WO2004078740A1 - Process for producing propylene oxide - Google Patents
Process for producing propylene oxide Download PDFInfo
- Publication number
- WO2004078740A1 WO2004078740A1 PCT/JP2004/002759 JP2004002759W WO2004078740A1 WO 2004078740 A1 WO2004078740 A1 WO 2004078740A1 JP 2004002759 W JP2004002759 W JP 2004002759W WO 2004078740 A1 WO2004078740 A1 WO 2004078740A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrogen peroxide
- propylene oxide
- reaction
- water
- producing propylene
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D303/00—Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
- C07D303/02—Compounds containing oxirane rings
- C07D303/04—Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/89—Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D301/00—Preparation of oxiranes
- C07D301/02—Synthesis of the oxirane ring
- C07D301/03—Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
- C07D301/12—Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the present invention relates to a method for producing propylene oxide by reacting hydrogen peroxide with propylene in the presence of an epoxidation catalyst.
- a method for producing propylene oxide by reacting propylene with hydrogen peroxide using a crystalline titanosilicate having a pore structure of at least one oxygen or two-membered ring as an epoxidation catalyst and a nitrile compound as a solvent For example, a method using a Ti-MWW catalyst having a pore structure of a 12-membered oxygen ring in a solvent in which acetonitrile and water have a weight ratio of 1: 1 is known. (For example, FY2001 next-generation chemical process technology development ⁇ Non-halogen chemical process technology development result report 168—210, (2002))
- the catalyst amount can be reduced by reducing the amount of the catalyst, the reactor cost can be reduced by reducing the size of the reactor, and higher productivity can be obtained. Therefore, development of a method capable of obtaining propylene oxide with higher activity has been desired. Disclosure of the invention
- An object of the present invention is to provide a method for producing propylene oxide by performing an epoxidation reaction of propylene using hydrogen peroxide as a medium, and to provide a method for efficiently producing propylene oxide.
- the weight ratio of water / nitrile compound is 0 to 100 to 20/80.
- the present invention relates to a method for producing propylene oxide, which comprises reacting propylene with hydrogen peroxide in a certain nitrile solvent.
- a crystalline titanosilicate having a pore structure of 12 or more oxygen rings is used as an epoxidation catalyst.
- the effect of the present invention cannot be sufficiently obtained with crystalline titanosilicate having a pore structure narrower than that of a 12-membered oxygen ring, such as a TS-1 catalyst having a pore structure of a 10-membered oxygen ring.
- Crystalline titanosilicate is a titanosilicate having a zeolite structure.
- a typical crystalline titanosilicate having a pore structure of at least a 12-membered oxygen ring has an MTW structure with the zeolite structure code of the International Zeolite Society Crystalline titanosilicate (T i-ZSM-12) (12-membered ring), crystalline titanosilicate having BEA structure (T i—; 3) (12-membered ring), crystalline titanosilicate having MWW structure (T i -MWW) (12-membered ring), crystalline titanosilicate having a DON structure (T i -UTD-1) (14-membered ring), and the like.
- a preferred crystalline titanosilicate is a crystalline titanosilicate having a MWW structure (Ti-IWW).
- pore structure having a 12-membered oxygen ring or more means a pore structure in which the entrance of a pore is a ring having a 12-membered oxygen ring or more. The size of the entrance is important.
- the nitrile solvent used in the present invention is a solvent having a weight ratio of water nitrile compound of 0Z100 to 20/80.
- nitrile compounds include acetonitrile, propionitrile, and the like, with preference given to acetonitrile.
- the nitrile solvent can contain compounds other than water and nitrile compounds.
- compounds other than water and nitrile compounds include organic compounds such as alcohols, ketone compounds, ether compounds, ester compounds, hydrocarbons, octogenated hydrocarbons, amide compounds, and glycol compounds. It is also possible to include by-products such as propylene glycol for recycling the solvent.
