the radical polymerization initiator may be any compound that decomposes to generate free radicals.
  • 2,2′-azobisisobutyronitrile, 2,2′-azobis mono (2,4- Azo compounds such as dimethylvaleronitrile) diacyl peroxides such as benzoyl peroxide, ketone oxides such as methyl perketone peroxide, oxides, 1,1-bis (t-butyl peroxy) ) — Peroxyketals such as 3,3,5-trimethylcyclohexane; hydroperoxides such as cumene hydroperoxide; dialkyl peroxides such as dicumylperoxide; t-butyl peroxybivalate, t-butyl peroxybivalate Organic peroxides of peroxyesters such as benzoate can be exemplified.
  • a known polymerization accelerator used in combination with an organic peroxide such as dimethylaniline-cobalt naphthenate may be used in combination.
  • radical polymerization initiators are generally used in an amount of 0.05 to 5 mol, preferably 0.2 to 2 mol, per 1 mol of the aforementioned stable free radical compound.
  • alkoxyamines include the following compounds.
  • the polymerization can be performed by various known polymerization methods, for example, bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization.
  • the polymerization temperature is 50 to 200 in an atmosphere of an inert gas such as nitrogen or argon. C., preferably at 100 to 150.degree.
  • the organic solvent used in the solution polymerization is not particularly limited, and aromatic hydrocarbons such as benzene, toluene, and xylene; alicyclic hydrocarbons such as cyclohexane; methyl ethyl ketone; Ketones such as butyl ketone and cyclohexanone; ethers such as dioxane; esters such as ethyl acetate and butyl acetate; alcohols such as ethanol and n-butanol; ethylene glycol monomethyl ether and ethylene glycol monomethyl ether acetate And the like polyhydric alcohol derivatives.
  • aromatic hydrocarbons such as benzene, toluene, and xylene
  • alicyclic hydrocarbons such as cyclohexane
  • methyl ethyl ketone Ketones such as butyl ketone and cyclohexanone
  • ethers such as dioxane
  • esters such as
  • copolymers of A—B type, B—A type, and B—A—C type are basically obtained.
  • A-B-A type and B-A-B type copolymers are obtained.
  • a gradient copolymer is also obtained by ordinary radical polymerization in which polymerization is carried out only with a radical polymerization initiator without using a stable free radical compound in the above method (2). This is also possible, and this method is also included in the method for producing a graft copolymer of the present invention.
  • the copolymer can be purified by column purification, vacuum purification, or by applying ordinary separation and purification methods such as, for example, pouring into water or a poor solvent, filtering and drying the precipitated polymer. Can be obtained.
  • graft polymerization is carried out by a living radical polymerization method in which a block copolymer obtained by the above-mentioned lipinal radical polymerization using a stable free radical initiator is used as a macroinitiator and a transition metal complex is used as a catalyst. It is characterized.
  • the polymerization temperature is 50 to 200 in an atmosphere of an inert gas such as nitrogen or argon. C., preferably at 100 to 150.degree.
  • a place for solution polymerization The organic solvent used in the combination is not particularly limited, but may be aromatic hydrocarbons such as benzene, toluene and xylene, alicyclic hydrocarbons such as cyclohexane, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • Ketones such as dioxane; esters such as ethyl acetate and butyl acetate; alcohols such as ethanol and n-butanol; polyvalents such as ethylene glycol monomethyl ether and ethylene glycol monomethyl ether acetate. Examples thereof include alcohol derivatives.
  • the central metals constituting the transition metal complex used in the present invention include manganese, rhenium, iron, ruthenium, rhodium, nickel, copper, etc., elements of Group 7 to 11 of the Periodic Table (edited by the Chemical Society of Japan, Chemical Handbook). Basic Edition I, Revised 4th Edition ”(based on the periodic table described in 1993).
  • Preferred examples of the metal species include zero-valent and monovalent copper, divalent ruthenium, and divalent iron. More specifically, examples include cuprous chloride, cuprous bromide, cuprous iodide, cuprous cyanide, cuprous oxide, cuprous acetate, cuprous perchlorate, and the like. be able to.
  • copper compounds for example, 2,2-pipyridyl and its derivatives, 1,10-phenanthroline and its derivatives, alkylamines such as triptylamine, tetramethylethylenediamine, pentamethylethylenediethylenetriamine, hexane It is preferable to add a polyamine such as methyltriethylenetetramine or the like as a ligand for enhancing the catalytic activity.
  • ruthenium tris triphenyl phosphine chloride complex R u C l 2 (PP h 3) 3
  • divalent ruthenium complex suitably used, such as.
  • ruthenium complex When a ruthenium complex is used, it is preferable to add an aluminum compound such as trialkoxyaluminum to enhance the activity of the catalyst. Further, a divalent iron complex such as an iron chloride tristriphenylphosphine complex (FeCl 2 (PPh 3 ) 3 ) can also be suitably used. These transition metal complexes can be used alone or in combination of two or more.
  • the graft chain X is obtained by polymerizing a compound represented by the formula (VIII), and if necessary, other polymerizable unsaturated monomers, for example, a compound represented by the formula (VII) And / or methyl (meth) acrylate, ethyl (meth) acrylate, t-butyl (meth) acrylate, benzyl (meth) acrylate, (meth) acrylic acid It may be a copolymer chain with (meth) acrylates such as sopolnyl and dicyclopentenyl (meth) acrylate.
  • the graft polymerization may be carried out continuously or intermittently.
  • the block-graft copolymer is once taken out of the system once it is confirmed that the desired degree of polymerization or molecular weight has been reached.
  • the block / graft copolymer can be used as a macroinitiator and other polymerizable unsaturated monomers can be added to proceed intermittently.
  • Tracking of the graft polymerization reaction process and confirmation of the completion of the reaction can be easily performed by gas chromatography, liquid chromatography, gel permeation chromatography, membrane osmometry, NMR, and the like.
  • a common separation and purification method such as column purification, pressure-reduction purification, or filtration and drying of the polymer component precipitated by pouring into water or a poor solvent, for example, is applied to the graft polymerization.
  • a polymer can be obtained.
  • the electrolyte used in the present invention is not particularly limited, and may be an electrolyte containing an ion that is desired to be the carrier by charge.
  • the dissociation constant in a polymer solid electrolyte obtained by curing it is desirable large, alkali metal salts, (CH 3) 4 NBF 4 grade Anmoniumu salts 6 and the like, (CH 3) 4 grade Hosuhoniumu salts such as 4 PBF 6, or a transition metal salt such as a g C 1 0 4 Hydrotonic acid such as hydrochloric acid, perchloric acid, borofluoric acid, etc. can be used, alkali metal salt, quaternary ammonium salt, quaternary phosphonium The use of salts or transition metal salts is preferred.
  • alkali metal salts can be used, for example, L i CF 3 S0 3, L i N (CF 3 S 0 2) 2, L i C (CF 3 S 0 2) 3 L i C (CH 3) (CF 3 S0 2 ) 2 , L i CH (CF 3 S 0 2 ) 2 , L i CH 2 (CF 3 S0 2 ), L i C 2 F 5 S 0 3 , L i N (C 2 F 5 S ⁇ 2) 2, L i B ( CF 3 S 0 2) 2, L i PF 6,: L i C 1_Rei 4, L i I, L i BF 4, L i S CN, L i As F 6, NaCF 3 S0 3, NaPF 6, N a C 1_Rei 4, Na l, Na BF 4 , N aA s F 6, KCF 3 S0 3, KP F 6, KI, L i CF 3 C0 3, N a C 1_Rei 3, N a S CN, KB F
  • the amount of the electrolyte salt added is 0.005 to 80 mol%, preferably 0.01 to 50 mol%, based on the alkylene oxide unit in the multibranched polymer which is the base polymer of the polymer electrolyte. Range.
  • the method of adding and complexing for example, a method of dissolving the copolymer and the electrolyte salt in a suitable solvent such as tetrahydrofuran, methyl ethyl ketone, acetonitrile, ethanol, dimethylformamide, and the like. And a method of mixing them mechanically at room temperature or under heating.
  • the solid polymer electrolyte is preferably in the form of a sheet or the like.
  • the manufacturing method include various coating methods such as a roll-co-one-court method, a curtain-co-one-cow method, a spin coating method, a dip method, and a casting method.
  • the method include a method in which a composition containing the copolymer of the present invention and an electrolyte is formed on a support by means of a film, solidified by heat or the like, and then removed by removing the support.
  • the solid polymer electrolyte of the present invention is expected to be used as a solid electrolyte having excellent thermal properties, physical properties, and ionic conductivity in electrochemical devices such as batteries.
  • 4-Chloromethylstyrene (hereinafter referred to as 4CMS) 131.
  • Ommo 1 and 1- (2,2,6,6-tetramethylpiperidinyloxy) 1-phenylamine 9.6mmo 1
  • the reaction solution was cooled to 0 ° C to stop the polymerization reaction.
  • the reaction solution was diluted with tetrahydrofuran (THF) to form a homogeneous solution, and then poured into a large amount of methanol to precipitate a polymer, which was filtered, washed, and dried under reduced pressure at 60 ° C for 5 hours.
  • the isolation yield of the obtained polymer was 56%.
  • GPC analysis was performed on the obtained poly CMS.
  • the number average molecular weight (hereinafter, referred to as Mn) was 1,300
  • the dispersity the ratio of the weight average molecular weight (Mw) to Mn (MwZMn), PD) was 1.35.
  • the obtained block-graft copolymer [BG-1] was dissolved in acetone, cast on a Teflon (registered trademark) plate, left at room temperature for 24 hours, and dried under reduced pressure at 60 for 24 hours. A film having a thickness of 100 xm was obtained. A transmission electron micrograph of the obtained film was measured, and this block-graft copolymer had a sea-island-type microphase-separated structure in which a polystyrene phase was dispersed spherically in a polyethylene oxide phase. I understand.
  • block graft copolymer obtained in the above procedure [BG-l] of 2 g was dissolved in acetone 1 8 g, homogeneously dissolved by adding L i C 1 O 4 0. 2 g
  • a resin composition for a polymer solid electrolyte was prepared.
  • the above composition was cast on a Teflon (registered trademark) plate, left at room temperature for 24 hours, and dried under reduced pressure at 60 ° C for 24 hours to obtain a uniform polymer solid electrolyte membrane (membrane). Thickness 100 111).
  • This polymer solid electrolyte membrane was sandwiched between white metal plates under an argon atmosphere, and the ionic conductivity was measured by complex impedance analysis using an impedance analyzer (Solartron-1260 type) with a frequency of 5 to 10 MHz. As a result, the ionic conductivity was 5x1 O ⁇ SZcm at 23 ° C.
  • Example 2 Example 2
  • the reaction solution was subjected to column purification to remove metal complexes and unreacted monomers, and then volatile components were removed under reduced pressure to obtain a polymer.
  • -It was a block-graft copolymer [BG-2] having a structure of g-PME-1000) -b-St).
  • Example 2 the obtained block / graft copolymer [BG-2] was formed into a film in the same manner as in Example 1, and the obtained film was observed with a transmission electron microscope. The same result as in Example 1 was obtained. It had a sea-island type Miku mouth phase separation structure.
  • block graft copolymer obtained in the above procedure [BG-2] to 2 g was dissolved in acetone 1 8 g, was added to L i C 1 O 4 0. 1 7 g uniform To prepare a resin composition for a solid polymer electrolyte.
  • the obtained polymer was dried under reduced pressure at 60 ° C for 5 hours.
  • the isolation yield of the obtained polymer was 64%.
  • the obtained poly Stlmmo 1 and 4 CMS 239 mmo 1 were uniformly mixed, nitrogen publishing was performed for 15 minutes, and then the temperature was increased to 125 ° C under a nitrogen atmosphere.
  • the reaction solution was cooled to 0 to stop the copolymerization reaction.
  • the polymerization conversion rate of 4 CMS was 20%.
  • the polymerization conversion rate of PM E-400 was 60%.
  • the reaction solution was subjected to column purification to remove the metal complex and unreacted monomer, and then volatile components were removed under reduced pressure to obtain a polymer.
  • Example 3 the obtained block and graft copolymer [BG-3] were formed into a film in the same manner as in Example 1, and the obtained film was observed with a transmission electron microscope, and the same result as in Example 1 was obtained. It had a sea-island type Miku mouth phase separation structure.
  • a polymer solid electrolyte membrane was prepared from the above composition in the same manner as in Example 1, and the ion conductivity was measured. As a result, it was 8 ⁇ 10 -5 s Zcm at 23 ° C.
  • the obtained block graft copolymer [BG-4] was formed into a film in the same manner as in Example 1, and the obtained film was observed with a transmission electron microscope. Having a microphase-separated structure of
  • a polymer solid electrolyte membrane was prepared from the above composition in the same manner as in Example 1, and Its conductivity was 9 ⁇ 10 ⁇ 5 sZcm at 23 ° C.
  • the random graft copolymer obtained by the above operation under an argon atmosphere The body 2 g was dissolved in THF 1 8 g, to prepare a solid polymer electrolyte resin composition was uniformly dissolved by adding L i C L_ ⁇ 4 0. lg.
  • the above composition was cast on a Teflon (registered trademark) plate and dried under reduced pressure at room temperature for 24 hours to obtain a uniform polymer solid electrolyte membrane (polymer solid having a thickness of 100 m).
  • the ionic conductivity of the electrolyte membrane was measured in the same manner as in Example 1.
  • the solid polymer electrolyte membrane obtained in the same manner was dried at room temperature for 24 hours and further at 60 ° C. for 24 hours.
  • the ionic conductivity of the polymer solid electrolyte membrane dried under reduced pressure was also measured, and as a result, the ion conductivity at 25 ° C was determined for both those dried at room temperature and those dried at room temperature and then heated. was ⁇ 2x10- 6 s Zcm.
  • tBA t-Butyl acrylate 1 20mmol and 2,2,5-trimethyl-1-3-phenylethoxy) — 4-phenyl-3-azahexane 1.07 mm
  • the reaction solution was cooled to 0 ° C to stop the polymerization reaction.
  • the polymer was poured into a large amount of methanol to precipitate a polymer, which was filtered, washed, and dried under reduced pressure at 60 ° C for 5 hours. The isolation yield of the obtained polymer was 78%.
  • Block copolymer having the structure of poly (tBA-b-4CMS). Then, in a nitrogen atmosphere, 42 g of toluene previously subjected to a nitrogen publishing treatment was added to the above poly (t BA_b-4 CMS) 0.1 lmmo 1, PME 1000 1000 mmo 1, cuprous chloride 0.1 lmmol, After adding 0.2 mmol of 2,2, -biviridine and mixing uniformly, the mixture was heated to 80 with stirring to start the copolymerization reaction. Twenty hours after the start of the copolymerization reaction, the temperature of the reaction system was cooled to 0 ° C to stop the copolymerization reaction. As a result of GPC analysis, the polymerization conversion of PME-1000 was 68%.
  • the obtained block / graft copolymer was formed into a film in the same manner as in Example 1, and the obtained film was observed with a transmission electron microscope. As a result, no micro-mouth phase separation structure was observed and the film had a uniform structure. Was.
  • a polymer solid electrolyte membrane was prepared from the above composition in the same manner as in Example 1, and the ion conductivity was measured. As a result, it was 3 ⁇ 10 ⁇ 5 sZcm at 23 ° C.
  • the novel graft copolymer of the present invention has a sea-island structure phase separation structure in a thin film, it has high conductivity and excellent mechanical and physical properties in a composite with an electrolyte. Because of its properties, various electric devices such as batteries It is useful as a solid electrolyte for metals and has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Graft Or Block Polymers (AREA)
  • Conductive Materials (AREA)

Abstract

A novel graft copolymer which has polyether chains in branches and is usable as a base for solid electrolytes having high ionic conductivity; and a solid electrolyte comprising the graft copolymer and an electrolyte salt. The copolymer is characterized by having repeating units represented by the formula (I): (I) [wherein R2 represents a functional group capable of having an active halogen atom at an end and X represents the formula (II)] and repeating units comprising a nonpolar moiety.

