WO2004075118A1 - Asymmetric cone beam - Google Patents
Asymmetric cone beam Download PDFInfo
- Publication number
- WO2004075118A1 WO2004075118A1 PCT/IL2003/000138 IL0300138W WO2004075118A1 WO 2004075118 A1 WO2004075118 A1 WO 2004075118A1 IL 0300138 W IL0300138 W IL 0300138W WO 2004075118 A1 WO2004075118 A1 WO 2004075118A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cone beam
- rotation plane
- angle
- rows
- row
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 claims abstract description 9
- 230000000694 effects Effects 0.000 claims description 24
- 230000007423 decrease Effects 0.000 description 9
- 230000003247 decreasing effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000003491 array Methods 0.000 description 4
- 238000013170 computed tomography imaging Methods 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 239000010405 anode material Substances 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229910000078 germane Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/46—Arrangements for interfacing with the operator or the patient
- A61B6/467—Arrangements for interfacing with the operator or the patient characterised by special input means
- A61B6/469—Arrangements for interfacing with the operator or the patient characterised by special input means for selecting a region of interest [ROI]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/40—Arrangements for generating radiation specially adapted for radiation diagnosis
- A61B6/4021—Arrangements for generating radiation specially adapted for radiation diagnosis involving movement of the focal spot
- A61B6/4028—Arrangements for generating radiation specially adapted for radiation diagnosis involving movement of the focal spot resulting in acquisition of views from substantially different positions, e.g. EBCT
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/40—Arrangements for generating radiation specially adapted for radiation diagnosis
- A61B6/4064—Arrangements for generating radiation specially adapted for radiation diagnosis specially adapted for producing a particular type of beam
- A61B6/4085—Cone-beams
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
- G01N23/046—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/503—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of the heart
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/40—Imaging
- G01N2223/419—Imaging computed tomograph
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/612—Specific applications or type of materials biological material
Definitions
- the present invention relates to computerized tomography (CT) X-ray imaging, and in particular to a size and shape of X-ray cone beams and corresponding X-ray detector arrays in multislice CT scanners.
- CT computerized tomography
- a multislice CT scanner generally comprises an X-ray source that provides a cone shaped X-ray beam radiated from a focal spot of the X-ray source and an X-ray detector array comprising a plurality of closely spaced rows of X-ray detectors that face the X-ray source.
- X-ray source and detector array are mounted in a rotor of a gantry.
- the X-ray source is mounted to the rotor but the X-ray detector array, in which detectors comprised in the array form complete circles of detectors, is mounted to the gantry.
- a patient being imaged with the scanner is generally supported on a bed which is moved axially along a z-axis to position the ROI in a field of view (FOV) of the scanner located inside the rotor, between the X-ray source and detector array.
- the rotor is rotatable around the z-axis so as to position the X-ray source, and in third generation CT scanners the detector array, at different cone beam view angles around the patient, from which view angles the X-ray source illuminates the ROI with X-rays.
- Measurements of intensity of X-rays from the X-ray source that pass through the patient's body at the different view angles provide measurements of attenuation of the X-rays for different attenuation paths through the body.
- the attenuation measurements are used to image the ROI.
- motion of the X-ray source focal spot occurs in a plane, hereinafter referred to as a "rotation plane", generally perpendicular to the z-axis.
- a vertex angle of a fan shaped cross section of the cone beam in the rotation plane is a "fan angle" of the cone beam.
- a vertex angle of a fan-shaped cross section of the cone beam in a plane perpendicular to the rotation plane that passes through the focal spot and the z-axis is a "cone beam angle" of the cone beam.
- the cone beam is substantially symmetric relative to the rotation plane and the rotation plane bisects the cone beam angle of the cone beam.
- the rows of the X-ray detectors in the detector array are symmetrically disposed relative to the rotation plane i.e. each row has a mirror image row in the rotation plane.
- the cone beam angle For a given size fan angle, the cone beam volume and size of the detector array, and for a given size of X-ray detectors in the detector array, the number of detector rows in the array, are limited by the cone beam angle.
- the cone beam angle in turn is limited inter alia by an effect referred to as a heel effect.
- an angle relative to the rotation plane of a path along which X-rays radiated from the X-ray source focal spot propagate be referred to as "declination angle".
- declination angles It is convenient to define declination angles to be positive on one side, a positive side, of the rotation plane and to be negative on the other side, a negative side, of the rotation plane.
- the heel effect hardens and decreases intensity of X-rays emanating from the X-ray source as the magnitude of the declination angle increases on one side, arbitrarily the negative side, of the rotation plane.
- the hardening and intensity reduction is a result of a configuration of an anode comprised in the X- ray source onto which an electron beam is focussed to generate X-rays.
- the hardening and drop in intensity as a function of decreasing declination angle determines a minimum declination angle, hereinafter a "heel effect angle" for X-rays below which intensities and energies of X-rays are generally not effective for CT imaging.
- a maximum positive declination angle for X-rays is equal to the magnitude of the heel effect angle.
- the cone beam therefore has a cone beam angle equal to about twice the magnitude of the heel effect angle.
- the heel effect therefore limits the cone beam angle, and thereby a volume of the cone beam, a total number (for a given detector size) of detector rows in the scanner and a volume of a patient for which CT scan data can be simultaneously acquired.
- An aspect of some embodiments of the present invention relates to providing a multislice CT scanner having a cone beam for which the cone beam angle and thereby cone beam volume are larger than cone beam angles and volumes of prior art cone beams having a same fan angle.
- the inventors have noted that the heel effect does not substantially affect intensity and hardness of X-rays on the positive side of a CT scanner rotation plane and that X-rays having declination angles greater than the magnitude of the heel effect angle have intensities and energies useful for CT imaging.
- X-rays having declination angles greater than the magnitude of the heel effect angle are not used in prior art scanners as a result of the prior art constraint that a CT cone beam be symmetric with respect to its rotation plane.
- a cone beam of a CT scanner in accordance with some embodiments of the invention is not symmetric with respect to its rotation plane but is larger on the positive side of the rotation plane than on the negative side.
- the cone beam angle and volume of the cone beam is not limited by its heel effect angle and are larger than a cone beam angle and (for a same fan angle) a volume of a corresponding prior art cone beam having a same heel effect angle.
- a matching detector array, in accordance with the present invention is also asymmetric with respect to the rotation plane and for a same fan angle, larger than a prior art detector array.
- a CT scanner comprising a cone beam in accordance with the invention can therefore generally simultaneously acquire data for a larger volume of a patient than a CT scanner comprising a corresponding prior art cone beam.
- a number of X-ray detector rows in the matching detector array is greater than a number of detector rows on the negative side of the rotation plane.
- a width of at least one detector row on the positive side of the rotation plane is different from widths of detector rows on the negative side of the rotation plane.
- widths of detector rows increases as declination angles at which the rows are located increases.
- row width of each detector row in at least a portion of the rows in the detector array is substantially proportional or equal to an apparent size of the X-ray source focal spot along the z-axis as seen from the row.
- Apparent z-axis size of the focal spot of the X-ray source increases with increasing declination angle of a location of the row.
- a detector array for a cone beam having a given cone beam angle can generally be produced with a smaller number of X-ray detectors without substantially compromising spatial resolution of the array if row widths are substantially proportional or equal to apparent focal spot size. The smaller number of X-ray detectors generally results in a lower production cost for the array.
- a multislice CT scanner for imaging a patient comprising: an X-ray source that generates a cone beam of X-rays radiated from a focal spot of the X-ray source wherein the X-ray source is moveable in a rotation plane so as to rotate the focal spot about an axial direction along which the patient is moved to position the patient in a field of view of the scanner; and a detector array comprising a plurality of rows of X-ray detectors that generate signals responsive to X- rays in the cone beam, which signals are used to generate an image of the patient; wherein the cone beam is asymmetric with respect to the rotation plane.
- trajectories of X-rays on a first side of the rotation plane that are incident on the detector array have declination angles relative to the rotation plane that have a first maximum magnitude and trajectories of X-rays incident on the detector array on a second side of the rotation plane have declination angles that have a second maximum magnitude greater than the first maximum.
- the second maximum magnitude is greater than 1.25 times the first maximum magnitude.
- the second maximum magnitude is optionally greater than 1.5 times the first maximum magnitude.
- the second maximum magnitude is optionally greater than twice the first maximum magnitude.
- the first maximum angle is determined substantially by the heel effect.
- the detector rows are substantially parallel to the rotation plane and a width of each row in at least a portion of the rows is a function of a declination angle relative to the rotation plane of a line from the focal spot to the row.
- a multislice CT scanner for imaging a patient comprising: an X-ray source that generates a cone beam of X-rays radiated from a focal spot of the X-ray source wherein the X-ray source is moveable in a rotation plane so as to rotate the focal spot about an axial direction along which the patient is moved to position the patient in a field of view of the scanner; and a detector array comprising a plurality of rows of X-ray detectors that generate signals responsive to X- rays that are used to generate an image of the patient; wherein the detector rows are substantially parallel to the rotation plane and a width of each row in at least a portion of the rows is a function of a declination angle relative to the rotation plane of a line from the focal spot to the row.
- the declination angle of a row optionally increases in a direction from the first side to the second side and the width of each row in the at least portion of the rows increases as its declination angle increases.
- the focal spot is tilted with respect to the rotation plane at an angle ⁇ and the width of each row in the at least portion of the rows is substantially proportional to l/sin( ⁇ + ⁇ ) where ⁇ is the declination angle of the row.
- the width of each row in the at least portion of the rows is substantially equal to l/Lsin( ⁇ + ⁇ ) where L is a dimension of the focal spot along the direction along which the focal spot is tilted.
- Fig. 1 schematically shows a perspective view of a multislice CT scanner comprising an X-ray cone beam and detector array, in accordance with prior art
- Fig. 2 schematically shows a cross section view of the multislice CT shown in Fig. 1;
- Fig. 3 shows a schematic graph illustrating decrease in intensity and hardening of X- rays in a cone beam resulting from the heel effect;
- Figs. 4A and 4B schematically show perspective and cross section views respectively of a multislice CT scanner comprising an X-ray cone beam and detector array in accordance with an embodiment of the present invention.
- Fig. 5 schematically shows a CT scanner comprising a detector array having rows of detectors for which the widths of at least some of the rows increase as declination angles at which they are located increase, in accordance with an embodiment of the present invention.
- Fig. 1 schematically shows a perspective view of a third generation multislice CT scanner 20 comprising an X-ray detector array 22 and an X-ray source 24 in accordance with prior art. Only features of multislice scanner 20 germane to the present discussion are shown in Fig. 1.
- X-ray detector array 22 comprises a plurality of rows 26 of X-ray detectors 28. By way of example, in Fig. 1 detector array 22 is shown comprising four detector rows 28.
- X-ray source 24 comprises an anode 30, formed with or mounted on a shaft 49, and a cathode 32.
- the cathode provides a beam of electrons represented by a block arrow 34, which is focussed to a "focal spot" 36 on a surface 39 of the anode.
- Bremmstrahlung and fluorescent X-rays generated by electrons in the beam that are incident on anode 30 are radiated from material in a neighborhood of focal spot 36 in an X-ray cone beam outlined by lines 38.
- the cone beam will hereinafter be referred to by the numeral 38 labeling the lines that outline the cone beam.
- X- rays in cone beam 38 illuminate X-ray detector array 22.
- At least one collimator (not shown) comprised in X-ray source 24 collimates X-rays radiated from focal spot 36 so that cone beam 38 illuminates substantially all of and only detector array 22.
- X-ray source 24 and detector array 22 are mounted to a rotor (not shown) comprised in the scanner.
- the rotor is rotatable around a z-axis of a coordinate system 40 so as to position X-ray source 24 and detector array 22 at different cone beam view angles about the z-axis.
- Motion of focal spot 36 during rotation of the rotor defines a rotation plane indicated by a dashed circle 42 of CT scanner 20.
- Dashed lines 43 indicate a cross section of cone beam 38 in rotation plane 42.
- a vertex angle ⁇ of cross section 43 is a fan angle of cone beam 38.
- Dashed lines 44 indicate a cross section of cone beam 38 in a plane that passes through the z-axis and is perpendicular to rotation plane 42.
- a vertex angle ⁇ of cross section 44 is a cone angle of cone beam 38.
- An intersection line 46 of rotation plane 42 and the plane of cross section 44 is an axis of cone beam 38.
- Cone beam 38 is symmetric with respect to rotation plane 42, the rotation plane bisects cone beam angle ⁇ and a same number of detector rows 26 lie on both sides of the rotation plane.
- a declination angle of an X-ray radiated from focal spot 36 is an angle that a propagation path of the X-ray makes with rotation plane 42. Declination angles are negative on the side of rotation plane 42 facing the origin of coordinate system 40 and positive on the other side.
- An X-ray propagation path 48 having a negative declination angle ⁇ is shown in Fig. 1.
- X-ray source 24 is typically operated at power levels sufficiently high so that local heating of material in anode 30 by electron beam 34 would rapidly damage the anode.
- the anode is rotated about an axis 50 and electron beam 34 is displaced along a radial direction relative to axis 50 so that focal spot 36 is not always located on a same region of surface 39.
- focal spot 36 is elongated along the radial direction to disperse energy deposition radially.
- rotation of anode 30 is indicated by curved arrow 52.
- cone angle ⁇ is generally made relatively large so that an effective size of focal spot 36 as seen by detector array 22 is small enough so that the extended length of the focal spot does not impair resolution along the z-axis direction of CT scanner 20.
- Fig. 2 schematically shows a cross section view of CT scanner 20 in the plane of cross section 44 of cone beam 38.
- ⁇ the region of the surface on which focal spot 36 is located
- ⁇ (90°- ⁇ ) with respect to the rotation plane.
- L is the radial extent of focal spot 36 on surface 39 an average effective "z-axis" size, "L z ", of focal spot 36 parallel to the z-axis as seen by detector array 22 is substantially equal to a length of a projection of the focal spot on the detector array.
- L z is substantially equal to Lsin ⁇ .
- focal spot 36 approaches a point source of X-rays. Therefore as L is increased to improve heat dispersion, slope angle ⁇ is generally decreased so that L z remains sufficiently small to meet desired resolution specifications for CT scanner 20.
- the heel effect angle, " ⁇ jj" is generally equal to about (- ⁇ + ⁇ ) where ⁇ is an angle that is substantially determined by a material from which the anode is made.
- the cone beam angle ⁇ which is generally equal to about twice the heel effect angle, is equal to about 2( ⁇ - ⁇ ).
- ⁇ has a value between about 80° and about 83° and slope angle ⁇ has a corresponding value between about 10° and 7°.
- For Tungsten ⁇ is equal to about 3.5°.
- Fig. 3 shows a schematic graph 60 of intensity and mean energy of X-rays provided by X-ray source 30 shown in Figs. 1 and 2 as a function of declination angle ⁇ for cone surface angle ⁇ equal to about 83° and slope angle ⁇ equal to about 7°.
- Dependence of mean energy of X-rays on declination angle is shown by a solid curve 62 and intensity is shown by a dashed curve 64. Units along the ordinate of graph 60 are arbitrary.
- cone beam 38 is limited to a maximum X-ray declination angle ⁇ + ⁇
- 3.5° which determine the cone beam angle of cone beam 38 are indicated in graph 60.
- a CT comprises an asymmetric cone beam characterized by a maximum positive declination angle ⁇ + that is larger than the magnitude of the heel effect angle
- Figs. 4A and 4B schematically show respectively a perspective view and a cross section view of a CT scanner 80 in which X-ray source 24 is collimated to provide a cone beam 82, in accordance with an embodiment of the present invention.
- Cone beam 82 has a cross section 84 in a plane that passes through the z-axis and is perpendicular to rotation plane 42.
- X-rays in cone beam 82 illuminate a matching X-ray detector array 86 comprising a plurality of rows 26 of detectors 28.
- elements and features of CT scanner 80 are, by way of example, similar to corresponding elements of prior art scanner 20 (Fig.l).
- Cone beam 82 is asymmetric and optionally larger than cone beam 38 comprised in CT scanner 20.
- cone beam 82 is characterized by a maximum positive declination angle ⁇ + that is larger than the magnitude of the heel effect angle
- ⁇ + is greater than or equal to 1.25
- ⁇ + is greater than or equal to 1.5
- ⁇ + is greater than or equal to 2
- ⁇ + is equal to 2
- and while cone beam 38 has a cone beam angle ⁇ 2
- , cone beam 82 has a substantially larger cone beam angle ⁇ 3
- detector array 86 is also asymmetric and larger than corresponding detector array 22 comprised in CT scanner 20.
- detector array 86 comprises a larger number of detector rows 28 on the positive declination angle side of rotation plane 42 than on the negative declination angle side of the rotation plane.
- CT scanner 80 is shown having two rows 28 of detectors on the negative side of rotation plane 42 and four detector rows 28 on the positive side of the rotation plane.
- all detectors in detector array 86 have substantially a same width in the z-axis direction and all rows 28 in detector array 86 have a same width.
- detectors in at least one detector row of a CT scanner have z-axis widths larger than detectors in a different detector row of the scanner and at least two of the rows of detectors have different widths.
- width of a scanner detector row is a function of a declination angle ⁇ at which the detector row is located.
- a width of each detector row in at least a portion of the detector rows in the scanner increases as a declination angle ⁇ at which the row is located increases.
- Fig. 5 shows a schematic cross section of a CT scanner 100 comprising a detector array 102 having rows 104 of detectors 106 in which widths of rows in the array increase with increasing declination angle, in accordance with an embodiment of the present invention.
- ⁇ is the declination angle at which the row is located.
- a declination angle ⁇ is shown for a row 104 in Fig. 5.
- the declination angle is an angle between axis 46 and a line 107 shown intercepting a detector 106 the row.
- L z ( ⁇ ) is a z-axis length of a projection of focal spot 36 on row 104 at declination angle ⁇ and thereby an effective z-axis length of the focal spot 36 as seen by the row.
- the widths of rows in the at least portion of rows 104 are substantially proportional to L z ( ⁇ ). In some embodiments of the invention, the widths of the rows in the at least portion of rows 104 are substantially equal to L z ( ⁇ ).
- z-axis resolution provided by a given row 104 of detectors 106 is a function of row width and generally improves as a width of the detector row decreases.
- improvement is relatively rapid with decreasing width for widths greater than or equal to about L z ( ⁇ ) improvement is slower with decreasing width for widths less than L z ( ⁇ ).
- the incentive to reduce the row width below L z ( ⁇ ) is generally marginal.
- a detector array for a cone beam having a given cone beam angle can generally be produced with a smaller number of X-ray detectors without substantially compromising spatial resolution of the array if row widths are substantially proportional or equal to L z ( ⁇ ).
- the smaller number of X-ray detectors generally results in a lower production cost for the array. Cost advantages of producing X-ray detector arrays for which the row widths are proportional or equal to or L z ( ⁇ ) can be advantageous in particular for relatively large detector arrays having rows located at relatively large declination angles.
- detector array 102 is an asymmetric detector array
- discussion applies equally well to symmetric detector arrays.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- High Energy & Nuclear Physics (AREA)
- Biomedical Technology (AREA)
- Optics & Photonics (AREA)
- Theoretical Computer Science (AREA)
- Pulmonology (AREA)
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Human Computer Interaction (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004568447A JP2006513764A (en) | 2003-02-20 | 2003-02-20 | Asymmetric cone beam |
EP03706888A EP1597702A1 (en) | 2003-02-20 | 2003-02-20 | Asymmetric cone beam |
PCT/IL2003/000138 WO2004075118A1 (en) | 2003-02-20 | 2003-02-20 | Asymmetric cone beam |
CN03826004.2A CN100492411C (en) | 2003-02-20 | 2003-02-20 | Asymmetric cone beam |
AU2003208594A AU2003208594A1 (en) | 2003-02-20 | 2003-02-20 | Asymmetric cone beam |
US10/546,016 US7340030B2 (en) | 2003-02-20 | 2003-02-20 | Asymmetric cone beam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/IL2003/000138 WO2004075118A1 (en) | 2003-02-20 | 2003-02-20 | Asymmetric cone beam |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004075118A1 true WO2004075118A1 (en) | 2004-09-02 |
Family
ID=32894016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IL2003/000138 WO2004075118A1 (en) | 2003-02-20 | 2003-02-20 | Asymmetric cone beam |
Country Status (6)
Country | Link |
---|---|
US (1) | US7340030B2 (en) |
EP (1) | EP1597702A1 (en) |
JP (1) | JP2006513764A (en) |
CN (1) | CN100492411C (en) |
AU (1) | AU2003208594A1 (en) |
WO (1) | WO2004075118A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006013325A1 (en) * | 2004-08-05 | 2006-02-09 | Elekta Ab (Publ) | X-ray apparatus |
JP2007044496A (en) * | 2005-07-15 | 2007-02-22 | Toshiba Corp | X-ray ct apparatus |
DE102006008255A1 (en) * | 2006-02-22 | 2007-08-30 | Siemens Ag | X-ray device has X-ray source and X-ray detector which are arranged opposite to each other, and displacement device displaces anode in direction parallel to Z-axis |
FR2924325A1 (en) * | 2007-12-03 | 2009-06-05 | Trophy Soc Par Actions Simplif | Dental X-ray apparatus i.e. cone beam computed tomography apparatus, for e.g. dental quadrant, has sensor oriented such that longitudinal axis is perpendicular to surface, where center of sensor is shifted relative to projection of axis |
WO2010052614A1 (en) | 2008-11-07 | 2010-05-14 | Koninklijke Philips Electronics, N.V. | Cone beam z-axis coverage |
US8979364B2 (en) | 2009-05-04 | 2015-03-17 | Trophy | Combined panoramic and computed tomography apparatus |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8033725B2 (en) * | 2006-06-02 | 2011-10-11 | Koninklijke Philips Electronics N.V. | X-ray image apparatus and device for and method of calibrating an X-ray image apparatus |
JP4957096B2 (en) * | 2006-06-30 | 2012-06-20 | 株式会社島津製作所 | X-ray diagnostic equipment |
JP4817065B2 (en) * | 2006-10-26 | 2011-11-16 | 株式会社島津製作所 | Radiation imaging device |
EP2279494B1 (en) * | 2008-05-21 | 2016-11-02 | Koninklijke Philips N.V. | Dynamic adjustable source collimation during fly-by scanning |
JP6195337B2 (en) * | 2012-02-24 | 2017-09-13 | 東芝メディカルシステムズ株式会社 | X-ray CT system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1096426A1 (en) * | 1999-10-27 | 2001-05-02 | GE Medical Systems Global Technology Company LLC | Methods and apparatus for cone beam multi-slice CT correction |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4709382A (en) * | 1984-11-21 | 1987-11-24 | Picker International, Inc. | Imaging with focused curved radiation detectors |
US5001347A (en) * | 1989-09-27 | 1991-03-19 | Siemens Gammasonics, Inc. | Focussing collimators for use in rotational camera transaxial SPECT in which the camera head is inclined with respect to the axis of rotation |
US5187659A (en) * | 1990-09-04 | 1993-02-16 | General Electric Company | Cone beam scanning trajectories for three-dimensional computerized tomography data acquisition where object is larger than the field of view |
JP3168824B2 (en) | 1994-04-30 | 2001-05-21 | 株式会社島津製作所 | X-ray CT system |
JP3763611B2 (en) * | 1996-07-12 | 2006-04-05 | 株式会社東芝 | X-ray CT scanner |
IL119033A0 (en) * | 1996-08-07 | 1996-11-14 | Elscint Ltd | Multi-slice detector array |
JP3828967B2 (en) * | 1996-10-30 | 2006-10-04 | 株式会社東芝 | X-ray CT scanner |
US6327329B1 (en) | 1998-08-25 | 2001-12-04 | General Electric Company | Methods and apparatus for monitoring detector image quality |
US6658082B2 (en) * | 2000-08-14 | 2003-12-02 | Kabushiki Kaisha Toshiba | Radiation detector, radiation detecting system and X-ray CT apparatus |
US6735271B1 (en) * | 2000-11-28 | 2004-05-11 | Ge Medical Systems Global Technology Company Llc | Electron beam computed tomographic scanner system with helical or tilted target, collimator, and detector components to eliminate cone beam error and to scan continuously moving objects |
CA2407004C (en) * | 2001-02-23 | 2008-02-19 | Mitsubishi Heavy Industries, Ltd. | X-ray ct apparatus |
DE60234538D1 (en) * | 2002-05-06 | 2010-01-07 | Koninkl Philips Electronics Nv | HIGH RESOLUTION CT SCANNER |
US7162005B2 (en) * | 2002-07-19 | 2007-01-09 | Varian Medical Systems Technologies, Inc. | Radiation sources and compact radiation scanning systems |
US7103137B2 (en) * | 2002-07-24 | 2006-09-05 | Varian Medical Systems Technology, Inc. | Radiation scanning of objects for contraband |
US7356115B2 (en) * | 2002-12-04 | 2008-04-08 | Varian Medical Systems Technology, Inc. | Radiation scanning units including a movable platform |
US7062009B2 (en) * | 2002-09-12 | 2006-06-13 | Analogic Corporation | Helical interpolation for an asymmetric multi-slice scanner |
JP2004313657A (en) * | 2003-04-21 | 2004-11-11 | Ge Medical Systems Global Technology Co Llc | Radiation calculated tomographic image apparatus |
US6968042B2 (en) * | 2003-09-12 | 2005-11-22 | Ge Medical Systems Global Technology Company, Llc | Methods and apparatus for target angle heel effect compensation |
US6983035B2 (en) * | 2003-09-24 | 2006-01-03 | Ge Medical Systems Global Technology Company, Llc | Extended multi-spot computed tomography x-ray source |
US7020243B2 (en) * | 2003-12-05 | 2006-03-28 | Ge Medical Systems Global Technology Company Llc | Method and system for target angle heel effect compensation |
-
2003
- 2003-02-20 EP EP03706888A patent/EP1597702A1/en not_active Withdrawn
- 2003-02-20 WO PCT/IL2003/000138 patent/WO2004075118A1/en active Application Filing
- 2003-02-20 CN CN03826004.2A patent/CN100492411C/en not_active Expired - Fee Related
- 2003-02-20 AU AU2003208594A patent/AU2003208594A1/en not_active Abandoned
- 2003-02-20 US US10/546,016 patent/US7340030B2/en not_active Expired - Fee Related
- 2003-02-20 JP JP2004568447A patent/JP2006513764A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1096426A1 (en) * | 1999-10-27 | 2001-05-02 | GE Medical Systems Global Technology Company LLC | Methods and apparatus for cone beam multi-slice CT correction |
Non-Patent Citations (3)
Title |
---|
CAO Z. J.; TSUI B. M. W.: "Improved image quality for asymmetric double-focal cone-beam spect", IEEE TRANSACTIONS ON NUCLEAR SCIENCE, vol. 40, no. 4, PT.1, 31 October 1992 (1992-10-31), USA, pages 1145 - 1148, XP001172483 * |
GENGSHENG L. ZENG, GRANT T. GULLBERG, PAUL E. CHRISTIAN, DANIEL GAGNON: "Cone-Beam Iterative Reconstruction of a Segment of a Long Object", IEEE TRANSACTIONS ON NUCLEAR SCIENCE, vol. 49, no. 1, PT.1, February 2002 (2002-02-01), USA, pages 37 - 41, XP001172484 * |
ZENG G L ET AL: "ASYMMETRIC CONE-BEAM TRANSMISSION TOMOGRAPHY", IEEE TRANSACTIONS ON NUCLEAR SCIENCE, IEEE INC. NEW YORK, US, vol. 48, no. 1, PART I, February 2001 (2001-02-01), pages 117 - 124, XP001034564, ISSN: 0018-9499 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7796728B2 (en) | 2004-08-05 | 2010-09-14 | Elekta Ab (Publ) | X-ray apparatus |
WO2006013325A1 (en) * | 2004-08-05 | 2006-02-09 | Elekta Ab (Publ) | X-ray apparatus |
JP2007044496A (en) * | 2005-07-15 | 2007-02-22 | Toshiba Corp | X-ray ct apparatus |
DE102006008255A1 (en) * | 2006-02-22 | 2007-08-30 | Siemens Ag | X-ray device has X-ray source and X-ray detector which are arranged opposite to each other, and displacement device displaces anode in direction parallel to Z-axis |
DE102006008255B4 (en) * | 2006-02-22 | 2013-07-04 | Siemens Aktiengesellschaft | X-ray machine |
FR2924325A1 (en) * | 2007-12-03 | 2009-06-05 | Trophy Soc Par Actions Simplif | Dental X-ray apparatus i.e. cone beam computed tomography apparatus, for e.g. dental quadrant, has sensor oriented such that longitudinal axis is perpendicular to surface, where center of sensor is shifted relative to projection of axis |
US8363780B2 (en) | 2007-12-03 | 2013-01-29 | Trophy | Dental X-ray apparatus and associated method |
WO2009101283A3 (en) * | 2007-12-03 | 2009-10-29 | Trophy | Dental x-ray apparatus and associated method |
US8705691B2 (en) | 2007-12-03 | 2014-04-22 | Trophy | Dental X-ray apparatus and associated method |
WO2010052614A1 (en) | 2008-11-07 | 2010-05-14 | Koninklijke Philips Electronics, N.V. | Cone beam z-axis coverage |
CN102202578A (en) * | 2008-11-07 | 2011-09-28 | 皇家飞利浦电子股份有限公司 | Cone beam z-axis coverage |
US8467494B2 (en) | 2008-11-07 | 2013-06-18 | Koninklijke Philips Electronics N.V. | Cone beam z-axis coverage |
US8979364B2 (en) | 2009-05-04 | 2015-03-17 | Trophy | Combined panoramic and computed tomography apparatus |
Also Published As
Publication number | Publication date |
---|---|
EP1597702A1 (en) | 2005-11-23 |
JP2006513764A (en) | 2006-04-27 |
US20060159222A1 (en) | 2006-07-20 |
CN100492411C (en) | 2009-05-27 |
US7340030B2 (en) | 2008-03-04 |
AU2003208594A1 (en) | 2004-09-09 |
CN1742295A (en) | 2006-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3962844B2 (en) | Pre-patient collimator | |
EP1374776B1 (en) | Methods and apparatus for operating a radiation source | |
US6307918B1 (en) | Position dependent beam quality x-ray filtration | |
US8983024B2 (en) | Tetrahedron beam computed tomography with multiple detectors and/or source arrays | |
US6061419A (en) | Methods and apparatus for noise compensation in an imaging system | |
US9357973B2 (en) | X-ray beam transmission profile shaper | |
US9042514B2 (en) | Dose reduction via dynamic collimation adjustment for targeted field of view and/or digital tilt CT | |
US7340030B2 (en) | Asymmetric cone beam | |
US8964942B2 (en) | Imaging system using multisource collimation and a method assembly and system for providing multisource collimation | |
JP2012527934A (en) | Multi-detector array imaging system | |
US6280084B1 (en) | Methods and apparatus for indirect high voltage verification in an imaging system | |
JP2014210183A (en) | Medical imaging system and detector array | |
JP4298205B2 (en) | Method and computer tomography apparatus for computer tomography | |
US5608776A (en) | Methods and apparatus for twin beam computed tomography | |
US6118840A (en) | Methods and apparatus to desensitize incident angle errors on a multi-slice computed tomograph detector | |
US9095259B2 (en) | Method and system for high resolution nutated slice reconstruction using quarter detector offset | |
US6343110B1 (en) | Methods and apparatus for submillimeter CT slices with increased coverage | |
EP1652208B1 (en) | Shaped anode x-ray tube | |
JP6467420B2 (en) | Adjustable bow tie filter and method for adjusting using bow tie filter to achieve optimum SNR in helical computed tomography | |
US7254215B2 (en) | Systems and methods for reducing radiation dosage | |
CN106037772A (en) | Detector system and CT scanner | |
US10602993B2 (en) | Image reconstruction for Z-flying focal spot tomography | |
JP2009028110A (en) | X-ray ct system and filter plate for use in it | |
EP3469988A1 (en) | Apparatus and methods for imaging an object by cone beam tomography | |
WO2010052628A2 (en) | Device and method for adjusting anode angle and anode-to-anode distance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2003706888 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2006159222 Country of ref document: US Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10546016 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20038260042 Country of ref document: CN Ref document number: 2004568447 Country of ref document: JP |
|
WWP | Wipo information: published in national office |
Ref document number: 2003706888 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 10546016 Country of ref document: US |