- the total weight ratio of the nitrile compound to water and the compound other than the nitrile compound is preferably (water + compound other than the nitrile compound) / nitrile compound in a range of 0/100 to 50/50. / 100 to 20/80 are more preferred.
- Examples of the method of supplying hydrogen peroxide include a method of supplying hydrogen peroxide water produced in advance, and a method of synthesizing and supplying hydrogen peroxide in a system from hydrogen and oxygen. It is.
- a method of synthesizing hydrogen peroxide in the reaction system a transition metal catalyst for synthesizing hydrogen peroxide such as Pd and Au in the system from hydrogen and oxygen is supported on a Ti-MWW catalyst or mixed.
- the method of synthesizing hydrogen peroxide in-situ from hydrogen and oxygen has the advantage that propylene oxide can be manufactured with simple equipment because no equipment is required to produce hydrogen peroxide in advance. .
- the concentration of hydrogen peroxide in the hydrogen peroxide solution is generally 0.1 to 70% by weight.
- the hydrogen peroxide solution include an aqueous solution of hydrogen peroxide or a mixed solution of hydrogen peroxide, water, and an organic solvent.
- reaction method of propylene and hydrogen peroxide there are a fixed bed continuous flow reaction method, a slurry continuous reaction method, and a batch reaction method. Since a simple continuous reaction method enables continuous production, propylene oxide can be efficiently produced.
- a fixed bed flow reactor, a slurry reactor, or the like is generally used according to the above-mentioned reaction system.
- the reaction can be performed while performing exchange for controlling the reaction temperature.
- Examples of the heat exchange method include a method using a multitubular reactor.
- the epoxidation reaction is usually performed at a temperature of 0 ° C. to 150 ° C., usually at a pressure of atmospheric pressure to 20 MPa.
- the reaction was carried out using a MWW catalyst having a Ti content of 1.1% by weight by ICP emission spectrometry prepared according to the method described in Chemistry Letters 774, (2000). That is, 9.83 g of an aqueous solution of about 36% H 2 O 2 , 60.0 g of acetonitrile, and 3.00 g of pure water were mixed well. H 2 ⁇ 2: analysis of concentrations 4. was 8 wt%. The calculated value of the concentration of water was 12.8% by weight, and the calculated value of acetonitrile was 82.4% by weight. The weight ratio of water Zacetonitrile in the prepared solution was 13Z87 became. 12 g of this prepared solution and 0.010 g of crushed Ti-MWW catalyst were charged into a 50 ml stainless steel autoclave.
- the autoclave was transferred onto an ice bath and charged with 1 Og of liquefied propylene.
- the pressure was increased to 2 MPa-G with nitrogen.
- the autoclave was placed in an aluminum block bath at 40 ° C, and the reaction was carried out at 4 (TC.
- the reaction was started 5 minutes after the internal temperature reached approximately 35.
- One hour after the start of the reaction the autoclave was removed.
- the sample was taken out of the block bath, sampled, and the reaction pressure at the time of sampling was 3 MPa a-G.
- the obtained sample was analyzed using gas chromatography.
- the propylene oxide producing activity per unit was 0.47 Omo 1 ⁇ h— 1 ⁇ g— 1 .
- a method for efficiently producing propylene oxide can be provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epoxy Compounds (AREA)
Abstract
A process for producing propylene oxide, characterized by reacting propylene with hydrogen peroxide in the presence of a crystalline titanosilicate catalyst having a pore structure not smaller than the 12-oxygen-membered ring in a nitrile solvent comprising water and a nitrile compound in a proportion of from 0/100 to 20/80 by weight.
