JP4639606B2 - Propylene oxide production method - Google Patents

Propylene oxide production method Download PDF

Info

Publication number
JP4639606B2
JP4639606B2 JP2004058725A JP2004058725A JP4639606B2 JP 4639606 B2 JP4639606 B2 JP 4639606B2 JP 2004058725 A JP2004058725 A JP 2004058725A JP 2004058725 A JP2004058725 A JP 2004058725A JP 4639606 B2 JP4639606 B2 JP 4639606B2
Authority
JP
Japan
Prior art keywords
propylene oxide
reaction
catalyst
organic solvent
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004058725A
Other languages
Japanese (ja)
Other versions
JP2004285056A (en
Inventor
勝 石野
弘明 阿部川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2004058725A priority Critical patent/JP4639606B2/en
Publication of JP2004285056A publication Critical patent/JP2004285056A/en
Application granted granted Critical
Publication of JP4639606B2 publication Critical patent/JP4639606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Epoxy Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、結晶性チタノシリケート触媒存在下に過酸化水素を用いるプロピレンのエポキシ化反応を行うことによりプロピレンオキサイドを製造する方法に関するものである。   The present invention relates to a method for producing propylene oxide by carrying out an epoxidation reaction of propylene using hydrogen peroxide in the presence of a crystalline titanosilicate catalyst.

結晶性チタノシリケート触媒の存在下、過酸化水素を用いてプロピレンのエポキシ化反応を行うことによりプロピレンオキサイドを製造する技術としては、TS−1触媒を用いる方法が公知であり、この際にメタノール溶媒が好適であることはよく知られている(例えば、非特許文献1参照)。しかし、反応混合液からプロピレンオキサイドを得るためには、水およびメタノール溶媒とプロピレンオキサイドを蒸留等により分離し、さらにメタノール溶媒回収のため、水とメタノールを蒸留等により分離する必要があり、このための多大のエネルギーを要するという問題があった。そのため、TS−1触媒およびメタノール溶媒で得られた反応混合液を水と分液が可能な有機溶媒を用いて目的のエポキシ化合物を液液抽出により分離する方法が開示されている(例えば、特許文献1参照)。しかし、この方法では反応溶媒と異なる別個の抽出溶媒を使用するため、2つの溶媒の蒸留分離や各溶媒の蒸留精製など複雑な工程が必要となるという問題があった。また、メタノール溶媒を用いなければ、複雑な工程を必要としないが、高い活性が得られないという問題があった。   As a technique for producing propylene oxide by carrying out an epoxidation reaction of propylene with hydrogen peroxide in the presence of a crystalline titanosilicate catalyst, a method using a TS-1 catalyst is known, and in this case, methanol is used. It is well-known that a solvent is suitable (for example, refer nonpatent literature 1). However, in order to obtain propylene oxide from the reaction mixture, water and methanol solvent and propylene oxide must be separated by distillation, etc., and further, water and methanol must be separated by distillation etc. to recover the methanol solvent. There was a problem of requiring a great deal of energy. Therefore, a method is disclosed in which a target epoxy compound is separated by liquid-liquid extraction from a reaction mixture obtained with a TS-1 catalyst and a methanol solvent using an organic solvent that can be separated from water (for example, patents). Reference 1). However, since this method uses a separate extraction solvent different from the reaction solvent, there is a problem that complicated steps such as distillation separation of two solvents and distillation purification of each solvent are required. Moreover, if a methanol solvent is not used, a complicated process is not required, but there is a problem that high activity cannot be obtained.

また、Ti−MWW触媒を用いる方法も公知であり、この際にアセトニトリル溶媒が好適であることも知られている(例えば、非特許文献2参照)。しかし、生成水と溶媒を分離する必要があり、通常工業的に用いられている蒸留分離ではエネルギーを多大に要するという問題があった。   Further, a method using a Ti-MWW catalyst is also known, and it is also known that an acetonitrile solvent is suitable at this time (for example, see Non-Patent Document 2). However, it is necessary to separate the produced water and the solvent, and there is a problem that much energy is required in the distillation separation that is usually used industrially.

