WO2004077888A1 - Material for organic el device and organic el device therefrom - Google Patents

Material for organic el device and organic el device therefrom Download PDF

Info

Publication number
WO2004077888A1
WO2004077888A1 PCT/JP2004/002383 JP2004002383W WO2004077888A1 WO 2004077888 A1 WO2004077888 A1 WO 2004077888A1 JP 2004002383 W JP2004002383 W JP 2004002383W WO 2004077888 A1 WO2004077888 A1 WO 2004077888A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
group
integer
derivative
nitrogen atom
Prior art date
Application number
PCT/JP2004/002383
Other languages
French (fr)
Japanese (ja)
Inventor
Kimihisa Yamamoto
Jun-Sang Cho
Norifusa Sato
Atsushi Kimoto
Original Assignee
Kanagawa Academy Of Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy Of Science And Technology filed Critical Kanagawa Academy Of Science And Technology
Priority to JP2005502954A priority Critical patent/JPWO2004077888A1/en
Publication of WO2004077888A1 publication Critical patent/WO2004077888A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • H10K85/146Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE poly N-vinylcarbazol; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/791Starburst compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the invention of this application relates to a material for an organic EL device and an organic EL device using the same. More specifically, the invention of this application comprises a phenylazomethine-based compound or a phenylazomethine mono-rubazole-based compound useful as a material for a hole transport layer and Z or a light-emitting layer in an organic EL device. It is about materials. Background art
  • an organic EL device has a structure in which a hole transport layer, a light emitting layer, an electron transport layer, and the like are stacked between a transparent anode such as IT0 and a cathode made of a metal having a low work function. Then, by passing a direct current between the electrodes, holes are injected from the anode to the hole transport layer, and the electrons and holes injected from the cathode recombine in the light emitting layer to generate excitons. Is done. When this exciton is deactivated, light energy (fluorescence or phosphorescence) is released, and light emission occurs.
  • a transparent anode such as IT0
  • a cathode made of a metal having a low work function
  • OLEDs are self-luminous and do not require a backlight, thus reducing power consumption, response speed, viewing angle, and contrast. 2004/002383
  • the characteristics such as the ratio are much better than the conventional TFT liquid crystal display device.
  • there are still issues such as improvement of luminous efficiency, high brightness, and long life for practical use.
  • materials for the hole transport layer, the light emitting layer, and the electron transport layer have been studied as a method for improving the luminous efficiency of the organic EL device.
  • an organic EL element material an aromatic amine derivative having a low ionization potential and a high hole transporting property, or a polymer material having an aromatic amine in a side chain is used.
  • dimethylbenzene derivatives with a triphenylamine group and a vinyl group and derivatives with an oxadiazole group known as an electron transport material are used. Has been.
  • rare-earth metal complex-based materials that exhibit strong fluorescent properties ⁇ -conjugated polyphenylenevinylene (PPV), and non-conjugated polyvinyl carbazole (PVK) derivatives are also used as materials for the light-emitting layer and hole transport layer.
  • PV ⁇ -conjugated polyphenylenevinylene
  • PVK non-conjugated polyvinyl carbazole
  • the film formation state of each layer that is, the morphological stability of the thin film is extremely important. Furthermore, a reduction in drive voltage is desired to reduce the power consumption of the device.
  • the invention of this application has been made in view of the circumstances described above, and has as its object to solve the problems of the prior art and to provide an organic EL device having excellent luminous efficiency and high durability. I have. Disclosure of the invention
  • X is a carbon atom, a nitrogen atom, an amine derivative, benzene and its derivatives, heterocycle and its derivatives, porphyrin and its derivatives, fluorinine and its derivatives, cyclam and its derivatives, and vinyl polymer and its derivatives.
  • a core site selected from the group consisting of derivatives, wherein Y and W are the same or different;
  • N is a nitrogen atom
  • R 1 is selected from the group consisting of an alkylene group, a phenylene group and a heterocyclic group which may have a substituent.
  • R 2 is a phenyl group which may have one or more substituents, and m is an integer of 1 to 6)
  • a material for an organic EL device is provided. '
  • X is carbon atom, nitrogen atom, amine derivative, benzene and , A heterocyclic ring and its derivative, porphyrin and its derivative, furocyanine and its derivative, and a cyclam and its derivative, a core site selected from the group consisting of: N is a nitrogen atom; R 1 is substituted A substituent selected from the group consisting of an alkylene group which may have a group, a phenylene group and a heterocyclic group, or may be absent; and R 2 has one or more substituents. And m is an integer of 1 to 6, and 1 is an integer of 1 to 6 representing the number of dendron subunits bonded to X).
  • a material for an organic EL device which is characterized by comprising a methine dendrimer.
  • N is a nitrogen atom
  • n is an integer from 1 to 6
  • k is an integer representing the number of dendron subunits bonded to X
  • N is a nitrogen atom
  • X is a carbon atom, a nitrogen atom, an amine derivative, a benzene and its derivative, a heterocycle and its derivative, a porphyrin and its derivative, a phthalocyanine and its derivative, and a cycle and its derivative.
  • R 1 is a substituent selected from the group consisting of an optionally substituted alkylene group, a phenylene group and a heterocyclic group, or is present.
  • R 2 is a phenyl group which may have one or more substituents; m is an integer of 1 to 6, n is an integer of 1 to 6; k and 1 are Which is an integer satisfying the condition 1 ⁇ k + 1 ⁇ 6, which represents the number of dendron subunits, each of which is bonded to X). Yes To provide for the EL element material.
  • the present invention provides a material for an organic EL device having a structure selected from the group consisting of (a) to (m).
  • N is a nitrogen atom
  • R 1 is a substituent selected from an alkylene group, a phenylene group and a heterocyclic group which may have a substituent, or may be absent.
  • R 2 is a phenyl group which may have one or more substituents
  • m is an integer of 1 to 6
  • n is an integer of 1 to 6
  • p and Q are one or more integers representing the degree of polymerization.
  • the present invention provides a material for an organic EL device, comprising a phenylazomethine-potassium rubazole copolymer represented by the following formula:
  • N is a nitrogen atom
  • R 1 is a substituent selected from the group consisting of an alkylene group, a phenylene group and a heterocyclic group which may have a substituent, or absent.
  • R 2 is a phenyl group which may have one or more substituents, m is an integer of 1 to 6), and a compound represented by the following formula (XI )
  • a method for producing a material for an organic EL device characterized by reacting a vinylcarbazole monomer represented by the following formula: .
  • a ninth aspect of the invention of this application is an organic EL comprising at least an anode, a hole transport layer formed on the anode, a light emitting layer in contact with the hole transport layer, and a cathode in contact with the light emitting layer.
  • the hole transporting layer or the light emitting layer is formed of a thin film containing any of the above-mentioned materials for an organic EL device.
  • the organic EL device is characterized in that the light-emitting layer is formed of a thin film containing a metal salt together with any one of the materials for an organic EL device described above, and, first, the hole transport layer or the light-emitting layer An organic EL device comprising a thin film obtained by photocrosslinking any of the above materials for an organic EL device.
  • the invention of the present application also provides, 12thly, a light-emitting or display device characterized by including any one of the above-mentioned organic EL devices.
  • FIG. 1 is a schematic diagram illustrating the organic EL device of the present invention.
  • 1 organic EL element
  • 21 transparent substrate
  • 22 anode
  • 3 hole transport layer
  • 4 light emitting layer
  • 5 cathode
  • 6 conducting wire
  • FIG. 2 is a diagram showing characteristics (voltage-luminance curve) of the organic EL device constructed in the example of the invention of this application.
  • the hole transport layer is a: phenylazomethine dendrimer (4th generation), b: phenylazomethine dendrimer (4th generation), high temperature measurement, c: phenylazomethine dendrimer (4th generation) ' Tin chloride, d: diaminomethyl-substituted phenylazomethine dendrimer (3rd generation)
  • FIG. 3 is a diagram showing the characteristics (voltage-luminance curve) of the organic EL device constructed in the example of the invention of this application.
  • the hole transport layer is a: phenylazomethine dendrimer (4th generation) ⁇ tin chloride / polyvinylcarbazole, b: polyvinylcarbazole
  • FIG. 4 is a diagram showing characteristics (voltage-luminance curve) of the organic EL device constructed in the example of the present invention.
  • the light-emitting layer is a: phenylazomethine dendrimer (4th generation) ⁇ tin chloride Z polyphenylenevinylene, b: polyphenylenevinylene)
  • FIG. 5 is a diagram showing characteristics (voltage-luminance curve) of the organic EL device constructed in the example of the invention of this application.
  • the hole transport layer is a: 4- (diphenylazomethine) styrene-vinyl carbazole copolymer
  • b 4- (diphenyl azomethine) styrene-vinyl carbazole copolymer ⁇ tin chloride
  • C Polyvinyl carpazole
  • FIG. 6 is a diagram showing characteristics (voltage-luminance curve) of the organic EL device constructed in the example of the present invention.
  • the hole transport layer is composed of a: phenylazomethine one-pot rubazolyl asymmetric dendrimer, b: phenyl azomethine one-pot lupusole asymmetric dendrimer Eu (0T f) 3
  • FIG. 7 is a diagram showing characteristics (voltage-luminance curve) of the organic EL device constructed in the example of the present invention.
  • b force Lubazolide dendrimer, uncrosslinking
  • FIG. 8 is a diagram showing the lifetime (time-luminance curve) of the organic EL device constructed in the example of the invention of this application.
  • the hole transport layer is a: Carpazole dendrimer (3rd generation)
  • Photocrosslinking b Force uncrosslinked rubazole dendrimer
  • the material for an organic EL device of the present invention has a phenyl azomethine dendron subunit having a metal accumulating ability and / or a carbazole dend subunit having an excellent hole transporting property, and is easily prepared by a solution casting method. It can form a thin film. In addition, the morphological characteristics of the interface of the obtained thin film are significantly improved as compared with conventional materials for organic EL devices.
  • X is a group consisting of a carbon atom, a nitrogen atom, an amine derivative, benzene and its derivatives, a heterocycle and its derivatives, porphyrin and its derivatives, phthalocyanine and its derivatives, cyclam and its derivatives, and a vinyl polymer and its derivatives.
  • Y and W are the same or different, and are represented by the following formula (II): 383
  • N is a nitrogen atom
  • R 1 is a substituent selected from the group consisting of an alkylene group which may have a substituent, a phenylene group and a heterocyclic group
  • R 2 is a phenyl group optionally having one or more substituents
  • m is an integer of 1 to 6
  • a phenylazomethine dendron subunit or
  • N is a nitrogen atom and n is an integer of 1 to 6).
  • m and n in equations (11) and (III) are integers of 1 to 6 representing the number of generations in each dendro subunit, and 1 and k in equation (I) are Represents the number of connected dendrosubunits, ie, Y and W.
  • the material for an organic EL device of the invention of the present application is characterized in that at least phenylazomethine or sorbazole dend It is a combination of ronsubunits.
  • Such compounds include dendrimers having X as a core and only Y, only W, or both Y and W as dendron subunits.
  • X represents a carbon atom, a nitrogen atom, an amine derivative, benzene and its derivatives, a heterocycle and its derivatives, porphyrin and its derivatives, phthalocyanine and its derivatives, and cyclam And its derivatives, but for X, the phenylazomethine dendron subunit (Y) and the rubazodyl dendron subunit (W) are 1 to 6 in total. Can be combined. The number of such Y and W can be appropriately selected according to the number of possible positions of X.For example, when X is benzene, Y and W can be combined up to a total of six.
  • Y and W can bond up to a total of four.
  • X that can combine more than 6 Y and W is considered, but in that case, attention must be paid to the steric hindrance of the dendrimer.
  • At least core structure X has the following formula (VI I)
  • the method for synthesizing such phenylazomethine dendrimer, carbazole dendrimer, and phenylazomethine monofunctional rubazole asymmetric dendrimer is not particularly limited, and the Divergent method for synthesizing from the center of the dendrimer outward.
  • a known method such as the Convergent method for synthesizing from outside the dendrimer toward the center can be applied.
  • dendrons Y and W of each generation are synthesized respectively, and a core compound X having a reactive group (for example, I, Br, NH 2, etc.) is subjected to a dehydration condensation reaction in the presence of a catalyst by a convergent method.
  • a phenylazomethine dendrimer and / or a phenylazomethine asymmetric rubazole asymmetric dendrimer can be synthesized (for example, Japanese Patent Application No. 2000-02). 0 1 0; Japanese Patent Application 2 0 0 2 — 0 6 6 1 9 1; Masayoshi Higuchi, Satoshi Shiki, and Kimihisa Yaiamoto, Org. Lett. 2000, Vol. 2, No. 20, 3079-3082; Masayoshi Higuchi, Satoshi Shiki, Katsuhiko Ariga, and Kiiihisa Yaiamoto, J. Am. Chew. Soc. 2001, 123, 4414-4420).
  • Such a phenylazomethine one-pot rubazole copolymer has the following formula (X)
  • n is the same as described above, which is obtained by reacting a vinyl carbazole monomer represented by the following formula: It proceeds by heating to 80.
  • a radical initiator such as tert-butyl hydroperoxide, benzoyl peroxide, and azobisisoptirononitrile (AIBN).
  • P and Q in the phenylazomethine-carpazole copolymer of the formula (VIII) represent the phenylazomethine dendrite subunit and the carbazole dendron subunit, respectively.
  • Phenyl of formula (VIII) The azomethine-potassium rubazole copolymer may be a random copolymer or a copolymer in which phenyl azomethine dendron subunits and carbazole monodentate subunits are alternately and regularly arranged. Is also good.
  • the ratio of p to q is not particularly limited, the purpose is that phenylazomethine dendron subunit has high metal accumulation ability, and carbazole dend subunit has high hole transport ability. It can be appropriately changed according to the characteristics of the material for the organic EL element to be used.
  • R 1 in phenylazomethine dendron subunit (Y) is a substituent selected from alkylene, phenylene, a heterocyclic group and a derivative thereof, Specific examples include heterocycles such as methylene, ethylene, propylene, phenylene, pyrrole, thiophene, and oxadiazole.
  • R 2 in Y is a phenyl group which may have one or more substituents, and these substituents may further have a substituent.
  • a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, a phenyl group, an amino group, a cyano group, a dimethylamino group, or the like may be any one of the o-, m-, and p-positions. Or a substituted phenyl group bonded to two or more sites. Since the electron density of phenylazomethine dendron subunit changes depending on the nature of R 2 (electron donating property, Z electron withdrawing property, etc.), R 2 can be appropriately selected according to the purpose and used for organic EL devices. It is possible to adjust the properties of the whole material (or the luminous efficiency of the whole organic EL device).
  • fenilazomethine dendrosubunit (Y) and W By selecting the number of generations of the knit (W), that is, the values of m and n, the hole transport property and the light emission property can be adjusted.
  • phenylazomethine dendrimer has an electron gradient due to the electron density difference (basicity) of the next-generation imine site in the molecule, so that various metals must be added.
  • has been reported to produce a stepwise complexation with the imine site in the molecule for example, Masayos i Higuc i, Satoshi Siki, and Kimihisa Yamamoto, Org. Lett. 2000, Vol. 2, No. 20, 3079-3082; Masayoshi Higuchi, Satoshi Shiki, Katsuhiko Ariga, and Kimihisa Yamamoto, J. Am. Chem. Soc.
  • phenylazomethine dendrimer phenylazomethine-potassium asymmetric dendrimer or phenylazomethine-carbazolyl copolymer Metals can be complexed with the combined phenylazomethine dendron subunits.
  • the material for an organic EL device of the invention of this application can form a dense and high-strength thin film. Since such a thin film is electrochemically stable and exhibits high heat resistance, by using it as a hole transport layer or a light emitting layer, it is possible to realize excellent luminous efficiency and high durability. . Therefore, the invention of this application also provides an organic EL device having a hole transport layer or a light emitting layer formed of a thin film containing the material for an organic EL device as described above.
  • FIG. 1 shows an outline of the organic EL device of the present invention. That is, this
  • the organic EL element (1) of the invention of the application comprises at least an anode (22), a hole transport layer (3) formed on the anode (22), and a light emitting layer (3) in contact with the hole transport layer (3). 4) and a cathode (5) in contact with the light emitting layer (4), wherein at least one of the hole transport layer (3) and the light emitting layer (4) is at least one of the organic EL devices described above. What is necessary is just to be comprised by the thin film containing the material for use.
  • the hole transport layer (3) is in contact with the anode (22) and transports holes injected from the anode (22) to the light emitting layer (4).
  • Any material may be used as long as it contains the material for an organic EL device as described above.
  • the material for an organic EL device of the invention of this application has, for example, an electron gradient due to the electron density difference (basicity) of the next-generation imine site of phenylazomethine dendrimer. Therefore, in the organic EL device (1) of the invention of this application, by using such a material for an organic EL device for the hole transport layer (3), the energy of the anode (22) and the hole transport layer (3) can be improved. (1) The gap is reduced, and the hole injection into the hole transport layer (3) and the hole transport from the hole transport layer (3) to the light emitting layer (4) can be performed efficiently. Therefore, the luminous efficiency of the organic EL device (1) can be improved, the open discharge pressure can be reduced, and the drive voltage can be reduced.
  • the light emitting layer (4) in the organic EL device (1) of the invention of the present application is a place where recombination of injected holes and electrons takes place. Any material can be used as long as it reacts to emit light.
  • Various materials generally used for organic EL devices specifically, tris (8-quinolinolato) aluminum complex (A1Q3), bis (benzoquinolinolato) ) Beryllium complex (BeBd2), bis (8-quinolato) zinc complex (ZnoJ Metal complexes such as palladium complex (Eu (TTA) 3 (phen)) and low molecular weight fluorescent dyes such as perylene, quinacridone, and coumarin thinned by vapor deposition, poly (p-phenylenevinylene) (PPV) or polyfluorene
  • A1Q3 (8-quinolinolato aluminum complex
  • BeBd2 Beryllium complex
  • ZnoJ Metal complexes such as palladium complex (Eu (TTA)
  • a polymer obtained by dissolving a ⁇ -conjugated polymer such as (PF) or a polymer containing a fluorescent dye in a side chain such as polypinylcarbazole in a solvent and forming a thin film by a wet coating method can be suitably used.
  • the light emitting layer a polymer obtained by dissolving a ⁇ -conjugated polymer such as (PF) or a polymer containing a fluorescent dye in a side chain such as polypinylcarbazole in a solvent and forming a thin film by a wet coating method.
  • the light emitting layer such as (PF) or a polymer containing a fluorescent dye in a side chain such as polypinylcarbazole in a solvent and forming a thin film by a wet coating method.
  • the light emitting layer a polymer obtained by dissolving a ⁇ -conjugated polymer such as (PF) or a polymer containing a fluorescent dye in a
  • the light emitting layer (4) shall consist of a thin film containing any of the above-mentioned materials for an organic EL device together with a material which emits light in response to energy released by recombination of holes and electrons.
  • the light emitting layer (4) contains the above-mentioned material for an organic EL device, the light emitting characteristics of the device are improved, which is preferable.
  • the material for an organic EL device of the invention of this application is capable of complexing a metal to phenylazomethine dendron subunit.
  • An electron gradient is generated based on the electron density difference (basicity). Therefore, in the organic EL device (1) of the invention of this application, the hole transport layer (3) or the light emitting layer (4) is formed of a thin film containing a metal salt together with the organic EL device material. It may be.
  • the metal integrated in the phenylazomethine dendron subunit of the material for an organic EL device of the invention of this application may be any metal as long as it can form a complex with the imine group of phenylazomethine as a ligand.
  • a metal there is no particular limitation.
  • Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag ⁇ Au, Zn, Cd, Mo, W, Mn, Sn, Eu, Tb, Nd and the like can be mentioned.
  • transition metal chlorides such as tin (Sn) chloride (SnCl 2 ), copper (Cu), iron (Fe), and gold (Au) (eg, CuCl 2 , FeCl 3 , AuCl 3, etc.) , Europium (Eu), terbium (Tb) and other rare earth metal chlorides (eg EuCl 3 , TbCl 3 ), copper trifluoromethanesulfonic acid (Cu (0Ti) 3 ), dimethyl trifluoromethanesulfonic acid (Eu (0Ti) 3 ), terpium trifluoromethanesulfonic acid (Tb (0Ti ) 3 ), and neodymium trifluoromethanesulfone (Nd (OTf) 3 ).
  • Such a complex is formed by a metal which can form a complex with the solution of the material for the organic EL device using the imine group in the phenylazomethine structure as a ligand.
  • the solvent is not particularly limited, and for example, chloroform-formacetonitrile can be used.
  • the organic EL device (1) according to the invention of the present application is further characterized in that a thin film obtained by photocrosslinking the organic EL device material is used as a hole transport layer (3) or a light emitting layer (4). May be.
  • a solution of the organic EL element material is cast to form a thin film, and then the cast film is irradiated with light to crosslink the formed dendrimer.
  • the light to be irradiated may be at least light that includes an absorption wavelength region of phenylazomethine and / or carbazole in the material for an organic EL device, and various light sources are used.
  • the wavelength range of the irradiated light is an ultraviolet light range of 500 nm or less.
  • a thin film obtained by photocrosslinking a material for an organic EL device is a film in which a carbazole group-phenyl ring is crosslinked intra- or intermolecularly by a photocrosslinking reaction.
  • a cross-linking reaction occurs at either the 3-position or the 6-position in the carbazole dendron subunit by light irradiation, and the cross-linking occurs. It becomes a film.
  • a cross-linking reaction occurs between the adjacent 2-positions of a phenyl group, and a cross-linked film is formed.
  • Such a crosslinked film has low solubility in organic solvents and is almost insoluble in general organic solvents. Therefore, if the photocrosslinked thin film is used as the hole transport layer (3), the hole transport layer (3) can be formed even if the light emitting layer (4) is further formed by casting an organic solvent solution. Does not dissolve.
  • the anode (22) is preferably made of a material having a high hole injection ability (in other words, a material having a large work function).
  • a material having a high hole injection ability for example, indium Z tin oxide (IT0) ), Tin oxide, gold or the like.
  • I0 indium Z tin oxide
  • # 0 is suitable because it has high visible light transmittance and can take out light emitted from the organic EL device (1).
  • the anode (22) may be formed on a transparent substrate (21) such as glass or plastic, and the film thickness and the like are not limited. Of course, a commercially available conductive glass may be used as the anode (22).
  • the material and thickness of the cathode (5) are not particularly limited as long as the cathode (5) has conductivity and can achieve the purpose of injecting electrons ( ⁇ ) into the light emitting layer (4).
  • a group III metal such as an alkali metal, an alkaline earth metal, aluminum, gallium, and indium having a low work function is used.
  • alloys of magnesium and silver or copper, which are chemically stable and inexpensive, and aluminum alloys which are inexpensive and easy to form films Pum is preferred. These materials may be formed on a transparent substrate such as glass or plastic.
  • the organic EL device (1) of the invention of this application can be used as a flat panel display of various devices such as a mobile phone, a notebook computer, and a PDA by being combined with a conductor, a power cable, a filter, and the like. Things.
  • Anode A 3 mm wide anode was prepared by etching the IT0 surface of an IT0 glass electrode (20 mm X 20; Oji Tobi) with hydrochloric acid. .
  • Phenylazomethine dendrimer (4th generation) represented by the formula below is dissolved in 1 ml of 1 ml dendrimer with 1 ml of black-mouthed form, and spin-cast method (2,500 rpm, 2 times at 1 minute intervals) A 500 A thick hole transport layer was formed by casting.
  • Light-emitting layer A3 (Tokyo Kasei Co., Ltd.) was applied to the obtained hole-transporting layer using a vacuum evaporation apparatus (Ulvac VPC-410A) under a reduced pressure of 50 ⁇ 10 " 6 Torr to 2-3 A. Vacuum deposition was performed at a deposition rate of / sec to form a light emitting layer (electron transporting property) with a thickness of 500A.
  • A1 was vacuum deposited at a deposition rate of 2 to 5 A / sec under the same conditions as in (c) to form a cathode having a thickness of 1000 A.
  • the obtained organic EL device with an area of 0.1 cm 2 was 2383 Voltage-current and voltage-luminance measurements were performed.
  • the characteristics of the organic EL device are shown in FIG. 2a.
  • step (b) of forming the hole transport layer in Example 1 1 equivalent of tin chloride was used together with the phenylazomethine dendrimer of the formula (IV-a) (based on the number of imines in the phenylazomethine dendrimer).
  • tin chloride 1 equivalent of tin chloride was used together with the phenylazomethine dendrimer of the formula (IV-a) (based on the number of imines in the phenylazomethine dendrimer).
  • acetonitrile complexed, concentrated, and spin-cast under the same conditions as in Example 1 to form a 500 A thick hole transport layer.
  • the maximum luminance was 18000 cd / m 2 at 12 V, and the luminous efficiency at a luminance of 300 cd / m 2 was as high as 2.6 lm / W.
  • the turn-on voltage was about 4 V and the dendrimer alone was used as the hole transport layer, the voltage was reduced by 1.5 V or more compared to the case where the hole transport layer was used (Example 1).
  • phenylazomethine dendrimer-metal complex as a hole transport material significantly reduced the power consumption of organic EL devices. It was confirmed that it can be reduced.
  • the maximum luminance was 4500 cd / m 2 at 14 V, and the luminous efficiency at a luminance of 300 cd / m 2 was 1.8 lm / W. It also has a turn-on voltage of about -5.0 V, and unsubstituted phenylazomethine dendrites It was confirmed that the device exhibited higher device characteristics than the case where the mask was used as the hole transport layer (Example 1). This is probably because the introduction of an electron-donating dimethylamine group into the dendrimer terminal increased the electron density inside the dendrimer.
  • a mouth form solution of polyvinyl carpazole was prepared, and this mouth form solution was spin-cast under the same conditions as in Example 1 to form a hole transport layer having a thickness of 500 persons.
  • An oral form solution of polyvinyl carbazole was prepared, and the phenylazomethine dendrite of formula (IV-a) used in Example 1 (4th generation) was added to the polyvinyl carbazole. And 1 equivalent of tin chloride (based on the number of imines in the phenylazomethine dendrimer).
  • This black-hole form solution was spin-cast under the same conditions as in Example 1 to form a hole transport layer having a thickness of 500 A.
  • the obtained organic EL device showed a maximum brightness 1500 cd / m 2 at 10 V, the luminous efficiency at luminance 300 cd / m 2 showed a 3.5 li / W and high emission efficiency Was. Furthermore, the turn-on voltage reaching 0.1 cd / m 2 was about 3 V, and the polypinylcarbazole of Comparative Example 1 was used as the hole transport layer (without phenylazomethine dendrimer). V or more dropped. Therefore, low power consumption of the device was confirmed.
  • Hole transport layer An aqueous solution of poly (3,4-ethylenedioxythiophene) -polystyrenesulfonic acid (PED0T: PSS) was spin-cast under the same conditions as in Example 1 to obtain a 300-A thick layer. A hole transport layer was formed.
  • Light-emitting layer A benzene solution of a polyphenylenevinylene derivative (MEH-PPV) was prepared and spin-cast to form a light-emitting layer having a thickness of 500A.
  • MEH-PPV polyphenylenevinylene derivative
  • Fig. 4b shows the characteristics of the organic EL device.
  • a hole transport layer was formed in the same manner as in Comparative Example 2, and a phenylenevinylene derivative (MEH-PPV) was added thereto with 1% by weight of a phenylazomethine dendrimer of the formula (IV-a) (MEH-PPH).
  • MEH-PPV phenylenevinylene derivative
  • a chlorobenzene solution containing 1 equivalent of tin chloride (based on the number of imines in the phenylazomethine dendrimer) and 1 equivalent of tin chloride (based on the number of imines in the phenylazomethine dendrimer) was spin-cast to form a light emitting layer having a thickness of 500A.
  • This organic EL device exhibited a maximum luminance of 850 cd / i 2 at 11 V and a high luminous efficiency of 2.1 lm / at a luminance of 300 cd / m 2 .
  • the turn-on voltage reaching 0.1 cd / m 2 was 4.5 V, which was 1 V higher than that of the organic EL device in which only the MEH-PPV of Comparative Example 2 was used as the light emitting layer (does not include the ferazomethine dendrimer). It fell above. Therefore, low power consumption of the device Power consumption was confirmed.
  • the obtained compound was identified by GPC, 1H-NM, and UV.
  • Example 2 Compound b (2 mg) obtained in Example 1 was dissolved in black hole form, and a thin film having a thickness of 500 A was formed on an IT0 glass electrode by a spin casting method to form a hole transport layer. Aid was vacuum-deposited thereon to form a thin film having a thickness of 500 A, which was used as a light emitting layer and an electron transport layer. Further, A1 was formed as a cathode to a thickness of 1000 A, and an organic EL element having an area of 0.1 cm 2 was produced.
  • Example 7 An acetonitrile solution of the compound b used in Example 7 and an acetonitrile solution of tin chloride U equivalent (based on the imine number of the dendron of the copolymer) was mixed, and the solvent was concentrated. A thin film was formed in the same manner as in Example 7, and used as a hole transport layer. An organic EL device was manufactured in the same manner as in Example 7.
  • This organic EL device exhibited a maximum luminance of 9000 cd / m 2 at 10 V and a high luminous efficiency of 1.7 lm / W at a luminance of 300 cd / m 2 .
  • the turn-on (drive) voltage is about 4.1 V, which is 2.0 V or more, and that PVK is used as the hole transport layer when a hole transport layer not complexed with a metal is used (Example 5). 1.0V or more lower than the case (Comparative Example 3) It was confirmed that the power consumption of the device could be reduced.
  • the use of a copolymer in which metals are integrated (complexed) as a hole transport layer increased the luminous efficiency of the organic EL device and further reduced the turn-on (drive) voltage at the hole injection electrode. This is probably because the energy gap between a certain IT0 and the hole transport layer became smaller, and the efficiency of hole injection into the hole transport layer increased.
  • Table 1 shows the identification results of the obtained phenylazomethine monocyclic rubazole asymmetric dendrimers.
  • Example 7 a solution of the c-form of compound c and an acetonitrile solution of Eu (0Ti) 3 (1 equivalent: based on the number of imines of phenylazomethine dendron) were mixed and complexed, and the same as in Example 7 was performed.
  • the organic EL device was constructed in the following manner.
  • Anode IT0 glass electrode (20 mm x 20 bandages; Oji Tobi)
  • the IT0 surface was etched with hydrochloric acid to prepare a 3 nun-wide anode and used.
  • the carbazole dendrimer (3rd generation) represented by is dissolved in a black hole form and a hole transport layer having a thickness of 500 A was formed by spin casting.
  • Emission layer Thickness is determined by casting using a toluene solution of PPV.
  • the voltage-current and voltage-brightness of the obtained organic EL device were measured at room temperature in the atmosphere, and the results are shown in FIG. 7A.
  • Orange color light emission was confirmed by applying a voltage of 3 V or more with the IT0 electrode as the positive electrode.
  • the maximum luminance at 11 V was 8000 cd / m 2
  • the light emission efficiency at the time of light emission at 300 cd / m 2 was 1.51 mW.
  • the half-life at a luminance of 100 cd / i 2 under vacuum conditions was 1000 hours or more, confirming excellent durability.
  • a carbazole dendrimer having the same thickness is cast, dried without forming photocrosslinking to form a hole transport layer, and then spin-cast using a toluene solution of PPV as a light emitting layer.
  • the measurement results of the EL element formed and the back electrode were prepared are shown in FIGS. 7b and 8b.
  • the hole transport layer may be solubilized when the light emitting layer is cast. Either create the light emitting layer by vacuum evaporation or use a solution caster that uses a solvent that does not erode the hole transport layer. It was suggested that it is desirable to use a cross-linking method or to prepare a cross-linking method.
  • a phenylazomethine dendron subunit having a metal accumulating ability and / or a carbazole dendron subunit having an excellent hole transporting property are provided.
  • a material for an organic EL device having a thin film easily formed by a solution casting method.
  • a dense and high-strength film having improved morphological characteristics at the interface can be formed.
  • Such a thin film is electrochemically stable and exhibits high heat resistance.
  • it is expected that the luminous efficiency of the organic EL device is improved, the open-circuit voltage is reduced, and the drive voltage is further reduced. High usefulness.

Abstract

A material for organic EL device characterized by comprising at least a compound of the formula: (W)k-X-(Y)l (I) wherein X represents a core moiety; each of Y and W independently represents a phenylazomethine dendron subunit or a carbazole dendron subunit; l is an integer indicating the number of Ys bonded to X; and k is an integer indicating the number of Ws bonded to X.

Description

明 細 書 有機 E L素子用材料とそれを用いた有機 E L素子 技術分野  Description Material for organic EL device and organic EL device using it
この出願の発明は、 有機 E L素子用材料とそれを用いた有機 E L 素子に関するものである。 さらに詳しくは、 この出願の発明は、 有 機 E L素子における正孔輸送層および Zまたは発光層用材钭として 有用な、 フエニルァゾメチン系またはフエニルァゾメチン一力ルバ ゾール系化合物からなる材料に関するものである。 背景技術  The invention of this application relates to a material for an organic EL device and an organic EL device using the same. More specifically, the invention of this application comprises a phenylazomethine-based compound or a phenylazomethine mono-rubazole-based compound useful as a material for a hole transport layer and Z or a light-emitting layer in an organic EL device. It is about materials. Background art
近年、 携帯電話や携帯情報端末 (PDA) の普及に伴い、 それらの さらなる小型化や軽量化が望まれており、 その一手段として新しい フ ラ ッ ト ノ ネ ル デ ィ ス プ レ イ 技 術 、 と く に 有 機 E L (Electroluminescence: 電界発光) 素子技術への期待が高まって いる。  In recent years, with the spread of mobile phones and personal digital assistants (PDAs), further miniaturization and weight reduction have been demanded, and as a means of doing so, a new flat panel display technology has been developed. Expectations for organic EL (electroluminescence) element technology are increasing.
有機 E L素子は一般に、 IT0 等の透明な陽極と仕事関数の低い金 属からなる陰極の間に、 正孔輸送層、 発光層、 電子輸送層などが積 層されて構成される。 そして、 電極間に直流電流を流すことにより 陽極から正孔輸送層に正孔が注入され、 発光層で陰極から注入され た電子と正孔が再結合して励起子 (エキシ卜ン) が生成される。 こ のエキシトンが失活する際に光エネルギー (蛍光'燐光) が放出さ れ、 発光が起こるのである。  In general, an organic EL device has a structure in which a hole transport layer, a light emitting layer, an electron transport layer, and the like are stacked between a transparent anode such as IT0 and a cathode made of a metal having a low work function. Then, by passing a direct current between the electrodes, holes are injected from the anode to the hole transport layer, and the electrons and holes injected from the cathode recombine in the light emitting layer to generate excitons. Is done. When this exciton is deactivated, light energy (fluorescence or phosphorescence) is released, and light emission occurs.
有機 E L素子は、 このように、 自発光性でバックライ トを必要と しないため、 消費電力が小さく、 応答速度、 視野角、 コントラスト 2004/002383 比等の特性が従来の T F T液晶表示素子よりも格段に優れている。 しかし、 実用化に向けては、 発光効率の向上、 高輝度化、 長寿命化 等の課題が残されているのが実情である。 OLEDs are self-luminous and do not require a backlight, thus reducing power consumption, response speed, viewing angle, and contrast. 2004/002383 The characteristics such as the ratio are much better than the conventional TFT liquid crystal display device. However, there are still issues such as improvement of luminous efficiency, high brightness, and long life for practical use.
これまで、 有機 E L素子の発光効率を向上する方法として、 正孔 輸送層、 発光層、 電子輸送層の材料が検討されている。 例えば、 有 機 E L素子用材料として、 イオン化ポテンシャルが低く、 正孔輸送 性の高い芳香族アミン誘導体や芳香族アミンを側鎖に有する高分子 材料が用いられている。 さらに有機 E L素子の高効率、 高安定性を 高めるためにトリフエニルアミン基とビニル基を結合させたジスチ ルベンゼン誘導体や電子輸送材料として知られているォキサジァゾ —ル基と結合させた誘導体などが用いられている。 また、 強い蛍光 特性を示す希土類金属錯体系や、 π共役系のポリフエ二レンビニレ ン (PPV)、 非共役系のポリビニルカルバゾ-ル (PVK) 誘導体なども 発光層ゃ正孔輸送層の材料 と して用 い ら れてい る ( S. A. VanSlyke, C. H. Chen, C. . Tang, Appl. Phys. Lett. 1996, 69, 2160 ; Y. Shirota, Y. Kuwabara, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami, K. Imai, Appl. Phys. Lett. 1994, 65, 807. ; S. A. Carter, M. Angelopoulos, S. Karg, P. J. Brock, and J. C. Scott, Appl. Phys. Lett. 1997, 70, 2067)。  So far, materials for the hole transport layer, the light emitting layer, and the electron transport layer have been studied as a method for improving the luminous efficiency of the organic EL device. For example, as an organic EL element material, an aromatic amine derivative having a low ionization potential and a high hole transporting property, or a polymer material having an aromatic amine in a side chain is used. Furthermore, in order to increase the efficiency and stability of organic EL devices, dimethylbenzene derivatives with a triphenylamine group and a vinyl group and derivatives with an oxadiazole group known as an electron transport material are used. Has been. In addition, rare-earth metal complex-based materials that exhibit strong fluorescent properties, π-conjugated polyphenylenevinylene (PPV), and non-conjugated polyvinyl carbazole (PVK) derivatives are also used as materials for the light-emitting layer and hole transport layer. (SA VanSlyke, CH Chen, C.. Tang, Appl. Phys. Lett. 1996, 69, 2160; Y. Shirota, Y. Kuwabara, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami, K. Imai, Appl. Phys. Lett. 1994, 65, 807 .; SA Carter, M. Angelopoulos, S. Karg, PJ Brock, and JC Scott, Appl. Phys. Lett. 1997, 70, 2067).
一方、 有機 E L素子の長寿命化のためには、 各層の膜形成状態、 すなわち薄膜のモルホロジー安定性が極めて重要である。 さらに、 素子の消費電力を小さくするためには駆動電圧の低下も望まれる。  On the other hand, in order to extend the life of the organic EL device, the film formation state of each layer, that is, the morphological stability of the thin film is extremely important. Furthermore, a reduction in drive voltage is desired to reduce the power consumption of the device.
しかし、 これまでに報告されている有機 E L素子用材料は、 いず れも薄膜状態でのモルホロジ一安定性が低く、 十分な耐久性が得ら れていなかった。 特に正孔輸送材料については、 有機 E L素子の長 期安定性を高めるために、 ガラス転移点 (Tg) の高いアモルファス 材料としてポリフエ二レンビニレン、 ポリビニルカルバゾール等の ポリマー材料を用いたり、 各層の間にバッファ層を設けたりしてい るが、 実用化において要求される寿命や S動電圧は実現されていな 力、つ /こ α However, none of the materials for organic EL devices reported so far has low morphological stability in a thin film state and sufficient durability has not been obtained. In particular, for hole transport materials, the length of organic EL elements In order to enhance the initial stability, polymer materials such as polyphenylenevinylene and polyvinylcarbazole are used as amorphous materials with a high glass transition point (Tg), and a buffer layer is provided between each layer. required lifetime and S dynamic voltage not been realized force, one / this α
そこで、 この出願の発明は、 以上のとおりの事情に鑑みてなされ たものであり、 従来技術の問題点を解消し、 発光効率に優れ、 耐久 性の高い有機 E L素子を提供することを課題としている。 発明の開示  Therefore, the invention of this application has been made in view of the circumstances described above, and has as its object to solve the problems of the prior art and to provide an organic EL device having excellent luminous efficiency and high durability. I have. Disclosure of the invention
この出願の発明は、 上記の課題を解決するものとして、 まず第 1 には、 少なく とも、 次式 ( I )  The invention of the present application solves the above-mentioned problems. First, at least the following formula (I)
(W)k—— X— (Y), ( I ) (W) k —— X— (Y), (I)
(ただし、 Xは炭素原子、 窒素原子、 ァミン誘導体、 ベンゼンとそ の誘導体、 ヘテロ環とその誘導体、 ポルフィ リンとその誘導体、 フ 夕ロシアニンとその誘導体、 サイクラムとその誘導体、 ならびにビ ニルポリマ一とその誘導体からなる群より選択されるコア部位であ り、 Yおよび Wは同一または別異に、 次式 (I I )  (However, X is a carbon atom, a nitrogen atom, an amine derivative, benzene and its derivatives, heterocycle and its derivatives, porphyrin and its derivatives, fluorinine and its derivatives, cyclam and its derivatives, and vinyl polymer and its derivatives. A core site selected from the group consisting of derivatives, wherein Y and W are the same or different;
Figure imgf000005_0001
Figure imgf000005_0001
(ただし、 Nは窒素原子であり、 R 1 は置換基を有していてもよい アルキレン基、 フエ二レン基およびへテロ環基からなる群より選択 される置換基であるか、 存在しなくてもよく、 R 2 は 1以上の置換 基を有していてもよいフエニル基であり、 mは 1 〜 6の整数であ る) で表されるフエニルァゾメチンデンドロンサブユニッ ト、 もし くは、 次式 ( I I I ) (Where N is a nitrogen atom, and R 1 is selected from the group consisting of an alkylene group, a phenylene group and a heterocyclic group which may have a substituent. R 2 is a phenyl group which may have one or more substituents, and m is an integer of 1 to 6) Phenylazomethine dendron subunit or the following formula (III)
Figure imgf000006_0001
Figure imgf000006_0001
(ただし、 Nは窒素原子であり、 nは 1〜 6の整数である) で表さ れるカルバゾ一ルデンド口ンサブュニッ トのいずれかであり、 1 は Xに結合している Yの数を表す整数であり、 kは Xに結合している Wの数を表す整数である) で表される化合物からなることを特徴と する有機 E L素子用材料を提供する。' (Where N is a nitrogen atom, and n is an integer of 1 to 6), and 1 is an integer representing the number of Y bonded to X And k is an integer representing the number of W bonded to X.) A material for an organic EL device is provided. '
第 2には、 この出願の発明は、 次式 (IV)  Second, the invention of this application is represented by the following formula (IV)
Figure imgf000006_0002
Figure imgf000006_0002
(ただし、 Xは炭素原子、 窒素原子、 ァミン誘導体、 ベンゼンとそ の誘導体、 ヘテロ環とその誘導体、 ポルフィ リンとその誘導体、 フ 夕ロシアニンとその誘導体、 ならびにサイクラムとその誘導体から なる群より選択されるコア部位であり、 Nは窒素原子であり、 R 1 は置換基を有していてもよいアルキレン基、 フエ二レン基およびへ テロ環基からなる群より選択される置換基であるか、 存在しなくて もよく、 R 2 は 1以上の置換基を有していてもよいフエニル基であ り、 mは 1〜 6の整数であり、 1 は Xに結合しているデンドロンサ ブュニッ トの数を表す 1〜 6の整数である) で表されるフエニルァ ゾメチンデンドリマーからなることを特徵とする有機 E L素子用材 料を提供する。 (However, X is carbon atom, nitrogen atom, amine derivative, benzene and , A heterocyclic ring and its derivative, porphyrin and its derivative, furocyanine and its derivative, and a cyclam and its derivative, a core site selected from the group consisting of: N is a nitrogen atom; R 1 is substituted A substituent selected from the group consisting of an alkylene group which may have a group, a phenylene group and a heterocyclic group, or may be absent; and R 2 has one or more substituents. And m is an integer of 1 to 6, and 1 is an integer of 1 to 6 representing the number of dendron subunits bonded to X). Provide a material for an organic EL device, which is characterized by comprising a methine dendrimer.
また、 この出願の発明は、 第 3には、 次式 (V ) Thirdly, the invention of the present application has the following formula (V)
Figure imgf000007_0001
Figure imgf000007_0001
(ただし、 Nは窒素原子であり、 nは 1〜 6の整数であり、 kは X に結合しているデンドロンサブュニッ トの数を表す整数である) で表されるカルバゾールデンドリマーからなることを特徴とする有 機 E L素子用材料を提供する。  (Where N is a nitrogen atom, n is an integer from 1 to 6, and k is an integer representing the number of dendron subunits bonded to X) Provide a material for an organic EL device characterized by the following.
この出願の発明は、 第 4には、 次式 (VI)
Figure imgf000008_0001
Fourth, the invention of this application is expressed by the following formula (VI)
Figure imgf000008_0001
(ただし、 Nは窒素原子であり、 Xは炭素原子、 窒素原子、 ァミン 誘導体、 ベンゼンとその誘導体、 ヘテロ環とその誘導体、 ポルフィ リンとその誘導体、 フタロシアニンとその誘導体、 ならびにサイク ラムとその誘導体からなる群より選択されるコア部位であり、 R 1 は置換基を有していてもよいアルキレン基、 フエ二レン基およびへ テロ環基からなる群より選択される置換基であるか、 存在しなくて もよく、 R 2 は 1以上の置換基を有していてもよいフエニル基であ る ; mは 1〜 6の整数であり、 nは 1〜 6の整数である ; kおよび 1 は各々で Xに結合しているデンドロンサブユニッ トの数を表す、 1≤ k + 1≤ 6の条件を満たす整数である) で表されるフエニルァ ゾメチン—力ルバゾ一ル非対称デンドリマーからなることを特徴と する有機 E L素子用材料を提供する。 (However, N is a nitrogen atom, X is a carbon atom, a nitrogen atom, an amine derivative, a benzene and its derivative, a heterocycle and its derivative, a porphyrin and its derivative, a phthalocyanine and its derivative, and a cycle and its derivative. R 1 is a substituent selected from the group consisting of an optionally substituted alkylene group, a phenylene group and a heterocyclic group, or is present. R 2 is a phenyl group which may have one or more substituents; m is an integer of 1 to 6, n is an integer of 1 to 6; k and 1 are Which is an integer satisfying the condition 1 ≤ k + 1 ≤ 6, which represents the number of dendron subunits, each of which is bonded to X). Yes To provide for the EL element material.
この出願の発明は、 第 5には、 Xが少なく とも次式 (VI I) Fifth, the invention of this application is based on the following formula (VI I)
Figure imgf000009_0001
Figure imgf000009_0001
(ただし、 Nは窒素原子、 Sは硫黄原子、 Oは酸素原子であり、 A rは、 ベンゼン、 チォフェン、 ピロール、 または 1, 3, 4-ォキサジ ァゾ一ルである) で表される化合物 (a) 〜 (m) からなる群より 選択される構造を有するものである有機 E L素子用材料を提供する 第 6には、 この出願の発明は、 Xが次式 (VIII)  (However, N is a nitrogen atom, S is a sulfur atom, O is an oxygen atom, and Ar is benzene, thiophene, pyrrole, or 1,3,4-oxazidazole). The present invention provides a material for an organic EL device having a structure selected from the group consisting of (a) to (m).
(νπΐ)
Figure imgf000009_0002
(νπΐ)
Figure imgf000009_0002
(ただし、 pおよび qは重合度を表す 1以上の整数である) で表される有機 E L素子用材钭を提供する。 の出願の発明は、 第 7には、 次式 (IX) (Where p and q are integers of 1 or more representing the degree of polymerization). Seventh, the invention of the application of the present application has the following formula (IX)
Figure imgf000010_0001
Figure imgf000010_0001
(ただし、 Nは窒素原子であり、 R 1 は置換基を有していてもよい アルキレン基、 フエ二レン基およびへテロ環基から選択される置換 基であるか、 存在しなくてもよく、 R 2 は 1以上の置換基を有して いてもよいフエニル基であり、 mは 1〜6の整数、 nは 1〜6の整 数、 pおよび Qは重合度を表す 1以上の整数である) で表されるフ ェニルァゾメチン—力ルバゾール共重合体からなることを特徴とす る有機 E L素子用材料を提供する。 (However, N is a nitrogen atom, and R 1 is a substituent selected from an alkylene group, a phenylene group and a heterocyclic group which may have a substituent, or may be absent. R 2 is a phenyl group which may have one or more substituents, m is an integer of 1 to 6, n is an integer of 1 to 6, p and Q are one or more integers representing the degree of polymerization. The present invention provides a material for an organic EL device, comprising a phenylazomethine-potassium rubazole copolymer represented by the following formula:
この出願の発明は、 さらに、 第 8には、 次式 (X ) Eighth, the invention of this application is expressed by the following formula (X)
Figure imgf000010_0002
Figure imgf000010_0002
(ただし、 Nは窒素原子であり、 R 1 は置換基を有していてもよい アルキレン基、 フエ二レン基およびへテロ環基からなる群より選択 される置換基であるか、 存在しなくてもよく、 R 2 は 1以上の置換 基を有していてもよいフエニル基であり、 mは 1〜 6の整数であ る) で表されるピニルァゾメチンモノマーと、 次式 (XI ) (However, N is a nitrogen atom, and R 1 is a substituent selected from the group consisting of an alkylene group, a phenylene group and a heterocyclic group which may have a substituent, or absent. R 2 is a phenyl group which may have one or more substituents, m is an integer of 1 to 6), and a compound represented by the following formula (XI )
Figure imgf000011_0001
Figure imgf000011_0001
(ただし、 Nは窒素原子であり、 nは 1〜 6の整数である) で表さ れるビ二ルカルバゾ一ルモノマ一を反応させることを特徵とする有 機 E L素子用材料の製造方法を提供する。  (Where N is a nitrogen atom and n is an integer of 1 to 6). A method for producing a material for an organic EL device, characterized by reacting a vinylcarbazole monomer represented by the following formula: .
この出願の発明は、 第 9には、 少なくとも陽極と、 陽極上に形成 された正孔輸送層と、 正孔輸送層に接する発光層と、 発光層と接す る陰極から構成される有機 E L素子において、 正孔輸送層または発 光層が、 前記いずれかの有機 E L素子用材料を含有する薄膜からな ることを特徴とする有機 E L素子を、 第 1 0には、 正孔輸送層また は発光層が、 前記いずれかの有機 E L素子用材料とともに、 金属塩 を含有する薄膜からなることを特徴とする有機 E L素子を、 そして、 第 1 1 には、 正孔輸送層または発光層が、 前記いずれかの有機 E L 素子用材料を光架橋してなる薄膜からなることを特徴とする有機 E L素子を提供する。  A ninth aspect of the invention of this application is an organic EL comprising at least an anode, a hole transport layer formed on the anode, a light emitting layer in contact with the hole transport layer, and a cathode in contact with the light emitting layer. In the device, the hole transporting layer or the light emitting layer is formed of a thin film containing any of the above-mentioned materials for an organic EL device. The organic EL device is characterized in that the light-emitting layer is formed of a thin film containing a metal salt together with any one of the materials for an organic EL device described above, and, first, the hole transport layer or the light-emitting layer An organic EL device comprising a thin film obtained by photocrosslinking any of the above materials for an organic EL device.
また、 この出願の発明は、 第 1 2には、 前記いずれかの有機 E L 素子を含んで構成されることを特徴とする発光もしくは表示装置を も提供する。 図面の簡単な説明  Further, the invention of the present application also provides, 12thly, a light-emitting or display device characterized by including any one of the above-mentioned organic EL devices. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 この発明の有機 E L素子を例示した概略模式図である。 (ただし、 1 : 有機 E L素子、 21 : 透明基板、 22 : 陽極、 3 : 正孔輸 送層、 4: 発光層、 5 : 陰極、 6: 導線) FIG. 1 is a schematic diagram illustrating the organic EL device of the present invention. (However, 1: organic EL element, 21: transparent substrate, 22: anode, 3: hole transport layer, 4: light emitting layer, 5: cathode, 6: conducting wire)
図 2は、 この出願の発明の実施例において構築された有機 E L素 子の特性 (電圧一輝度曲線) を示す図である。 (ただし、 正孔輸送 層は a : フエニルァゾメチンデンドリマー (第 4世代)、 b : フ ェニルァゾメチンデンドリマー (第 4世代) 高温測定、 c : フエ二 ルァゾメチンデン ドリマー (第 4世代) ' 塩化錫、 d : ジアミノメ チル置換フエニルァゾメチンデンドリマー (第 3世代))  FIG. 2 is a diagram showing characteristics (voltage-luminance curve) of the organic EL device constructed in the example of the invention of this application. (However, the hole transport layer is a: phenylazomethine dendrimer (4th generation), b: phenylazomethine dendrimer (4th generation), high temperature measurement, c: phenylazomethine dendrimer (4th generation) ' Tin chloride, d: diaminomethyl-substituted phenylazomethine dendrimer (3rd generation)
図 3は、 この出願の発明の実施例において構築された有機 E L素 子の特性 (電圧—輝度曲線) を示す図である。 (ただし、 正孔輸送 層は、 a : フエニルァゾメチンデンドリマー (第 4世代) · 塩化錫 /ポリビニルカルパゾール、 b : ポリビニルカルバゾ一ル)  FIG. 3 is a diagram showing the characteristics (voltage-luminance curve) of the organic EL device constructed in the example of the invention of this application. (However, the hole transport layer is a: phenylazomethine dendrimer (4th generation) · tin chloride / polyvinylcarbazole, b: polyvinylcarbazole)
図 4は、 この出願の発明の実施例において構築された有機 E L素 子の特性 (電圧—輝度曲線) を示す図である。 (ただし、 発光層は、 a : フエニルァゾメチンデンドリマ一 (第 4世代) ·塩化錫 Zポリ フエ二レンビニレン、 b : ポリフエ二レンビニレン)  FIG. 4 is a diagram showing characteristics (voltage-luminance curve) of the organic EL device constructed in the example of the present invention. (However, the light-emitting layer is a: phenylazomethine dendrimer (4th generation) · tin chloride Z polyphenylenevinylene, b: polyphenylenevinylene)
図 5は、 この出願の発明の実施例において構築された有機 E L素 子の特性 (電圧一輝度曲線) を示す図である。 (ただし、 正孔輸送 層は、 a : 4- (ジフエニルァゾメチン) スチレン—ビニルカルバゾ ール共重合体、 b : 4- (ジフエニルァゾメチン) スチレン—ビニル カルパゾール共重合体 ·塩化錫、 c : ポリビニルカルパゾ一ル)  FIG. 5 is a diagram showing characteristics (voltage-luminance curve) of the organic EL device constructed in the example of the invention of this application. (However, the hole transport layer is a: 4- (diphenylazomethine) styrene-vinyl carbazole copolymer, b: 4- (diphenyl azomethine) styrene-vinyl carbazole copolymer · tin chloride , C: Polyvinyl carpazole)
図 6は、 この出願の発明の実施例において構築された有機 E L素 子の特性 (電圧一輝度曲線) を示す図である。 (ただし、 正孔輸送 層は、 a : フエニルァゾメチン一力ルバゾ一ル非対称デンドリマー、 b : フエニルァゾメチン一力ルパゾール非対称デン ド リマー · Eu (0T f ) 3) 図 7は、 この出願の発明の実施例において構築された有機 E L素 子の特性 (電圧一輝度曲線) を示す図である。 (ただし、 正孔輸送 層は、 a : カルパゾ一ルデンドリマ一 (第 3世代) 光架橋、 b : 力 ルバゾ一ルデンドリマ一未架橋) FIG. 6 is a diagram showing characteristics (voltage-luminance curve) of the organic EL device constructed in the example of the present invention. (However, the hole transport layer is composed of a: phenylazomethine one-pot rubazolyl asymmetric dendrimer, b: phenyl azomethine one-pot lupusole asymmetric dendrimer Eu (0T f) 3 ) FIG. 7 is a diagram showing characteristics (voltage-luminance curve) of the organic EL device constructed in the example of the present invention. (However, for the hole transport layer, a: Carpazolide dendrimer (3rd generation) photocrosslinking, b: force Lubazolide dendrimer, uncrosslinking)
図 8は、 この出願の発明の実施例において構築された有機 E L素 子の寿命 (時間—輝度曲線) を示す図である。 (ただし、 正孔輸送 層は、 a : カルパゾ一ルデンドリマー (第 3世代) 光架橋 b : 力 ルバゾールデンドリマー未架橋) 発明を実施するための最良の形態  FIG. 8 is a diagram showing the lifetime (time-luminance curve) of the organic EL device constructed in the example of the invention of this application. (However, the hole transport layer is a: Carpazole dendrimer (3rd generation) Photocrosslinking b: Force uncrosslinked rubazole dendrimer) Best mode for carrying out the invention
本願発明の有機 E L素子用材料は、 金属集積能を有するフエニル ァゾメチンデンドロンサブユニッ トおよび/または優れた正孔輸送 性を有するカルパゾールデンド口ンサブュニッ トを有し、 溶液キヤ スト法により簡便に薄膜を形成できるものである。 また、 得られる 薄膜の界面のモルホロジ一特性は、 従来の有機 E L素子用材料に比 較して格段に改善されたものとなる。  The material for an organic EL device of the present invention has a phenyl azomethine dendron subunit having a metal accumulating ability and / or a carbazole dend subunit having an excellent hole transporting property, and is easily prepared by a solution casting method. It can form a thin film. In addition, the morphological characteristics of the interface of the obtained thin film are significantly improved as compared with conventional materials for organic EL devices.
この出願の発明の有機 E L素子用材料は、 次式 ( I )  The material for an organic EL device of the invention of this application is represented by the following formula (I)
(W)k ~~ X—— (Y), ( I ) (W) k ~~ X—— (Y), (I)
で表される化合物からなるものである。 It consists of a compound represented by these.
このとき、 Xは炭素原子、 窒素原子、 ァミン誘導体、 ベンゼンと その誘導体、 ヘテロ環とその誘導体、 ポルフィ リンとその誘導体、 フタロシアニンとその誘導体、 サイクラムとその誘導体、 ならびに ビニルポリマ一とその誘導体からなる群より選択されるコア部位で あり、 Yおよび Wは、 同一または別異に、 次式 (I I ) 383 Here, X is a group consisting of a carbon atom, a nitrogen atom, an amine derivative, benzene and its derivatives, a heterocycle and its derivatives, porphyrin and its derivatives, phthalocyanine and its derivatives, cyclam and its derivatives, and a vinyl polymer and its derivatives. And Y and W are the same or different, and are represented by the following formula (II): 383
Figure imgf000014_0001
Figure imgf000014_0001
(ただし、 Nは窒素原子であり、 R1 は置換基を有していてもよ いアルキレン基、 フエ二レン基おょぴヘテロ環基からなる群より選 択される置換基であるか、 存在しなくてもよく、 R2 は 1以上の置 換基を有していてもよいフエニル基であり、 mは 1〜 6の整数であ る) のフエニルァゾメチンデンドロンサブユニッ ト、 または、 次式 (III) (However, N is a nitrogen atom, and R 1 is a substituent selected from the group consisting of an alkylene group which may have a substituent, a phenylene group and a heterocyclic group, R 2 is a phenyl group optionally having one or more substituents, and m is an integer of 1 to 6), or a phenylazomethine dendron subunit; or And the following equation (III)
Figure imgf000014_0002
Figure imgf000014_0002
(ただし、 Nは窒素原子であり、 nは 1〜6の整数である) で表さ れるカルバゾ一ルデンド口ンサブュニッ トである。  (Where N is a nitrogen atom and n is an integer of 1 to 6).
このとき、 式 (11)、 (III) 中の mおよび nは、 各々のデンドロ サブユニッ トにおける世代数を表す 1〜 6の整数であり、 式 ( I ) における 1および kは、 各々の Xに結合しているデンドロサブュニ ッ ト すなわち Yおよび Wの数を表す。  At this time, m and n in equations (11) and (III) are integers of 1 to 6 representing the number of generations in each dendro subunit, and 1 and k in equation (I) are Represents the number of connected dendrosubunits, ie, Y and W.
この出願の発明の有機 E L素子用材料は、 コア部位である Xに対 して、 少なく とも、 フエニルァゾメチンまたは力ルバゾールデンド ロンサブュニッ 卜が結合してなるものである。 The material for an organic EL device of the invention of the present application is characterized in that at least phenylazomethine or sorbazole dend It is a combination of ronsubunits.
このような化合物としては、 Xをコアとし、 デンドロンサブュニ ッ トとして Yのみ、 Wのみ、 または Yと Wを有するデンドリマ一が 含まれる。  Such compounds include dendrimers having X as a core and only Y, only W, or both Y and W as dendron subunits.
具体的には 次式 (IV)  Specifically, the following equation (IV)
Figure imgf000015_0001
Figure imgf000015_0001
(ただし、 N、 X、 R 1, R 2、 mおよび 1 は、 前記のものである) で表されるフエニルァゾメチンデンドリマーや、 次式 ( V ) (However, N, X, R 1 , R 2 , m and 1 are as defined above), or a phenylazomethine dendrimer represented by the following formula (V)
Figure imgf000015_0002
Figure imgf000015_0002
(ただし、 N、 nおよび kは前記のものである).  (Where N, n and k are as described above).
で表されるカルバゾールデンドリマー、 さらには、 次式 (VI )
Figure imgf000016_0001
A carbazole dendrimer represented by the following formula (VI)
Figure imgf000016_0001
( N、 X、 R !、 R 2、 mおよび nは前記のものである) で表される フエニルァゾメチン一力ルバゾール非対称デンドリマーが例示され る。 (N, X, R!, R 2, m and n in which one of the) phenylalanine § zone methine Ichiriki carbazole asymmetric dendrimer represented by the Ru is illustrated.
式 (IV) 〜 (VI) のデンドリマーにおいて、 Xは、 炭素原子、 窒 素原子、 ァミン誘導体、 ベンゼンとその誘導体、 ヘテロ環とその誘 導体、 ポルフィ リンとその誘導体、 フタロシアニンとその誘導体、 およびサイクラムとその誘導体から選択されるコア部位であるが、 Xに対して、 フエニルァゾメチンデンドロンサブュニッ ト ( Y ) お よび力ルバゾ一ルデンドロンサブユニッ ト (W) は、 合計で 1〜 6 個結合できる。 このような Yと Wの個数とは、 Xの有する結合可能 な位置の数に応じて適宜選択できるものであり、 例えば、 Xがベン ゼンの場合、 Yと Wは最大で合計 6個結合でき、 Xが炭素原子の場 合には、 Yと Wは最大で合計 4個結合できる。 もちろん、 6個以上 の Yと Wを結合できる Xも考慮されるが、 その場合にはデンドリマ 一の立体障害に注意する必要がある。  In the dendrimers of the formulas (IV) to (VI), X represents a carbon atom, a nitrogen atom, an amine derivative, benzene and its derivatives, a heterocycle and its derivatives, porphyrin and its derivatives, phthalocyanine and its derivatives, and cyclam And its derivatives, but for X, the phenylazomethine dendron subunit (Y) and the rubazodyl dendron subunit (W) are 1 to 6 in total. Can be combined. The number of such Y and W can be appropriately selected according to the number of possible positions of X.For example, when X is benzene, Y and W can be combined up to a total of six. When X is a carbon atom, Y and W can bond up to a total of four. Of course, X that can combine more than 6 Y and W is considered, but in that case, attention must be paid to the steric hindrance of the dendrimer.
具体的に、 コア部位 Xとしては、 少なく ともその構造中に次式 (VI I) Specifically, at least core structure X has the following formula (VI I)
Figure imgf000017_0001
Figure imgf000017_0001
Figure imgf000017_0002
Figure imgf000017_0002
で表されるベンゼン (DAB: a)、 3, 6-ジメチル-ベンゼン (DMDABz: b)、 トリフエニルァミン (TATPA: c)、 テトラフエニル- 21H, 23H - ポルフィ リ ン (TAPo: d)、 ナフタ レン (DANPh: e)、 ピレン (DAPy: f)、 1,4, 8, 11 テトラァザ-シクロテトラデカン (g)、 環状 フエニルァゾメチン三量体(CPA: h)、 2, 5 -ビス (フエニル) - 1, 3, 4- ォキサジァゾ一ル (DAPOX: i)、 2, 5- (ジフエ二ル)-チォフェン (DAPTh: j)、 ペリ レン (k)、 1, 2, 3-トリ フエニル- 1, 3, 4-テトラ ゾール (1)、 およぴトリフエニルァミン誘導体 (m) を有するもの が好ましく例示される。 なお、 上記 (m) における A rは、 ベンゼ ン、 チォフェン、 ピロ一ル、 または 1, 3, 4-ォキサジァゾ一ル等の 芳香環を表す。 (DAB: a), 3,6-dimethyl-benzene (DMDABz: b), triphenylamine (TATPA: c), tetraphenyl-21H, 23H-porphyrin (TAPo: d), naphtha Len (DANPh: e), pyrene (DAPy: f), 1,4,8,11 tetraaza-cyclotetradecane (g), cyclic phenylazomethine trimer (CPA: h), 2,5-bis ( Phenyl)-1,3,4-oxaziazol (DAPOX: i), 2,5- (diphenyl) -thiophene (DAPTh: j), perylene (k), 1,2,3-triphenyl- Having 1,3,4-tetrazole (1) and triphenylamine derivative (m) Are preferably exemplified. In addition, Ar in the above (m) represents an aromatic ring such as benzene, thiophene, pyrrole or 1,3,4-oxaziazol.
これらのコア部位 Xにおいて、 Yまたは Wの結合箇所を (D) と して示すならば、 次のもの :  In these core sites X, if the point of attachment of Y or W is indicated as (D), then:
Figure imgf000018_0001
すなわち、 ベンゼン (DAB : a) ( Y + W = 2 (1, 4 -)) ベンゼン (TABz: a-2) ( Y + W= 3 (1, 3, 5- ) )、 3, 6-ジメチル -ベンゼン (DMDABz: b) ( Y + W= 2 (1, 4 -))、 トリフエニルァミン (TATPA: c) ( Y + W= 3 (4, 4', 4' ' -))、 テトラフェニル - 21H, 23Η -ボルフ イ リ ン ( TAPo: d) ( Y + W = 4 (5, 10, 15, 20 -) )、 ナ フ 夕 レ ン (DA Ph: e) ( Y + W = 2 (1, 5-) )、 ピレン (DAPy: ί) (Y +W =
Figure imgf000018_0001
That is, benzene (DAB: a) (Y + W = 2 (1, 4-)) benzene (TABz: a-2) (Y + W = 3 (1, 3, 5-)), 3, 6-dimethyl-benzene (DMDABz: b) (Y + W = 2 (1, 4-)), Trif Enilamine (TATPA: c) (Y + W = 3 (4, 4 ', 4''-)), Tetraphenyl-21H, 23Η-Bolphyrin (TAPo: d) (Y + W = 4 ( 5, 10, 15, 20-)), naphtha (DA Ph: e) (Y + W = 2 (1, 5-)), pyrene (DAPy: ί) (Y + W =
2 (1, 6- ) )、 1, 4, 8, 11 テトラァザ-シクロテトラデカン (g) (Y + W = 4 (1, 4, 8, 11-) )、 環状フエニルァゾメチン三量体 (CPA: h)2 (1, 6-)), 1,4,8,11 Tetraaza-cyclotetradecane (g) (Y + W = 4 (1,4,8,11-)), cyclic phenylazomethine trimer (CPA: h)
( γ + W= 4 (4, 4', 4", -))、 2, 5-ビス (フエニル) -1, 3, 4 -ォキサ ジァゾ一ル (DAPOX: i) ( Y + W = 2 (4— ) )、 2, 5- (ジフエ二ル)-チ ォフェン (DAPTh: j ) ( Y + W = 2 (4, 4' ) )、 ペリ レン (k)、 1, 2, 3-ト リ フ エニル -1, 3, 4-テ ト ラゾ一ル ( 1 ) ( Y + W = 3 (4, 4', 4' '-))、 およびトリフエニルァミン誘導体 (m) ( Y +W =(γ + W = 4 (4, 4 ', 4 ",-)), 2,5-bis (phenyl) -1,3,4-oxoxadiazole (DAPOX: i) (Y + W = 2 ( 4—))), 2,5- (diphenyl) -thiophene (DAPTh: j) (Y + W = 2 (4,4 ′)), perylene (k), 1,2,3-triene Phenyl-1,3,4-tetrazole (1) (Y + W = 3 (4, 4 ', 4' '-)) and triphenylamine derivative (m) (Y + W =
3 (4, 4' , 4" -)) 等が好ましく例示される。 (ただし、 ここで Υ + Wは各々の X ' に結合するな Υと Wの合計数を表し、 Y+Wに続 く ( )内の数字は、 (D)の位置、 すなわち、 Υおよび/または Wが 結合する位置を示す。) 3 (4, 4 ', 4 "-)), etc. (where Υ + W represents the total number of Υ and W that do not bind to each X 、, and follows Y + W (Figures in parentheses indicate the position of (D), that is, the position where Υ and / or W combine.)
このようなフエニルァゾメチンデンドリマ一、 カルバゾールデン ドリマ一、 およびフエニルァゾメチン一力ルバゾール非対称デンド リマーの合成方法はとくに限定されず、 デンドリマー中心から外に 向かって合成する Divergent 法ゃデンドリマー外から中心に向か つて合成する Convergent 法などの公知の方法を適用できる。 例え ば、 各世代のデンドロン Yおよび Wをそれぞれ合成し、 反応基 (例 えば I 、 B r、 NH2など) を有するコア化合物 Xを、 触媒の存在 下、 脱水縮合反応させる Convergent 法により、 該フエニルァゾメ チンデンドリマ一および/またはフエニルァゾメチン一力ルバゾ一 ル非対称デンドリマーを合成できる (例えば、 特願 2 0 0 2 - 0 2 0 1 0 ; 特願 2 0 0 2 — 0 6 6 1 9 1 ; Masayoshi Higuchi, Satoshi Shiki, and Kimihisa Yaiamoto, Org. Lett. 2000, Vol. 2, No. 20, 3079-3082 ; Masayoshi Higuchi, Satoshi Shiki, Katsuhiko Ariga, and Kiiihisa Yaiamoto, J. Am. Chew. Soc. 2001, 123, 4414 - 4420)。 The method for synthesizing such phenylazomethine dendrimer, carbazole dendrimer, and phenylazomethine monofunctional rubazole asymmetric dendrimer is not particularly limited, and the Divergent method for synthesizing from the center of the dendrimer outward. A known method such as the Convergent method for synthesizing from outside the dendrimer toward the center can be applied. For example, dendrons Y and W of each generation are synthesized respectively, and a core compound X having a reactive group (for example, I, Br, NH 2, etc.) is subjected to a dehydration condensation reaction in the presence of a catalyst by a convergent method. A phenylazomethine dendrimer and / or a phenylazomethine asymmetric rubazole asymmetric dendrimer can be synthesized (for example, Japanese Patent Application No. 2000-02). 0 1 0; Japanese Patent Application 2 0 0 2 — 0 6 6 1 9 1; Masayoshi Higuchi, Satoshi Shiki, and Kimihisa Yaiamoto, Org. Lett. 2000, Vol. 2, No. 20, 3079-3082; Masayoshi Higuchi, Satoshi Shiki, Katsuhiko Ariga, and Kiiihisa Yaiamoto, J. Am. Chew. Soc. 2001, 123, 4414-4420).
この出願の発明の有機 E L素子用材料は、 また、 Xが次式 (VIII)  In the material for an organic EL device of the invention of the present application, X is the following formula (VIII)
CHつ— H -CH5 (Vni) CH-H-CH 5 (Vni)
P q  P q
(ただし、 pおよび (1は重合度を表す 1以上の整数である) のビニ ルポリマーであってもよい。  (However, p and (1 is an integer of 1 or more representing the degree of polymerization)) may be used.
このような有機 E L素子用材料において、 前記 Yや Wのデンド口 ンサブユニッ トは、 ビニルポリマ一の側鎖として存在する。 具体的 には、 次式 (IX)  In such an organic EL element material, the dendant subunits of Y and W exist as side chains of the vinyl polymer. Specifically, the following equation (IX)
Figure imgf000020_0001
Figure imgf000020_0001
(N、 R1, R2、 m、 n、 pおよび qは前記のものである) で表されるフエニルァゾメチン—力ルバゾール共重合体が例示され る (Wherein N, R 1 , R 2 , m, n, p and q are as described above).
このようなフエニルァゾメチン一力ルバゾール共重合体は、 次式 (X)
Figure imgf000021_0001
Such a phenylazomethine one-pot rubazole copolymer has the following formula (X)
Figure imgf000021_0001
(ただし、 R'、 R K および mは前記のとおりである) で表される ピニルァゾメチンモノマーと次式 (XI)  (Wherein R ', R K and m are as described above), and the following formula (XI)
Figure imgf000021_0002
Figure imgf000021_0002
(ただし、 nは、 前記のとおりである) で表されるビニルカルバゾ ールモノマーを反応させて得られるものであるが、 反応は、 各モノ マ一を、 例えばトルエン、 ベンゼン等の溶媒中で 3 0〜 8 0 に加 熱することにより進行する。 好ましくは、 tert-プチルヒ ドロペル ォキシ ド、 過酸化べンゾィル、 ァゾビスイ ソプチロニ ト リ ル (AIBN) 等のラジカル開始剤の存在下で反応させて得られる。  (Where n is the same as described above), which is obtained by reacting a vinyl carbazole monomer represented by the following formula: It proceeds by heating to 80. Preferably, it is obtained by reacting in the presence of a radical initiator such as tert-butyl hydroperoxide, benzoyl peroxide, and azobisisoptirononitrile (AIBN).
また、 このとき、 式 (VIII) のフエニルァゾメチン—カルパゾ一 ル共重合体における Pおよび Qは、 各々、 フエニルァゾメチンデン ド口ンサブュニッ トを有する部位とカルバゾールデンドロンサブュ ニッ トを有する部位の重合度を示す 1以上の整数であるが、 これは フエニルァゾメチン—力ルバゾ一ル共重合体がブ口ックコポリマー に限定されることを意味するものではない。 式 (VIII) のフエニル ァゾメチン—力ルバゾール共重合体は、 ランダムコポリマーであつ ても、 あるいは、 フエニルァゾメチンデンドロンサブュニッ トとカ ルバゾ一ルデンド口ンサブュニッ 卜が交互に規則的に配置されたコ ポリマーであってもよい。 pと qの比はとくに限定されないが、 フ ェニルァゾメチンデンドロンサブュニッ 卜は高い金属集積能を有し、 カルパゾールデンド口ンサブュニッ 卜は高い正孔輸送能を有するこ と-から、 目的とする有機 E L素子用材料の特性に応じて適宜変更で きる。 At this time, P and Q in the phenylazomethine-carpazole copolymer of the formula (VIII) represent the phenylazomethine dendrite subunit and the carbazole dendron subunit, respectively. Is an integer of 1 or more indicating the degree of polymerization of the site having the following, but this does not mean that the phenylazomethine-potassium copolymer is limited to a block copolymer. Phenyl of formula (VIII) The azomethine-potassium rubazole copolymer may be a random copolymer or a copolymer in which phenyl azomethine dendron subunits and carbazole monodentate subunits are alternately and regularly arranged. Is also good. Although the ratio of p to q is not particularly limited, the purpose is that phenylazomethine dendron subunit has high metal accumulation ability, and carbazole dend subunit has high hole transport ability. It can be appropriately changed according to the characteristics of the material for the organic EL element to be used.
この出願の発明の有機 E L素子用材钭において、 フエニルァゾメ チンデンドロンサブュニッ ト ( Y ) 中の R 1 は、 アルキレン、 フエ 二レン、 ヘテロ環基およびそれらの誘導体から選択される置換基で あり、 具体的には、 メチレン、 エチレン、 プロピレン、 フエ二レン、 ピロール、 チォフェン、 ォキサジァゾール等のへテロ環が例示され る。 また、 Yにおける R 2 は、 置換基を一つ以上有していてもよい フエニル基であり、 これらの置換基はさらに置換基を有していても よい。 このような R 2 としては、 水素原子、 ハロゲン原子、 アルキ ル基、 アルコキシ基、 フエニル基、 アミノ基、 シァノ基またはジメ チルァミノ基等が o—位、 m—位、 p —位のいずれか 1ケ所または 2ケ所以上に結合した置換フヱニル基が挙げられる。 R 2 の性質 (電子供与性 Z電子吸引性など) により、 フエニルァゾメチンデン ドロンサブュニッ トの電子密度が変化することから、 目的に応じて R 2 を適宜選択することにより、 有機 E L素子用材料全体の性質 (あるいは有機 E L素子全体の発光効率) 等を調整することが可能 となる。 In the material for an organic EL device of the invention of the present application, R 1 in phenylazomethine dendron subunit (Y) is a substituent selected from alkylene, phenylene, a heterocyclic group and a derivative thereof, Specific examples include heterocycles such as methylene, ethylene, propylene, phenylene, pyrrole, thiophene, and oxadiazole. R 2 in Y is a phenyl group which may have one or more substituents, and these substituents may further have a substituent. As such R 2 , a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, a phenyl group, an amino group, a cyano group, a dimethylamino group, or the like may be any one of the o-, m-, and p-positions. Or a substituted phenyl group bonded to two or more sites. Since the electron density of phenylazomethine dendron subunit changes depending on the nature of R 2 (electron donating property, Z electron withdrawing property, etc.), R 2 can be appropriately selected according to the purpose and used for organic EL devices. It is possible to adjust the properties of the whole material (or the luminous efficiency of the whole organic EL device).
また、 この出願の発明の有機 E L素子用材料では、 フエ二ルァゾ メチンデンドロサブユニッ ト (Y ) や力ルバゾールデンドロサブュ ニッ ト (W) の世代数、 すなわち mおよび nの値を選択することに よっても、 その正孔輸送性や発光性を調整できる。 Further, in the material for an organic EL device of the invention of the present application, fenilazomethine dendrosubunit (Y) and By selecting the number of generations of the knit (W), that is, the values of m and n, the hole transport property and the light emission property can be adjusted.
この出願の発明者らは、 これまでに、 フエニルァゾメチンデンド リマーが分子内において次世代のィミン部位の電子密度差 (塩基 度) による電子勾配を有するため、 種々の金属を添加することによ り、 分子内イミン部位との段階的な錯形成が起こることを明らかに し、 報告している (例えば、 Masayos i Higuc i, Satoshi S iki, and Kimihisa Yamamoto, Org. Lett. 2000, Vol. 2, No. 20, 3079-3082 ; Masayoshi Higuchi, Satoshi Shiki, Katsuhiko Ariga, and Kimihisa Yamamoto, J. Am. Chem. Soc. 2001, 123, 4414-4420 ; Kimihisa Yamamoto, Masayoshi Higuchi, Satoshi Shiki, Masanori Tsuruta and Hiroshi Chiba, Nature, Vol. 415, No. 6871, 509-511, 31 Jan 2002)。  The inventors of the present application have previously reported that phenylazomethine dendrimer has an electron gradient due to the electron density difference (basicity) of the next-generation imine site in the molecule, so that various metals must be added. Has been reported to produce a stepwise complexation with the imine site in the molecule (for example, Masayos i Higuc i, Satoshi Siki, and Kimihisa Yamamoto, Org. Lett. 2000, Vol. 2, No. 20, 3079-3082; Masayoshi Higuchi, Satoshi Shiki, Katsuhiko Ariga, and Kimihisa Yamamoto, J. Am. Chem. Soc. 2001, 123, 4414-4420; Kimihisa Yamamoto, Masayoshi Higuchi, Satoshi Shiki, Masanori Tsuruta and Hiroshi Chiba, Nature, Vol. 415, No. 6871, 509-511, 31 Jan 2002).
この出願の発明の有機 E L素子用材料においても、 同様に、 フエ ニルァゾメチンデンドリマ一、 フエニルァゾメチン—力ルバゾ一ル 非対称デンドリマ一またはフエニルァゾメチン—カルバゾ一ル共重 合体のフエニルァゾメチンデンドロンサブュニッ トに金属を錯形成 させることができる。  Similarly, in the material for an organic EL device of the invention of the present application, phenylazomethine dendrimer, phenylazomethine-potassium asymmetric dendrimer or phenylazomethine-carbazolyl copolymer Metals can be complexed with the combined phenylazomethine dendron subunits.
以上のとおりのこの出願の発明の有機 E L素子用材料は、 緻密で 高い強度を有する薄膜を形成できる。 そして、 このような薄膜は、 電気化学的に安定で高い耐熱性を示すことから、 これを正孔輸送層 や発光層として用いることにより、 優れた発光効率とともに高い耐 久性も実現できるのである。 したがって、 この出願の発明は、 以上 のとおりの有機 E L素子用材料を含有する薄膜からなる正孔輸送層 または発光層を有する有機 E L素子をも提供する。  As described above, the material for an organic EL device of the invention of this application can form a dense and high-strength thin film. Since such a thin film is electrochemically stable and exhibits high heat resistance, by using it as a hole transport layer or a light emitting layer, it is possible to realize excellent luminous efficiency and high durability. . Therefore, the invention of this application also provides an organic EL device having a hole transport layer or a light emitting layer formed of a thin film containing the material for an organic EL device as described above.
図 1に本願発明の有機 E L素子の概略を示した。 すなわち この 出願の発明の有機 E L素子 (1) は、 少なくとも、 陽極 (22) と、 陽極 (22) 上に形成された正孔輸送層 (3) と、 正孔輸送層 (3) と 接する発光層 (4) と、 発光層 (4) と接する陰極 (5) を有するも のであり、 正孔輸送層 (3) または発光層 (4) のいずれかが、 少な くとも前記のいずれかの有機 E L素子用材料を含有する薄膜により 構成されるものであればよい。 FIG. 1 shows an outline of the organic EL device of the present invention. That is, this The organic EL element (1) of the invention of the application comprises at least an anode (22), a hole transport layer (3) formed on the anode (22), and a light emitting layer (3) in contact with the hole transport layer (3). 4) and a cathode (5) in contact with the light emitting layer (4), wherein at least one of the hole transport layer (3) and the light emitting layer (4) is at least one of the organic EL devices described above. What is necessary is just to be comprised by the thin film containing the material for use.
本発明の有機 E L素子 (1) において、 正孔輸送層 (3) は、 陽極 (22) に接し、 陽極 (22) から注入された正孔を発光層 (4) へ輸 送するものであり、 前記のとおりの有機 E L素子用材料を含有する ものであればよい。  In the organic EL device (1) according to the present invention, the hole transport layer (3) is in contact with the anode (22) and transports holes injected from the anode (22) to the light emitting layer (4). Any material may be used as long as it contains the material for an organic EL device as described above.
この出願の発明の有機 E L素子用材料は、 例えば、 フエ二ルァゾ メチンデンドリマーの次世代のィミン部位の電子密度差 (塩基度) による電子勾配を有する。 したがって、 この出願の発明の有機 E L 素子 (1) では、 このような有機 E L素子用材料を正孔輸送層 (3) に用いることにより、 陽極 (22) と正孔輸送層 (3) のエネルギ一 ギャップが小さくなり、 正孔輸送層 (3) への正孔注入や、 正孔輸 送層 (3) から発光層 (4) への正孔輸送が効率よく行われるように なる。 したがって、 有機 E L素子 (1) の発光効率の向上と開放電 圧の低下、 さらには駆動電圧の低下が実現される。  The material for an organic EL device of the invention of this application has, for example, an electron gradient due to the electron density difference (basicity) of the next-generation imine site of phenylazomethine dendrimer. Therefore, in the organic EL device (1) of the invention of this application, by using such a material for an organic EL device for the hole transport layer (3), the energy of the anode (22) and the hole transport layer (3) can be improved. (1) The gap is reduced, and the hole injection into the hole transport layer (3) and the hole transport from the hole transport layer (3) to the light emitting layer (4) can be performed efficiently. Therefore, the luminous efficiency of the organic EL device (1) can be improved, the open discharge pressure can be reduced, and the drive voltage can be reduced.
また、 この出願の発明の有機 E L素子 (1) における発光層 (4) は、 注入された正孔と電子の再結合が起こる場であり、 正孔と電子 の再結合により放出されるエネルギーに反応して発光を起こすもの であればよく、 一般に有機 E L素子用として用いられる各種の材料、 具体的には、 ト リス ( 8 —キノ リ ノ ラ ト) アルミニウム錯体 (A1Q3)、 ビス (ペンゾキノリノラ ト) ベリ リウム錯体 (BeBd2)、 ビス ( 8 —キノラ ト) 亜鉛錯体 (ZnoJ フエナント口リン系ユウ 口ピウム錯体 (Eu (TTA)3(phen)) 等の金属錯体や、 ペリ レン、 キナ クリ ドン、 クマリン等の低分子蛍光色素を蒸着法により薄膜化した もの、 ポリ ( p—フエ二レンビニレン) ( PPV) やポリ フルオレンThe light emitting layer (4) in the organic EL device (1) of the invention of the present application is a place where recombination of injected holes and electrons takes place. Any material can be used as long as it reacts to emit light. Various materials generally used for organic EL devices, specifically, tris (8-quinolinolato) aluminum complex (A1Q3), bis (benzoquinolinolato) ) Beryllium complex (BeBd2), bis (8-quinolato) zinc complex (ZnoJ Metal complexes such as palladium complex (Eu (TTA) 3 (phen)) and low molecular weight fluorescent dyes such as perylene, quinacridone, and coumarin thinned by vapor deposition, poly (p-phenylenevinylene) (PPV) or polyfluorene
(PF) 等の π共役高分子、 さらにはポリピニルカルバゾールなどの 側鎖に蛍光色素を含有する高分子等を溶媒に溶解し、 湿式塗布法に より薄膜化したものが好適に使用できる。 好ましく は、 発光層A polymer obtained by dissolving a π-conjugated polymer such as (PF) or a polymer containing a fluorescent dye in a side chain such as polypinylcarbazole in a solvent and forming a thin film by a wet coating method can be suitably used. Preferably, the light emitting layer
(4) は、 正孔と電子の再結合により放出されるエネルギーに反応 して発光を起こす材料とともに、 前記いずれかの有機 E L素子用材 料を含有する薄膜からなるものとする。 発光層 (4) が前記の有機 E L素子用材料を含有する場合には、 素子の発光特性が向上し、 好 ましい。 (4) shall consist of a thin film containing any of the above-mentioned materials for an organic EL device together with a material which emits light in response to energy released by recombination of holes and electrons. When the light emitting layer (4) contains the above-mentioned material for an organic EL device, the light emitting characteristics of the device are improved, which is preferable.
この出願の発明の有機 E L素子用材料は、 前記のとおり、 フエ二 ルァゾメチンデンドロンサブユニッ トに金属を錯形成させることが できるものであり、 このような錯形成により、 有機 E L素子用材料 中に電子密度差 (塩基度) に基づく電子勾配が生じるものである。 したがって、 この出願の発明の有機 E L素子 (1) においては、 正 孔輸送層 (3) または発光層 (4) は、 前記の有機 E L素子用材料と ともに、 金属塩を含有する薄膜からなるものであってもよい。  As described above, the material for an organic EL device of the invention of this application is capable of complexing a metal to phenylazomethine dendron subunit. An electron gradient is generated based on the electron density difference (basicity). Therefore, in the organic EL device (1) of the invention of this application, the hole transport layer (3) or the light emitting layer (4) is formed of a thin film containing a metal salt together with the organic EL device material. It may be.
この出願の発明の有機 E L素子用材料のフエニルァゾメチンデン ドロンサブユニッ トに集積される金属は、 フエニルァゾメチンのィ ミン基を配位子として錯形成できるものであればよく、 とくに限定 されない。 例えば、 Fe、 Ru、 Co、 Rh、 Ir、 Ni、 Pd、 Pt、 Cu、 Agゝ Au, Zn、 Cd、 Mo、 W、 Mn、 Sn、 Eu、 Tb、 Nd 等が上げられる。 好まし くは、 錫 (Sn) の塩化 ¾ (SnCl2)、 銅 (Cu)、 鉄 (Fe)、 金 (Au) 等 の遷移金属塩化物 (例えば、 CuCl2, FeCl3, AuCl3など)、 ユウロピ ゥム (Eu)、 テルビウム (Tb) 等の希土類金属塩化物 (例えば EuCl3, TbCl3)、 銅トリ フルォロメタンスルホン酸 (Cu(0Ti)3)、 ュ ゥロピウムトリフルォロメタンスルホン酸 (Eu(0Ti)3)、 テルピウ ム トリフルォロメタンスルホン酸 (Tb(0Ti)3)、 ネオジム トリフル ォロメタンスルホン ¾ (Nd (OTf) 3) が挙げられる。 The metal integrated in the phenylazomethine dendron subunit of the material for an organic EL device of the invention of this application may be any metal as long as it can form a complex with the imine group of phenylazomethine as a ligand. There is no particular limitation. For example, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag ゝ Au, Zn, Cd, Mo, W, Mn, Sn, Eu, Tb, Nd and the like can be mentioned. Preferably, transition metal chlorides such as tin (Sn) chloride (SnCl 2 ), copper (Cu), iron (Fe), and gold (Au) (eg, CuCl 2 , FeCl 3 , AuCl 3, etc.) , Europium (Eu), terbium (Tb) and other rare earth metal chlorides (eg EuCl 3 , TbCl 3 ), copper trifluoromethanesulfonic acid (Cu (0Ti) 3 ), dimethyl trifluoromethanesulfonic acid (Eu (0Ti) 3 ), terpium trifluoromethanesulfonic acid (Tb (0Ti ) 3 ), and neodymium trifluoromethanesulfone (Nd (OTf) 3 ).
このような錯形成は、 前記の有機 E L素子用材钭の溶液にフエ二 ルァゾメチン構造中のイミン基を配位子として錯形成できる金属 Such a complex is formed by a metal which can form a complex with the solution of the material for the organic EL device using the imine group in the phenylazomethine structure as a ligand.
(イオンや化合物) の溶液を混合することにより行うことができる。 そして、 錯形成を確認した後に、 この溶液をキャストすれば、 有機 E L素子用材料の錯体薄膜が得られる。 このとき、 金属化合物を、 フエニルァゾメチンデンドロンサブュニッ 卜において錯形成させた いイミン部位と等モルで添加すれば、 各世代のフエニルァゾメチン デンドロンのイミンに対する金属当量を制御することができる。 そ して、 - Vis スペク トルにより錯形成を確認した後、 溶媒を濃縮 すれば、 有機 E L素子用材料の薄膜が得られる。 このとき、 溶媒は、 とくに限定されず、 例えばクロ口ホルムゃァセトニトリルが使用で きる。 (Ion or compound) can be mixed. Then, after confirming the formation of the complex, if this solution is cast, a complex thin film of the material for the organic EL device is obtained. At this time, if the metal compound is added in an equimolar amount to the imine site to be complexed in the phenylazomethine dendron subunit, the metal equivalent of the phenylazomethine dendron of each generation with respect to the imine is controlled. be able to. Then, after confirming the complex formation by -Vis spectrum, the solvent is concentrated and a thin film of the material for organic EL devices is obtained. At this time, the solvent is not particularly limited, and for example, chloroform-formacetonitrile can be used.
この出願の発明の有機 E L素子 (1) は、 さらに、 前記の有機 E L素子用材料を光架橋してなる薄膜を正孔輸送層 (3) または、 発 光層 (4) とするものであってもよい。 例えば、 前記の有機 EL素 子用材料の溶液をキャストし、 薄膜を形成した後に、 キャス ト膜に 対しては光照射し、 成膜されたデンドリマーを光架橋させることが できる。 このとき、 照射される光は、 少なく とも有機 EL素子用材 料におけるフエニルァゾメチンおよび/またはカルパゾールがの吸 収波長領域を含む光であればよく、 光源としては各種のものが適用 される。 好ましくは、 照射される光の波長領域は、 5 0 0 nm以下 の紫外光領域とする。 このように、 有機 E L素子用材料を光架橋してなる薄膜は、 カル バゾ一ル基ゃフエニル環が光架橋反応により分子内または分子間架 橋した膜である。 具体的には、 力ルバゾールデンドロンサブュニッ トを有する有機 E L素子用材料では、 光照射によりカルバゾールデ ンドロンサブュニッ トにおける 3位または 6位のいずれかで架橋反 応が起こり、 架橋膜となる。 また、 フエニルァゾメチンデンドロン サブユニッ トを有する化合物では、 例えば、 近接するフエニル基の 2位の間等で架橋反応が起こり、 架橋膜となる。 このような架橋膜 は、 有機溶媒への溶解性が低く、 一般の有機溶媒にはほとんど不溶 となる。 したがって、 光架橋された薄膜を正孔輸送層 (3) として 用いれば、 その上にさらに発光層 (4) を有機溶媒溶液のキャス ト により成膜しても、 正孔輸送層 (3) が溶解することない。 The organic EL device (1) according to the invention of the present application is further characterized in that a thin film obtained by photocrosslinking the organic EL device material is used as a hole transport layer (3) or a light emitting layer (4). May be. For example, a solution of the organic EL element material is cast to form a thin film, and then the cast film is irradiated with light to crosslink the formed dendrimer. At this time, the light to be irradiated may be at least light that includes an absorption wavelength region of phenylazomethine and / or carbazole in the material for an organic EL device, and various light sources are used. . Preferably, the wavelength range of the irradiated light is an ultraviolet light range of 500 nm or less. As described above, a thin film obtained by photocrosslinking a material for an organic EL device is a film in which a carbazole group-phenyl ring is crosslinked intra- or intermolecularly by a photocrosslinking reaction. Specifically, in a material for an organic EL device having a carbazole dendron subunit, a cross-linking reaction occurs at either the 3-position or the 6-position in the carbazole dendron subunit by light irradiation, and the cross-linking occurs. It becomes a film. In the case of a compound having a phenylazomethine dendron subunit, for example, a cross-linking reaction occurs between the adjacent 2-positions of a phenyl group, and a cross-linked film is formed. Such a crosslinked film has low solubility in organic solvents and is almost insoluble in general organic solvents. Therefore, if the photocrosslinked thin film is used as the hole transport layer (3), the hole transport layer (3) can be formed even if the light emitting layer (4) is further formed by casting an organic solvent solution. Does not dissolve.
この出願の発明の有機 E L素子 (1 ) において、 陽極 (22) は、 正孔注入能の高い (言いかえれば、 仕事関数の大きな) 材料からな るものが望ましく、 例えばインジウム Z酸化錫 (IT0)、 酸化錫、 金 などの薄膜が好ましい。 中でも ΙΤ0は、 可視光透過性が高く、 有機 E L素子 (1 ) からの発光を取り出せるため好適である。 また、 陽 極 (22) は、 ガラスやプラスチック等の透明基板 (21 ) 上に形成さ れるものであってもよく、 その膜厚等は限定されない。 もちろん、 陽極 (22) として、 市販の導電性ガラスを用いてもよい。  In the organic EL device (1) of the present invention, the anode (22) is preferably made of a material having a high hole injection ability (in other words, a material having a large work function). For example, indium Z tin oxide (IT0) ), Tin oxide, gold or the like. Above all, # 0 is suitable because it has high visible light transmittance and can take out light emitted from the organic EL device (1). Further, the anode (22) may be formed on a transparent substrate (21) such as glass or plastic, and the film thickness and the like are not limited. Of course, a commercially available conductive glass may be used as the anode (22).
さらに、 陰極 (5) は、 導電性を有し、 発光層 (4) へ電子 (Ε) を注入するという目的を達成できるものであれば、 その材質や厚さ 等はとくに限定されない。 好ましくは、 仕事関数の低い、 アルカリ 金属、 アルカリ土類金属 アルミニウム、 ガリウム、 インジウムな どの第 I I I族金属等が挙げられる。 中でも化学的に安定で安価なマ グネシゥムと銀あるいは銅の合金や安価で膜形成が容易なアルミ二 ゥムが好ましい。 また、 これらの材料はガラスまたはプラスチック 等の透明基板上に形成されたものであってもよい。 Further, the material and thickness of the cathode (5) are not particularly limited as long as the cathode (5) has conductivity and can achieve the purpose of injecting electrons (へ) into the light emitting layer (4). Preferably, a group III metal such as an alkali metal, an alkaline earth metal, aluminum, gallium, and indium having a low work function is used. Among them, alloys of magnesium and silver or copper, which are chemically stable and inexpensive, and aluminum alloys which are inexpensive and easy to form films Pum is preferred. These materials may be formed on a transparent substrate such as glass or plastic.
以上のとおりのこの出願の発明の有機 E L素子 (1 ) は、 さらに 導線、 力パー、 フィル夕一等と組み合わせることにより、 携帯電話、 ノートパソコン、 PDA 等の各種機器のフラッ トパネルディスプレイ として用いられるものである。  As described above, the organic EL device (1) of the invention of this application can be used as a flat panel display of various devices such as a mobile phone, a notebook computer, and a PDA by being combined with a conductor, a power cable, a filter, and the like. Things.
以下、 実施例を示しこの発明の実施の形態についてさらに詳しく 説明する。 もちろん、 この発明は以下の例に限定されるものではな く、 細部については様々な態様が可能であることは言うまでもない。 実施例  Hereinafter, embodiments will be described in more detail with reference to examples. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in details. Example
ぐ実施例 1 > Example 1>
〔準備〕  [Preparation]
( a ) 陽極 : I T0 ガラス電極 (20 mm X 20 ; 王子トビ社) の IT0面を塩酸エッチングし、 幅 3 mmの陽極を作成して用いた。 . (a) Anode: A 3 mm wide anode was prepared by etching the IT0 surface of an IT0 glass electrode (20 mm X 20; Oji Tobi) with hydrochloric acid. .
( b ) 正孔輸送層 : Org. Le t t. 2000, Vo l . 2, No. 20, 3079- 3082に記載される方法により合成した次式 (IV- a) (b) Hole transport layer: Org. Lett. 2000, Vol. 2, No. 20, 3079-3082 The following formula (IV-a) synthesized by the method described in
Figure imgf000029_0001
Figure imgf000029_0001
で表されるフエニルァゾメチンデンドリマ一 (第 4世代) を、 デン ドリマ一 1 mg に対して 1 ml のクロ口ホルムで溶解し、 スピンキヤ スト法 ( 2500 rpm、 1 分間隔で 2 回キャス ト) により厚さ 500 Aの 正孔輸送層を形成した。 Phenylazomethine dendrimer (4th generation) represented by the formula below is dissolved in 1 ml of 1 ml dendrimer with 1 ml of black-mouthed form, and spin-cast method (2,500 rpm, 2 times at 1 minute intervals) A 500 A thick hole transport layer was formed by casting.
( c ) 発光層 : 得られた正孔輸送層に A 3 (東京化成社) を、 真 空蒸着装置 (Ulvac VPC-410A) を用いて 50 X 10"6 Torr の減圧下、 2〜3 A /sec の蒸着速度で真空蒸着し、 厚さ 500 Aの発光層 (電子 輸送性) を形成した。 (c) Light-emitting layer: A3 (Tokyo Kasei Co., Ltd.) was applied to the obtained hole-transporting layer using a vacuum evaporation apparatus (Ulvac VPC-410A) under a reduced pressure of 50 × 10 " 6 Torr to 2-3 A. Vacuum deposition was performed at a deposition rate of / sec to form a light emitting layer (electron transporting property) with a thickness of 500A.
( d ) 陰極 : 得られた発光層に A1 線 (直径 1 nun) を用いて、 上記 (d) Cathode: Using A1 wire (diameter 1 nun) for the obtained light emitting layer,
( c ) と同条件下 2〜 5 A /secの蒸着速度で A1 を真空蒸着し、 厚さ 1000Aの陰極を形成した。 A1 was vacuum deposited at a deposition rate of 2 to 5 A / sec under the same conditions as in (c) to form a cathode having a thickness of 1000 A.
〔有機 E L素子の評価〕  [Evaluation of organic EL device]
得られた面積 0. 1 cm2の有機 E L素子について、 室温 · 大気下で 2383 電圧一電流および電圧一輝度の測定を行った。 The obtained organic EL device with an area of 0.1 cm 2 was 2383 Voltage-current and voltage-luminance measurements were performed.
有機 E L素子の特性を図 2 aに示した。  The characteristics of the organic EL device are shown in FIG. 2a.
IT0 電極を陽極として 5 V 以上の電圧を印可することにより、 A1Q3 由来の緑色発光が見られた。 また.. 15 Vでは、 最高輝度 1600 cd/m2が確認された。 0. 1 cd/iD2に達する turn- on電圧は 5. 6 V、 輝 度 300 cd/i2における発光効率は 1.2 lm/Wであった。 When a voltage of 5 V or more was applied using the IT0 electrode as the anode, green light emission derived from A1Q3 was observed. At 15 V, a maximum luminance of 1600 cd / m 2 was confirmed. The turn-on voltage reaching 0.1 cd / iD 2 was 5.6 V, and the luminous efficiency at a luminance of 300 cd / i 2 was 1.2 lm / W.
さらに、 この有機 E L素子の高温測定 (100で、 空気中) を行つ た。 図 2 bに示したように、 発光強度が初期値と同等 (turn- on 電 圧 : 5.5 V、 最高輝度 : 1560 cd/m2 at 15 V、 330 cd/m2 の発光効 率 : 1. 16 lm/W) であった。 これより この E L素子の安定性が確認. できた。 ぐ実施例 2 > Furthermore, high temperature measurement (at 100, in air) of the organic EL device was performed. As shown in Fig. 2b, the emission intensity is equal to the initial value (turn-on voltage: 5.5 V, maximum brightness: 1560 cd / m 2 at 15 V, emission efficiency of 330 cd / m 2 : 1. 16 lm / W). This confirmed the stability of this EL device. Example 2>
実施例 1の正孔輸送層の形成工程 (b) において、 式 (IV- a) の フエニルァゾメチンデンドリマーとともに塩化錫 1当量 (フエニル ァゾメチンデンドリマ一中のイミン数に対して) をァセトニトリル 中で混合し、 錯形成させた後、 濃縮し、 これを実施例 1 と同条件で スピンキャストして、 厚さ 500Aの正孔輸送層を形成した。  In the step (b) of forming the hole transport layer in Example 1, 1 equivalent of tin chloride was used together with the phenylazomethine dendrimer of the formula (IV-a) (based on the number of imines in the phenylazomethine dendrimer). Was mixed in acetonitrile, complexed, concentrated, and spin-cast under the same conditions as in Example 1 to form a 500 A thick hole transport layer.
さらに、 実施例 1 と同様の方法により有機 E L素子を構築し、 評 価した。  Further, an organic EL device was constructed and evaluated in the same manner as in Example 1.
図 2 じ よ り 、 12 V で最高輝度 18000 cd/m2 を示し、 輝度 300 cd/m2における発光効率は 2.6 lm/W と高いことが確認された。 また、 turn-on電圧が 4 V程度でデンドリマーのみを正孔輸送層とした場 合 (実施例 1 ) よりも 1.5 V以上低下した。 From FIG. 2, it was confirmed that the maximum luminance was 18000 cd / m 2 at 12 V, and the luminous efficiency at a luminance of 300 cd / m 2 was as high as 2.6 lm / W. In addition, when the turn-on voltage was about 4 V and the dendrimer alone was used as the hole transport layer, the voltage was reduced by 1.5 V or more compared to the case where the hole transport layer was used (Example 1).
以上より、 フエニルァゾメチンデンドリマ一—金属錯体を正孔輸 送材料として用いることにより、 有機 E L素子の消費電力を大幅に 低下させることができることが確認された。 As described above, the use of phenylazomethine dendrimer-metal complex as a hole transport material significantly reduced the power consumption of organic EL devices. It was confirmed that it can be reduced.
これは、 正孔注入電極 (陽極) と正孔輸送層間のエネルギーギヤ ップが小さくなり 正孔輸送層への正孔の注入効率が高くなるため であると考えられる。  This is considered to be because the energy gap between the hole injection electrode (anode) and the hole transport layer becomes smaller, and the efficiency of hole injection into the hole transport layer increases.
<実施例 3 > <Example 3>
次式 (IV-b)  Formula (IV-b)
Figure imgf000031_0001
Figure imgf000031_0001
で表されるジメチルァミ ン置換フエニルァゾメチンデンドリマ— Dimethylamine-substituted phenylazomethine dendrimer represented by
(第 3世代) を正孔輸送材料として用いて有機 E L素子を構築し、 評価した。 (Third generation) was used as a hole transport material to construct and evaluate an organic EL device.
図 2 dに示されるように、 14 V で最高輝度 4500 cd/m2を示し、 輝度 300 cd/m2における発光効率は 1.8 lm/Wであった。 また-. 5.0 V程度で turn- on電圧を有し、 無置換フエニルァゾメチンデンドリ マ一を正孔輸送層として用いた場合 (実施例 1 ) よりもさらに高い 素子特性を示すことが確認された。 これは、 デンドリマー末端に電 子供与性のジメチルアミン基が導入されたことにより、 デンドリマ 一内部の電子密度が向上したためと考えられる。 As shown in FIG. 2d, the maximum luminance was 4500 cd / m 2 at 14 V, and the luminous efficiency at a luminance of 300 cd / m 2 was 1.8 lm / W. It also has a turn-on voltage of about -5.0 V, and unsubstituted phenylazomethine dendrites It was confirmed that the device exhibited higher device characteristics than the case where the mask was used as the hole transport layer (Example 1). This is probably because the introduction of an electron-donating dimethylamine group into the dendrimer terminal increased the electron density inside the dendrimer.
<比較例 1 > <Comparative Example 1>
ポリビニルカルパゾ一ルのク口口ホルム溶液を調製し このクロ 口ホルム溶液を実施例 1 と同条件でスピンキャストして、 厚さ 500 人の正孔輸送層とした。  A mouth form solution of polyvinyl carpazole was prepared, and this mouth form solution was spin-cast under the same conditions as in Example 1 to form a hole transport layer having a thickness of 500 persons.
さらに、 実施例 1 と同様の方法により有機 E L素子を構築し、 評 価した。  Further, an organic EL device was constructed and evaluated in the same manner as in Example 1.
得られた有機 E L素子では、 4 V 以上の電圧を印加することによ り Al Q由来の緑色発光が確認された。 また、 図 3 bに示されるよう に、 1 1 V で最高輝度 600 cd/m2を示し、 0. 1 cd/m2に達する rn - on 電圧は 4. 5 V、 輝度 300 cd/m2における発光効率は 2. 0 lm/Wで あった。 In the obtained organic EL device, green luminescence derived from Al Q was confirmed by applying a voltage of 4 V or more. Further, as shown in FIG. 3 b, the highest luminance 600 cd / m 2 at 1 1 V, reaches 0. 1 cd / m 2 rn - on voltage 4. 5 V, luminance 300 cd / m 2 The luminous efficiency at was 2.0 lm / W.
<実施例 4 > <Example 4>
ポリビニルカルバゾ一ルのク口口ホルム溶液を調製し、 これに、 実施例 1 において使用した式 (IV-a) のフエニルァゾメチンデンド リマ一 (第 4世代) を、 ポリビニルカルバゾ一ルに対して 1重量% 添加し、 さらに、 塩化錫 1当量 (フエニルァゾメチンデンドリマー 中のイミン数に対して) を混合した。 このクロ口ホルム溶液を実施 例 1 と同条件でスピンキャス トして、 厚さ 500 Aの正孔輸送層を形 成した。  An oral form solution of polyvinyl carbazole was prepared, and the phenylazomethine dendrite of formula (IV-a) used in Example 1 (4th generation) was added to the polyvinyl carbazole. And 1 equivalent of tin chloride (based on the number of imines in the phenylazomethine dendrimer). This black-hole form solution was spin-cast under the same conditions as in Example 1 to form a hole transport layer having a thickness of 500 A.
さらに、 実施例 1 と同様の方法により有機 E L秦子を嬉築し、 評 4002383 価した。 In addition, an organic EL Hatako was constructed in the same manner as in Example 1 and evaluated. 4002383 valued.
図 3 aに示したように、 得られた有機 E L素子は、 10 V で最高 輝度 1500 cd/m2 を示し、 輝度 300 cd/m2 における発光効率は 3.5 li/W と高い発光効率を示した。 さらに 0.1 cd/m2に達する turn- on 電圧が 3 V 程度で比较例 1のポリピニルカルバゾールを正孔輸 送層とした (フエニルァゾメチンデンドリマーを含まない) 有機 E L秦子より 1 V以上低下した。 したがって、 素子の低消費電力化が 確認された。 As shown in FIG. 3 a, the obtained organic EL device showed a maximum brightness 1500 cd / m 2 at 10 V, the luminous efficiency at luminance 300 cd / m 2 showed a 3.5 li / W and high emission efficiency Was. Furthermore, the turn-on voltage reaching 0.1 cd / m 2 was about 3 V, and the polypinylcarbazole of Comparative Example 1 was used as the hole transport layer (without phenylazomethine dendrimer). V or more dropped. Therefore, low power consumption of the device was confirmed.
実施例 2および 4より、 金属が集積 (錯形成) されたデンドリマ 一を含有する薄膜を正孔輸送層とすることにより、 素子の高発光効 率さらに低 turn- on電圧特性が実現されることが確認された。 また、 正孔注入電極である IT0 と正孔輸送層間のエネルギーギヤップがよ り小さくなり、 正孔輸送層へ正孔の注入効率が高くなつたことが示 唆された。  As can be seen from Examples 2 and 4, a high luminous efficiency and low turn-on voltage characteristics of the device are realized by using a thin film containing dendrimer in which metal is integrated (complexed) as the hole transport layer. Was confirmed. In addition, the energy gap between the hole injection electrode IT0 and the hole transport layer became smaller, suggesting that the efficiency of hole injection into the hole transport layer was increased.
<比較例 2 > <Comparative Example 2>
〔準備〕  [Preparation]
( a ) 陽極 : IT0 ガラス電極 (20 腿 X 20 籠 ; 王子トビ社) の IT0面を塩酸エッチングし、 幅 3 mmの陽極を作成して用いた。  (a) Anode: The IT0 surface of the IT0 glass electrode (20 thighs x 20 baskets; Oji Tobi) was etched with hydrochloric acid to prepare a 3 mm wide anode and used.
(b) 正孔輸送層 : ポリ (3, 4-エチレンジォキシチォフェン) —ポ リスチレンスルホン酸 (PED0T:PSS) 水溶液を実施例 1 と同条件で スピンキャストして、 厚さ 300Aの正孔輸送層を形成した。  (b) Hole transport layer: An aqueous solution of poly (3,4-ethylenedioxythiophene) -polystyrenesulfonic acid (PED0T: PSS) was spin-cast under the same conditions as in Example 1 to obtain a 300-A thick layer. A hole transport layer was formed.
( c ) 発光層 : ポリフエ二レンビニレン誘導体 (MEH-PPV) のク口 口ベンゼン溶液を調製し、 これをスピンキャス トして厚さ 500Aの 発光層を形成した。  (c) Light-emitting layer: A benzene solution of a polyphenylenevinylene derivative (MEH-PPV) was prepared and spin-cast to form a light-emitting layer having a thickness of 500A.
( d) 陰極 : 得られた発光層に実施例 1 と同条件下 2〜5A/sec の 蒸着速度で Caを真空蒸着し、 厚さ 1000Aの陰極を形成した。 (d) Cathode: 2 to 5 A / sec of the obtained light emitting layer under the same conditions as in Example 1 Ca was vacuum-deposited at a deposition rate to form a cathode having a thickness of 1000A.
〔有機 E L素子の評価〕  [Evaluation of organic EL device]
上記 ( a) 〜 ( d) により得られた面積 0.1 cm2の有機 E L素子 について、 室温。 大気下で電圧一電流および電圧一輝度の測定を行 つた。 Room temperature of the organic EL device having an area of 0.1 cm 2 obtained by the above (a) to (d). Voltage-current and voltage-brightness measurements were performed in the atmosphere.
有機 E L素子の特性を図 4 bに示した。  Fig. 4b shows the characteristics of the organic EL device.
IT0 電極を正極として 5 V 以上の電圧を印加することにより、 MEH-PPV 由来の緑色発光が確認された。 また、 図 4 bに示されるよ うに、 12 V で最高輝度 350 cd/ を示し、 0.1 cd/i2 に達する turn-on 電圧は 5.6 V、 輝度 300 cd/m2 における発光効率は 1.2 lm/Wであった。 By applying a voltage of 5 V or more with the IT0 electrode as the positive electrode, green light emission derived from MEH-PPV was confirmed. Further, sea urchin by shown in FIG. 4 b, 12 V maximum brightness 350 cd / a shown in, 0.1 cd / turn-on voltage reaching i 2 is 5.6 V, the luminance 300 cd / luminous efficiency in m 2 is 1.2 lm / W.
<実施例 5 > <Example 5>
比較例 2 と同様に正孔輸送層を形成し、 その上に、 フエ二レンビ 二レン誘導体 (MEH- PPV) に前記式 (IV- a) のフエニルァゾメチン デンドリマ一 1重量% (MEH-PPV に対して) と塩化錫 1当量 (フエ ニルァゾメチンデンドリマ一中のイミン数に対して) を添加したク ロロベンゼン溶液をスピンキャストし、 厚さ 500Aの発光層を形成 した。  A hole transport layer was formed in the same manner as in Comparative Example 2, and a phenylenevinylene derivative (MEH-PPV) was added thereto with 1% by weight of a phenylazomethine dendrimer of the formula (IV-a) (MEH-PPH). A chlorobenzene solution containing 1 equivalent of tin chloride (based on the number of imines in the phenylazomethine dendrimer) and 1 equivalent of tin chloride (based on the number of imines in the phenylazomethine dendrimer) was spin-cast to form a light emitting layer having a thickness of 500A.
比較例 2 と同様の方法により、 発光層の上に陰極を形成し、 得ら れた面積 0.1 cm2の有機 E L素子の特性を図 4 aに示した。 In the same manner as in Comparative Example 2, a cathode was formed on the light-emitting layer, and the characteristics of the obtained organic EL device having an area of 0.1 cm 2 are shown in FIG. 4A.
この有機 E L素子では、 11 Vで最高輝度 850 cd/i2を示し、 輝度 300 cd/m2における発光効率は 2.1 lm/ と高かった。 さらに、 0.1 cd/m2に達する turn- on 電圧は 4.5 V となり、 比較例 2の MEH- PPV のみを発光層とした (フエエルァゾメチンデン ドリマーを含まな い) 有機 E L素子より 1 V以上低下した。 したがって、 素子の低消 費電力化が確認された。 This organic EL device exhibited a maximum luminance of 850 cd / i 2 at 11 V and a high luminous efficiency of 2.1 lm / at a luminance of 300 cd / m 2 . In addition, the turn-on voltage reaching 0.1 cd / m 2 was 4.5 V, which was 1 V higher than that of the organic EL device in which only the MEH-PPV of Comparative Example 2 was used as the light emitting layer (does not include the ferazomethine dendrimer). It fell above. Therefore, low power consumption of the device Power consumption was confirmed.
<実施例 6 > <Example 6>
〔準備〕 4- (ジフエニルァゾメチン) スチレンモノマー ( a ) の 合成  [Preparation] Synthesis of 4- (diphenylazomethine) styrene monomer (a)
次の反応式 (A) に従い、 第 1世代のデンドロンとして、 4- (ジ フエニルァゾメチン) スチレンモノマーを合成した。  According to the following reaction formula (A), 4- (diphenylazomethine) styrene monomer was synthesized as a first-generation dendron.
Figure imgf000035_0001
Figure imgf000035_0001
4-アミノスチレン (0.35 il, 1 当量)、 ベンゾフエノン (0.65 g, 1.2 当量) および 1, 4-ジァザビシク口 [2, 2, 2]オクタン (DABC0) をクロ口ベンゼン (PhCl) 15 ml に溶解し、 100 ml のニロフラス コ中、 窒素雰囲気下で撹拌しながら四塩化チタン (TiCl4) (0.25 ml, 0.75 当量) を加え、 で 12 時間脱水反応した。 化合物 a を 56 %の収率で得た。 得られた化合物 aは TOF- Mass、 元素分析、 および 1H-NMRにより同定した。 4-Aminostyrene (0.35 il, 1 eq), benzophenone (0.65 g, 1.2 eq) and 1,4-diazabicyclo [2,2,2] octane (DABC0) are dissolved in 15 ml of benzene (PhCl). Then, titanium tetrachloride (TiCl 4 ) (0.25 ml, 0.75 equivalent) was added to 100 ml of Niloflaco with stirring under a nitrogen atmosphere, and dehydration reaction was performed for 12 hours. Compound a was obtained in a yield of 56%. The obtained compound a was identified by TOF-Mass, elemental analysis, and 1H-NMR.
TOF-Mass 283.21 found (283.37 calcd. )  TOF-Mass 283.21 found (283.37 calcd.)
元素分析 C: 88.95 found (89.01 calcd. ) ,  Elemental analysis C: 88.95 found (89.01 calcd.),
Η: 6.01 (6.05),  Η: 6.01 (6.05),
Ν: 4.91 (4.94)  Ν: 4.91 (4.94)
〔実験〕 4 - (ジフエニルァゾメチン) スチレン—ビニルカルバゾ ール共重合体 (b ) (ρ/α = 1/1) の合成  [Experiment] Synthesis of 4- (diphenylazomethine) styrene-vinyl carbazole copolymer (b) (ρ / α = 1/1)
次の反応式 (Β) に従い、 4- (ジフエニルァゾメチン) スチレン 一ビニルカルバゾ一ル共重合体を合成した。
Figure imgf000036_0001
According to the following reaction formula (II), 4- (diphenylazomethine) styrene-vinylcarbazole copolymer was synthesized.
Figure imgf000036_0001
得られた 4- (ジフエニルァゾメチン) スチレンモノマー a (0.35 1 当量)、 ビニルカルバゾール (1.89 g、 8 当量)、 およ びァゾビスイソプチロニトリル (AIBN、 22 ig) をトルエン 20 ml に溶解し、 300 ml の二口フラスコ中、 80でで還流した。 化合物 b を 25 %の収率で得た。  The obtained 4- (diphenylazomethine) styrene monomer a (0.35 1 equivalent), vinylcarbazole (1.89 g, 8 equivalents), and azobisisobutyronitrile (AIBN, 22 ig) were dissolved in 20 ml of toluene. And refluxed at 80 in a 300 ml two-necked flask. Compound b was obtained in 25% yield.
得られた化合物は GPC、 1H-NM , および UVにより同定した。  The obtained compound was identified by GPC, 1H-NM, and UV.
Mn: 5640 Mw: 6430 <実施例 7 >  Mn: 5640 Mw: 6430 <Example 7>
実施例 1で得られた化合物 b (2 mg) をクロ口ホルムに溶解し、 スピンキャスト法により IT0ガラス電極上に厚さ 500Aの薄膜を形 成し、 正孔輸送層とした。 その上に、 Aid を真空蒸着して厚さ 500 Aの薄膜を形成し、 発光層および電子輸送層とした。 さらに、 陰極 として A1 を厚さ 1000 Aに成形し、 面積 0.1 cm2の有機 E L素子を 作製した。 Compound b (2 mg) obtained in Example 1 was dissolved in black hole form, and a thin film having a thickness of 500 A was formed on an IT0 glass electrode by a spin casting method to form a hole transport layer. Aid was vacuum-deposited thereon to form a thin film having a thickness of 500 A, which was used as a light emitting layer and an electron transport layer. Further, A1 was formed as a cathode to a thickness of 1000 A, and an organic EL element having an area of 0.1 cm 2 was produced.
得られた有機 E L素子について、 室温大気下において電圧一電流、 電圧—輝度の測定を行い、 結果を図 5 aに示した。  With respect to the obtained organic EL device, voltage-current and voltage-brightness were measured at room temperature in the atmosphere, and the results are shown in FIG. 5a.
IT0 電極を正極として 5 V 以上の電圧を印加することにより A 由来の緑色発光が確認され、 20 Vで最高輝度 800 cd/m2が確認され た。 By applying a voltage of 5 V or more with the IT0 electrode as the positive electrode, green light emission from A was confirmed, and a maximum luminance of 800 cd / m 2 was confirmed at 20 V.
また、 0.1 cd/m2 に達する turn- on (駆動) 電圧は 6.2 V、 輝度 300 cd/m2における発光効率は 0.8 lm/Wであった。 <比較例 3 > The turn-on (drive) voltage reaching 0.1 cd / m 2 was 6.2 V, and the luminous efficiency at a luminance of 300 cd / m 2 was 0.8 lm / W. <Comparative Example 3>
ポリ ビニルカルバゾ一ル (PVK、 関東化学 Cat. No. 32777-31) 2 nig をクロ口ホルムに溶 し スピンキャス ト法により IT0 ガラス 電極上に、 厚さ 500Aの薄膜を形成し、 正孔輸送層とした。 次いで 実施例 5と同様に有機 E L素子を作製した。  Polyvinyl carbazole (PVK, Kanto Kagaku Cat. No. 32777-31) 2 nig was dissolved in black hole form, and a thin film of 500A thickness was formed on IT0 glass electrode by spin casting, and the hole transport layer was formed. It was. Next, an organic EL device was produced in the same manner as in Example 5.
この有機 E L素子について、 室温大気下において電圧—電流、 電 圧一輝度の測定を行い、 図 5 cに結果を示した。  For this organic EL device, voltage-current, voltage-brightness were measured at room temperature in the atmosphere, and the results are shown in FIG. 5c.
IT0 電極を正極として 5 V以上の電圧を印加することにより Aid 由来の緑色発光が確認され、 16 V で最高輝度 1100 cd/ffl2が確認さ れた。 また、 0.1 cd/m2に達する turn- on (駆動) 電圧は 5.2 V、 輝 度 300 cd/m2における発光効率は 0.9 lm/Wであった。 ぐ実施例 8 > When a voltage of 5 V or more was applied with the IT0 electrode as the positive electrode, green light emission derived from Aid was confirmed, and a maximum luminance of 1100 cd / ffl 2 was confirmed at 16 V. The turn-on (drive) voltage reaching 0.1 cd / m 2 was 5.2 V, and the luminous efficiency at a luminance of 300 cd / m 2 was 0.9 lm / W. Example 8>
実施例 7で用いた化合物 bのクロ口ホルム溶液と塩化錫 U 当 量 : 共重合体のデンドロンのイミン数に対して) のァセトニトリル 溶液を混合し、 錯形成させた後、 溶媒を濃縮し、 実施例 7 と同様の 方法により薄膜を形成し、 正孔輸送層とした。 実施例 7 と同様の方 法により有機 E L素子を作製した。  An acetonitrile solution of the compound b used in Example 7 and an acetonitrile solution of tin chloride U equivalent (based on the imine number of the dendron of the copolymer) was mixed, and the solvent was concentrated. A thin film was formed in the same manner as in Example 7, and used as a hole transport layer. An organic EL device was manufactured in the same manner as in Example 7.
得られた有機 E L素子について、 室温大気下において電圧一電流、 電圧—輝度の測定を行い、 結果を図 5 bに示した。  With respect to the obtained organic EL device, voltage-current and voltage-brightness were measured at room temperature in the atmosphere, and the results are shown in FIG. 5b.
この有機 E L素子は、 10 V で最高輝度 9000 cd/m2を示し、 輝度 300 cd/m2において 1.7 lm/Wの高い発光効率を示した。 This organic EL device exhibited a maximum luminance of 9000 cd / m 2 at 10 V and a high luminous efficiency of 1.7 lm / W at a luminance of 300 cd / m 2 .
さらに、 turn-on (駆動) 電圧は 4.1 V 程度であり、 金属を錯形 成していない正孔輸送層を用いた場合 (実施例 5 ) より 2.0 V以上、 PVK を正孔輸送層として用いた場合 (比較例 3 ) より 1.0V 以上低 下しており、 素子の低消費電力化が可能となったことが確認された。 金属が集積 (錯形成) された共重合体を正孔輸送層として用いる ことにより、 有機 E L素子の発光効率が上昇し、 さらに turn-on (駆動) 電圧が低下したのは 正孔注入電極である IT0と正孔輸送 層の間のエネルギーギャップが小さくなり、 正孔輸送層へ正孔の注 入効率が高くなつたためと考えられる。 ぐ実施例 9 > Furthermore, the turn-on (drive) voltage is about 4.1 V, which is 2.0 V or more, and that PVK is used as the hole transport layer when a hole transport layer not complexed with a metal is used (Example 5). 1.0V or more lower than the case (Comparative Example 3) It was confirmed that the power consumption of the device could be reduced. The use of a copolymer in which metals are integrated (complexed) as a hole transport layer increased the luminous efficiency of the organic EL device and further reduced the turn-on (drive) voltage at the hole injection electrode. This is probably because the energy gap between a certain IT0 and the hole transport layer became smaller, and the efficiency of hole injection into the hole transport layer increased. Example 9>
次式 (VI-a)  Next formula (VI-a)
Figure imgf000038_0001
Figure imgf000038_0001
の第 3世代のデンドリマー cを Org. L e t t. 2000, Vo l. 2, No. 20, 3079 - 3082、 J. Am. Chem. Soc. 2001, 123, 4414 - 4420、 および Na ture Vo l. 415, No. 6871, 509-5 11 に記載の方法に基づいて合 成した。 得られたフエニルァゾメチン一力ルバゾール非対称デンド リマーの同定結果を表 1に示した。  2000, Vol. 2, No. 20, 3079-3082, J. Am. Chem. Soc. 2001, 123, 4414-4420, and Nature Vol. Synthesized according to the method described in 415, No. 6871, 509-511. Table 1 shows the identification results of the obtained phenylazomethine monocyclic rubazole asymmetric dendrimers.
化合物 cを正孔輸送材料として、 実施例 7と同様の方法で、 IT0/ デンドリマ一 /A1Q/CSF/A1 の構成からなる有機 E L素子を構築した。 この有機 E L素子の室温大気下における電圧一電流、 電圧一輝度の 測定を行い 結果を図 6 aに示した。Using compound c as the hole transport material, IT0 / An organic EL device consisting of dendrimer / A1Q / CSF / A1 was constructed. The voltage-current and voltage-brightness measurements of the organic EL device at room temperature in the atmosphere were performed, and the results are shown in FIG. 6a.
Figure imgf000039_0001
Figure imgf000039_0001
Gl dendnmer  Gl dendnmer
Έ Nffi (400MHz, CDC13> T S standard, 3(TC, ppi): δ 8.11 (d, 7.2Hz, 2H), 7.82 (d, J=7. Hz, 2H), 7.53-7.20 (i, 16H), 6.93 (d, J=8.8Hz, 2H) Έ Nffi (400MHz, CDC1 3> TS standard, 3 (TC, ppi): δ 8.11 (d, 7.2Hz, 2H), 7.82 (d, J = 7. Hz, 2H), 7.53-7.20 (i, 16H) , 6.93 (d, J = 8.8Hz, 2H)
13C Nffi (100MHz, CDC13, TMS standard, 30°C, ppi): δ 169.03, 150.59, 140.98, 139.29, 135.97, 132.51, 130.92, 129.52, 129.36, 128.82, 128.22, 127.97, 127.32, 125.71, 123.08, 122.27, 120.14, 119.59, 109.63 13 C Nffi (100MHz, CDC1 3 , TMS standard, 30 ° C, ppi): δ 169.03, 150.59, 140.98, 139.29, 135.97, 132.51, 130.92, 129.52, 129.36, 128.82, 128.22, 127.97, 127.32, 125.71, 123.08, 122.27, 120.14, 119.59, 109.63
MALDI-TOF- S: 420.6 ([M]+ calcd for C31H22N2: 422.2). MALDI-TOF- S: 420.6 ([M] + calcd for C 31 H 22 N 2 : 422.2).
G2 dendrimer  G2 dendrimer
JH NMR (400MHz, CDC13> TMS standard, 30。C, ppm): δ 8.27 (s, 2H), 8.16 (d, J=7.6Hz, 4H), 7.77 (d, J=7.2Hz, 2H), 7.70 (d, J=7.2Hz, 21H), 7.63-6.94 (m, 40H), 6.78 (d, J=8.4Hz, 2H), 6.68 (d, J=8.4Hz, 2H), J H NMR (400 MHz, CDC13 > TMS standard, 30. C, ppm): δ 8.27 (s, 2H), 8.16 (d, J = 7.6 Hz, 4H), 7.77 (d, J = 7.2 Hz, 2H) , 7.70 (d, J = 7.2Hz, 21H), 7.63-6.94 (m, 40H), 6.78 (d, J = 8.4Hz, 2H), 6.68 (d, J = 8.4Hz, 2H),
13C NMR (100MHz, CDCI3, MS standard, 31 5 168.93, 168.68, 168.45 153.85, 151.99, 151.58, 141.67, 139.20, 1 135.75, 134.23, 131.41, 130.95, 130.49, 130.35, 130.12, 130.04, 1 129.25, 128.82, 128.67, 128.18, 128.02, 127.69, 127.36, 126.07, 1 123.63, 123.04, 122.88, 120.55, 120.34, 120.19, 119.57, 111.30, 1 13 C NMR (100 MHz, CDCI3, MS standard, 31 5 168.93, 168.68, 168.45 153.85, 151.99, 151.58, 141.67, 139.20, 1 135.75, 134.23, 131.41, 130.95, 130.49, 130.35, 130.12, 130.04, 1 129.25, 128.82, 128.67, 128.18, 128.02, 127.69, 127.36, 126.07, 1 123.63, 123.04, 122.88, 120.55, 120.34, 120.19, 119.57, 111.30, 1
MALDI-TOF-MS: 1109.0 ([M]+ calcd for C81H54N6: 1110.4). MALDI-TOF-MS: 1109.0 ([M] + calcd for C 81 H 54 N 6 : 1110.4).
G3 dendrimer  G3 dendrimer
Ή NMR (400MHz, CDC13, TMS standard, 30°C, ppm): δ 8.51 (s, 2H), 8.30 (s, 4H), 8.15 (d, J=7.2Hz, 8H), 7.80-6.55 (m, 104H). Ή NMR (400MHz, CDC1 3, TMS standard, 30 ° C, ppm): δ 8.51 (s, 2H), 8.30 (s, 4H), 8.15 (d, J = 7.2Hz, 8H), 7.80-6.55 (m , 104H).
MALDI-TOF-MS: 2486.3 (M+ calcd for C181H„8N14: 2487.0). MALDI-TOF-MS: 2486.3 (M + calcd for C 181 H „ 8 N 14 : 2487.0).
<実施例 1 0 > <Example 10>
さらに、 化合物 cのクロ口ホルム溶液と Eu (0Ti)3 (1 当量 : フエ ニルァゾメチンデンドロンのイミン数に対して) のァセトニトリル 溶液を混合し、 錯形成させた後、 実施例 7 と同様の方法で有機 E L 乘ナを構 ¾した。 Further, a solution of the c-form of compound c and an acetonitrile solution of Eu (0Ti) 3 (1 equivalent: based on the number of imines of phenylazomethine dendron) were mixed and complexed, and the same as in Example 7 was performed. The organic EL device was constructed in the following manner.
得られた有^ E L素子について、 室温大気下において電圧—電流、 電圧—輝度の測定を行い、 結果を図 6 bに示した。 <実施例 1 1 > The obtained EL device was tested for voltage-current, Voltage-brightness measurements were performed and the results are shown in Figure 6b. <Example 11>
( a ) 陽極 : IT0 ガラス電極 (20 mm X 20 匪; 王子トビ社) IT0面を塩酸エッチングし、 幅 3 nunの陽極を作成して用いた。  (a) Anode: IT0 glass electrode (20 mm x 20 bandages; Oji Tobi) The IT0 surface was etched with hydrochloric acid to prepare a 3 nun-wide anode and used.
( b ) 正孔輸送層 : 次式(Va)  (b) Hole transport layer: The following formula (Va)
Figure imgf000040_0001
Figure imgf000040_0001
で表されるカルバゾ一ルデンドリマ一 (第 3世代) をクロ口ホルム で溶解し、 スピンキャス ト法により厚さ 500Aの正孔輸送層を形成 した。 The carbazole dendrimer (3rd generation) represented by is dissolved in a black hole form and a hole transport layer having a thickness of 500 A was formed by spin casting.
次いで、 キセノンランプ (150 W) を用いて 1時間光照射し光架 橋反応を行った。  Next, light irradiation was performed for 1 hour using a xenon lamp (150 W) to perform an optical bridge reaction.
( c ) 発光層 : P P Vのトルエン溶液を用いてキャス ト法により厚  (c) Emission layer: Thickness is determined by casting using a toluene solution of PPV.
3S さ 5 0 O Aの P P Vキャスト膜を形成した。 3S A 50 OA PPV cast film was formed.
( d ) 陰極 : 真空蒸着法により、 A 1 を厚さ 1 0 0 0 Aに形成した。 面積 5ミリメ一トルの素子を作成した。  (d) Cathode: A1 was formed to a thickness of 1000 A by vacuum evaporation. An element having an area of 5 millimeters was produced.
得られた有機 E L素子について、 室温大気下において電圧—電流、 電圧—輝度を測定し、 図 7 aに示した。  The voltage-current and voltage-brightness of the obtained organic EL device were measured at room temperature in the atmosphere, and the results are shown in FIG. 7A.
I T0電極を正極として 3 V以上の電圧を印加することによりォレ ンジ色の発光が確認された。 また、 最大輝度は 1 1 V で 8000 cd/m2、 300 cd/m2の発光時における発光効率は 1. 5 1 mWであった。 Orange color light emission was confirmed by applying a voltage of 3 V or more with the IT0 electrode as the positive electrode. The maximum luminance at 11 V was 8000 cd / m 2 , and the light emission efficiency at the time of light emission at 300 cd / m 2 was 1.51 mW.
また、 図 8 aに示したように、 真空下条件での輝度 100 cd/i2時 における半減時間は 1000 時間以上となり、 耐久性に優れることが 確認された。 In addition, as shown in FIG. 8A, the half-life at a luminance of 100 cd / i 2 under vacuum conditions was 1000 hours or more, confirming excellent durability.
<比較例 4 > <Comparative Example 4>
同一膜厚でカルバゾ一ルデンドリマ一をキャス 卜し、 光架橋を行 うことなしに、 乾燥して正孔輸送層を形成し、 その後、 発光層であ る PPVのトルエン溶液を用いスピンキャスト法により形成し、 背面 電極を作製した E L素子の測定結果を図 7 bおよび図 8 bに示した。 光架橋してない素子においては、 発光層のキャスト時に正孔輸送層 が可溶化される場合があり、 発光層を真空蒸着により作成するか、 正孔輸送層を浸食しない溶媒を用いた溶液キャス ト法により作製す るか、 架橋させたものとすることが望ましいことが示唆された。 産業上の利用可能性  A carbazole dendrimer having the same thickness is cast, dried without forming photocrosslinking to form a hole transport layer, and then spin-cast using a toluene solution of PPV as a light emitting layer. The measurement results of the EL element formed and the back electrode were prepared are shown in FIGS. 7b and 8b. In devices that have not been photocrosslinked, the hole transport layer may be solubilized when the light emitting layer is cast. Either create the light emitting layer by vacuum evaporation or use a solution caster that uses a solvent that does not erode the hole transport layer. It was suggested that it is desirable to use a cross-linking method or to prepare a cross-linking method. Industrial applicability
以上詳しく説明したとおり、 この発明によって、 金属集積能を有 するフエニルァゾメチンデンドロンサブユニッ ト、 および/または 優れた正孔輸送性を有するカルバゾールデンドロンサブュニッ トを 有し、 溶液キャスト法により簡便に薄膜を形成できる有機 E L素子 用材料が提供される。 As described above in detail, according to the present invention, a phenylazomethine dendron subunit having a metal accumulating ability and / or a carbazole dendron subunit having an excellent hole transporting property are provided. Provided is a material for an organic EL device, having a thin film easily formed by a solution casting method.
このような有機 E L素子用材料を用いることにより、 界面のモル ホロジー特性が改善さた緻密で高い強度を有する ¾膜を形成できる。 そして、 このような薄膜は、 電気化学的に安定で高い耐熱性を示す ものとなる。 また、 このような有機 E L素子用材料を正孔輸送層ま たは発光層に使用することにより、 有機 E L素子の発光効率の向上 と開放電圧の低下、 さらには駆動電圧の低下が期待でき、 有用性が 高い。  By using such a material for an organic EL device, a dense and high-strength film having improved morphological characteristics at the interface can be formed. Such a thin film is electrochemically stable and exhibits high heat resistance. In addition, by using such a material for an organic EL device for the hole transport layer or the light emitting layer, it is expected that the luminous efficiency of the organic EL device is improved, the open-circuit voltage is reduced, and the drive voltage is further reduced. High usefulness.

Claims

請求の範囲 The scope of the claims
1 · 少なく とも、 次式 ( I ) 1 · At least the following equation (I)
(W)k—— X—— (Υ)ι ( I ) (W) k —— X—— (Υ) ι (I)
(ただし Xは炭素原子、 窒秦原子、 ァミン誘導体、 ベンゼンとそ の誘導体、 ヘテロ環とその誘導体、 ポルフィ リンとその誘導体、 フ 夕ロシアニンとその誘導体、 サイクラムとその誘導体、 ならびにビ 二ルポリマ一とその誘導体からなる群より選択されるコア部位であ り、 Yおよび Wは同一または別異に、 次式 (I I )  (Where X is carbon atom, nitrogen atom, amine derivative, benzene and its derivative, heterocycle and its derivative, porphyrin and its derivative, fluorinine and its derivative, cyclam and its derivative, and vinyl polymer and A core site selected from the group consisting of derivatives thereof, wherein Y and W are the same or different, and are represented by the following formula (II):
Figure imgf000043_0001
Figure imgf000043_0001
(ただし、 Nは窒素原子であり、 R 1 は置換基を有していてもよい アルキレン基、 フエ二レン基およびへテロ環基からなる群より選択 される置換基であるか、 存在しなくてもよく、 R 2 は 1以上の置換 基を有していてもよいフエニル基であり、 mは 1 〜 6の整数であ る) (However, N is a nitrogen atom, and R 1 is a substituent selected from the group consisting of an alkylene group, a phenylene group and a heterocyclic group which may have a substituent, or absent. R 2 is a phenyl group optionally having one or more substituents, and m is an integer of 1 to 6.
で表されるフエニルァゾメチンデンド口ンサブュニッ ト、 もしくは、 次式 (I I I ) Phenylazomethine dendrite subunit represented by the following formula or (III)
Figure imgf000044_0001
Figure imgf000044_0001
(ただし、 Nは窒素原子であり、 nは 1〜 6の整数である) (However, N is a nitrogen atom and n is an integer of 1 to 6)
で表されるカルバゾールデンド口ンサブュニッ トのいずれかであり、 1 は Xに結合している Yの数を表す整数であり、 kは Xに結合して いる Wの数を表す整数である) , Where 1 is an integer representing the number of Y bound to X, and k is an integer representing the number of W bound to X)
で表される化合物からなることを特徴とする有機 E L素子用材料。 A material for an organic EL device, comprising a compound represented by the formula:
2 . 次式 (IV) 2. The following equation (IV)
Figure imgf000044_0002
Figure imgf000044_0002
(ただし、 Xは炭素原子、 窒素原子、 ァミン誘導体、 ベンゼンとそ の誘導体、 ヘテロ環とその誘導体、 ポルフィ リンとその誘導体、 フ 夕ロシアニンとその誘導体、 ならびにサイクラムとその誘導体から なる群より選択されるコア部位であり、 Nは窒素原子であり、 R 1 は置換基を有していてもよいアルキレン基、 フエ二レン基およびへ テロ環基からなる群より選択される置換基であるか、 存在しなくて もよく、 R 2は 1以上の置換基を有していてもよいフエニル基であ り、 mは 1〜 6の整数であり、 1 は; Xに結合しているデンドロンサ プユニッ トの数を表す 1〜 6の整数である) (However, X is selected from the group consisting of a carbon atom, a nitrogen atom, an amine derivative, benzene and its derivatives, a heterocycle and its derivatives, porphyrin and its derivatives, furocyanine and its derivatives, and cyclam and its derivatives. N is a nitrogen atom; R 1 Is a substituent selected from the group consisting of an alkylene group which may have a substituent, a phenylene group and a heterocyclic group, or may be absent; and R 2 is one or more substituents. And m is an integer of 1 to 6, and 1 is an integer of 1 to 6 representing the number of dendron sap units bonded to X.
で表されるフエニルァゾメチンデンドリマ一からなることを特徵と する請求項 1の有機 E L素子用材料。 2. The material for an organic EL device according to claim 1, comprising a phenylazomethine dendrimer represented by the following formula:
3 . 次式 (V ) 3. The following equation (V)
Figure imgf000045_0001
Figure imgf000045_0001
(ただし、 Nは窒素原子であり、 nは 1〜 6の整数であり、 kは X に結合しているデンドロンサブュニッ 卜の数を表す整数である) で表されるカルパゾールデンドリマーからなることを特徴とする請 求項 1の有機 E L素子用材料。  (Where N is a nitrogen atom, n is an integer from 1 to 6, and k is an integer representing the number of dendron subunits bonded to X) The material for an organic EL device according to claim 1, which is characterized in that:
4 . 次式 (VI)
Figure imgf000046_0001
4. Next equation (VI)
Figure imgf000046_0001
(ただし、 Nは窒素原子であり、 Xは炭素原子、 窒素原子、 ァミン 誘導体、 ベンゼンとその誘導体、 ヘテロ環とその誘導体、 ポルフィ リンとその誘導体、 フタロシアニンとその誘導体、 ならびにサイク ラムとその誘導体からなる群より選択されるコア部位であり、 R 1 は置換基を有していてもよいアルキレン基、 フエ二レン基およびへ テロ環基からなる群より選択される置換基であるか、 存在しなくて もよく、 R 2 は 1以上の置換基を有していてもよいフエニル基であ る ; mは 1〜 6の整数であり、 nは 1〜 6の整数である ; kおよび 1 は各々で Xに結合しているデンドロンサブュニッ トの数を表す、 1≤ k + 1≤ 6の条件を満たす整数である) (However, N is a nitrogen atom, X is a carbon atom, a nitrogen atom, an amine derivative, a benzene and its derivative, a heterocycle and its derivative, a porphyrin and its derivative, a phthalocyanine and its derivative, and a cycle and its derivative. R 1 is a substituent selected from the group consisting of an optionally substituted alkylene group, a phenylene group and a heterocyclic group, or is present. R 2 is a phenyl group which may have one or more substituents; m is an integer of 1 to 6, n is an integer of 1 to 6; k and 1 are Is an integer that satisfies the condition 1 ≤ k + 1 ≤ 6, which represents the number of dendron subunits each connected to X)
で表されるフエニルァゾメチン—力ルバゾ一ル非対称デンドリマー からなることを特徵とする請求項 1の有機 E L素子用材料。 5 Xは、 少なく とも次式 (VI I ) 2. The material for an organic EL device according to claim 1, comprising a phenylazomethine-asymmetric dendrimer represented by the following formula: 5 X is at least the following equation (VI I)
Figure imgf000047_0001
Figure imgf000047_0001
Figure imgf000047_0002
Figure imgf000047_0002
(ただし、 Nは窒素原子、 Sは硫黄原子、 Oは酸素原子であり、 A rは、 ベンゼン、 チォフェン、 ピロール、 または 1, 3, 4-ォキサジ ァゾールである)  (However, N is a nitrogen atom, S is a sulfur atom, O is an oxygen atom, and Ar is benzene, thiophene, pyrrole, or 1,3,4-oxadiazole.)
で表される化合物 ( a) 〜 (m) からなる群より選択される構造を 有する請求項 1ないし 4のいずれかの有機 E L素子用材料。 5. The material for an organic EL device according to claim 1, having a structure selected from the group consisting of compounds (a) to (m) represented by:
Xは、 次式 (VIII) X is the following formula (VIII)
- rlゥ— H i GH2 rlつ - (νπΐ) (ただし、 pおよび ciは重合度を表す 1以上の整数である) で表される請求項 1の有機 E L素子用材料。 -rl ゥ —H i GH2 rl-(νπΐ) (Where p and ci are integers of 1 or more representing the degree of polymerization).
7 · 次式 (IX) 7 · Next equation (IX)
Figure imgf000048_0001
Figure imgf000048_0001
(ただし、 Nは窒素原子であり、 R 1 は置換基を有していてもよい アルキレン基、 フエ二レン基おょぴヘテロ環基から選択される置換 基であるか、 存在しなくてもよく、 R 2 は 1以上の置換基を有して いてもよいフエニル基であり、 mは 1〜 6の整数、 nは 1〜 6の整 数、 pおよび qは重合度を表す 1以上の整数である) (However, N is a nitrogen atom, and R 1 is a substituent selected from an alkylene group, a phenylene group and a heterocyclic group which may have a substituent, or may be absent. R 2 is a phenyl group optionally having one or more substituents, m is an integer of 1 to 6, n is an integer of 1 to 6, p and q are one or more of degrees of polymerization. Is an integer)
で表されるフエニルァゾメチン—カルパゾ一ル共重合体からなるこ とを特徴とする請求項 1の有機 E L素子用材料。 2. The material for an organic EL device according to claim 1, comprising a phenylazomethine-carpazole copolymer represented by the following formula:
8 . 次式 (X )
Figure imgf000048_0002
8. The following equation (X)
Figure imgf000048_0002
(ただし、 Nは窒素原子であり、 R 1 は置換基を有してい.てもよ アルキレン基、 フエ二レン基およびへテロ環基からなる群より選択 される置換基であるか、 存在しなくてもよく、 R 2 は 1以上の置換 基を有していてもよいフエニル基であり、 mは 1 〜 6の整数であ る) (However, N is a nitrogen atom, and R 1 has a substituent. R 2 is a substituent selected from the group consisting of an alkylene group, a phenylene group and a heterocyclic group or may be absent, and R 2 is a phenyl group optionally having one or more substituents. And m is an integer from 1 to 6)
で表されるビニルァゾメチンモノマーと、 次式 (XI) And a vinylazomethine monomer represented by the following formula (XI)
Figure imgf000049_0001
Figure imgf000049_0001
(ただし、 Nは窒素原子であり、 nは 1〜 6の整数である) で表されるビニルカルバゾールモノマーを反応させることを する請求項 7の有機 E L素子用材料の製造方法。  (Where N is a nitrogen atom and n is an integer of 1 to 6). The method for producing a material for an organic EL device according to claim 7, wherein the vinyl carbazole monomer is reacted.
9 . 少なく とも陽極と、 陽極上に形成された正孔輸送層と、 正 孔輸送層に接する発光層と、 発光層と接する陰極から構成される有 機 E L素子において、 正孔輸送詹または発光層が、 請求項 1ないし 7のいずれかの有機 E L素子用材料を含有する薄膜からなることを 特徴とする有機 E L素子。 9. An organic EL device comprising at least an anode, a hole transport layer formed on the anode, a light-emitting layer in contact with the hole transport layer, and a cathode in contact with the light-emitting layer, wherein a hole transport layer or light emission is provided. An organic EL device comprising a layer comprising a thin film containing the material for an organic EL device according to claim 1.
10. 正孔輸送層または発光層が „請求項 1ないし 7のいずれか の有機 E L素子用材料とともに、 金属塩を含有する薄膜からなるこ とを特徵とする請求項 9の有機 E L素子。 10. The organic EL device according to claim 9, wherein the hole transport layer or the light emitting layer comprises a thin film containing a metal salt together with the material for an organic EL device according to any one of claims 1 to 7.
11. 正孔輸送層または発光層が、 請求項 1ないし 7のいずれか の有機 E L素子用材料を光架橋してなる薄膜からなることを特徴と する請求項 8または 9の有機 E L素子。 12. 請求項 9ないし 1 1 のいずれかの有機 E L素子を含んで構 成されることを特徵とする発光もしくは表示装置。 11. The organic EL device according to claim 8, wherein the hole transport layer or the light emitting layer is formed of a thin film obtained by photocrosslinking the material for an organic EL device according to any one of claims 1 to 7. 12. A light-emitting or display device comprising the organic EL device according to any one of claims 9 to 11.
PCT/JP2004/002383 2003-02-27 2004-02-27 Material for organic el device and organic el device therefrom WO2004077888A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005502954A JPWO2004077888A1 (en) 2003-02-27 2004-02-27 Organic EL element material and organic EL element using the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003-51700 2003-02-27
JP2003051700 2003-02-27
JP2003053122 2003-02-28
JP2003-53122 2003-02-28
JP2003-374892 2003-11-04
JP2003374892 2003-11-04

Publications (1)

Publication Number Publication Date
WO2004077888A1 true WO2004077888A1 (en) 2004-09-10

Family

ID=32931130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002383 WO2004077888A1 (en) 2003-02-27 2004-02-27 Material for organic el device and organic el device therefrom

Country Status (2)

Country Link
JP (1) JPWO2004077888A1 (en)
WO (1) WO2004077888A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188673A (en) * 2004-12-07 2006-07-20 Sumitomo Chemical Co Ltd Polymer material and element using the same
US20160099419A1 (en) * 2014-10-02 2016-04-07 Samsung Display Co., Ltd. Organic electroluminescent material and organic electroluminescent device including the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018787A (en) * 2002-06-19 2004-01-22 Fuji Photo Film Co Ltd Carbazole derivative, polymer of the same and light-emitting element containing the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Keidai no yamamoto kimihisa kyoju g dokuji no kyujo kobunshi de yuki el soshi kokido hakko ni seiko.", NIKKEI SENTAN GIJUTSU, no. 23, 14 October 2002 (2002-10-14), pages 7 - 8, XP002982575 *
KIMIHISA YAMAMOTO ET AL.: "Stepwise radical complexation of imine groups in phenylazomethines dendrimers", NATURE, vol. 415, 31 January 2002 (2002-01-31), pages 509 - 511, XP002982578 *
MASAYOSHI HIGUCHI AND KIMIHISA YAMAMOTO: "Nano topological polyphenylazomethines having controlled metal assembling properties", YUKI GOSEI KAGAKU KYOKAISHI, vol. 60, no. 9, 1 September 2002 (2002-09-01), pages 869 - 877, XP002982576 *
MASAYOSHI HIGUCHI ET AL.: "First synthesis of phenylazomethine dendrimer ligards and structural studies.", JOURNAL OF AMERICAN CHEMICAL SOCIETY, vol. 123, no. 19, 14 June 2001 (2001-06-14), pages 4414 - 4420, XP002982577 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188673A (en) * 2004-12-07 2006-07-20 Sumitomo Chemical Co Ltd Polymer material and element using the same
US20160099419A1 (en) * 2014-10-02 2016-04-07 Samsung Display Co., Ltd. Organic electroluminescent material and organic electroluminescent device including the same

Also Published As

Publication number Publication date
JPWO2004077888A1 (en) 2006-06-08

Similar Documents

Publication Publication Date Title
Jin et al. Synthesis and electroluminescence properties of poly (9, 9-di-n-octylfluorenyl-2, 7-vinylene) derivatives for light-emitting display
US20030008175A1 (en) White electroluminescent polymer and organic electroluminescent device using the same
Lee et al. Enhanced efficiency of polyfluorene derivatives: Organic–inorganic hybrid polymer light‐emitting diodes
JP2002293888A (en) New polymer, and material for luminescent element and luminescent element, using thereof
JP2001076880A (en) Organic exectroluminescent element
JP2004292423A (en) Iridium (iii) complex and organic electroluminescent element including the same
Son et al. Synthesis of polymers for hole and electron transport materials in organic electroluminescent devices
US20050008893A1 (en) Diarylamino group-containing copolymer, organic electroluminescent device, and method of producing hole transport layer for organic electroluminescent device
US20050017629A1 (en) Light emitting devices based on hyperbranched polymers with lanthanide ions
JP3991378B2 (en) Organic electroluminescence device
Yeh et al. Poly (4-vinyltriphenylamine): optical, electrochemical properties and its new application as a host material of green phosphorescent Ir (ppy) 3 dopant
JP2003007470A (en) Organic electric field emitting element
JP3972565B2 (en) ORGANIC ELECTROLUMINESCENT DEVICE, COMPOUND HAVING POLYMERIZABLE CYCLIC STRUCTURE OR POLYMER THEREOF, AND FLUORESCENT THIN FILM
JP4649842B2 (en) Organic electroluminescence device
WO2004077888A1 (en) Material for organic el device and organic el device therefrom
JP4649843B2 (en) Organic electroluminescence device
JP2003267976A (en) Phenylazomethine-based carbazole dendrimer and organic el element
JP4924784B2 (en) Electron transport material and organic light emitting device using the electron transport material
JP4352736B2 (en) Organic electroluminescence device
JP4639611B2 (en) Organic electroluminescence device
JP5883570B2 (en) Laminated structure
JP2004197023A (en) Luminescent material and organic electroluminescent element containing the same
JP4623033B2 (en) Organic electroluminescence device
JP2004281382A (en) Organic electroluminescent element
JP2007201190A (en) Organic electroluminescence element

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005502954

Country of ref document: JP

122 Ep: pct application non-entry in european phase