Description
明 細 書 プロピレンォキサイドの製造方法 技術分野 Description Production method of propylene oxide Technical field
本発明はエポキシ化触媒存在下に過酸化水素とプロピレンを反応させることに よりプロピレンォキサイドを製造する方法に関するものである。 背景技術 The present invention relates to a method for producing propylene oxide by reacting hydrogen peroxide with propylene in the presence of an epoxidation catalyst. Background art
酸素 1 2員環以上の細孔構造を持つ結晶性チタノシリケ一トをエポキシ化触媒 として、 二トリル化合物を溶媒に用いて、 プロピレンと過酸化水素を反応させ、 プ ロピレンォキサイドを製造する方法としては、 ァセトニトリルと水が重量比で 1: 1の溶媒中で酸素 1 2員環の細孔構造を持つ T i 一 MWW触媒を用いる方法が知 られている。 (例えば平成 1 3年度次世代化学プロセス技術開発 ·ノンハロゲン化 学プロセス技術開発成果報告書 1 6 8— 2 1 0 , ( 2 0 0 2 ) ) A method for producing propylene oxide by reacting propylene with hydrogen peroxide using a crystalline titanosilicate having a pore structure of at least one oxygen or two-membered ring as an epoxidation catalyst and a nitrile compound as a solvent. For example, a method using a Ti-MWW catalyst having a pore structure of a 12-membered oxygen ring in a solvent in which acetonitrile and water have a weight ratio of 1: 1 is known. (For example, FY2001 next-generation chemical process technology development · Non-halogen chemical process technology development result report 168—210, (2002))
一般に活性を高くすることにより、触媒量を減らして触媒コストを下げたり、反 応器を小さくして反応器のコストを下げたり、より高い生産性を得ることができる。 そのため、より高い活性でプロピレンォキサイドを得ることができる方法の開発が 望まれていた。 発明の開示 In general, by increasing the activity, the catalyst amount can be reduced by reducing the amount of the catalyst, the reactor cost can be reduced by reducing the size of the reactor, and higher productivity can be obtained. Therefore, development of a method capable of obtaining propylene oxide with higher activity has been desired. Disclosure of the invention
本発明は過酸化水素を媒体としてプロピレンのエポキシ化反応を行うことによ りプロピレンォキサイドを製造する方法であって、効率的にプロピレンォキサイド を製造する方法を提供することにある。 An object of the present invention is to provide a method for producing propylene oxide by performing an epoxidation reaction of propylene using hydrogen peroxide as a medium, and to provide a method for efficiently producing propylene oxide.
すなわち、本発明は酸素 1 2員環以上の細孔構造を持つ結晶性チタノシリケート エポキシ化触媒の存在下、水/二トリル化合物の重量比が 0ノ1 0 0〜2 0 / 8 0 である二トリル溶媒中でプロピレンと過酸化水素を反応させることを特徵とする プロピレンォキサイドの製造方法に係るものである。
発明の実施するための形態 That is, in the present invention, in the presence of a crystalline titanosilicate epoxidation catalyst having a pore structure of 12 or more oxygen rings, the weight ratio of water / nitrile compound is 0 to 100 to 20/80. The present invention relates to a method for producing propylene oxide, which comprises reacting propylene with hydrogen peroxide in a certain nitrile solvent. MODES FOR CARRYING OUT THE INVENTION
本発明においては酸素 12員環以上の細孔構造を持つ結晶性チタノシリケート をエポキシ化触媒として用いる。酸素 10員環の細孔構造を持つ TS— 1触媒のよ うに酸素 12員環より狭い細孔構造しか持たない結晶性チタノシリケートでは、本 発明の効果は十分に得られない。 In the present invention, a crystalline titanosilicate having a pore structure of 12 or more oxygen rings is used as an epoxidation catalyst. The effect of the present invention cannot be sufficiently obtained with crystalline titanosilicate having a pore structure narrower than that of a 12-membered oxygen ring, such as a TS-1 catalyst having a pore structure of a 10-membered oxygen ring.
