WO2004076072A1 - Spray nozzle tip and method of manufacturing thermosetting ersin using the same - Google Patents

Spray nozzle tip and method of manufacturing thermosetting ersin using the same Download PDF

Info

Publication number
WO2004076072A1
WO2004076072A1 PCT/JP2004/002108 JP2004002108W WO2004076072A1 WO 2004076072 A1 WO2004076072 A1 WO 2004076072A1 JP 2004002108 W JP2004002108 W JP 2004002108W WO 2004076072 A1 WO2004076072 A1 WO 2004076072A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermosetting resin
orifice
nozzle tip
spray
swirl
Prior art date
Application number
PCT/JP2004/002108
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Kanayama
Yoshio Yoshida
Kunio Sasaoka
Shinichiro Kajikawa
Original Assignee
Mitsui Takeda Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Takeda Chemicals, Inc. filed Critical Mitsui Takeda Chemicals, Inc.
Priority to JP2005502878A priority Critical patent/JPWO2004076072A1/en
Publication of WO2004076072A1 publication Critical patent/WO2004076072A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/36Feeding the material on to the mould, core or other substrate
    • B29C41/365Construction of spray-up equipment, e.g. spray-up guns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3421Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber
    • B05B1/3431Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves
    • B05B1/3442Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves the interface being a cone having the same axis as the outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/582Component parts, details or accessories; Auxiliary operations for discharging, e.g. doors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/76Mixers with stream-impingement mixing head
    • B29B7/7631Parts; Accessories
    • B29B7/7636Construction of the feed orifices, bores, ports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/76Mixers with stream-impingement mixing head
    • B29B7/7631Parts; Accessories
    • B29B7/7652Construction of the discharge orifice, opening or nozzle
    • B29B7/7657Adjustable discharge orifices, openings or nozzle openings, e.g. for controlling the rate of dispensing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/08Coating a former, core or other substrate by spraying or fluidisation, e.g. spraying powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material

Definitions

  • the present invention relates to a spray nozzle tip for producing a thermosetting resin by an airless spray molding method, and a method using the nozzle tip.
  • the present invention relates to a method for producing a thermosetting resin, and a molded product obtained thereby.
  • BACKGROUND ART For example, automobile interior decorations such as dashboards of automobiles, ie, instrument panels, require long-term heat resistance and light resistance.
  • Thermosetting polyurethane resins are used in the field of interior decoration products that require such long-term heat resistance and light resistance.
  • thermosetting resin such as a thermosetting polyurethane
  • a so-called “airless spray molding method” technology has been conventionally proposed.
  • a thermosetting resin is sprayed onto a pre-heated mold through a spray nozzle to form the thermosetting resin on the mold.
  • the viscosity of the reaction mixture is relatively high, the atomization state of the reaction mixture changes greatly depending on the shape of the nozzle tip.
  • Japanese Patent No. 29144522 As shown in Fig. 2, the orifice provided with the swirl chamber 23 and the swirl flow inlet 25 as shown in Fig. 2 enables high-viscosity fluids to be sprayed at a large spray angle, making it easy to atomize the resulting particles. Nozzle puyo spraying method is proposed.
  • Japanese Patent No. 2610308 Japanese Patent Publication No. 7-83847 (Japanese Patent Publication No. 7-83847) (especially, see page 3, column 5 to page 4, page 7, FIG. 2 to FIG. 6)
  • Japanese Patent No. 2610308 Japanese Patent Publication No. 7-83847
  • page 3 column 5 to page 4, page 7, FIG. 2 to FIG. 6
  • page 3 column 6, FIG. 2 to FIG. 7
  • a method for uniformly molding a polyurethane resin using a liquid reaction mixture of a polyol and an isocyanate using an airless spray molding method has been proposed. I have.
  • the nozzle tip 101 has an orifice portion at the nozzle opening 103 of the casing body 102 in which the flow path of the thermosetting resin is formed. Is provided. A core portion 105 is provided on the opposite side of the orifice portion 104 from the spray opening side.
  • a substantially conical surface 106 is formed, and a truncated conical portion 107 at the tip of the core portion 105 fits into the conical surface 106.
  • a vortex flow forming chamber 110 communicating with the orifice outlet 108 of the orifice portion 104 is formed. ing.
  • the core portion 105 is swirled along the outer circumference of the truncated conical portion 107 so as to spirally communicate with the vortex flow forming chamber 110. Grooves 1 1 and 2 are formed.
  • thermosetting resin flows from the flow path of the casing main body 102 into the vortex flow forming chamber 110 through the swirl groove 112 of the core 105, thereby forming the vortex flow forming chamber 1
  • a vortex is generated in 10 and the thermosetting resin is sprayed almost uniformly in the shape of a bell from the orifice outlet 108 of the orifice section 104 onto the preheated mold surface. Molded articles can be obtained.
  • Japanese Patent No. 29144522 and Japanese Patent Application Laid-Open No. 9-757986 are merely an improvement of a nozzle used for a spray granulation method and the like. It is completely different from a spray nozzle tip for molding a thermosetting resin on a mold and a method for producing a thermosetting resin molded using the nozzle tip.
  • a swirl groove 1 1 2 force communicating with the swirl flow forming chamber 110 is used. 5 of Due to the spiral shape along the outer circumference of the frustoconical portion 107, the injected resin vector is dissipated into the vector in the turning direction and the vector in the orifice outlet direction. As a result, the swirl force of vortex generation is reduced. Therefore, the spread of the thermosetting resin sprayed from the orifice outlet 108 becomes narrower, and the atomized droplets become relatively large. Becomes bigger.
  • the thickness of the thermosetting resin sprayed on the mold becomes thicker and non-uniform, and as a result, the mechanical properties become non-uniform.
  • the present invention has a high efficiency of eddy current generation, a large spread of a spray pattern of a thermosetting resin to be sprayed, and a small atomized droplet and entrapment of bubbles.
  • a spray nozzle tip capable of spraying a thermosetting resin onto a mold in a small amount, resulting in a thin, uniform, thermosetting resin molded product having excellent mechanical strength; and
  • An object of the present invention is to provide a method for producing a thermosetting resin using a nozzle tip.
  • the spray nozzle tip of the present invention is characterized by spraying a thermosetting resin on a mold.
  • thermosetting resin A case body in which the spray nozzle tip is formed with a flow path of the thermosetting resin
  • An orifice portion provided at a spray opening of the casing body; a core portion provided at a side opposite to the spray opening side of the orifice portion; and an orifice portion formed between the orifice portion and the core portion.
  • Vortex forming chamber communicating with the orifice outlet of
  • a swirl groove is formed in the orifice portion in a direction perpendicular to the axis of the orifice outlet and tangentially communicating with the inner peripheral wall of the swirl flow forming chamber, and the swirl flow forming chamber moves toward the orifice outlet. It is characterized in that it has a conical shape whose diameter gradually decreases.
  • thermosetting resin of the present invention is an airless spray molding method for forming a thermosetting resin on a mold by spraying the thermosetting resin on the mold using a spray nozzle tip.
  • thermosetting resin A case body in which the spray nozzle tip is formed with a flow path of the thermosetting resin
  • An orifice portion provided at a spray opening of the casing body; a core portion provided at a side opposite to the spray opening side of the orifice portion; and an orifice portion formed between the orifice portion and the core portion.
  • a swirl groove is formed in the orifice portion in a direction perpendicular to the axis of the orifice outlet and tangentially communicates with the inner peripheral wall of the swirl flow forming chamber.
  • the swirling flow forming chamber has a conical shape whose diameter gradually decreases toward the orifice outlet.
  • thermosetting resin flows from the flow passage of the casing body into the swirl flow forming chamber through the swirl groove formed in the orifice portion, thereby generating a swirl flow in the swirl flow forming chamber.
  • thermosetting resin is uniformly sprayed in a bell shape on the surface of the preheated mold from the orifice outlet of the orifice portion, and a thermosetting resin molded product is obtained.
  • the swirl groove is formed so as to communicate in a direction perpendicular to the axis of the orifice outlet and tangentially with the inner peripheral wall of the swirl flow forming chamber, so that the thermosetting resin is in the same plane.
  • the turning force is generated so that the turning of the.
  • thermosetting resin can be sprayed on the mold.
  • thermosetting resin molded article that is thin, uniform, and excellent in mechanical strength, and it is also possible to generate a vortex with a small discharge amount and spray the liquid, thereby burdening a device such as a liquid feeding pump.
  • the life of the device is greatly improved.
  • the present invention is characterized in that the cross-sectional area of the turning groove is in a range of 0.05 to 0.5 mm 2 .
  • the cross-sectional area of the swirl groove is within such a range, the pressure in the swirl groove portion will increase, so that an excessive load is not applied to the liquid feed pump, and the force of the swirl flow forming chamber is reduced.
  • the spray pattern is spread evenly without any decrease in the swirling force inside.
  • the length L1 of the orifice outlet is in the range of 0.01 to 0.5 mm.
  • the spray pattern becomes too wide and the droplets do not scatter, and the swirling force generated in the vortex flow formation chamber is attenuated. Don't end up! / ,.
  • the present invention is characterized in that the diameter of the orifice outlet is in the range of 0.1 to 2.0 mm, more preferably in the range of 0.2 to 1.5 mm.
  • the diameter of the orifice outlet is within such a range, the pressure at the orifice outlet will increase, and no excessive load will be applied to the liquid feed pump, and a uniform spray pattern with a low force will be obtained.
  • the present invention is characterized in that the vortex flow forming chamber includes a conical portion communicating with the orifice outlet, and a conical angle 6i of the conical portion is in a range of 30 to 120 °.
  • the conical angle of the conical portion is in such a range, a good spray pattern can be obtained without the swirling force generated in the swirl groove being relatively attenuated in the swirl flow forming chamber.
  • the height h of the vortex forming chamber is in the range of 0.5 to 3.0 mm.
  • the length L overlapping the core portion of the turning groove Is less than 0.5 mm Above, more preferably, in the range of 0.5 to 3.0 mm. If the length of the swirl groove overlaps with the core in such a range, the flow of the mixed liquid in the swirl groove is adjusted, sufficient swirl strength is obtained, and the pressure in the swirl groove increases, and The pump is not overloaded.
  • the present invention is characterized in that 1 to 6 turning grooves are formed. If there is a swirl groove in such a range, the flow from each groove does not interfere with each other, the flow of the liquid in the vortex forming chamber is adjusted, and a uniform spray pattern can be obtained. Further, the present invention is characterized in that the orifice portion, the core portion, and the casing main body are configured to be detachably attachable to each other.
  • the orifice portion, the core portion, and the casing main body are configured to be detachable, by removing them from the nozzle main body, the inside of the nose tip can be easily cleaned.
  • the present invention is characterized in that the droplets sprayed from the orifice outlet have an average particle diameter (ASTM-E799-92) of 95 ⁇ or less. If the average particle size of the droplet sprayed from the orifice outlet falls within such a range, air bubbles are less likely to be trapped on the mold, and the mechanical properties are not reduced. In addition, the thickness distribution of the thermosetting resin applied on the mold is reduced, and the mechanical properties in the same molded product become uniform. Furthermore, since the droplets are not scattered, the productivity is improved and the working environment is not deteriorated.
  • ASTM-E799-92 average particle diameter
  • thermosetting resin of the present invention is characterized in that the thermosetting resin is sprayed onto a mold at a discharge rate of 3 to 20 cc / sec.
  • thermosetting resin falls within such a range, the productivity can be reduced and the luster can be uniformly applied to the mold.
  • thermosetting resin of the present invention wherein the thermosetting resin is at least Is a thermosetting polyurethane resin comprising a polyisocyanate compound and an active hydrogen compound.
  • FIG. 1 is a longitudinal sectional view of an embodiment of the nozzle tip of the present invention.
  • FIG. 2 is an end view of the nozzle tip of FIG. 1 as viewed from the direction A (coating direction).
  • FIG. 3 is an end view of the nozzle tip of FIG. 1 viewed from the direction B (the direction opposite to the application direction).
  • FIG. 4 is a partially enlarged view showing details of an orifice portion of the nozzle tip of FIG.
  • FIG. 5 is a partially enlarged view of the orifice portion along the line C-C of the nozzle tip of FIG. .
  • FIG. 6 (A) is a longitudinal sectional view of a conventional spray nozzle
  • FIG. 6 (B) is a partially enlarged view in the DD direction of FIG. 6 (A).
  • FIG. 7 is a diagram schematically showing the spray angle in the example of the present invention.
  • FIG. 8 is a longitudinal sectional view of the entire nozzle tip of the comparative example.
  • FIG. 9 is a longitudinal sectional view of a casing body of a nozzle tip of a comparative example.
  • FIG. 10 is a longitudinal sectional view of a core portion of a nozzle tip of a comparative example.
  • FIG. 11 is a partially enlarged view similar to FIG. 5 of the nozzle tip of the comparative example.
  • FIG. 1 is a longitudinal sectional view of an embodiment of the nozzle tip of the present invention
  • FIG. 2 is an end view of the nozzle tip of FIG. 1 viewed from the direction A (application direction)
  • FIG. 3 is B of the nozzle tip of FIG.
  • Fig. 4 is a partially enlarged view showing the details of the orifice part of the nozzle tip in Fig. 1
  • Fig. 5 is a C-C line of the tip in Fig. 1.
  • FIG. 4 is a partially enlarged view of an orifice portion in FIG.
  • the nozzle tip 10 indicates the nozzle tip of the present invention as a whole.
  • the nozzle tip 10 includes a casing body 12, and a thermosetting resin flow path 14 is formed inside the casing body 12.
  • the flow path 14 is connected to a liquid feed pump for separately feeding a thermosetting resin.
  • the base end 11 of the casing body 12 has a small diameter and is formed with a male screw, so that the casing body 12 can be detachably attached to a nozzle body (not shown).
  • An opening 18 is provided at the top and bottom of the tip end 16 of the casing body 12, and in FIG. 1, the spray opening 20 is located on the lower side (application side).
  • a flange 22 protrudes inward from the spray opening 20, thereby forming a step 24.
  • An orifice portion 26 is detachably fitted in the step portion 24.
  • a core portion 28 is disposed on the side opposite to the application side of the opening 18, that is, on the side opposite to the spray opening side of the orifice 26.
  • the core portion 28 includes a core portion main body 30 and a fitting portion 32 having a larger diameter than the core portion main body.
  • a male screw 32 a is screwed around the outer periphery of the fitting portion 32, and is screwed with a female screw 34 a formed on the inner wall 34 opposite to the coating side of the opening 18.
  • the core portion 28 can be detachably attached to the opening 18 of the casing body 12.
  • a hexagonal tool engaging recess 36 is formed in the core portion main body 30. By locking the tool in the tool engaging recess 36, the core Part 28 can be removed.
  • thermosetting resin is a thermosetting polyurethane resin composed of at least a polyisocyanate compound and an active hydrogen compound, the reaction is fast, and the cured polyurethane resin in the nozzle is easily clogged. Suitable for washing.
  • the orifice portion 26 and the core portion 28 can be made of separate members, but can also be formed integrally.
  • the core body 30 of the core 28 has an outer diameter smaller than the inner diameter of the opening 18 of the casing body 12, and as a result, as shown in FIG. Inside 18, an annular supply chamber 38 is formed.
  • the orifice portion 26 is formed between the orifice portion 26 and the core body 30 on the application side of the orifice portion 26, as shown in FIGS. 1, 2, and 4.
  • a swirl flow forming chamber 40 communicating with the outlet 44 is formed.
  • the inner diameter of the vortex forming chamber 40 must be smaller than the outer diameter of the core body 30. I have.
  • the swirl flow forming chamber 40 includes a base end 42 on the side of the core body 30 and a conical portion 46 formed so that its diameter gradually decreases toward the orifice outlet 44. ing.
  • the end face 48 of the orifice section 26 on the core section 28 side is perpendicular to the axis 50 of the orifice outlet 44, and A swirl groove 54 communicating with the tangential direction is formed in the circumference of the inner peripheral wall 52 of the base end portion 42 of the vortex flow forming chamber 40.
  • four swirl grooves 54 are formed at intervals of 90 °.
  • the cross-sectional shape of the turning groove 54 may have any shape as long as the effect of the present invention is not impaired, and examples thereof include a semicircle and a square.
  • the number and arrangement of the swirl grooves 54 are not particularly limited, but it is preferable that turbulence does not occur in the swirl flow forming chamber 40, and preferably 1 to 6, and Preferably, the number is in the range of 2 to 5. In other words, if the number is more than six, the flows from the swirl grooves 54 interfere with each other, the flow of the liquid in the swirl flow forming chamber 40 is not adjusted, and a uniform spray pattern cannot be obtained. When a plurality of swirling grooves 54 are formed, it is preferable to arrange them evenly in order to prevent turbulence.
  • the cross-sectional area force of each of the turning grooves 54 is preferably in the range of 0.05 to 0.5 mm 2 , more preferably in the range of 0.05 to 0.3 mm 2 . Preferably it is.
  • the cross-sectional area of the swirl groove 54 is smaller than 0.05 mm2, the pressure in the swirl groove 54 increases and an excessive load is applied to the liquid feed pump.
  • the cross-sectional area Ai of the turning groove 54 is larger than 0.5 mm2, This is because the swirling force in the forming chamber 40 decreases and the spray pattern does not spread.
  • the length L 2 overlapping with the core body 30 of the turning groove 54 is the core portion 28 is preferably not 0. 5 mm or more.
  • the length L 2 forces overlapping with the core body 30 of the turning groove 54 core portion 28 from 0.5 to 3. It is preferably in the range of Omm.
  • the length L1 of the orifice outlet 44 is preferably in the range of 0.01 to 0.5 mm, more preferably 0.07 to 0.3 mm.
  • the spray pattern becomes too wide and the droplets scatter.
  • the length Li force of the orifice outlet 44 is larger than 0.5 mm, the swirl force generated in the vortex flow forming chamber 40 is attenuated.
  • the height h of the vortex forming chamber 40 is preferably in the range of 0.5 to 3.0 mm, more preferably 0.5 to 2.0 mm. .
  • the vortex forming chamber 40 becomes smaller, the liquid rectification effect in the vortex forming chamber 40 is reduced, and a uniform spray pattern is obtained. It is not possible.
  • the height h of the vortex forming chamber 40 is larger than 3.Omm, the vortex forming chamber 40 becomes unnecessarily large, the swirling force obtained in the swirl groove 54 is attenuated, and the spread of the spray pattern is reduced. Because It is.
  • the cone angle ⁇ of the conical portion 46 of the vortex flow forming chamber 40 is preferably in the range of 30 to 120 °, and more preferably in the range of 60 to 110 °. Is preferred. '
  • the diameter ⁇ force of the orifice outlet 44 is preferably in the range of 0.1 to 2.0 mm, more preferably in the range of 0.2 to 1.5 mm.
  • the average particle diameter (AS TM-E 799 -92) of the droplet sprayed from the orifice outlet 44 is preferably 95 pm or less, more preferably in the range of 20 to 95 ⁇ .
  • the average particle diameter of the droplets sprayed from the orifice outlet 44 is larger than 95 ⁇ , bubbles are likely to be wound on the mold and the mechanical properties are reduced. In addition, the thickness distribution of the polyurethane resin applied on the mold also becomes large, and the mechanical properties within the same molded product become non-uniform. Furthermore, if the average particle diameter of the droplet sprayed from the orifice outlet 44 is less than 2 ⁇ , the droplet scatters, which lowers the productivity and worsens the working environment. In this case, in this specification, the average particle diameter of the liquid droplet is measured at 10 cm from the orifice outlet 44 by using a laser light scattering type particle size distribution measuring apparatus as described in ASTM-E799-92. It shows the value measured by the measurement method performed according to.
  • thermosetting resin is sprayed onto a mold at a discharge rate of preferably 3 to 20 cc / sec, more preferably 5 to 15 cc / sec.
  • thermosetting resin (mixed liquid) used in the present invention is preferably a thermosetting polyurethane resin composition comprising at least a polyisocyanate compound (A) and an active hydrogen compound (B). .
  • thermosetting polyurethane resins any of those generally used in the production of thermosetting polyurethane resins can be used.
  • thermosetting resin composition in which is mixed.
  • the viscosity of the thermosetting resin composition is preferably in the range of 10 to 500 OmPas, more preferably 15 to 2000 mPas. Some are preferred.
  • thermosetting resin composition when the viscosity of the thermosetting resin composition is less than 10 mPa ⁇ s, the amount of the scattered droplets increases, and the productivity decreases as the working environment decreases. On the other hand, if the viscosity of the thermosetting resin composition is greater than 500 mPa ⁇ s, the pressure increases and an excessive load is applied to the liquid sending pump.
  • any one can be used as long as it is used in the production of ordinary ordinary thermosetting polyurethane resin.
  • the isocyanate component for example, • Tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymeric MDI (PMDI), xylylene diisocyanate ( XDI), aromatic polyisocyanates such as tetramethyl ⁇ xylylene diisocyanate (TMXDI), 1,5-naphthalenediisocyanate (NDI),
  • TDI Tolylene diisocyanate
  • MDI diphenylmethane diisocyanate
  • PMDI polymeric MDI
  • XDI xylylene diisocyanate
  • aromatic polyisocyanates such as tetramethyl ⁇ xylylene diisocyanate (TMXDI), 1,5-naphthalenediisocyanate (NDI)
  • 'Aliphatic polyisocyanates such as hexamethylene diisocyanate (HDI),' Isophorone diisocyanate (IPDI), hydrogenated XDI (H6XDI), hydrogenated tolylene diisocyanate, hydrogenated MDI (H12MDI), etc.
  • HDI hexamethylene diisocyanate
  • IPDI Isophorone diisocyanate
  • H6XDI hydrogenated XDI
  • H12MDI hydrogenated MDI
  • any one can be used as long as it is used in the production of ordinary ordinary thermosetting polyurethane resin.
  • a polyol component (Solution B) for example, at least It is composed of a long-chain polyol that forms a soft segment of a urethane resin, and a chain extender that forms a hard segment, a crosslinking agent that forms a crosslinking point, and the like can be used as necessary. These may be used alone or in combination.
  • the polyurethane resin composition used in the present invention may further contain, if necessary, additives such as a stabilizer, a urethanization catalyst, a pigment, a thixotropic agent, an antifoaming agent, and a flame retardant. . These additives may be contained in any of the isocyanate component (Solution A) and the polyol component (Solution B) as long as the effects of the present invention are not impaired. .
  • the mixed liquid of the thermosetting resin mixed in advance by the mixer or the like is formed by the swirl formed in the orifice portion 26 from the flow path 14 of the casing body 12.
  • the fluid flows into the vortex forming chamber 40 through the groove 54.
  • thermosetting resin molded product is obtained.
  • the swirl groove 54 communicates in a direction perpendicular to the axis 50 of the orifice outlet 44 and tangentially to the circumference of the inner peripheral wall 52 of the swirl flow forming chamber 40. Therefore, a turning force is generated so that the thermosetting resin turns in the same plane.
  • thermosetting resin can be sprayed onto the mold without any entrainment.
  • thermosetting resin molded product with excellent mechanical strength is obtained.
  • the vortex can be generated and sprayed at a low discharge rate, so that no load is placed on the equipment such as the liquid feed pump, and the life of the equipment is greatly improved.
  • the “molded article” is a thermosetting resin obtained by an airless spray molding method in which a thermosetting resin is sprayed on a mold to form the thermosetting resin on the mold. Yes, it has a specific shape and thickness depending on the application.
  • interior decoration parts of vehicles such as vehicles, ships, and aircrafts, stores, offices, other architectural interior parts, and general and office furniture.
  • the use, shape, and thickness of these molded products are not particularly limited as long as the effects of the present invention are not impaired, but, for example, an automobile instrument panel (instrument panel), which is an interior decorative part for a vehicle, and the like. Since the skin layer is required to have a thickness of about 0.3 to 2.0 mm and a resin having uniform mechanical properties, it is obtained by a molding method using the spray nozzle of the present invention.
  • the molded article to be used is preferably used.
  • thermosetting polyurethane composition was spray-molded under the following conditions.
  • Isocyanate (Solution A) and an active hydrogen compound (Solution B) to which no urethanation catalyst was added were mixed, kept at the reaction temperature for 3 hours, and measured using a B-type viscometer.
  • the volume average particle diameter of the droplet at a distance of 10 cm from the orifice outlet 44 was measured.
  • the thickness of the molded article was measured using calipers according to JIS K7130. (1-4) Specific gravity measurement method
  • the density of the molded article was measured by using “Underwater displacement density measuring device ED-120T” manufactured by Mirage Trading Co., Ltd.
  • Table 1 shows the specifications of the nozzle tip.
  • NCO 26.0%
  • viscosity 340 Pas (25 ° C)
  • specific gravity 1.14 ( (25 ° C)
  • Viscosity 1243 mPa-s (25.C), 208 mPa-s (70.C).
  • the isocyanate component (Solution A) and the active hydrogen compound (Solution B) are sent from the stirring tank, which is kept at 70 ° C, to the mixing head through the liquid sending line, which is kept at 70 ° C by the sending pump.
  • the liquid is mixed by collision.
  • Table 1 shows the molding conditions.
  • spray pattern angle indicates the angle ⁇ between the vertical direction of the nozzle and the outermost spray line of the mist, as shown in Figure 7.
  • thermosetting polyurethane composition was subjected to spray molding.
  • Table 1 the conditions were out of the scope of the present invention.
  • Table 1 The results are shown in Table 1. Comparative Example 3 Using a nozzle tip having a spiral swirl groove shown in FIGS. 8 to 11 and Table 1, a thermosetting polyurethane composition was spray-molded under the following conditions.
  • Table 1 shows the results. It can be seen that the specific gravity of the molded article of the comparative example is smaller than that of the example. The difference in specific gravity is apparently small, but when these molded products are pulled, the strength of the part where bubbles are present is extremely reduced. Becomes larger.
  • thermosetting resin such as a polyurethane resin, a polyurethane resin, an unsaturated polyester resin, and an epoxy resin. It is also possible.
  • the turning groove 54 is formed on the end surface 48 of the orifice portion 26 on the core portion 28 side, but the turning groove 54 may be provided on the core portion 28 side. .
  • thermosetting resin flows from the flow path of the casing main body into the swirl flow forming chamber through the swirl groove formed in the orifice portion, whereby a swirl is generated in the swirl flow forming chamber, and the orifice is formed.
  • the thermosetting resin is sprayed uniformly in the shape of a bell on the preheated mold surface from the orifice outlet of the section, and a thermosetting resin molded product is obtained.
  • thermosetting resin is formed in the same plane.
  • the turning force is generated so that the turning of the. Therefore, the swirling force is not attenuated, so that the vortex generation efficiency is high, the spread of the spray pattern of the thermosetting resin to be sprayed is widened, and the atomized droplets are small, and the bubbles are trapped.
  • the thermosetting resin can be sprayed on the mold.
  • thermosetting resin molded product with excellent mechanical strength is obtained.
  • Vortex flow can be generated and sprayed at a low discharge rate, so that there is no significant burden on the equipment such as the liquid feed pump and the life of the equipment is greatly improved.
  • This is an extremely excellent invention having a unique function and effect.

Abstract

A spray nozzle tip having excellent swirl flow generating efficiency, and capable of increasing the spreading of the spray pattern of sprayed thermosetting resin, reducing the sizes of atomized liquid drops, reducing the entanglement of air bubbles, and spraying the thermosetting resin on a mold to provide a thin and uniform thermosetting resin-molded product with excellent mechanical strength, comprising a casing body in which a thermosetting resin flow passage is formed, an orifice part installed at the spray opening part of the casing body, a core part installed on the opposite side of the spray opening part side of the orifice part, and a swirl flow formation chamber formed between the orifice part and the core part and communicating with the orifice outlet of the orifice part. A swirl groove communicating with the inner peripheral wall of the swirl flow formation chamber in the tangential direction is formed in the orifice part in the vertical direction relative to the axis of the orifice outlet.

Description

明 細 書 スプレーノズルチップぉよびそれを用いた熱硬化性樹脂の製造方法 技術分野 本発明は、 エアレススプレ一成形方法による熱硬化性樹脂製造用のスプレ 一ノズルチップ、およびそのノズルチップを用いた熱硬化性樹脂の製造方法、 ならびにそれにより得られた成形品に関する。 背景技術 例えば、 自動車のダッシュボード、 すなわちインス トルメントパネルなど の自動車内装装飾品は、 長期間の耐熱性、 耐光性が必要である。 このような 長期間の耐熱性、 耐光性が必要な内装装飾品の分野において、 熱硬化ポリウ レタン樹脂が用いられている。  TECHNICAL FIELD The present invention relates to a spray nozzle tip for producing a thermosetting resin by an airless spray molding method, and a method using the nozzle tip. The present invention relates to a method for producing a thermosetting resin, and a molded product obtained thereby. BACKGROUND ART For example, automobile interior decorations such as dashboards of automobiles, ie, instrument panels, require long-term heat resistance and light resistance. Thermosetting polyurethane resins are used in the field of interior decoration products that require such long-term heat resistance and light resistance.
このような熱硬化ポリウレタンなどの熱硬化性樹脂を成形する方法として、 いわゆる 「エアレススプレー成形法」 の技術が従来より提案されている。 この方法は、 スプレーノズルを介して、 予め加熱された金型上に熱硬化性 樹脂を噴霧することによって、金型上に熱硬化性樹脂を成形する方法である。 しかしながら、 このようなエアレススプレー成形方法においては、 反応混 合物の粘度が比較的高いため、 ノズルチップの形状によって反応混合液の霧 化状態が大きく変化することになる。  As a method for molding such a thermosetting resin such as a thermosetting polyurethane, a so-called “airless spray molding method” technology has been conventionally proposed. In this method, a thermosetting resin is sprayed onto a pre-heated mold through a spray nozzle to form the thermosetting resin on the mold. However, in such an airless spray molding method, since the viscosity of the reaction mixture is relatively high, the atomization state of the reaction mixture changes greatly depending on the shape of the nozzle tip.
このため、特許第 2 9 1 4 5 2 2号公報(特に、 図 1〜図 3参照)) におい ては、 その第 2図に示したような渦巻室 2 3と渦巻流入口 2 5を設けたオリ フィスにより高粘度流体でも大きな噴霧角で噴霧でき、 得られる粒子の微細 化が容易な圧力噴霧ノズルぉよぴ噴霧方法を提案している。 For this reason, Japanese Patent No. 29144522 (particularly, see FIGS. 1 to 3) As shown in Fig. 2, the orifice provided with the swirl chamber 23 and the swirl flow inlet 25 as shown in Fig. 2 enables high-viscosity fluids to be sprayed at a large spray angle, making it easy to atomize the resulting particles. Nozzle puyo spraying method is proposed.
また、 特開平 9ー 7 5 7 8 6号公報 (特に図 1〜図 4参照) においては、 特許第 2 9 1 4 5 2 2号公報の噴霧口 2 7近傍が鉱物等の微粒子を含んだ流 体の内部旋回運動によるノズルの摩耗を防ぐ目的で、 図 4に示す噴霧口近傍 に 2 0〜 7 0 °のテーパー部 6を設けた圧力嘖霧ノズルおよび噴霧方法を提 案している。  Also, in Japanese Patent Application Laid-Open No. 9-75786 (particularly, see FIGS. 1 to 4), the vicinity of the spray port 27 of Patent No. 2914452 contains fine particles such as minerals. In order to prevent the nozzle from being worn due to the internal swirling motion of the fluid, a pressure spray nozzle and a spray method with a tapered part 6 of 20 to 70 ° near the spray port shown in Fig. 4 are proposed.
さらに、 特許第 2 6 1 0 3 0 8号公報 (特に、 第 3頁第 5欄〜第 4頁第 7 檷、 図 2〜図 6参照) および特公平 7— 8 3 8 4 7号公報 (特に、 第 3頁第 6欄、 図 2〜図 7参照) においては、 ポリオールとイソシァネートとの液体 反応混合物を、 エアレススプレー成形方法を用いて、 ポリウレタン樹脂を均 一に成形する方法が提案されている。  Further, Japanese Patent No. 2610308 (Japanese Patent Publication No. 7-83847) (especially, see page 3, column 5 to page 4, page 7, FIG. 2 to FIG. 6) In particular, on page 3, column 6, FIG. 2 to FIG. 7), a method for uniformly molding a polyurethane resin using a liquid reaction mixture of a polyol and an isocyanate using an airless spray molding method has been proposed. I have.
すなわち、 これらの特許第 2 6 1 0 3 0 8号公報および特公平 7— 8 3 8 4 7号公報においては、 図 6に示したようなノズルチップ 1 0 1を用いてい る。  That is, in these Japanese Patent No. 2610308 and Japanese Patent Publication No. Hei 7-83847, a nozzle tip 101 as shown in FIG. 6 is used.
このノズルチップ 1 0 1は、 図 6 (A) に示したように、 熱硬化性樹脂の 流路が形成されたケーシング本体 1 0 2の嘖霧開口部 1 0 3にオリフィス部 • 1 0 4が設けられている。 そして、 このオリフィス部 1 0 4の噴霧開口部側 と反対側に、 コア部 1 0 5が設けられている。  As shown in FIG. 6 (A), the nozzle tip 101 has an orifice portion at the nozzle opening 103 of the casing body 102 in which the flow path of the thermosetting resin is formed. Is provided. A core portion 105 is provided on the opposite side of the orifice portion 104 from the spray opening side.
オリフィス部 1 0 4の基端部は、 略円錐形状面 1 0 6が形成され、 この円 錐形状面 1 0 6に、 コア部 1 0 5の先端の截頭円錐形部 1 0 7が嵌合されて いる。 これにより、 オリフィス部 1 0 4とコア部 1 0 5との間に、 オリフィ ス部 1 0 4のオリフィス出口 1 0 8と連通する渦流形成室 1 1 0が形成され ている。 At the base end of the orifice portion 104, a substantially conical surface 106 is formed, and a truncated conical portion 107 at the tip of the core portion 105 fits into the conical surface 106. Have been combined. As a result, between the orifice portion 104 and the core portion 105, a vortex flow forming chamber 110 communicating with the orifice outlet 108 of the orifice portion 104 is formed. ing.
そして、 図 6 ( B ) に示したように、 コア部 1 0 5には、 截頭円錐形部 1 0 7の外周に沿って、 螺旋状に渦流形成室 1 1 0に連通するように旋回溝 1 1 2が形成されている。  Then, as shown in FIG. 6 (B), the core portion 105 is swirled along the outer circumference of the truncated conical portion 107 so as to spirally communicate with the vortex flow forming chamber 110. Grooves 1 1 and 2 are formed.
これにより、 熱硬化性樹脂が、 ケーシング本体 1 0 2の流路から、 コア部 1 0 5の旋回溝 1 1 2を介して、渦流形成室 1 1 0に流入することによって、 渦流形成室 1 1 0内で渦流が発生して、 オリフィス部 1 0 4のオリフィス出 口 1 0 8から予め加熱された金型表面に熱硬化性樹脂が略釣鐘状に均一に噴 霧され、 熱硬化性樹脂成形品が得られるようになつている。  As a result, the thermosetting resin flows from the flow path of the casing main body 102 into the vortex flow forming chamber 110 through the swirl groove 112 of the core 105, thereby forming the vortex flow forming chamber 1 A vortex is generated in 10 and the thermosetting resin is sprayed almost uniformly in the shape of a bell from the orifice outlet 108 of the orifice section 104 onto the preheated mold surface. Molded articles can be obtained.
しかしながら、 特許第 2 9 1 4 5 2 2号公報おょぴ特開平 9— 7 5 7 8 6 号公報は、 噴霧造粒法などに使用されるノズルの改良に過ぎず、 本発明の如 く金型上に熱硬化性樹脂を成形するためのスプレーノズルチップ、 およぴそ のノズルチップを用いて成形した熱硬化性樹脂の製造方法とは全く内容を異 にするものである。  However, Japanese Patent No. 29144522 and Japanese Patent Application Laid-Open No. 9-757986 are merely an improvement of a nozzle used for a spray granulation method and the like. It is completely different from a spray nozzle tip for molding a thermosetting resin on a mold and a method for producing a thermosetting resin molded using the nozzle tip.
すなわち、 特許第 2 9 1 4 5 2 2号公報の方法では、 渦巻室流入口 2 ·5か ら円筒状の渦巻室 2 3に導かれ嘖霧ロ 2 7に至る流体の旋回力が減衰するの に伴って噴霧角(本発明で言う「噴霧パターン」)を狭くする結果をもたらす。 また、 特開平 9一 7 5 7 8 6号公報は、 特許第 2 9 1 4 5 2 2号公報の噴 霧口 2 7近傍が鉱物等の微粒子を含んだ流体の内部旋回運動によるノズルの 摩耗を防ぐ目的で、その図 4に示す噴霧口近傍に 2 0〜7 0 °のテーパー部 6 を設けたに過ぎず、 実質的には特許第 2 9 1 4 5 2 2号公報と同様に嘖霧角 を狭くすることの防止には何ら効果がなレ、。  In other words, in the method disclosed in Japanese Patent No. 29144522, the swirling force of the fluid that is guided from the swirl chamber inlets 2.5 to the cylindrical swirl chamber 23 and reaches the mist chamber 27 is attenuated. As a result, the spray angle ("spray pattern" in the present invention) is narrowed. Also, Japanese Patent Application Laid-Open No. Hei 9-197957 describes that nozzles near the spray port 27 of Japanese Patent No. 2945452 are worn due to internal swirling motion of a fluid containing fine particles such as minerals. In order to prevent this, only a 20 to 70 ° taper portion 6 is provided in the vicinity of the spray port shown in FIG. 4, which is substantially similar to that of Japanese Patent No. 29144522. It has no effect in preventing the fog angle from becoming narrower.
さらに、 特許第 2 6 1 0 3 0 8号公報おょぴ特公平 7— 8 3 8 4 7号公報 の方法では、 渦流形成室 1 1 0に連通する旋回溝 1 1 2力 コア部 1 0 5の 截頭円錐形部 1 0 7の外周に沿って、 螺旋状に形成されているために、 注入 樹脂べクトノレは、 旋回方向のべクトルとオリフィス出口方向へのベタトルに 力が分散されることになり、 渦流発生の旋回力が低下することになる。 このため、 オリフィス出口 1 0 8から嘖霧される熱硬化性樹脂の嘖霧パタ ーンの広がりが狭くなるとともに、 霧化された液滴が比較的大きくなり、 し かも、 気泡の卷き込みが大きくなつてしまう。 Further, in the method disclosed in Japanese Patent No. 2610308, Japanese Patent Publication No. 7-83847, a swirl groove 1 1 2 force communicating with the swirl flow forming chamber 110 is used. 5 of Due to the spiral shape along the outer circumference of the frustoconical portion 107, the injected resin vector is dissipated into the vector in the turning direction and the vector in the orifice outlet direction. As a result, the swirl force of vortex generation is reduced. Therefore, the spread of the thermosetting resin sprayed from the orifice outlet 108 becomes narrower, and the atomized droplets become relatively large. Becomes bigger.
そのため、 金型上に吹き付けられた熱硬化性樹脂の厚さが厚くなるととも に、 不均一になり、 その結果、 機械的物性が不均一となってしまうことにな る。  Therefore, the thickness of the thermosetting resin sprayed on the mold becomes thicker and non-uniform, and as a result, the mechanical properties become non-uniform.
また、 旋回方向のベクトルとオリフィス出口方向へのベクトルに力が分散 されるために、 十分な旋回力を得るためには、 噴霧のためにノズルに連結さ れる送液ポンプにも負担がかかることになり、 装置の寿命などにも影響を及 ぼすことになる。  In addition, since the force is dispersed between the vector in the swirling direction and the vector in the direction toward the orifice outlet, in order to obtain sufficient swirling force, a burden is imposed on the liquid feed pump connected to the nozzle for spraying. This affects the life of the equipment.
このような問題は、 自動車のダッシュボード、 すなわちインストルメント パネルなどの自動車内装装飾品の分野においては、 薄く、 機械的強度が求め 'られ、 大量生産が求められていることから特に影響が大きいものである。 本発明は、 このような現状に鑑み、 渦流発生の効率が良く、 噴霧される熱 硬化性榭脂の噴霧パターンの広がりが大きく、 しかも、 霧化された液滴が小 さく、 気泡の巻き込みも少なく、 金型上に熱硬化性樹脂を噴霧することがで き、 その結果、 薄く、 均一で、 機械的強度に優れた熱硬化性樹脂成形品を得 ることができるスプレーノズルチップ、 およびそのノズルチップを用いた熱 硬化性樹脂の製造方法を提供することを目的とする。 発明の開示 本発明は、 前述したような従来技術における課題及び目的を達成するため に発明なされたものであって、 本発明のスプレーノズルチップは、 金型上に 熱硬化性榭脂を噴霧することによって、 金型上に熱硬化性樹脂を成形するェ アレススプレー成形方法に用いるスプレーノズルチップであって、 Such problems are particularly significant in the field of car dashboards, that is, in the field of car interior decorations such as instrument panels, because they are required to be thin, have high mechanical strength, and are required to be mass-produced. It is. In view of the above situation, the present invention has a high efficiency of eddy current generation, a large spread of a spray pattern of a thermosetting resin to be sprayed, and a small atomized droplet and entrapment of bubbles. A spray nozzle tip capable of spraying a thermosetting resin onto a mold in a small amount, resulting in a thin, uniform, thermosetting resin molded product having excellent mechanical strength; and An object of the present invention is to provide a method for producing a thermosetting resin using a nozzle tip. Disclosure of the invention The present invention has been made in order to achieve the above-mentioned problems and objects in the prior art, and the spray nozzle tip of the present invention is characterized by spraying a thermosetting resin on a mold. A spray nozzle tip used in an airless spray molding method for molding a thermosetting resin on a mold,
前記スプレーノズルチップが、 前記熱硬化性樹脂の流路が形成されたケー シング本体と、  A case body in which the spray nozzle tip is formed with a flow path of the thermosetting resin;
前記ケーシング本体の噴霧開口部に設けられたォリフィス部と、 前記ォリフィス部の噴霧開口部側と反対側に設けられたコア部と、 前記オリフィス部とコア部との間に形成され、 前記オリフィス部のオリフ イス出口と連通する渦流形成室とを備え、  An orifice portion provided at a spray opening of the casing body; a core portion provided at a side opposite to the spray opening side of the orifice portion; and an orifice portion formed between the orifice portion and the core portion. Vortex forming chamber communicating with the orifice outlet of
前記オリフィス部には、 オリフィス出口の軸線に対して垂直な方向に、 か つ前記渦流形成室の内周壁に接線方向に連通する旋回溝が形成され、 前記渦流形成室が、 オリフィス出口に向かって、 漸次その径が減少する円 錐形状であることを特徴とする。  A swirl groove is formed in the orifice portion in a direction perpendicular to the axis of the orifice outlet and tangentially communicating with the inner peripheral wall of the swirl flow forming chamber, and the swirl flow forming chamber moves toward the orifice outlet. It is characterized in that it has a conical shape whose diameter gradually decreases.
また、 本発明の熱硬化性樹脂の製造方法は、 スプレーノズルチップを用い て、 金型上に熱硬化性樹脂を噴霧することによって、 金型上に熱硬化性樹脂 を成形するエアレススプレー成形方法を用いた熱硬化性樹脂の製造方法であ つて、  In addition, the method for producing a thermosetting resin of the present invention is an airless spray molding method for forming a thermosetting resin on a mold by spraying the thermosetting resin on the mold using a spray nozzle tip. A method for producing a thermosetting resin using
前記スプレーノズルチップが、 前記熱硬化性樹脂の流路が形成されたケー シング本体と、  A case body in which the spray nozzle tip is formed with a flow path of the thermosetting resin;
前記ケーシング本体の噴霧開口部に設けられたォリフィス部と、 前記ォリフィス部の噴霧開口部側と反対側に設けられたコア部と、 前記オリフィス部とコア部との間に形成され、 前記オリフィス部のオリフ イス出口と連通する渦流形成室とを備え、 An orifice portion provided at a spray opening of the casing body; a core portion provided at a side opposite to the spray opening side of the orifice portion; and an orifice portion formed between the orifice portion and the core portion. Orifice A swirl formation chamber communicating with the chair outlet,
前記オリフィス部には、 オリフィス出口の軸線に対して垂直な方向に、 カ つ前記渦流形成室の内周壁に接線方向に連通する旋回溝が形成され、  A swirl groove is formed in the orifice portion in a direction perpendicular to the axis of the orifice outlet and tangentially communicates with the inner peripheral wall of the swirl flow forming chamber.
前記渦流形成室が、オリフィス出口に向かって、漸次その径が減少する円錐 形状であることを特徴とする。  The swirling flow forming chamber has a conical shape whose diameter gradually decreases toward the orifice outlet.
このように構成することによって、熱硬化性樹脂が、ケーシング本体の流路 からオリフィス部に形成された旋回溝を介して、渦流形成室に流入することに よって、渦流形成室内で渦流が発生して、オリフィス部のオリフィス出口から 予め加熱された金型表面に熱硬化性樹脂が略釣鐘状に均一に嘖霧され、熱硬化 性樹脂成形品が得られる。  With this configuration, the thermosetting resin flows from the flow passage of the casing body into the swirl flow forming chamber through the swirl groove formed in the orifice portion, thereby generating a swirl flow in the swirl flow forming chamber. Thus, the thermosetting resin is uniformly sprayed in a bell shape on the surface of the preheated mold from the orifice outlet of the orifice portion, and a thermosetting resin molded product is obtained.
この際に、旋回溝が、 オリフィス出口の軸線に対して垂直な方向に、 かつ渦 流形成室の内周壁に接線方向に連通するように形成されているので、同一平面 内で熱硬化性樹脂が旋回するように旋回力が発生することになる。  At this time, the swirl groove is formed so as to communicate in a direction perpendicular to the axis of the orifice outlet and tangentially with the inner peripheral wall of the swirl flow forming chamber, so that the thermosetting resin is in the same plane. The turning force is generated so that the turning of the.
従って、 旋回力が減衰することがないので、 渦流発生の効率が良く、 噴霧さ れる熱硬化性樹脂の噴霧パターンの広がりが大きくなり、 し力 も、霧化された 液滴が小さく、気泡の巻き込みも少なく、金型上に熱硬化性樹脂を噴霧するこ とができる。  Therefore, since the swirling force does not decrease, the efficiency of vortex generation is high, the spread of the spray pattern of the thermosetting resin sprayed becomes large, and the force of the atomized droplets is small, and There is little entrainment, and the thermosetting resin can be sprayed on the mold.
これにより、薄く、均一で、機械的強度に優れた熱硬化性樹脂成形品を得る ことができるとともに、 低吐出量で渦流を発生し噴霧することができるので、 送液ポンプなどの装置に負担がかかることなく、装置の寿命も大幅に向上する。 また、 本努明では、 前記旋回溝の断面積 が、 0 . 0 5〜0 . 5 mm2の範 囲にあることを特徴とする。 As a result, it is possible to obtain a thermosetting resin molded article that is thin, uniform, and excellent in mechanical strength, and it is also possible to generate a vortex with a small discharge amount and spray the liquid, thereby burdening a device such as a liquid feeding pump. However, the life of the device is greatly improved. Further, the present invention is characterized in that the cross-sectional area of the turning groove is in a range of 0.05 to 0.5 mm 2 .
このような範囲に旋回溝の断面積 があれば、 旋回溝部分における圧力が 上昇して、送液ポンプに過大な負荷がかかることがなく、 し力も、渦流形成室 内の旋回力が低下することもなく、スプレーパターンが均一に広がることにな る。 If the cross-sectional area of the swirl groove is within such a range, the pressure in the swirl groove portion will increase, so that an excessive load is not applied to the liquid feed pump, and the force of the swirl flow forming chamber is reduced. The spray pattern is spread evenly without any decrease in the swirling force inside.
また、 本発明では、 前記オリフィス出口の長さ L 1力 0 . 0 1〜0 . 5 m mの範囲にあることを特^¾とする。  Further, in the present invention, it is characterized in that the length L1 of the orifice outlet is in the range of 0.01 to 0.5 mm.
このような範囲にオリフィス出口の長さ 1^があれば、 噴霧パターンが広が りすぎて、液滴が飛散することがなく、 しカも、 渦流形成室内で生じた旋回力 が減衰してしまうことがな!/、。  If the length of the orifice outlet is 1 ^ in such a range, the spray pattern becomes too wide and the droplets do not scatter, and the swirling force generated in the vortex flow formation chamber is attenuated. Don't end up! / ,.
また、 本発明では、 前記オリフィス出口の直径 が、 0 . 1〜2 . O mm, さらに好ましくは、 0 . 2〜1 . 5 mmの範囲にあることを特徴とする。  Further, the present invention is characterized in that the diameter of the orifice outlet is in the range of 0.1 to 2.0 mm, more preferably in the range of 0.2 to 1.5 mm.
このような範囲にオリフィス出口の直径 があれば、オリフィス出口におけ る圧力が増大し、送液ポンプに過大な負荷がかかることがなく、 し力も、 均一 な噴霧パターンが得られる。  If the diameter of the orifice outlet is within such a range, the pressure at the orifice outlet will increase, and no excessive load will be applied to the liquid feed pump, and a uniform spray pattern with a low force will be obtained.
また、 本発明では、前記渦流形成室が、 オリフィス出口に連通する円錐形状 部を備え、 円錐形状部の円錐角度 6iが、 3 0〜1 2 0 °の範囲にあることを特 徵とする。  Further, the present invention is characterized in that the vortex flow forming chamber includes a conical portion communicating with the orifice outlet, and a conical angle 6i of the conical portion is in a range of 30 to 120 °.
このような範囲に円錐形状部の円錐角度 ^があれば、旋回溝で生じた旋回力 が渦流形成室内で比較的減衰されることなく、良好な噴霧パターンが得られる。 また、 本発明では、 前記渦流形成室の高さ hが、 0 . 5〜3 . O mmの範囲 にあることを特徴とする。  If the conical angle of the conical portion is in such a range, a good spray pattern can be obtained without the swirling force generated in the swirl groove being relatively attenuated in the swirl flow forming chamber. Further, in the present invention, the height h of the vortex forming chamber is in the range of 0.5 to 3.0 mm.
このような範囲に渦流形成室の高さ hがあれば、渦流形成室が小さくなつて 渦流形成室内での液の整流効果が低減することがないので、均一な嘖霧パター ンが得られることになるとともに、渦流形成室が必要以上に大きくなって旋回 溝で得られた旋回力が減衰し、噴霧パターンの広がりが小さくなることもない。 また、 本発明では、 前記旋回溝のコア部と重なる長さ L。が、 0 . 5 mm以 上、 より好ましくは、 0 . 5〜3 . O mmの範囲にあることを特徴とする。 このような範囲に旋回溝のコア部と重なる長さ があれば、 旋回溝内で混 合液の流れが整い、充分な旋回強度が得られるとともに、旋回溝部分における 圧力が上昇し、 送液ポンプに過大な負荷がかかることがない。 If the height h of the vortex formation chamber is in such a range, the rectification effect of the liquid in the vortex formation chamber will not be reduced because the size of the vortex formation chamber will be small, and a uniform mist pattern will be obtained. With this, the swirl forming chamber becomes unnecessarily large and the swirling force obtained in the swirl groove is attenuated, so that the spread of the spray pattern is not reduced. Further, in the present invention, the length L overlapping the core portion of the turning groove. Is less than 0.5 mm Above, more preferably, in the range of 0.5 to 3.0 mm. If the length of the swirl groove overlaps with the core in such a range, the flow of the mixed liquid in the swirl groove is adjusted, sufficient swirl strength is obtained, and the pressure in the swirl groove increases, and The pump is not overloaded.
また、 本発明では、 1〜6本の旋回溝が形成されていることを特徴とする。 このような範囲に旋回溝があれば、各溝からの流れが互いに干渉することが なく、 渦流形成室内の液の流れが整い、 均一な噴霧パターンが得られる。 また、 本発明では、 前記オリフィス部と、 コア部と、 ケーシング本体と力 着脱自在に構成されていることを特徴とする。  Further, the present invention is characterized in that 1 to 6 turning grooves are formed. If there is a swirl groove in such a range, the flow from each groove does not interfere with each other, the flow of the liquid in the vortex forming chamber is adjusted, and a uniform spray pattern can be obtained. Further, the present invention is characterized in that the orifice portion, the core portion, and the casing main body are configured to be detachably attachable to each other.
このように、 オリフィス部と、 コア部と、 ケーシング本体とが、 着脱自在に 構成されているので、 これらをノズル本体から取り外すことによって、 ノズノレ チップ内の洗浄が容易になる。  As described above, since the orifice portion, the core portion, and the casing main body are configured to be detachable, by removing them from the nozzle main body, the inside of the nose tip can be easily cleaned.
また、本発明では、前記ォリフィス出口から噴霧される液滴の平均粒子径( A S TM- E 7 9 9 - 9 2 ) 9 5 μπι以下の範囲にあることを特徴とする。 このような範囲にオリフィス出口から嘖霧される液滴の平均粒子径があれ ば、 金型上で気泡を巻き込むことが少なく、 機械物性が低下することもない。 また、金型上に塗布された熱硬化性樹脂の厚み分布も小さくなり、 同一成形物 内における機械物性が均一になる。 さらに、 液滴が飛散しないので、 生産性が 向上するとともに、 作業環境の悪化を招くこともない。  Further, the present invention is characterized in that the droplets sprayed from the orifice outlet have an average particle diameter (ASTM-E799-92) of 95 μπι or less. If the average particle size of the droplet sprayed from the orifice outlet falls within such a range, air bubbles are less likely to be trapped on the mold, and the mechanical properties are not reduced. In addition, the thickness distribution of the thermosetting resin applied on the mold is reduced, and the mechanical properties in the same molded product become uniform. Furthermore, since the droplets are not scattered, the productivity is improved and the working environment is not deteriorated.
また、本発明の熱硬化性樹脂の製造方法は、前記熱硬化性樹脂が、 3〜2 0 c c / s e cの吐出量で金型上に噴霧されることを特徴とする。  Further, the method for producing a thermosetting resin of the present invention is characterized in that the thermosetting resin is sprayed onto a mold at a discharge rate of 3 to 20 cc / sec.
このような範囲に熱硬化性樹脂の吐出量があれば、生産性が低下することも なく、 金型に樹月旨が均一に塗布できることになる。  If the ejection amount of the thermosetting resin falls within such a range, the productivity can be reduced and the luster can be uniformly applied to the mold.
また、本発明の熱硬化性樹脂の製造方法は、前記熱硬化性樹脂が、少なくと もポリイソシァネート化合物と、活性水素化合物からなる熱硬化ポリウレタン 樹脂であることを特徴とする。 Further, the method for producing a thermosetting resin of the present invention, wherein the thermosetting resin is at least Is a thermosetting polyurethane resin comprising a polyisocyanate compound and an active hydrogen compound.
これにより、 例えば、 自動車のダッシュボード、 すなわちインストルメント パネルなどの自動車内装装飾品の皮膜製品や椅子の座面を形成する人工皮革 などの一般および事務用品の材料として、均一で薄く、機械的強度に優れたポ リウレタン成形品を得ることができる。 図面の簡単な説明 図 1は、 本発明のノズルチップの実施例の縦断面図である。  This makes it uniform, thin, and mechanically strong, for example, as a material for automotive dashboards, i.e., film products for automotive interior decorations such as instrument panels, and artificial and general materials such as artificial leather that forms the seat surface of chairs. It is possible to obtain a polyurethane molded product excellent in quality. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view of an embodiment of the nozzle tip of the present invention.
図 2は、図 1のノズルチップの A方向(塗布方向)から見た端面図である。 図 3は、 図 1のノズルチップの B方向 (塗布方向と反対側の方向) から見 た端面図である。  FIG. 2 is an end view of the nozzle tip of FIG. 1 as viewed from the direction A (coating direction). FIG. 3 is an end view of the nozzle tip of FIG. 1 viewed from the direction B (the direction opposite to the application direction).
図 4は、 図 1のノズルチップのオリフィス部の詳細を示す部分拡大図であ る。  FIG. 4 is a partially enlarged view showing details of an orifice portion of the nozzle tip of FIG.
図 5は、 図 1のノズルチップの C一 C線でのオリフィス部の部分拡大図で ある。 .  FIG. 5 is a partially enlarged view of the orifice portion along the line C-C of the nozzle tip of FIG. .
図 6 (A) は、従来のスプレーノズルの縦断面図、 図 6 ( B ) は、 図 6 (A) の D— D方向の部分拡大図である。  FIG. 6 (A) is a longitudinal sectional view of a conventional spray nozzle, and FIG. 6 (B) is a partially enlarged view in the DD direction of FIG. 6 (A).
図 7は、 本発明の実施例での噴霧角度を模式的に示す図である。  FIG. 7 is a diagram schematically showing the spray angle in the example of the present invention.
図 8は、 比較例のノズルチップ全体の縦断面図である。  FIG. 8 is a longitudinal sectional view of the entire nozzle tip of the comparative example.
図 9は、 比較例のノズルチップのケーシング本体の縦断面図である。  FIG. 9 is a longitudinal sectional view of a casing body of a nozzle tip of a comparative example.
図 1 0は、 比較例のノズルチップのコア部の縦断面図である。  FIG. 10 is a longitudinal sectional view of a core portion of a nozzle tip of a comparative example.
図 1 1は、 比較例のノズルチップの図 5と同様な部分拡大図である。 発明を実施するための最良の形態 以下、 本発明の実施の形態 (実施例) を図面に基づいてより詳細に説明す る。 FIG. 11 is a partially enlarged view similar to FIG. 5 of the nozzle tip of the comparative example. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments (examples) of the present invention will be described in more detail with reference to the drawings.
図 1は、 本発明のノズルチップの実施例の縦断面図、 図 2は、 図 1のノズ ルチップの A方向 (塗布方向) から見た端面図、 図 3は、 図 1のノズルチッ プの B方向 (塗布方向と反対側の方向) から見た端面図、 図 4は、 図 1のノ ズルチップのォリフィス部の詳細を示す部分拡大図、 図 5は、 図 1のノズノレ チップの C一 C線でのオリフィス部の部分拡大図である。  FIG. 1 is a longitudinal sectional view of an embodiment of the nozzle tip of the present invention, FIG. 2 is an end view of the nozzle tip of FIG. 1 viewed from the direction A (application direction), and FIG. 3 is B of the nozzle tip of FIG. Fig. 4 is a partially enlarged view showing the details of the orifice part of the nozzle tip in Fig. 1, and Fig. 5 is a C-C line of the tip in Fig. 1. FIG. 4 is a partially enlarged view of an orifice portion in FIG.
図 1〜図 3において、 1 0は、全体で本発明のノズルチップを示している。 ノズルチップ 1 0は、 図 1に示したように、 ケーシング本体 1 2を備えて おり、 このケーシング本体 1 2には、 その内部に熱硬化性樹脂の流路 1 4が 形成されている。 この流路 1 4は、 図示しないが、 別途熱硬化性樹脂を送液 する送液ポンプに接続されている。 また、 ケーシング本体 1 2の基端部 1 1 は、 細径になっており、 雄螺子が形成されており、 これにより、 図示しない ノズル本体に着脱自在に装着できるように構成されている。  In FIGS. 1 to 3, 10 indicates the nozzle tip of the present invention as a whole. As shown in FIG. 1, the nozzle tip 10 includes a casing body 12, and a thermosetting resin flow path 14 is formed inside the casing body 12. Although not shown, the flow path 14 is connected to a liquid feed pump for separately feeding a thermosetting resin. The base end 11 of the casing body 12 has a small diameter and is formed with a male screw, so that the casing body 12 can be detachably attached to a nozzle body (not shown).
ケーシング本体 1 2の先端部 1 6には、 上下に開口部 1 8が設けられてお り、 図 1において、 下方側 (塗布側) 、 噴霧開口部 2 0となっている。 噴 霧開口部 2 0には、 フランジ 2 2が内方に突設されており、 これにより、 段 部 2 4が形成されている。 この段部 2 4内に、 オリフィス部 2 6が着脱自在 に嵌着されている。  An opening 18 is provided at the top and bottom of the tip end 16 of the casing body 12, and in FIG. 1, the spray opening 20 is located on the lower side (application side). A flange 22 protrudes inward from the spray opening 20, thereby forming a step 24. An orifice portion 26 is detachably fitted in the step portion 24.
一方、 開口部 1 8の塗布側と反対側、 すなわち、 オリフィス部 2 6の噴霧 開口部側と反対側には、 コア部 2 8が配置されている。 コア部 2 8は、 図 1に示したように、 コア部本体 3 0と、 このコア部本体 よりも大径の嵌合部 3 2とから構成されている。 On the other hand, a core portion 28 is disposed on the side opposite to the application side of the opening 18, that is, on the side opposite to the spray opening side of the orifice 26. As shown in FIG. 1, the core portion 28 includes a core portion main body 30 and a fitting portion 32 having a larger diameter than the core portion main body.
嵌合部 3 2の外周には、 雄螺子 3 2 aが螺設されており、 開口部 1 8の塗 布側と反対側の内壁 3 4に形成された雌螺子 3 4 aと螺合することにより、 コア部 2 8が、 ケーシング本体 1 2の開口部 1 8に着脱自在に装着できるよ うになっている。  A male screw 32 a is screwed around the outer periphery of the fitting portion 32, and is screwed with a female screw 34 a formed on the inner wall 34 opposite to the coating side of the opening 18. Thus, the core portion 28 can be detachably attached to the opening 18 of the casing body 12.
なお、 図 3に示したように、 コア部本体 3 0には、 六角形状の工具係合用 凹部 3 6が形成されており、 この工具係合用凹部 3 6に工具を係止すること により、 コア部 2 8を取り外せるようになつている。  As shown in FIG. 3, a hexagonal tool engaging recess 36 is formed in the core portion main body 30. By locking the tool in the tool engaging recess 36, the core Part 28 can be removed.
なお、 このように、 オリフィス部 2 6と、 コア部 2 8と、 ケーシング本体 1 2とカ 着脱自在に構成されていることによって、 ノズルチップ内の洗浄 が容易になる。 特に、 熱硬化性樹脂が、 少なくともポリイソシァネート化合 物と、 活性水素化合物からなる熱硬化ポリウレタン樹脂である場合に、 反応 が速く、 ノズル内で硬化したポリウレタン樹脂が詰まりやすいので、 ノズル チップを洗浄するのに好適である。  In addition, since the orifice portion 26, the core portion 28, and the casing main body 12 are detachably attached to the nozzle tip, the inside of the nozzle tip can be easily cleaned. In particular, when the thermosetting resin is a thermosetting polyurethane resin composed of at least a polyisocyanate compound and an active hydrogen compound, the reaction is fast, and the cured polyurethane resin in the nozzle is easily clogged. Suitable for washing.
この場合、 オリフィス部 2 6と、 コア部 2 8とは、 別々の部材で作製する こともできるが、 一体的に形成することも可能である。  In this case, the orifice portion 26 and the core portion 28 can be made of separate members, but can also be formed integrally.
また、 このコア部 2 8のコア部本体 3 0は、 ケーシング本体 1 2の開口部 1 8の内径よりも小さい外径を有しており、 これにより、 図 1に示したよう に、 開口部 1 8内に、 環状の供給室 3 8が形成されている。  Further, the core body 30 of the core 28 has an outer diameter smaller than the inner diameter of the opening 18 of the casing body 12, and as a result, as shown in FIG. Inside 18, an annular supply chamber 38 is formed.
オリフィス部 2 6は、オリフィス部 2 6とコア部本体 3 0との間に、図 1、 図 2、 およぴ図 4に示したように、 オリフィス部 2 6の塗布側に形成された オリフィス出口 4 4と連通する渦流形成室 4 0が形成されている。  The orifice portion 26 is formed between the orifice portion 26 and the core body 30 on the application side of the orifice portion 26, as shown in FIGS. 1, 2, and 4. A swirl flow forming chamber 40 communicating with the outlet 44 is formed.
この渦流形成室 4 0の内径は、 コア部本体 3 0の外径よりも小さくなつて いる。 また、 渦流形成室 4 0は、 コア部本体 3 0側の基端部 4 2と、 オリフ イス出口 4 4に向かって漸次その直径が減少するように形成された円錐形状 部 4 6とを備えている。 The inner diameter of the vortex forming chamber 40 must be smaller than the outer diameter of the core body 30. I have. The swirl flow forming chamber 40 includes a base end 42 on the side of the core body 30 and a conical portion 46 formed so that its diameter gradually decreases toward the orifice outlet 44. ing.
また、 図 1、 図 4および図 5に示したように、 オリフィス部 2 6のコア部 2 8側の端面 4 8には、 オリフィス出口 4 4の軸線 5 0に対して垂直な方向 に、 かつ渦流形成室 4 0の基端部 4 2の内周壁 5 2の円周に対して、 接線方 向に連通する旋回溝 5 4が形成されている。 なお、 この実施例では、 それぞ れ 9 0 °ずつ離間して 4個の旋回溝 5 4が形成されている。  Also, as shown in FIGS. 1, 4 and 5, the end face 48 of the orifice section 26 on the core section 28 side is perpendicular to the axis 50 of the orifice outlet 44, and A swirl groove 54 communicating with the tangential direction is formed in the circumference of the inner peripheral wall 52 of the base end portion 42 of the vortex flow forming chamber 40. In this embodiment, four swirl grooves 54 are formed at intervals of 90 °.
この場合、 旋回溝 5 4の断面形状としては、 本発明の効果を損なわなけれ ば、 どのような形状を有していてもよいが、 例えば、 半円形、 四角形等があ げられる。  In this case, the cross-sectional shape of the turning groove 54 may have any shape as long as the effect of the present invention is not impaired, and examples thereof include a semicircle and a square.
また、 旋回溝 5 4の数、 配置としては、 特に限定されるものではないが、 渦流形成室 4 0内で乱流が生じないようにするのが望ましく、 好ましくは、 1〜6本、 さらに好ましくは、 2〜 5本の範囲にあることが好ましい。 すなわち、 6本より多くなると各旋回溝 5 4からの流れが互いに干渉し、 渦流形成室 4 0内の液の流れが整わず、 均一な噴霧パターンが得られないか らである。 なお、 複数の旋回溝 5 4を形成する場合には、 均等に配置するの が乱流が生じないためには好ましい。  Further, the number and arrangement of the swirl grooves 54 are not particularly limited, but it is preferable that turbulence does not occur in the swirl flow forming chamber 40, and preferably 1 to 6, and Preferably, the number is in the range of 2 to 5. In other words, if the number is more than six, the flows from the swirl grooves 54 interfere with each other, the flow of the liquid in the swirl flow forming chamber 40 is not adjusted, and a uniform spray pattern cannot be obtained. When a plurality of swirling grooves 54 are formed, it is preferable to arrange them evenly in order to prevent turbulence.
また、 図 4に示したように、 各旋回溝 5 4の断面積 力 好ましくは、 0 . 0 5— 0 . 5 mm2, さらに好ましくは、 0 . 0 5〜0 . 3 mm2の範囲 にあるのが好ましい。 Further, as shown in FIG. 4, the cross-sectional area force of each of the turning grooves 54 is preferably in the range of 0.05 to 0.5 mm 2 , more preferably in the range of 0.05 to 0.3 mm 2 . Preferably it is.
すなわち、 旋回溝 5 4の断面積 が、 0 . 0 5 mm2より小さいと、 旋回 溝 5 4の部分における圧力が上昇し、 送液ポンプに過大な負荷がかかるから である。 一方、 旋回溝 5 4の断面積 Aiが、 0 . 5 mm2より大きいと、 渦流 形成室 40内の旋回力が低下し、スプレーパターンが広がらないからである。 さらに、 図 5に示したように、 旋回溝 54がコア部 28のコア部本体 30 と重なる長さ L2が、 0. 5mm以上であることが好ましい。 That is, when the cross-sectional area of the swirl groove 54 is smaller than 0.05 mm2, the pressure in the swirl groove 54 increases and an excessive load is applied to the liquid feed pump. On the other hand, if the cross-sectional area Ai of the turning groove 54 is larger than 0.5 mm2, This is because the swirling force in the forming chamber 40 decreases and the spray pattern does not spread. Furthermore, as shown in FIG. 5, the length L 2 overlapping with the core body 30 of the turning groove 54 is the core portion 28 is preferably not 0. 5 mm or more.
すなわち、 L2力 s0. 5mmより小さいと、 旋回溝 54内で混合液の流れ が整わず、 充分な旋回強度が得られないからである。 That is, if the L2 force s is smaller than 0.5 mm, the flow of the mixed liquid in the swirl groove 54 is not adjusted, and a sufficient swirl strength cannot be obtained.
さらに、 旋回溝 54がコア部 28のコア部本体 30と重なる長さ L2力 0. 5〜3. Ommの範囲にあることが好ましい。 Further, the length L 2 forces overlapping with the core body 30 of the turning groove 54 core portion 28 from 0.5 to 3. It is preferably in the range of Omm.
すなわち、 L2s3. Ommよりも大きいと、 旋回溝 54部分における圧 力が上昇し、 送液ポンプに過大な負荷がかかるからである。 That is, if it is larger than L 2 force s 3. Omm, the pressure in the swirl groove 54 increases, and an excessive load is applied to the liquid feed pump.
さらに、 図 4に示したように、 オリフィス出口 44の長さ L 1力 0. 0 1〜0. 5mm、 さらに好ましくは、 0. 07〜0. 3 mmの範囲にあるこ とが好ましい。  Further, as shown in FIG. 4, the length L1 of the orifice outlet 44 is preferably in the range of 0.01 to 0.5 mm, more preferably 0.07 to 0.3 mm.
すなわち、オリフィス出口 44の長さ Liが、 0. 01mmより小さレヽと、 噴霧パターンが広がりすぎて、 液滴が飛散するからである。 一方、 オリフィ ス出口 44の長さ Li力 0. 5mmより大きいと、 渦流形成室 40内で生 じた旋回力が減衰してしまうからである。  That is, if the length Li of the orifice outlet 44 is smaller than 0.01 mm, the spray pattern becomes too wide and the droplets scatter. On the other hand, if the length Li force of the orifice outlet 44 is larger than 0.5 mm, the swirl force generated in the vortex flow forming chamber 40 is attenuated.
さらに、 図 4に示したように、 渦流形成室 40の高さ hが、 0. 5〜3. Omm、 さらに好ましくは、 0. 5〜2. 0 mmの範囲にあることが好まし レ、。  Further, as shown in FIG. 4, the height h of the vortex forming chamber 40 is preferably in the range of 0.5 to 3.0 mm, more preferably 0.5 to 2.0 mm. .
すなわち、 渦流形成室 40の高さ hが、 0. 5mmよりも短いと、 渦流形 成室 40が小さくなり、 渦流形成室 40内での液の整流効果が低減し、 均一 な噴霧パターンが得られないからである。一方、渦流形成室 40の高さ hが、 3. Ommよりも大きいと、 渦流形成室 40が必要以上に大きくなり、 旋回 溝 54で得られた旋回力が減衰し、 噴霧パターンの広がりが小さくなるから である。 That is, if the height h of the vortex forming chamber 40 is shorter than 0.5 mm, the vortex forming chamber 40 becomes smaller, the liquid rectification effect in the vortex forming chamber 40 is reduced, and a uniform spray pattern is obtained. It is not possible. On the other hand, if the height h of the vortex forming chamber 40 is larger than 3.Omm, the vortex forming chamber 40 becomes unnecessarily large, the swirling force obtained in the swirl groove 54 is attenuated, and the spread of the spray pattern is reduced. Because It is.
また、 図 4に示したように、 渦流形成室 40の円錐形状部 46の円錐角度 θιが、 好ましくは、 30〜1 20°、 さらに好ましくは、 60〜: 1 1 0°の範 囲にあることが好ましい。'  In addition, as shown in FIG. 4, the cone angle θι of the conical portion 46 of the vortex flow forming chamber 40 is preferably in the range of 30 to 120 °, and more preferably in the range of 60 to 110 °. Is preferred. '
すなわち、 円錐形状部 46の円錐角度 Θ];が、 30〜 1 20。の範囲にある ことにより、 旋回溝 54で生じた旋回力が渦流形成室 40内で比較的減衰さ れることがなく、 良好な嘖霧パターンが得られるからである。  That is, the cone angle of the conical portion 46 Θ]; With this range, the swirling force generated in the swirl groove 54 is not relatively attenuated in the swirl flow forming chamber 40, and a good mist pattern can be obtained.
また、 図 4および図 5に示したように、 オリフィス出口 44の直径 φι力 0. 1〜2. Omm、 さらに好ましくは、 0. 2〜1. 5mmの範囲にある ことが好ましい。 As shown in FIGS. 4 and 5, the diameter φι force of the orifice outlet 44 is preferably in the range of 0.1 to 2.0 mm, more preferably in the range of 0.2 to 1.5 mm.
すなわち、オリフィス出口 44の直径 φιが、 0. 1mmより小さくなると、 オリフィス出口 44における圧力が増大し、 送液ポンプに過大な負荷がかか るからである。 一方、 オリフィス出口 44の直径 φιが、 2. Ommより大き くになると均一な嘖霧パターンが得られないからである。 That is, when the diameter φι of the orifice outlet 44 becomes smaller than 0.1 mm, the pressure at the orifice outlet 44 increases, and an excessive load is applied to the liquid feed pump. On the other hand, if the diameter φι of the orifice outlet 44 is larger than 2. Omm, a uniform spray pattern cannot be obtained.
さらに、 この場合、 オリフィス出口 44から噴霧される液滴の平均粒子径 (AS TM-E 799 -92) が 95pm以下、 さらに好ましくは、 20〜 95μηιの範囲にあることが好ましい。  Further, in this case, the average particle diameter (AS TM-E 799 -92) of the droplet sprayed from the orifice outlet 44 is preferably 95 pm or less, more preferably in the range of 20 to 95 μηι.
すなわち、 オリフィス出口 44から噴霧される液滴の平均粒子径が、 95 μπιより大きくなると、 金型上で気泡を卷き込みやすくなり、 機械物性が低 下するからである。 また、 金型上に塗布されたポリウレタン樹脂の厚み分布 も大きくなり、 同一成形物内における機械物性が不均一になるからである。 さらに、 オリフィス出口 44から噴霧される液滴の平均粒子径が 2 Ομπι 未満になると、 液滴が飛散し、 生産性が低下するのと同時に作業環境の悪化 を招くからである。 なお、 この場合、 本明細書において、 液滴の平均粒子径としては、 オリフ イス出口 44から 10 c mの箇所において、 レーザー光散乱方式粒度分布測 定装置を用いて、 AS TM— E 799- 92に準拠して行った測定方法で測 定した値を示している。 That is, if the average particle diameter of the droplets sprayed from the orifice outlet 44 is larger than 95 μπι, bubbles are likely to be wound on the mold and the mechanical properties are reduced. In addition, the thickness distribution of the polyurethane resin applied on the mold also becomes large, and the mechanical properties within the same molded product become non-uniform. Furthermore, if the average particle diameter of the droplet sprayed from the orifice outlet 44 is less than 2 μμπι, the droplet scatters, which lowers the productivity and worsens the working environment. In this case, in this specification, the average particle diameter of the liquid droplet is measured at 10 cm from the orifice outlet 44 by using a laser light scattering type particle size distribution measuring apparatus as described in ASTM-E799-92. It shows the value measured by the measurement method performed according to.
さらに、 熱硬ィ匕性樹脂を、 好ましくは、 3〜 20 c c / s e c、 さらに好 ましくは、 5〜1 5 c c/s e cの吐出量で金型上に噴霧されるのが望まし い。  Further, it is desirable that the thermosetting resin is sprayed onto a mold at a discharge rate of preferably 3 to 20 cc / sec, more preferably 5 to 15 cc / sec.
すなわち、 3 c c/s e cより小さくなると、 生産性が低下し、 逆に、 2 0 c c/s e cより大きくなると金型に樹脂が均一に塗布できなくなるから である。  That is, if it is smaller than 3 cc / sec, the productivity is lowered, and if it is larger than 20 cc / sec, the resin cannot be uniformly applied to the mold.
また、 本発明において用いられる熱硬化性樹脂 (混合液) としては、 少な くともポリイソシァネート化合物 (A)、活性水素化合物 (B) からなる熱硬 化ポリウレタン樹脂組成物であることが好ましい。  The thermosetting resin (mixed liquid) used in the present invention is preferably a thermosetting polyurethane resin composition comprising at least a polyisocyanate compound (A) and an active hydrogen compound (B). .
ポリイソシァネート化合物 (A)、 活性水素化合物 (B) としては、 通常熱 硬化性ポリウレタン樹脂の製造に用いられるものであればいずれも使用でき る。  As the polyisocyanate compound (A) and the active hydrogen compound (B), any of those generally used in the production of thermosetting polyurethane resins can be used.
しかしながら、 この場合、  However, in this case,
•少なくともポリイソシァネート化合物 (A) を含む、 N CO基を含有した イソシァネート成分 (A液) と、  • An isocyanate component (solution A) containing at least a polyisocyanate compound (A) and containing NCO groups;
·少なくとも活性水素化合物 (B) を含む、 活性水素を含有したポリオール 成分 (B液) と、  · Active hydrogen-containing polyol component (solution B) containing at least active hydrogen compound (B);
を混合させた熱硬化性樹脂組成物を用レ、るのが望ましい。 It is desirable to use a thermosetting resin composition in which is mixed.
この場合には、 この熱硬化性樹脂組成物の粘度が、 好ましくは、 1 0〜5 00 OmP a · s、 さらに好ましくは、 15〜2000mP a . sの範囲に あるものが好ましい。 In this case, the viscosity of the thermosetting resin composition is preferably in the range of 10 to 500 OmPas, more preferably 15 to 2000 mPas. Some are preferred.
すなわち、 熱硬化性樹脂組成物の粘度が 1 0 m P a · sより小さくなると 液滴の飛散量が多くなり、 作業環境の低下とともに生産性が低下するからで ある。 一方、 熱硬化性樹脂組成物の粘度が 5 0 0 0 m P a · sより大きくな ると圧力が増大し、 送液ポンプに過大な負荷がかかるからである。  That is, when the viscosity of the thermosetting resin composition is less than 10 mPa · s, the amount of the scattered droplets increases, and the productivity decreases as the working environment decreases. On the other hand, if the viscosity of the thermosetting resin composition is greater than 500 mPa · s, the pressure increases and an excessive load is applied to the liquid sending pump.
また、 イソシァネート成分 (A液) としては、 通常の通常熱硬化性ポリウ レタン樹脂の製造に用いられるものであればいずれも使用できる。  Further, as the isocyanate component (Solution A), any one can be used as long as it is used in the production of ordinary ordinary thermosetting polyurethane resin.
この場合、 イソシァネート成分 (A液) としては、 例示すれば、 • トリ レンジイソシァネート(TDI)、 ジフエニルメタンジイソシァネート (MDI)、 ポリメ リック MDI(PMDI)、 キシリ レンジイソシァネート(XDI)、 テ トラメチ^^キシリ レンジイソシァネート (TMXDI)、 1,5-ナフタレンジイソ シァネート (NDI)等の芳香族ポリイソシァネート、  In this case, as the isocyanate component (Solution A), for example, • Tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymeric MDI (PMDI), xylylene diisocyanate ( XDI), aromatic polyisocyanates such as tetramethyl ^^ xylylene diisocyanate (TMXDI), 1,5-naphthalenediisocyanate (NDI),
'へキサメチレンジイソシァネート (HDI)等の脂肪族ポリイソシァネート、 'イソホロンジィソシァネート (IPDI)、 水添 XDI(H6XDI)、 水添トリレンジ イソシァネート、 水添 MDI(H12MDI)、 等の脂環族ポリイソシァネート、 'Aliphatic polyisocyanates such as hexamethylene diisocyanate (HDI),' Isophorone diisocyanate (IPDI), hydrogenated XDI (H6XDI), hydrogenated tolylene diisocyanate, hydrogenated MDI (H12MDI), etc. An alicyclic polyisocyanate,
•上記ィソシァネートのカルポジィミ ド変性ポリイソシァネート、 イソシァ ヌレート変性体 • Carposimid-modified polyisocyanate and isocyanurate-modified isocyanate
等があげられる。 And the like.
これらは単独で用いても複数併用してもよい。 また、 必要に応じて、 活性 水素化合物により一部ウレタン変性したァダクト体、 プレボリマーとして用 いることもできる。  These may be used alone or in combination. Further, if necessary, it can also be used as an adduct or a prepolymer which is partially urethane-modified with an active hydrogen compound.
一方、 ポリオール成分 (B液) としては、 通常の通常熱硬化性ポリウレタ ン樹脂の製造に用いられるものであればいずれも使用できる。  On the other hand, as the polyol component (liquid B), any one can be used as long as it is used in the production of ordinary ordinary thermosetting polyurethane resin.
このようなポリオール成分 (B液) としては、 例えば、 少なくともポリウ レタン樹脂のソフトセグメントを形成する長鎖ポリオールからなり、 必要に 応じて、 ハードセグメントを形成する鎖延長剤、 架橋点を形成する架橋剤等 を用いることができる。 これらは単独で用いても複数併用してもよレ、。 さらに、 本発明で用いるポリウレタン樹脂組成物には、 さらに必要に応じ て、 安定剤、 ウレタン化触媒、 顔料、 チクソトロープ增粘剤、 消泡剤、 難燃 剤等の添加剤を含有することができる。 これらの添加剤は本発明の効果を損 なわなければ、 イソシァネート成分 (A液)、 ポリオール成分 (B液) のいず れに含有しても良い。. As such a polyol component (Solution B), for example, at least It is composed of a long-chain polyol that forms a soft segment of a urethane resin, and a chain extender that forms a hard segment, a crosslinking agent that forms a crosslinking point, and the like can be used as necessary. These may be used alone or in combination. Further, the polyurethane resin composition used in the present invention may further contain, if necessary, additives such as a stabilizer, a urethanization catalyst, a pigment, a thixotropic agent, an antifoaming agent, and a flame retardant. . These additives may be contained in any of the isocyanate component (Solution A) and the polyol component (Solution B) as long as the effects of the present invention are not impaired. .
このように構成される本発明のノズルチップ 1 0では、 予めミキサーなど で混合された熱硬化性樹脂の混合液が、 ケーシング本体 1 2の流路 1 4から オリフィス部 2 6に形成された旋回溝 5 4を介して、 渦流形成室 4 0に流入 する。  In the nozzle tip 10 of the present invention configured as described above, the mixed liquid of the thermosetting resin mixed in advance by the mixer or the like is formed by the swirl formed in the orifice portion 26 from the flow path 14 of the casing body 12. The fluid flows into the vortex forming chamber 40 through the groove 54.
これによつて、 渦流形成室 4 0内で渦流が発生して、 オリフィス部 2 6の オリフィス出口 4 4から、 予め加熱された金型表面に熱硬化性樹脂が略釣鐘 状に均一に噴霧され、 熱硬化性樹脂成形品が得られる。  As a result, a vortex is generated in the vortex forming chamber 40, and the thermosetting resin is sprayed almost uniformly in a bell shape from the orifice outlet 44 of the orifice part 26 onto the preheated mold surface. A thermosetting resin molded product is obtained.
この際に、 旋回溝 5 4が、 オリフィス出口 4 4の軸線 5 0に対して垂直な 方向に、 かつ渦流形成室 4 0の内周壁 5 2の円周に対して接線方向に連通す るように形成されているので、 同一平面内で熱硬化性樹脂が旋回するように 旋回力が発生することになる。  At this time, the swirl groove 54 communicates in a direction perpendicular to the axis 50 of the orifice outlet 44 and tangentially to the circumference of the inner peripheral wall 52 of the swirl flow forming chamber 40. Therefore, a turning force is generated so that the thermosetting resin turns in the same plane.
従って、 旋回力が減衰することがないので、 渦流発生の効率が良く、 嘖霧 される熱硬化性樹脂の嘖霧パターンの広がりが大きくなり、 しかも、 霧化さ れた液滴が小さく、 気泡の巻き込みもなく、 金型上に熱硬化性樹脂を噴霧す ることができる。  Therefore, since the swirling force does not decrease, the efficiency of eddy current generation is high, the spread of the mist pattern of the thermosetting resin to be sprayed becomes large, and the atomized droplets are small and bubbles are generated. The thermosetting resin can be sprayed onto the mold without any entrainment.
これにより、 薄く、 均一で、 機械的強度に優れた熱硬化性樹脂成形品を得 ることができるとともに、 低吐出量で渦流を発生し噴霧することができるの で、 送液ポンプなどの装置に負担がかかることなく、 装置の寿命も大幅に向 上することになる。 As a result, a thin, uniform, thermosetting resin molded product with excellent mechanical strength is obtained. In addition, the vortex can be generated and sprayed at a low discharge rate, so that no load is placed on the equipment such as the liquid feed pump, and the life of the equipment is greatly improved.
また、 本願において 「成形品」 とは、 金型上に熱硬化性樹脂を噴霧するこ とによって、 金型上に熱硬化性樹脂を成形するエアレススプレー成形方法に より得られる熱硬化性樹脂であり、 用途により特定の形状と厚みを有するも のである。  In the present application, the “molded article” is a thermosetting resin obtained by an airless spray molding method in which a thermosetting resin is sprayed on a mold to form the thermosetting resin on the mold. Yes, it has a specific shape and thickness depending on the application.
例えば、車両、船舶、航空機等の輸送体の内装装飾部品、店舗、オフィス、 その他の建築内装部品、 一般および事務用家具などが挙げられる。  For example, interior decoration parts of vehicles such as vehicles, ships, and aircrafts, stores, offices, other architectural interior parts, and general and office furniture.
これらの成形品の用途、 形状おょぴ厚みは、 本発明の効果を損なわない範 囲であれば特に限定されないが、 例えば車両用の内装装飾部品である自動車 計器盤 (インストルメントパネル) 等のスキン層は、 0 . 3〜2 . 0 mm程 度の厚みを有し、 かつ均一な機械物性を有する樹脂が要求されるため、 本発 明のスプレーノズノレをもちいた成形方法によつて得られる成形品が好適に用 いられる。  The use, shape, and thickness of these molded products are not particularly limited as long as the effects of the present invention are not impaired, but, for example, an automobile instrument panel (instrument panel), which is an interior decorative part for a vehicle, and the like. Since the skin layer is required to have a thickness of about 0.3 to 2.0 mm and a resin having uniform mechanical properties, it is obtained by a molding method using the spray nozzle of the present invention. The molded article to be used is preferably used.
また、 一般ぉよび事務用家具である椅子の座面を形成する人口皮革等もま た、 0 . 5〜5 . 0 mm程度厚みを有し、 かつ均一な機械物性を有する樹脂 が要求されるため、 本発明のスプレーノズルをもちいた成形方法によって得 られる成形品が好適に用いられる。 実施例  In addition, artificial leather and the like forming the seating surface of chairs, which are general and office furniture, are also required to have a resin thickness of about 0.5 to 5.0 mm and uniform mechanical properties. Therefore, a molded article obtained by the molding method using the spray nozzle of the present invention is suitably used. Example
実施例 1〜 7 Examples 1 to 7
本発明に係るスプレーノズルチップを用い、 下記の条件で熱硬化性ポリゥ レタン組成物を吹付け成形を行なつた。 (1) 測定方法 Using the spray nozzle tip according to the present invention, a thermosetting polyurethane composition was spray-molded under the following conditions. (1) Measurement method
(1-1) 粘度測定方法  (1-1) Viscosity measurement method
ィソシァネート (A液) とウレタン化触媒を添加していない活性水素化合物 (B液) を混合し、 反応温度に 3時間保温した後、 B型粘度計を用いて測定 した。 Isocyanate (Solution A) and an active hydrogen compound (Solution B) to which no urethanation catalyst was added were mixed, kept at the reaction temperature for 3 hours, and measured using a B-type viscometer.
(1-2) 平均粒子径  (1-2) Average particle size
ASTM-E 799 - 92に準じて、 オリフィス出口 44から 1 0 c mの 距離にある液滴の体積平均粒子径を測定した。  According to ASTM-E 799-92, the volume average particle diameter of the droplet at a distance of 10 cm from the orifice outlet 44 was measured.
(1-3) 厚み測定方法  (1-3) thickness measurement method
J I S K7 1 30に準じて成形品の厚みを、 ノギスを用いて測定した。 (1-4) 比重測定方法  The thickness of the molded article was measured using calipers according to JIS K7130. (1-4) Specific gravity measurement method
ミラージュ貿易社製 「水中置換密度測定器 ED—120T」 を用いて成形 品の密度を測定した。  The density of the molded article was measured by using “Underwater displacement density measuring device ED-120T” manufactured by Mirage Trading Co., Ltd.
(2) スプレーノズルチップ  (2) Spray nozzle tip
ノズルチップの仕様を表 1に示す。  Table 1 shows the specifications of the nozzle tip.
(3) 原料の詳細  (3) Details of raw materials
(3-1) イソシァネート (Α液)  (3-1) Isocyanate (Α solution)
多環式脂肪族ポリイソシァネートをポリエーテルポリオールで一部ウレタ ン変性したプレポリマー : NCO=26. 0%、 粘度 = 340 P a · s (2 5°C)、 比重 = 1. 14 (25°C)  Prepolymer in which polycyclic aliphatic polyisocyanate is partially urethane-modified with polyether polyol: NCO = 26.0%, viscosity = 340 Pas (25 ° C), specific gravity = 1.14 ( (25 ° C)
(3-2) 活性水素化合物 (B液)  (3-2) Active hydrogen compound (Solution B)
ポリエーテルポリオール、 鎖延長剤、 顔料、 ウレタン化触媒をあらかじめ 混合し、 100°C、 1 OmmHgの減圧条件で 1時間脱水したレジンプレミ ッタス :平均水酸基価 =287mg— KOH/g、 粘度 = 2000 P a · s (25°C)、 比重二 1. 06 ( 25 °C) Resin pre-mixer pre-mixed with polyether polyol, chain extender, pigment, and urethanization catalyst and dehydrated at 100 ° C and 1 OmmHg under reduced pressure for 1 hour: Average hydroxyl value = 287 mg—KOH / g, viscosity = 2000 Pa · S (25 ° C), Specific gravity 2 1.06 (25 ° C)
(3-3) A液/ B液混合粘度  (3-3) Liquid A / liquid B mixed viscosity
A液とウレタン化触媒を含有しない B液を NCOZOH (当量比) =1. 10の条件で混合した粘度 = 1243mP a · s (25。C)、 208 mP a - s ( 70。C)  Solution A and solution B containing no urethanization catalyst were mixed under the condition of NCOZOH (equivalent ratio) = 1.10. Viscosity = 1243 mPa-s (25.C), 208 mPa-s (70.C).
(4) ポリウレタン樹脂の成形  (4) Molding of polyurethane resin
イソシァネート成分(A液) と活性水素化合物(B液) は、それぞれ 70°C に保温された攪拌槽から送液ポンプによって 70 °Cに保温された送液ライン を通り、 ミキシングへッドに送液され衝突によつ.て混合される。  The isocyanate component (Solution A) and the active hydrogen compound (Solution B) are sent from the stirring tank, which is kept at 70 ° C, to the mixing head through the liquid sending line, which is kept at 70 ° C by the sending pump. The liquid is mixed by collision.
その後ラインミキサーでさらに混合された後、 ノズルチップで霧化され、 金型へ吹き付けられる。  After that, it is further mixed by a line mixer, atomized by a nozzle tip, and sprayed on a mold.
吹付け完了から 3分後、 金型に吹き付けられたポリウレタン組成物が十分 に硬化されていることを確認し、 脱型する。 '  After 3 minutes from the completion of spraying, confirm that the polyurethane composition sprayed on the mold is sufficiently cured, and then release the mold. '
A液と B液の流量比は、 A液中の NCOと B液中の O H量が N C O / O H (当量比) =1. 0となるようにした。  The flow rate ratio between the solution A and the solution B was such that the NOH in the solution A and the OH amount in the solution B were NCO / OH (equivalent ratio) = 1.0.
成形条件を表 1に示す。  Table 1 shows the molding conditions.
注記:なお表 1中、 「噴霧パターン角度」 は、 図 7に示したように、 ノズルの 鉛直方向と、 嘖霧の最も外側の噴霧ラインのなす角度 αを示している。 Note: In Table 1, “spray pattern angle” indicates the angle α between the vertical direction of the nozzle and the outermost spray line of the mist, as shown in Figure 7.
比較例 1〜 2 Comparative Examples 1-2
上記実施例 1〜 7と同様にして、 熱硬化性ポリウレタン組成物を吹付け成 形を行なった。 伹し、 表 1に示したように、 その条件は、 本発明の範囲を外 れる条件で行った。 その結果を表 1に示した。 比較例 3 図 8〜 1 1および表 1に記載の螺旋状旋回溝を有するノズルチップを用い 下記の条件で熱硬化性ポリゥレタン組成物を吹付け成形を行なった。 In the same manner as in Examples 1 to 7, the thermosetting polyurethane composition was subjected to spray molding. However, as shown in Table 1, the conditions were out of the scope of the present invention. The results are shown in Table 1. Comparative Example 3 Using a nozzle tip having a spiral swirl groove shown in FIGS. 8 to 11 and Table 1, a thermosetting polyurethane composition was spray-molded under the following conditions.
結果を表 1に示す。 比較例の成形品の比重は実施例の比重に比べて小さいこ とが分かる。 比重の違いの程度は見かけ上小さな違いであるが、 これらの成 形品を引つ搔いた際に、 気泡が存在する部分の強度は極端に低下するため、 見かけよりも成形品の性能に対する影響が大きいものとなる。 Table 1 shows the results. It can be seen that the specific gravity of the molded article of the comparative example is smaller than that of the example. The difference in specific gravity is apparently small, but when these molded products are pulled, the strength of the part where bubbles are present is extremely reduced. Becomes larger.
表 1 比較例 1 実施例 1 実施例 2 実施例 3 実施例 4 実施例 5 実施例 6 実施例 7 比較例 2 比較例 3 単位 Table 1 Comparative Example 1 Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Comparative Example 2 Comparative Example 3 Unit
構造 図ト 5 図 1〜5 図"!〜 5 図ト 5 図 1〜5 図ト 5 図 1〜5 図 1 ~5 図 1〜5 図 8〜11  Structure Fig. 5 Fig. 1-5 Fig. 5! Fig. 5 Fig. 1-5 Fig. 5 Fig. 1-5 Fig. 1-5 Fig. 1-5 Fig. 1-5 Fig. 8-11
0.04 0.05 0.10 0.10 0.10 0.10 0.3 0,5 0.6 0.09 0.04 0.05 0.10 0.10 0.10 0.10 0.3 0,5 0.6 0.09
A, 旋回溝の断面積 mm2 A, cross-sectional area of turning groove mm2
ノ 0.01 0.01 0.07 0.1 0.1 0.1 0.3 0.5 0.6 1.0No 0.01 0.01 0.07 0.1 0.1 0.1 0.3 0.5 0.6 1.0
L, オリフィス出口の長さ mmZ L, length of orifice outlet mmZ
Z
ル 0.09 0.35 0.6 0.8 0.8 0.8 1.4 2 2.2 1.07 口の直径 mm2 0.09 0.35 0.6 0.8 0.8 0.8 1.4 2 2.2 1.07 Mouth diameter mm2
チ Φ オリフィス出 Φ out of orifice
'リ 、  '
プ Θ , 円錐角度 ° 25 30 60 90 90 90 110 120 130 90 形 0,4 0.5 1 1.6 1.6 1.6 2 3 4 3.0 状 h 渦流形成室の高さ mm Θ, cone angle ° 25 30 60 90 90 90 110 120 130 90 Shape 0,4 0.5 1 1.6 1.6 1.6 2 3 4 3.0 h Height of vortex formation chamber mm
0,4 0.5 1 1.4 1.4 1.4 2.2 3 0.4 1.9 旋回溝の長さ mm  0,4 0.5 1 1.4 1.4 1.4 2.2 3 0.4 1.9 Length of swivel groove mm
1 1 2 4 4 4 5 6 8 Z 旋回溝の本数  1 1 2 4 4 4 5 6 8 Z Number of turning grooves
0,5 3 7 12 10 8 15 20 25 12 吐出: E cc/sec  0,5 3 7 12 10 8 15 20 25 12 Discharge: E cc / sec
成 液温度 (A液/ B液) °C 70/70 <— «— 形 Solution temperature (Solution A / Solution B) ° C 70/70 <— «—
条 -Article-
< ~ <~
件 金型温度 。C 70 *— 一 Case Mold temperature. C 70 * — one
液圧力 (A液/ B液) MPa 20/20 20/20 10/10 10/10 7/7 5/5 2/2 0.8/0.8 0.8/0.8 10/10 使 イソシァネート A- 1  Fluid pressure (A / B) MPa 20/20 20/20 10/10 10/10 7/7 5/5 2/2 0.8 / 0.8 0.8 / 0.8 10/10 Use isocyanate A-1
用 一 ~ For one
Hara
料 活性水素化合物 B - 1 Material Active hydrogen compound B-1
オリフィス出口一測定位置間距 mm 100  Distance between orifice outlet and measurement position mm 100
粒 一 * -- ~ Grain One *-~
子 17 20.1 40 51.9 59.1 89.2 90.3 94.9 105.8 Child 17 20.1 40 51.9 59.1 89.2 90.3 94.9 105.8
平均粒子径 ― 特  Average particle size-special
Sex
噴霜パターン角度 11 15 32 44.3 44.2 37 60.7 89.4 110 20.6 平均厚み mm 0.18 0.20 0.23 0.24 0,24 0.25 0.28 0.29 0.31 0.24 樹  Frost pattern angle 11 15 32 44.3 44.2 37 60.7 89.4 110 20.6 Average thickness mm 0.18 0.20 0.23 0.24 0,24 0.25 0.28 0.29 0.31 0.24 Tree
Fat
標準偏差 mm 0.018 0.018 0.020  Standard deviation mm 0.018 0.018 0.020
物 0.022 0.030 0.041 0.043 0.057 0.086 0.125 性 Object 0.022 0.030 0.041 0.043 0.057 0.086 0.125
比重 一一 1.042 1.039 1.037 1.033 1.035 1.030 1.026 1.022 1.011 0.998 Specific gravity 11 1.042 1.039 1.037 1.033 1.035 1.030 1.026 1.022 1.011 0.998
なお、 上述した実施例では、 熱硬化性樹脂としてポリウレタン樹脂に適用 した実施例について説明したが、ポリゥレア樹脂、ポリウレタンゥレア樹脂、 不飽和ポリエステル樹脂、 エポキシ樹脂などのその他の熱硬化性樹脂に適用 することも可能である。 In the above-described embodiment, an example in which a polyurethane resin is used as a thermosetting resin has been described. However, the present invention is applied to other thermosetting resins such as a polyurethane resin, a polyurethane resin, an unsaturated polyester resin, and an epoxy resin. It is also possible.
また、 上記実施例では、 オリフィス部 2 6のコア部 2 8側の端面 4 8に旋 回溝 5 4を形成したが、 コア部 2 8側に旋回溝 5 4を設けることも可能であ る。  Further, in the above embodiment, the turning groove 54 is formed on the end surface 48 of the orifice portion 26 on the core portion 28 side, but the turning groove 54 may be provided on the core portion 28 side. .
以上、 本発明の好ましい実施例を説明したが、 本発明はこれに限定される ことはなく、 本発明の目的を逸脱しない範囲で種々の変更が可能である。  The preferred embodiment of the present invention has been described above, but the present invention is not limited to this, and various changes can be made without departing from the object of the present invention.
(発明の効果) (The invention's effect)
本発明によれば、 熱硬化性樹脂が、 ケーシング本体の流路からオリフィス 部に形成された旋回溝を介して、 渦流形成室に流入することによって、 渦流 形成室内で渦流が発生して、 オリフィス部のオリフィス出口から予め加熱さ れた金型表面に熱硬化性樹脂が略釣鐘状に均一に噴霧され、 熱硬化性樹脂成 形品が得られる。  According to the present invention, the thermosetting resin flows from the flow path of the casing main body into the swirl flow forming chamber through the swirl groove formed in the orifice portion, whereby a swirl is generated in the swirl flow forming chamber, and the orifice is formed. The thermosetting resin is sprayed uniformly in the shape of a bell on the preheated mold surface from the orifice outlet of the section, and a thermosetting resin molded product is obtained.
この際に、 旋回'溝が、 オリフィス出口の軸線に対して垂直な方向に、 かつ 渦流形成室の内周壁に接線方向に連通するように形成されているので、 同一 平面内で熱硬化性樹脂が旋回するように旋回力が発生することになる。 従って、 旋回力が減衰することがないので、 渦流発生の効率が良く、 噴霧 される熱硬化性樹脂の噴霧パターンの広がりが大きくなり、 しかも、 霧化さ れた液滴が小さく、 気泡の巻き込みも少なく、 金型上に熱硬化性樹脂を噴霧 することができる。  At this time, since the swivel groove is formed so as to communicate in a direction perpendicular to the axis of the orifice outlet and in a tangential direction with the inner peripheral wall of the vortex flow forming chamber, the thermosetting resin is formed in the same plane. The turning force is generated so that the turning of the. Therefore, the swirling force is not attenuated, so that the vortex generation efficiency is high, the spread of the spray pattern of the thermosetting resin to be sprayed is widened, and the atomized droplets are small, and the bubbles are trapped. The thermosetting resin can be sprayed on the mold.
これにより、 薄く、 均一で、 機械的強度に優れた熱硬化性樹脂成形品を得 ることができるとともに、 低吐出量で渦流を発生し噴霧することができるの で、 送液ポンプなどの装置に負担がかかることなく、 装置の寿命も大幅に向 上するなどの幾多の顕著で特有な作用効果を奏する極めて優れた発明である。 As a result, a thin, uniform thermosetting resin molded product with excellent mechanical strength is obtained. Vortex flow can be generated and sprayed at a low discharge rate, so that there is no significant burden on the equipment such as the liquid feed pump and the life of the equipment is greatly improved. This is an extremely excellent invention having a unique function and effect.

Claims

請求の範囲 The scope of the claims
1 . 金型上に熱硬化性樹脂を噴霧することによって、 金型上に熱 硬化性樹脂を成形するェアレススプレー成形方法に用いるスプレーノズルチ ップであって、  1. A spray nozzle chip used in a airless spray molding method for molding a thermosetting resin on a mold by spraying the thermosetting resin on the mold,
前記スプレーノズルチップが、 前記熱硬化性樹脂の流路が形成されたケ一 シング本体と、  A casing body in which the spray nozzle tip is formed with a flow path of the thermosetting resin;
前記ケーシング本体の嘖霧開口部に設けられたォリフィス部と、 前記オリフィス部の噴霧開口部側と反対側に設けられたコア部と、 前記オリフィス部とコア部との間に形成され、 前記オリフィス部のオリフ イス出口と連通する渦流形成室とを備え、  An orifice portion provided at the fog opening of the casing body; a core portion provided at a side opposite to the spray opening side of the orifice portion; and the orifice formed between the orifice portion and the core portion. A swirl forming chamber communicating with the orifice outlet of the section.
前記オリフィス部には、 オリフィス出口の軸線に対して垂直な方向に、 か つ前記渦流形成室の内周壁に接線方向に連通する旋回溝が形成され、 . 前記渦流形成室が、 オリフィス出口に向かって、 漸次その径が減少する円 錐形状であることを特徴とするスプレーノズルチップ。  A swirl groove is formed in the orifice portion in a direction perpendicular to the axis of the orifice outlet and tangentially communicating with the inner peripheral wall of the swirl flow forming chamber. The swirl flow forming chamber faces the orifice outlet. A spray nozzle tip having a conical shape whose diameter gradually decreases.
2 . 前記旋回溝の断面積 Aiが、 0 . 0 5〜0 . 5 mm2の範囲に あることを特徴とする請求項 1に記載のスプレーノズルチップ。 2. The spray nozzle tip according to claim 1, wherein the cross-sectional area Ai of the swirl groove is in a range of 0.05 to 0.5 mm2.
3 . 前記オリフィス出口の長さ L i力 0 . 0 1〜0 . 5 mmの 範囲にあることを特徴とする請求項 1から 2のいずれかに記載のスプレーノ ズルチップ。 3. The spray nozzle tip according to claim 1, wherein a length L i of the orifice outlet is in a range of 0.01 to 0.5 mm.
4. 前記オリフィス出口の直径 φιが、 0. 1〜2. 0 mmの範囲 にあることを特徴とする請求項 1から 3のいずれかに記載のスプレーノズノレ チップ。 5. 前記渦流形成室が、 オリフィス出口に連通する円錐形状部を 備え、 円錐形状部の円錐角度 θιが、 30〜1 20°の範囲にあり、 前記渦流 形成室の高さ hが、 0. 5〜3. ◦ mmの範囲にあり、 前記旋回溝のコア部 と重なる長さ L2力 0. 4. The spray tip according to claim 1, wherein a diameter φι of the orifice outlet is in a range of 0.1 to 2.0 mm. 5. The vortex formation chamber has a conical portion communicating with the orifice outlet, the cone angle θι of the conical portion is in the range of 30 to 120 °, and the height h of the vortex flow formation chamber is 0. 5 to 3. ◦ in the range of mm, length L 2 forces overlapping with the core portion of the turning groove 0.
5 mm以上であることを特徴とする請求項 1から 4のいずれかに記載のスプレーノズルチップ。 The spray nozzle tip according to any one of claims 1 to 4, wherein the spray nozzle tip is not less than 5 mm.
6. 1〜 6本の旋回溝が形成されていることを特徴とする請求項 1力 ら 5のいずれかに記載のスプレーノズルチップ。 6. The spray nozzle tip according to claim 1, wherein 1 to 6 swirl grooves are formed.
7. 前記オリフィス出口から嘖霧される液滴の平均粒子径 (AS TM—E 799— 92) 力 S、 95μηι以下の範囲にあることを特徴とする請 求項 1から 6のいずれかに記載のスプレーノズルチップ。 7. The method according to any one of claims 1 to 6, wherein the average particle diameter (AS TM—E 799—92) of the droplet sprayed from the orifice outlet is in the range of 95 μηι or less. Spray nozzle tip.
8. スプレーノズルチップを用いて、 金型上に熱硬化性樹脂を噴 霧することによって、 金型上に熱硬化性樹脂を成形するエアレススプレー成 形方法を用いた熱硬化性樹脂の製造方法であって、 8. A thermosetting resin manufacturing method using an airless spray molding method in which a thermosetting resin is formed on a mold by spraying the thermosetting resin on the mold using a spray nozzle tip. And
前記スプレーノズルチップが、 前記熱硬化性樹脂の流路が形成されたケー シング本体と、  A case body in which the spray nozzle tip is formed with a flow path of the thermosetting resin;
前記ケーシング本体の噴霧開口部に設けられたォリフィス部と、 前記ォリフィス部の噴霧開口部側と反対側に設けられたコア部と、 前記オリフィス部とコア部との間に形成され、 前記オリフィス部のオリフ イス出口と連通する渦流形成室とを備え、 An orifice portion provided at a spray opening of the casing main body, and a core portion provided at a side opposite to the spray opening side of the orifice portion, A swirl forming chamber formed between the orifice portion and the core portion and communicating with an orifice outlet of the orifice portion;
前記オリフィス部には、 オリフィス出口の軸線に対して垂直な方向に、 か つ前記渦流形成室の内周壁に接線方向に連通する旋回溝が形成され、  A swirl groove is formed in the orifice portion in a direction perpendicular to the axis of the orifice outlet and tangentially communicating with the inner peripheral wall of the vortex flow forming chamber.
前記渦流形成室が、 オリフィス出口に向かって、 漸次その径が減少する円 錐形状であり、  The vortex forming chamber has a conical shape whose diameter gradually decreases toward the orifice outlet;
前記オリフィス出口から噴霧される液滴の平均粒子径 (ASTM— E 79 9- 92) 、 95μπι以下の範囲にあるように金型上に熱硬化性樹脂を嘖 霧することを特徴とする熱硬化性樹脂の製造方法。  Thermosetting characterized by spraying a thermosetting resin onto a mold so that the average particle diameter (ASTM-E 799-92) of the droplets sprayed from the orifice outlet is within a range of 95 μπι or less. Method for producing conductive resin.
9. 前記熱硬化†生樹脂が、 3〜20 c cZs e cの吐出量で金型 上に噴霧されることを特徴とする請求項 8に記載の熱硬化性樹脂の製造方法。 9. The method for producing a thermosetting resin according to claim 8, wherein the thermosetting resin is sprayed onto a mold at a discharge rate of 3 to 20 cCZsec.
10. 前記熱硬化性樹脂が、 少なくともポリイソシァネート化合 物と、 活性水素化合物からなる熱硬化ポリウレタン樹脂であることを特徴と する請求項 8から 9のいずれかに記載の熱硬化性樹脂の製造方法。 10. The thermosetting resin according to any one of claims 8 to 9, wherein the thermosetting resin is a thermosetting polyurethane resin comprising at least a polyisocyanate compound and an active hydrogen compound. Production method.
1 1. 前記旋回溝の断面積 が、 0. 05〜0. 5mm2の範囲 にあることを特徴とする請求項 8から 10のいずれかに記載の熱硬化性樹脂 の製造方法。 11. The method for producing a thermosetting resin according to claim 8, wherein a cross-sectional area of the turning groove is in a range of 0.05 to 0.5 mm 2.
1 2. 前記オリフィス出口の長さ Li力 0. 0 1〜0. 5mm の範囲にあることを特徴とする請求項 8から 1 1のいずれかに記載の熱硬化 性樹脂の製造方法。 12. The method for producing a thermosetting resin according to any one of claims 8 to 11, wherein the length of the orifice outlet is in the range of Li force of 0.01 to 0.5 mm.
1 3. 前記オリフィス出口の直径 φιが、 0. 1〜2. Ommの範 囲にあることを特徴とする請求項 8から 1 2のいずれかに記載の熱硬化性樹 脂の製造方法。 13. The method for producing a thermosetting resin according to claim 8, wherein a diameter φι of the orifice outlet is in a range of 0.1 to 2. Omm.
14. 前記渦流形成室が、 オリフィス出口に連通する円錐形状部 を備え、 円錐形状部の円錐角度 力 S、 30〜120°の範囲にあり、 前記渦 流形成室の高さ hが、 0. 5〜3. Ommの範囲にあり、 前記旋回溝のコア 部と重なる長さ L2力 0. 5 mm以上にあることを特徴とする請求項 8か ら 1 3のいずれかに記載の熱硬化性樹脂の製造方法。 14. The vortex forming chamber has a conical portion communicating with the orifice outlet, the cone angle force S of the conical portion is in the range of 30 to 120 °, and the height h of the vortex forming chamber is 0. 5-3. the range of Omm, thermoset as claimed in any one of claims 8 or al 1 3, characterized in that in the pivot than the length L 2 force 0. 5 mm overlapping with the core portion of the groove Method for producing conductive resin.
1 5. :!〜 6本の旋回溝が形成されていることを特徴とする請求 項 8から 14のいずれかに記載の熱硬化性樹脂の製造方法。 15. The method for producing a thermosetting resin according to any one of claims 8 to 14, wherein 6 to 6 turning grooves are formed.
1 6. 金型上に熱硬化性樹脂を噴霧することによって、 金型上に 熱硬化性樹脂を成形するエアレススプレー成形方法により得られる成形品で あってヽ 1 6. A molded product obtained by an airless spray molding method in which a thermosetting resin is formed on a mold by spraying the thermosetting resin on the mold.
前記熱硬化性樹脂が少なくともポリィソシァネート化合物と活性水素化合 物からなる熱硬化性ポリウレタン樹脂からなり、  The thermosetting resin comprises a thermosetting polyurethane resin comprising at least a polysocyanate compound and an active hydrogen compound;
請求項 1に記載のスプレーノズルチップを用いてスプレー成形されること により得られた成形品であることを特徴とする熱硬化性ポリウレタン成形品。  A thermosetting polyurethane molded product obtained by spray molding using the spray nozzle tip according to claim 1.
PCT/JP2004/002108 2003-02-25 2004-02-24 Spray nozzle tip and method of manufacturing thermosetting ersin using the same WO2004076072A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005502878A JPWO2004076072A1 (en) 2003-02-25 2004-02-24 Spray nozzle tip and method for producing thermosetting resin using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-047887 2003-02-25
JP2003047887 2003-02-25

Publications (1)

Publication Number Publication Date
WO2004076072A1 true WO2004076072A1 (en) 2004-09-10

Family

ID=32923276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002108 WO2004076072A1 (en) 2003-02-25 2004-02-24 Spray nozzle tip and method of manufacturing thermosetting ersin using the same

Country Status (2)

Country Link
JP (1) JPWO2004076072A1 (en)
WO (1) WO2004076072A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008148419A1 (en) * 2007-06-04 2008-12-11 Recticel Automobilsysteme Gmbh Pressure swirl atomizing nozzle for spraying a curable composition and associated method and use
US8656909B2 (en) 2005-07-28 2014-02-25 Glaxo Group Limited Nozzle for a nasal inhaler
CN103691587A (en) * 2013-12-12 2014-04-02 中国神华能源股份有限公司 Liquid distribution sprayer and sea water desalination spraying device
KR101458613B1 (en) 2013-09-30 2014-11-11 (주) 디유티코리아 High-pressure mixing head with injection nozzle fixed by horizontal-vertical double angle of inclination

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113680547A (en) * 2021-08-31 2021-11-23 西安交通大学 Atomizing head core structure for reactor voltage stabilizer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49146512U (en) * 1973-04-13 1974-12-18
JPH0975786A (en) * 1995-09-12 1997-03-25 Lion Corp Pressure spray nozzle and spraying method
JP2610308B2 (en) * 1987-07-16 1997-05-14 レクティセル Method and apparatus for forming a polyurethane layer on a surface by spraying
JP2002103354A (en) * 2000-09-27 2002-04-09 Etsuya Shima In-mold spray molding method for polyurethane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49146512U (en) * 1973-04-13 1974-12-18
JP2610308B2 (en) * 1987-07-16 1997-05-14 レクティセル Method and apparatus for forming a polyurethane layer on a surface by spraying
JPH0975786A (en) * 1995-09-12 1997-03-25 Lion Corp Pressure spray nozzle and spraying method
JP2002103354A (en) * 2000-09-27 2002-04-09 Etsuya Shima In-mold spray molding method for polyurethane

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8656909B2 (en) 2005-07-28 2014-02-25 Glaxo Group Limited Nozzle for a nasal inhaler
WO2008148419A1 (en) * 2007-06-04 2008-12-11 Recticel Automobilsysteme Gmbh Pressure swirl atomizing nozzle for spraying a curable composition and associated method and use
US8262002B2 (en) 2007-06-04 2012-09-11 Recticel Automobilsysteme Gmbh Pressure swirl atomizing nozzle for spraying a curable composition and associated method and use
CN101678371B (en) * 2007-06-04 2013-07-24 雷克蒂塞尔汽车配件有限公司 Pressure swirl atomizing nozzle for spraying a curable composition and associated method and use
KR101450122B1 (en) 2007-06-04 2014-10-21 렉티셀 오토모빌시스템 게엠베하 Pressure swirl atomizing nozzle for spraying a curable composition and associated method and use
KR101458613B1 (en) 2013-09-30 2014-11-11 (주) 디유티코리아 High-pressure mixing head with injection nozzle fixed by horizontal-vertical double angle of inclination
CN103691587A (en) * 2013-12-12 2014-04-02 中国神华能源股份有限公司 Liquid distribution sprayer and sea water desalination spraying device

Also Published As

Publication number Publication date
JPWO2004076072A1 (en) 2006-06-01

Similar Documents

Publication Publication Date Title
CN1024167C (en) Method and device for forming, by spraying polyurethane layer on surface
KR960005502B1 (en) Spray nozzle for spray gun for forming a polyurethane layer on a surface
KR101077891B1 (en) Method for producing a moulded article comprising a sprayed polyurethane layer
CN101352705B (en) Spray device for small amount of liquid
CN102458674B (en) System and method for delivering fluid through horns of an air cap for applying multiple component material
CN101678371B (en) Pressure swirl atomizing nozzle for spraying a curable composition and associated method and use
US20130045380A1 (en) Systems and methods for processing and despensing filled multi-component material
WO2004076072A1 (en) Spray nozzle tip and method of manufacturing thermosetting ersin using the same
WO2013012427A1 (en) Systems and methods for processing and dispensing filled multi-component materials
US20110073676A1 (en) Production of a solids-containing pur spray jet
US20130087636A1 (en) Spray nozzle for addition of substances into a reactive mixture
CN104227885B (en) Molded body manufactures device, the manufacture method of molded body and molded body
KR102216589B1 (en) A Two component fine spray nozzle
US8905329B2 (en) Method and device for spraying mixtures obtained from the reaction of polymer materials
US5423488A (en) Spray apparatus for mixing, atomizing and spraying foam forming components
MX2011013191A (en) Spray method and use thereof.
MXPA02000534A (en) Dispersion nozzle with variable throughput.
MX2011013200A (en) Spray device for catalyst atomization.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005502878

Country of ref document: JP

122 Ep: pct application non-entry in european phase