Description

明細書  Specification
新規グラフト共重合体及びその製造方法  Novel graft copolymer and method for producing the same
技術分野: Technical field:
本発明は、 電池、 キャパシター、 センサー、 コンデンサー、 E C素子、 光電変 換素子等の電気化学用デバイス材料として好適な高分子固体電解質に適した高分 子共重合体に関する。  The present invention relates to a polymer copolymer suitable for a polymer solid electrolyte suitable as a device material for electrochemical devices such as a battery, a capacitor, a sensor, a capacitor, an EC device, and a photoelectric conversion device.
従来技術: Conventional technology:
高分子固体電解質として、 ポリエーテル鎖がグラフト重合した重合体及び電解 質塩から組成物が知られている。 例えば、 クロロメチルスチレンとメタクリル酸 メチルとからラジカル重合法によりランダム共重合体を得た後、 該ランダム共重 合体を開始剤とし、 銅錯体を触媒とするリビングラジカル重合法によりメトキシ ポリエチレングリコールモノメタクリレートをグラフト共重合させたランダム · ダラフト共重合体をマトリックスとする真性高分子固体電解質が知られており、 ポリエチレンオキサイド成分が 4 0重量%前後で、 イオン伝導性が室温で 1 0 ·4 S / c mオーダーであり、 ヤング率が室温で数 M P aであるとされている。 (Polymer preprints, Japan Vol51,No.11,2742(2002) を参照) As a polymer solid electrolyte, a composition is known from a polymer obtained by graft polymerization of a polyether chain and an electrolyte salt. For example, after a random copolymer is obtained from chloromethylstyrene and methyl methacrylate by a radical polymerization method, methoxy polyethylene glycol monomethacrylate is obtained by a living radical polymerization method using the random copolymer as an initiator and a copper complex as a catalyst. An intrinsic polymer solid electrolyte having a matrix of a random daraft copolymer obtained by graft copolymerization of a polyethylene oxide component with a polyethylene oxide component of around 40% by weight and an ionic conductivity of 10 · 4 S / It is on the order of cm, and its Young's modulus is said to be several MPa at room temperature. (See Polymer preprints, Japan Vol 51, No. 11, 2742 (2002))
しかし、 後述するように > 上記高分子固体電解質フィルムのイオン伝導性の値 は、 再現性に乏しく、 充分満足のいくものとは言えなかった。 また、 上記フィル ムの電子顕微鏡観察を行ったところ、相分離構造は観察されず均一構造であった。 均一構造を有する高分子をマトリックスとする高分子固体電解質のイオン伝導性 はポリエチレンォキサイド成分含有量に依存することが知られており、 上記文献 記載の高分子固体電解質は、エチレンォキサイド含有量が 4 0箪量%程度であり、 この程度の含有量でイオン伝導性が 1 0—4 S / c mオーダーであることは、 通常 は考えられないことが予想された。 However, as described later, the value of the ionic conductivity of the polymer solid electrolyte film was poor in reproducibility and could not be said to be sufficiently satisfactory. When the above film was observed with an electron microscope, no phase-separated structure was observed and the film had a uniform structure. It is known that the ionic conductivity of a polymer solid electrolyte having a polymer having a uniform structure as a matrix depends on the content of a polyethylene oxide component. is 4 about 0箪量% content, it ion conductivity at a content of the degree is 1 0- 4 S / cm order was expected that normally is not considered.
発明の開示: DISCLOSURE OF THE INVENTION:
本発明は、 ポリエーテル鎖をグラフト鎖に有する高いイオン導電性を有する固 体電解質の基材となる新規なグラフト共重合体、 及び該グラフト共重合体と電解 質塩からなる固体電解質を提供することを目的とする。  The present invention provides a novel graft copolymer serving as a base for a solid electrolyte having high ionic conductivity having a polyether chain in a graft chain, and a solid electrolyte comprising the graft copolymer and an electrolyte salt. The purpose is to:
本発明者らは、 上記問題点を解決すべく鋭意検討した結果、 アルコキシポリエ チレングリコールモノ (メタ) ァクリレート単位をグラフト鎖とするグラフト共 重合体において、 ポリスチレンのような無極性且つ剛直な繰り返し単位をブロッ ク鎖等として結合させたグラフト共重合体とすることによりミク口相分離構造が 発現し、 結果的に高いイオン導電性と優れた膜物性とを両立させることが可能で あることを見出し、 更に 2種類のリビングラジカル重合法を併用することにより かかるグラフト共重合体を製造しうることを確認し、本発明を完成するに至った。 すなわち、 本発明は、 基本的に次の (1) 〜 (24) の発明単位から構成され る。 The present inventors have conducted intensive studies to solve the above problems, and as a result, have found that In a graft copolymer having a polyethylene glycol mono (meth) acrylate unit as a graft chain, a non-polar and rigid repeating unit such as polystyrene is bonded as a block chain or the like to form a graft copolymer. It has been found that a separation structure is exhibited, and as a result, it is possible to achieve both high ionic conductivity and excellent membrane physical properties.Moreover, by using two kinds of living radical polymerization methods together, such a graft copolymer can be obtained. It has been confirmed that it can be manufactured, and the present invention has been completed. That is, the present invention basically includes the following invention units (1) to (24).
(1) 式 (I)  (1) Equation (I)
Figure imgf000004_0001
Figure imgf000004_0001
(式中、 は、 水素原子、 または置換基を有してもよい C 1〜C 1 0炭化水素 基を表し、 R2は、 活性ハロゲン原子を有することのできる官能基を表し、 R3 は、 ハロゲン原子、 または有機基を表し、 Xは、 式 (II) (In the formula, represents a hydrogen atom or a C 1 to C 10 hydrocarbon group which may have a substituent, R 2 represents a functional group capable of having an active halogen atom, and R 3 represents , A halogen atom or an organic group, and X is a group represented by the formula (II)
Figure imgf000004_0002
Figure imgf000004_0002
(式中、 R4は、 水素原子、 または置換基を有してもよい C 1〜(: 10炭化水素 基を表し、 R51、 及び R52は、 それぞれ独立して、 水素原子、 またはまたは C 1〜C4アルキル基を表し、 R6は、 水素原子、 炭化水素基、 ァシル基、 シリル 基、 ホスホリル基、炭化水素ホスホリル基、 または炭化水素スルホ二ル基を表し、 dは、 1〜 1000のいずれかの整数を表し、 dが 2以上の場合には、 R4同士、 R51同士、 R52同士、 R6同士、 及び e同士は、 同一または相異なっていても よく、 eは、 1〜 100のいずれかの整数を表し、 eが 2以上の場合には、 R5 i同士、 及び R52同士は、 同一または相異なっていてもよい。) で表される繰り 返し単位を有する有する重合体鎖を表し、 aは、 1〜3のいずれかの整数を表し、 aが 2以上の場合、 R2同士、 及び X同士は、 同一または相異なっていてもよく、 bは、 1または 2を表し、 bが 2の塲合、 X同士は、 同一でも相異なっていても よく、 cは 0または 1〜 (4一 a) のいずれかの整数を表し、 cが 2以上の場合、 R3同士は、 同一または相異なっていてもよい。) で表される繰り返し単位、 及 び非極性部位からなる繰り返し単位を有することを特徴とする共重合体。 (In the formula, R 4 represents a hydrogen atom or a C 1 to (: 10 hydrocarbon group which may have a substituent, and R 51 and R 52 each independently represent a hydrogen atom, or It represents C 1~C4 alkyl group, R 6 represents a hydrogen atom, a hydrocarbon group, Ashiru group, a silyl group, a phosphoryl group, a hydrocarbon phosphoryl group or a hydrocarbon sulfonyl Le group,, d is 1 to 1,000 When d is 2 or more, R 4 , R 51 , R 52 , R 6 , and e may be the same or different, and e is It represents an integer of 1-100, when e is 2 or more, R 5 i each other, and R 52 each other, repeatedly expressed by may be the same or different.) Represents a polymer chain having a repeating unit, a represents an integer of any of 1 to 3, when a is 2 or more, R 2 and X may be the same or different, b represents 1 or 2; b represents 2; X may be the same or different; c represents 0 or any integer from 1 to (4-1a); c represents In the case of two or more, R 3 may be the same or different. A copolymer having a repeating unit represented by the formula: and a repeating unit comprising a nonpolar moiety.
(2) 式 (I) 中、 R2が、 式 (IV)
Figure imgf000005_0001
(2) In the formula (I), R 2 is the formula (IV)
Figure imgf000005_0001
(式中、 R9及び R10は、 それぞれ独立して、 水素原子、 ハロゲン原子、 または 置換基を有していてもよい C 1〜C 10炭化水素基を表し、 式 (I) における b が 2の場合には、 Xとの結合手を表す。) で表される官能基であることを特徴と する (1) に記載の共重合体。 (Wherein, R 9 and R 10 each independently represent a hydrogen atom, a halogen atom, or a C 1 -C 10 hydrocarbon group which may have a substituent, and b in the formula (I) represents (2 represents a bond to X.) The copolymer according to (1), which is a functional group represented by the following formula:
(3) 式 (I) で表される繰り返し単位の重合度が、 3以上であることを特徴と する (1) または (2) に記載の共重合体。  (3) The copolymer according to (1) or (2), wherein the degree of polymerization of the repeating unit represented by the formula (I) is 3 or more.
(4) 非極性部位からなる繰り返し単位の重合度が、 5以上であることを特徴と する (1) 〜 (3) のいずれかに記載の共重合体。  (4) The copolymer according to any one of (1) to (3), wherein the degree of polymerization of the repeating unit comprising the nonpolar moiety is 5 or more.
(5) 式 (Π) で表される繰り返し単位を有する重合体鎖中、 式 (II) で表され る繰り返し単位の重合度が、 5以上であることを特徴とする (1) 〜 (4) のい ずれかに記載の共重合体。  (5) In the polymer chain having the repeating unit represented by the formula (II), the degree of polymerization of the repeating unit represented by the formula (II) is 5 or more, (1) to (4). ) The copolymer according to any one of the above.
(6) 式 (I) で表される繰り返し単位と非極性部位からなる繰り返し単位が、 プロック共重合していることを特徴とする (1) 〜 (5) のいずれかに記載の共 重合体。  (6) The copolymer according to any one of (1) to (5), wherein the repeating unit represented by the formula (I) and the repeating unit comprising a nonpolar moiety are copolymerized in a block. .
(7) 式 (I) で表される繰り返し単位を有するブロック鎖 (A) と同一でも相 異なっていてもよい非極性部位からなる繰り返し単位を有するブロック鎖 (B) 及び (C) が、 (B)、 (A), (C) の順の配置を有することを特徴とする (1) 〜 (6) のいずれかに記載の共重合体。  (7) The block chains (B) and (C) having a repeating unit composed of a nonpolar moiety which may be the same as or different from the block chain (A) having a repeating unit represented by the formula (I) are represented by ( The copolymer according to any one of (1) to (6), which has an arrangement in the order of B), (A) and (C).
(8) (B)、 (A)、 (C) の順の配置が、 (B) — (A) 一 (C) の結合した配列 であることを特徴とする (7) に記載の共重合体。 (8) The arrangement of (B), (A), and (C) is (B) — (A) one (C) combined sequence The copolymer according to (7), wherein
(9) 式 (I) で表される繰り返し単位、 式 (Π) で表されるくり返し単位、 及 び非極性部位からなる繰り返し単位の総モル数に対して、 式 (I) で表される繰 り返し単位のモル数が、 0. 00 1〜50%の範囲であることを特徴とする (1) 〜 (8) のいずれかに記載の共重合体。  (9) With respect to the total number of moles of the repeating unit represented by the formula (I), the repeating unit represented by the formula (Π), and the repeating unit comprising a nonpolar moiety, the formula is represented by the formula (I) The copolymer according to any one of (1) to (8), wherein the number of moles of the repeating unit is 0.001 to 50%.
(10) 式 (I) で表される繰り返し単位、 式 (Π) で表されるくり返し単位、 及び非極性部位からなる繰り返し単位の総モル数に対して、 式 (Π) で表される 繰り返し単位のモル数が、 9. 99 9〜 80 %の範囲であることを特徴とする (10) With respect to the total number of moles of the repeating unit represented by the formula (I), the repeating unit represented by the formula (Π), and the repeating unit comprising a nonpolar moiety, the repeating unit represented by the formula (Π) Characterized in that the number of moles of the unit is in the range of 9.999 to 80%
(1) 〜 (9) のいずれかに記載の共重合体。 The copolymer according to any one of (1) to (9).
(1 1) 式 (I) で表される繰り返し単位、 式 (Π) で表されるくり返し単位、 及び非極性部位からなる繰り返し単位の総モル数に対して、 非極性部位からなる 繰り返し単位のモル数が、 19. 999〜90 %の範囲であることを特徴とする (11) With respect to the total number of moles of the repeating unit represented by the formula (I), the repeating unit represented by the formula (Π), and the repeating unit composed of the nonpolar moiety, Characterized in that the number of moles is in the range of 19.999 to 90%
(1) 〜 (10) のいずれかに記載の共重合体。 The copolymer according to any one of (1) to (10).
(12) 非極性部位からなる繰り返し単位が、 式 (III)  (12) The repeating unit comprising a nonpolar moiety is represented by the formula (III)
- cH2-c-f- · · · (III) -cH 2 -cf- (III)
 I
R8 R 8
(式中、 R7は、 水素原子、 または置換基を有してもよい C 1〜C 10炭化水素 基を表し、 R8は、 置換基を有していてもよい炭化水素基を表す。) で表される 繰り返し単位であることを特徴とする (1) 〜 (1 1) のいずれかに記載の共重 合体。 (In the formula, R 7 represents a hydrogen atom or a C 1 -C 10 hydrocarbon group which may have a substituent, and R 8 represents a hydrocarbon group which may have a substituent. The copolymer according to any one of (1) to (11), which is a repeating unit represented by the formula:
(13) 式 (III) 中、 R8が、 置換基を有していてもよい芳香族炭化水素基であ ることを特徴とする (12) に記載の共重合体。 (13) The copolymer according to (12), wherein in the formula (III), R 8 is an aromatic hydrocarbon group which may have a substituent.
(14) 式 (III) で表される繰り返し単位が、 式 (V)  (14) The repeating unit represented by the formula (III) is represented by the formula (V)
Figure imgf000006_0001
(式中、 は、 水素原子、 または、 メチル基を表す。) で表される繰り返し単 位であることを特徴とする (1) 〜 (1 3) のいずれかに記載の共重合体。
Figure imgf000006_0001
(Wherein represents a hydrogen atom or a methyl group.) The copolymer according to any one of (1) to (13), which is a repeating unit represented by the following formula:
(15) 数平均分子量が、 10, 000〜 5, 000, 000の範囲であること を特徴とする (1) 〜 (14) のいずれかに記載の共重合体。  (15) The copolymer according to any one of (1) to (14), wherein the number average molecular weight is in the range of 10,000 to 5,000,000.
( 16 ) 式 (VI)  (16) Equation (VI)
Figure imgf000007_0001
Figure imgf000007_0001
(式中、 R„は、 水素原子、 または置換基を有してもよい C 1〜(: 10炭化水素 基を表し、 R12は、 活性ハロゲン原子を有することのできる官能基を表し、 Y は、 ハロゲン原子を表し、 R13は、 ハロゲン原子、 または有機基を表し、 a l は、 1〜 3のいずれかの整数を表し、 a lが、 2以上の場合、 R12同士、 Y同 士、 及び b l同士は、 同一でも相異なっていてもよく、 b lは、 1または 2を表 し、 b lが 2の場合、 Y同士は、 同一でも相異なっていてもよく、 じ 1は0また は 1〜 (4一 a l) のいずれかの整数を表し、 c lが 2以上の場合、 R13同士 は、 同一でも相異なっていてもよい。) で表される化合物と、 式 (VII)
Figure imgf000007_0002
(Wherein, R „represents a hydrogen atom or a C 1 to (: 10 hydrocarbon group which may have a substituent, R 12 represents a functional group capable of having an active halogen atom, Represents a halogen atom, R 13 represents a halogen atom or an organic group, al represents any integer from 1 to 3, and when al is 2 or more, R 12 and Y are the same. And bl may be the same or different, and bl represents 1 or 2. When bl is 2, Y may be the same or different, and 1 is 0 or 1. And (13-1 al), wherein when cl is 2 or more, R 13 's may be the same or different from each other.) And a compound represented by the formula (VII)
Figure imgf000007_0002
(式中、 R17は、 水素原子、 または置換基を有してもよい C 1〜C 10炭化水素 基を表し、 R18は、 置換基を有していてもよい芳香族炭化水素基を表す。) で表 される化合物を、 安定ラジカル系重合開始剤を用い、 リビングラジカル重合させ て共重合体を得、 次いで、 得られた共重合体を開始剤とし、 遷移金属錯体を用い て式 (VIII)
Figure imgf000008_0001
(In the formula, R 17 represents a hydrogen atom or a C 1 -C 10 hydrocarbon group which may have a substituent, and R 18 represents an aromatic hydrocarbon group which may have a substituent. Is subjected to living radical polymerization using a stable radical polymerization initiator to obtain a copolymer, and then the obtained copolymer is used as an initiator, and a transition metal complex is used to obtain a copolymer. (VIII)
Figure imgf000008_0001
(式中、 R14は、 水素原子、 または置換基を有してもよい C 1〜(: 10炭化水 素基を表し、 R151、 及び R152は、 それぞれ独立して、 水素原子、 またはまた は C 1〜C4アルキル基を表し、 R16は、 水素原子、 炭化水素基、 ァシル基、 シリル基、 ホスホリル基、 炭化水素ホスホリル基、 または、 炭化水素スルホニル 基を表し、 e lは、 1〜100のずれかの整数を表し、 e lが 2以上の場合には、 R151同士、 及び R152同士は、 同一でも相異なっていてもよい。) で表される 化合物をリビングラジカル重合させることを特徴とする共重合体の製造方法。 (Wherein, R 14 represents a hydrogen atom or an optionally substituted C 1 to (: 10 hydrocarbon group, and R 151 and R 152 each independently represent a hydrogen atom, or or represents C 1~C4 alkyl group, R 16 is a hydrogen atom, a hydrocarbon group, Ashiru group, a silyl group, a phosphoryl group, a hydrocarbon phosphoryl group or a hydrocarbon sulfonyl group, el is 1 Represents an integer of 100 or more, and when el is 2 or more, R 151 and R 152 may be the same or different from each other.) A method for producing a copolymer.
(17) 式 (VI) 中、 R12が、 式 (IX) (17) In the formula (VI), R 12 is the formula (IX)
Figure imgf000008_0002
Figure imgf000008_0002
(式中、 !^^及び!^ ^は、 それぞれ独立して、 水素原子、 ハロゲン原子、 ま たは置換基を有していてもよい C 1〜( 10炭化水素基を表し、 式 (VI) にお いて、 b lが 2の場合には、 Yとの結合手を表す。) で表される官能基であるこ とを特徴とする (16) に記載の共重合体の製造方法。  (Wherein! ^^ and! ^ ^ Independently represent a hydrogen atom, a halogen atom, or a C 1-10 (optionally substituted hydrocarbon group; In the above (2), when bl is 2, it represents a bond to Y.) The method according to (16), wherein the functional group is represented by the following formula:
(1 8) 式 (VI) で表される化合物と式 (VII) で表される化合物から得られる 共重合体が、 ブロック共重合体であることを特徴とする (16) または (17) に記載の共重合体の製造方法。  (18) The copolymer according to (16) or (17), wherein the copolymer obtained from the compound represented by the formula (VI) and the compound represented by the formula (VII) is a block copolymer. A method for producing the copolymer according to the above.
(19) 安定ラジカル系開始剤が、 安定フリーラジカル化合物とラジカル重合開 始剤、 またはアルコキシァミン類からなることを特徴とする (16) 〜 (18) のいずれかに記載の共重合体の製造方法。  (19) The copolymer according to any one of (16) to (18), wherein the stable radical initiator comprises a stable free radical compound and a radical polymerization initiator or alkoxyamines. Production method.
(20) 安定フリーラジカル化合物が、 ニトロキシル化合物であることを特徴と する (19) に記載の共重合体の製造方法。  (20) The method for producing a copolymer according to (19), wherein the stable free radical compound is a nitroxyl compound.
(2 1) ラジカル重合開始剤が、 有機過酸化物またはァゾ化合物であることを特 徵とする (1 9 ) または (2 0 ) に記載の共重合体の製造方法。 (21) It is characterized in that the radical polymerization initiator is an organic peroxide or an azo compound. The method for producing a copolymer according to (19) or (20).
( 2 2 ) ( 1 ) 〜 (1 5 ) のいずれかに記載の共重合体、 及び電解質塩を含むこ とを特徴とする高分子固体電解質。  (22) A polymer solid electrolyte comprising the copolymer according to any one of (1) to (15) and an electrolyte salt.
( 2 3 ) 電解質塩が、 アルカリ金属塩、 4級アンモニゥム塩、 4級ホスホニゥム 塩、 遷移金属塩、 及びプロトン酸からなる群から選ばれる少なくとも 1つである ことを特徴とする (2 2 ) に記載の高分子固体電解質。  (23) The electrolyte according to (22), wherein the electrolyte salt is at least one selected from the group consisting of an alkali metal salt, a quaternary ammonium salt, a quaternary phosphonium salt, a transition metal salt, and a protonic acid. The solid polymer electrolyte according to the above.
( 2 4 ) 電解質が、 リチウム塩であることを特徴とする (2 3 ) に記載の高分子 固体電解質。  (24) The polymer solid electrolyte according to (23), wherein the electrolyte is a lithium salt.
以下において、 本発明を具体的に詳細に説明する。  Hereinafter, the present invention will be described in detail.
( 1 ) 本発明のブロック ·グラフト共重合体  (1) The block-graft copolymer of the present invention
本発明のブロック ·グラフ卜共重合体は、 式 (I) で表される繰り返し単位及 び非極性部位からなる繰り返し単位を有する共重合体であることを特徴とする。 式 (I) 中、 1^は、 水素原子、 置換基を有していてもよい C 1〜C 1 0炭化水 素基を表し、 具体的には、 水素原子、 メチル基、 ェチル基、 n—プロピル基、 ィ ソプロピル基、 n—ブチル基、 s e c —プチル基、 イソブチル基、 t—ブチル基、 フエニル基、 ナフチル基、 またはベンジル基等を例示することができる。  The block graft copolymer of the present invention is a copolymer having a repeating unit represented by the formula (I) and a repeating unit composed of a nonpolar moiety. In the formula (I), 1 ^ represents a hydrogen atom or a C 1 to C 10 hydrocarbon group which may have a substituent, and specifically, a hydrogen atom, a methyl group, an ethyl group, —Propyl group, isopropyl group, n-butyl group, sec—butyl group, isobutyl group, t-butyl group, phenyl group, naphthyl group, benzyl group and the like.
また、 1^において、 適当な炭素原子上に置換基を有していてもよく、 そのよ うな置換基として具体的には、 フッ素原子、 クロル原子、 またはブロム原子等ハ ロゲン原子、 メチル基、 ェチル基、 n—プロピル基、 フエニル基、 ナフチル基、 ベンジル基等の炭化水素基、 ァセチル基、 ベンゾィル基等のァシル基、 二トリル 基、 ニトロ基、 メトキシ基、 フエノキシ基等の炭化水素ォキシ基、 メチルチオ基、 メチルスルフィニル基、 メチルスルホニル基、 アミノ基、 ジメチルァミノ基、 ァ 二リノ基等を例示することができる。  Further, 1 ^ may have a substituent on an appropriate carbon atom, and specific examples of such a substituent include a halogen atom such as a fluorine atom, a chlorine atom, or a bromo atom, a methyl group, Hydrocarbon groups such as ethyl group, n-propyl group, phenyl group, naphthyl group, benzyl group, etc .; hydrocarbon groups such as acetyl group, benzoyl group, etc .; nitrile group, nitro group, nitro group, methoxy group, phenoxy group, etc. , A methylthio group, a methylsulfinyl group, a methylsulfonyl group, an amino group, a dimethylamino group, an argino group and the like.
式 (I) 中、 R2は、 活性ハロゲン原子を有することのできる官能基を表す。 こ こで、 「活性ハロゲン原子を有することのできる官能基」 とは、 構成する炭素原 子にハロゲン原子が結合した場合に、 そのハロゲン原子が活性ハロゲン原子とな るような構造を有する官能基という意であり、 具体的には、 カルポニル基、 エス テル基、 アミド基、 スルホニル基、 二トリル基、 ニトロ基等の電子求引基等のひ 位にハロゲン原子を有することのできる官能基を例示することができる。 R2に結合するハロゲン原子としては、 フッ素原子、 塩素原子、 臭素原子、 ョ ゥ素原子があげられ、 特に塩素原子、 臭素原子が好ましい。 In the formula (I), R 2 represents a functional group capable of having an active halogen atom. Here, the “functional group capable of having an active halogen atom” is a functional group having a structure such that when a halogen atom is bonded to a constituent carbon atom, the halogen atom becomes an active halogen atom. Specifically, a functional group capable of having a halogen atom in a position such as an electron-withdrawing group such as a carbonyl group, an ester group, an amide group, a sulfonyl group, a nitrile group, or a nitro group. Examples can be given. Examples of the halogen atom bonded to R 2 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom and a bromine atom are particularly preferable.
R2の具体例としては、 以下の官能基が挙げられる。 Specific examples of R 2 include the following functional groups.
Figure imgf000010_0001
Figure imgf000010_0001
S—— CH2— -NH— CH2- - ― CH2- CH3 S-- CH 2 - -NH- CH 2 - - - CH 2 - CH 3
Figure imgf000010_0002
Figure imgf000010_0002
-S— C— CH2— NH— C—— CH2- — — C—— CH2" -S- C- CH 2 - NH- C-- CH 2 - - - C-- CH 2 "
II 2 II I II II 2 II I II
o o CH30  o o CH30
CN  CN
-CH2—— CH- -CH2― CH- -CH2一 C一 -CH 2 —— CH- -CH 2 ― CH- -CH 2 1 C 1
I  I
C02Me CN C02Me C0 2 Me CN C0 2 Me
-CH?——
Figure imgf000010_0003
特に、 R2として、 式 (IV) で表される官能基を好ましく例示することができ る。 式 (IV) 中、 R9及び R1 Qは、 それぞれ独立して、 水素原子、 ハロゲン原子、 または置換基を有していてもよい C l l 0炭化水素基を表し、 式 (I) におけ る bが 2の場合には、 Xとの結合手を表す。
-CH? ——
Figure imgf000010_0003
Particularly, as R 2 , a functional group represented by the formula (IV) can be preferably exemplified. In the formula (IV), R 9 and R 1 Q each independently represent a hydrogen atom, a halogen atom, or a C 11 hydrocarbon group which may have a substituent, and in the formula (I) When b is 2, it represents a bond with X.
R9、 及び 。として具体的には、 水素原子、 塩素原子、 臭素原子、 またはョ ゥ素原子等のハロゲン原子、 メチル基、 ェチル基、 n—プロピル基、 イソプロピ ル基、 n—ブチル基、 s e c—ブチル基、 イソブチル基、 t—ブチル基、 n—べ ンチル基、 n—へキシル基、 シクロへキシル基、 フエニル基、 ナフチル基、 ベン ジル基等の炭素数 1〜 1 0の炭化水素基を例示することができる。 R 9 , and. Specifically, a hydrogen atom, a chlorine atom, a bromine atom, or To halogen atom such as nitrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group, t-butyl group, n-benzyl group, n- Examples thereof include hydrocarbon groups having 1 to 10 carbon atoms, such as a xyl group, a cyclohexyl group, a phenyl group, a naphthyl group, and a benzyl group.
また、 と同様に、 適当な炭素原子上に置換基を有することができ、 そのよ うな置換とし同様のものを例示することができる。  Further, similarly to, a substituent can be provided on an appropriate carbon atom, and similar substituents can be exemplified.
式 (IV) として具体的には、 下記式に示す官能基を例示することができる。  Specific examples of the formula (IV) include functional groups represented by the following formula.
CH。  CH.
c-  c-
Figure imgf000011_0001
式 (I) R 3は、 ハロゲン原子、 または有機基を表し、 cは 0または 1〜 ( 4 - a ) のいずれかの整数を表し、 cが 2以上の場合、 R 3同士は、 同一また は相異なっていてもよい。 R 3として具体的には塩素原子、 臭素原子、 またはョ ゥ素原子等のハロゲン原子、 またはメチル基、 ェチル基、 n—プロピル基、 イソ プロピル基、 n -ブチル基、 s e c—ブチル基、 ィソブチル基、 t -ブチル基、 n—ペンチル基、 n—へキシル基、 シクロへキシル基、 フエニル基、 ナフチル基、 ベンジル基等の炭素数 1〜 1 0の炭化水素基、 メトキシ基、 エトキシ等のアルコ キシ基、 メチルチオ基、 ァセチル基等の有機基を例示することができる。
Figure imgf000011_0001
Formula (I) R 3 represents a halogen atom or an organic group, c represents 0 or any integer from 1 to (4-a), and when c is 2 or more, R 3 is the same or May be different. Specific examples of R 3 include a halogen atom such as a chlorine atom, a bromine atom, or an iodine atom, or a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group. Group, t-butyl group, n-pentyl group, n-hexyl group, cyclohexyl group, phenyl group, naphthyl group, benzyl group and other hydrocarbon groups having 1 to 10 carbon atoms, methoxy group, ethoxy group, etc. Organic groups such as an alkoxy group, a methylthio group and an acetyl group can be exemplified.
また、 と同様に、 適当な炭素原子上に置換基を有することができ、 そのよ うな置換とし同様のものを例示することできる。  In addition, similarly to the above, a substituent can be provided on an appropriate carbon atom, and similar substituents can be exemplified.
式 (I) 中、 Xは、 式 (II) で表される繰り返し単位を有する重合鎖を表す。 式 (Π) 中、 R4は、 水素原子、 または置換基を有していてもよい C 1〜(: 1 0 炭化水素基を表し、 具体的には、 1^で示した具体例と同様の官能基を例示する ことができる。 In the formula (I), X represents a polymer chain having a repeating unit represented by the formula (II). In the formula (Π), R 4 represents a hydrogen atom or a C 1 to (: 10 hydrocarbon group which may have a substituent, and specifically, is the same as the specific example represented by 1 ^ The following functional groups can be exemplified.
R 5 1、 及び R 5 2は、 それぞれ独立して、 水素原子、 またはまたは C 1〜C 4 アルキル基を表し、 そのような官能基として、 具体的には、 メチル基、 ェチル基、 n—プロピル基、 イソプロピル基、 n—ブチル基、 イソブチル基、 s —ブチル基、 t —ブチル基等を例示することができる。 eは、 1〜 1 0 0のいずれかの整数を 表し、 eが 2以上の場合、 R 5 1同士及び、 及び R 5 2同士は、 同一でも相異なつ ていてもよい。 R 5 1, and R 5 2 are each independently a hydrogen atom or or C 1 through C 4, Represents an alkyl group. Examples of such a functional group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group and a t-butyl group. Examples can be given. e represents an integer of from 1 to 1 0 0, if e is 2 or more, R 5 1 together and, and R 5 2 together may also be different from one phase in the same.
R 6は、 水素原子、 炭化水素基、 ァシル基、 シリル基、 ホスホリル基、 炭化水 素ホスホリル基、 または炭化水素スルホ二ル基を表し、 具体的には、 メチル基、 ェチル基、 n—プロピル基、 イソプロピル基、 n—ブチル基、 s e c—ブチル基、 イソブチル基、 t _ブチル基、 n—へキシル基、 フエニル基、 置換フエニル基、 ナフチル基等の炭化水素基、 ホルミル基、 ァセチル基、 プロピオニル基、 ブチリ ル基等のァシル基、 卜リメチルシリル基、 t 一プチルジメチルシリル基、 ジメチ ルフエニルシリル基等のシリル基、 ジメチルホスホリル基、 ジフエ二ルホスホリ ル基等の炭化水素ホスホリル基、 メチルスルホニル基、 フエニルスルホニル基等 の炭化水素スルホ二ル基等を例示することができる。 R 6 represents a hydrogen atom, a hydrocarbon group, an acyl group, a silyl group, a phosphoryl group, a hydrocarbon phosphoryl group, or a hydrocarbon sulfonyl group, specifically, a methyl group, an ethyl group, an n-propyl Group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group, t_butyl group, n-hexyl group, phenyl group, substituted phenyl group, hydrocarbon group such as naphthyl group, formyl group, acetyl group, Acyl groups such as propionyl group and butylyl group, trimethylsilyl group, silyl groups such as t-butyldimethylsilyl group, dimethylphenylsilyl group, hydrocarbon phosphoryl groups such as dimethylphosphoryl group and diphenylphosphoryl group, methylsulfonyl group, Examples thereof include a hydrocarbon sulfonyl group such as a phenylsulfonyl group.
dは、 1〜 1 0 0 0のいずれかの整数を表し、 dが 2以上の場合に、 R4同士、 R 5 1同士、 R 5 2同士、 R 6同士、 及び e同士は、 同一または相異なっていても よく、 eは、 1〜 1 0 0のいずれかの整数を表し、 eが 2以上の場合には、 R 5 i同士及び、 及び R 5 2同士は、 同一または相異なっていてもよい。 d represents an integer of from 1 to 1 0 0 0, if d is 2 or more, R 4 together, R 5 1 together, R 5 2 together, R 6 to each other, and e each other are the same or or different phases, e represents an integer of from 1 to 1 0 0, if e is 2 or more, R 5 i and between, and R 5 2 each other, are identical or different You may.
式 (II) で表される繰り返し単位として、 具体的には以下の化合物を例示する ことができる。 但し、 式 (II) で表される繰り返し単位に誘導されると考えられ る単量体で例示することとする。  Specific examples of the repeating unit represented by the formula (II) include the following compounds. However, it is exemplified by a monomer which is considered to be derived from the repeating unit represented by the formula (II).
また、 これらの繰り返し単位は、 一種単独でも、 2種以上を混合していても構 わない。  These repeating units may be used alone or in a combination of two or more.
2—メトキシェチル (メタ) ァクリレート、 2—エトキシェチル (メタ) ァク リレート、 2—メトキシプロピル (メタ) ァクリレート、 2—エトキシプロピル (メタ) ァクリレート、 メトキシポリエチレングリコール (エチレングリコール の単位数は 2〜 1 0 0 ) (メタ) ァクリレート、 エトキシポリエチレングリコー ル (メタ) ァクリレート、 フエノキシポリエチレングリコール (メタ) ァクリレ ート、 メトキシポリプロピレングリコール (プロピレングリコールの単位数は 2 〜 1 0 0 ) (メタ) ァクリレー卜、 エトキシポリプロピレングリコール (メタ) ァクリレート、 フエノキシポリプロピレングリコール (メタ) ァクリレート、 ポ リエチレングリコールモノ (メタ) ァクリレート、 2—ヒドロキシプロピル (メ タ) ァクリレート、 ポリプロピレングリコールモノ (メタ) ァクリレート、 ポリ エチレングリコール一ポリプロピレングリコールモノ (メタ) ァクリレート、 ォ クトキシポリエチレングリコール一ポリプロピレングリコールモノ (メタ) ァク リレート、 ラウロキシポリエチレングリコールモノ (メタ) ァクリレート、 ステ ァロキシポリエチレングリコールモノ (メタ) ァクリレート、 「ブレンマー P M Eシリーズ」 〔式 (I) において 1^= 1^=水素原子、 R3=メチル基、 m= 2〜9 0に相当する単量体〕 (日本油脂製)、ァセチルォキシポリエチレングリコール(メ 夕) ァクリレート、 ベンゾィルォキシポリエチレングリコール (メタ) ァクリレ t 一ブチルジメチチルシリルォキシポリエチレンダリコール (メタ) ァクリレー 卜、 メトキシポリエチレングリコ一ルシクロへキセン— 1—力ルポキシレ一ト、 メトキシポリエチレングリコールーシンナメート。 2-Methoxyethyl (meth) acrylate, 2-ethoxyxetyl (meth) acrylate, 2-methoxypropyl (meth) acrylate, 2-ethoxypropyl (meth) acrylate, methoxypolyethylene glycol (The number of units of ethylene glycol is 2 to 10 0) (meth) acrylate, ethoxy polyethylene glycol (meth) acrylate, phenoxy polyethylene glycol (meth) acrylate, methoxy polypropylene glycol (the number of units of propylene glycol is 2 1100) (meth) acrylate, ethoxy polypropylene glycol (meth) acrylate, phenoxypolypropylene glycol (meth) acrylate, poly (ethylene glycol mono (meth) acrylate, 2-hydroxypropyl (meth) acrylate, polypropylene glycol Mono (meth) acrylate, polyethylene glycol-polypropylene glycol mono (meth) acrylate, octoxypolyethylene glycol-polypropylene glycol mono (meth) acrylate, lauroxypolyethylene glycol mono (meth) acrylate, stearoxypolyethylene glycol mono (meth) Akurireto, "BLEMMER PME series" [1 in formula (I) ^ = 1 ^ = hydrogen atom, R 3 = methyl, single corresponding to m = 2 to 9 0 Body) (Nippon Oil & Fats), acetyloxy polyethylene glycol (methyl) acrylate, benzoyloxy polyethylene glycol (meta) acryle-t-butyldimethyloxysilyloxy polyethylene dalicol (meth) acrylate, methoxy polyethylene glycol 1-cyclohexene-1-potoxy propylate, methoxypolyethylene glycol-cinnamate.
本発明の共重合体中に含まれる非極性部位からなる繰り返し単位は、 フエニル 基、 ナフチル基、 メチル基、 ェチル等の炭化水素基等に代表される極性基を含ま ない官能基、 繰り返し単位全体として影響のない範囲で極性基を含む官能基、 ま たは、 式 (I) で表される繰り返し単位に比して極性的に差のある官能基等であ れば、 特に限定されないが、 具体的には、 式 (III) で表される繰り返し単位を 好ましく例示することができる。  The repeating unit comprising a non-polar moiety contained in the copolymer of the present invention includes a functional group containing no polar group represented by a hydrocarbon group such as a phenyl group, a naphthyl group, a methyl group, and an ethyl group, and the entire repeating unit. As long as it is a functional group containing a polar group as long as it is not affected, or a functional group having a difference in polarity as compared with the repeating unit represented by the formula (I), there is no particular limitation. Specifically, a repeating unit represented by the formula (III) can be preferably exemplified.
式 (III) で表される繰り返し単位中、 R7は、 水素原子、 または置換基を有し ていてもよい C 1〜C 1 0炭化水素基を表し、 具体的には、 で示した具体例 と同様の官能基を例示することができる。 In the repeating unit represented by the formula (III), R 7 represents a hydrogen atom or a C 1 to C 10 hydrocarbon group which may have a substituent. Functional groups similar to the examples can be exemplified.
また、 R8は、 置換基を有していてもよい炭化水素基を表し、 具体的には、 メ チル基、 ェチル基、 フエニル基、 ナフチル基、 アントラセニル基等を例示するこ とができ、 芳香族炭化水素基を好ましく例示することができる。 R8は、 適当な 炭素原子上に置換基を有していてもよく、 そのよなうな置換基として、 具体的に は、 フッ素原子、 クロル原子、 またはブロム原子等ハロゲン原子、 メチル基、 ェ チル基、 n—プロピル基、 フエニル基、 ナフチル基、 ベンジル基等の炭化水素基、 ァセチル基、 ベンゾィル基等のァシル基、 二トリル基、 ニトロ基、 メトキシ基、 フエノキシ基等の炭化水素ォキシ基、 メチルチオ基、 メチルスルフィニル基、 メ チルスルホニル基、 アミノ基、 ジメチルァミノ基、 ァニリノ基等を例示すること ができる。 R 8 represents a hydrocarbon group which may have a substituent, and specific examples include a methyl group, an ethyl group, a phenyl group, a naphthyl group, and an anthracenyl group. Preferred examples include aromatic hydrocarbon groups. R 8 may have a substituent on an appropriate carbon atom. Examples of such a substituent include a halogen atom such as a fluorine atom, a chlorine atom, or a bromo atom, a methyl group, and a Hydrocarbon groups such as tyl group, n-propyl group, phenyl group, naphthyl group, benzyl group, etc., hydrocarbon groups such as acetyl group, benzoyl group, etc., nitrile group, nitro group, methoxy group, phenoxy group, etc. , Methylthio, methylsulfinyl, methylsulfonyl, amino, dimethylamino, anilino and the like.
式 (III) で表される繰り返し単位として、 具体的には、 以下の繰り返し単位 を例示することができ、 特に、 式 (V) で表される繰り返し単位を好ましく例示 することができる。 但し、 式 (III) で表される繰り返し単位に誘導されると考 えられる単量体で例示することとする。  Specific examples of the repeating unit represented by the formula (III) include the following repeating units, and particularly preferably a repeating unit represented by the formula (V). However, a monomer which is considered to be derived from the repeating unit represented by the formula (III) will be exemplified.
式 (III) で表される繰り返し単位は、 1種単独でも、 2種以上を混合してい ても構わない、  The repeating unit represented by the formula (III) may be a single type or a mixture of two or more types.
スチレン、 o—メチルスチレン、 p—メチルスチレン、 p— t —プチルスチレ ン、 α—メチルスチレン、 ρ— t —ブトキシスチレン、 m— t —ブトキシスチレ ン、 2, 4一ジメチルスチレン、 m—クロロスチレン、 p—クロロスチレン、 1 —ビニルナフタレン、 9—ビニルアントラセン等。  Styrene, o-methylstyrene, p-methylstyrene, p-t-butylstyrene, α-methylstyrene, ρ-t-butoxystyrene, mt-butoxystyrene, 2,4-dimethylstyrene, m-chlorostyrene, p-Chlorostyrene, 1-vinylnaphthalene, 9-vinylanthracene, etc.
式 (I) で表される繰り返し単位の重合度 (繰り返し単位のモル数を表す。 以 下同じ) は、 特に制限されないが、 3以上であるのが好ましい。 3未満では、 十 分なィォン伝導性が得られない。  The degree of polymerization of the repeating unit represented by the formula (I) (which represents the number of moles of the repeating unit; the same applies hereinafter) is not particularly limited, but is preferably 3 or more. If it is less than 3, sufficient ion conductivity cannot be obtained.
式 (III) 等で代表される非極性部位からなる繰り返し単位の重合度は、 特に 制限はされないが、 5以上であるのが好ましい。 5未満では、 膜質が低下し、 し かも、 成膜時に鮮明なミクロ相分離構造を有しないという問題がある。  The degree of polymerization of the repeating unit comprising a nonpolar moiety represented by the formula (III) is not particularly limited, but is preferably 5 or more. If it is less than 5, there is a problem that the film quality is degraded, and the film does not have a clear microphase separation structure at the time of film formation.
式 (Π) で表される繰り返し単位を有する重合体鎖中の式 (II) で表される繰 り返し単位中の重合度は、 特に制限されないが、 5以上であるのが好ましい。 5 未満では、 十分なイオン伝導性が得られない。  The degree of polymerization in the repeating unit represented by the formula (II) in the polymer chain having the repeating unit represented by the formula (II) is not particularly limited, but is preferably 5 or more. If it is less than 5, sufficient ionic conductivity cannot be obtained.
本発明の共重合体は、 式 (I) で表される繰り返し単位、 式 (II) で表される 繰り返し単位、 及び式 (ΠΙ) 等で代表される非極性部位からなる繰り返し単位 の総モル数 (以下、 該総モル数という) に対して、 式 (I) で表される繰り返し 単位のモル数が、 0 . 0 0 1〜5 0 %の範囲であるのが好ましい。 0 . 0 0 1 % 未満では、 十分なイオン伝導性が得られず、 5 0 %より大きいと、 成膜された膜 の質が低下する場合がある。 The copolymer of the present invention comprises a repeating unit represented by the formula (I), a repeating unit represented by the formula (II), and a total mole of a repeating unit composed of a nonpolar moiety represented by the formula (ΠΙ) and the like. The number of moles of the repeating unit represented by the formula (I) is preferably in the range of 0.001 to 50% based on the number (hereinafter referred to as the total mole number). If the content is less than 0.001%, sufficient ionic conductivity cannot be obtained, and if the content is more than 50%, a formed film is formed. Quality may be reduced.
また、 該総モル数に対して、 式 (II) で表される繰り返し単位のモル数が、 9. 999〜80 %の範囲であるのが好ましい。 9. 999 %未満では、 イオン伝導 性が低下し、 80%より大きい場合には、 膜質が低下する場合がある。  Further, the number of moles of the repeating unit represented by the formula (II) is preferably in the range of 9.999 to 80% based on the total number of moles. 9. If it is less than 999%, ion conductivity may be reduced, and if it is more than 80%, the film quality may be reduced.
また、 該総モル数に対して、 式 (III) 等で代表される非極性部位からなる繰 り返し単位のモル数が、 19. 999〜 90 %の範囲であるのが好ましい。 19. 999 %未満では、 膜質が低下し、 鮮明なミクロ相分離構造が得られず、 90 % より大きいと、 イオン伝導性が低下する場合がある。  Further, the number of moles of the repeating unit composed of the nonpolar moiety represented by Formula (III) or the like is preferably in the range of 19.999 to 90% based on the total number of moles. 19. If less than 999%, the film quality deteriorates and a clear microphase separation structure cannot be obtained, and if it exceeds 90%, ion conductivity may decrease.
本発明における式(I)で表される繰り返し単位を含むポリマー鎖(A)、式(III) で代表される非極性部位からなる繰り返し単位を含むポリマー鎖 (B) の結合状 態は、 特に制限されないが、 ブロックで結合しているのが好ましい。 ブロックで 結合することにより、 成形または成膜した際にミクロ相分離構造を発現し、 固体 状態でも、 良好なイオン導電率を示す。 尚、 ブロックで結合しているとは、 各ポ リマー鎖 (A;)、 (B) が、 直接または他のポリマー鎖もしくは連結基で間接的に 結合していることを意味する。 また、 各ポリマー鎖を構成する繰り返し単位間の 成分比が徐々に変化するテーパーブロックも本発明でいうプロック結合に含まれ ることとする。 この際、 他のポリマー鎖は、 ホモポリマーでも、 2元以上の共重 合体であってもよく、共重合体の場合には、その中の結合状態は特に制限されず、 ランダム、 テーパーブロック、 ブロックであってもよい。 また、 式 (I) 等で表 される繰り返し単位を含むポリマー鎖 (A) 等とは、 式 (I) 等で表される繰り 返し単位のみからなるポリマー鎖、 式 (I) 等で表される繰り返し単位と他の成 分からなる共重合ポリマー鎖を意味する。  In the present invention, the bonding state of the polymer chain (A) containing a repeating unit represented by the formula (I) and the polymer chain (B) containing a repeating unit composed of a nonpolar moiety represented by the formula (III) are particularly Although not limited, it is preferable that they are linked by a block. By bonding with blocks, they exhibit a microphase-separated structure when formed or formed into a film, and exhibit good ionic conductivity even in a solid state. In addition, being linked by a block means that the polymer chains (A;) and (B) are linked directly or indirectly by another polymer chain or a linking group. In addition, a taper block in which the component ratio between repeating units constituting each polymer chain gradually changes is also included in the block connection in the present invention. At this time, the other polymer chain may be a homopolymer or a binary or higher copolymer. In the case of a copolymer, the bonding state therein is not particularly limited, and may be random, tapered block, It may be a block. Further, the polymer chain (A) containing a repeating unit represented by the formula (I) or the like means a polymer chain consisting only of the repeating unit represented by the formula (I) or the like and a polymer chain represented by the formula (I) or the like. Means a copolymerized polymer chain consisting of a repeating unit and another component.
本発明の共重合体は、 ポリマー鎖 (A)、 (B) 及び、 ポリマー鎖 (B) と同一 または相異なっていてもよいポリマ一鎖 (C) が、 (B)、 (A)、 (C) の順の配 置を有するのが好ましく、 特に、 (B) ― (A) - (C) の結合した配列である のが好ましい。  In the copolymer of the present invention, the polymer chains (A) and (B) and the polymer chain (C) which may be the same as or different from the polymer chain (B) are (B), (A), It is preferable to have the arrangement in the order of (C), and it is particularly preferable that the arrangement is a combination of (B)-(A)-(C).
上記した配列として具体的には、 [(A) - (B)] j、 [(B) ― (A) ― (C)] j、 [(A) ― (B) 一 (A)] j (jは、 1以上のいずれかの整数を表す) 等を 例示することができる。 また、 上記各ブロックポリマーをそれぞれカップリン グ剤の残基を介して下記式 (1) 〜 (3) で表わされるような、 セグメントが延 長または分岐されたブロックコポリマーとすることもできる。 尚、 式中、 wは 1以上の整数を表し、 Xはカップリング剤の残基を表す。 [(A)-(B)] j, [(B)-(A)-(C)] j, [(A)-(B) one (A)] j ( j represents any integer of 1 or more.) and the like. In addition, each of the above block polymers is The copolymer may be a block copolymer in which the segments are extended or branched, as represented by the following formulas (1) to (3) via the residue of the drug. In the formula, w represents an integer of 1 or more, and X represents a residue of a coupling agent.
[(A) ― (B)] w— X · · · ( 1)  [(A) ― (B)] w— X · · · (1)
[(B) - (A) - (C)] w-X · · · (2)  [(B)-(A)-(C)] w-X · · · (2)
[(A) (B) 一 (A)] w-X · · · (3〉  [(A) (B) one (A)] w-X
式 (I) 及び (III) で代表される非極性部位からなる繰り返し単位を有する共 重合体の数平均分子量は、 特に制限されないが、 10, 000〜 5, 000, 0 00の範囲を好ましく例示することができる。 10, 000より小さい場合には、 熱的特性、 物理的特性が低下し、 5, 000, 000より大きい場合には、 成形 性、 または成膜性が低下する場合がある。  The number average molecular weight of the copolymer having a repeating unit comprising a nonpolar moiety represented by formulas (I) and (III) is not particularly limited, but is preferably in the range of 10,000 to 5,000, 000. can do. If it is less than 10,000, thermal and physical properties may be reduced, and if it is more than 5,000,000, moldability or film formability may be reduced.
本発明の式 (1)、 式 (11)、 及び式 (III) で代表される非極性部位からなる繰 り返し単位を有する重合体鎖中、 または各重合体鎖間には、 必要に応じて、 他の 繰り返し単位を含めることができ、 そのようなく繰り返し単位として、 下記単量 体から、 誘導させる繰り返し単位を例示することができる。 また、 これらの繰り 返し単位は、 1種単独で、 また、 2種以上を混合して用いることができる。  In the polymer chain having a repeating unit composed of a nonpolar moiety represented by the formula (1), the formula (11), and the formula (III) of the present invention, or between polymer chains, as necessary. In addition, other repeating units can be included, and as such a repeating unit, a repeating unit derived from the following monomer can be exemplified. These repeating units can be used singly or as a mixture of two or more.
(メタ) アクリル酸メチル、 (メタ) アクリル酸ェチル、 (メタ) アクリル酸 n 一プチル、 (メタ) アクリル酸 t—プチル、 (メタ) アクリル酸シクロへキシル、 (Meth) methyl acrylate, (meth) ethyl acrylate, (meth) acrylic acid n-butyl, t-butyl (meth) acrylate, cyclohexyl (meth) acrylate,
(メタ) アクリル酸ベンジル、 (メタ) アクリル酸イソポルニル、 (メタ) ァクリ ル酸ジシクロペンテニル、 (メタ) アクリル酸 1—ァダマンチル、 (メタ) ァクリ ル酸 2—メチルー 2—ァダマンチル、 (メタ) アクリル酸 1—メチレンァダマン チル、 (メタ) アクリル酸 1一エチレンァダマンチル、 (メタ) アクリル酸 3, 7 —ジメチルー 1—ァダマンチル、 (メタ) アクリル酸トリシクロデカニル、 (メ タ) アクリル酸ノルポルナン、 (メタ) アクリル酸メンチル 、 (メタ) アクリル 酸 n—プロピル、 (メタ) アクリル酸イソプロピル、 (メタ) アクリル酸 2—ェチ ルへキシル、 (メタ) アクリル酸イソデシル、 (メタ) アクリル酸イソォクチル、Benzyl (meth) acrylate, Isopolnyl (meth) acrylate, Dicyclopentenyl (meth) acrylate, 1-adamantyl (meth) acrylate, 2-methyl-2-methadenyl (meth) acrylate, (meth) acrylic Acid 1-methylene adamantyl, (meth) acrylic acid 1-ethylene adamantyl, (meth) acrylic acid 3,7-dimethyl-1-adamantyl, (meth) tricyclodecanyl acrylate, (meth) acrylic acid Norpornan, Menthyl (meth) acrylate, n-Propyl (meth) acrylate, Isopropyl (meth) acrylate, 2-Ethylhexyl (meth) acrylate, Isodecyl (meth) acrylate, (meth) acrylic acid Isooctyl,
(メタ) アクリル酸ラウリル、 (メタ) アクリル酸シクロへキシル、 (メタ) ァク リル酸テトラヒドロフラニル、 (メタ) アクリル酸テトラヒドロピラエル、 (メ 夕)アクリル酸 3—才キソシクロへキシル、 (メタ)アクリル酸プチロラクトン、 (メタ) アクリル酸メパロニックラクトン等の (メタ) アクリル酸誘導体、Lauryl (meth) acrylate, cyclohexyl (meth) acrylate, tetrahydrofuranyl (meth) acrylate, tetrahydropyrael (meth) acrylate, 3-methyl oxocyclohexyl (meth) acrylate, (meta) ) Petyrolactone acrylate, (Meth) acrylic acid derivatives such as (meth) acrylic acid meparonic lactone,
1, 3—ブタジエン、 イソプレン、 2、 3 _ジメチルー 1、 3—ブタジエン、 1、 3—ペン夕ジェン、 2—メチルー 1、 3 _ペン夕ジェン、 1、 3—へキサジ ェン、 1, 6—へキサジェン、 4、 5—ジェチル一 1、 3—ォクタジェン、 3— ブチルー 1、 3—ォク夕ジェン、 クロ口プレンなどの共役ジェン類、 N—メチル マレイミド、 N—フエニルマレイミド等の α, /3—不飽和カルボン酸イミド類、1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentane, 2-methyl-1,3-pentene, 1,3-hexadiene, 1,6 —Hexadiene, 4, 5-Jetyl-1,3-octadiene, 3-Butyl-1,3-octadiene, conjugated gens such as chloroprene, α such as N-methylmaleimide and N-phenylmaleimide , / 3-unsaturated carboxylic imides,
(メタ) アクリロニトリルなどの α, /3—不飽和二トリル類等。 (Meth) α, / 3-unsaturated nitriles such as acrylonitrile.
(2) 本発明のプロック ·グラフト共重合体の製造方法  (2) Method for producing block / graft copolymer of the present invention
本発明のブロック ·グラフト共重合体の製造方法は、 以下に詳述する 2種類の リビングラジカル重合法を用いることを特徴とする。 即ち、 安定ラジカル系開始 剤を用いる.リビングラジカル重合法によりブロック共重合体を得た後、 得られた ブロック共重合体をマクロ開始剤、 遷移金属錯体を触媒とするリビングラジカル 重合法によりグラフ卜共重合を行う方法である。  The method for producing a block / graft copolymer of the present invention is characterized by using two types of living radical polymerization methods described in detail below. That is, a stable radical initiator is used.After obtaining a block copolymer by a living radical polymerization method, the obtained block copolymer is grafted by a living radical polymerization method using a macroinitiator and a transition metal complex as a catalyst. This is a method of performing copolymerization.
本発明の共重合体の製造方法に用いられる単量体は、 式 (VI)、 式 (VII)、 及 び式 (VIII) で表される化合物であり、 式 (VI)、 及び式 (VIII) で表される化 合物は、 式 (I) で表される繰り返し単位及び式 (II) で表される繰り返し単位 に相当し、 式 (VII) で表される化合物は、 式 (III) で表される繰り返し単位に 相当するので、 Ru〜R14、 R15い R152、 及び R16〜R18で表される官能基 の内容は、 それぞれ、 1^〜1^4、 R51、 R52、 R6〜R8表される官能基の内容 に対応し、 各化合物の具体例は、 各繰り返し単位に誘導される単量体として例示 した化合物と同様の化合物を例示することができる。 また、 ェは、 aと、 b l は、 bと、 c lは、 cと、 e lは eに相当する。 また、 式 (VI) で表される化 合物中、 Yは、 ハロゲン原子を表し、 具体的には、 クロル原子、 ブロム原子、 ョ ゥ素原子等を表す。 The monomer used in the method for producing a copolymer of the present invention is a compound represented by the formula (VI), the formula (VII), and the formula (VIII), and the compound represented by the formula (VI), the formula (VIII) The compound represented by the formula (VII) corresponds to the repeating unit represented by the formula (I) and the repeating unit represented by the formula (II), and the compound represented by the formula (VII) is represented by the formula (III) , The contents of the functional groups represented by Ru to R 14 , R 15 or R 152 , and R 16 to R 18 are 1 ^ to 1 ^ 4 , R 51 , respectively. corresponds to the content of the functional group represented by R 52, R 6 ~R 8, specific examples of each compound, may be exemplified the same compound and compounds exemplified as a monomer induced to each repeat unit . In addition, d corresponds to a, bl, b, b, cl, c, and el corresponds to e. Further, in the compound represented by the formula (VI), Y represents a halogen atom, and specifically represents a chloro atom, a bromo atom, an iodine atom, or the like.
また、 式 (IX) で表される官能基は、 式 (IV) で表される官能基に相当し、 R19、 : 。で表される官能基の内容は、 R9、 。で表される官能基の内容に 対応する。 Moreover, the functional group represented by formula (IX) corresponds to the functional group represented by the formula (IV), R 19,: . The content of the functional group represented by R 9 ,. Corresponds to the content of the functional group represented by.
本発明のブロック ·グラフト共重合体の製造方法を、 単量体に対応してさらに 詳細に説明すると、 式 (VI) で表される化合物と、 式 (VII) で表される化合物 とを、 安定ラジカル系開始剤を用いるリビングラジカル重合法によりプロック共 重合させた後、 得られたブロック共重合体をマクロ開始剤、 遷移金属錯体を触媒 とするリビングラジカル重合法により、 式 (VIII) で表される化合物をグラフト 重合させる方法となる。 The method for producing the block / graft copolymer of the present invention will be described in more detail corresponding to the monomers. The compound represented by the formula (VI) and the compound represented by the formula (VII) Are block copolymerized by a living radical polymerization method using a stable radical initiator, and then the obtained block copolymer is subjected to a living radical polymerization method using a macroinitiator and a transition metal complex as a catalyst to obtain a compound represented by the formula (VIII). ) Is graft-polymerized.
式 (VI) で表される化合物として、 具体的には、 4一クロロメチルスチレン、 3—クロロメチルスチレン、 4 _クロロメチル一 0!—メチルスチレン、 3—クロ ロメチルー《—メチルスチレン、 4—ジクロロメチルスチレン等を例示すること ができる。  Specific examples of the compound represented by the formula (VI) include 4-chloromethylstyrene, 3-chloromethylstyrene, 4-chloromethyl-10! -Methylstyrene, 3-chloromethyl-<<-methylstyrene, and 4-chloromethylstyrene. Dichloromethylstyrene and the like can be exemplified.
安定ラジカル系開始剤としては、 安定フリーラジカル化合物とラジカル重合開 始剤との混合物、 または、 各種アルコキシァミン類が挙げられる。  Examples of the stable radical initiator include a mixture of a stable free radical compound and a radical polymerization initiator, or various alkoxyamines.
安定フリーラジカル化合物とは、 室温または重合条件下で単独で安定な遊離基 として存在し、 また重合反応中には生長末端ラジカルと反応して再解離可能な結 合を生成することができるものであり、 例えば、 2 , 2 , 6, 6—テトラメチル 一 1ーピペリジニルォキシ (T E M P〇)、 4ーァミノ一 2, 2 , 6 , 6—テト ラメチル— 1ーピベリジニルォキシ、 4—ヒドロキシ— 2 , 2 , 6 , 6—テトラ メチルー 1—ビペルジニルォキシ、 4—ォキソ— 2, 2 , 6, 6—テトラメチル — 1—ピベリジニルォキシ、 4 , 4 '—ジメチル— 1, 3—ォキサゾリン— 3— ィルォキシ、 2, 2 , 5, 5—テトラメチルー 1一ピロジニルォキシ、 ジー t _ ブチルニトロキシド、 2, 2—ジ (4 _ t —ォクチルフエ二ル) _ 1—ピクリル ヒドラジル等のニトロキシドラジカルゃヒドラジニルラジカルを 1〜複数個生成 する化合物が例示される。  A stable free radical compound is one that exists as a stable free radical alone at room temperature or under polymerization conditions, and that can react with a growing terminal radical to form a re-dissociable bond during the polymerization reaction. Yes, for example, 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMP〇), 4-amino-1,2,2,6,6-tetramethyl-1-piberidinyloxy, 4- Hydroxy-2,2,6,6-tetramethyl-1-biperdinyloxy, 4-oxo-2,2,6,6-tetramethyl-1-piberidinyloxy, 4,4'-dimethyl 1,3-oxazoline-3-yloxy, 2,2,5,5-tetramethyl-11-pyridinyloxy, di-t_butyl nitroxide, 2,2-di (4_t-octylphenyl) _1-picrylhydrazyl Nitroxide radical hydrazinyl Compounds 1 to plurality generate radical are exemplified.
ラジカル重合開始剤とは、 分解してフリーラジカルを生成する化合物であれば 良く、 具体的には、 2, 2 '—ァゾビスイソプチロニトリル、 2 , 2 '—ァゾビス 一 (2, 4—ジメチルバレロニトリル) 等のァゾ化合物類、 過酸化ベンゾィル等 のジァシルパーォキサイド類、 メチルエヂルケトンパーォキサイド等のケ卜ンパ —オキサイド類、 1, 1一ビス (t 一ブチルパーォキシ) — 3, 3 , 5—卜リメ チルシクロへキサンなどのパーォキシケタール類等、 キュメンハイドロパーォキ サイド等のハイドロパーォキサイド類、 ジクミルパーォキサイドなどのジアルキ ルパーオキサイド類、 t一ブチルパーォキシビバレート、 t一ブチルパーォキシ ベンゾエート等のパーォキシエステル類の有機過酸化物が例示できる。 また、 ジ メチルァニリンゃナフテン酸コバルト等有機過酸化物と組み合わせて用いられる 公知の重合促進剤を併用しても良い。 The radical polymerization initiator may be any compound that decomposes to generate free radicals. Specifically, 2,2′-azobisisobutyronitrile, 2,2′-azobis mono (2,4- Azo compounds such as dimethylvaleronitrile), diacyl peroxides such as benzoyl peroxide, ketone oxides such as methyl perketone peroxide, oxides, 1,1-bis (t-butyl peroxy) ) — Peroxyketals such as 3,3,5-trimethylcyclohexane; hydroperoxides such as cumene hydroperoxide; dialkyl peroxides such as dicumylperoxide; t-butyl peroxybivalate, t-butyl peroxybivalate Organic peroxides of peroxyesters such as benzoate can be exemplified. In addition, a known polymerization accelerator used in combination with an organic peroxide such as dimethylaniline-cobalt naphthenate may be used in combination.
これらのラジカル重合開始剤は、 前述の安定フリーラジカル化合物 1モルに対 して通常 0 . 0 5〜5モル、 好ましくは 0 . 2〜2モルの範囲で用いられる。 アルコキシァミン類としては、 具体的には下記に示す化合物を例示することが できる。  These radical polymerization initiators are generally used in an amount of 0.05 to 5 mol, preferably 0.2 to 2 mol, per 1 mol of the aforementioned stable free radical compound. Specific examples of the alkoxyamines include the following compounds.
Figure imgf000019_0001
Figure imgf000019_0001
重合は、 公知の各種重合法、 例えば、 塊状重合、 溶液重合、 懸濁重合、 乳化重 合などが採用でき、 窒素、 アルゴン等の不活性ガスの雰囲気下、 重合温度は 5 0 〜2 0 0 °C、 好ましくは 1 0 0〜 1 5 0 °Cで行われる。 溶液重合を行う場合の有 機溶媒としては、 特に制限されず、 ベンゼン、 トルエン、 キシレンなどの芳香族 炭化水素類、 シクロへキサン等の脂環族炭化水素類、 メチルェチルケトン、 メチ ルイソプチルケトン、 シクロへキサノン等のケトン類、 ジォキサンなどのエーテ ル類、 酢酸ェチル、 酢酸プチルなどのエステル類、 エタノール、 n—ブタノール 等のアルコール類、 エチレングリコールモノメチルエーテル、 エチレングリコー ルモノメチルエーテルアセテートなどの多価アルコール誘導体類などを例示する ことができる。  The polymerization can be performed by various known polymerization methods, for example, bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization.The polymerization temperature is 50 to 200 in an atmosphere of an inert gas such as nitrogen or argon. C., preferably at 100 to 150.degree. The organic solvent used in the solution polymerization is not particularly limited, and aromatic hydrocarbons such as benzene, toluene, and xylene; alicyclic hydrocarbons such as cyclohexane; methyl ethyl ketone; Ketones such as butyl ketone and cyclohexanone; ethers such as dioxane; esters such as ethyl acetate and butyl acetate; alcohols such as ethanol and n-butanol; ethylene glycol monomethyl ether and ethylene glycol monomethyl ether acetate And the like polyhydric alcohol derivatives.
上記安定ラジカル系開始剤を用いるリビングラジカル重合による共重合体の製 造方法として、 具体的には、  As a method for producing a copolymer by living radical polymerization using the above stable radical initiator, specifically,
( 1 ) 例えば、 第一の単量体の転化率が 1 0 0 %に達した後、 第二の単量体を添 加して重合を完結させ、 これを繰り返すことによりブロック共重合体を得る単量 体を逐次的に添加する方法、 (1) For example, after the conversion of the first monomer reaches 100%, the second monomer is added. A method of sequentially adding monomers to obtain a block copolymer by repeating this,
( 2 ) 第一の単量体の転化率が 1 0 0 %に達しなくとも目標の重合度又は分子量 に達した段階で第二の単量体を加えて重合を継続し、 ブロック鎖間にランダム部 分が存在するグラジェント共重合体を得る方法、  (2) Even if the conversion of the first monomer does not reach 100%, the polymerization is continued by adding the second monomer at the stage when the target degree of polymerization or molecular weight has been reached, and between the block chains. A method for obtaining a gradient copolymer having a random portion,
( 3 ) 第一の単量体の転化率が 1 0 0 %に達しなくとも目標の重合度又は分子量 に達した段階で一旦反応を停止、 系外に重合体を取りだし、 得られた重合体をマ クロ開始剤として他の単量体を加えて共重合を断続的に進め、 ブロック共重合体 を得る方法、  (3) Even if the conversion of the first monomer does not reach 100%, the reaction is stopped once when the target degree of polymerization or molecular weight has been reached, the polymer is taken out of the system, and the obtained polymer is obtained. Is used as a macroinitiator and other monomers are added to intermittently proceed with copolymerization to obtain a block copolymer.
等を例示することができる。 And the like.
共重合形態は、 用いる安定フリーラジカル化合物が、 1官能の場合には基本的 に A— B型、 B— A型、 B— A— C型の共重合体が得られ、 また、 2官能の場合 には基本的に、 A— B— A型、 B— A— B型の共重合体が得られる。  When the stable free radical compound used is monofunctional, copolymers of A—B type, B—A type, and B—A—C type are basically obtained. In this case, basically, A-B-A type and B-A-B type copolymers are obtained.
又、 グラジェン卜共重合体を得る別の方法として、 前記 (2 ) の方法において 安定フリーラジカル化合物を用いず、 ラジカル重合開始剤のみで重合を行う通常 のラジカル重合でもグラジェント共重合体を得る事は可能であり、 この方法も本 発明のグラフ卜共重合体の製造方法に包含される。  As another method for obtaining a gradient copolymer, a gradient copolymer is also obtained by ordinary radical polymerization in which polymerization is carried out only with a radical polymerization initiator without using a stable free radical compound in the above method (2). This is also possible, and this method is also included in the method for producing a graft copolymer of the present invention.
共重合反応過程の追跡及び反応終了の確認は、 ガスクロマトグラフィー、 液体 クロマトグラフィー、 ゲル浸透クロマトグラフィー、 膜浸透圧法、 NM Rなどに より容易に行うことができる。 共重合反応終了後は、 カラム精製、 減圧精製、 又 は、例えば水や貧溶媒中に投入して析出したポリマー分を濾過、乾燥させるなど、 通常の分離精製方法を適用することにより共重合体を得ることができる。  Tracking of the copolymerization process and confirmation of the completion of the reaction can be easily performed by gas chromatography, liquid chromatography, gel permeation chromatography, membrane osmometry, NMR, and the like. After completion of the copolymerization reaction, the copolymer can be purified by column purification, vacuum purification, or by applying ordinary separation and purification methods such as, for example, pouring into water or a poor solvent, filtering and drying the precipitated polymer. Can be obtained.
本発明においては、 前記した安定フリーラジカル系開始剤を用いるリピンダラ ジカル重合で得られたブロック共重合体をマクロ開始剤とし、 遷移金属錯体を触 媒とするリビングラジカル重合法により、 グラフト重合を行なうことを特徴とす る。  In the present invention, graft polymerization is carried out by a living radical polymerization method in which a block copolymer obtained by the above-mentioned lipinal radical polymerization using a stable free radical initiator is used as a macroinitiator and a transition metal complex is used as a catalyst. It is characterized.
グラフト重合は、 公知の各種重合法、 例えば、 塊状重合、 溶液重合、 懸濁重合、 乳化重合などが採用でき、 窒素、 アルゴン等の不活性ガスの雰囲気下、 重合温度 は 5 0〜2 0 0 °C、 好ましくは 1 0 0〜1 5 0 °Cで行われる。 溶液重合を行う場 合の有機溶媒としては、 特に制限されず、 ベンゼン、 トルエン、 キシレンなどの 芳香族炭化水素類、 シクロへキサン等の脂環族炭化水素類、 メチルエヂルケトン、 メチルイソプチルケトン、 シクロへキサノン等のケトン類、 ジォキサンなどのェ 一テル類、 酢酸ェチル、 酢酸ブチルなどのエステル類、 エタノール、 n—ブタノ ール等のアルコール類、 エチレングリコールモノメチルエーテル、 エチレングリ コールモノメチルエーテルアセテートなどの多価アルコール誘導体類などを例示 することができる。 For the graft polymerization, various known polymerization methods such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization can be adopted.The polymerization temperature is 50 to 200 in an atmosphere of an inert gas such as nitrogen or argon. C., preferably at 100 to 150.degree. A place for solution polymerization The organic solvent used in the combination is not particularly limited, but may be aromatic hydrocarbons such as benzene, toluene and xylene, alicyclic hydrocarbons such as cyclohexane, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Ketones; ethers such as dioxane; esters such as ethyl acetate and butyl acetate; alcohols such as ethanol and n-butanol; polyvalents such as ethylene glycol monomethyl ether and ethylene glycol monomethyl ether acetate. Examples thereof include alcohol derivatives.
本発明用いられる遷移金属錯体を構成する中心金属としては、 マンガン、 レニ ゥム、 鉄、 ルテニウム、 ロジウム、 ニッケル、 銅等の周期律表第 7〜1 1族元素 (日本化学会編 「化学便覧基礎編 I改訂第 4版」 (1 9 9 3年) 記載の周期律表 による) が好ましく挙げられる。 金属種としては特に 0価及び 1価の銅、 2価の ルテニウム、 及び 2価の鉄を好適に例示することができる。 より具体的には、 塩 化第一銅、 臭化第一銅、 ヨウ化第一銅、 シアン化第一銅、 酸化第一銅、 酢酸第一 銅、過塩素酸第一銅等を例示することができる。 これら銅化合物を用いた場合に、 例えば、 2, 2,ーピピリジル及びその誘導体、 1 , 1 0—フエナント口リン及 びその誘導体、 トリプチルァミン等のアルキルァミン、 テトラメチルエチレンジ ァミン、 ペンタメチルエチレンジエチレントリアミン、 へキサメチルトリエチレ ンテトラミン等のポリアミン等を、 触媒活性を高める配位子として添加するのが 好ましい。 また、 塩化ルテニウムトリストリフエニルホスフィン錯体 (R u C l 2 ( P P h 3) 3) 等の二価ルテニウム錯体好適に用いることができる。 ルテニウム 錯体を用いる場合には、トリアルコキシアルミニウム等のアルミニウム化合物を、 触媒の活性を高めるために添加するのが好ましい。 さらに、 塩化鉄トリストリフ ェニルホスフィン錯体 (F e C l 2 ( P P h 3) 3) 等の二価鉄錯体も好適に用いる ことができる。 また、 これらの遷移金属錯体は、 1種又は 2種以上組み合わせて 使用できる。 The central metals constituting the transition metal complex used in the present invention include manganese, rhenium, iron, ruthenium, rhodium, nickel, copper, etc., elements of Group 7 to 11 of the Periodic Table (edited by the Chemical Society of Japan, Chemical Handbook). Basic Edition I, Revised 4th Edition ”(based on the periodic table described in 1993). Preferred examples of the metal species include zero-valent and monovalent copper, divalent ruthenium, and divalent iron. More specifically, examples include cuprous chloride, cuprous bromide, cuprous iodide, cuprous cyanide, cuprous oxide, cuprous acetate, cuprous perchlorate, and the like. be able to. When these copper compounds are used, for example, 2,2-pipyridyl and its derivatives, 1,10-phenanthroline and its derivatives, alkylamines such as triptylamine, tetramethylethylenediamine, pentamethylethylenediethylenetriamine, hexane It is preferable to add a polyamine such as methyltriethylenetetramine or the like as a ligand for enhancing the catalytic activity. Further, ruthenium tris triphenyl phosphine chloride complex (R u C l 2 (PP h 3) 3) may divalent ruthenium complex suitably used, such as. When a ruthenium complex is used, it is preferable to add an aluminum compound such as trialkoxyaluminum to enhance the activity of the catalyst. Further, a divalent iron complex such as an iron chloride tristriphenylphosphine complex (FeCl 2 (PPh 3 ) 3 ) can also be suitably used. These transition metal complexes can be used alone or in combination of two or more.
グラフト鎖 Xは、 式 (VIII) で表される化合物を重合させることにより得られ るが、 必要に応じて、 他の重合性不飽和単量体、 例えば、 式 (VII) で表される 化合物、及び/または(メタ)アクリル酸メチル、 (メタ)アクリル酸エヂル、 (メ タ) アクリル酸 tーブチル、 (メタ) アクリル酸ベンジル、 (メタ) アクリル酸ィ ソポルニル、 (メタ) アクリル酸ジシクロペンテニルなどの (メタ) アクリル酸 エステル類との共重合体鎖とすることできる。 The graft chain X is obtained by polymerizing a compound represented by the formula (VIII), and if necessary, other polymerizable unsaturated monomers, for example, a compound represented by the formula (VII) And / or methyl (meth) acrylate, ethyl (meth) acrylate, t-butyl (meth) acrylate, benzyl (meth) acrylate, (meth) acrylic acid It may be a copolymer chain with (meth) acrylates such as sopolnyl and dicyclopentenyl (meth) acrylate.
グラフト鎖 Xを形成する方法として、 具体的には、  As a method of forming the graft chain X, specifically,
( 1 ) 式 (VIII) で表される化合物のみ用いて単独重合体鎖を得る方法、  (1) a method of obtaining a homopolymer chain using only the compound represented by the formula (VIII),
( 2 ) 式 (VIII) で表される化合物と他の重合性不飽和単量体とを反応系に同時 に添加し、 ランダム共重合体鎖を得る方法、  (2) a method of simultaneously adding a compound represented by the formula (VIII) and another polymerizable unsaturated monomer to a reaction system to obtain a random copolymer chain,
( 3 ) 式 (VIII) で表される化合物と他の重合性不飽和単量体とを反応系へ逐次 的に添加してブロック共重合体鎖を得る方法、  (3) a method of sequentially adding a compound represented by the formula (VIII) and another polymerizable unsaturated monomer to a reaction system to obtain a block copolymer chain;
( 4 ) 式 (VIII) で表される化合物と他の不飽和単量体との組成比を経時的に変 化させて添加してグラジェン卜共重合体鎖を得る方法、  (4) a method of obtaining a gradient copolymer chain by changing the composition ratio of the compound represented by the formula (VIII) to another unsaturated monomer over time and adding the compound;
等を例示することができる。 また、 グラフト重合は、 連続的に進めても、 断続的 に進めても良い。 例えば、 前記 (3 ) の方法において、 式 (VIII) で表される化 合物の重合が完了したことを確認後、 他の重合性不飽和単量体を加えて共重合を 連続的に行うことも、 式 (VIII) で表される化合物の重合が未完了でも所望の重 合度又は分子量に到達したことが確認された段階で一旦系外にブロック ·グラフ 卜共重合体を取り出し、 得られたブロック ·グラフト共重合体をマクロ開始剤と して他の重合性不飽和単量体を加えて共重合を断続的に進めることもできる。 グラフト重合反応過程の追跡及び反応終了の確認は、ガスクロマトグラフィー、 液体クロマトグラフィー、 ゲル浸透クロマトグラフィー、 膜浸透圧法、 NM Rな どにより容易に行うことができる。 グラフト重合反応終了後は、 カラム精製、 減 圧精製、 又は、 例えば水や貧溶媒中に投入して析出したポリマー分を濾過、 乾燥 させるなど、 通常の分離精製方法を適用することによりグラフ卜共重合体を得る ことができる。 And the like. Further, the graft polymerization may be carried out continuously or intermittently. For example, in the above method (3), after confirming that the polymerization of the compound represented by the formula (VIII) is completed, another polymerizable unsaturated monomer is added and the copolymerization is continuously performed. In addition, even when the polymerization of the compound represented by the formula (VIII) is not completed, the block-graft copolymer is once taken out of the system once it is confirmed that the desired degree of polymerization or molecular weight has been reached. The block / graft copolymer can be used as a macroinitiator and other polymerizable unsaturated monomers can be added to proceed intermittently. Tracking of the graft polymerization reaction process and confirmation of the completion of the reaction can be easily performed by gas chromatography, liquid chromatography, gel permeation chromatography, membrane osmometry, NMR, and the like. After the completion of the graft polymerization reaction, a common separation and purification method such as column purification, pressure-reduction purification, or filtration and drying of the polymer component precipitated by pouring into water or a poor solvent, for example, is applied to the graft polymerization. A polymer can be obtained.
本発明で使用する電解質としては、 特に限定されるものではなく、 電荷でキヤ リア一としたいイオンを含んだ電解質を用いればよいが、 硬化して得られる高分 子固体電解質中での解離定数が大きいことが望ましく、 アルカリ金属塩、 (C H 3)4 N B F 6等の 4級アンモニゥム塩、 (C H3)4 P B F 6等の 4級ホスホニゥム塩、 A g C 1 04等の遷移金属塩あるいは塩酸、 過塩素酸、 ホウフッ化水素酸等のプ 口トン酸が使用出来、 アルカリ金属塩、 4級アンモニゥム塩、 4級ホスホニゥム 塩または遷移金属塩の使用が好ましい。 The electrolyte used in the present invention is not particularly limited, and may be an electrolyte containing an ion that is desired to be the carrier by charge.The dissociation constant in a polymer solid electrolyte obtained by curing it is desirable large, alkali metal salts, (CH 3) 4 NBF 4 grade Anmoniumu salts 6 and the like, (CH 3) 4 grade Hosuhoniumu salts such as 4 PBF 6, or a transition metal salt such as a g C 1 0 4 Hydrotonic acid such as hydrochloric acid, perchloric acid, borofluoric acid, etc. can be used, alkali metal salt, quaternary ammonium salt, quaternary phosphonium The use of salts or transition metal salts is preferred.
使用しうるアルカリ金属塩の具体例としては、 例えば L i CF3S03、 L i N (C F3S 02) 2、 L i C (C F3S 02) 3 L i C (CH3) (CF3S02) 2、 L i CH (C F3S 02) 2、 L i CH2 (CF3S02)、 L i C2F5S03、 L i N (C2F 5S〇2) 2、 L i B (C F3S 02) 2、 L i P F6, : L i C 1〇4、 L i I , L i B F4、 L i S CN、 L i As F6、 NaCF3S03、 NaPF6、 N a C 1〇4、 Na l、 Na BF4、 N aA s F6、 KCF3S03、 KP F6、 K I、 L i CF3C03、 N a C 1〇3、 N a S CN、 KB F4、 Mg (C 104) 2、 Mg (B F4) 2等を例示す ることができ、 これら電解質塩は混合し、 使用しても良く、 中でもリチウム塩が 好ましい。 Specific examples of the alkali metal salts can be used, for example, L i CF 3 S0 3, L i N (CF 3 S 0 2) 2, L i C (CF 3 S 0 2) 3 L i C (CH 3) (CF 3 S0 2 ) 2 , L i CH (CF 3 S 0 2 ) 2 , L i CH 2 (CF 3 S0 2 ), L i C 2 F 5 S 0 3 , L i N (C 2 F 5 S 〇 2) 2, L i B ( CF 3 S 0 2) 2, L i PF 6,: L i C 1_Rei 4, L i I, L i BF 4, L i S CN, L i As F 6, NaCF 3 S0 3, NaPF 6, N a C 1_Rei 4, Na l, Na BF 4 , N aA s F 6, KCF 3 S0 3, KP F 6, KI, L i CF 3 C0 3, N a C 1_Rei 3, N a S CN, KB F 4, Mg (C 10 4) 2, Mg (BF 4) can it to illustrate 2, and these electrolyte salts is mixed, may be used, among them lithium salt Is preferred.
これら電解質塩の添加量は、 高分子電解質の基材高分子である多分岐高分子中 のアルキレンオキサイドユニットに対して、 0. 00 5〜80モル%、 好ましく は 0. 01〜50モル%の範囲である。 添加複合させる方法には特に制限なく、 例えば、 共重合体と電解質塩とをテトラヒドロフラン、 メチルエヂルケトン、 ァ セトニトリル、 エタノール、 ジメチルホルムアミド等の適当な溶媒に溶解させる 方法、 共重合体と電解質塩とを常温又は加熱下に機械的に混合する方法等が挙げ られる。  The amount of the electrolyte salt added is 0.005 to 80 mol%, preferably 0.01 to 50 mol%, based on the alkylene oxide unit in the multibranched polymer which is the base polymer of the polymer electrolyte. Range. There is no particular limitation on the method of adding and complexing, for example, a method of dissolving the copolymer and the electrolyte salt in a suitable solvent such as tetrahydrofuran, methyl ethyl ketone, acetonitrile, ethanol, dimethylformamide, and the like. And a method of mixing them mechanically at room temperature or under heating.
高分子固体電解質は、 シート状等の形状が好ましく、 その製造手段として、 具 体的には、 ロールコ一夕一法、 カーテンコ一夕一法、 スピンコート法、 ディップ 法、 キャスト法等の各種コーティング手段により支持体上に本発明の共重合体及 び電解質を含む組成物を成膜させ、 次いで熱等で固化させ、 その後支持体を除去 することにより得る方法等を例示することができる。  The solid polymer electrolyte is preferably in the form of a sheet or the like. Specific examples of the manufacturing method include various coating methods such as a roll-co-one-court method, a curtain-co-one-cow method, a spin coating method, a dip method, and a casting method. Examples of the method include a method in which a composition containing the copolymer of the present invention and an electrolyte is formed on a support by means of a film, solidified by heat or the like, and then removed by removing the support.
本発明の高分子固体電解質は、 熱的特性、 物理的特性、 及びイオン伝導度に優 れた固体電解質として電池などの電気化学素子に重用されると期待できるもので ある。  The solid polymer electrolyte of the present invention is expected to be used as a solid electrolyte having excellent thermal properties, physical properties, and ionic conductivity in electrochemical devices such as batteries.
発明を実施するための最良の形態: BEST MODE FOR CARRYING OUT THE INVENTION