結晶性チタノシリケートとはゼォライト構造を有するチタノケィ酸塩であり、代 表的な酸素 12員環以上の細孔構造を持つ結晶性チタノシリゲートとしては、国際 ゼォライト学会のゼォライト構造コードで、 MTW構造を有する結晶性チタノシリ ゲート (T i—ZSM— 12) (12員環) 、 BE A構造を有する結晶性チタノシ リケ一ト (T i— ;3 ) (12員環) 、 MWW構造を有する結晶性チタノシリケ一ト (T i -MWW) (12員環) 、 DON構造を有する結晶性チタノシリケ一ト (T i -UTD- 1) (14員環) 等が例示される。 好ましい結晶性チタノシリケ一ト は、 MWW構造を有する結晶性チタノシリゲート (T i一 MWW) である。 なお、 本発明における酸素 12員環以上の細孔構造とは、細孔の入口が酸素 12員環以上 の細孔構造のことであり、本発明におけるプロピレンと過酸化水素の反応において は細孔の入口の大きさが重要である。 Crystalline titanosilicate is a titanosilicate having a zeolite structure.A typical crystalline titanosilicate having a pore structure of at least a 12-membered oxygen ring has an MTW structure with the zeolite structure code of the International Zeolite Society Crystalline titanosilicate (T i-ZSM-12) (12-membered ring), crystalline titanosilicate having BEA structure (T i—; 3) (12-membered ring), crystalline titanosilicate having MWW structure (T i -MWW) (12-membered ring), crystalline titanosilicate having a DON structure (T i -UTD-1) (14-membered ring), and the like. A preferred crystalline titanosilicate is a crystalline titanosilicate having a MWW structure (Ti-IWW). In the present invention, the term “pore structure having a 12-membered oxygen ring or more” means a pore structure in which the entrance of a pore is a ring having a 12-membered oxygen ring or more. The size of the entrance is important.
本発明に用いられる二トリル溶媒は、水 二トリル化合物の重量比が 0Z100 〜20/80の溶媒である。 二トリル化合物としては、 ァセトニトリル、 プロピオ 二トリル等があげられ、 好ましくはァセトニトリルである。 The nitrile solvent used in the present invention is a solvent having a weight ratio of water nitrile compound of 0Z100 to 20/80. Examples of nitrile compounds include acetonitrile, propionitrile, and the like, with preference given to acetonitrile.
また、ニトリル溶媒は水、二トリル化合物以外の化合物を含むことが可能である。 水、 二トリル化合物以外の化合物としては、 アルコール、 ケトン化合物、 エーテル 化合物、 エステル化合物、 炭化水素、 八ロゲン化炭化水素、 アミド化合物、 グリコ ール類化合物等の有機化合物があげられる。 また、 溶媒をリサイクルするために、 プロピレングリコ一ル等の副生成物を含むことも可能である。二トリル化合物に対 する水および二トリル化合物以外の化合物との合計の重量比は、 (水 +二トリル化 合物以外の化合物) /二トリル化合物が 0/100〜 50/50が好ましく、 0/ 100〜 20/80が更に好ましい。 Further, the nitrile solvent can contain compounds other than water and nitrile compounds. Examples of compounds other than water and nitrile compounds include organic compounds such as alcohols, ketone compounds, ether compounds, ester compounds, hydrocarbons, octogenated hydrocarbons, amide compounds, and glycol compounds. It is also possible to include by-products such as propylene glycol for recycling the solvent. The total weight ratio of the nitrile compound to water and the compound other than the nitrile compound is preferably (water + compound other than the nitrile compound) / nitrile compound in a range of 0/100 to 50/50. / 100 to 20/80 are more preferred.