日本国公表特許公報第2001―516753号公報(国際公表番号WO99/14208)Japanese Patent Publication No. 2001-516753 (International Publication Number WO99 / 14208) Journal of Catalysis 129,159,(1991)Journal of Catalysis 129, 159, (1991) 平成13年度次世代化学プロセス技術開発・ノンハロゲン化学プロセス技術開発成果報告書,168−210,(2002)2001 Next-Generation Chemical Process Technology Development / Non-Halogen Chemical Process Technology Development Results Report, 168-210, (2002)

かかる現状において、本発明が解決しようとする課題は、結晶性チタノシリケート触媒の存在下、プロピレンと過酸化水素を反応させてプロピレンオキサイドを製造する方法であって、高効率下に反応を実施することができ、また、反応混合液からの生成物や溶媒の回収が容易に実施できるという優れた特徴を有するプロピレンオキサイドの製造方法を提供する点に存するものである。   Under such circumstances, the problem to be solved by the present invention is a method for producing propylene oxide by reacting propylene and hydrogen peroxide in the presence of a crystalline titanosilicate catalyst, and the reaction is carried out with high efficiency. Further, the present invention is to provide a method for producing propylene oxide having an excellent feature that the product and the solvent from the reaction mixture can be easily recovered.

すなわち、本発明は、結晶性チタノシリケート触媒の存在下、プロピレンと過酸化水素を反応させてプロピレンオキサイドを製造する方法であって、水と分液が可能な有機溶媒を用い酸素12員環以上の細孔構造を有する結晶性チタノシリケート触媒および水と分液が可能な有機溶媒を用い、プロピレンと過酸化水素を反応させ、プロピレンオキサイドを含む反応混合物を得、該反応液を水層と該有機溶媒を含む油層に液液分離し、該油層へプロピレンオキサイドを水から分離することを特徴とするプロピレンオキサイドの製造方法に係るものである。   That is, the present invention is a method for producing propylene oxide by reacting propylene and hydrogen peroxide in the presence of a crystalline titanosilicate catalyst, and using an organic solvent capable of separating water and liquid, an oxygen 12-membered ring. Using a crystalline titanosilicate catalyst having the above pore structure and an organic solvent capable of separating water and water, propylene and hydrogen peroxide are reacted to obtain a reaction mixture containing propylene oxide. And an oil layer containing the organic solvent, and the propylene oxide is separated from water into the oil layer.

本発明により、結晶性チタノシリケート触媒の存在下、プロピレンと過酸化水素を反応させてプロピレンオキサイドを製造する方法であって、高効率下に反応を実施することができ、また、反応混合液からの生成物や溶媒の回収が容易に実施できるという優れた特徴を有するプロピレンオキサイドの製造方法を提供することができる。   According to the present invention, a method for producing propylene oxide by reacting propylene and hydrogen peroxide in the presence of a crystalline titanosilicate catalyst, the reaction can be carried out with high efficiency. It is possible to provide a method for producing propylene oxide having an excellent feature that the product and solvent can be easily recovered from the product.

本発明は、結晶性チタノシリケート触媒存在下、プロピレンと過酸化水素を反応させてプロピレンオキサイドを製造する方法に関するものである。   The present invention relates to a method for producing propylene oxide by reacting propylene and hydrogen peroxide in the presence of a crystalline titanosilicate catalyst.