以下、 実施例により本発明をさらに詳細に説明するが、 本発明は下記の実施例 によって限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
実施例 1 (1) ブロック,グラフト共重合体の合成 Example 1 (1) Synthesis of block and graft copolymer
4一クロロメチルスチレン (以下、 4CMSと記す) 131. Ommo 1 と、 1一 (2, 2, 6, 6—テトラメチルピペリジニルォキシ) 一 1—フエ二ルェ夕 ン 9. 6mmo 1とを均一に混合し、 1 5分間窒素パブリングを行った後、 窒素 雰囲気下、 125°Cに加温して重合反応を開始させた。 重合反応を開始して 12 時間後に、 反応液を 0°Cに冷却して重合反応を停止させた。 反応液をテトラヒド 口フラン (THF) で希釈、 均一溶液とした後、 大量のメタノール中に投入して ポリマーを析出させ、 濾過、 洗浄後、 60°Cで 5時間減圧乾燥した。 得られたポ リマーの単離収率は 56 %であった。 さらに、 得られたポリ CMSについて GP C分析を行ったところ、 数平均分子量 (以下、 Mnと記す) は 1, 300、 分散 度 (重量平均分子量 (Mw) と Mnとの比 (MwZMn)、 以下 PDと記す) は 1. 35であった。  4-Chloromethylstyrene (hereinafter referred to as 4CMS) 131. Ommo 1 and 1- (2,2,6,6-tetramethylpiperidinyloxy) 1-phenylamine 9.6mmo 1 After uniformly mixing and performing nitrogen publishing for 15 minutes, the mixture was heated to 125 ° C. in a nitrogen atmosphere to start a polymerization reaction. Twelve hours after the initiation of the polymerization reaction, the reaction solution was cooled to 0 ° C to stop the polymerization reaction. The reaction solution was diluted with tetrahydrofuran (THF) to form a homogeneous solution, and then poured into a large amount of methanol to precipitate a polymer, which was filtered, washed, and dried under reduced pressure at 60 ° C for 5 hours. The isolation yield of the obtained polymer was 56%. Further, GPC analysis was performed on the obtained poly CMS. The number average molecular weight (hereinafter, referred to as Mn) was 1,300, and the dispersity (the ratio of the weight average molecular weight (Mw) to Mn (MwZMn), PD) was 1.35.
ついで、 得られたポリ CMS 0. 7mmo 1と、 スチレン (以下、 S tと記す) 40 Ommo 1とを均一に混合し、 15分間窒素バブリングを行った後、 125 °C に加温して共重合反応を開始させた。 共重合反応を開始して 24時間後に、 反応 液を 0°Cに冷却して共重合反応を停止させた。 GC分析の結果、 S tの重合転化 率は 63%であった。 反応液を THFで希釈、 均一溶液とした後; 大量のメタノ ール中に投入してポリマーを析出させ、濾過、洗浄後、得られたポリマーを 60°C で 5時間減圧乾燥した。 このポリマーについて GP C分析を行ったところ、 Mn = 37, 000、 PD= 1. 48であるポリ (4CMS— b— S t) の構造を有 するブロック共重合体 [P— 1] であった。  Next, 0.7 mmo 1 of the obtained poly CMS and 40 Ommo 1 of styrene (hereinafter, referred to as St) were uniformly mixed, nitrogen bubbling was performed for 15 minutes, and the mixture was heated to 125 ° C. The polymerization reaction was started. 24 hours after the start of the copolymerization reaction, the reaction solution was cooled to 0 ° C to stop the copolymerization reaction. As a result of GC analysis, the polymerization conversion of St was 63%. After diluting the reaction solution with THF to make a homogeneous solution; poured into a large amount of methanol to precipitate a polymer, followed by filtration and washing, and the obtained polymer was dried under reduced pressure at 60 ° C for 5 hours. GPC analysis of this polymer revealed that it was a block copolymer [P-1] having a poly (4CMS-b-St) structure with Mn = 37,000 and PD = 1.48. .
次いで、 窒素雰囲気下において、 予め窒素バブリング処理を行ったトルエン 1 10 gに、 上記ブロック共重合体 [P— 1] 0. lmmo 1、 メトキシポリエチ レンダリコールモノメタクリレート (日本油脂 (株) 製、 ブレンマー PME— 1 000、 式 (VIII) において e 1 = 23) 38mmo 1、 塩化第一銅 0. 1mm o l、 2, 2 '—ビビリジン 0. 2mmo 1を加えて均一に混合後、 攪拌下、 8 0°Cに加温して共重合反応を開始させた。 共重合反応を開始してから 20時間後 に、反応系の温度を 0°Cに冷却して共重合反応を停止させた。 G PC分析の結果、 PME- 1000の重合転化率は 70 %であった。 反応液のカラム精製を行って 金属錯体、 及び未反応モノマーを除去した後、 減圧下に揮発分を除去してポリマ 一を得た。 このポリマーについて GP C分析を行ったところ、 Mn=3 10, 0 00、 PD= 1. 52のポリマーであり、 また、 13CNMR分析を行ったところ、 共重合体中の総繰り返し単位モル数に対する、 4 CMS繰り返し単位モル数、 S t繰り返し単位モル数、及び PME— 1000繰り返し単位モル数の比率が、各々 1. 2 %、 56. 8 %、 42. 0 %であるポリ (( 4 C M S— g— P M E— 1 0 00) -b-S t) の構造を有するブロック ·グラフト共重合体 [BG— 1] で あった。 Then, in a nitrogen atmosphere, 110 g of toluene previously subjected to a nitrogen bubbling treatment was added to 0.1 g of the block copolymer [P-1] 0.1 lmmo 1 and methoxypolyethylene render glycol monomethacrylate (manufactured by NOF Corporation, Blenmer Co., Ltd.). PME-1 000, e 1 in formula (VIII) = 23) 38mmo 1, cuprous chloride 0.1mmol, 2,2'-viviridine 0.2mmo 1 The mixture was heated to ° C to start the copolymerization reaction. Twenty hours after the start of the copolymerization reaction, the temperature of the reaction system was cooled to 0 ° C to stop the copolymerization reaction. As a result of GPC analysis, the polymerization conversion of PME-1000 was 70%. Perform column purification of the reaction solution After removing the metal complex and unreacted monomer, volatile components were removed under reduced pressure to obtain a polymer. GPC analysis of this polymer revealed that it was a polymer with Mn = 3,10,000 and PD = 1.52. Further, 13 CNMR analysis showed that it was based on the total number of moles of repeating units in the copolymer. , 4 CMS moles of repeating units, St moles of repeating units, and PME—Poly ((4CMS— g—PME—100) -bSt), which was a block-graft copolymer [BG-1].
また、 得られたブロック ·グラフト共重合体 [BG— 1] をアセトンに溶解し てテフロン (登録商標) 板上に流延し、 室温で 24時間放置後、 60 で 24時 間減圧乾燥して膜厚 100 xmのフィルムを得た。 得られたフィルムの透過型電 子顕微鏡写真を測定し、 このブロック ·グラフト共重合体は、 ポリエチレンォキ サイド相の中にポリスチレン相が球状に分散している海島型のミクロ相分離構造 を有することがわかった。  The obtained block-graft copolymer [BG-1] was dissolved in acetone, cast on a Teflon (registered trademark) plate, left at room temperature for 24 hours, and dried under reduced pressure at 60 for 24 hours. A film having a thickness of 100 xm was obtained. A transmission electron micrograph of the obtained film was measured, and this block-graft copolymer had a sea-island-type microphase-separated structure in which a polystyrene phase was dispersed spherically in a polyethylene oxide phase. I understand.
(2) 高分子固体電解質用樹脂組成物の調製  (2) Preparation of resin composition for polymer solid electrolyte
アルゴン雰囲気下において、 上記の操作で得られたブロック ·グラフト共重合 体 [BG— l] 2 gをアセトン 1 8 gに溶解させ、 L i C 1 O40. 2 gを加え て均一に溶解させて高分子固体電解質用樹脂組成物を調製した。 Under an argon atmosphere, block graft copolymer obtained in the above procedure [BG-l] of 2 g was dissolved in acetone 1 8 g, homogeneously dissolved by adding L i C 1 O 4 0. 2 g Thus, a resin composition for a polymer solid electrolyte was prepared.
(3) 高分子固体電解質膜作製及びイオン伝導度測定  (3) Preparation of solid polymer electrolyte membrane and measurement of ionic conductivity
アルゴン雰囲気下において、 上記組成物をテフロン (登録商標)板上に流延し、 室温で 24時間放置^、 60°Cで 24時間減圧乾燥して均一な高分子固体電解質 膜を得た (膜厚 100 111)。 アルゴン雰囲気下、 この高分子固体電解質膜を白 金板にはさみ、 周波数 5〜10 MHzのインピーダンスアナライザー (S o l a r t r o n - 1260型) を用いて複素インピーダンス解析によりイオン伝導度 を測定した。 その結果、 イオン伝導度は、 23°Cで 5x1 O^SZcmであった。 実施例 2  In an argon atmosphere, the above composition was cast on a Teflon (registered trademark) plate, left at room temperature for 24 hours, and dried under reduced pressure at 60 ° C for 24 hours to obtain a uniform polymer solid electrolyte membrane (membrane). Thickness 100 111). This polymer solid electrolyte membrane was sandwiched between white metal plates under an argon atmosphere, and the ionic conductivity was measured by complex impedance analysis using an impedance analyzer (Solartron-1260 type) with a frequency of 5 to 10 MHz. As a result, the ionic conductivity was 5x1 O ^ SZcm at 23 ° C. Example 2
(1) ブロック ·グラフト共重合体の合成  (1) Synthesis of block / graft copolymer
4 CMS 13 1. Ommo 1と、 下記構造を有する 2官能重合開始剤
Figure imgf000026_0001
4 CMS 13 1. Ommo 1 and bifunctional polymerization initiator having the following structure
Figure imgf000026_0001
lmmo 1とを均一に混合し、 1 5分間窒素パブリングを行った後、 窒素雰囲気 下、 1 25 °Cに加温して重合反応を開始させた。 重合反応を開始して 10時間後 に、 反応液を 0°Cに冷却することにより重合反応を停止させた。 反応液を THF で希釈、均一溶液とした後、大量のメタノール中に投入してポリマーを析出させ、 濾過、 洗浄後、 得られたポリマーを 60°Cで 5時間減圧乾燥した。 得られたポリ マーの単離収率は 65 %であった。 さらに、 得られたポリ 4 CMSについて GP C分析を行ったところ、 Mn= 1 1, 800、 PD= 1. 32であった。 After lmmo 1 was uniformly mixed and subjected to nitrogen publishing for 15 minutes, the mixture was heated to 125 ° C under a nitrogen atmosphere to start a polymerization reaction. Ten hours after the start of the polymerization reaction, the polymerization reaction was stopped by cooling the reaction solution to 0 ° C. The reaction solution was diluted with THF to make a homogeneous solution, and then poured into a large amount of methanol to precipitate a polymer. After filtration and washing, the obtained polymer was dried under reduced pressure at 60 ° C for 5 hours. The isolation yield of the obtained polymer was 65%. Furthermore, GPC analysis of the obtained poly-4CMS showed Mn = 1,800 and PD = 1.32.
ついで、 得られたポリ CMS 0. lmmo 1 , S t 65 mm ο 1を均一に混合 し、 1 5分間窒素バプリングを行った後、 窒素雰囲気下、 125°Cに加温して共 重合反応を開始させた。 共重合反応を開始して 20時間後に、 反応液を 0°Cに冷 却して共重合反応を停止させた。 GC分析の結果、 S tの重合転化率は 59 %で あった。 反応液を THFで希釈、 均一溶液とした後、 大量のメタノール中に投入 してポリマーを析出させ、 濾過、 洗浄後、 得られたポリマーを 60°Cで 5時間減 圧乾燥した。 このポリマーについて GP C分析を行ったところ、 Mn = 49, 0 00、 PD= 1. 47であるポリ (S t— b— 4 CMS— b— S t ) の構造を有 するブロック共重合体 [P— 2] であった。  Then, the obtained poly CMS 0.1 lmmo 1, St 65 mm ο 1 was uniformly mixed, nitrogen bubbling was performed for 15 minutes, and the copolymerization reaction was performed by heating to 125 ° C under a nitrogen atmosphere. Started. Twenty hours after the start of the copolymerization reaction, the reaction solution was cooled to 0 ° C to stop the copolymerization reaction. As a result of GC analysis, the polymerization conversion of St was 59%. The reaction solution was diluted with THF to form a homogeneous solution, and then poured into a large amount of methanol to precipitate a polymer. After filtration and washing, the obtained polymer was dried under reduced pressure at 60 ° C for 5 hours. GPC analysis of this polymer revealed that a block copolymer having the structure of poly (S t—b—4 CMS—b—S t) with Mn = 49, 000 and PD = 1.47 [ P—2].
ついで、 窒素雰囲気下において、 予め窒素パブリング処理を行ったトルエン 7 6 gに、 上記プロック共重合体 [P— 2] 0. lmmo 1 , ブレンマー PME— 1 000 25mmo 1、 塩化第一銅 0. lmmo l、 2, 2 '—ピピリジン 0. 2mmo 1を加えて均一に混合後、 撹拌下、 80 °Cに加温して共重合反応を開始 させた。 共重合反応を開始してから 18時間後に、 反応系の温度を 0°Cに冷却し て共重合反応を停止させた。 G PC分析の結果、 ブレンマー PME— 1000の 重合転化率は 6 5%であった。 反応液のカラム精製を行って、 金属錯体、 未反応 モノマ一を除去した後、 減圧下に揮発分を除去してポリマーを得た。 このポリマ 一について、 GP C分析を行ったところ、 Mn= 209, 000、 PD= 1. 5 2であり、 また、 13CNMRを測定したところ, 共重合体中の総繰り返し単位モ ル数に対する、 4CMS繰り返し単位、 S t繰り返し単位、 及び PME— 100 0繰り返し単位のモル数の比率が、 各々、 13. 3 %、 6 1. 8%、 24. 9 % であるポリ (S t— b— (4 CMS - g-PME- 1000) 一 b— S t) の構 造を有するブロック ·グラフト共重合体 [BG— 2] であった。 Then, in a nitrogen atmosphere, 76 g of toluene which had been subjected to nitrogen publishing in advance was mixed with the block copolymer [P-2] 0.1 lmmo 1, Blemmer PME-1 000 25 mmo 1, and cuprous chloride 0.1 lmmo. l, 2,2′-Pypyridine 0.2 mmo 1 was added thereto, mixed uniformly, and then heated to 80 ° C. with stirring to start a copolymerization reaction. Eighteen hours after the start of the copolymerization reaction, the temperature of the reaction system was cooled to 0 ° C to stop the copolymerization reaction. As a result of GPC analysis, the polymerization conversion of Blemmer PME-1000 was 65%. The reaction solution was subjected to column purification to remove metal complexes and unreacted monomers, and then volatile components were removed under reduced pressure to obtain a polymer. This polymer When GPC analysis was carried out for one, Mn = 209,000 and PD = 1.52, and 13 CNMR was measured, the 4CMS repetition of the total number of repeating unit moles in the copolymer Unit, St repeat unit, and PME—Poly (St-b— (4 CMS) in which the molar ratio of 1000 repeat units is 13.3%, 61.8%, and 24.9%, respectively. -It was a block-graft copolymer [BG-2] having a structure of g-PME-1000) -b-St).
また、 得られたブロック ·グラフト共重合体 [BG— 2] を実施例 1と同様に 成膜し、 得られたフィルムの透過型電子顕微鏡観察を行ったところ、 実施例 1に おけると同様の海島型のミク口相分離構造を有していた。  Further, the obtained block / graft copolymer [BG-2] was formed into a film in the same manner as in Example 1, and the obtained film was observed with a transmission electron microscope. The same result as in Example 1 was obtained. It had a sea-island type Miku mouth phase separation structure.
(2) 高分子固体電解質用組成物の調製  (2) Preparation of composition for polymer solid electrolyte
アルゴン雰囲気下において、 上記の操作で得られたブロック ·グラフト共重合 体 [BG— 2] 2 gを、 アセトン 1 8 gに溶解させ、 L i C 1 O40. 1 7 gを 加えて均一に溶解させて高分子固体電解質用樹脂組成物を調製した。 Under an argon atmosphere, block graft copolymer obtained in the above procedure [BG-2] to 2 g, was dissolved in acetone 1 8 g, was added to L i C 1 O 4 0. 1 7 g uniform To prepare a resin composition for a solid polymer electrolyte.
(3) 高分子固体電解質膜作製、 及びイオン伝導度測定  (3) Preparation of solid polymer electrolyte membrane and measurement of ionic conductivity
上記組成物を実施例 1におけると同様にして高分子固体電解質膜を調製し、 ィ オン伝導度を測定したところ、 23°Cで 2x10—4S/cmであった。 - 実施例 3 In the same manner as in the composition in Example 1 to prepare a solid polymer electrolyte membrane, was measured I on conductivity was at 23 ° C 2x10- 4 S / cm . -Example 3
(1) ブロック ·グラフト共重合体の合成  (1) Synthesis of block / graft copolymer
S t l 90mmo lと、 2, 2, 6, 6—テトラメチル— 1ーピベリジニルォ キシ 0. 56mmo 1と、 ベンゾィルパーオキサイド 0. 47mmo lとを均一 に混合し、 15分間窒素バブリングを行った後、 窒素雰囲気下、 9 5°Cで 3. 5 時間保持後、 125°Cに昇温して重合反応を開始させた。 重合反応を開始してか ら 30時間後、 反応液を 0°Cに冷却する事により重合反応を停止させた。 反応液 を THFで希釈、 均一溶液とした後、 大量のメタノール中に投入してポリマーを 析出させ、 濾過、 洗浄後、 得られたポリマーを 60°Cで 5時間減圧乾燥した。 得 られたポリマーの単離収率は、 64%であった。 さらに、 得られたポリ S tにつ いて GP C分析を行ったところ、 Mn = 43, 100、 PD= 1. 35であった。 次いで、 得られたポリ S t lmmo 1と、 4 CMS 239mmo 1とを均一に 混合し、 1 5分間窒素パブリングを行った後、 窒素雰囲気下、 125°Cに昇温し て共重合反応を開始させた。 共重合反応を開始して 5時間後に、 反応液を 0でに 冷却して共重合反応を停止させた。 GC分析の結果 4 CMSの重合転化率は 2 0 %であった。 反応液を THFで希釈、 均一溶液とした後、 大量のメタノール中 に投入してポリマーを析出させ、 濾過、 洗浄後、 得られたポリマーを 60°Cで 5 時間減圧乾燥した。 このポリマーについて GP C分析を行ったところ、 Mn=5 0, 000、 PD= 1. 37であるポリ (S t— b— 4CMS) の構造を有する ブロック共重合体 [P— 3] であった。 Stol 90 mmol, 2,2,6,6-tetramethyl-1-piberidinyloxy 0.56 mmo 1 and benzoyl peroxide 0.47 mmol were uniformly mixed, and nitrogen bubbling was performed for 15 minutes. After maintaining at 95 ° C for 3.5 hours in a nitrogen atmosphere, the temperature was raised to 125 ° C to start the polymerization reaction. Thirty hours after the initiation of the polymerization reaction, the polymerization reaction was stopped by cooling the reaction solution to 0 ° C. The reaction solution was diluted with THF to form a homogeneous solution, and then poured into a large amount of methanol to precipitate a polymer. After filtration and washing, the obtained polymer was dried under reduced pressure at 60 ° C for 5 hours. The isolation yield of the obtained polymer was 64%. In addition, GPC analysis of the obtained poly-St revealed Mn = 43,100 and PD = 1.35. Next, the obtained poly Stlmmo 1 and 4 CMS 239 mmo 1 were uniformly mixed, nitrogen publishing was performed for 15 minutes, and then the temperature was increased to 125 ° C under a nitrogen atmosphere. To initiate the copolymerization reaction. Five hours after the start of the copolymerization reaction, the reaction solution was cooled to 0 to stop the copolymerization reaction. As a result of GC analysis, the polymerization conversion rate of 4 CMS was 20%. The reaction solution was diluted with THF to form a homogeneous solution, and then poured into a large amount of methanol to precipitate a polymer. After filtration and washing, the obtained polymer was dried under reduced pressure at 60 ° C for 5 hours. GPC analysis of this polymer revealed that it was a block copolymer [P-3] having the structure of poly (St-b-4CMS) with Mn = 50,000 and PD = 1.37. .
ついで、 窒素雰囲気下において、 予め窒素バブリング処理を行ったトルエン 7 0 gに、 上記ブロック共重合体 [P— 3] 0. lmmo 1と、 メトキシポリェチ レングリコールモノメタクリレート (日本油脂 (株) 製、 ブレンマー PME— 4 00、 式 (VIII) において e 1 = 9) 5 lmmo 1と、 塩化銅 [1] 0. 1mm o 1と、 ビビリジン 0. 2mmo 1とを加えて均一に混合後、 攪拌下、 80°Cに 加温して共重合反応を開始させた。 共重合反応を開始してから 1 5時間後に、 反 応系の温度を 0°Cに冷却して共重合反応を停止させた。 GPC分析の結果、 PM E— 400の重合転化率は 60 %であった。 反応液のカラム精製を行って金属錯 体、 及び未反応モノマーを除去した後、 減圧下に揮発分を除去してポリマーを得 た。 このポリマーについて GP C分析を行ったところ、 Mn= 1 85, 000、 PD= 1. 42のポリマーであり、 また、 13CNMRを測定したところ、 共重合 体中の総繰り返し単位モル数に対する、 4 CMS繰り返し単位、 S t繰り返し単 位、 及び PME— 400繰り返し単位のモル数の比率が、 各々 6. 2 %、 56. 6%、 37. 2 %であるポリ (S t— b— (CMS— g— PME— 400)) の 構造を有するブロック ·グラフト共重合体 [BG— 3] であった。 Then, in a nitrogen atmosphere, 70 g of toluene which had been subjected to nitrogen bubbling in advance, 70 ml of the above block copolymer [P-3], lmmo 1 and methoxypolyethylene glycol monomethacrylate (manufactured by NOF Corporation, PME-400, e 1 = 9) in formula (VIII) 5 lmmo 1, 0.1 mmo 1 of copper chloride [1], and 0.2 mmo 1 of viviridine are added and uniformly mixed. The copolymerization reaction was started by heating to ° C. After 15 hours from the start of the copolymerization reaction, the temperature of the reaction system was cooled to 0 ° C to stop the copolymerization reaction. As a result of GPC analysis, the polymerization conversion rate of PM E-400 was 60%. The reaction solution was subjected to column purification to remove the metal complex and unreacted monomer, and then volatile components were removed under reduced pressure to obtain a polymer. GPC analysis of this polymer revealed that it was a polymer with Mn = 185,000 and PD = 1.42, and 13 CNMR was measured. CMS repeat unit, St repeat unit, and PME—Poly (St-b— (CMS—) with a molar ratio of 400 repeat units of 6.2%, 56.6%, and 37.2%, respectively. g-PME-400)) and a block-graft copolymer [BG-3].
また、 得られたブロック ,グラフト共重合体 [BG— 3] を実施例 1と同様に 成膜し、 得られたフィルムの透過型電子顕微鏡観察を行ったところ、 実施例 1に おけると同様の海島型のミク口相分離構造を有していた。  Further, the obtained block and graft copolymer [BG-3] were formed into a film in the same manner as in Example 1, and the obtained film was observed with a transmission electron microscope, and the same result as in Example 1 was obtained. It had a sea-island type Miku mouth phase separation structure.
(2) 高分子固体電解質用樹脂組成物の調製  (2) Preparation of resin composition for polymer solid electrolyte
アルゴン雰囲気下において、 上記の操作で得られたブロック ·グラフ卜共重合体The block graft copolymer obtained by the above operation under an argon atmosphere
[BG- 3] 2 gをアセトン 1 8 gに溶解させ、 L i C l〇40. 1 5 gを加え て均一に溶解させて高分子固体電解質用樹脂組成物を調製した。 (3) 高分子固体電解質膜作製、 及びイオン伝導度測定 [BG-3] a 2 g was dissolved in acetone 1 8 g, was L i C L_〇 4 0. 1 5 g was dissolved uniformly added to prepare a solid polymer electrolyte resin composition. (3) Preparation of solid polymer electrolyte membrane and measurement of ionic conductivity
上記組成物を実施例 1におけると同様にして高分子固体電解質膜を作製、 ィォ ン伝導度を測定したところ、 23°Cで 8x10—5s Zcmであった。 A polymer solid electrolyte membrane was prepared from the above composition in the same manner as in Example 1, and the ion conductivity was measured. As a result, it was 8 × 10 -5 s Zcm at 23 ° C.
実施例 4 Example 4
(1) ブロック ·グラフト共重合体の合成  (1) Synthesis of block / graft copolymer
窒素雰囲気下において、予め窒素バブリング処理を行ったトルエン 10 5 gに、 実施例 2で製造したブロック共重合体 [P— 2] 0. lmmo l、 PME— 40 0 75mmo l、 クロ口ペンタメチルシクロペンタジェニルビス (トリフエ二 ルホスフィン) ルテニウム 0. 02 mm o 1を加えて均一に混合後、 ジー n—ブ チルァミン 0. 2mmo 1を加え、 攪拌下、 100 °Cに加温して重合反応を開始 させた。 重合反応を開始してから 45時間後に、 反応液を 0°Cに冷却して共重合 反応を停止させた。 GC分析の結果、 PME— 400の重合転化率は 50 %であ つた。 反応液のカラム精製を行って、 金属錯体、 及び未反応モノマーを除去した 後、 減圧下に揮発分を除去してポリマーを得た。 このポリマーについて GP C分 析を行ったところ、 Mn= 230, 000、 PD= 1. 57であり、 また、 13C NMRを測定したところ、 共重合体中の総繰り返し単位モル数に対する、 4 CM S繰り返し単位、 S t繰り返し単位、 及び PME— 400繰り返し単位のモル数 の比率が、 各々、 9. 5%、 44. 2%、 46. 3 %であるポリ (S t— b— (4 CMS— g— PME— 400) -b-S t) の構造を有するブロック ·グラフト 共重合体 [BG—4] であった。 Under a nitrogen atmosphere, 105 g of toluene previously subjected to a nitrogen bubbling treatment was added to 105 g of the block copolymer [P-2] produced in Example 2. 0.1 lmmol, PME-400 750 mmol, Add pentagenyl bis (triphenylphosphine) ruthenium (0.02 mmo1) and mix uniformly, then add di-n-butylamine (0.2 mmo1) and heat to 100 ° C under stirring to carry out the polymerization reaction. Started. Forty-five hours after the start of the polymerization reaction, the reaction solution was cooled to 0 ° C. to stop the copolymerization reaction. As a result of GC analysis, the polymerization conversion of PME-400 was 50%. The reaction solution was subjected to column purification to remove metal complexes and unreacted monomers, and then volatile components were removed under reduced pressure to obtain a polymer. GPC analysis of this polymer gave Mn = 230,000 and PD = 1.57. When 13 C NMR was measured, it was found that 4 CM relative to the total number of moles of repeating units in the copolymer was obtained. Poly (St-b- (4 CMS) in which the molar ratio of S repeating unit, St repeating unit, and PME-400 repeating unit is 9.5%, 44.2%, and 46.3%, respectively. — G— PME—400) -bSt) Block-graft copolymer [BG-4].
得られたブロック ·グラフ卜共重合体 [BG— 4] を実施例 1と同様に成膜し、 得られたフィルムの透過型電子顕微鏡観察を行つたところ、 実施例 1におけると 同様の海島型のミクロ相分離構造を有していた。  The obtained block graft copolymer [BG-4] was formed into a film in the same manner as in Example 1, and the obtained film was observed with a transmission electron microscope. Having a microphase-separated structure of
(2) 高分子固体電解質用樹脂組成物の調製  (2) Preparation of resin composition for polymer solid electrolyte
アルゴン雰囲気下において、 上記の操作で得られたブロック ·グラフ卜共重合 体 [BG—4] 2 gをアセトン 1 8 gに溶解させ、 L i C 1 Ο40· 1 5 gを加 えて均一に溶解させて高分子固体電解質用樹脂組成物を調製した。 Under an argon atmosphere, the resulting block graph Bok copolymer steps above [BG-4] to 2 g was dissolved in acetone 1 8 g, L i C 1 Ο 4 0 · 1 5 g pressurized forte uniform To prepare a resin composition for a solid polymer electrolyte.
(3) 高分子固体電解質膜作製、 及びイオン伝導度測定  (3) Preparation of solid polymer electrolyte membrane and measurement of ionic conductivity
上記組成物を実施例 1におけると同様にして高分子固体電解質膜を作製、 ィォ ン伝導度を測定したところ、 23 °Cで 9x10-5sZcmであった。 A polymer solid electrolyte membrane was prepared from the above composition in the same manner as in Example 1, and Its conductivity was 9 × 10 −5 sZcm at 23 ° C.
比較例 1 Comparative Example 1
(1) ランダム ·グラフ小共重合体の合成  (1) Synthesis of random-graph small copolymer
メタアクリル酸メチル (以下、 MM Aと記す) 40m l、 4 CMS 0. 5m l、 ァゾビスイソプチロニトリル 0. 03 gをトルエン 20m 1に溶解し、 1 5分間 アルゴンガスでパブリング後、 アルゴン雰囲気下、 8 O :に昇温して 3時間共重 合反応を行った。 反応液を室温に冷却した後、 大量のメタノール中に投入してポ リマーを析出させ、 濾過、 乾燥後、 60°Cで 5時間減圧乾燥し、 単離収率 41 % でポリマーを得た。 このポリマーについて GP C分析を行ったところ、 Mn= l 33, 000、 PD= 2. 5 1であり、 また、 13C NM Rを測定したところ、 4 CMS単位を 0. 93モル%含むポリ (MMA— r— 4 CMS) の構造を有する ランダム共重合体であった。 Methyl methacrylate (hereinafter referred to as MMA) 40 ml, 4 CMS 0.5 ml, 0.03 g of azobisisobutyronitrile are dissolved in 20 ml of toluene, and argon gas is bubbled for 15 minutes, followed by argon. Under an atmosphere, the temperature was raised to 8 O: to carry out a copolymerization reaction for 3 hours. After the reaction solution was cooled to room temperature, it was poured into a large amount of methanol to precipitate a polymer, which was filtered, dried, and dried under reduced pressure at 60 ° C. for 5 hours to obtain a polymer with an isolation yield of 41%. GPC analysis of this polymer revealed that Mn = l33,000, PD = 2.51, and that 13 CNMR was measured, the polymer containing 0.93 mol% of 4 CMS units (0.93 mol%) MMA—r—4 CMS).
次いで、 アルゴン雰囲気下において、 予めアルゴンパブリング処理を行ったト ルェン 1 12 gに、 得られたポリ (MMA— r— 4 CMS) 0. lmmo l、 P ME- 400 7 Ommo 1、 塩化第一銅 0. 1 mm o 1、 4, 4 '―ジメチル - 2, 2'—ジピリジル 0. 2mmo 1を加えて均一に混合後、 攪拌下、 90 °C に加温して共重合反応を開始させた。 共重合反応を開始してから 40時間後に、 反応系の温度を 0°Cに冷却して共重合反応を停止させた。 G PC分析の結果、 重 合転化率は 50 %であった。 反応液のカラム精製を行って、 金属錯体、 未反応モ ノマーを除去した後、 減圧下に揮発分を除去してポリマーを得た。 このポリマー について GP C分析を行ったところ、 Mn = 283, 000、 PD= 2. 28で あり、 また、 13CNMRを測定したところ、 'ポリエチレンオキサイド成分を 42. 4重量%含有する、 ポリ (MMA— r— (4CMS-g-PME-400)) の 構造を有するランダム ·グラフト共重合体であった。 Then, in an argon atmosphere, the obtained poly (MMA-r-4CMS) 0.1 lmmol, PME-400 7 Ommo 1, Add 0.1 mmo 1,4,4'-dimethyl-2,2'-dipyridyl copper 0.2 mmo 1 and mix uniformly, then heat to 90 ° C with stirring to start the copolymerization reaction. Was. Forty hours after the start of the copolymerization reaction, the temperature of the reaction system was cooled to 0 ° C. to stop the copolymerization reaction. As a result of GPC analysis, the polymerization conversion was 50%. The reaction solution was subjected to column purification to remove metal complexes and unreacted monomers, and then volatile components were removed under reduced pressure to obtain a polymer. GPC analysis of this polymer revealed that Mn = 283,000 and PD = 2.28, and 13 C NMR measurement showed that the polymer (MMA containing 42.4% by weight of a polyethylene oxide component) — R— (4CMS-g-PME-400)).
また、 得られたランダム ·グラフト共重合体を THFに溶解し、 実施例 1と同 様に成膜したフィルムの透過型電子顕微鏡観察を行ったところ、 ミクロ相分離構 造は観察されず均一構造であった。  When the obtained random graft copolymer was dissolved in THF and the film formed in the same manner as in Example 1 was observed with a transmission electron microscope, a microphase-separated structure was not observed and a uniform structure was observed. Met.
(2) 高分子固体電解室用樹脂組成物の調製  (2) Preparation of resin composition for polymer solid electrolytic chamber
アルゴン雰囲気下において、 上記の操作で得られたランダム ·グラフト共重合 体 2 gを THF 1 8 gに溶解させ、 L i C l〇40. l gを加えて均一に溶解さ せて高分子固体電解質用樹脂組成物を調製した。 The random graft copolymer obtained by the above operation under an argon atmosphere The body 2 g was dissolved in THF 1 8 g, to prepare a solid polymer electrolyte resin composition was uniformly dissolved by adding L i C L_〇 4 0. lg.
(3) 高分子固体電解質膜調製、 及びイオン伝導度測定  (3) Polymer solid electrolyte membrane preparation and ionic conductivity measurement
アルゴン雰囲気下において、 上記組成物をテフロン (登録商標) 板に流延し、 室温で 24時間減圧乾燥を行って均一な高分子固体電解質膜を得た (膜厚 100 m 得られた高分子個体電解質膜について、 実施例 1におけると同様にして イオン伝導度を測定した。 また、 同様にして得られた高分子個体電解質膜につい て、 乾燥条件を室温で 24時間、 更に 60°Cで 24時間減圧乾燥を行った高分子 固体電解質膜についてもイオン伝導度を測定した。 その結果、 25°Cにおけるィ オン伝導度は、 室温乾燥したものも、 室温乾燥後更に加温乾燥したものも、 1〜 2x10-6s Zcmであった。 In an argon atmosphere, the above composition was cast on a Teflon (registered trademark) plate and dried under reduced pressure at room temperature for 24 hours to obtain a uniform polymer solid electrolyte membrane (polymer solid having a thickness of 100 m). The ionic conductivity of the electrolyte membrane was measured in the same manner as in Example 1. The solid polymer electrolyte membrane obtained in the same manner was dried at room temperature for 24 hours and further at 60 ° C. for 24 hours. The ionic conductivity of the polymer solid electrolyte membrane dried under reduced pressure was also measured, and as a result, the ion conductivity at 25 ° C was determined for both those dried at room temperature and those dried at room temperature and then heated. was ~ 2x10- 6 s Zcm.
比較例 2 Comparative Example 2
(1) ブロック ·グラフ卜共重合体の合成  (1) Synthesis of block graft copolymer
t一ブチルァクリレート (以下、 t BAと記す) 1 20mmo lと、 2, 2, 5—卜リメチル一 3— フエニルエトキシ) — 4—フエ二ルー 3—ァザへ キサン 1. 07 mm o 1とを均一に混合し、 1 5分間窒素パブリングを行った後、 窒素雰囲気下、 1 25°Cに加温して重合反応を開始させた。 重合反応を開始して から 1 5時間後に、 反応液を 0°Cに冷却して重合反応を停止させた。 反応液を T HFに溶解後、 大量のメタノール中に投入してポリマーを析出させ、 濾過、 洗浄 後、 60°Cで 5時間減圧乾燥を行った。 得られたポリマーの単離収率は、 78% であった。得られたポリ t BAについて GP C分析を行ったところ、 Mn= 10, 800、 PD= 1. 2 1であった。  t-Butyl acrylate (hereinafter referred to as tBA) 1 20mmol and 2,2,5-trimethyl-1-3-phenylethoxy) — 4-phenyl-3-azahexane 1.07 mm After uniformly mixing o and 1 and performing nitrogen publishing for 15 minutes, the mixture was heated to 125 ° C under a nitrogen atmosphere to start a polymerization reaction. After 15 hours from the start of the polymerization reaction, the reaction solution was cooled to 0 ° C to stop the polymerization reaction. After dissolving the reaction solution in THF, the polymer was poured into a large amount of methanol to precipitate a polymer, which was filtered, washed, and dried under reduced pressure at 60 ° C for 5 hours. The isolation yield of the obtained polymer was 78%. When GPC analysis was performed on the obtained poly-tBA, it was Mn = 10,800 and PD = 1.21.
次いで、 得られたポリ t B A lmmo 1と、 4 CMS 10 Ommo 1とを均一 に混合し、 15分間窒素パブリングを行った後、 125°Cに加温して共重合反応 を開始させた。 共重合反応を開始して 5時間後に、 反応液を 0°Cに冷却して共重 合反応を停止させた。 GC分析の結果、 4CMSの重合転化率は 20 %であった。 反応液を THFに溶解後、 大量のメタノール中に投入してポリマーを析出させ、 濾過、 洗浄後、 得られたポリマーを 60°Cで 5時間減圧乾燥した。 このポリマー について GP C分析を行ったところ、 Mn= 13, 700、 PD= 1. 23であ るポリ (t BA— b— 4 CMS) の構造を有するブロック共重合体であった。 次いで、 窒素雰囲気下において、 予め窒素パブリング処理を行ったトルエン 4 2 gに、上記ポリ (t BA_b— 4 CMS) 0. lmmo 1、 PME— 1000 1 5mmo 1、 塩化第一銅 0. lmmo l、 2, 2,—ビビリジン 0. 2mmo l を加えて均一に混合後、 撹拌下、 80でに加温して共重合反応を開始させた。 共 重合反応を開始して 20時間後に、 反応系の温度を 0°Cに冷却して共重合反応を 停止させた。 G PC分析の結果、 PME— 1000の重合転化率は 68 %であつ た。 反応液のカラム精製を行って、 金属錯体、 未反応モノマーを除去した後、 減 圧下に揮発分を除去してポリマーを得た。 このポリマーについて GP C分析を行 つたところ、 Mn= 1 2 1, 000、 PD= 1. 30であり、 また、 13CNMR 分析を行ったところ、 共重合体中の総繰り返し単位モル数に対する、 4 CMS繰 り返し単位、 t BA繰り返し単位、 及び PME— 1000繰り返し単位のモル数 の比率が、 各々、 9. 5%、 42. 3%、 48. 2%であるポリ (t BA— b— (4CMS- g-PME- 1000)) の構造を有するブロック ·グラフト共重 合体であった。 Next, the obtained poly-tBA lmmo 1 and 4 CMS 10 Ommo 1 were uniformly mixed, nitrogen publishing was performed for 15 minutes, and the mixture was heated to 125 ° C. to start a copolymerization reaction. Five hours after the start of the copolymerization reaction, the reaction solution was cooled to 0 ° C to stop the copolymerization reaction. As a result of GC analysis, the polymerization conversion of 4CMS was 20%. The reaction solution was dissolved in THF and poured into a large amount of methanol to precipitate a polymer. After filtration and washing, the obtained polymer was dried under reduced pressure at 60 ° C for 5 hours. GPC analysis of this polymer showed that Mn = 13,700 and PD = 1.23. Block copolymer having the structure of poly (tBA-b-4CMS). Then, in a nitrogen atmosphere, 42 g of toluene previously subjected to a nitrogen publishing treatment was added to the above poly (t BA_b-4 CMS) 0.1 lmmo 1, PME 1000 1000 mmo 1, cuprous chloride 0.1 lmmol, After adding 0.2 mmol of 2,2, -biviridine and mixing uniformly, the mixture was heated to 80 with stirring to start the copolymerization reaction. Twenty hours after the start of the copolymerization reaction, the temperature of the reaction system was cooled to 0 ° C to stop the copolymerization reaction. As a result of GPC analysis, the polymerization conversion of PME-1000 was 68%. After column purification of the reaction solution to remove metal complexes and unreacted monomers, volatile components were removed under reduced pressure to obtain a polymer. GPC analysis of this polymer revealed that Mn = 12,000 and PD = 1.30. 13 CNMR analysis showed that the polymer had a value of 4 based on the total number of moles of repeating units in the copolymer. CMS repeat unit, tBA repeat unit, and PME—Poly (tBA—b— (), in which the molar ratio of 1000 repeat units is 9.5%, 42.3%, and 48.2%, respectively. It was a block / graft copolymer having the structure of 4CMS-g-PME-1000)).
得られたブロック ·グラフト共重合体を実施例 1と同様に成膜し、 得られたフ ィルムの透過型電子顕微鏡観察を行つたところ、ミク口相分離構造は観察されず、 均一構造であった。  The obtained block / graft copolymer was formed into a film in the same manner as in Example 1, and the obtained film was observed with a transmission electron microscope. As a result, no micro-mouth phase separation structure was observed and the film had a uniform structure. Was.
(1) 高分子固体電解質用樹脂組成物の調製  (1) Preparation of resin composition for polymer solid electrolyte
アルゴン雰囲気下において、 上記の操作で得られたブロック ·グラフト共重合 体' 2 gをアセトン 1 8 gに溶解させ、 L i C l O40. 2 gを加えて均一に溶解 させて高分子固体電解質用樹脂組成物を調製した。 Under an argon atmosphere, 2 g of the block / graft copolymer obtained in the above procedure was dissolved in 18 g of acetone, and 0.2 g of LiClO 4 was added to uniformly dissolve the polymer. A resin composition for a solid electrolyte was prepared.
(2) 高分子固体電解膜作製、 及びイオン伝導度測定  (2) Preparation of solid polymer electrolyte membrane and measurement of ionic conductivity
上記組成物を実施例 1におけると同様にして高分子固体電解質膜を作製、 ィォ ン伝導度を測定したところ、 23°Cで 3x10—5sZcmであった。 A polymer solid electrolyte membrane was prepared from the above composition in the same manner as in Example 1, and the ion conductivity was measured. As a result, it was 3 × 10 −5 sZcm at 23 ° C.
産業上の利用可能性: Industrial applicability:
以上述べたように、 本発明の新規グラフト共重合体は、 薄膜において海島構造 の相分離構造を有するため、 電解質との複合体において、 高い伝導性を有すると ともに、 優れた機械的、 物理的性質を有することから、 電池等の各種電気デバィ スの固体電解質として有用であり、 産業上の利用可能性は高いといえる。 As described above, since the novel graft copolymer of the present invention has a sea-island structure phase separation structure in a thin film, it has high conductivity and excellent mechanical and physical properties in a composite with an electrolyte. Because of its properties, various electric devices such as batteries It is useful as a solid electrolyte for metals and has high industrial applicability.

Claims

請求の範囲 The scope of the claims
式 (I)  Formula (I)
Figure imgf000034_0001
Figure imgf000034_0001
(式中、 は、 水素原子、 または置換基を有してもよい C 1〜(: 10炭化水素 基を表し、 R2は、 活性ハロゲン原子を有することのできる官能基を表し、 R3 は、 ハロゲン原子、 または有機基を表し、 Xは、 式 (II) (In the formula, represents a hydrogen atom or a C 1 to (: 10 hydrocarbon group which may have a substituent, R 2 represents a functional group capable of having an active halogen atom, and R 3 represents , A halogen atom or an organic group, and X is a group represented by the formula (II)
Figure imgf000034_0002
Figure imgf000034_0002
(式中、 R4は、 水素原子、 または置換基を有してもよい C 1〜C 10炭化水素 基を表し、 R51、 及び R52は、 それぞれ独立して、 水素原子、 またはまたは C 1〜C4アルキル基を表し、 R6は、 水素原子、 炭化水素基、 ァシル基、 シリル 基、 ホスホリル基、 炭化水素ホスホリル基、 または炭化水素スルホ二ル基を表し、 は、 1〜1000のいずれかの整数を表し、 dが 2以上の場合には、 R4同士、 R51同士、 R52同士、 R6同士、 及び e同士は、 同一または相異なっていても よく、 eは、 1〜 100のいずれかの整数を表し、 eが 2以上の場合には、 R5 t同士、 及び R52同士は、 同一または相異なっていてもよい。) で表される繰り 返し単位を有する有する重合体鎖を表し、 aは、 1〜3のいずれかの整数を表し、 aが 2以上の場合、 R2同士、 及び X同士は、 同一または相異なっていてもよく、 bは、 1または 2を表し、 bが 2の場合、 X同士は、 同一でも相異なっていても よく、 cは 0または 1〜 (4— a) のいずれかの整数を表し、 cが 2以上の場合、 R3同士は、 同一または相異なっていてもよい。) で表される繰り返し単位、 及 び非極性部位からなる繰り返し単位を有することを特徴とする共重合体。 (Wherein, R 4 represents a hydrogen atom or a C 1 -C 10 hydrocarbon group which may have a substituent, and R 51 and R 52 each independently represent a hydrogen atom, or Represents a 1 to C4 alkyl group, R 6 represents a hydrogen atom, a hydrocarbon group, an acyl group, a silyl group, a phosphoryl group, a hydrocarbon phosphoryl group, or a hydrocarbon sulfonyl group; represents Kano integer, when d is 2 or more, R 4 together, each other R 51, R 52 together, R 6 to each other, and e each other, may be the same or different, e is 1 Represents an integer of 100, and when e is 2 or more, R 5 t and R 52 may be the same or different from each other.) Represents a merging chain, a represents an integer of 1 to 3, when a is 2 or more, R 2 and X May be the same or different; b represents 1 or 2; when b is 2, Xs may be the same or different; c is 0 or any of 1 to (4-a) And when c is 2 or more, R 3 's may be the same or different. A copolymer having a repeating unit represented by the formula: and a repeating unit comprising a nonpolar moiety.
2. 式 (I) 中、 R2が、 式 αν)
Figure imgf000035_0001
2. In the formula (I), R 2 is the formula αν)
Figure imgf000035_0001
(式中、 R9及び 。は、 それぞれ独立して、 水素原子、 ハロゲン原子、 または 置換基を有していてもよい C 1〜C 1 0炭化水素基を表し、 式 (I) における b が 2の場合には、 Xとの結合手を表す。) で表される官能基であることを特徴と する請求項 1に記載の共重合体。 (Wherein, R 9 and R independently represent a hydrogen atom, a halogen atom, or a C 1 -C 10 hydrocarbon group which may have a substituent, and b in the formula (I) represents 2. In the case of 2, it represents a bond to X.) The copolymer according to claim 1, which is a functional group represented by the following formula:
3. 式 (I) で表される繰り返し単位の重合度が、 3以上であることを特徴とす る請求項 1または 2に記載の共重合体。  3. The copolymer according to claim 1, wherein the degree of polymerization of the repeating unit represented by the formula (I) is 3 or more.
4. 非極性部位からなる繰り返し単位の重合度が、 5以上であることを特徴とす る請求項 1〜 3のいずれかに記載の共重合体。  4. The copolymer according to any one of claims 1 to 3, wherein the degree of polymerization of the repeating unit comprising a nonpolar moiety is 5 or more.
5. 式 (Π) で表される繰り返し単位を有する重合体鎖中、 式 (Π) で表される 繰り返し単位の重合度が、 5以上であることを特徴とする請求項 1〜4のいずれ かに記載の共重合体。  5. The polymer chain having a repeating unit represented by the formula (Π), wherein the degree of polymerization of the repeating unit represented by the formula (Π) is 5 or more. Or the copolymer described in the above.
6. 式 (I) で表される繰り返し単位と非極性部位からなる繰り返し単位が、 ブ 口ック共重合していることを特徴とする請求項 1〜 5のいずれかに記載の共重合 体。  6. The copolymer according to any one of claims 1 to 5, wherein the repeating unit represented by the formula (I) and the repeating unit comprising a nonpolar moiety are in a block copolymer. .
7. 式 (I) で表される繰り返し単位を有するブロック鎖 (A) と同一でも相異 なっていてもよい非極性部位からなる繰り返し単位を有するブロック鎖 (B) 及 び (C) が、 (B)、 (A)、 (C) の順の配置を有することを特徴とする請求項 1 〜 6のいずれかに記載の共重合体。  7. Block chains (B) and (C) having a repeating unit composed of a nonpolar moiety which may be the same as or different from the block chain (A) having a repeating unit represented by the formula (I) are The copolymer according to any one of claims 1 to 6, wherein the copolymer has an arrangement of (B), (A), and (C).
8. (B)、 (A)、 (C) の順の配置が、 (B) — (A) ― (C) の結合した配列で あることを特徴とする請求項 7に記載の共重合体。  8. The copolymer according to claim 7, wherein the arrangement in the order of (B), (A), and (C) is a combined sequence of (B)-(A)-(C). .
9. 式 (I) で表される繰り返し単位、 式 (Π) で表されるくり返し単位、 及び 非極性部位からなる繰り返し単位の総モル数に対して、 式 (I) で表される繰り 返し単位のモル数が、 0. 00 1〜 50%の範囲であることを特徴とする請求項 9. For the total number of moles of the repeating unit represented by the formula (I), the repeating unit represented by the formula (Π), and the repeating unit comprising a nonpolar moiety, the repeating represented by the formula (I) The mole number of the unit is in the range of 0.001 to 50%.
1〜 8のいずれかに記載の共重合体。 9. The copolymer according to any one of 1 to 8.
10. 式 (I) で表される繰り返し単位、 式 (II) で表されるくり返し単位、 及 び非極性部位からなる繰り返し単位の総モル数に対して、 式 (Π) で表される繰 り返し単位のモル数が、 9. 999〜 80 %の範囲であることを特徴とする請求 項 1〜 9のいずれかに記載の共重合体。 10. A repeating unit represented by the formula (I), a repeating unit represented by the formula (II), and And wherein the number of moles of the repeating unit represented by the formula (9.) is in the range of 9.999 to 80% based on the total number of moles of the repeating unit comprising a non-polar moiety. 10. The copolymer according to any one of 1 to 9.
1 1. 式 (I) で表される繰り返し単位、 式 (II) で表されるくり返し単位、 及 び非極性部位からなる繰り返し単位の総モル数に対して、 非極性部位からなる繰 り返し単位のモル数が、 19. 999〜90 %の範囲であることを特徴とする請 求項 1〜 10のいずれかに記載の共重合体。  1 1. The repeating unit consisting of the non-polar moiety relative to the total number of moles of the repeating unit represented by the formula (I), the repeating unit represented by the formula (II), and the repeating unit consisting of the non-polar moiety. The copolymer according to any one of claims 1 to 10, wherein the number of moles of the unit is in the range of 19.999 to 90%.
12. 非極性部位からなる繰り返し単位が、 式 (III)
Figure imgf000036_0001
12. A repeating unit comprising a nonpolar moiety is represented by the formula (III)
Figure imgf000036_0001
(式中、 R7は、 水素原子、 または置換基を有してもよい C 1〜( 10炭化水素 基を表し、 R8は、 置換基を有していてもよい炭化水素基を表す。) で表される 繰り返し単位であることを特徴とする請求項 1〜 1 1のいずれかに記載の共重合 体。 (In the formula, R 7 represents a hydrogen atom or a C 1 to (10 hydrocarbon group which may have a substituent, and R 8 represents a hydrocarbon group which may have a substituent.) The copolymer according to any one of claims 1 to 11, which is a repeating unit represented by the following formula:
13. 式 (ΙΠ) 中、 R8が、 置換基を有していてもよい芳香族炭化水素基である ことを特徴とする請求項 1 2に記載の共重合体。 13. The copolymer according to claim 12, wherein in the formula (II), R 8 is an aromatic hydrocarbon group which may have a substituent.
14. 式 (III) で表される繰り返し単位が、 式 (V)  14. The repeating unit represented by the formula (III) is represented by the formula (V)
Figure imgf000036_0002
Figure imgf000036_0002
(式中、 は、 水素原子、 または、 メチル基を表す。) で表される繰り返し単 位であることを特徴とする請求項 1〜 13のいずれかに記載の共重合体。  (Wherein represents a hydrogen atom or a methyl group.) The copolymer according to any one of claims 1 to 13, wherein the repeating unit is represented by the following formula:
15. 数平均分子量が、 10, 000〜5, 000, 000の範囲であることを 特徴とする請求項 1〜14のいずれかに記載の共重合体。  15. The copolymer according to any one of claims 1 to 14, wherein the number average molecular weight is in the range of 10,000 to 5,000,000.
16. 式 (VI)
Figure imgf000037_0001
16. Equation (VI)
Figure imgf000037_0001
(式中、 は、 水素原子、 または置換基を有してもよい C 1〜(: 10炭化水素 基を表し、 R12は、 活性ハロゲン原子を有することのできる官能基を表し、 Y は、 ハロゲン原子を表し、 R13は、 八ロゲン原子、 または有機基を表し、 a l は、 1〜3のいずれかの整数を表し、 a lが、 2以上の場合、 R12同士、 Y同 士、 及び b l同士は、 同一でも相異なっていてもよく、 b lは、 1または 2を表 し、 b lが 2の場合、 Y同士は、 同一でも相異なっていてもよく、 ( 1は0また は 1〜 (4— a l) のいずれかの整数を表し、 c lが 2以上の場合、 R13同士 は、 同一でも相異なっていてもよい。) で表される化合物と、 式 (VII) (In the formula, represents a hydrogen atom or a C 1 to (: 10 hydrocarbon group which may have a substituent, R 12 represents a functional group capable of having an active halogen atom, and Y is Represents a halogen atom, R 13 represents an octogen atom or an organic group, al represents an integer from 1 to 3, and when al is 2 or more, R 12 and Y, and bl may be the same or different; bl represents 1 or 2; when bl is 2, Y may be the same or different; (1 is 0 or 1 to And R 13 is the same or different when cl is 2 or more, and a compound represented by the formula (VII):
^17  ^ 17
H2C=C · , . (VII) H 2 C = C ·,. (VII)
、18  , 18
(式中、 R17は、 水素原子、 または置換基を有してもよい C 1〜C 10炭化水素 基を表し、 R18は、 置換基を有していてもよい芳香族炭化水素基を表す。) で表 される化合物を、 安定ラジカル系重合開始剤を用い、 リビングラジカル重合させ て共重合体を得、 次いで、 得られた共重合体を開始剤とし、 遷移金属錯体を用い て式 (VIII) (In the formula, R 17 represents a hydrogen atom or a C 1 -C 10 hydrocarbon group which may have a substituent, and R 18 represents an aromatic hydrocarbon group which may have a substituent. The compound represented by the formula is subjected to living radical polymerization using a stable radical polymerization initiator to obtain a copolymer, and then the obtained copolymer is used as an initiator, and the compound represented by the formula (VIII)
Figure imgf000037_0002
Figure imgf000037_0002
(式中、 R14は、 水素原子、 または置換基を有してもよい C 1〜(: 1 0炭化水 素基を表し、 R151、 及び R152は、 それぞれ独立して、 水素原子、 またはまた は C 1〜C4アルキル基を表し、 R16は、 水素原子、 炭化水素基、 ァシル基、 シリル基、 ホスホリル基、 炭化水素ホスホリル基、 または、 炭化水素スルホニル 基を表し、 e lは、 1〜100のずれかの整数を表し、 e lが 2以上の場合には、 R151同士、 及び R152同士は、 同一でも相異なっていてもよい。) で表される 化合物をリビングラジカル重合させることを特徴とする共重合体の製造方法。(In the formula, R 14 represents a hydrogen atom or a C 1 to (: 10 hydrocarbon group which may have a substituent, and R 151 and R 152 each independently represent a hydrogen atom, or or represents C 1~C4 alkyl group, R 16 is a hydrogen atom, a hydrocarbon group, Ashiru group, Silyl group, a phosphoryl group, a hydrocarbon phosphoryl group or a hydrocarbon sulfonyl group, el represents a deviation integer of 1 to 100, if el is 2 or more, R 151 to each other, and R 152 Each may be the same or different. A method for producing a copolymer, comprising subjecting the compound represented by the formula to living radical polymerization.
1 7. 式 (VI) 中、 R12が、 式 (IX)
Figure imgf000038_0001
1 7. In the formula (VI), R 12 is the formula (IX)
Figure imgf000038_0001
(式中、 R19及び R 。は、 それぞれ独立して、 水素原子、 ハロゲン原子、 ま たは置換基を有していてもよい C 1〜C 10炭化水素基を表し、 式 (VI) にお いて、 b lが 2の場合には、 Yとの結合手を表す。) で表される官能基であるこ とを特徴とする請求項 1 6に記載の共重合体の製造方法。 (Wherein, R 19 and R each independently represent a hydrogen atom, a halogen atom, or a C 1 -C 10 hydrocarbon group which may have a substituent. 17. The method for producing a copolymer according to claim 16, wherein, when bl is 2, it represents a bond to Y.)
1 8. 式 (VI) で表される化合物と式 (VII) で表される化合物から得られる共 重合体が、 ブロック共重合体であることを特徴とする請求項 16または 1 7に記 載の共重合体の製造方法。  18. The copolymer according to claim 16 or 17, wherein the copolymer obtained from the compound represented by the formula (VI) and the compound represented by the formula (VII) is a block copolymer. A method for producing a copolymer of
19. 安定ラジカル系開始剤が、 安定フリーラジカル化合物とラジカル重合開始 剤、 またはアルコキシァミン類からなることを特徴とする請求項 16〜1 8のい ずれかに記載の共重合体の製造方法。  19. The method for producing a copolymer according to any one of claims 16 to 18, wherein the stable radical initiator comprises a stable free radical compound and a radical polymerization initiator or an alkoxyamine. .
20. 安定フリーラジカル化合物が、 ニトロキシル化合物であることを特徴とす る請求項 19に記載の共重合体の製造方法。  20. The method for producing a copolymer according to claim 19, wherein the stable free radical compound is a nitroxyl compound.
2 1. ラジカル重合開始剤が、 有機過酸化物またはァゾ化合物であることを特徴 とする請求項 19または 20に記載の共重合体の製造方法。  21. The method for producing a copolymer according to claim 19, wherein the radical polymerization initiator is an organic peroxide or an azo compound.
22. 請求項 1〜15のいずれかに記載の共重合体、 及び電解質塩を含むことを 特徴とする高分子固体電解質。  22. A polymer solid electrolyte comprising the copolymer according to any one of claims 1 to 15, and an electrolyte salt.
23. 電解質塩が、 アルカリ金属塩、 4級アンモニゥム塩、 4級ホスホニゥム塩、 遷移金属塩、 及びプロトン酸からなる群から選ばれる少なくとも 1つであること を特徴とする請求項 22に記載の高分子固体電解質。  23. The electrolyte according to claim 22, wherein the electrolyte salt is at least one selected from the group consisting of an alkali metal salt, a quaternary ammonium salt, a quaternary phosphonium salt, a transition metal salt, and a protonic acid. Molecular solid electrolyte.
24. 電解質が、 リチウム塩であることを特徴とする請求項 23に記載の高分子 固体電解質。  24. The polymer solid electrolyte according to claim 23, wherein the electrolyte is a lithium salt.
PCT/JP2004/003055 2003-03-14 2004-03-10 Novel graft copolymer and process for producing the same WO2004081068A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005503529A JPWO2004081068A1 (en) 2003-03-14 2004-03-10 Novel graft copolymer and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003069757 2003-03-14
JP2003-069757 2003-03-14

Publications (1)

Publication Number Publication Date
WO2004081068A1 true WO2004081068A1 (en) 2004-09-23

Family

ID=32984628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003055 WO2004081068A1 (en) 2003-03-14 2004-03-10 Novel graft copolymer and process for producing the same

Country Status (2)

Country Link
JP (1) JPWO2004081068A1 (en)
WO (1) WO2004081068A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031634A1 (en) * 2011-08-31 2013-03-07 株式会社クラレ Block copolymer, polymer electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143523A (en) * 1997-07-25 1999-02-16 Shin Etsu Chem Co Ltd Block-graft copolymer and self-crosslinking solid polyelectrolyte produced by using the same and production of the polyelectrolyte
JP2000281737A (en) * 1999-01-29 2000-10-10 Shin Etsu Chem Co Ltd Manufacture of crosslinking polymer solid electrolyte
JP2002121218A (en) * 2000-10-18 2002-04-23 Nippon Shokubai Co Ltd Polymer and polymer solid electrolyte containing the same
JP2002226513A (en) * 2000-11-21 2002-08-14 Nippon Soda Co Ltd Star polymer and polyelectrolyte
JP2004107641A (en) * 2002-07-23 2004-04-08 Nippon Soda Co Ltd Solid polymer electrolyte

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143523A (en) * 1997-07-25 1999-02-16 Shin Etsu Chem Co Ltd Block-graft copolymer and self-crosslinking solid polyelectrolyte produced by using the same and production of the polyelectrolyte
JP2000281737A (en) * 1999-01-29 2000-10-10 Shin Etsu Chem Co Ltd Manufacture of crosslinking polymer solid electrolyte
JP2002121218A (en) * 2000-10-18 2002-04-23 Nippon Shokubai Co Ltd Polymer and polymer solid electrolyte containing the same
JP2002226513A (en) * 2000-11-21 2002-08-14 Nippon Soda Co Ltd Star polymer and polyelectrolyte
JP2004107641A (en) * 2002-07-23 2004-04-08 Nippon Soda Co Ltd Solid polymer electrolyte

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031634A1 (en) * 2011-08-31 2013-03-07 株式会社クラレ Block copolymer, polymer electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
JPWO2013031634A1 (en) * 2011-08-31 2015-03-23 株式会社クラレ Block copolymer, polymer electrolyte membrane, membrane-electrode assembly, and polymer electrolyte fuel cell

Also Published As

Publication number Publication date
JPWO2004081068A1 (en) 2006-06-08

Similar Documents

Publication Publication Date Title
Matyjaszewski et al. Controlled/living radical polymerization
JP5264030B2 (en) Catalytic process for the controlled polymerization of free-radically (co) polymerizable monomers and functional polymer systems produced thereby
Semsarilar et al. Polymerizations by RAFT: Developments of the Technique and Its Application in the Synthesis of Tailored (Co) polymers
JP4155882B2 (en) Polymer solid electrolyte
JP5575156B2 (en) Method for producing multibranched polymer and multibranched polymer
WO2005027144A1 (en) Composition for polymer solid electrolyte, polymer solid electrolyte, polymer, polymer solid electrolyte battery, ion-conductive membrane, copolymer and process for producing the copolymer
JP2002540234A5 (en)
US20020198338A1 (en) &#34;Living&#34; free radical polymerization process
JP2000500516A (en) Improved process based on atom (or group) transfer radical polymerization and novel (co) polymer with useful structure and properties
JP4685037B2 (en) Polymer, cross-linked polymer, composition for polymer solid electrolyte, polymer solid electrolyte, and adhesive composition
KR100976754B1 (en) Star polymer and method for producing the same
JP4992708B2 (en) Graft copolymer and method for producing the same
JP5867699B2 (en) Ionic conductor
JP2006517248A (en) Comb copolymer having specific side chain and method for producing the same
KR100955558B1 (en) Polyolefin hybrid polymer and process for production thereof
EP1637550B1 (en) Catalytic processes for the controlled polymerization of free radically (co) polymerizable monomers and functional polymeric systems prepared thereby
JP5248909B2 (en) Both-end halogenated oligoolefin and triblock copolymer using the same
WO2004081068A1 (en) Novel graft copolymer and process for producing the same
EP1688440B1 (en) Novel hyperbranched polymer
KR101946775B1 (en) Block copolymer
JP5091030B2 (en) Dendrimer, method for producing the same, and ion-conductive polymer electrolyte
Hardy Functional Block Copolymers for Applications in Advanced Materials, Energy Storage, and Lithography
JP2005008802A (en) Dendrimer and ion conductive polymer electrolyte
Carlmark Atom transfer radical polymerization from multifunctional substrates
JP2007023112A (en) Adhesive of high bond strength and method for increasing bond strength

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005503529

Country of ref document: JP

122 Ep: pct application non-entry in european phase