過酸化水素の供給方法としては、予め製造した過酸化水素水を供給する方法、 あ るいは水素および酸素から系中で過酸化水素を合成して供給する方法等があげら
れる。 反応系内で過酸化水素を合成する方法としては、 水素および酸素から、 系内 で P d、 Au等の過酸化水素を合成する遷移金属触媒を T i一 MWW触媒に担持或 いは混合して使用することにより、過酸化水素を合成する方法があげられる。水素 および酸素から、 系内で過酸化水素を合成する方法は、予め過酸化水素水を製造す るための設備が不要なため、簡略な設備でプロピレンォキサイドを製造できるとい う長所を持つ。予め製造した過酸化水素溶液を供給する場合、過酸化水素溶液中の 過酸化水素の濃度は 0. 1〜70重量%が一般的である。 また、 過酸化水素溶液と しては、 過酸化水素水溶液あるいは過酸化水素、 水、 有機溶媒の混合溶液があげら れる。 し Examples of the method of supplying hydrogen peroxide include a method of supplying hydrogen peroxide water produced in advance, and a method of synthesizing and supplying hydrogen peroxide in a system from hydrogen and oxygen. It is. As a method of synthesizing hydrogen peroxide in the reaction system, a transition metal catalyst for synthesizing hydrogen peroxide such as Pd and Au in the system from hydrogen and oxygen is supported on a Ti-MWW catalyst or mixed. A method of synthesizing hydrogen peroxide. The method of synthesizing hydrogen peroxide in-situ from hydrogen and oxygen has the advantage that propylene oxide can be manufactured with simple equipment because no equipment is required to produce hydrogen peroxide in advance. . When supplying a hydrogen peroxide solution prepared in advance, the concentration of hydrogen peroxide in the hydrogen peroxide solution is generally 0.1 to 70% by weight. Examples of the hydrogen peroxide solution include an aqueous solution of hydrogen peroxide or a mixed solution of hydrogen peroxide, water, and an organic solvent. I
プロピレンと過酸化水素の反応方法としては、固定床連続流通反応方式あるいは スラリー連続反応方式、 回分反応方式があげられるが、 回分反応方式より固定床連 続流通反応方式ゃスラリ一連続反応方式のような連続反応方式の方が連続的に生 産できるため効率的にプロピレンォキサイドを製造することができる。 As a reaction method of propylene and hydrogen peroxide, there are a fixed bed continuous flow reaction method, a slurry continuous reaction method, and a batch reaction method. Since a simple continuous reaction method enables continuous production, propylene oxide can be efficiently produced.
反応器としては、上記反応方式に応じて固定床流通反応器、スラリー反応器等が 一般に用いられる。 また、 これらの反応器においては、 反応温度の制御のため交換 を行いながら反応することもできる。熱交換の方法としては多管式反応器を用いる 方法等があげられる。 As the reactor, a fixed bed flow reactor, a slurry reactor, or the like is generally used according to the above-mentioned reaction system. In these reactors, the reaction can be performed while performing exchange for controlling the reaction temperature. Examples of the heat exchange method include a method using a multitubular reactor.
エポキシ化反応は、通常 0°Cないし 150°Cの温度、通常大気圧ないし 20MP aの圧力下で行われる。 実施例 The epoxidation reaction is usually performed at a temperature of 0 ° C. to 150 ° C., usually at a pressure of atmospheric pressure to 20 MPa. Example
次に、 実施例により本発明を説明する。 Next, the present invention will be described with reference to examples.
実施例 1 Example 1
Ch emi s t r y Le t t e r s 774, (2000) に記載の方法に従 い調製した I CP発光分析による T i含量が 1. 1重量%の丁 i一 MWW触媒を用 いて反応を行った。 すなわち、 約 36%H202水溶液 9. 83gとァセトニトリル 60. 0gと純水 3. 00gをよく混合した。 H2〇2:濃度の分析値は 4. 8重量% であった。 水の濃度の計算値は 12. 8重量%、 ァセトニトリルの計算値は 82. 4重量%であった。調製した溶液の水 Zァセトニトリルの重量比は、 13Z87と
なった。 この調製した溶液 12 gと粉砕した T i一 MWW触媒 0. 0 10 gを 50 m 1ステンレスォートクレーブに充填した。 The reaction was carried out using a MWW catalyst having a Ti content of 1.1% by weight by ICP emission spectrometry prepared according to the method described in Chemistry Letters 774, (2000). That is, 9.83 g of an aqueous solution of about 36% H 2 O 2 , 60.0 g of acetonitrile, and 3.00 g of pure water were mixed well. H 2 〇 2: analysis of concentrations 4. was 8 wt%. The calculated value of the concentration of water was 12.8% by weight, and the calculated value of acetonitrile was 82.4% by weight. The weight ratio of water Zacetonitrile in the prepared solution was 13Z87 became. 12 g of this prepared solution and 0.010 g of crushed Ti-MWW catalyst were charged into a 50 ml stainless steel autoclave.
次にォ一トクレーブを氷浴上に移し、液化プロピレン 1 O gを充填した。 さらに窒 素で 2 MP a— Gまで昇圧した。ォートクレーブを 40 °Cのアルミニウム製ブロッ クバスに入れ、 4 (TCで反応を行った。 内温がおよそ 35でになる 5分後を反応開 始とした。 反応開始 1 h後、 オートクレ一ブをブロックバスから取り出し、サンプ リングを行った。サンプリング時の反応圧力は 3 MP a— Gであった。得られたサ ンプルは、 ガスクロマトグラフィを用いて分析を行なった。その結果、 単位触媒重 量あたりのプロピレンォキシド生成活性は 0. 47 Omo 1 · h— 1 ■ g— 1であつ た。 実施例 2 Next, the autoclave was transferred onto an ice bath and charged with 1 Og of liquefied propylene. The pressure was increased to 2 MPa-G with nitrogen. The autoclave was placed in an aluminum block bath at 40 ° C, and the reaction was carried out at 4 (TC. The reaction was started 5 minutes after the internal temperature reached approximately 35. One hour after the start of the reaction, the autoclave was removed. The sample was taken out of the block bath, sampled, and the reaction pressure at the time of sampling was 3 MPa a-G.The obtained sample was analyzed using gas chromatography. The propylene oxide producing activity per unit was 0.47 Omo 1 · h— 1 ■ g— 1 .
約 36 %H202水溶液 27. 0gとァセトニトリル 168. 0gよく混合し、 H 202の分析値: 5. 0重量%、 水の計算値: 8. 9重量%、 ァセトニトリルの計 算値: 86. 2重量%に調製した溶液を用いた以外は実施例 1と同様にして反応を 行った。 調製した溶液の水/ァセトニトリルの重量比の計算値は、 9. 3/90. 7となった。 About 36% H 2 0 2 aqueous solution 27. mixed well 0g and Asetonitoriru 168. 0g, H 2 0 2 analysis: 5.0 wt%, the calculated water: 8.9 wt%, calculated values of Asetonitoriru The reaction was carried out in the same manner as in Example 1 except that the solution adjusted to 86.2% by weight was used. The calculated value of the water / acetonitrile weight ratio of the prepared solution was 9.3 / 90.7.
その結果、 単位触媒重量あたりのプロピレンォキシド生成活性は、 0. 463m o 1 · h— 1 · g— 1であった。 比較例 1 As a result, the activity of producing propylene oxide per unit catalyst weight was 0.463 mO 1 · h- 1 · g- 1 . Comparative Example 1
約 36 %H202水溶液 1 3. 5gとァセトニトリル 68. 0gと純水 16. 0g をよく混合し H2〇2の分析値: 5. 0重量%、 水の計算値: 25. 3重量%、 ァ セトニトリルの計算値: 69. 7重量%に調製した溶液を用いた以外は実施例 1と 同様にして反応を行った。 調製した溶液の水 Zァセトニトリルの重量比は、 1 6. 6/ 73. 4であった。その結果、 単位触媒重量あたりのプロピレンォキシド生成 活性は、 0. 42 9mo 1 - h— 1 · g— 1であった。 比較例 2
約 36%H202水溶液 385.5gとァセトニトリリレ 473.4gと純水 139. 7gをよく混合し H2〇2の分析値: 5. 0重量%、 水の計算値: 47. 6重量%、 ァセトニトリルの計算値: 47. 4重量%に調製した溶液を用いた以外、 実施例 1 で使用した触媒を用いて、実施例 1と同じ同様に反応を行った。調製した溶液の水 Zァセト二トリルの重量比は、 50. 1/49. 9であった。 その結果、 単位触某 重量あたりのプロピレンォキシド生成活性は、 0. 393mo 1 · h 1■ g 1で めつ 7こ。 産業上の利用可能性 About 36% H 2 0 2 solution 1 3. 5 g and Asetonitoriru 68. 0g of pure water 16. mixed well 0g and H 2 〇 2 analysis: 5.0 wt%, the calculated water: 25. 3 weight %, Calculated value of acetonitrile: The reaction was carried out in the same manner as in Example 1 except that a solution adjusted to 69.7% by weight was used. The weight ratio of water Zacetonitrile in the prepared solution was 16.6 / 73.4. As a result, the activity of producing propylene oxide per unit catalyst weight was 0.429 mol 1-h— 1 · g— 1 . Comparative Example 2 About 36% H 2 0 2 solution 385.5g and Asetonitoririre 473.4g of pure water 139. 7 g and well mixed with H 2 〇 2 analysis: 5.0 wt%, the calculated water: 47.6 wt%, Asetonitoriru The reaction was carried out in the same manner as in Example 1 using the catalyst used in Example 1 except that the solution adjusted to 47.4% by weight was used. The weight ratio of water Zacetonitrile in the prepared solution was 50.1 / 49.9. As a result, propylene O sulfoxide generation activity per unit Sawabo weight, blinking 7 this in 0. 393mo 1 · h 1 ■ g 1. Industrial applicability
以上説明したとおり、本発明によれば、効率的にプロピレンォキサイドを製造す る方法を提供することができる。
As described above, according to the present invention, a method for efficiently producing propylene oxide can be provided.
Claims
1 . 酸素 1 2員環以上の細孔構造を持つ結晶性チタノシリゲート触媒の存在下 水/二トリル化合物の重量比が 0ノ 1 0 0〜 2 0 8 0である二トリル溶媒中で プロピレンと過酸化水素を反応させることを特徵とするプロピレンォキサイドの 製造方法。 1. Oxygen 1 In the presence of a crystalline titanosilicate catalyst having a pore structure of at least two-membered ring, propylene and propylene are mixed in a nitrile solvent with a water / nitrile compound weight ratio of 0 to 100 to 280. A method for producing propylene oxide, which comprises reacting hydrogen oxide.
2 .酸素 1 2員環以上の細孔構造を持つ結晶性チタノシリケ一トが T i一 MWW である請求の範囲第 1項記載の方法。 . 2. The method according to claim 1, wherein the crystalline titanosilicate having a pore structure of at least one oxygen two-membered ring is Ti-MWW. .
3 . ニトリル化合物がァセトニトリルである請求の範囲第 1項記載の方法。 3. The method according to claim 1, wherein the nitrile compound is acetonitrile.
4 . 反応に用いられる過酸化水素が、予め過酸化水素水を製造し供給された過酸 化水素である請求項 1記載のプロピレンォキサイドの製造方法。 4. The method for producing propylene oxide according to claim 1, wherein the hydrogen peroxide used in the reaction is hydrogen peroxide that has been produced and supplied in advance from a hydrogen peroxide solution.
. .
5 . 反応に用いられる過酸化水素が、 プロピレンと過酸化水素の反応と同じ反応 系内で製造された過酸化水素である請求項 1記載のプロピレンォキサイドの製造 方法。
5. The method for producing propylene oxide according to claim 1, wherein the hydrogen peroxide used in the reaction is hydrogen peroxide produced in the same reaction system as in the reaction between propylene and hydrogen peroxide.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003-059602 | 2003-03-06 | ||
JP2003059602 | 2003-03-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004078740A1 true WO2004078740A1 (en) | 2004-09-16 |
Family
ID=32958854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2004/002759 WO2004078740A1 (en) | 2003-03-06 | 2004-03-04 | Process for producing propylene oxide |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2004078740A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007126138A1 (en) | 2006-04-27 | 2007-11-08 | Sumitomo Chemical Company, Limited | Method for producing propylene oxide |
US7326399B2 (en) | 2005-04-15 | 2008-02-05 | Headwaters Technology Innovation, Llc | Titanium dioxide nanoparticles and nanoparticle suspensions and methods of making the same |
US7718710B2 (en) | 2006-03-17 | 2010-05-18 | Headwaters Technology Innovation, Llc | Stable concentrated metal colloids and methods of making same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001068623A1 (en) * | 2000-03-10 | 2001-09-20 | Solvay (Société Anonyme) | Method for making an oxirane |
-
2004
- 2004-03-04 WO PCT/JP2004/002759 patent/WO2004078740A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001068623A1 (en) * | 2000-03-10 | 2001-09-20 | Solvay (Société Anonyme) | Method for making an oxirane |
Non-Patent Citations (1)
Title |
---|
JAPAN CHEMICAL INNOVATION INSTITUTE, NEW ENERGY AND INDUSTRIAL TECHNOLOGY DEVELOPMENT ORGANIZATION, pages 168 - 210, XP002982539, Retrieved from the Internet <URL:http://www.tech.nedo.go.jp/servlet/houkokushoDownloadServlet?BARCODE=010000656&db=n&ZF=1> * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7326399B2 (en) | 2005-04-15 | 2008-02-05 | Headwaters Technology Innovation, Llc | Titanium dioxide nanoparticles and nanoparticle suspensions and methods of making the same |
US7344591B2 (en) | 2005-04-15 | 2008-03-18 | Headwaters Technology Innovation, Llc | Stabilized suspension of titanium dioxide nanoparticles and methods of manufacture |
US7718710B2 (en) | 2006-03-17 | 2010-05-18 | Headwaters Technology Innovation, Llc | Stable concentrated metal colloids and methods of making same |
WO2007126138A1 (en) | 2006-04-27 | 2007-11-08 | Sumitomo Chemical Company, Limited | Method for producing propylene oxide |
US7915434B2 (en) | 2006-04-27 | 2011-03-29 | Sumitomo Chemical Company, Limited | Method for producing propylene oxide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1313722B1 (en) | Process for the continuous production of an olefinic oxide | |
CN100341863C (en) | Epoxidation process | |
JP4552435B2 (en) | Oxime production method | |
JP4718186B2 (en) | Olefin epoxidation process | |
JP2004506627A (en) | Integrated production method of olefin oxides | |
JP2010150274A (en) | Method for producing propylene oxide | |
KR20070009590A (en) | Process for the preparation of propylene oxide | |
EP1072600B1 (en) | Process for the preparation of Epoxides | |
WO2007074760A1 (en) | Process for producing propylene oxide | |
US7531674B2 (en) | Process for producing propylene oxide | |
CN1249041C (en) | Dense phase epoxidation | |
WO2004078740A1 (en) | Process for producing propylene oxide | |
JP2004285055A (en) | Method for producing propylene oxide | |
CN109206396B (en) | Preparation method of 2-C-methyl-4,5-O- (1-methylvinyl) -D-arabinonic acid ethyl ester | |
JP2004269379A (en) | Method for producing propylene oxide | |
US8003825B2 (en) | Process for producing cycloalkanone oximes | |
JP2008106030A (en) | Method for producing epoxy compound | |
JP4639606B2 (en) | Propylene oxide production method | |
EA006551B1 (en) | Method of production n-substituted 2,6-dialkyl morpholines | |
JP4733906B2 (en) | Method for converting cyclododecane-1,2-dione to cyclododecanone | |
JP3282357B2 (en) | Piperonal manufacturing method | |
JP2003128660A (en) | Oxidation method of carbon-carbon double bond and production method of oxidized compound using the same | |
JP2003327581A (en) | Method for producing propylene oxide | |
JP3282386B2 (en) | Method for producing piperonal | |
JPH10287644A (en) | Production of lactam under hydrothermal condition in hot water at high temperature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |