WO2004077027A1 - Method for determining the distribution of particle sizes in a polydisperse particle set - Google Patents

Method for determining the distribution of particle sizes in a polydisperse particle set Download PDF

Info

Publication number
WO2004077027A1
WO2004077027A1 PCT/EP2004/001749 EP2004001749W WO2004077027A1 WO 2004077027 A1 WO2004077027 A1 WO 2004077027A1 EP 2004001749 W EP2004001749 W EP 2004001749W WO 2004077027 A1 WO2004077027 A1 WO 2004077027A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle
particles
signal
time
distribution
Prior art date
Application number
PCT/EP2004/001749
Other languages
German (de)
French (fr)
Inventor
Alfred Leipertz
Stefan Dankers
Original Assignee
Esytec Energie- Und Systemtechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Esytec Energie- Und Systemtechnik Gmbh filed Critical Esytec Energie- Und Systemtechnik Gmbh
Priority to EP04713523A priority Critical patent/EP1604186A1/en
Publication of WO2004077027A1 publication Critical patent/WO2004077027A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution

Definitions

  • the thermal signal thus contains the information about the specific surface and thus about the particle size and in principle about its distribution.
  • the problem of reconstructing the size distribution is underdetermined because different distributions can cause similar waveforms and thus does not allow a clear analytical solution. This necessitates the development of approximations based on the nature and scope of the assumptions about the distribution and the mathematical approach can differ and thus also require a different amount of computational effort, which determines the application as an online method.
  • the simple procedure described in this invention is based on the evaluation of the complete time profile of the radiation signal or several parts thereof during the cooling to determine higher moments of a particle size distribution.
  • the proposed method makes use of the fact that the weighting of the signal contributions of individual particle size classes changes during cooling. Smaller particles provide faster signal drops and thus provide a time-decreasing contribution to the total signal of the particle collective.
  • TIRE-II Time-Resolved Laser-Induced Incandescence
  • TIRE-II time-Resolved Laser-Induced Incandescence
  • the thermal radiation of particles is analyzed after irradiation with a high-energy laser pulse. This irradiation of the examination volume leads to a strong heating up to the partial evaporation of particles.
  • the process can be described by a power balance, the model calculation of the temporal temperature and Waveforms allowed.
  • the method described exploits the fact that the total signal of a polydispersed particle collective does not fall purely exponentially, but the signal decay time changes with time after the exciting laser pulse, it increases (FIG. 1).
  • the procedure according to the invention is that the theoretical signal of a particle collective is obtained directly by summation of the (monodisperse) LH signals which are weighted with a predetermined particle size distribution and which are available from model calculations.
  • the average particle size, the distribution width and the ambient temperature are input parameters.
  • the mean particle diameter d p med and the distribution width ⁇ are determined unambiguously and optionally online
  • Example in Fig. 1 result from Fig. 2 for the particle diameter 11.5 nm and for the standard deviation of the distribution 0.42.
  • the method according to the invention which makes it possible to determine characteristics of primary particle size distributions online, must be clearly differentiated from previous attempts to reconstruct particle size distributions.
  • These previous approaches are based on the example LII usually on a nonlinear adjustment of the entire signal.
  • a response signal for a specific particle size distribution is generated from the model description of the LH process (for example in H. Bockhorn, B. Jungyak, T. Lehre and R. Suntz, VDI reports 1629, 435 (2001)).
  • the LII signal of a monodisperse particle collective is first calculated, which, taking into account a particle size distribution p (r) through integration weighted with p (r) over all particle radii, yields the desired response signal.
  • the searched parameters are then replaced by a nonlinear fit from the experimental ones time-resolved Lll signal curves determined.
  • different parameters are adjusted by least-squares minimization. This adaptation is relatively computationally intensive and must be performed individually for each experimental curve, ie it is not possible to resort to a library, which is currently the case. an online determination does not allow.
  • model signal is not required in analytical form, but as a library, only the functions
  • the method described in this invention can be used in various fields of application in the analysis of particle blends to characterize the particle size distribution in terms of the moments of distribution, e.g. in the analysis of soot emission from engine or other technical combustion processes or for the analysis and / or control of particle synthesis processes or for product characterization within or after the production process of particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

A method for determining the distribution of particle sizes in a set of particles from time-resolved measurement of the radiant heat of particles heated over a short period of time. In order to achieve comprehensive characterization of a set of particles, it is necessary to determine the size distribution of said particles, especially primary particles, preferably on line. The inventive method is based on the fact that during the cooling of heated particles, the weighting of the signal quantities of individual particle size categories is modified, as a result of the conduction of heat, whereby a radiant heat signal is formed. Smaller particles have quicker signal delays and thus contribute in a time-delayed manner to the overall signal of the particle collective. The overall signal of a polydisperse particle collective does not decrease in a simply exponential manner. The signal delay is modified over time and increases. On-line evaluation of the time-resolved signal by mathematical adaptation into two or several time periods during cooling produces characteristic signal delays for the various time domains. The higher moments of the particle size distribution can be clearly determined therefrom by making specific assumptions as to distribution function. The invention also relates to on-line analysis or process control of particle synthesis processes during product characterization or analysis of the waste gases of engine combustion processes or other combustion processes.

Description

Verfahren zur Bestimmung der Verteilungen von Partikelgrößen Method for determining the distributions of particle sizes
eines polvdispersen Partikelensemblesa polvdispersen particle ensemble
Zur umfassenden Charakterisierung eines Ensembles von Partikeln ist es notwendig, die Größenverteilungen der Partikel und speziell der Primärpartikel, die miteinander verbunden Aggregate bzw. Agglomerate bilden können, vorzugsweise online zu bestimmen. Eine Möglichkeit, dies zu realisieren, besteht darin, die Partikel mit einer gepulsten Anregungsquelle (Heizquelle) aufzuheizen und die resultierende Wärmestrahlung zeitaufgelöst zu analysieren. Die Geschwindigkeit der Abldihlung aufgeheizter Teilchen aufgrund der Wärmeleitung an die Umgebung ist - bei verschwindendem Temperaturgradienten im Innern der Teilchen - proportional zur spezifischen Oberfläche. Somit kühlen kleinere Teilchen schneller ab. Der zeitliche Temperaturverlauf der Partikel während des Abkühlprozesses kann durch Analyse der Wärmestrahlung bestimmt werden. Die Abkühlung aufgrund der Wärmeleitung führt zu einem näherungsweise exponentiellen Signalverlauf der Strahlung mit einer zur spezifischen Oberfläche der Partikel proportionalen Signalabfallzeit.For comprehensive characterization of an ensemble of particles, it is necessary to determine the size distributions of the particles and especially of the primary particles, which can form aggregates or agglomerates connected to one another, preferably online. One way to realize this is to heat the particles with a pulsed excitation source (heat source) and analyze the resulting heat radiation time-resolved. The rate of dissipation of heated particles due to heat conduction to the environment is proportional to the specific surface area as the temperature gradient inside the particles disappears. Thus, smaller particles cool faster. The temporal temperature profile of the particles during the cooling process can be determined by analyzing the heat radiation. The cooling due to the heat conduction leads to an approximately exponential waveform of the radiation with a signal fall time proportional to the specific surface area of the particles.
Im thermischen Signal ist somit die Information über die spezifische Oberfläche und damit über die Partikelgröße und auch prinzipiell über deren Verteilung enthalten. Das Problem der Rekonstruktion der Größenverteilung ist jedoch unterbestimmt, da unterschiedliche Verteilungen ähnliche Signalverläufe hervorrufen können, und erlaubt somit keine eindeutige analytische Lösung. Dies macht die Entwicklung von Näherungsansätzen notwendig, die sich in der Art und Umfang der Annahmen über die vorliegende Verteilung und durch die mathematische Vorgehensweise unterscheiden können und somit auch einen unterschiedlich hohen Rechenaufwand benötigen, was die Einsatzmöglichkeit als Online-Methode bestimmt. Die in dieser Erfindung beschriebene einfache Vorgehensweise beruht auf der Auswertung des kompletten zeitlichen Verlaufs des Strahlungssignals oder mehrerer Teile davon während der Abkühlung zur Bestimmung höherer Momente einer Partikelgrößenverteilung. Bei dem vorgeschlagenen Verfahren wird die Tatsache ausgenutzt, dass sich die Gewichtung der Signalbeiträge einzelner Partikelgrößenklassen während der Abkühlung ändert. Kleinere Partikel liefern schnellere Signalabfälle und liefern somit einen zeitlich abnehmenden Beitrag zum Gesamtsignal des Partikelkollektivs.The thermal signal thus contains the information about the specific surface and thus about the particle size and in principle about its distribution. However, the problem of reconstructing the size distribution is underdetermined because different distributions can cause similar waveforms and thus does not allow a clear analytical solution. This necessitates the development of approximations based on the nature and scope of the assumptions about the distribution and the mathematical approach can differ and thus also require a different amount of computational effort, which determines the application as an online method. The simple procedure described in this invention is based on the evaluation of the complete time profile of the radiation signal or several parts thereof during the cooling to determine higher moments of a particle size distribution. The proposed method makes use of the fact that the weighting of the signal contributions of individual particle size classes changes during cooling. Smaller particles provide faster signal drops and thus provide a time-decreasing contribution to the total signal of the particle collective.
Aus experimentellen Strahlungssignalkurven werden - gegebenenfalls auch online -From experimental radiation signal curves - if necessary online -
mehrere Signalabfallzeiten (r,,r- ,...,τH) in unterschiedlichen Zeitbereichenseveral signal decay times (r ,, r-, ..., τ H ) in different time ranges
((At)i ,(At)2,...,(At)n) mittels Anpassung einer exponentiell abfallende Kurve mit((At) i , (At) 2 , ..., (At) n ) by fitting an exponential decaying curve with
entsprechender Abfallzeit τ an die Meßwerte ermittelt. Diese Signalabfallzeiten erlauben eindeutig die Bestimmung höherer Momente der Größenverteilung. Hierbei sind Annahmen über die zu bestimmende Verteilungsfunktion, z.B. eine log-normale Verteilung, notwendig.corresponding fall time τ determined to the measured values. These signal decay times clearly allow the determination of higher moments of size distribution. Here, assumptions about the distribution function to be determined, e.g. a log-normal distribution, necessary.
Eine beispielhafte Anwendung des beschriebenen Verfahrens stellt die zeitaufgelöste laserinduzierte Glühtechnik (Time-Resolved Laser-Induced Incandescence, TIRE- LII) dar, die für die Charakterisierung von nanoskaligen Partikeln hinsichtlich verschiedener Kenngrößen eingesetzt wird (siehe z.B. die deutschen Patente DE 196 06 005 und 199 04 691). Dabei wird die thermische Strahlung von Partikeln nach Bestrahlung mit einem hochenergetischen Laserpuls analysiert. Diese Bestrahlung des Untersuchungsvolumens fuhrt zu einer starken Aufheizung bis hin zur teilweisen Verdampfung von Teilchen. Der Prozess kann durch eine Leistungsbilanz beschrieben werden, die die modellhafte Berechnung der zeitlichen Temperatur- und Signalverläufe erlaubt. Dabei werden berücksichtigt: die Absorption der Laserstrahlung, die Wärmeleitung an das umgebende Gas, der Wärmeverlust durch Verdampfung und durch Strahlung und die Änderung der inneren Energie. Die Abkühlung der Teilchen ist vor allen Dingen für späte Zeiten nach dem Laserpuls, wenn die Wärmeleitung aufgrund niedriger Partikeltemperaturen weit bedeutender als die Verdampfung ist, durch die spezifische Oberfläche bestimmt. Kleine Teilchen kühlen demnach schneller ab. Bei der Detektion der thermischen Strahlung ist folglich für kleinere Teilchen ein schnellerer Abfall des LH-Signals zu beobachten. Die Partikeldichten sind in praxisrelevanten Anwendungen so groß, dass die Anzahl der Partikel im Lü-Messvolumen groß genug ist, um die Partikelgrößenverteilung im Gesamtsystem zu repräsentieren. Dabei ist für verschiedene relevante Partikelbildungsprozesse die Hypothese einer log-normalen Verteilung sinnvoll. (K.W. Lee, H. Chen und J.A. Gieseke, Aerosol Sei. Technol., 3, S. 53-62 (1984)). Von dieser Annahme ausgehend können weitergehende Verteilungsparameter bestimmt werden.An example application of the method described is the time-resolved laser-induced annealing technique (Time-Resolved Laser-Induced Incandescence, TIRE-II), which is used for the characterization of nanoscale particles with respect to various parameters (see, for example, German patents DE 196 06 005 and 199 04 691). The thermal radiation of particles is analyzed after irradiation with a high-energy laser pulse. This irradiation of the examination volume leads to a strong heating up to the partial evaporation of particles. The process can be described by a power balance, the model calculation of the temporal temperature and Waveforms allowed. It takes into account: the absorption of the laser radiation, the heat conduction to the surrounding gas, the heat loss through evaporation and radiation and the change of internal energy. The cooling of the particles is above all for late times after the laser pulse, when the heat conduction due to low particle temperatures far more significant than the evaporation, determined by the specific surface area. Small particles therefore cool faster. Consequently, for the detection of the thermal radiation, a faster decrease of the LH signal can be observed for smaller particles. The particle densities in practice-relevant applications are so great that the number of particles in the Lü measurement volume is large enough to represent the particle size distribution in the overall system. In this case, the hypothesis of a log-normal distribution makes sense for various relevant particle formation processes. (KW Lee, H. Chen and JA Gieseke, Aerosol Sci. Technol., 3, pp. 53-62 (1984)). Based on this assumption, further distribution parameters can be determined.
Bei dem beschriebenen Verfahren wird die Tatsache ausgenutzt, dass das Gesamtsignal eines polydispersen Partikelkollektivs nicht rein exponentiell abfällt, sondern die Signalabfallzeit sich mit der Zeit nach dem anregenden Laserpuls ändert, sie nimmt zu (Abb. 1).The method described exploits the fact that the total signal of a polydispersed particle collective does not fall purely exponentially, but the signal decay time changes with time after the exciting laser pulse, it increases (FIG. 1).
Die erfindungsgemäße Vorgehensweise ist, dass das theoretische Signal eines Partikelkollektivs direkt durch Summation der mit einer vorgegebenen Partikelgrößenverteilung gewichteten (monodispersen) LH-Signale, die aus Modellberechnungen vorliegen, gewonnen wird. Dabei sind die mittlere Partikelgröße, die Verteilungsbreite und die Umgebungstemperatur Eingangsparameter. Aus diesem berechneten Signal eines größenverteilten Partikelensembles werden zwei oder mehrere Signalabfallzeiten (T, = τ((At ),τ2 = τ((At)2 ),..., τn = τ((At)n)) für Zeitbereiche {(At ,(At)2,...,(At)n ),The procedure according to the invention is that the theoretical signal of a particle collective is obtained directly by summation of the (monodisperse) LH signals which are weighted with a predetermined particle size distribution and which are available from model calculations. The average particle size, the distribution width and the ambient temperature are input parameters. From this calculated signal of a size-distributed Particle ensembles become two or more signal decay times (T, = τ ((At), τ 2 = τ ((At) 2 ), ..., τ n = τ ((At) n )) for time domains {(At, (At ) 2 , ..., (At) n ),
die sich durch Start- und/oder Endzeitpunkt nach dem Laserpuls unterscheiden, kalkuliert. Dies wird für verschiedene mittlere Partikelgrößen, Verteilungsbreiten und Umgebungstemperaturen durchgeführt. Man erhält so die Funktionenwhich differ by start and / or end time after the laser pulse, calculated. This is done for different average particle sizes, distribution widths and ambient temperatures. This gives you the functions
dp,med = f(Tu >τι>τ2>->T„) (in A b- 2 för n=2 dargestellt) und d p, med = f ( T u> τ ι> τ 2>-> T ") (shown in A b - 2 för n = 2 ) and
σ = f τu,τ , τ2 ,..., τn ) (in Abb. 3 ebenfalls für n=2 dargestellt).σ = f τ u , τ, τ 2 , ..., τ n ) (also shown in Fig. 3 for n = 2).
Aus den experimentellen LH-Signalkurven wird der mittlere Partikeldurchmesser dp med und die Verteilungsbreite σ eindeutig und gegebenenfalls online bestimmtFrom the experimental LH signal curves, the mean particle diameter d p med and the distribution width σ are determined unambiguously and optionally online
durch Ermittlung der entsprechenden Signalabfallzeiten (τ12,...,tn) mittelsby determining the corresponding signal fall times (τ 1 , τ 2 ,..., t n ) by means of
exponentieller Anpassungen in den Zeitbereichen ((At)i,(At)2,...,(At)ll). Für dasexponential adjustments in the time domains ((At) i , (At) 2 , ..., (At) ll ). For the
Beispiel in Abb. 1 ergeben sich so aus Abb. 2 für den Partikeldurchmesser 11,5 nm und für die Standardabweichung der Verteilung 0,42 .Example in Fig. 1 result from Fig. 2 for the particle diameter 11.5 nm and for the standard deviation of the distribution 0.42.
Das erfindungsgemäße Verfahren, das eine Online-Bestimmung von Kenngrößen von Primärpartikelgrößenverteilungen möglich macht, ist deutlich gegen bisherige Ansätze zur Rekonstruktion von Partikelgrößenverteilungen abzugrenzen. Diese bisherigen Ansätze beruhen für das Beispiel LII in der Regel auf einer nichtlinearen Anpassung des gesamten Signals. Hierzu wird aus der modellhaften Beschreibung des LH-Prozesses ein Antwortsignal für eine bestimmte Partikelgrößenverteilung generiert (beispielsweise in H. Bockhorn, B. Jungfleisch, T. Lehre und R. Suntz, VDI-Berichte 1629, 435 (2001)). Dazu wird zunächst das LII- Signal eines monodispersen Partikelkollektivs berechnet, was unter Berücksichtigung einer Partikelgrößenverteilung p(r) durch mit p(r) gewichtete Integration über alle Partikelradien das gesuchte Antwortsignal liefert. Die gesuchten Parameter werden dann durch eine nichtlineare Anpassung aus den experimentellen zeitaufgelösten Lll-Signalkurven bestimmt. Dabei werden je nach Eingangsparameter unterschiedliche Parameter durch Fehlerquadratminimierung angepasst. Diese Anpassung ist verhältnismäßig rechenintensiv und muss für jede experimentelle Kurve einzeln durchgeführt werden, d.h. es ist nicht möglich, auf eine Bibliothek zurückzugreifen, was z.Zt. eine Online-Bestimmung nicht zulässt.The method according to the invention, which makes it possible to determine characteristics of primary particle size distributions online, must be clearly differentiated from previous attempts to reconstruct particle size distributions. These previous approaches are based on the example LII usually on a nonlinear adjustment of the entire signal. For this purpose, a response signal for a specific particle size distribution is generated from the model description of the LH process (for example in H. Bockhorn, B. Jungfleisch, T. Lehre and R. Suntz, VDI reports 1629, 435 (2001)). For this purpose, the LII signal of a monodisperse particle collective is first calculated, which, taking into account a particle size distribution p (r) through integration weighted with p (r) over all particle radii, yields the desired response signal. The searched parameters are then replaced by a nonlinear fit from the experimental ones time-resolved Lll signal curves determined. Depending on the input parameters, different parameters are adjusted by least-squares minimization. This adaptation is relatively computationally intensive and must be performed individually for each experimental curve, ie it is not possible to resort to a library, which is currently the case. an online determination does not allow.
In dem erfindungsgemäßen Verfahren hingegen wird das Modellsignal nicht in analytischer Form benötigt, sondern als Bibliothek müssen lediglich die FunktionenIn the method according to the invention, however, the model signal is not required in analytical form, but as a library, only the functions
dp med =
Figure imgf000007_0001
für verschiedene Umgebungstemperaturen vorliegen und der Fit-
dp med =
Figure imgf000007_0001
exist for different ambient temperatures and the fit
Aufwand beschränkt sich auf zwei exponentielle Abfälle. Das in dieser Erfindung beschriebene Verfahren kann in unterschiedlichen Anwendungsbereichen bei der Analyse von Partikelensemblen eingesetzt werden, um die Partikelgrößenverteilung in Form der Momente der Verteilung zu charakteriseren, so z.B. bei der Analyse der Rußemission motorischer oder anderer technischer Verbrennungsprozesse oder für die Analyse und/oder Kontrolle von Fartikelsyntheseprozessen oder zur Produktcharakterisierung innerhalb des oder nach dem Produktionsprozess von Partikeln. Effort is limited to two exponential wastes. The method described in this invention can be used in various fields of application in the analysis of particle blends to characterize the particle size distribution in terms of the moments of distribution, e.g. in the analysis of soot emission from engine or other technical combustion processes or for the analysis and / or control of particle synthesis processes or for product characterization within or after the production process of particles.

Claims

Patentansprüche Claims
1. Verfahren zur Bestimmung der Verteilungen von Partikelgrößen eines polydispersen Partikelensembles, dadurch gekennzeichnet, dass die Partikel mit einer gepulsten bzw. kurzzeitig arbeitenden Anregungsquelle als Heizquelle, insbesondere einem Pulslaser oder einer gepulsten Hochleistungslaserdiode, aufgeheizt werden und nachfolgend die resultierende Wärmestrahlung zeitaufgelöst analysiert und in ihrem zeitlichen Verlauf mit dem für ein polydisperses Partikelensemble berechneten Verlauf verglichen wird. 1. A method for determining the distributions of particle sizes of a polydisperse particle ensemble, characterized in that the particles are heated with a pulsed or short-term excitation source as a heating source, in particular a pulse laser or a pulsed high-power laser diode, and the resulting heat radiation is subsequently analyzed and analyzed in its time temporal course is compared with the course calculated for a polydisperse particle ensemble.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zwei oder mehrere Signalabfallzeiten durch eine Anpassung an eine einfach-exponentiell abfallende Kurve in zwei oder mehreren Zeitbereichen nach der gepulsten Aufheizung während der Abkühlung, die sich mindestens in Start- oder Endzeitpunkt unterscheiden, bestimmt und mit für bekannte Verteilungen berechneten Abfallzeiten verglichen werden.2. The method according to claim 1, characterized in that two or more signal decay times by an adaptation to a single-exponentially declining curve in two or more time ranges after the pulsed heating during the cooling, which differ at least in the start or end time, determined and be compared with fall times calculated for known distributions.
3. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass mit den aus experimentellen Kurven bestimmten Signalabfallzeiten mittels eines funktionalen Zusammenhangs, der aus Modellberechnungen unter Vorgabe bestimmter Verteilungskenngrößen gewonnen wird, höhere Momente einer Partikelgrößenverteilung berechnet werden können.3. The method according to any one of the preceding claims, characterized in that higher moments of a particle size distribution can be calculated with the signal decay times determined from experimental curves by means of a functional relationship which is obtained from model calculations with the specification of certain distribution parameters.
4. Anwendung eines Verfahrens nach einem der vorgenannten Ansprüche zur Online-Analyse oder -Prozesskontrolle der Partikelemission motorischer oder anderer technischer Verbrennungsprozesse, von Partikelsynthesprozessen oder bei der Produktcharakterisierung innerhalb oder nach dem Produnktionsprozess von Partikeln. 4. Application of a method according to one of the preceding claims for online analysis or process control of the particle emission of engine or other technical combustion processes, of particle synthesis processes or in product characterization within or after the production process of particles.
PCT/EP2004/001749 2003-02-28 2004-02-23 Method for determining the distribution of particle sizes in a polydisperse particle set WO2004077027A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04713523A EP1604186A1 (en) 2003-02-28 2004-02-23 Method for determining the distribution of particle sizes in a polydisperse particle set

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003108741 DE10308741A1 (en) 2003-02-28 2003-02-28 Method for determining the distribution of particle sizes of a polydisperse particle ensemble
DE10308741.9 2003-02-28

Publications (1)

Publication Number Publication Date
WO2004077027A1 true WO2004077027A1 (en) 2004-09-10

Family

ID=32863971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/001749 WO2004077027A1 (en) 2003-02-28 2004-02-23 Method for determining the distribution of particle sizes in a polydisperse particle set

Country Status (3)

Country Link
EP (1) EP1604186A1 (en)
DE (1) DE10308741A1 (en)
WO (1) WO2004077027A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111896436A (en) * 2020-08-11 2020-11-06 哈尔滨工业大学 Method and device for simultaneously measuring primary particle size distribution and thermal adaptive coefficient of carbon black aggregate

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2953598B1 (en) 2009-12-08 2012-03-23 Rhodia Operations METHOD AND DEVICE FOR CHARACTERIZING SOLID MATERIALS, AND METHOD AND INSTALLATION FOR DETERMINING A THERMODYNAMIC CHARACTERISTIC OF PROBE MOLECULES
FR2953599B1 (en) * 2009-12-08 2013-08-30 Rhodia Operations METHOD AND INSTALLATION OF SURFACE CHARACTERIZATION OF SOLID MATERIALS
CN103439229B (en) * 2013-08-06 2016-01-20 西安交通大学 A kind of quick method for analyzing iron spectrum based on digital video
CN104865168A (en) * 2014-02-26 2015-08-26 南京理工大学 Ferrograph for ships and measurement and analysis method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0959329A2 (en) * 1998-05-22 1999-11-24 National Research Council Of Canada Absolute intensity measurements in laser induced incandescence
US6496258B1 (en) * 1999-02-05 2002-12-17 Esytec Energie-Und Systemtechnik Gmbh Device and method for simultaneous in-situ determination of particle size and mass concentration of fluid-borne particles
WO2004010123A1 (en) * 2002-07-19 2004-01-29 Columbian Chemicals Company Carbon black sampling for particle surface area measurement using laser-induced incandescence and reactor process control based thereon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0959329A2 (en) * 1998-05-22 1999-11-24 National Research Council Of Canada Absolute intensity measurements in laser induced incandescence
US6496258B1 (en) * 1999-02-05 2002-12-17 Esytec Energie-Und Systemtechnik Gmbh Device and method for simultaneous in-situ determination of particle size and mass concentration of fluid-borne particles
WO2004010123A1 (en) * 2002-07-19 2004-01-29 Columbian Chemicals Company Carbon black sampling for particle surface area measurement using laser-induced incandescence and reactor process control based thereon

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BOCKHORN H ET AL: "PROGRESS IN CHARACTERIZATION OF SOOT FORMATION BY OPTICAL METHODS", PHYSICAL CHEMISTRY CHEMICAL PHYSICS, ROYAL SOCIETY OF CHEMISTRY, CAMBRIDGE, GB, vol. 4, no. 15, 1 August 2002 (2002-08-01), pages 3780 - 3793, XP001184402, ISSN: 1463-9076 *
FILIPOVV ET AL: "IN_SITU CHARACTERIZATION OF ULTRAFINE PARTICLES BY LASER INDUCED INCANDESCENCE: SIZING AND PARTICLE STRUCTURE DETERMINATION", JOURNAL OF AEROSOL SCIENCE, vol. 30, no. 1, 1 January 1999 (1999-01-01), pages 71 - 87, XP002279196 *
LEIPERTZ A; DANKERS S: "CHARACTERIZATION OF NANO-PARTICLES USING LASER-INDUCED INCANDESCENCE", PARTICLE AND PARTICLE SYSTEMS CHARACTERIZATION, WILEY-VCH VERLAG GMBH & CO, WEINHEIM, vol. 20, April 2003 (2003-04-01), pages 81 - 93, XP009030424 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111896436A (en) * 2020-08-11 2020-11-06 哈尔滨工业大学 Method and device for simultaneously measuring primary particle size distribution and thermal adaptive coefficient of carbon black aggregate
CN111896436B (en) * 2020-08-11 2023-08-01 哈尔滨工业大学 Method and device for simultaneously measuring primary particle size distribution and thermal adaptation coefficient of carbon black agglomerates

Also Published As

Publication number Publication date
EP1604186A1 (en) 2005-12-14
DE10308741A1 (en) 2004-09-16

Similar Documents

Publication Publication Date Title
Gaja et al. Defect classification of laser metal deposition using logistic regression and artificial neural networks for pattern recognition
DE69017195T2 (en) DIELECTROPHORETIC CHARACTERIZATION OF MICROORGANISMS AND OTHER PARTICLES.
Schikorra et al. Microstructure analysis of aluminum extrusion: Prediction of microstructure on AA6060 alloy
WO2006128913A1 (en) Method and device for acoustic measurement of the specific density of a gaseous or liquid medium
WO2004077027A1 (en) Method for determining the distribution of particle sizes in a polydisperse particle set
DE102019121446A1 (en) Quantitative characterization method for the area and content of different types of inclusions in steel
EP1134579A2 (en) Method and apparatus for photothermically analysing a material layer, especially film thickness measurement
DE102007021323A1 (en) Thermal analyzer for measuring dependence of material characteristics on temperature, has heating oven in which temperature is controlled as per temperature program, and temperature of heating oven is increased or decreased by program
Huber et al. Characterization of a silica-aerosol in a sintering process by wide-angle light scattering and principal component analysis
Cao et al. A machine learning method to quantitatively predict alpha phase morphology in additively manufactured Ti-6Al-4V
Wang et al. Gaussian process classification of melt pool motion for laser powder bed fusion process monitoring
Mansour et al. Monitoring the aspect ratio distribution of colloidal gold nanoparticles under pulsed-laser exposure
EP2343525B1 (en) Method and device for estimating the temperature sensed upon contact with a surface
Johnson et al. Characterizing diesel fuel spray cone angle from back-scattered imaging by fitting Gaussian profiles to radial spray intensity distributions
DE19941600C2 (en) Process control and process optimization processes for hot rolling metal
DE102008030691B4 (en) Method and device for material testing by means of periodic thermal radiation
Sharma et al. Multi-parametric optimisation by quantitative assessment of distribution index and area fraction of composite
WO1997030335A2 (en) Method for the in situ characterization of primary particles and particle aggregates
DE102010002979A1 (en) Method for recording e.g. concentration, of gaseous fluid medium, in exhaust gas in exhaust passage of internal combustion engine of motor car, involved closing impinging of liquid from fluid medium by short term waste of temperature
CN108334896B (en) Spectrum classification method of cooperative sensing device based on molten pool spectrum
She et al. Online Detection of Laser Welding Penetration Depth Based on Multi-Sensor Features
Rettenmayr et al. Phases, Morphologies, Segregations–Solidification Microstructures and their Characterization
WO2000006993A1 (en) Method for determining the size of particles in a solution
DE102021203453A1 (en) Process and device for the additive manufacturing of three-dimensional components
DE102007033980B3 (en) Method for detecting a material damage

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2004713523

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2004713523

Country of ref document: EP