WO2004080568A1 - Element de filtration - Google Patents

Element de filtration Download PDF

Info

Publication number
WO2004080568A1
WO2004080568A1 PCT/IB2004/000640 IB2004000640W WO2004080568A1 WO 2004080568 A1 WO2004080568 A1 WO 2004080568A1 IB 2004000640 W IB2004000640 W IB 2004000640W WO 2004080568 A1 WO2004080568 A1 WO 2004080568A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
connection means
connection
axial
end closure
Prior art date
Application number
PCT/IB2004/000640
Other languages
English (en)
Inventor
Pierre Gerard Willem Nieuwland
Wilhelmus Petrus Maria Schaerlaeckens
Original Assignee
Ntz International Holding Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP03075735A external-priority patent/EP1452216A1/fr
Application filed by Ntz International Holding Bv filed Critical Ntz International Holding Bv
Publication of WO2004080568A1 publication Critical patent/WO2004080568A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/13Supported filter elements
    • B01D29/15Supported filter elements arranged for inward flow filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/88Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices
    • B01D29/92Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices for discharging filtrate
    • B01D29/925Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices for discharging filtrate containing liquid displacement elements or cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2201/00Details relating to filtering apparatus
    • B01D2201/20Pressure-related systems for filters
    • B01D2201/204Systems for applying vacuum to filters
    • B01D2201/208Systems for applying vacuum to filters by venturi systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2201/00Details relating to filtering apparatus
    • B01D2201/29Filter cartridge constructions
    • B01D2201/291End caps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2201/00Details relating to filtering apparatus
    • B01D2201/34Seals or gaskets for filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2201/00Details relating to filtering apparatus
    • B01D2201/40Special measures for connecting different parts of the filter
    • B01D2201/4084Snap or Seeger ring connecting means

Definitions

  • the present invention relates to an ultra high efficiency micro Filter and micro- filter part as defined in the preamble of claim 1.
  • Such filters are generally known in the art, e.g. from the international patent publication PCT/NLOO/00530 in the name of Applicant. Such filters have many advantages as are a.o. described in Applicants non- pre-published earlier patents application of January 9, 2003 and of February 11 2003, which are hereby regarded included, and as is described in SAE paper 2001-01-0867 "Automatic transmission hydraulic system cleanliness - the effects of operating conditions, measurement techniques and high efficiency filters", which document is hereby also regarded included.
  • These filter elements come with end closure elements which prevent oil from leaking in axial direction or, alternatively, which support the a ⁇ ial flow oil through the filter material, which at micro filters, at least in the currently claimed type thereof, is of considerable thickness so as to enable, during the passage of oil through the filter material, small particles to be distracted from the oil, to bond to the filter material on the basis of electrostatic or polaric forces.
  • the layer of filtering material preferably cellulose based fibres, is relatively thick and requires a relatively high operating pressure fall over the filter, e.g. about half a Bar.
  • Conventional filters i.e. filters that solely based on the principle of blocking particles by a screen having the smallest possible openings therein, operate superficial, and therefore require a relatively low pressure drop over such filter, e.g. of only a tenth of a Bar. They are therefore commonly used as mainstream filters in automotive applications.
  • micro filters have a much smaller flow due to a relatively large pressure drop, however, due to their efficiency, appear over an initially delayed period of time, to be much more effective than such conventional filters.
  • micro filters have been used in a so called by pass configuration, by passing a conventional, i.e. surface filtering based mainstream filter.
  • a conventional, i.e. surface filtering based mainstream filter Recent development of the filter by Applicant however, enables the micro filter to be used in an at least virtual mainstream configuration, i.e. enables the filter to be incorporated within the housing of such conventional mainstream filter.
  • micro filter was formerly used in separate filter housings in a by pass arrangement, and thus relatively costly and space consuming, and thus mainly used in industrial or heavy duty automotive applications, it may now without the presence of these former disadvantages, be used in personal cars.
  • range and market of applications is significantly extended.
  • the end closure elements and the interconnecting members thus form a carrier or at least part of a carrier structure for the filter material.
  • the interconnection member together with the perforated core around which the filter material is provided form an additional support in the rigidity of the structure of the device. This is especially so with a capability of the interconnection to firmly keep together the filter material end face closure elements.
  • the filter device may thus be provided as a unit rather than in separated parts, i.e. the central core with surrounding filter material, the end face elements and pressure springs for pushing the elements against said end faces.
  • the new carrier is moreover according to a preferred embodiment provided in a synthetic material so that all these advantages may even come at a relatively low cost.
  • the interconnecting part between two end faces consists of two largely conically shaped parts that meet at their respective smallest diameters.
  • this shape of the interconnecting carrier may or may not be further arranged and/or used to function as a venturi device. If so, as is the case with a further embodiment of the invention, openings or communication ports are provided in the apex, i.e. narrowest part of the connecting member, connecting the interior of the communication means with the external thereof, i.e. with the internal chamber of the central core and filter material.
  • the filter device may in such set up be used as a replacement for conventional in -line filters.
  • such new set up of the claimed filter device does not require the overload valve present in the conventional filters.
  • the micro filter does not tend to clog up, at least does not require a gradually increasing pressure fall.
  • the new design is intrinsically safe because the in-line oil may in any case freely flow through the connecting means of the new filter device. If desired however, e.g. conventional by- pass applications, of course the connection device, e.g. at the location of an end face closure element may also be provided closed.
  • axial play is provided within a connection means in said structure.
  • connection means in the connection member being provided as a snap connection.
  • This measure enhances the versatility and easy of use of the involved type of micro filter.
  • the connection means such as the snap connection take over the function of said formerly used springs.
  • the snap connection is favourably located in the apex of the connecting member, more in particular when provided with axially protruding members, utilising the elastically deformable feature of a material applied favourably amongst others to this end.
  • material according to te invention most favourably is a synthetic material, more in particular a nylon type of material.
  • Figure 1 is a schematic representation in sectional view of a first embodiment according to the invention depicted incorporated in a filter housing;
  • Figure 2 in a sectional view provides a representation of a second, elaborated embodiment according to the invention.
  • Figure 3 is a sectional view according to the line A-A in figure 2.
  • Figure 1 shows a part of a combustion engine comprising a filter device 1 accommodated in a cylindrical device housing 21.
  • the filter 1 is incorporated between axial end closure elements 30 and 31.
  • the housing 21, and correspondingly the filter device 1 comprises an oil inlet opening 5 and an oil outlet opening 6, which in the present example are both located aligned with the geometrical device axis A.
  • the filter device 1 comprises a micro filter material 8 and a carrier 29, i.e. carrier and interconnecting structure 29 for the filter device 1.
  • the closure elements 30 and 31 are firmly pressed against the axial end of the micro filter material 8 by a specific interconnection means 29.
  • the end face closing elements 30 and 31 may as depicted be provided with a so called labyrinth profile, here composed by circumferential rings 34 of a generally triangular shape in cross section, on said faces 30, 31 and protruding into the filter material of the micro filter material 8.
  • the micro filter material 8 is composed of a cellulose fibre material incorporated around a perforated central core 17.
  • the filtering material is of considerable thickness in radial direction, for which reason these filters are sometimes also denoted radial filters.
  • the micro filter has axial end faces, which undesirably may be open for passage of oil during the process of filtering.
  • the filter material 8 is incorporated between said end closure elements 30, 31, which are firmly pressed against the end faces after they have been mutually connected together under a pre- stress. While in the embodiment according to figure 1 this is realised by a threaded or screw connection 32, in the embodiment according to figure 2 such pre-stress is realised by a snap connection 32'. Where in the first embodiment the pre- stress is to be realised by turning around, i.e. screwing one or both end faces 30, 31 , such is in the second embodiment reproducibly realised by pressing the elements together until the snapping parts are connected. More over the latter embodiment does not require the labyrinth protrusions 34 to be annular.
  • each element is provided with an axially extending member 24, 25 provided with part of a connection means 29.
  • the members 24, 25 protrude within an internal chamber 16 of the filter device 1.
  • this move ability has been limited by the provision of radial protruding stops on the interconnecting means 29.
  • the generally cylindrically shaped filter element 8 is a micro Filter and is often arranged in a by-pass configuration.
  • the currently depicted embodiments are suitable for incorporation of the filter in a conventional mainstream Filter arrangement and housing 21. This is done by the incorporation of a venturi device in the filter to which end the connection means 29 and the members 30, 31 are produced internally open and connected to the exterior of the filter 1 , such that the axial ends of chamber 16 are in connection to the oil inlet 5 and the oil outlet 6 of the filter housing 21.
  • the conical shape of part 24 and 25 may also solely be used for reinforcement of the structure of the interconnecting part 29, this shape of the members 24, 25 is here also favourably used to complete the presence of an apex 26 which together with conical part 24, 25 and openings 27 forms a venturi device, here also referred to by reference number 29.
  • the interconnecting means could be present in virtually the same manner without functioning as a venturi device, however solely as an interconnecting means.
  • the apex 26 thus is part of the interconnecting means 29, and moreover in the embodiment of figure 2 also part of the interconnection 32'.
  • connection part 32' forms the smallest diameter part of each member, it is as in the embodiment of figure 1 largely cylindrically shaped, and provided with openings 27 towards the inner chamber 16 of the filter 1.
  • the carrier 29 for the filter device 1 simultaneously functions as venturi device.
  • oil may flow virtually freely between oil inlet 5 and oil outlet 6 through the carrier 29, causing a minimal pressure drop that is known from conventional, surface based filters.
  • a significant pressure drop is created, causing a pressure decrease in the chamber 16, and thereby a relatively high pressure drop over the filter material 8, i.e.
  • micro filter 8 in fact still operating in a so-called by-pass mode, has become suitable for arrangement and use as an ordinary in line filter, i.e. it virtually operates in the same manner as a conventional so called full flow filter, and may consequently constitute a replacement for the latter.
  • Figure 1 constitutes an example and thus further illustrates along a sectional view, the housing 21 for a conventional filter, the already mentioned oil entrance 5 to the filter housing 21, leading to both an oil chamber 15 present between the housing 21 and the micro filter 8.
  • the entrance is here situated at the same axial end as the oil outlet 6. It could however also have been situated at any other location communicating with space 15, e.g. radial or at the other axial end.
  • the oil inlet 5 also connects to a first conical part 24 of a venturi arrangement 29 largely corresponding to that of figure 1.
  • the oil inlet communicates with a partly shown part 21 of a device such as a hydraulic machine, a combustion engine or transmission casing part, with which the housing 21 is partly integrated.
  • the housing 21 comprises an otherwise fully closed member part 21 , which in this example may be screwed to part 21 over threads 23.
  • a sealing 35, in casu an O- ring is incorporated between an outer circumferential part of the member part 21 and the inner circumferential part of housing 21, i.e. at the mutually overlapping parts.
  • All of the end closure elements 30, 31 and the venturi device 29 are made of a synthetic material, in casu a nylon based material.
  • the first conical part 24 is produced shorter than the second conical part 25, such that the latter has a larger amount of interior space.
  • the oil stream passed through, and increased with oil from the chamber 16 may gradually expand towards oil outlet 6.
  • all edges and/or transitions in the carrier 29 are preferably produced rounded or smoothened so as to form gradual transitions.
  • the apex 26 may internally be shaped at least somewhat convex rather than fully cylindrical. Further, it may be that the end of part 24 extends relatively further into part 25 than suggested by the drawing.
  • the end closure element 30 is positioned over a central notch 33 in which the oil outlet 6 of the filter housing 21 is located.
  • the element 30 and the notch 33, in fact the filter housing 21 are sealed from one another by a sealing means, in casu via an O- ring, accommodated in a groove 36 of the integrated ciosure part 30 and venturi arrangement 29.
  • the O-ring 36 and chamber therefore are omitted for sake of costs, while the diameter of the seat part 39 of carrier 29 is narrowed to slightly below the lower end of the tolerance range of diameters for the notch 33.
  • the seat 39 itself forms the sealing means.
  • the embodiment comes with the advantages of an axially oriented venturi device 29, utilising the otherwise not or only partly used interior 16 of the micro- filter 8.
  • the present invention su ⁇ risingly and favourably has utilised an existing, relatively large flow of oil for creating a significant pressure drop over the micro filter 8 by the special and innovative use of a venturi device 29, while maintaining an relatively low overall pressure drop over the filter device 1.
  • Figure 2 further illustrates that seat 39 also forms a centralisation member for locating a filter material 8 cartridge, i.e. the core 17 thereof in contact with a closure member 30, 31.
  • the elements 30, 31 are provided with a rim, circumferentially embracing a small part the filter material 8, thereby protecting the filter material 8, i.e. near an axial end face from contacted an disturbed at handling, e.g. at insertion in a filter housing. Also the rim may aid in positioning the filter device in a housing.
  • the other end closure element 31 is provided with a seat 37 for core 17, while both seats 39, and 37 are provided with a rounded or clearly conical part 38.
  • Figure 3 is a cross section and view along the line A-A in figure 2. From interior to exterior it shows part 24; annular opening 27' communicating with the interior space of device 29 and with the chamber 16 via openings 27; a conically inwardly declining wall part 25" of connecting part 25; four axial extending protrusions 40; openings 27 in between said protrusions 40. At the location of the openings 27 an end face 25' is visible in this cross sectional view. From figure 2 it may be seen that protrusions 40 of part 25 hook over an edge 41 of connecting part 24. The snap connection utilises a elastically deformable feature of the material of device 29, so elected for this purpose.
  • Figure 2 also shows that the inner side of the end part of protrusions 40 is hooked shaped, comprising a first obliquely cut off part, both for enhancing entry of part 24 into part 25, and for enabling the protrusions 40 to at least partly pass over the edge 41 before deflecting outwardly against elastic material force and subsequently devising back for hooking over rim 41.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)

Abstract

Filtre hydraulique (1), en particulier micro-filtre destiné à filtrer de l'huile et plus particulièrement micro-filtre à ultra-haute efficacité, de préférence composé d'un matériau filtrant (8) à base de fibres cellulosiques agencé autour d'un noyau central perforé (17) formant une chambre centrale cylindrique (16), ledit filtre (1) étant au moins destiné à être utilisé avec des éléments de fermeture d'extrémité (30, 31) empêchant le passage de l'huile dans le matériau filtrant (8) dans une direction axiale au niveau de surfaces axiales terminales distinctes dudit matériau, caractérisé en ce que les éléments de fermeture d'extrémité (30, 31) sont agencés dans une structure porteuse (29, 30, 31) dudit filtre comportant un élément de connexion s'étendant axialement (29) pour relier entre eux lesdits éléments (30, 31), ledit élément de connexion étant pourvu d'au moins une partie d'un moyen de connexion (32, 32') formant un accouplement à enclenchement, et au moins un élément de fermeture axial (30, 31) et une partie associée desdits moyens de connexion (32, 32') sont produits d'un seul tenant.
PCT/IB2004/000640 2003-03-10 2004-03-09 Element de filtration WO2004080568A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03075735A EP1452216A1 (fr) 2003-02-11 2003-03-10 Appareil de filtrage
EP03075735.5 2003-03-10

Publications (1)

Publication Number Publication Date
WO2004080568A1 true WO2004080568A1 (fr) 2004-09-23

Family

ID=32981870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2004/000640 WO2004080568A1 (fr) 2003-03-10 2004-03-09 Element de filtration

Country Status (1)

Country Link
WO (1) WO2004080568A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015109A1 (fr) 2006-08-03 2008-02-07 Mann+Hummel Gmbh Élément de filtre cylindrique
WO2007149273A3 (fr) * 2006-06-21 2008-05-22 Entegris Inc Système et procédé de filtration de liquide avec volume réduit de rétention
DE102019005325A1 (de) * 2019-07-25 2021-01-28 Rt-Filtertechnik Gmbh Filtervorrichtung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655914A (en) * 1984-11-02 1987-04-07 Origin Company Limited Method and apparatus for filtering impurities out of fluid
EP0487831A1 (fr) * 1990-11-30 1992-06-03 Pall Corporation Unités de filtrage avec des pièces de raccordement
DE19737699A1 (de) * 1997-08-29 1999-03-04 Mann & Hummel Filter Filtermodul
EP1092461A1 (fr) * 1999-10-14 2001-04-18 Filterwerk Mann + Hummel GmbH Cartouche filtrante avec tuyau central
EP1118368A2 (fr) * 2000-01-19 2001-07-25 Baldwin Filters, Inc. Procédé et dispositif de filtration de fluids
US6511101B1 (en) * 1996-08-02 2003-01-28 Filterwerk Mann & Hummel Gmbh Snap-on central support tube for a filter element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655914A (en) * 1984-11-02 1987-04-07 Origin Company Limited Method and apparatus for filtering impurities out of fluid
EP0487831A1 (fr) * 1990-11-30 1992-06-03 Pall Corporation Unités de filtrage avec des pièces de raccordement
US6511101B1 (en) * 1996-08-02 2003-01-28 Filterwerk Mann & Hummel Gmbh Snap-on central support tube for a filter element
DE19737699A1 (de) * 1997-08-29 1999-03-04 Mann & Hummel Filter Filtermodul
EP1092461A1 (fr) * 1999-10-14 2001-04-18 Filterwerk Mann + Hummel GmbH Cartouche filtrante avec tuyau central
EP1118368A2 (fr) * 2000-01-19 2001-07-25 Baldwin Filters, Inc. Procédé et dispositif de filtration de fluids

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007149273A3 (fr) * 2006-06-21 2008-05-22 Entegris Inc Système et procédé de filtration de liquide avec volume réduit de rétention
US8069991B2 (en) 2006-06-21 2011-12-06 Entegris, Inc. System and method for liquid filtration with reduced hold-up volume
WO2008015109A1 (fr) 2006-08-03 2008-02-07 Mann+Hummel Gmbh Élément de filtre cylindrique
US20100126125A1 (en) * 2006-08-03 2010-05-27 Mann+Hummel Gmbh Cylindrical filter element
US8308835B2 (en) 2006-08-03 2012-11-13 Mann+Hummel Gmbh Cylindrical filter element
DE102019005325A1 (de) * 2019-07-25 2021-01-28 Rt-Filtertechnik Gmbh Filtervorrichtung

Similar Documents

Publication Publication Date Title
CA2238652C (fr) Filtre amovible non metallique
EP0250861B1 (fr) Assemblage de filtration pour lubrifiants et procédé de montage du même
EP1598101B1 (fr) Filtre à fluide
US5405527A (en) Anti-drainback/pressure-relieved filter cartridges for lubricating oil
US8146751B2 (en) Filter element with threaded top endplate
JP2004522034A (ja) 交換可能な回転固定式の小さな缶入りフィルタを有する液体フィルタおよびカートリッジフィルタと方法
US20070205147A1 (en) Liquid filter with directional fluid insert
WO2009060072A1 (fr) Élément filtre destiné à des filtres à liquides et filtre à liquides
EP1070529B1 (fr) Elément filtrant pour carburant
US5885447A (en) Liquid filtration system incorporating a bypass filter element
US6423225B2 (en) Liquid filter with centrifugal separator
EP0773054A1 (fr) Filtre à huile à longue durée de vie pour des moteurs à combustion interne
US6843377B1 (en) Spacer and filter assembly utilizing the spacer
EP2419190B1 (fr) Combinaison d'un élément filtrant et d'un élément noyau, et élément filtrant
WO2004080568A1 (fr) Element de filtration
EP1452216A1 (fr) Appareil de filtrage
CA2190076A1 (fr) Ameliorations apportees aux cartouches filtrantes a orifices de detente et mecanisme anti-retour
WO2005065801A1 (fr) Filtre ultrafin a efficacite elevee
JP5757910B2 (ja) オイルフィルタ装置
CN108712925B (zh) 可改造的不过滤不运行的过滤系统
US8636901B2 (en) Two part resilient combination bottom support and relief valve end seal assembly for fluid filters
CA2562958A1 (fr) Soupapes de decharge et de contre-pression non-retour combinees sans metal pour filtres a liquides
US20070261377A1 (en) Spin-on filter arrangement and methods
EP1440719A1 (fr) Filtre de remplacement unidirectionnel et procédé associé
EP1838409B1 (fr) Element micro-filtrant

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase