WO2004074489A1 - Method of forming bone/cartilage tissue with use of fat cell - Google Patents

Method of forming bone/cartilage tissue with use of fat cell Download PDF

Info

Publication number
WO2004074489A1
WO2004074489A1 PCT/JP2004/001823 JP2004001823W WO2004074489A1 WO 2004074489 A1 WO2004074489 A1 WO 2004074489A1 JP 2004001823 W JP2004001823 W JP 2004001823W WO 2004074489 A1 WO2004074489 A1 WO 2004074489A1
Authority
WO
WIPO (PCT)
Prior art keywords
bone
cells
cartilage
adipocytes
transcription factor
Prior art date
Application number
PCT/JP2004/001823
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroko Kojima
Toshimasa Uemura
Original Assignee
Japan Science And Technology Agency
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency, National Institute Of Advanced Industrial Science And Technology filed Critical Japan Science And Technology Agency
Priority to JP2005502743A priority Critical patent/JP4491611B2/en
Publication of WO2004074489A1 publication Critical patent/WO2004074489A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • A61L27/3843Connective tissue
    • A61L27/3852Cartilage, e.g. meniscus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0654Osteocytes, Osteoblasts, Odontocytes; Bones, Teeth
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1346Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells
    • C12N2506/1384Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells from adipose-derived stem cells [ADSC], from adipose stromal stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the present invention provides a method for producing bone / cartilage tissue by introducing a gene for a bone / cartilage-inducing transcription factor into an adipocyte, and a method for producing bone / cartilage tissue by the method.
  • the present invention relates to an implant including cartilage tissue.
  • Tissue engineering approaches for bone and cartilage tissue regeneration typically use bone marrow-derived mesenchymal stem cells.
  • many successful cases of tissue regeneration using mesenchymal stem cells have been reported in clinical practice.
  • mesenchymal stem cells decrease rapidly with age, it is difficult to rely on stem cells alone for tissue engineering approaches in the elderly.
  • Bone and cartilage tissue are formed by differentiating osteoblasts or chondroblasts differentiated from mesenchymal stem cells into osteocytes or chondrocytes, respectively. Recently, it has been found that in the process of bone and cartilage formation, intracellular regulators such as transcription factors are involved in addition to extracellular regulators such as growth factors and BMP. For example, it has been confirmed that the transcription factor Cbial is essential for inducing differentiation of mesenchymal stem cells into osteoblasts (Reference 1).
  • Bapxl involved in the differentiation of mesenchymal stem cells into chondrocytes in the spinal cord
  • Msx2 (Reference 3) involved in skull ossification, and ossification of cartilage periosteum and intima It regulates the expression of genes involved in cartilage differentiation, such as Dlx-5 (Reference 4), Scleraxis (Reference 5), which is involved in the induction of differentiation of mesenchymal stem cells into chondrocytes and connective tissue, and type II Col lagen.
  • Various bone and cartilage inducible transcription factors such as Sox-9 (Reference 6), have been reported.
  • mesenchymal stem cells have pluripotency and differentiate into bone cells, cartilage tissues, adipocytes, muscle, myocardium, liver, nerves, etc. (References 7 and 8). For this reason, attempts have been made to differentiate undifferentiated mesenchymal cells into other mesenchymal cells, such as producing nerve cells from bone marrow-derived mesenchymal cells (References 9 and 10). However, all of these are in the experimental stage in vitro, and it is difficult to control the differentiation and proliferation of cells controlled by various factors and to induce differentiation into a desired tissue in vitro.
  • Reference 2 Tribioli, C. et al., (1999) Development 126, p5699-5711 Reference 3: Satokata, I. et al., (2000) Nature Genet. 24, p391-395 Reference 4: Ac amp or a, D. et al., (1999) Development 126, p3795-3809 Reference 5: Cserjesi, P. et al., (1995) Development 121, pl099-1110 Reference 6: Ng, LJ et al., (1997) Dev. Biol. 183, pl08-121
  • An object of the present invention is to provide a method for efficiently constructing bone and cartilage tissue in vitro using fat cells as a cell source, and an implant for bone and cartilage replacement using the method.
  • the present inventors have conducted intensive studies in order to solve the above-mentioned problems.
  • the present invention relates to a method for producing bone and cartilage tissue in vitro, which comprises introducing a gene for a bone and cartilage inducible transcription factor into isolated adipocytes and causing the cells to differentiate and proliferate. .
  • the bone / cartilage inducible transcription factor gene into adipocytes using an adenovirus vector or a retrovirus vector.
  • the differentiation and proliferation of cells are desirably performed in the presence of one or more members selected from the group consisting of dexamethasone, an immunosuppressant, an osteogenic protein, and an osteogenic humoral factor.
  • the differentiation and proliferation of the cells be performed using one or more selected from the group consisting of porous ceramics, collagen, polylactic acid and polyglycolic acid, and a complex thereof as a scaffold.
  • the method of the present invention comprises the following steps.
  • the above cells are treated with a porous ceramic, collagen, polylactic acid, and polydalicol. Acid, Nara And a step of differentiating and growing one or more selected from the group consisting of these complexes as a scaffold.
  • the present invention also provides an implant comprising the bone / cartilage tissue produced by the method of the present invention.
  • the implant may include a biocompatible material as a scaffold material, and may also include a suitable drug or the like.
  • the present invention provides a method for inducing the differentiation of osteochondrocytes into osteochondrocytes by introducing a gene for an osteochondroinducible transcription factor into the isolated adipocytes.
  • fat cells have a high cell proliferation ability.For example, it takes about one week from osteoblasts to isolate the required number of cells from primary culture cells, whereas fat cells have about 2 weeks. You can get enough in 3 days.
  • bone and cartilage inducible transcription factors allows the production of multiple bone and cartilage-forming proteins downstream thereof. By inducing the expression, the cells are effectively induced to differentiate into bone and cartilage tissue. By the way, direct addition of cell growth factor to cells does not guarantee that the desired cytotoxic effect will be 100% specific to the tissue.
  • FIG. 1 is a graph comparing the alfa lipophosphatase activity between uninfected adipocytes and Cbfal-introduced adipocytes.
  • the results for uninfected adipocytes (Casulette medium supplemented with Osteogenic supplement), Cbfal-introduced adipocytes (Calo medium supplemented with Osteogenic supplement), and infected lunar and fat moon cells (Adipogenes supplement supplemented Caro medium) Is shown.
  • FIG. 2 is a graph comparing the amount of calcium in uninfected adipocytes and Cbfal-introduced adipocytes.
  • the results for uninfected adipocytes (Caro medium supplemented with Osteogenic supplement), Cbfal-introduced lunar fat and menstrual follicles (Calo medium supplemented with Osteogenic supplement), and uninfected adipocytes (Medium supplemented with Adipogenesis supplement) are shown. .
  • FIG. 3 is a graph comparing the change in cell number between uninfected adipocytes and Cbfal-introduced adipocytes.
  • the results of Cbfal-introduced adipocytes (Caro medium supplemented with Osteogenic supplement), uninfected adipocytes (culture medium supplemented with Adipogenesis supplement), and uninfected adipocytes (medium supplemented with Osteogenic supplement) are shown from the top.
  • FIG. 4 is a photograph comparing the results of alizarin red staining between uninfected adipocytes and Cbfal-introduced adipocytes.
  • FIG. 5 is a photograph comparing the results of oil red staining between uninfected adipocytes and Cbfal-introduced adipocytes.
  • uninfected adipocytes Calo medium supplemented with Adipogenesis supplement
  • uninfected fat moon cells medium supplemented with Osteogenic supplement
  • Cbfal-introduced adipocytes (added Osteogenic supplement Media).
  • FIG. 6 is a graph comparing the results of GPDH activity in uninfected adipocytes and Cbial-introduced adipocytes.
  • the results of uninfected adipocytes (medium supplemented with Osteogenic supplement), Cbial-transduced adipocytes (medium supplemented with Osteogenic supplement), and uninfected adipocytes (medium supplemented with Adipogenes is supplement) are shown from the left.
  • FIG. 5 is a photograph showing the results of subcutaneously implanting a porous body containing Cbial-introduced fat cells into the back of a rat.
  • the right photo shows the results of transplantation of the porous body containing Cbial-introduced fat cells
  • the left photo shows the results of transplantation of the porous body containing uninfected fat cells.
  • the upper (HE) is the result of hematoxylin-eosin staining
  • the lower (TRAP) is the result of TRAP staining.
  • the asterisk indicates adipose tissue
  • the arrow (blue) indicates an osteogenic site
  • the arrow (red) indicates osteoclasts.
  • the present invention provides a method for introducing bone / cartilage-inducing transcription factor gene into isolated adipocytes, inducing the cells into bone / cartilage tissue, and efficiently producing bone / cartilage tissue in vitro. About.
  • the cells used in the present invention are adipocytes isolated from a living body and having differentiation diversity and proliferation ability, and include preadipocytes.
  • Adipocytes isolated from living organisms, especially adipose tissue include somatic stem cells There are many fibroblas t-like-cells, and the adipocytes used in the present invention may include such somatic stem cells.
  • the cells may be commercially available or prepared according to a conventional method.
  • the tissue from which the fat cells are derived is not particularly limited, and fat cells derived from various tissues can be used. In particular, subcutaneous adipose tissue is a rich source of fat cells and can be easily collected by liposuction or the like.
  • the adipocytes used in the present invention may be mature cells or undifferentiated cells, but it is preferable to use primary cultured cells.
  • the primary cultured cells may be used after being passaged, but the number of passages is preferably 1 or less.
  • the bone and cartilage-inducing transcription factor used in the present invention is a bone'cartilage-inducing transcription factor that induces undifferentiated cells to differentiate into bone and / or cartilage.
  • a bone'cartilage-inducing transcription factor that induces undifferentiated cells to differentiate into bone and / or cartilage.
  • Cbial was cloned by Ogawa et al. Of Kyoto University in 1993, and was confirmed by Omori et al. Of Osaka University to be a transcription factor that was confirmed to be essential for inducing differentiation of mesenchymal stem cells into osteoblasts (Koniori, T. et al., (1997) Cell 89, 755-764).
  • Dlx-5 is a homologous gene to Drosophi la distal less (DI D gene and is a transcription factor involved in perichondrium and intimal ossification (Acampora, D. et al., (1999)
  • Bapxl is a homologous gene of the Drosophi la bagpipe homeobox gene, and is involved in the differentiation of mesenchymal stem cells into chondrocytes, especially in the spinal cord, and is considered to be one of the regulatory genes of the Cbfal gene
  • Msx2 is a homologous gene of the Drosophi la muscle segment homeobox (Msh) gene and is involved in skull ossification, and is considered to be one of the regulatory genes of the Cbial gene (Satokata, I. et al., (2000) Nature Gene t. 24, 391-395).
  • Scleraxis is a transcription factor involved in inducing differentiation of mesenchymal stem cells into chondrocytes and connective tissue (Cserjes i, P. et al., (1995) Development 121, 1099-1110).
  • Sox-9 is expressed in cartilage and regulates the expression of genes involved in cartilage differentiation such as type II collagen (Ng, LJ et al., (1997) Dev. Biol. 183 , 108-121).
  • the osteochondral inducible transcription factor gene can be prepared based on a known sequence according to a conventional method.
  • cDNA of the target transcription factor can be prepared by extracting RNA from osteoblasts and cloning according to a conventional method.
  • the bone cartilage-inducing transcription factor gene is introduced into target cells by a method usually used for transfection of animal cells, for example, a calcium phosphate method, a lipofection method, an electroporation method, a microinjection method.
  • a method using an adenovirus, a retrovirus, a baculovirus, or the like as a vector can be used.
  • adenovirus or retrovirus vectors having a high transfection efficiency are preferred, and adenovirus vectors are most preferred, in particular, in that non-proliferating cells can generate gene expression in vivo in a very powerful manner.
  • the adenovirus or retrovirus vector can be prepared based on a well-known method.
  • the adenovirus vector may be prepared based on the method of Miyake et al. (Miyake, S. et al, Proc. Natl. Acad. Sci. 93: 1320-1324, (1993)), but commercially available Kits such as Adenovirus Cre / loxP Kit (Takara Shuzo) and the like can also be used.
  • This kit used P1 phage Cre recombinase and its recognition sequence ⁇ .
  • a recombinant adenovirus vector kit using a new expression control system (Kanegae Y. et. Al., 1995 Nucl. Acids Res.
  • the moi (multiplicity of infection) of adenovirus infection is 200 or more, preferably 400 to 600, and more preferably around 500.
  • a known medium such as a MEM medium, ⁇ -MEM medium, or DMEM medium can be appropriately selected and used according to the characteristics of adipocytes to be used.
  • the medium includes FBS (manufactured by Sigma),
  • the medium contains dexamethasone, FK-506-cyclosporine, etc., which have the action of promoting cell differentiation.
  • BMP Bone Morphogenetic Proteins
  • One or more selected ones are preferably added together with a phosphoric acid source such as glycerin phosphate and ascorbate phosphate.
  • Cultured cells 3 ⁇ 10% C0 2, 30 ⁇ 40 ° C, in particular 5% C0 2, row Ukoto is desirable under the conditions of 37 ° C.
  • the culture period is not particularly limited, but is at least 3 to 7 days, preferably 4 to 5 days.
  • the scaffold material it is preferable to use a biocompatible material so that bone / cartilage tissue constructed on the scaffold may be directly applied to a living body.
  • a biocompatible material include, for example, hydroxyapatite and jS-TCP (re Porous ceramics such as tricalcium phosphate), ⁇ -TCP, collagen, polylactic acid and polyglycolic acid, and their composites (eg, polylactic acid / polyglycolic acid resin / collagen composites), or absorbable synthesis Polymers—and the like.
  • hydroxyapatite and jS-TCP re Porous ceramics such as tricalcium phosphate
  • ⁇ -TCP re Porous ceramics such as tricalcium phosphate
  • collagen polylactic acid and polyglycolic acid
  • their composites eg, polylactic acid / polyglycolic acid resin / collagen composites
  • absorbable synthesis Polymers and the like.
  • porous ceramics are preferred as a scaffold for tissue regeneration because of their high mechanical
  • the biocompatible material is preferably porous so as to enable uniform seeding of cells.
  • porosity porosity
  • the size of the hole is not particularly limited, but the diameter is 200 ⁇ ! In that bone regeneration is likely to occur. ⁇ 500 m is preferred
  • the most suitable biocompatible material can be selected according to the intended use of the constructed bone / cartilage tissue.
  • octa-idoxyapatite is preferred for application to a transplant site (or a surgical procedure) that requires strength, and is applied to a transplant site (or a surgical procedure) that does not require strength.
  • bioabsorbable such as 8-TCP is preferable.
  • the form and shape of the biocompatible material are not particularly limited, and any form and shape such as a sponge, a mesh, a non-woven fabric, a disc, a film, a rod, a particle, and a paste may be used. be able to. These forms and shapes may also be appropriately selected according to the intended use of the constructed bone / cartilage tissue.
  • the cells may be seeded on the scaffold material and cultured in a usual manner using the above-mentioned medium.
  • Cells can be seeded simply by seeding the scaffold material, or by mixing with a liquid such as a buffer solution, physiological saline, an injection solvent, or a collagen solution. , If the cells do not enter the pores smoothly, they may be seeded under reduced or applied pressure.
  • the number of cells to be seeded is preferably adjusted appropriately in accordance with the characteristics of the type of cells used and the scaffold material in order to maintain the cell morphology and perform tissue regeneration more efficiently.
  • the bone / cartilage tissue produced by the method of the present invention can be used as a bone / cartilage replacement implant by implanting or injecting it into a living body together with a scaffold material or separately from the scaffold material. That is, the present invention provides an implant including bone and cartilage tissue constructed in vitro.
  • the bone / cartilage tissue may be implanted separately from the scaffold material, but is preferably implanted together with the scaffold material.
  • the scaffold material may be appropriately selected from the above-mentioned scaffold materials depending on the purpose and application site of the implant. For example, hydroxyapatite is preferred for implants that require strength (or surgical procedures), and bioresorbable iS-TCP is preferred for implants that do not require strength (or surgical procedures). .
  • the shape and shape of the implant of the present invention are not particularly limited, and any shape and shape such as a sponge, a mesh, a non-woven fabric, a disk, a film, a bar, a particle, and a paste may be used. be able to. These forms and shapes may be appropriately selected according to the purpose of the implant.
  • the implant of the present invention may appropriately contain other components as long as the purpose and the effect are not impaired.
  • Such components include, for example, basal fibroblast growth factor (bFGF), platelet differentiation growth factor (PDGF), insulin, insulin-like growth factor (IGF), hepatocyte growth factor (HGF), glial induction God Growth factors such as transtrophic factor (GDNF), neurotrophic factor (NF), hormones, cytodynamics, bone morphogenetic factor (BMP), transforming growth factor (TGF), vascular endothelial cell growth factor (VEGF), bone forming proteins, St, Mg, Ca and C0 3 No machine salts such as, Kuen acid and organic substances such as phospholipids, can be given a drug or the like.
  • bFGF basal fibroblast growth factor
  • PDGF platelet differentiation growth factor
  • IGF insulin-like growth factor
  • HGF hepatocyte growth factor
  • GDNF transtrophic factor
  • NF neurotrophic factor
  • BMP bone morphogenetic factor
  • the constructed bone and cartilage tissue can be made of other biocompatible materials commonly used for implants, such as metal materials such as SUS316L, Vitalium and Ti-6A1-4V, ultra high molecular weight polyethylene, MMA bone cement, poly Polymeric materials such as lactic acid, polyglycolic acid, polyethylene terephthalate and polypropylene, hydroxyapatite, ceramic materials such as iS-TCP, a-TCP and bioglass may be used in combination.
  • metal materials such as SUS316L, Vitalium and Ti-6A1-4V
  • ultra high molecular weight polyethylene such as polyethylene, MMA bone cement, poly Polymeric materials such as lactic acid, polyglycolic acid, polyethylene terephthalate and polypropylene, hydroxyapatite, ceramic materials such as iS-TCP, a-TCP and bioglass may be used in combination.
  • the method of the present invention is applied to regenerative medicine, it becomes possible to regenerate bone / cartilage tissue using its own fat cells. That is, a gene for an osteochondral inducible transcription factor is introduced into adipocytes or preadipocytes collected from a patient. The cells are then differentiated and propagated on a suitable scaffold material to build bone and cartilage tissue and then applied to the patient's bone and cartilage defect together with the scaffold material or separately from the scaffold material. Alternatively, a scaffold material seeded with the cells may be applied to a bone / cartilage defect of a patient to try to construct a tissue in vivo.
  • the fat cells used in the present invention can be extremely easily and safely collected from humans, the range of application of regenerative medicine using bone marrow-derived stem cells and ES cells is greatly expanded, and elderly patients who need this technology most It is expected that application to the elderly will be possible.
  • Example 1 Induction test for differentiation of rat adipocytes into osteoblasts
  • Cbfal cDNA (SEQ ID NO: 1) was obtained by synthesizing a cDNA based on RNA extracted from mouse bone, and amplifying the cDNA by PCR using the following primers: c sense primer: 5'-ATGCTTCATTCGCCTCACAAAC -3 '(SEQ ID NO: 2)
  • antisense primer 5, -TCTGTTTGGCGGCCATATTGA-3 '(SEQ ID NO: 3)
  • the Cbfal cDNA was further cloned into a TA cloning vector (pCRII-TOPO, manufactured by Invitrogen) to prepare a large amount, and then the Cbfal cDNA was cut out with Spel and EcoRV and blunt-ended.
  • the excised Cbfal cDNA was inserted into a cosmid vector pAxCALNLw using Adenovirus Cre / loxPkit (Takara Shuzo, 6151), and a recombinant adenovirus was prepared according to the kit instructions.
  • the titer of the virus thus produced showed a value of about lt PFU / ml, confirming that the infection efficiency was very high.
  • adipocytes were harvested from abdominal subcutaneous fat of 8-week-old Fischer rats. The subcutaneous fat was washed with physiological saline, cut into small pieces, and treated with 0.075% collagenase at 37 ° C for 30 minutes to disperse the cells. The cells were neutralized with a MEM medium (Sigma, D-5796) supplemented with 10% FBS (Sigma, F-9423), centrifuged, and the precipitate was treated with a 160 ⁇ aqueous ammonium chloride solution for 10 minutes.
  • MEM medium Sigma, D-5796
  • FBS Sigma, F-9423
  • the supernatant obtained by centrifugation was filtered through a 100 ⁇ m nylon mesh, and cultured in DMEM medium supplemented with 10% FBS and Antibiotic-Antimycotic (GIBC0 BRL, 15240-062) until confluent. .
  • Adipocyte culture was performed using 250 nM Dexamethasone (Sigma, D-8893), 0.5 mM l-metyl-3-isobutylxant in (Sigma, 1-7018), 10 ng / ml insulin (Sigma, I-5500) or 5 nM Dexamethasone (Sigma, D-8893), 10 mM ⁇ -glycerophosphate (Sigma, G-9891), 50 ng / ml ascorbic acid phosphate (Wako, 013-12061) as Osteogenic supplement Two types of culture media were prepared and performed. 5) Measurement of alkaline phosphatase activity
  • osteoblast differentiation marker al-force phosphatase
  • Cbial introduction adipocytes after infection three days after 1-2 weeks 100 mM Tris (pH 7.5), washed with 5 mM MgCl 2, collected by the scraper 500 1 of 100 mM Tris (pH 7.5), 5mM MgCl 2, 1% Triton X -Suspended in 100 and sonicated. After crushing, the mixture was centrifuged at 6,000 g for 5 minutes to recover the supernatant. Enzyme activity was determined by adding 5.
  • Cbial-introduced adipocytes 1 to 3 weeks after infection were fixed with 10% formalin buffer, and demineralized with 0.6 M HC1 for 24 hours.
  • the decalcified solution was diluted, and the amount of calcium was measured using Calcium reagents (Sigma, 587, 360-11) according to the instructions.
  • Comparison Non-infected adipocytes which had not been infected were similarly measured for the amount of potassium.
  • Cbfal-introduced adipocytes 3 to 2 weeks after infection were fixed with 1% glutalaldehyde in PBS for 5 minutes, washed twice with distilled water, and stained with 0.1% crystal violet for 30 minutes at room temperature. After washing with distilled water three times to remove excess dye, the color was decolorized with 10% acetic acid, 1% Triton X-100. This decolorized solution was diluted, and the absorbance at an absorption wavelength of 595 nm was measured. The calibration curve was prepared by seeding cells at an appropriate concentration (duplicate), and counting the cells detached by trypsin treatment and the above-mentioned staining method.
  • CMal transfected adipocytes 1-3 weeks after infection are fixed with 3.7% formalin buffer for 5 minutes, washed briefly with distilled water, and then added with 0.5% oil-red Z-isopropyl alcohol staining solution for 30 minutes. Incubated. After that, they were washed many times with distilled water, and the results were captured with a scanner. For comparison, oil-red staining was also performed on non-infected adipocytes not infected with adenovirus.
  • GPDH activity Measurement of glycerol-3-phosphate dehydrogenase (GPDH) activity was performed in the same manner as for the alkaline phosphatase activity measurement sample. Samples were prepared, and the GPDH activity was measured using a GPDH activity measurement kit (WAK0309-06141, manufactured by WAK0). 5 of each sample was diluted 10-fold with the enzyme extract attached to the kit (50 1), 100 1 of the reaction solution was added, and the decrease in absorbance at an absorption wavelength of 340 I was measured with a microplate reader. did. The GPDH activity unit was determined from the change in absorbance per minute.
  • Alkaline phosphatase activity was measured in uninfected adipocytes cultured in a calo medium supplemented with Adipogenesis supplement or in a calo medium supplemented with Osteogenic supplement, and in Cbfal-transduced adipocytes cultured in a medium supplemented with Osteogenic supplement (FIG. 1).
  • ALP activity Alkaline phosphatase activity
  • GPDH activity Comparison of glycerol-3-phosphate dehydrogenase (GPDH) activity in non-infected adipocytes cultured in calo medium supplemented with Adipogenesis supplement or in calo medium supplemented with Osteogenic supplement, and in Cbial-transduced adipocytes cultured in medium supplemented with Osteogenic supplement Were compared (Fig. 6). Only in non-infected cells cultured in the medium supplemented with Adipogenesis supplement, GPDH activity, a fat metabolic enzyme and a fat cell marker, was observed. From the above results, it was confirmed that Cbfal cDNA was very efficiently introduced into adipocytes by the adenovirus vector. It was confirmed that the cells differentiated into osteoblasts efficiently.
  • this culture system can provide an efficient means of producing bone and cartilage tissue in vitro by using an appropriate scaffold material such as porous ceramics.
  • an appropriate scaffold material such as porous ceramics.
  • iS-TCP tricalcium phosphate
  • iS-TCP tricalcium phosphate
  • average pore size 200 mm in diameter, 5imnx5 bandages x 5 mm
  • cultivating the aforementioned Cbfal-introduced fat cells I do cultivating the aforementioned Cbfal-introduced fat cells I do.
  • the constructed bone / cartilage tissue is implanted together with the scaffold material into the bone / cartilage defect of the animal, and bone formation at the application site is confirmed by tissue staining (hematoxylin / eosin staining, etc.). The effect as an implant for bone and cartilage replacement can be confirmed.
  • Subcutaneous adipose tissue was collected from a Fischer rat, and contained in a 10% FBS-containing medium containing the osteogenic supplement (5 nM Dexame thasone, 10 ⁇ ⁇ -glycerophosphate, 50 ng / ml ascorbic acid phosphate) used in Example 1.
  • the osteogenic supplement 5 nM Dexame thasone, 10 ⁇ ⁇ -glycerophosphate, 50 ng / ml ascorbic acid phosphate
  • fat cells can be induced to differentiate into bone and cartilage tissue with high efficiency.
  • This method enables efficient construction of bone and cartilage tissue outside the living body by using easily and abundantly obtained fat cells as materials, and is expected to be applied to new implants and regenerative medicine. Sequence listing free text

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Microbiology (AREA)
  • Rheumatology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)

Abstract

A method of in vitro forming a bone/cartilage tissue characterized in that a gene for bone/cartilage inductive transcription factor is introduced in isolated fat cells and the fat cells are differentiated and grown; and an implant for bone/cartilage substitution, formed by the method.

Description

•脂肪細胞を利用した骨 ·軟骨組織の作製方法  • How to make bone and cartilage tissue using fat cells
技 術 分 野 Technical field
本発明は、 脂肪細胞に骨 ·軟骨誘導性転写因子の遺伝子を導入すること により、 骨 ·軟骨組織を作製する方法、 及び該方法により作製された骨 · 明  The present invention provides a method for producing bone / cartilage tissue by introducing a gene for a bone / cartilage-inducing transcription factor into an adipocyte, and a method for producing bone / cartilage tissue by the method.
軟骨組織を含むインプラントに関する。 The present invention relates to an implant including cartilage tissue.
田 背 景 技 術  Field view technology
骨 ·軟骨組織再生のための組織工学的アプローチでは、 通常、 骨髄由来 の間葉系幹細胞が用いられる。実際、間葉系幹細胞等を用いた組織再生は、 臨床においても多くの成功例が報告されている。 しかしながら、 間葉系幹 細胞は加齢に伴って急激に減少するため、 高齢者における組織工学的アブ ローチでは幹細胞だけに頼ることは難しい。  Tissue engineering approaches for bone and cartilage tissue regeneration typically use bone marrow-derived mesenchymal stem cells. In fact, many successful cases of tissue regeneration using mesenchymal stem cells have been reported in clinical practice. However, because mesenchymal stem cells decrease rapidly with age, it is difficult to rely on stem cells alone for tissue engineering approaches in the elderly.
骨 ·軟骨組織は、間葉系幹細胞より分化した骨芽細胞又は軟骨芽細胞が、 それぞれ骨細胞又は軟骨細胞へと分化して形成される。 最近、 骨,軟骨形 成の過程では、増殖因子や BMP等の細胞外制御因子に加えて、転写因子等の 細胞内制御因子が関与していることがわかってきた。 例えば、 転写因子 Cbialは、間葉系幹細胞から骨芽細胞への分化誘導に必要不可欠であること が確認されている (文献 1 ) 。 この他にも、 脊髄における間葉系幹細胞の 軟骨細胞への分化に関与する Bapxl (文献 2 ) 、 頭蓋骨の骨化に関与する Msx2 (文献 3 ) 、 軟骨骨膜や内膜の骨化に関与する Dlx- 5 (文献 4 ) 、 間 葉系幹細胞から軟骨細胞や結合組織への分化誘導に関与する Scleraxis (文献 5 ) 、 type I I Col lagen等の軟骨分化に関わる遺伝子の発現調節を 担う Sox-9 (文献 6) 等、 種々の骨 ·軟骨誘導性転写因子が報告されてい る。 Bone and cartilage tissue are formed by differentiating osteoblasts or chondroblasts differentiated from mesenchymal stem cells into osteocytes or chondrocytes, respectively. Recently, it has been found that in the process of bone and cartilage formation, intracellular regulators such as transcription factors are involved in addition to extracellular regulators such as growth factors and BMP. For example, it has been confirmed that the transcription factor Cbial is essential for inducing differentiation of mesenchymal stem cells into osteoblasts (Reference 1). In addition, Bapxl (Reference 2) involved in the differentiation of mesenchymal stem cells into chondrocytes in the spinal cord, Msx2 (Reference 3) involved in skull ossification, and ossification of cartilage periosteum and intima It regulates the expression of genes involved in cartilage differentiation, such as Dlx-5 (Reference 4), Scleraxis (Reference 5), which is involved in the induction of differentiation of mesenchymal stem cells into chondrocytes and connective tissue, and type II Col lagen. Various bone and cartilage inducible transcription factors, such as Sox-9 (Reference 6), have been reported.
一方、間葉系幹細胞は多分化能を有し、骨 ·軟骨組織のほか、脂肪細胞、 筋肉、 心筋、 肝臓、 神経等に分化する (文献 7および 8) 。 そのため、 骨 髄由来の間葉系細胞から神経細胞を作り出すなど、 未分化の間葉系細胞を 他の間葉系細胞に分化させる試みも行われている (文献 9および 1 0) 。 しかし、 これらはいずれも in vitroでの実験段階にあり、 様々な因子によ つて制御される細胞の分化増殖をコントロールし、 生体外で所望の組織へ と分化誘導することは難しい。  On the other hand, mesenchymal stem cells have pluripotency and differentiate into bone cells, cartilage tissues, adipocytes, muscle, myocardium, liver, nerves, etc. (References 7 and 8). For this reason, attempts have been made to differentiate undifferentiated mesenchymal cells into other mesenchymal cells, such as producing nerve cells from bone marrow-derived mesenchymal cells (References 9 and 10). However, all of these are in the experimental stage in vitro, and it is difficult to control the differentiation and proliferation of cells controlled by various factors and to induce differentiation into a desired tissue in vitro.
文献 1 : Komori, T. et al. , (1997) Cell 89, ρ755-764 Reference 1: Komori, T. et al., (1997) Cell 89, ρ755-764
文献 2 : Tribioli, C. et al., (1999) Development 126, p5699-5711 文献 3 : Satokata, I. et al. , (2000) Nature Genet. 24, p391-395 文献 4 : Ac amp or a, D. et al. , (1999) Development 126, p3795-3809 文献 5 : Cserjesi, P. et al., (1995) Development 121, pl099-1110 文献 6 : Ng, L. J. et al. , (1997) Dev. Biol. 183, pl08-121 Reference 2: Tribioli, C. et al., (1999) Development 126, p5699-5711 Reference 3: Satokata, I. et al., (2000) Nature Genet. 24, p391-395 Reference 4: Ac amp or a, D. et al., (1999) Development 126, p3795-3809 Reference 5: Cserjesi, P. et al., (1995) Development 121, pl099-1110 Reference 6: Ng, LJ et al., (1997) Dev. Biol. 183, pl08-121
文献 7 : Pittenger MF, et al., (1999) Science, 285: i 43- 147 文献 8 : Zuk PA et al., (2001), Tissue Eng. Vol.7 (2) p211-228 文献 9 : Halvorsen YD et al. , (2001), Tissue Eng. Vol.7 (6) p729-741 文献 10 : Goodwin HS et al. , (2001) , Biol. Blood Marrow Transplant Vol.7(11) p581-588 発 明 の 開 示 Reference 7: Pittenger MF, et al., (1999) Science, 285: i 43-147 Reference 8: Zuk PA et al., (2001), Tissue Eng. Vol.7 (2) p211-228 Reference 9: Halvorsen YD et al., (2001), Tissue Eng. Vol.7 (6) p729-741 Reference 10: Goodwin HS et al., (2001), Biol. Blood Marrow Transplant Vol.7 (11) p581-588 Disclosure of
本発明は、 脂肪細胞を細胞ソースとして用い、 生体外で骨 ·軟骨組織を 効率良く構築する方法、 及び該方法を利用した骨 ·軟骨代替用インプラン 卜を提供することを課題とする。 本発明者らは上記課題を解決するために鋭意検討した結果、 脂肪細胞に 骨 ·軟骨誘導性転写因子を導入 ·発現させることにより、 該細胞を効率よ く骨 ·軟骨組織に分化誘導しうることを見出し、 本発明を完成させた。 すなわち、 本発明は、 単離された脂肪細胞に骨 ·軟骨誘導性転写因子の 遺伝子を導入し、 該細胞を分化増殖させることを特徴とする、 生体外での 骨 ·軟骨組織の作製方法に関する。 An object of the present invention is to provide a method for efficiently constructing bone and cartilage tissue in vitro using fat cells as a cell source, and an implant for bone and cartilage replacement using the method. The present inventors have conducted intensive studies in order to solve the above-mentioned problems. As a result, by introducing and expressing bone and cartilage-inducing transcription factors in adipocytes, the cells can be efficiently induced to differentiate into bone and cartilage tissue. That is, the present invention has been completed. That is, the present invention relates to a method for producing bone and cartilage tissue in vitro, which comprises introducing a gene for a bone and cartilage inducible transcription factor into isolated adipocytes and causing the cells to differentiate and proliferate. .
本発明の方法で用いられる骨 ·軟骨誘導性転写因子としては、 例えば、 CbfaL Dlx- 5、 BapxK Msx2、 Sc leraxi s、 及び Sox- 9等を挙げることができ るが、 なかでも Cbfalが好ましい。  Examples of the osteochondral inducible transcription factor used in the method of the present invention include CbfaL Dlx-5, BapxK Msx2, Scelaxis, and Sox-9. Among them, Cbfal is preferable.
本発明の方法において、 骨 ·軟骨誘導性転写因子の遺伝子の脂肪細胞へ の導入は、 アデノウイルスベクタ一又はレトロウイルスベクターを用いて 行うことが望ましい。  In the method of the present invention, it is desirable to introduce the bone / cartilage inducible transcription factor gene into adipocytes using an adenovirus vector or a retrovirus vector.
本発明の方法において、 細胞の分化増殖は、 デキサメタゾン、 免疫抑制 剤、 骨形成タンパク質、 及び骨形成液性因子からなる群より選ばれる 1種 又は 2種以上の存在下で行われることが望ましい。  In the method of the present invention, the differentiation and proliferation of cells are desirably performed in the presence of one or more members selected from the group consisting of dexamethasone, an immunosuppressant, an osteogenic protein, and an osteogenic humoral factor.
さらに 細胞の分化増殖は 多孔性セラミックス、 コラーゲン、 ポリ乳 酸及びポリグリコール酸、 ならびにこれらの複合体からなる群より選ばれ る 1種又は 2種以上を足場として行うことが望ましい。  Furthermore, it is desirable that the differentiation and proliferation of the cells be performed using one or more selected from the group consisting of porous ceramics, collagen, polylactic acid and polyglycolic acid, and a complex thereof as a scaffold.
好ましい実施形態としては、 本発明の方法は以下の工程を含む。  In a preferred embodiment, the method of the present invention comprises the following steps.
1 ) 単離された脂肪細胞に骨 ·軟骨誘導性転写因子の遺伝子をアデノウィ ルスベクター又はレトロウイルスベクターを用いてトランスフエク卜する 工程。 1) a step of transfecting the isolated adipocytes with a bone and cartilage inducible transcription factor gene using an adenovirus vector or a retrovirus vector;
2 ) 上記細胞を、 デキサメタゾン、 免疫抑制剤、 骨形成タンパク質、 及び 骨形成液性因子からなる群より選ばれる 1種又は 2種以上の存在下で、 多 孔性セラミックス、 コラーゲン、 ポリ乳酸及びポリダリコール酸、 ならび にこれらの複合体からなる群より選ばれる 1種又は 2種以上を足場として 分化増殖させる工程。 2) In the presence of one or more selected from the group consisting of dexamethasone, an immunosuppressant, a bone morphogenetic protein, and an osteogenic humoral factor, the above cells are treated with a porous ceramic, collagen, polylactic acid, and polydalicol. Acid, Nara And a step of differentiating and growing one or more selected from the group consisting of these complexes as a scaffold.
本発明はまた、 本発明の方法によって作製された骨 ·軟骨組織を含む、 インプラントを提供する。 該インプラントは、 足場材料である生体適合性 材料を含んでいてもよく、 また適当な薬剤等を含んでいても良い。  The present invention also provides an implant comprising the bone / cartilage tissue produced by the method of the present invention. The implant may include a biocompatible material as a scaffold material, and may also include a suitable drug or the like.
さらに、 本発明は、 単離された脂肪細胞に骨 ·軟骨誘導性転写因子の遺伝 子を導入することにより、 該細胞を骨 ·軟骨細胞に分化誘導する方法を提供 する。  Furthermore, the present invention provides a method for inducing the differentiation of osteochondrocytes into osteochondrocytes by introducing a gene for an osteochondroinducible transcription factor into the isolated adipocytes.
以下に、 本発明の方法の特徴を挙げる。  The features of the method of the present invention are described below.
1 ) 間葉系幹細胞や骨芽細胞を利用した従来の骨 ·軟骨組織構築とは異な り、 単離が容易で、 かつ豊富な脂肪細胞を細胞ソースとする。 また、 脂肪 細胞は細胞増殖能力が高く、 例えば、 骨芽細胞の場合には必要な細胞数の 確保に初代培養細胞を単離してから約 1週間かかるところを、脂肪細胞の場 合は約 2〜3日で十分量を得ることができる。  1) Unlike conventional bone and cartilage tissue construction using mesenchymal stem cells or osteoblasts, isolation is easy and abundant fat cells are used as the cell source. In addition, fat cells have a high cell proliferation ability.For example, it takes about one week from osteoblasts to isolate the required number of cells from primary culture cells, whereas fat cells have about 2 weeks. You can get enough in 3 days.
2 ) 増殖因子のような細胞外制御因子を利用した骨,軟骨組織構築とは異 なり、 骨 ·軟骨誘導性転写因子を利用することにより、 その下流にある複 数の骨 ·軟骨形成たんぱく質の発現を誘導して、 細胞を効果的に骨 ·軟骨 組織に分化誘導する。 ちなみに、 細胞増殖因子の細胞への直接添加では、 目的のサイ卜力インが 100 %その組織に特異的に効果を及ぼすとは限らな い。 2) Unlike bone and cartilage tissue construction using extracellular regulatory factors such as growth factors, the use of bone and cartilage inducible transcription factors allows the production of multiple bone and cartilage-forming proteins downstream thereof. By inducing the expression, the cells are effectively induced to differentiate into bone and cartilage tissue. By the way, direct addition of cell growth factor to cells does not guarantee that the desired cytotoxic effect will be 100% specific to the tissue.
3 ) アデノウイルスベクタ一やレトロウイルスベクター系を用いて、 骨 · 軟骨誘導性転写因子の遺伝子を細胞に導入することで、 極めて高い導入効 率が達成できる。 ちなみに、 リポフエクシヨン法によるサイト力イン遺伝 子の導入の場合、 樹立細胞株ではある程度の成功をおさめているが、 初代 培養細胞に対しては、 殆ど 0に近い導入効率しか得られていない。 図面の簡単な説明 3) Very high transfection efficiency can be achieved by introducing the gene for bone and cartilage inducible transcription factor into cells using an adenovirus vector or a retrovirus vector system. By the way, in the case of introduction of the cytoforce gene by the lipofection method, established cell lines have achieved a certain degree of success, but the transfection efficiency of primary cultured cells is almost zero. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 非感染脂肪細胞と Cbfal導入脂肪細胞におけるアル力リフォス ファターゼ活性を比較したグラフである。 図中、 左から、 非感染脂肪細胞 (Osteogenic supplement 添カ卩培地)、 Cbfal 導入脂肪細胞 (Osteogeni c supplement添カロ培地)、 感染月旨肪細月包 (Adipogenesi s supplement添カロ培 地) の結果を示す。  FIG. 1 is a graph comparing the alfa lipophosphatase activity between uninfected adipocytes and Cbfal-introduced adipocytes. In the figure, from the left, the results for uninfected adipocytes (Casulette medium supplemented with Osteogenic supplement), Cbfal-introduced adipocytes (Calo medium supplemented with Osteogenic supplement), and infected lunar and fat moon cells (Adipogenes supplement supplemented Caro medium) Is shown.
図 2は、 非感染脂肪細胞と Cbfal導入脂肪細胞におけるカルシウム量を 比較したグラフである。 図中、 左から、 非感染脂肪細胞 (Osteogenic supplement添カロ培地)、 Cbfal導入月旨肪,細月包 (Osteogenic supplement添カロ 培地)、 非感染脂肪細胞 (Adipogenesis supplement添加培地) の結果を示 す。  FIG. 2 is a graph comparing the amount of calcium in uninfected adipocytes and Cbfal-introduced adipocytes. In the figure, from the left, the results for uninfected adipocytes (Caro medium supplemented with Osteogenic supplement), Cbfal-introduced lunar fat and menstrual follicles (Calo medium supplemented with Osteogenic supplement), and uninfected adipocytes (Medium supplemented with Adipogenesis supplement) are shown. .
図 3は、 非感染脂肪細胞と Cbfal導入脂肪細胞における細胞数の変化を 比較したグラフである。 図中、 上から Cbfal 導入脂肪細胞 (Osteogenic supplement添カロ培地)、 非感染脂肪細胞 (Adipogenesi s supplement添加培 地)、 非感染脂肪細胞 (Osteogenic supplement添加培地) の結果を示す。 図 4は、 非感染脂肪細胞と Cbfal導入脂肪細胞におけるァリザリンレッ ド染色の結果を比較した写真である。 図中、 上から非感染脂肪細胞 ( Adipogenesis supplement 添カロ培地)、 非感 月旨肪細月包 ( Osteogenic supplement添カロ培地)、 Cbfal導入月旨肪細月包 (Osteogenic supplement添カロ 培地) の結果を示す。  FIG. 3 is a graph comparing the change in cell number between uninfected adipocytes and Cbfal-introduced adipocytes. In the figure, the results of Cbfal-introduced adipocytes (Caro medium supplemented with Osteogenic supplement), uninfected adipocytes (culture medium supplemented with Adipogenesis supplement), and uninfected adipocytes (medium supplemented with Osteogenic supplement) are shown from the top. FIG. 4 is a photograph comparing the results of alizarin red staining between uninfected adipocytes and Cbfal-introduced adipocytes. In the figure, from the top, the results of uninfected adipocytes (Adipogenesis supplement-supplemented calo medium), non-sensible lunar and fatty lunar packets (Osteogenic supplement-supplemented media), and Cbfal-introduced lunar fat and lumber (Osteogenic supplement-supplemented media) Is shown.
図 5は、 非感染脂肪細胞と Cbfal導入脂肪細胞におけるオイルレッド染 色の結果を比較した写真である。 図中、 上から非感染脂肪細胞 ( Adipogenesis supplement 添カロ培地)、 非感染脂月方細胞 ( Osteogenic supplement添加培地)、 Cbfal導入脂肪細胞 (Osteogenic supplement添加 培地) の結果を示す。 FIG. 5 is a photograph comparing the results of oil red staining between uninfected adipocytes and Cbfal-introduced adipocytes. In the figure, from the top, uninfected adipocytes (Calo medium supplemented with Adipogenesis supplement), uninfected fat moon cells (medium supplemented with Osteogenic supplement), Cbfal-introduced adipocytes (added Osteogenic supplement Media).
図 6は、非感染脂肪細胞と Cbial導入脂肪細胞における GPDH活性の結果 を比較したグラフである。 図中、 左から、 非感染脂肪細胞 (Os teogenic supplement添加培地)、 Cbial導入脂肪細胞 (Os teogenic supplement添加 培地)、 非感染脂肪細胞 (Adipogenes i s supplement添加培地) の結果を示 す。  FIG. 6 is a graph comparing the results of GPDH activity in uninfected adipocytes and Cbial-introduced adipocytes. In the figure, the results of uninfected adipocytes (medium supplemented with Osteogenic supplement), Cbial-transduced adipocytes (medium supplemented with Osteogenic supplement), and uninfected adipocytes (medium supplemented with Adipogenes is supplement) are shown from the left.
図 Ίは、 Cbial導入脂肪細胞を含む多孔体をラット背中に皮下移植した 結果を示す写真である。 写真右が Cbial導入脂肪細胞を含む多孔体の移植 結果、左が非感染脂肪細胞を含む多孔体の移植結果である。それぞれ上(HE) がへマトキシリンェォジン染色、 下 (TRAP) が TRAP染色の結果である。 ま た、 *印は脂肪組織、 矢印 (青) は骨形成部位、 矢印 (赤) は破骨細胞を 示す。 本明細書は、本願の優先権の基礎である特願 2003-40252号の明細書に記 載された内容を包含する。 発明を実施するための最良の形態  FIG. 5 is a photograph showing the results of subcutaneously implanting a porous body containing Cbial-introduced fat cells into the back of a rat. The right photo shows the results of transplantation of the porous body containing Cbial-introduced fat cells, and the left photo shows the results of transplantation of the porous body containing uninfected fat cells. The upper (HE) is the result of hematoxylin-eosin staining, and the lower (TRAP) is the result of TRAP staining. The asterisk indicates adipose tissue, the arrow (blue) indicates an osteogenic site, and the arrow (red) indicates osteoclasts. This description includes part or all of the contents as disclosed in the description of Japanese Patent Application No. 2003-40252, which is a priority document of the present application. BEST MODE FOR CARRYING OUT THE INVENTION
1 . 骨 ·軟骨組織の作製 1. Preparation of bone and cartilage tissue
本発明は、 単離された脂肪細胞に骨 ·軟骨誘導性転写因子の遺伝子を導入 し、 該細胞を骨 ·軟骨組織へと誘導し、 生体外で骨 ·軟骨組織を効率良く作 製する方法に関する。  The present invention provides a method for introducing bone / cartilage-inducing transcription factor gene into isolated adipocytes, inducing the cells into bone / cartilage tissue, and efficiently producing bone / cartilage tissue in vitro. About.
1 . 1 脂肪細胞 1.1 Fat cells
本発明で用いられる細胞は、 生体から単離された、 分化多様性 ·増殖能 力を有する脂肪細胞であり、 脂肪前駆細胞を含むものとする。 生体、 特に 脂肪組織から単離された脂肪細胞中には、 体性幹細胞を含む f ibroblas t- l ike- cel l が多く存在し、 本発明で用いられる脂肪細胞には、 そのような体性幹細胞が含まれていてもよい。 前記細胞は、 市販のものを 用いても、 常法に従って調製してもよい。 脂肪細胞の由来組織は特に限定 されず、 種々の組織に由来する脂肪細胞を用いることができる。 特に皮下 脂肪組織は脂肪細胞の豊富な供給源であり、 脂肪吸引等により容易に集め ることができる。 また、 本発明で用いられる脂肪細胞は、 成熟細胞であつ ても未分化細胞であってもよいが、初代培養細胞を用いることが好ましい。 該初代培養細胞は、 継代して用いてもよいが、 継代数は 1回以下であるこ とが好ましい。 The cells used in the present invention are adipocytes isolated from a living body and having differentiation diversity and proliferation ability, and include preadipocytes. Adipocytes isolated from living organisms, especially adipose tissue, include somatic stem cells There are many fibroblas t-like-cells, and the adipocytes used in the present invention may include such somatic stem cells. The cells may be commercially available or prepared according to a conventional method. The tissue from which the fat cells are derived is not particularly limited, and fat cells derived from various tissues can be used. In particular, subcutaneous adipose tissue is a rich source of fat cells and can be easily collected by liposuction or the like. The adipocytes used in the present invention may be mature cells or undifferentiated cells, but it is preferable to use primary cultured cells. The primary cultured cells may be used after being passaged, but the number of passages is preferably 1 or less.
1 . 2 転写因子  1.2 Transcription factors
本発明に用いられる骨 ·軟骨誘導性転写因子は、 未分化の細胞を骨及び /又は軟骨に分化誘導する、骨'軟骨誘導性の転写因子であり、例えば Cbfal、 Dlx - 5、 BapxK Msx2、 Scleraxis, Sox-9 が挙げられる。 Cbialは 1993年京 都大学の小川らによってクロ一ニングされ、 大阪大学の小守らにより間葉 系幹細胞から骨芽細胞に分化誘導するのに必要不可欠であることが確認さ れた転写因子である (Koniori, T. et al., (1997) Ce l l 89, 755-764) 。 この Cbfalには 2つのアイソフォーム、 〖 -1と!)6131)2 0^が存在する。 Dlx-5 は、 Drosophi la distal less (DI D 遺伝子の相同遺伝子で、 軟骨骨膜や内 膜の骨化に関わる転写因子である (Acampora, D. et al. , (1999)  The bone and cartilage-inducing transcription factor used in the present invention is a bone'cartilage-inducing transcription factor that induces undifferentiated cells to differentiate into bone and / or cartilage.For example, Cbfal, Dlx-5, BapxK Msx2, Scleraxis, Sox-9. Cbial was cloned by Ogawa et al. Of Kyoto University in 1993, and was confirmed by Omori et al. Of Osaka University to be a transcription factor that was confirmed to be essential for inducing differentiation of mesenchymal stem cells into osteoblasts (Koniori, T. et al., (1997) Cell 89, 755-764). This Cbfal has two isoforms, 〖-1 and!) 6131) 20 ^. Dlx-5 is a homologous gene to Drosophi la distal less (DI D gene and is a transcription factor involved in perichondrium and intimal ossification (Acampora, D. et al., (1999)
Development 126, 3795-3809) 。 Bapxlは、 Drosophi la bagpipe homeobox 遺伝子の相同遺伝子で、 特に脊髄での間葉系幹細胞から軟骨細胞への分化 に関わっており、 Cbfal遺伝子の調節遺伝子の 1つと考えられている Development 126, 3795-3809). Bapxl is a homologous gene of the Drosophi la bagpipe homeobox gene, and is involved in the differentiation of mesenchymal stem cells into chondrocytes, especially in the spinal cord, and is considered to be one of the regulatory genes of the Cbfal gene
(Tribiol i, C. et al. , (1999) Development 126, 5699-5711) 。 Msx2は、 Drosophi la muscle segment homeobox (Msh) 遺伝子の相同遺伝子で頭蓋骨 の骨化に関わっており、 Cbial遺伝子の調節遺伝子の 1つと考えられている (Satokata, I. et al. , (2000) Nature Gene t. 24, 391-395) 。 Sc leraxis は、 間葉系幹細胞から軟骨細胞や結合組織への分化誘導に関わる転写因子 である (Cserj es i, P. e t al. , (1995) Development 121, 1099-1110) 。 (Tribiol i, C. et al., (1999) Development 126, 5699-5711). Msx2 is a homologous gene of the Drosophi la muscle segment homeobox (Msh) gene and is involved in skull ossification, and is considered to be one of the regulatory genes of the Cbial gene (Satokata, I. et al., (2000) Nature Gene t. 24, 391-395). Scleraxis is a transcription factor involved in inducing differentiation of mesenchymal stem cells into chondrocytes and connective tissue (Cserjes i, P. et al., (1995) Development 121, 1099-1110).
Sox- 9は、 軟骨で発現しており、 type I I Col l agen等の軟骨分化に関わる遺 伝子の発現調節をしている (Ng, L. J. et al. , (1997) Dev. B iol. 183, 108-121) 。 Sox-9 is expressed in cartilage and regulates the expression of genes involved in cartilage differentiation such as type II collagen (Ng, LJ et al., (1997) Dev. Biol. 183 , 108-121).
本発明において、 前記骨 ·軟骨誘導性転写因子の遺伝子は、 常法に従い 公知の配列を基に調製することができる。 例えば、 骨芽細胞から R NAを 抽出し、 常法に従ってクローニングすることにより目的とする転写因子の cDNAを調製することができる。  In the present invention, the osteochondral inducible transcription factor gene can be prepared based on a known sequence according to a conventional method. For example, cDNA of the target transcription factor can be prepared by extracting RNA from osteoblasts and cloning according to a conventional method.
1 . 3 転写因子遺伝子の導入  1.3 Introduction of transcription factor gene
本発明において、骨'軟骨誘導性転写因子遺伝子の標的細胞への導入は、 動物細胞のトランスフエクシヨンに通常用いられる方法、 例えばリン酸カ ルシゥム法、 リポフエクシヨン法、 エレクトロポレーション法、 マイクロ ィンジェクション法、 アデノウイルスやレトロウイルス、 バキュ口ウィル ス等をべクタ一として用いる方法等を利用することができる。 なかでも、 導入効率が高いアデノウイルス又はレトロウイルスベクタ一が好ましく、 特に、 非増殖性細胞にも極めて強力に生体内での遺伝子発現を起こせると いう点でアデノウイルスベクターが最も好ましい。  In the present invention, the bone cartilage-inducing transcription factor gene is introduced into target cells by a method usually used for transfection of animal cells, for example, a calcium phosphate method, a lipofection method, an electroporation method, a microinjection method. For example, a method using an adenovirus, a retrovirus, a baculovirus, or the like as a vector can be used. Among them, adenovirus or retrovirus vectors having a high transfection efficiency are preferred, and adenovirus vectors are most preferred, in particular, in that non-proliferating cells can generate gene expression in vivo in a very powerful manner.
前記アデノウイルス又はレトロウイルスベクターは、 周知の方法に基づ いて調製することができる。 例えばアデノウイルスベクターの調製は、 Miyake ら の方法 ( Miyake, S. et al, Proc. Nat l. Acad. Sc i. 93 : 1320-1324, (1993) ) に基づいて行えばよいが、 市販のキット、 例えば Adenovi rus Cre/loxP Ki t (宝酒造社製)等を用いることもできる。 このキッ トは P1ファージの Creリコンビナーゼとその認識配列である ΙοχΡを用いた 新たな発現制御系 (Kanegae Y. et. al. , 1995 Nucl. Acids Res. 23, 3816) による組換えアデノウイルスベクター作製キッ卜で、 転写因子遺伝子を組 み込んだ組換えアデノウイルスベクターを簡便に作製することができる。 なお、 アデノウイルス感染の moi (multiplicity of infection) は、 200 以上、 好ましくは 400〜600、 より好ましくは 500前後である。 The adenovirus or retrovirus vector can be prepared based on a well-known method. For example, the adenovirus vector may be prepared based on the method of Miyake et al. (Miyake, S. et al, Proc. Natl. Acad. Sci. 93: 1320-1324, (1993)), but commercially available Kits such as Adenovirus Cre / loxP Kit (Takara Shuzo) and the like can also be used. This kit used P1 phage Cre recombinase and its recognition sequence ΙοχΡ. A recombinant adenovirus vector kit using a new expression control system (Kanegae Y. et. Al., 1995 Nucl. Acids Res. 23, 3816) to easily use a recombinant adenovirus vector incorporating a transcription factor gene. Can be manufactured. In addition, the moi (multiplicity of infection) of adenovirus infection is 200 or more, preferably 400 to 600, and more preferably around 500.
1. 4 細胞の分化増殖 (細胞培養)  1.4 Differentiation and proliferation of cells (cell culture)
細胞の分化増殖に用いられる培地としては、 MEM培地、 《- MEM培地、 DMEM 培地等、 公知の培地を使用する脂肪細胞の特性に合わせて適宜選んで用い ることができる。 また、 該培地には、 FBS (Sigma社製) 、  As a medium used for cell differentiation and proliferation, a known medium such as a MEM medium, <<-MEM medium, or DMEM medium can be appropriately selected and used according to the characteristics of adipocytes to be used. In addition, the medium includes FBS (manufactured by Sigma),
Antibiotic- Antimycotic (GIBCOBRL社製) 等の抗生物質等を添加しても良 レ^ さらに骨形成を促進させるため、 培地には、 細胞の分化促進作用を有 する、 デキサメタゾン、 FK - 506ゃシクロスポリン等の免疫抑制剤、 BMP- 2、 BMP- 4、 BMP_5、 BMP- 6、 BMP- 7及び BMP- 9等の骨形成タンパク質 (BMP: Bone Morphogenetic Proteins) 、 TGF ]3等の骨形成液性因子から選ばれる 1種又 は 2種以上を、 グリセリンリン酸、 ァスコルビン酸リン酸等のリン酸原と ともに、 添加することが好ましい。 It is possible to add antibiotics such as Antibiotic- Antimycotic (manufactured by GIBCO BRL). ^ In order to further promote bone formation, the medium contains dexamethasone, FK-506-cyclosporine, etc., which have the action of promoting cell differentiation. BMP-2, BMP-4, BMP_5, BMP-6, BMP-7 and BMP-9, etc., Bone Morphogenetic Proteins (BMP), TGF] 3 etc. One or more selected ones are preferably added together with a phosphoric acid source such as glycerin phosphate and ascorbate phosphate.
細胞の培養は、 3〜10%C02、 30〜40°C、 特に 5%C02、 37°Cの条件下で行 うことが望ましい。培養期間は、特に限定されないが、少なくとも 3〜7日、 好ましくは 4、 5日である。 Cultured cells, 3~10% C0 2, 30~40 ° C, in particular 5% C0 2, row Ukoto is desirable under the conditions of 37 ° C. The culture period is not particularly limited, but is at least 3 to 7 days, preferably 4 to 5 days.
1. 5 足場材料 1.5 Scaffolding materials
骨 ·軟骨誘導性転写因子の遗伝子をトランスフエクトした細胞から完全 な三次元構造を構築するためには、 適当な足場を用いて分化増殖させるこ とが必要である。 足場材料は、 足場上で構築された骨 ·軟骨組織をそのま ま、 生体に適用してもよいように、 生体適合性材料を用いることが好まし い。そのような材料としては、例えばハイドロキシァパタイ卜や jS-TCP (リ ン酸三カルシウム) 、 α -TCP 等の多孔性セラミックス、 コラーゲン、 ポリ 乳酸及びポリグリコール酸、 ならびにこれらの複合体 (例えば、 ポリ乳酸/ ポリグリコール酸樹脂/コラーゲン複合体等)、あるいは吸収性合成ポリマ —等が挙げられる。 これらの足場材料は 1種類であってもよいし、 あるい は 2種以上を組み合わせて用いてもよい。 特に、 多孔性のセラミックスは 力学的強度が高いという点で、 組織再生の足場として好ましい。 In order to construct a complete three-dimensional structure from cells transfected with the bone and cartilage-inducible transcription factor gene, it is necessary to differentiate and proliferate using an appropriate scaffold. As the scaffold material, it is preferable to use a biocompatible material so that bone / cartilage tissue constructed on the scaffold may be directly applied to a living body. Such materials include, for example, hydroxyapatite and jS-TCP (re Porous ceramics such as tricalcium phosphate), α-TCP, collagen, polylactic acid and polyglycolic acid, and their composites (eg, polylactic acid / polyglycolic acid resin / collagen composites), or absorbable synthesis Polymers—and the like. One of these scaffold materials may be used, or two or more of them may be used in combination. In particular, porous ceramics are preferred as a scaffold for tissue regeneration because of their high mechanical strength.
. また前記生体適合性材料は、 細胞の均一な播種が可能となるよう、 多孔 性であることが好ましい。 なお、 本明細書中において 「多孔(性)」 とは、 気孔率が 40%以上を意味するものとする。 また、 孔の大きさは特に限定さ れないが、骨再生が起きやすいという点では直径 200 χ π!〜 500 mが好まし レ^  The biocompatible material is preferably porous so as to enable uniform seeding of cells. In this specification, “porosity (porosity)” means a porosity of 40% or more. The size of the hole is not particularly limited, but the diameter is 200 ππ! In that bone regeneration is likely to occur. ~ 500 m is preferred
前記生体適合性材料は構築された骨 ·軟骨組織の利用目的に応じて、 最 適なものを選ぶことができる。 たとえば、 後述するインプラントとして用 いる場合、 強度を必要とする移植箇所 (あるいは手術法) への適用では八 イドロキシアパタイトが好ましく、 強度を必要としない移植箇所 (あるい は手術法) への適用では生体吸収性の ;8 - TCP等が好ましい。  The most suitable biocompatible material can be selected according to the intended use of the constructed bone / cartilage tissue. For example, when used as an implant to be described later, octa-idoxyapatite is preferred for application to a transplant site (or a surgical procedure) that requires strength, and is applied to a transplant site (or a surgical procedure) that does not require strength. For example, bioabsorbable; such as 8-TCP is preferable.
前記生体適合性材料の形態及び形状は、 特に限定されず、 スポンジ、 メ ッシュ、 不繊布状成形物、 ディスク状、 フィルム状、 棒状、 粒子状、 及び ペースト状等、 任意の形態及び形状を用いることができる。 こうした形態 や形状もまた、 構築された骨 ·軟骨組織の利用目的に応じて適宜選択すれ ばよい。  The form and shape of the biocompatible material are not particularly limited, and any form and shape such as a sponge, a mesh, a non-woven fabric, a disc, a film, a rod, a particle, and a paste may be used. be able to. These forms and shapes may also be appropriately selected according to the intended use of the constructed bone / cartilage tissue.
細胞は前記足場材料に、 該細胞を播種して、 前述の培地を用いて通常の 方法により培養すればよい。 細胞の播種は、 足場材料に単に播種するだけ でもよく、 あるいは、 緩衝液、 生理食塩水、 注射用溶媒、 あるいはコラー ゲン溶液等の液体とともに混合して播種してもよレ^また、材料によって、 細胞が孔の中にスムーズに入らない場合は、 引圧または加圧条件下で播種 してもよい。 The cells may be seeded on the scaffold material and cultured in a usual manner using the above-mentioned medium. Cells can be seeded simply by seeding the scaffold material, or by mixing with a liquid such as a buffer solution, physiological saline, an injection solvent, or a collagen solution. , If the cells do not enter the pores smoothly, they may be seeded under reduced or applied pressure.
播種する細胞の数 (播種密度) は細胞の形態を維持して組織再生をより 効率よく行わせるため、 用いる細胞の種類の特性や足場材料に応じて適宜 調整することが望ましい。  The number of cells to be seeded (seeding density) is preferably adjusted appropriately in accordance with the characteristics of the type of cells used and the scaffold material in order to maintain the cell morphology and perform tissue regeneration more efficiently.
2 . インプラント  2. Implant
本発明の方法によって作製された骨 ·軟骨組織は、 足場材料とともに、 あるいは足場材料とは別個に、生体内に埋入あるいは注入することで、骨 · 軟骨代替用インプラントとして利用できる。 すなわち、 本発明は生体外で 構築された骨 ·軟骨組織を含むインプラントを提供する。  The bone / cartilage tissue produced by the method of the present invention can be used as a bone / cartilage replacement implant by implanting or injecting it into a living body together with a scaffold material or separately from the scaffold material. That is, the present invention provides an implant including bone and cartilage tissue constructed in vitro.
本発明のインプラントにおいて、 骨 ·軟骨組織は足場材料と別個に移植 してもよいが、 足場材料とともに移植されることが好ましい。 該足場材料 は、 ィンプラントの目的や適用部位により、 前記した足場材料の中から適 宜最適なものを選べばよい。 たとえば、 強度を必要とする移植箇所 (ある いは手術法) については、 ハイドロキシアパタイトが好ましく、 強度を必 要としない移植箇所 (あるいは手術法) については、 生体吸収性の iS - TCP 等が好ましい。  In the implant of the present invention, the bone / cartilage tissue may be implanted separately from the scaffold material, but is preferably implanted together with the scaffold material. The scaffold material may be appropriately selected from the above-mentioned scaffold materials depending on the purpose and application site of the implant. For example, hydroxyapatite is preferred for implants that require strength (or surgical procedures), and bioresorbable iS-TCP is preferred for implants that do not require strength (or surgical procedures). .
本発明のィンプラン卜の形態及び形状は、 特に限定されず、 スポンジ、 メッシュ、 不繊布状成形物、 ディスク状、 フィルム状、 棒状、 粒子状、 及 びペースト状等、 任意の形態及び形状を用いることができる。 こうした形 態や形状は、 インプラン卜の目的に応じて適宜選択すればよい。  The shape and shape of the implant of the present invention are not particularly limited, and any shape and shape such as a sponge, a mesh, a non-woven fabric, a disk, a film, a bar, a particle, and a paste may be used. be able to. These forms and shapes may be appropriately selected according to the purpose of the implant.
本発明のインプラントは、 その目的と効果を損なわない範囲において、 適宜他の成分を含んでいてもよい。 そのような成分としては、 例えば、 塩 基性線維芽細胞増殖因子 (bFGF)、 血小板分化増殖因子 (PDGF)、 インスリ ン、 インスリン様増殖因子 (IGF)、 肝細胞増殖因子 (HGF)、 グリア誘導神 経栄養因子 (GDNF)、 神経栄養因子 (NF)、 ホルモン、 サイト力イン、 骨形 成因子 (BMP)、 トランスフォーミング増殖因子 (TGF)、 血管内皮細胞増殖 因子 (VEGF) 等の増殖因子、 骨形成タンパク質、 St、 Mg、 Ca及び C03等の無 機塩、 クェン酸及びリン脂質等の有機物、 薬剤等を挙げることができる。 また、 構築された骨 ·軟骨組織は、 インプラントに通常用いられる他の 生体適合性材料、 例えば、 SUS316L、 バイタリウム及び Ti- 6A1- 4V等の金属 材料、 超高分子量ポリエチレン、 MMA骨セメント、 ポリ乳酸、 ポリグリコー ル酸、 ポリエチレンテレフ夕レート及びポリプロピレン等の高分子材料、 ハイドロキシアパタイト、 iS -TCP, a - TCP及びバイオガラス等のセラミッ クス材料等に複合化して用いてもよい。 The implant of the present invention may appropriately contain other components as long as the purpose and the effect are not impaired. Such components include, for example, basal fibroblast growth factor (bFGF), platelet differentiation growth factor (PDGF), insulin, insulin-like growth factor (IGF), hepatocyte growth factor (HGF), glial induction God Growth factors such as transtrophic factor (GDNF), neurotrophic factor (NF), hormones, cytodynamics, bone morphogenetic factor (BMP), transforming growth factor (TGF), vascular endothelial cell growth factor (VEGF), bone forming proteins, St, Mg, Ca and C0 3 No machine salts such as, Kuen acid and organic substances such as phospholipids, can be given a drug or the like. In addition, the constructed bone and cartilage tissue can be made of other biocompatible materials commonly used for implants, such as metal materials such as SUS316L, Vitalium and Ti-6A1-4V, ultra high molecular weight polyethylene, MMA bone cement, poly Polymeric materials such as lactic acid, polyglycolic acid, polyethylene terephthalate and polypropylene, hydroxyapatite, ceramic materials such as iS-TCP, a-TCP and bioglass may be used in combination.
3 . 本発明の利用  3. Use of the present invention
本発明の方法を再生医療に応用すれば、 自己の脂肪細胞を利用した骨 · 軟骨組織の再生が可能になる。 すなわち、 患者から採取した脂肪細胞又は 脂肪前駆細胞に骨 ·軟骨誘導性転写因子の遺伝子を導入する。 次いで該細 胞を、 適当な足場材料上で分化増殖させ、 骨 ·軟骨組織を構築してから、 足場材料とともに、 あるいは足場材料とは別個に患者の骨 ·軟骨欠損部に 適用する。 あるいは、 該細胞を播種した足場材料を、 患者の骨 ·軟骨欠損 部に適用し、 in vivoでの組織構築を試みてもよい。  If the method of the present invention is applied to regenerative medicine, it becomes possible to regenerate bone / cartilage tissue using its own fat cells. That is, a gene for an osteochondral inducible transcription factor is introduced into adipocytes or preadipocytes collected from a patient. The cells are then differentiated and propagated on a suitable scaffold material to build bone and cartilage tissue and then applied to the patient's bone and cartilage defect together with the scaffold material or separately from the scaffold material. Alternatively, a scaffold material seeded with the cells may be applied to a bone / cartilage defect of a patient to try to construct a tissue in vivo.
本発明で用いられる脂肪細胞は極めて容易、 かつ安全にヒトから採取で きるので、 骨髄由来の幹細胞や、 ES細胞を用いた再生医療の守備範囲を大 きく広げ、 最も本技術を必要とする高齢者への適用が可能になることが期 待される。  Since the fat cells used in the present invention can be extremely easily and safely collected from humans, the range of application of regenerative medicine using bone marrow-derived stem cells and ES cells is greatly expanded, and elderly patients who need this technology most It is expected that application to the elderly will be possible.
〔実 施 例〕 〔Example〕
以下、 実施例を用いて本発明についてさらに詳細に説明するが、 これら の実施例は本発明の範囲を限定するものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples. Examples do not limit the scope of the present invention.
実施例 1 : ラッ卜脂肪細胞の骨芽細胞への分化誘導試験 Example 1: Induction test for differentiation of rat adipocytes into osteoblasts
1. 試験方法  1. Test method
1) Adenovirus expression vectorの作製  1) Construction of Adenovirus expression vector
Cbfal cDNA (配列番号 1 ) は、 マウスの骨から抽出した RNAを元に cDNA を合成し、これを鎢型に以下のプライマーを用いて PCRにより増幅して得た c sense primer: 5' -ATGCTTCATTCGCCTCACAAAC-3 ' (配列番号 2 ) Cbfal cDNA (SEQ ID NO: 1) was obtained by synthesizing a cDNA based on RNA extracted from mouse bone, and amplifying the cDNA by PCR using the following primers: c sense primer: 5'-ATGCTTCATTCGCCTCACAAAC -3 '(SEQ ID NO: 2)
antisense primer: 5, -TCTGTTTGGCGGCCATATTGA-3 ' (配列番号 3 ) antisense primer: 5, -TCTGTTTGGCGGCCATATTGA-3 '(SEQ ID NO: 3)
この Cbfal cDNAをさらに TA cloning vector (pCRII-TOPO, Invitrogen 社製) にクロ一ニングして大量調製した後、 Spel及び EcoRVで Cbfal cDNA を切り出し、 平滑末端化した。 切り出した Cbfal cDNAは、 Adenovirus Cre/loxPkit (宝酒造, 6151) を用いてコスミドベクター pAxCALNLwに揷入 し、 Kitの説明書に従って組換えアデノゥィルスを作製した。作製したウイ ルスの力価は、 約 lt PFU/mlの価を示し、 感染効率は非常に高いことが確 認された。  The Cbfal cDNA was further cloned into a TA cloning vector (pCRII-TOPO, manufactured by Invitrogen) to prepare a large amount, and then the Cbfal cDNA was cut out with Spel and EcoRV and blunt-ended. The excised Cbfal cDNA was inserted into a cosmid vector pAxCALNLw using Adenovirus Cre / loxPkit (Takara Shuzo, 6151), and a recombinant adenovirus was prepared according to the kit instructions. The titer of the virus thus produced showed a value of about lt PFU / ml, confirming that the infection efficiency was very high.
2) 脂肪細胞の調製  2) Preparation of fat cells
初代培養脂肪細胞は 8週齢の Fischer rat (ォス) の腹部皮下脂肪から 採取した。皮下脂肪は生理食塩水で洗浄後、 細断し、 0.075%コラゲナーゼ で 37°C30分間処理して細胞を分散させた。細胞は 10% FBS (Sigma, F-9423) 添加 MEM培地(Sigma, D-5796)で中和した後、遠心し、その沈殿物を 160 ηιΜ塩化アンモニゥム水溶液で 10分間処理した。 これを遠心して得られた 上清を 100 ^ m のナイ ロ ンメ ッ シュでろ 過 し、 10% FBS、 Antibiotic-Antimycotic (GIBC0 BRL, 15240-062)添加 DMEM培地でコンフ ルェン卜になるまで培養した。  Primary adipocytes were harvested from abdominal subcutaneous fat of 8-week-old Fischer rats. The subcutaneous fat was washed with physiological saline, cut into small pieces, and treated with 0.075% collagenase at 37 ° C for 30 minutes to disperse the cells. The cells were neutralized with a MEM medium (Sigma, D-5796) supplemented with 10% FBS (Sigma, F-9423), centrifuged, and the precipitate was treated with a 160 ηιΜ aqueous ammonium chloride solution for 10 minutes. The supernatant obtained by centrifugation was filtered through a 100 μm nylon mesh, and cultured in DMEM medium supplemented with 10% FBS and Antibiotic-Antimycotic (GIBC0 BRL, 15240-062) until confluent. .
3 ) 脂肪細胞への Cbfal遺伝子導入 3) Cbfal gene transfer into fat cells
約 40万個の細胞を Φ 3.5cmの dishに継代培養後、前項で作製した Cbfal 及び Cre リコンビナーゼ遺伝子の組換えアデノウイルスを multiplicity of infection (MOD 二 500で感染させ、 Cbial導入脂肪細胞を作製した。 4) 培地の調製 After subculturing about 400,000 cells into a 3.5 cm dish, the Cbfal And recombinant adenovirus of Cre recombinase gene were multiplicity of infection (MOD 2500) to prepare Cbial-transduced adipocytes. 4) Preparation of culture medium
脂肪細胞の培養は、 上述の培地に Adipogenesis supplement として 250 nM Dexamethasone (Sigma, D - 8893)、 0.5 mM l-metyl-3-isobutylxant in (Sigma, 1-7018)、 10 n g/ml insulin (Sigma, I一 5500) を、 あるいは Osteogenic supplementとして 5 nM Dexamethasone (Sigma, D - 8893)、 10 mM β -glycerophosphate (Sigma, G-9891) 、 50 n g/ml ascorbic acid phosphate (Wako, 013-12061)を添加した 2種類の培地を調製して行った。 5) アルカリフォスファターゼ活性の測定  Adipocyte culture was performed using 250 nM Dexamethasone (Sigma, D-8893), 0.5 mM l-metyl-3-isobutylxant in (Sigma, 1-7018), 10 ng / ml insulin (Sigma, I-5500) or 5 nM Dexamethasone (Sigma, D-8893), 10 mM β-glycerophosphate (Sigma, G-9891), 50 ng / ml ascorbic acid phosphate (Wako, 013-12061) as Osteogenic supplement Two types of culture media were prepared and performed. 5) Measurement of alkaline phosphatase activity
骨芽細胞の分化マーカ一であるアル力リフォスファターゼ活性を測定し た。 感染 3日後〜 2週間後の Cbial導入脂肪細胞は 100 mM Tris (pH 7.5) , 5mMMgCl2で洗浄後、 スクレイパーで集め、 500 1の 100 mM Tris (pH 7.5) , 5mM MgCl2, 1% Triton X- 100に懸濁して超音波破砕した。 破砕後 6, 000g で 5 分間遠心して上清を回収した。 酵素活性は、 0.056 M 2 - amino- 2 - methyl - 1, 3 - propandiol (pH 9.9), 10 mM p-nitrophenyl phosphate, 2 mM MgCl2 に各上清 5."1 を加え、 37。Cで 30分間ィンキュベ 一卜した後、すぐにマイクロプレ一トリーダ一で吸収波長 405 nmの吸光度 を測定して求めた。 検量線は P- nitrophenolを用いて作製した。 比較とし てアデノウイルスを感染させていない非感染脂肪細胞についても同様にァ ルカリフォスファターゼ活性を測定した。 The activity of osteoblast differentiation marker, al-force phosphatase, was measured. Cbial introduction adipocytes after infection three days after 1-2 weeks 100 mM Tris (pH 7.5), washed with 5 mM MgCl 2, collected by the scraper 500 1 of 100 mM Tris (pH 7.5), 5mM MgCl 2, 1% Triton X -Suspended in 100 and sonicated. After crushing, the mixture was centrifuged at 6,000 g for 5 minutes to recover the supernatant. Enzyme activity was determined by adding 5. "1 of each supernatant to 0.056 M 2-amino-2-methyl-1,3-propandiol (pH 9.9), 10 mM p-nitrophenyl phosphate, 2 mM MgCl 2 and 37. After incubating for 30 minutes, the absorbance at an absorption wavelength of 405 nm was measured immediately using a microplate reader, and a calibration curve was prepared using P-nitrophenol. Alkaline phosphatase activity was similarly measured for non-infected adipocytes.
6) カルシウム量の測定 6) Measurement of calcium content
感染 1〜3週間後の Cbial導入脂肪細胞を 10%ホルマリン緩衝液で固定し、 一昼夜 0.6 M HC1で脱灰した。 脱灰液を希釈し Calcium reagents (Sigma, 587, 360-11) を用い、 説明書に従ってカルシウム量を測定した。 比較とし を感染させていない非感染脂肪細胞についても同様に力 ルシゥム量を測定した。 Cbial-introduced adipocytes 1 to 3 weeks after infection were fixed with 10% formalin buffer, and demineralized with 0.6 M HC1 for 24 hours. The decalcified solution was diluted, and the amount of calcium was measured using Calcium reagents (Sigma, 587, 360-11) according to the instructions. Comparison Non-infected adipocytes which had not been infected were similarly measured for the amount of potassium.
7 ) 細胞数の計測  7) Cell count
感染 3日〜 2週間後の Cbfal導入脂肪細胞を 1 % glutalaldehyde in PBS で 5分間固定した後、 蒸留水で 2回洗い、 0. 1% crys tal violetで 30分間 室温で染色した。蒸留水で 3回洗浄して余分な染料を除いた後、 10% acet ic acid, 1% Tri ton X- 100 で脱色した。 この脱色液を希釈し吸収波長 595nm の吸光度を測定した。 検量線は細胞を適当な濃度で播種し (dupl icate) , 上述の染色法とトリプシン処理して剥がした細胞をカウントすることによ り作製した。  Cbfal-introduced adipocytes 3 to 2 weeks after infection were fixed with 1% glutalaldehyde in PBS for 5 minutes, washed twice with distilled water, and stained with 0.1% crystal violet for 30 minutes at room temperature. After washing with distilled water three times to remove excess dye, the color was decolorized with 10% acetic acid, 1% Triton X-100. This decolorized solution was diluted, and the absorbance at an absorption wavelength of 595 nm was measured. The calibration curve was prepared by seeding cells at an appropriate concentration (duplicate), and counting the cells detached by trypsin treatment and the above-mentioned staining method.
8 ) ァリザリンレツド染色  8) Alizarin red staining
骨芽細胞が分泌するミネラル成分による石灰化の様子をァリザリンレツ ド染色により観察した。感染 1〜3週間後の Cbial導入脂肪細胞を 10%ホル マリン緩衝液で 5分間固定し、蒸留水で軽く洗浄後、 1 %ァリザリンレツド 水溶液を加えて 2分間ィンキュベートした。その後蒸留水で何度も洗浄し、 結果をスキャナ一で取り込んだ。 比較としてアデノウイルスを感染させて いない非感染脂肪細胞についても同様にァリザリンレツド染色を行った。 The state of calcification by mineral components secreted by osteoblasts was observed by alizarin red staining. Cbial-introduced adipocytes 1 to 3 weeks after infection were fixed with 10% formalin buffer for 5 minutes, washed lightly with distilled water, and incubated with a 1% aqueous solution of alizarin red for 2 minutes. After that, it was washed many times with distilled water, and the results were captured with a scanner. For comparison, alizarin red staining was also performed on non-infected adipocytes not infected with adenovirus.
9 ) オイルレツド染色 9) Oil red dyeing
感染 1〜3週間後の CMal導入脂肪細胞を 3. 7%ホルマリン緩衝液で 5分 間固定し、蒸留水で軽く洗浄後、 0. 5 %オイルレツド Zイソプロピルアルコ ール染色液を加えて 30分間ィンキュベートした。その後蒸留水で何度も洗 浄し、 結果をスキャナーで取り込んだ。 比較としてアデノウイルスを感染 させていない非感染脂肪細胞についても同様にオイルレツド染色を行った。 CMal transfected adipocytes 1-3 weeks after infection are fixed with 3.7% formalin buffer for 5 minutes, washed briefly with distilled water, and then added with 0.5% oil-red Z-isopropyl alcohol staining solution for 30 minutes. Incubated. After that, they were washed many times with distilled water, and the results were captured with a scanner. For comparison, oil-red staining was also performed on non-infected adipocytes not infected with adenovirus.
1 0 ) グリセロール— 3—リン酸デヒドロゲナーゼ (GPDH) 活性の測定 アルカリフォスファタ一ゼ活性測定用サンプルと同様の方法で測定用サ ンプルを調製し、 GPDH活性測定キット (WAK0309- 06141、 WAK0製) を用い て GPDH活性を測定した。 各サンプルより 5 をキッ卜に添付された酵素 抽出液で 10倍希釈し (50 1)、 これに 100 1の反応溶液を加えてマイク 口プレートリーダ一で吸収波長 340 Iの吸光度の減少を測定した。 GPDH活 性ユニットは、 1分間あたりの吸光度の変化量より求めた。 10) Measurement of glycerol-3-phosphate dehydrogenase (GPDH) activity Measurement of glycerol-3-phosphate dehydrogenase (GPDH) activity was performed in the same manner as for the alkaline phosphatase activity measurement sample. Samples were prepared, and the GPDH activity was measured using a GPDH activity measurement kit (WAK0309-06141, manufactured by WAK0). 5 of each sample was diluted 10-fold with the enzyme extract attached to the kit (50 1), 100 1 of the reaction solution was added, and the decrease in absorbance at an absorption wavelength of 340 I was measured with a microplate reader. did. The GPDH activity unit was determined from the change in absorbance per minute.
2. 試験結果  2. Test results
1 ) アルカリフォスファタ一ゼ活性  1) Alkaline phosphatase activity
Adipogenesis supplement添カロ培地、 又は Osteogenic supplement添カロ 培地で培養した非感染脂肪細胞、 Osteogenic supplement 添加培地で培養 した Cbfal 導入脂肪細胞における、 アルカリフォスファターゼ活性 (ALP activity) を測定した (図 1)。 その結果、 Cbfal導入脂肪細胞では、 骨芽 細胞の分化マーカーであるアル力リフォスファターゼ活性が顕著に誘導さ れていることが確認された。 Osteogenic supplement によっても、 アル力 リフォスファ夕一ゼ活性は誘導されたが、 Cbfal 導入に比較すると、 その 活性は非常に低い値であった。  Alkaline phosphatase activity (ALP activity) was measured in uninfected adipocytes cultured in a calo medium supplemented with Adipogenesis supplement or in a calo medium supplemented with Osteogenic supplement, and in Cbfal-transduced adipocytes cultured in a medium supplemented with Osteogenic supplement (FIG. 1). As a result, it was confirmed that in Cbfal-introduced adipocytes, the activity of allelic phosphatase, a differentiation marker for osteoblasts, was significantly induced. Osteogenic supplements also induced lipophilic phosphatase activity, but the activity was very low compared to Cbfal introduction.
2) カルシウム量  2) Calcium content
Adipogenesis supplement添カロ培地、 又は Osteogenic supplement添カロ 培地で培養した非感染脂肪細胞、 Osteogenic supplement 添加培地で培養 した Cbfal導入脂肪細胞における、 感染後 1、 2、 3週間後のカルシウム量 を測定した (図 2)。 その結果、 Cbfal導入脂肪細胞では、 顕著にカルシゥ ムの分泌が誘導されていることが確認された。  Calcium levels were measured at 1, 2, and 3 weeks after infection in non-infected adipocytes cultured in adipogenesis supplement-added calo medium or in osteogenic supplement-added calo medium, and in Cbfal-transduced adipocytes cultured in osteogenic supplement-added medium (Fig. 2). As a result, it was confirmed that the secretion of calcium was remarkably induced in the Cbfal-introduced adipocytes.
3) 細胞数の変化  3) Change in cell number
Adipogenesis supplement添カロ培地、 又は Osteogenic supplement添カロ 培地で培養した非感染脂肪細胞、 Osteogenic supplement 添加培地で培養 した Cbial導入脂肪細胞における、 細胞数の変化を比較した (図 3)。 その 結果、 Cbfal 導入脂肪細胞では、 非感染細胞に比較して高い細胞増殖能が 確認された。 また非感染脂肪細胞は、 Adipogenesis supplement 添加培地 で培養した細胞の方が Osteogenic supplement添加培地で培養した細胞よ りもやや高い細胞増殖能を示した。 Changes in cell numbers were compared between non-infected adipocytes cultured in a calo medium supplemented with Adipogenesis supplement, or a calo medium supplemented with Osteogenic supplement, and Cbial-transduced adipocytes cultured in a medium supplemented with Osteogenic supplement (FIG. 3). That As a result, it was confirmed that Cbfal-introduced adipocytes had higher cell proliferation ability than uninfected cells. Non-infected adipocytes showed slightly higher cell growth ability in cells cultured in the medium supplemented with Adipogenesis supplement than in cells cultured in the medium supplemented with Osteogenic supplement.
4) 石灰化の観察 (ァリザリンレッド染色)  4) Observation of calcification (Alizarin red staining)
Adipogenesis supplement添カロ培地、 又は Osteogenic supplement添カロ 培地で培養した非感染脂肪細胞、 Osteogenic supplement 添加培地で培養 した Cbial導入脂肪細胞における、 感染後 1、 2、 3週間後のァリザリンレ ッド染色の結果を比較した (図 4)。 その結果、 Cbfal導入細胞では非感染 細胞に比べて石灰化が顕著に進行していることが確認された。  The results of alizarin red staining at 1, 2, and 3 weeks after infection of uninfected adipocytes cultured on a calo medium supplemented with Adipogenesis supplement or Calo medium supplemented with Osteogenic supplement, and Cbial transfected adipocytes cultured on a medium supplemented with Osteogenic supplement They were compared (Fig. 4). As a result, it was confirmed that calcification progressed significantly in the Cbfal-transfected cells as compared to non-infected cells.
5) 中性脂肪染色の観察 (オイルレツド染色)  5) Observation of neutral fat staining (oil-red staining)
Adipogenesis sup lement添カロ培地、 又は Osteogenic supplement添カロ 培地で培養した非感染脂肪細胞、 Osteogenic supplement 添加培地で培養 した Cbial導入脂肪細胞における、 感染後 1、 2、 3週間後のオイルレツド 染色の結果を比較した (図 5)。 その結果、 Adipogenesis supplement非感 染細胞では中性脂肪の顆粒が顕著に存在することが確認された。 一方、 Cbial導入細胞では石灰化している部位 (bone nodule) が認められた。 Compare oil-red staining results at 1, 2, and 3 weeks post-infection in uninfected adipocytes cultured in adipogenesis supplement-supplemented calo medium or in osteogenic supplement-supplemented calo medium, and in Cbial-transduced adipocytes cultured in osteogenic supplement-supplemented medium. (Fig. 5). As a result, it was confirmed that granules of neutral fat were remarkably present in cells not infected with Adipogenesis supplement. On the other hand, calcified sites (bone nodules) were observed in the Cbial-transfected cells.
6) グリセロール— 3—リン酸デヒドロゲナーゼ (GPDH) 活性の比較 Adipogenesis supplement添カロ培地、 又は Osteogenic supplement添カロ 培地で培養した非感染脂肪細胞、 Osteogenic supplement 添加培地で培養 した Cbial 導入脂肪細胞における、 GPDH 活性を比較した (図 6)。 Adipogenesis supplement 添加培地で培養した非感染細胞でのみ、 脂肪代 謝系の酵素であり、 脂肪細胞マーカーでもある GPDH活性が認められた。 以上の結果より、 Cbfalの cDNAはアデノウイルスベクターにより極めて 効率良く脂肪細胞に導入されることが確認され、 これにより脂肪細胞は効 率よく骨芽細胞に分化することが確認された。 6) Comparison of glycerol-3-phosphate dehydrogenase (GPDH) activity GPDH activity in non-infected adipocytes cultured in calo medium supplemented with Adipogenesis supplement or in calo medium supplemented with Osteogenic supplement, and in Cbial-transduced adipocytes cultured in medium supplemented with Osteogenic supplement Were compared (Fig. 6). Only in non-infected cells cultured in the medium supplemented with Adipogenesis supplement, GPDH activity, a fat metabolic enzyme and a fat cell marker, was observed. From the above results, it was confirmed that Cbfal cDNA was very efficiently introduced into adipocytes by the adenovirus vector. It was confirmed that the cells differentiated into osteoblasts efficiently.
また、 この培養系は多孔性セラミックス等の適当な足場材料を用いるこ とで、 生体外での効率よい骨 ·軟骨組織作製手段を提供しうる。 例えば、 市販の iS - TCP (リン酸三カルシウム) 多孔性プロック(Oly即 us社製, 平均 ポアサイズ =直径 200 ΠΙ, 5imnx5匪 x5應)等を足場として、 前述の Cbfa l導 入脂肪細胞を培養する。 次いで、 構築された骨 ·軟骨組織を、 足場材料と ともに動物の骨 ·軟骨欠損部に埋入し、 適用部位における骨形成を組織染 色 (へマトキシリン/ェォジン染色等) 等により確認すれば、 その骨 .軟 骨代替用ィンプラン卜としての効果を確認することができる。  In addition, this culture system can provide an efficient means of producing bone and cartilage tissue in vitro by using an appropriate scaffold material such as porous ceramics. For example, using the commercially available iS-TCP (tricalcium phosphate) porous block (manufactured by Oly Immediate Co., Inc., average pore size = 200 mm in diameter, 5imnx5 bandages x 5 mm) as a scaffold, and cultivating the aforementioned Cbfal-introduced fat cells I do. Next, the constructed bone / cartilage tissue is implanted together with the scaffold material into the bone / cartilage defect of the animal, and bone formation at the application site is confirmed by tissue staining (hematoxylin / eosin staining, etc.). The effect as an implant for bone and cartilage replacement can be confirmed.
実施例 2 :ラット皮下移植実験 Example 2: Rat subcutaneous transplantation experiment
Fi scher ラッ トより皮下脂肪組織を採取し、 実施例 1で使用した os teogenic supplement (5 nM Dexame thasone, 10 ηιΜ β -glycerophosphate, 50 n g/ml ascorbic ac id phosphate) を含む 10¾ FBS丽服培地中で培養 後、 実施例 1で作製した cbial導入用組換えアデノウイルス (Adv-cbfal) を M0I=500 で感染させた。 この細胞を 200 万個 /ml に調整後、 減圧下 ( lOOniHg) で 0PLA多孔性ブロック (BD B iosc ience社製、. 平均ポアサイズ 100-200 /xm、 直径 4. 2-5. 2 腿、 高さ 3. 9-4. 5 腿) に播種した。 多孔体プ ロックは前述の培地中で再度 1〜2日間培養した後、 Fischerラットの背中 に皮下移植した。 コントロールとして、 非感染細胞を同様に播種して培養 した多孔体をラッ卜の背中に皮下移植した。  Subcutaneous adipose tissue was collected from a Fischer rat, and contained in a 10% FBS-containing medium containing the osteogenic supplement (5 nM Dexame thasone, 10 ηιΜ β-glycerophosphate, 50 ng / ml ascorbic acid phosphate) used in Example 1. After culturing, the recombinant adenovirus for cbial introduction (Adv-cbfal) prepared in Example 1 was infected at M0I = 500. After adjusting the cells to 2 million cells / ml, pressurized under reduced pressure (lOOniHg) for 0PLA porous block (BD Bioscience, Inc., average pore size 100-200 / xm, diameter 4.2-5.2 thigh, high 3.9-4.5.5 thigh). The porous block was cultured again in the aforementioned medium for 1 to 2 days, and then implanted subcutaneously on the back of Fischer rats. As a control, a porous body in which uninfected cells were similarly seeded and cultured was subcutaneously transplanted to the back of the rat.
移植 8週後に多孔体を取り出し、 へマトキシリンェォジン染色、 および TRAP染色を行った。 その結果、 Adv- cbial感染細胞 (Cbial導入脂肪細胞) では旺盛な骨形成が観察されたが、 非感染脂肪細胞では観察されなかった (図 7 )。 図中、 *印は脂肪細胞、 矢印 (青) は骨形成部位、 矢印 (赤) は 破骨細胞を示す。 本明細書中で引用した全ての刊行物、 特許及び特許出願をそのまま参考 として本明細書中にとり入れるものとする。 産業上の利用の可能性 Eight weeks after transplantation, the porous body was taken out and subjected to hematoxylin-eosin staining and TRAP staining. As a result, vigorous bone formation was observed in Adv-cbial-infected cells (Cbial-introduced adipocytes), but not in non-infected adipocytes (FIG. 7). In the figure, * indicates fat cells, arrow (blue) indicates osteogenic site, and arrow (red) indicates osteoclast. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety. Industrial potential
本発明によれば、 脂肪細胞を高効率で骨 ·軟骨組織に分化誘導すること ができる。 該方法は、 容易かつ豊富に得られる脂肪細胞を材料として、 生 体外での効率的な骨 ·軟骨組織構築を可能にするため、 新たなインプラン 卜や再生医療への応用が期待される。 配列表フリーテキスト  According to the present invention, fat cells can be induced to differentiate into bone and cartilage tissue with high efficiency. This method enables efficient construction of bone and cartilage tissue outside the living body by using easily and abundantly obtained fat cells as materials, and is expected to be applied to new implants and regenerative medicine. Sequence listing free text
配列番号 2—人工配列の説明:プライマー SEQ ID NO: 2—Description of artificial sequence: primer
配列番号 3—人工配列の説明:プライマー SEQ ID NO: 3—Description of artificial sequence: primer

Claims

請 求 の 範 囲 The scope of the claims
1 . 単離された脂肪細胞に骨 ·軟骨誘導性転写因子の遺伝子を導入し、 該細胞を分化増殖させることを特徴とする、 生体外での骨 ·軟骨組織の作 製方法。 1. A method for producing bone and cartilage tissue in vitro, which comprises introducing a gene for a bone and cartilage inducible transcription factor into isolated fat cells and causing the cells to differentiate and proliferate.
2 . 骨 ·軟骨誘導性転写因子が、 CbfaL Dlx - 5、 BapxK Msx2、 Sc l eraxi s, 及び Sox-9からなる群より選ばれる 1種又は 2種以上である、請求項 1記載 の方法。  2. The method according to claim 1, wherein the bone and cartilage inducible transcription factor is one or more members selected from the group consisting of CbfaL Dlx-5, BapxK Msx2, Sceraxis, and Sox-9.
3 . 骨 ·軟骨誘導性転写因子が Cbialである、 請求項 2記載の方法。  3. The method according to claim 2, wherein the bone and cartilage inducible transcription factor is Cbial.
4 . 骨 ·軟骨誘導性転写因子の遺伝子がアデノウイルスベクター又はレ トロウィルスベクタ一を用いて導入される、 請求項 1〜 3のいずれか 1項 に記載の方法。 4. The method according to any one of claims 1 to 3, wherein the bone / cartilage inducible transcription factor gene is introduced using an adenovirus vector or a retrovirus vector.
5 . 細胞の分化増殖が、 デキサメ夕ゾン、 免疫抑制剤、 骨形成タンパク 質、 及び骨形成液性因子からなる群より選ばれる 1種又は 2種以上の存在 下で行われる、 請求項 1〜4のいずれか 1項に記載の方法。  5. The differentiation and proliferation of cells is performed in the presence of one or more selected from the group consisting of dexamethasone, an immunosuppressant, an osteogenic protein, and an osteogenic humoral factor. 4. The method according to any one of 4.
6 . 細胞の分化増殖が、 多孔性セラミックス、 コラーゲン、 ボリ乳酸及 びポリグリコール酸、 ならびにこれらの複合体からなる群より選ばれる 1 種又は 2種以上を足場として行われる、 請求項 1〜 5のいずれか 1項に記 載の方法。  6. The differentiation and proliferation of cells is performed using one or more selected from the group consisting of porous ceramics, collagen, polylactic acid, polyglycolic acid, and a complex thereof as a scaffold. The method described in any one of the above.
7 . 以下の工程を含む、 生体外での骨 ·軟骨組織の作製方法。 7. A method for producing bone and cartilage tissue in vitro, comprising the following steps.
1 ) 単離された脂肪細胞に骨 ·軟骨誘導性転写因子の遺伝子をアデノウィ ルスベクター又はレトロウイルスベクターを用いてトランスフエク卜する 工程。  1) a step of transfecting the isolated adipocytes with a bone and cartilage inducible transcription factor gene using an adenovirus vector or a retrovirus vector;
2 ) 上記細胞を、 デキサメタゾン、 免疫抑制剤、 骨形成タンパク質、 及び 骨形成液性因子からなる群より選ばれる 1種又は 2種以上の存在下で、 多 孔性セラミックス、 コラーゲン、 ポリ乳酸及ぴポリグリコール酸、 ならび にこれらの複合体からなる群より選ばれる 1種又は 2種以上を足場として 分化増殖させる工程。 2) In the presence of one or more selected from the group consisting of dexamethasone, an immunosuppressant, an osteogenic protein, and an osteogenic humoral factor, A step of differentiating and proliferating one or more selected from the group consisting of porous ceramics, collagen, polylactic acid and polyglycolic acid, and a complex thereof.
8 . 請求項 1〜 7のいずれか 1項に記載の方法によって作製された骨 · 軟骨組織を含む、 インプラント。  8. An implant comprising bone and cartilage tissue produced by the method according to any one of claims 1 to 7.
9 . 単離された脂肪細胞に骨 ·軟骨誘導性転写因子の遺伝子を導入する ことにより、 該細胞を骨 ·軟骨細胞に分化誘導する方法。  9. A method for inducing differentiation of bone / chondrocytes into bone / chondrocytes by introducing a gene for a bone / cartilage-inducing transcription factor into the isolated adipocytes.
PCT/JP2004/001823 2003-02-18 2004-02-18 Method of forming bone/cartilage tissue with use of fat cell WO2004074489A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005502743A JP4491611B2 (en) 2003-02-18 2004-02-18 Method for producing bone and cartilage tissue using adipocytes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-040252 2003-02-18
JP2003040252 2003-02-18

Publications (1)

Publication Number Publication Date
WO2004074489A1 true WO2004074489A1 (en) 2004-09-02

Family

ID=32905212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001823 WO2004074489A1 (en) 2003-02-18 2004-02-18 Method of forming bone/cartilage tissue with use of fat cell

Country Status (2)

Country Link
JP (1) JP4491611B2 (en)
WO (1) WO2004074489A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263459A (en) * 2005-02-25 2006-10-05 Japan Science & Technology Agency Method for regenerating osseous tissue

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1118787A (en) * 1997-04-23 1999-01-26 Sumitomo Pharmaceut Co Ltd New screening method of bone formation accelerating agent
EP1044691A2 (en) * 1999-01-28 2000-10-18 Tokyo Medical and Dental University Use of glycosaminoglycan lipid conjugates for inducing osteogenesis
WO2003011343A1 (en) * 2001-07-27 2003-02-13 National Institute Of Advanced Industrial Science And Technology Method of regenerating bone/chondral tissues by transferring transcriptional factor gene

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1118787A (en) * 1997-04-23 1999-01-26 Sumitomo Pharmaceut Co Ltd New screening method of bone formation accelerating agent
EP1044691A2 (en) * 1999-01-28 2000-10-18 Tokyo Medical and Dental University Use of glycosaminoglycan lipid conjugates for inducing osteogenesis
WO2003011343A1 (en) * 2001-07-27 2003-02-13 National Institute Of Advanced Industrial Science And Technology Method of regenerating bone/chondral tissues by transferring transcriptional factor gene

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H. ENOMOTO AND T. KOMORI: "Idenshi to calcium kekkan to hone o seigyo suru idenshi to sono ijo, kotsuga saibo no bunka to tensha inshi Cbfa1", CLINICAL CALCIUM, vol. 11, 2001, pages 455 - 457, XP002904486 *
ZUK PATRICIA A. ET AL.: "Multilineage cells from human adipose tissue:implications for cell-based therapies", TISSUE ENGINEERING, vol. 7, 2001, pages 211 - 228, XP002198710 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263459A (en) * 2005-02-25 2006-10-05 Japan Science & Technology Agency Method for regenerating osseous tissue

Also Published As

Publication number Publication date
JPWO2004074489A1 (en) 2006-06-01
JP4491611B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
Yin et al. Recent advances in scaffold design and material for vascularized tissue‐engineered bone regeneration
Liu et al. Reconstruction of alveolar bone defects using bone morphogenetic protein 2 mediated rabbit dental pulp stem cells seeded on nano-hydroxyapatite/collagen/poly (L-lactide)
Petrovic et al. Craniofacial bone tissue engineering
Meinel et al. Silk implants for the healing of critical size bone defects
Hofmann et al. Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds
Szpalski et al. Cranial bone defects: current and future strategies
Vo et al. Strategies for controlled delivery of growth factors and cells for bone regeneration
US6077987A (en) Genetic engineering of cells to enhance healing and tissue regeneration
Kneser et al. Tissue engineering of bone
Arnold et al. In vitro-cultivation of human periosteum derived cells in bioresorbable polymer-TCP-composites
US20090054983A1 (en) Bioresorbable bone implant
Rahman et al. 3D bioactive cell-free-scaffolds for in-vitro/in-vivo capture and directed osteoinduction of stem cells for bone tissue regeneration
Bhattacharya et al. The use of adipose tissue-derived progenitors in bone tissue engineering-a review
EP1660663A2 (en) Methods and compositions for tissue repair
JP4921692B2 (en) Bone and cartilage regeneration method by gene transfer of transcription factor
JP4428693B2 (en) Implants containing cells introduced with growth factor genes
Srouji et al. 3D scaffolds for bone marrow stem cell support in bone repair
WO2004074489A1 (en) Method of forming bone/cartilage tissue with use of fat cell
JP4426532B2 (en) Implants for bone and cartilage regeneration using transcription factors
Zanetti Characterization of Novel Akermanite: Poly-E-Caprolactone Scaffolds for Bone Tissue Engineering Aapplications Combined with Human Adipose-Derived Stem Cells
JPWO2003008592A1 (en) Adipose tissue-derived pluripotent stem cells
Yamano et al. The potential of tissue engineering and regeneration for craniofacial bone
JP2006263459A (en) Method for regenerating osseous tissue
Ding et al. Smart Materials in Medicine
Sharma et al. ENDOGENOUS REGENRATIVE TECHNOLOGY IN PERIODONTICS-A BRIEF REVIEW.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005502743

Country of ref document: JP

122 Ep: pct application non-entry in european phase