本発明は、酸素12員環以上の細孔構造を有する結晶性チタノシリケートを触媒として用いる。結晶性チタノシリケート触媒とは、ゼオライト構造を有する結晶性チタノケイ酸塩である。代表的な酸素12員環以上の細孔構造を有する代表的な結晶性チタノシリケートとしては、IZA(国際ゼオライト学会)の構造コードでMTW構造を有するTi−ZSM―12、BEA構造を有するTi−β、MWW構造を有するTi−MWW、DON構造を有するTi−UTD−1等が知られている。このうち、Ti−MWW触媒は本発明の水と分液可能な有機溶媒の存在下での反応活性が高いので特に好ましく使用できる。更に、Ti−MWW触媒をシリル化剤で処理する事により、より高い反応活性を得ることができるため、シリル化したTi−MWW触媒も特に好ましく使用できる。   In the present invention, crystalline titanosilicate having a pore structure having an oxygen 12-membered ring or more is used as a catalyst. A crystalline titanosilicate catalyst is a crystalline titanosilicate having a zeolite structure. As typical crystalline titanosilicate having a pore structure of a typical oxygen 12-membered ring or more, Ti-ZSM-12 having an MTW structure with a structure code of IZA (International Zeolite Society), Ti having a BEA structure -Β, Ti-MWW having an MWW structure, Ti-UTD-1 having a DON structure, and the like are known. Of these, Ti-MWW catalysts are particularly preferred because of their high reaction activity in the presence of the organic solvent that can be separated from the water of the present invention. Furthermore, since a higher reaction activity can be obtained by treating the Ti-MWW catalyst with a silylating agent, a silylated Ti-MWW catalyst can be particularly preferably used.

本発明に用いる酸素12員環以上の細孔構造を有する結晶性チタノシリケート触媒は反応方式に応じて粉体状あるいは成型体の形で使用される。   The crystalline titanosilicate catalyst having a pore structure having an oxygen 12-membered ring or more used in the present invention is used in the form of powder or molded product depending on the reaction system.

本発明は、水と分液可能な有機溶媒の存在下で実施する。水と分液可能な有機溶媒とは20℃において水と混合すると2液層を形成する有機溶媒のことであり、単一溶媒でもよいが混合溶媒でもよい。該有機溶媒は反応に実質的に不活性な化合物が好ましく、炭化水素、ハロゲン化炭化水素、ニトリル化合物、ケトン化合物、エーテル化合物が好適に使用できる。具体例としてはヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、エチレンジクロライド、クロルベンゼン、プロピオニトリル、メチルエチルケトン、メチルイソブチルケトン、ジブチルエーテルなどが挙げられる。該有機溶媒は炭化水素、ハロゲン化炭化水素、ニトリル化合物、ケトン化合物、エーテル化合物以外の有機化合物との混合物であってもよい。また、該有機溶媒はプロピレンオキサイドとの蒸留分離を容易とするため、プロピレンオキサイドよりも高沸点の化合物が好ましい。   The present invention is carried out in the presence of an organic solvent that can be separated from water. The organic solvent that can be separated from water is an organic solvent that forms a two-liquid layer when mixed with water at 20 ° C., and may be a single solvent or a mixed solvent. The organic solvent is preferably a compound that is substantially inert to the reaction, and hydrocarbons, halogenated hydrocarbons, nitrile compounds, ketone compounds, and ether compounds can be suitably used. Specific examples include hexane, heptane, benzene, toluene, xylene, ethylene dichloride, chlorobenzene, propionitrile, methyl ethyl ketone, methyl isobutyl ketone, dibutyl ether and the like. The organic solvent may be a mixture with organic compounds other than hydrocarbons, halogenated hydrocarbons, nitrile compounds, ketone compounds and ether compounds. The organic solvent is preferably a compound having a boiling point higher than that of propylene oxide because it facilitates distillation separation from propylene oxide.

過酸化水素を用いてプロピレンのエポキシ化反応を行う場合、水が生成するため、本発明による水と分液可能な有機溶媒は水存在下で使用される。反応で生成する水以外に、水は一般に分離精製工程等からのリサイクルされる。また、予め製造した過酸化水素を用いる場合、一般に過酸化水素と共に過酸化水素水として供給される。   When propylene epoxidation reaction is carried out using hydrogen peroxide, water is produced, so that the organic solvent which can be separated from water according to the present invention is used in the presence of water. In addition to the water produced by the reaction, water is generally recycled from the separation and purification process and the like. Moreover, when using the hydrogen peroxide manufactured previously, it is generally supplied as hydrogen peroxide water with hydrogen peroxide.

本発明によるエポキシ化反応の反応温度は通常0〜150℃、好ましくは20〜100℃で実施できる。反応圧力は通常0.1〜20MPa、好ましくは0.3〜10MPaである。フィードされるプロピレンの過酸化水素に対するモル比は、通常1〜200倍、好ましくは1.1〜100倍である。本発明に用いられる過酸化水素の供給方法としては予め製造した過酸化水素水を供給する方法、あるいは水素および酸素から系内で過酸化水素を合成して供給する方法があげられる。反応後の未反応プロピレンは、通常は分離精製後リサイクルして、エポキシ化反応原料として用いる。本発明の水と分液可能な有機溶媒を用いることにより、反応混合液は水層と油層とに液液分離させることができる。液液分離させることにより、プロピレンオキサイドと有機溶媒の回収が容易に実施できる。主として有機溶媒とプロピレンオキサイドからなる油層は通常の蒸留分離によりプロピレンオキサイドと有機溶媒が容易に回収できる。水層は、水層に溶解したプロピレン、プロピレンオキサイド、溶媒等の有効成分を液液抽出や蒸留分離により回収することができる。液液抽出による回収方法が蒸留によるプロピレンオキサイドのロスやエネルギーロスが無いため好ましい。液液抽出に用いる抽剤としては、有効成分の抽出ができれば特に限定されないが上記反応で用いた有機溶媒を用いることも溶媒の分離回収が容易であるため好ましい。   The reaction temperature of the epoxidation reaction according to the present invention is usually 0 to 150 ° C, preferably 20 to 100 ° C. The reaction pressure is usually 0.1 to 20 MPa, preferably 0.3 to 10 MPa. The molar ratio of propylene fed to hydrogen peroxide is usually 1 to 200 times, preferably 1.1 to 100 times. Examples of the method for supplying hydrogen peroxide used in the present invention include a method for supplying hydrogen peroxide water produced in advance, or a method for synthesizing and supplying hydrogen peroxide in the system from hydrogen and oxygen. Unreacted propylene after the reaction is usually recycled after separation and purification and used as a raw material for the epoxidation reaction. By using the water-separable organic solvent of the present invention, the reaction mixture can be liquid-liquid separated into an aqueous layer and an oil layer. By performing liquid-liquid separation, it is possible to easily recover propylene oxide and the organic solvent. In the oil layer mainly composed of an organic solvent and propylene oxide, the propylene oxide and the organic solvent can be easily recovered by ordinary distillation separation. The aqueous layer can recover active components such as propylene, propylene oxide, and solvent dissolved in the aqueous layer by liquid-liquid extraction or distillation separation. The recovery method by liquid-liquid extraction is preferable because there is no loss of propylene oxide or energy loss due to distillation. The extractant used for liquid-liquid extraction is not particularly limited as long as the active ingredient can be extracted, but it is also preferable to use the organic solvent used in the above reaction because the solvent can be easily separated and recovered.

本発明の反応方法としては、固定床流通反応方式あるいはスラリー反応方式があげられる。   Examples of the reaction method of the present invention include a fixed bed flow reaction method and a slurry reaction method.

参考例1
Chemistry Letters 774,(2000)に記載の方法に従い調製したICP発光分析によるTi(チタン)含量が1.1重量%のTi(チタン)−MWW触媒を用いて反応を行った。すなわち、36%H水溶液とプロピオニトリルと純水を用い、H:5重量%、水:47.5重量%、プロピオニトリル:47.5重量%溶液を調製した。調製した溶液12gと粉砕したTi(チタン)−MWW触媒0.010gを50mlステンレスオートクレーブに充填した。充填した溶液は、2層に分液していた。次にオートクレーブを氷浴上に移し、液化プロピレン10gを充填した。さらに窒素で2MPa−Gまで昇圧した。オートクレーブを40℃のブロックバスに入れ、内温がおよそ35℃になる5分後を反応開始とした。反応開始1時間後、オートクレーブをブロックバスから取り出し、サンプリングを行った。サンプリング開始時の圧力は3MPa−Gであった。反応後の溶液は、2液層に分液していた。分析の為、反応後の溶液にアセトニトリル40gを加え、1層にした。分析はガスクロマトグラフィを用いて行なった。その結果、単位触媒重量あたりのプロピレンオキサイド生成活性は、0.370mol・h−1・g−1であった。
再び、同じ条件で反応を行い、同じ方法で反応液を得た。得られた反応液から触媒を除去し、静置した。反応液は、2つの液層に分液していた。
静置後、反応液を分液し、6.3gの水層と5.4gの油層を回収した。それぞれ、ガスクロマトグラフィで分析した結果、水層中のプロピレンオキサイドと油層中のプロピレンオキサイドの分配比率は、0.21/0.79であった。
Reference example 1
The reaction was carried out using a Ti (titanium) -MWW catalyst having a Ti (titanium) content of 1.1 wt% by ICP emission analysis prepared according to the method described in Chemistry Letters 774, (2000). That is, a 36% H 2 O 2 aqueous solution, propionitrile, and pure water were used to prepare a H 2 O 2 : 5 wt%, water: 47.5 wt%, and propionitrile: 47.5 wt% solution. A 50 ml stainless steel autoclave was charged with 12 g of the prepared solution and 0.010 g of pulverized Ti (titanium) -MWW catalyst. The filled solution was separated into two layers. Next, the autoclave was transferred onto an ice bath and charged with 10 g of liquefied propylene. Further, the pressure was increased to 2 MPa-G with nitrogen. The autoclave was placed in a block bath at 40 ° C., and the reaction was started 5 minutes after the internal temperature reached about 35 ° C. One hour after the start of the reaction, the autoclave was removed from the block bath and sampled. The pressure at the start of sampling was 3 MPa-G. The solution after the reaction was separated into two liquid layers. For analysis, 40 g of acetonitrile was added to the solution after the reaction to form one layer. Analysis was performed using gas chromatography. As a result, the propylene oxide production activity per unit catalyst weight was 0.370 mol · h −1 · g −1 .
Again, the reaction was performed under the same conditions, and a reaction solution was obtained by the same method. The catalyst was removed from the resulting reaction solution and allowed to stand. The reaction solution was separated into two liquid layers.
After standing, the reaction solution was separated, and a 6.3 g aqueous layer and a 5.4 g oil layer were recovered. As a result of analysis by gas chromatography, the distribution ratio of propylene oxide in the water layer and propylene oxide in the oil layer was 0.21 / 0.79.

参考例2
プロピオニトリルの代わりにエチレンジクロライドを用いた以外、実施例1と同様に反応および分析を行った。エチレンジクロライドを用いた溶液も実施例1と同様に2液層に分液していた。分析の結果、単位触媒重量あたりのプロピレンオキサイド生成活性は、0.272mol・h−1・g−1であった。
再び、同じ条件で反応を行い、同じ方法で反応液を得た。得られた反応液から触媒を除去し、静置した。反応液は、2つの液層に分液していた。静置後、反応液を分液し、6.1gの水層と5.4gの油層を回収した。それぞれ、ガスクロマトグラフィで分析した結果、水層中のプロピレンオキサイドと油層中のプロピレンオキサイドの分配比率は、0.23/0.77であった。
Reference example 2
The reaction and analysis were performed in the same manner as in Example 1 except that ethylene dichloride was used instead of propionitrile. A solution using ethylene dichloride was also separated into two liquid layers as in Example 1. As a result of analysis, the propylene oxide production activity per unit catalyst weight was 0.272 mol · h −1 · g −1 .
Again, the reaction was performed under the same conditions, and a reaction solution was obtained by the same method. The catalyst was removed from the resulting reaction solution and allowed to stand. The reaction solution was separated into two liquid layers. After standing, the reaction solution was separated, and a 6.1 g aqueous layer and a 5.4 g oil layer were recovered. As a result of gas chromatography analysis, the distribution ratio of propylene oxide in the water layer and propylene oxide in the oil layer was 0.23 / 0.77.

実施例3
実施例1で用いたTi(チタン)−MWW触媒をシリル化し、シリル化Ti(チタン)−MWW触媒を調製した。すなわち、1,1,1,3,3,3−ヘキサメチルジシラザン3.4gとトルエン50gとTi(チタン)−MWW触媒5gを混合し、1.5時間リフラックスさせることでシリル化を行った。更に、ろ別、洗浄後、120℃で減圧乾燥し、シリル化Ti(チタン)−MWW触媒を得た。得られたシリル化Ti(チタン)−MWW触媒を用い、実施例1と同様に反応および分析を行った。溶液も実施例1と同様に2液層に分液していた。分析の結果、単位触媒重量あたりのプロピレンオキサイド生成活性は、0.489mol・h−1・g−1であった。
Example 3
The Ti (titanium) -MWW catalyst used in Example 1 was silylated to prepare a silylated Ti (titanium) -MWW catalyst. That is, 3.4 g of 1,1,1,3,3,3-hexamethyldisilazane, 50 g of toluene and 5 g of Ti (titanium) -MWW catalyst were mixed and silylated by refluxing for 1.5 hours. It was. Further, after filtration and washing, the resultant was dried under reduced pressure at 120 ° C. to obtain a silylated Ti (titanium) -MWW catalyst. The obtained silylated Ti (titanium) -MWW catalyst was used for reaction and analysis in the same manner as in Example 1 . Solvent solution was also separated into two liquid layers in the same manner as in Example 1. As a result of analysis, the propylene oxide production activity per unit catalyst weight was 0.489 mol · h −1 · g −1 .

実施例4
実施例3で用いたシリル化Ti(チタン)−MWW触媒を用い、実施例1と同様にエチレンジクロライドを溶媒に用いた反応および分析を行った。反応後の溶液も実施例1と同様に2液層に分液していた。分析の結果、単位触媒重量あたりのプロピレンオキサイド生成活性は、0.594mol・h−1・g−1であった。
Example 4
Using the silylated Ti (titanium) -MWW catalyst used in Example 3, the reaction and analysis using ethylene dichloride as a solvent were conducted in the same manner as in Example 1. The solution after the reaction was separated into two liquid layers as in Example 1. As a result of analysis, the propylene oxide production activity per unit catalyst weight was 0.594 mol · h −1 · g −1 .

比較例1
Ti(チタン)−MWW触媒の代わりに、酸素10員環細孔構造を持つICP発光分析によるTi(チタン)含量が1.3重量%のTS−1触媒を用いた以外、実施例1と同様にプロピオニトリルを溶媒に用いて反応を行い、その分析を行った。分析の結果、単位触媒重量あたりのプロピレンオキサイド生成活性は、0.0101mol・h−1・g−1であった。
Comparative Example 1
Similar to Example 1 except that a TS-1 catalyst having a Ti (titanium) content of 1.3 wt% by ICP emission analysis having an oxygen 10-membered ring pore structure was used instead of the Ti (titanium) -MWW catalyst. The reaction was conducted using propionitrile as a solvent and analyzed. As a result of analysis, the propylene oxide production activity per unit catalyst weight was 0.0101 mol · h −1 · g −1 .

比較例2
Ti(チタン)−MWW触媒の代わりに、比較例1で用いた酸素10員環細孔構造を持つTS−1触媒を用いた以外、実施例2と同様に1,2−ジクロロエタンを溶媒に用いて反応を行い、その分析を行った。分析の結果、単位触媒重量あたりのプロピレンオキサイド生成活性は、0.0464mol・h−1・g−1であった。
Comparative Example 2
Instead of the Ti (titanium) -MWW catalyst, 1,2-dichloroethane was used as a solvent in the same manner as in Example 2 except that the TS-1 catalyst having a 10-membered oxygen ring pore structure used in Comparative Example 1 was used. The reaction was conducted and analyzed. As a result of analysis, the propylene oxide production activity per unit catalyst weight was 0.0464 mol · h −1 · g −1 .

比較例3
プロピオニトリルの代わりにアセトニトリルを用いた以外、実施例1と同様に、Ti(チタン)−MWW触媒を用いた反応および分析を行った。分析の結果、単位触媒重量あたりのプロピレンオキサイド生成活性は、0.393mol・h−1・g−1であった。しかし、得られた反応液は均一であり、液液分離は出来なかった。
Comparative Example 3
A reaction and analysis using a Ti (titanium) -MWW catalyst were performed in the same manner as in Example 1 except that acetonitrile was used instead of propionitrile. As a result of analysis, the propylene oxide production activity per unit catalyst weight was 0.393 mol · h −1 · g −1 . However, the obtained reaction liquid was uniform and liquid-liquid separation was not possible.

比較例4
プロピオニトリルの代わりにメタノールを用い、Ti(チタン)−MWW触媒の代わりに比較例1で用いたTS−1触媒を用いた以外、実施例1と同様に反応および分析を行った。分析の結果、単位触媒重量あたりのプロピレンオキサイド生成活性は、0.165mol・h−1・g−1であった。また、得られた反応液は均一であり、液液分離は出来なかった。
Comparative Example 4
The reaction and analysis were performed in the same manner as in Example 1 except that methanol was used instead of propionitrile and the TS-1 catalyst used in Comparative Example 1 was used instead of Ti (titanium) -MWW catalyst. As a result of analysis, the propylene oxide production activity per unit catalyst weight was 0.165 mol · h −1 · g −1 . Moreover, the obtained reaction liquid was uniform and liquid-liquid separation was not possible.

Claims (2)

結晶性チタノシリケート触媒の存在下、プロピレンと過酸化水素を反応させてプロピレンオキサイドを製造する方法であって、
該結晶性チタノシリケート触媒は、MWW構造を有し、かつ、酸素12員環以上の細孔構造を有する結晶性チタノシリケートをシリル化したものであり、
該結晶性チタノシリケート触媒、並びに、水と分液が可能なハロゲン化炭化水素及び水と分液が可能なニトリル化合物からなる群から選ばれる少なくとも1種の有機溶媒を用い、
プロピレンと過酸化水素を反応させ、プロピレンオキサイドを含む反応混合物を得、該反応混合物を水層と該有機溶媒を含む油層に液液分離し、プロピレンオキサイドを水から分離することを特徴とするプロピレンオキサイドの製造方法。
A process for producing propylene oxide by reacting propylene and hydrogen peroxide in the presence of a crystalline titanosilicate catalyst,
The crystalline titanosilicate catalyst is a silylated crystalline titanosilicate having an MWW structure and having a pore structure of an oxygen 12-membered ring or more,
Using the crystalline titanosilicate catalyst , and at least one organic solvent selected from the group consisting of halogenated hydrocarbons capable of separating with water and nitrile compounds capable of separating with water ,
Propylene characterized by reacting propylene and hydrogen peroxide to obtain a reaction mixture containing propylene oxide, liquid-liquid separation of the reaction mixture into an aqueous layer and an oil layer containing the organic solvent, and separating propylene oxide from water Production method of oxide.
有機溶媒が、エチレンジクロライド及びプロピオニトリルからなる群から選ばれる少なくとも1種の有機溶媒である請求項1記載の製造方法。The production method according to claim 1, wherein the organic solvent is at least one organic solvent selected from the group consisting of ethylene dichloride and propionitrile.
JP2004058725A 2003-03-06 2004-03-03 Propylene oxide production method Expired - Fee Related JP4639606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004058725A JP4639606B2 (en) 2003-03-06 2004-03-03 Propylene oxide production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003059604 2003-03-06
JP2004058725A JP4639606B2 (en) 2003-03-06 2004-03-03 Propylene oxide production method

Publications (2)

Publication Number Publication Date
JP2004285056A JP2004285056A (en) 2004-10-14
JP4639606B2 true JP4639606B2 (en) 2011-02-23

Family

ID=33302126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004058725A Expired - Fee Related JP4639606B2 (en) 2003-03-06 2004-03-03 Propylene oxide production method

Country Status (1)

Country Link
JP (1) JP4639606B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10320635A1 (en) * 2003-05-08 2004-11-18 Basf Ag Process for the production of propylene oxide
CN101233122B (en) 2005-08-02 2012-01-11 住友化学株式会社 Method for producing propylene oxide
WO2011118823A1 (en) * 2010-03-26 2011-09-29 Sumitomo Chemical Company, Limited Method of producing propylene oxide
JP5655420B2 (en) * 2010-08-05 2015-01-21 ナガセケムテックス株式会社 Method for producing epoxy compound by oxidation method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995028374A1 (en) * 1994-04-19 1995-10-26 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Process for producing triazole derivative
JPH10511721A (en) * 1994-12-23 1998-11-10 ザ ダウ ケミカル カンパニー Method for producing allyl ether, thioether and amine compound
JP2001097965A (en) * 1999-07-27 2001-04-10 Enichem Spa Method for producing olefin oxide
JP2002080469A (en) * 2000-07-04 2002-03-19 Ube Ind Ltd Purification process of reaction mixture of 1,5,9- cyclododecatriene epoxidation reaction
JP2002102709A (en) * 2000-09-29 2002-04-09 Showa Denko Kk Crystalline mww type titanosilicate catalyst for production of oxidized compound, method for producing the same and method for producing oxidized compound using the same
JP2002526483A (en) * 1998-09-22 2002-08-20 アルコ ケミカル テクノロジィ, エル.ピー. Improved epoxidation method
WO2002092586A1 (en) * 2001-05-14 2002-11-21 Solvay (Société Anonyme) Process for manufacturing an oxirane

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453511A (en) * 1993-12-23 1995-09-26 Arco Chemical Technology, L.P. Bis-piperidinium compounds

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995028374A1 (en) * 1994-04-19 1995-10-26 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Process for producing triazole derivative
JPH10511721A (en) * 1994-12-23 1998-11-10 ザ ダウ ケミカル カンパニー Method for producing allyl ether, thioether and amine compound
JP2002526483A (en) * 1998-09-22 2002-08-20 アルコ ケミカル テクノロジィ, エル.ピー. Improved epoxidation method
JP2001097965A (en) * 1999-07-27 2001-04-10 Enichem Spa Method for producing olefin oxide
JP2002080469A (en) * 2000-07-04 2002-03-19 Ube Ind Ltd Purification process of reaction mixture of 1,5,9- cyclododecatriene epoxidation reaction
JP2002102709A (en) * 2000-09-29 2002-04-09 Showa Denko Kk Crystalline mww type titanosilicate catalyst for production of oxidized compound, method for producing the same and method for producing oxidized compound using the same
WO2002092586A1 (en) * 2001-05-14 2002-11-21 Solvay (Société Anonyme) Process for manufacturing an oxirane

Also Published As

Publication number Publication date
JP2004285056A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
US6288248B1 (en) Epichlorohydrin-based product and process for manufacturing this product
EP1313722B1 (en) Process for the continuous production of an olefinic oxide
EP1742928B1 (en) Process for the preparation of propylene oxide
JP5373240B2 (en) Integrated production method of olefin oxides
CN1062863C (en) Integrated process for epoxide production
RU2162466C2 (en) Olefin epoxidation process
JP4555478B2 (en) Process for reacting organic compounds with hydroperoxides
US7531674B2 (en) Process for producing propylene oxide
US7838455B2 (en) Method of regeneration of titanium-containing molecular sieve catalyst
TWI473795B (en) Process for producing an oxirane
JP2013079259A (en) Method for producing oxirane by using peroxide compound
WO2008087657A3 (en) A process for preparing epichlorohydrin
WO2012137979A1 (en) Method for obtaining propylene oxide
TWI523689B (en) Process for producing propylene oxide using a pretreated epoxidation catalyst
KR100494157B1 (en) A Method for Continuous Production of Propylene Oxide and Other Alkene Oxides
KR20190004322A (en) Preparation method of oligosilane
JP4639606B2 (en) Propylene oxide production method
CN105439921B (en) Method for producing dimethyl sulfoxide
KR101217973B1 (en) Continuous process for the preparation of phenol from benzene in a fixed bed reactor
JP2004525073A (en) Continuous production method of olefin oxide
WO2019025184A1 (en) Process for the epoxidation of propene
JP2004525073A5 (en)
JP2001039965A (en) Production of 3-hydroxy-3-methyltetrahydrofuran
JPH0366666A (en) Recovering of hydroperoxide
EP2878597A1 (en) Process for removal of 1,2-epoxy-5-hexene from epichlorohydrin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070112

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080130

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees