JP2006263459A - Method for regenerating osseous tissue - Google Patents

Method for regenerating osseous tissue Download PDF

Info

Publication number
JP2006263459A
JP2006263459A JP2006046928A JP2006046928A JP2006263459A JP 2006263459 A JP2006263459 A JP 2006263459A JP 2006046928 A JP2006046928 A JP 2006046928A JP 2006046928 A JP2006046928 A JP 2006046928A JP 2006263459 A JP2006263459 A JP 2006263459A
Authority
JP
Japan
Prior art keywords
cells
cbfa1
adv
vegf
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006046928A
Other languages
Japanese (ja)
Inventor
Hiroko Kojima
弘子 小島
Jiyuko Uemura
寿公 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Advanced Industrial Science and Technology AIST filed Critical Japan Science and Technology Agency
Priority to JP2006046928A priority Critical patent/JP2006263459A/en
Publication of JP2006263459A publication Critical patent/JP2006263459A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Prostheses (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bone regenerating technique of which clinical application is possible, enabling quicker bone regeneration. <P>SOLUTION: Osseous tissue is constructed by introducing genes of bone-inducing transcription factor and vascular endothelial cell growth factor into isolated cells, and culturing the cells three-dimensionally. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、骨誘導性転写因子及び血管内皮細胞増殖因子の遺伝子導入による骨組織の再生方法、及び再生された組織を利用した骨代替インプラントに関する。   The present invention relates to a method for regenerating a bone tissue by gene transfer of an osteoinductive transcription factor and a vascular endothelial growth factor, and a bone substitute implant using the regenerated tissue.

生体から取り出した自己の細胞をin vitroで培養・組織化して限りなく生体に近い組織を再構築するティッシュエンジニアリングの研究が進められている。ティッシュエンジニアリングは、再生能力の限られた骨組織の修復を可能にし、理想的な再生医療を実現する。   Research on tissue engineering is underway to reconstruct a tissue close to the living body by culturing and organizing its own cells taken out of the living body in vitro. Tissue engineering makes it possible to repair bone tissue with limited regenerative capacity and realize ideal regenerative medicine.

骨再生に関する技術としては、細胞の分化誘導をつかさどるサイトカイン(液性因子)を直接細胞に導入する技術が知られている。たとえば、TGF−β1を含浸させたコラーゲンスポンジ上で骨髄細胞等を培養する技術(特許文献1)等が公知である。しかしながら、増殖因子そのものを細胞に添加するこれらの技術では、増殖因子活性の十分な持続が望めず、また添加した増殖因子が生体内で速やかに拡散してしまうため、その効果が数時間から1日程度で急激に低下するという問題があった。   As a technique related to bone regeneration, a technique for directly introducing a cytokine (humoral factor) that controls cell differentiation into a cell is known. For example, a technique for culturing bone marrow cells or the like on a collagen sponge impregnated with TGF-β1 (Patent Document 1) is known. However, in these techniques in which the growth factor itself is added to the cells, sufficient growth factor activity cannot be expected, and the added growth factor diffuses rapidly in the living body. There was a problem of a sudden drop in days.

これに対し、発明者らは骨誘導性転写因子(Cbfa1)の遺伝子を細胞に導入する方法(特許文献2)や、血管内皮細胞増殖因子(VEGF)の遺伝子を脂肪細胞に導入する方法(特許文献3)を開発し、効果的な骨再生が得られることを確認した。   In contrast, the inventors have introduced a method of introducing a gene for osteoinductive transcription factor (Cbfa1) into cells (Patent Document 2) and a method of introducing a gene for vascular endothelial growth factor (VEGF) into fat cells (patent) Reference 3) was developed, and it was confirmed that effective bone regeneration was obtained.

特開2001-316285号JP 2001-316285 国際公開WO03011343号パンフレットInternational publication WO03011343 pamphlet 国際公開WO03070291号パンフレットInternational publication WO03070291 pamphlet

本発明は、より迅速な骨再生を可能にし、臨床応用可能な骨再生技術を提供することを目的とする。   An object of the present invention is to provide a bone regeneration technique that enables faster bone regeneration and is clinically applicable.

発明者らは、骨誘導性転写因子(Cbfa1)及び血管内皮細胞増殖因子(VEGF)のcDNAを組み込んだウイルスを細胞に同時感染させ、これを適当な足場材料に播種して三次元培養した。さらに、骨再生が最適となる条件を決定し、Cbfa1あるいはVEGFの遺伝子を単独導入した結果に比べて極めて効率のよい骨再生が実現することを確認した。   The inventors co-infected cells with a virus incorporating osteoinductive transcription factor (Cbfa1) and vascular endothelial growth factor (VEGF) cDNA, seeded on appropriate scaffold materials, and cultured in three dimensions. Furthermore, the conditions under which bone regeneration is optimal were determined, and it was confirmed that extremely efficient bone regeneration was achieved compared to the result of introducing Cbfa1 or VEGF genes alone.

すなわち、本発明は、骨誘導性転写因子及び血管内皮細胞増殖因子の両遺伝子を単離された細胞に導入し、該細胞を三次元培養する工程を含む、骨組織の作製方法に関する。   That is, the present invention relates to a method for producing bone tissue, which comprises a step of introducing both osteoinductive transcription factor and vascular endothelial growth factor genes into isolated cells and culturing the cells three-dimensionally.

前記方法において、用いられる細胞としては間葉系幹細胞、骨芽細胞、脂肪細胞が好ましく、特にそれらの初代培養細胞を用いることが好ましい。   In the above method, the cells used are preferably mesenchymal stem cells, osteoblasts, and adipocytes, and it is particularly preferable to use primary cultured cells thereof.

ある態様において、前記細胞は患者から単離された細胞である。
本発明の方法で用いられる骨誘導性転写因子としては、Cbfa1、Cbfb、osterix等を挙げることができる。
In certain embodiments, the cell is a cell isolated from a patient.
Examples of osteoinductive transcription factors used in the method of the present invention include Cbfa1, Cbfb, osterix and the like.

本発明の方法において、細胞は多孔性ハイドロキシアパタイト、α-TCP、β-TCP、コラーゲン、ポリ乳酸、ポリグリコール酸、及びヒアルロン酸、ならびにこれらの複合体からなる群より選ばれる1種又は2種以上の生体適合性材料を足場として三次元培養される。   In the method of the present invention, the cells are one or two selected from the group consisting of porous hydroxyapatite, α-TCP, β-TCP, collagen, polylactic acid, polyglycolic acid, hyaluronic acid, and complexes thereof. Three-dimensional culture is performed using the biocompatible material as a scaffold.

ある態様において、本発明の方法は以下の工程を含む:
1)生体から単離した細胞をデキサメタゾン、免疫抑制剤、骨形成蛋白質、及び骨形成液性因子からなる群より選ばれる1種又は2種以上を用いて分化誘導する、
2)上記細胞に骨誘導性転写因子及び血管内皮細胞増殖因子の遺伝子をアデノウイルスベクター、アデノ随伴ベクター、又はレトロウイルスベクターを用いて導入する、
3)上記細胞を多孔性ハイドロキシアパタイト、α-TCP、β-TCP、コラーゲン、ポリ乳酸、ポリグリコール酸、及びヒアルロン酸、ならびにこれらの複合体からなる群より選ばれる1種又は2種以上の生体適合性材料を足場として三次元培養する。
In some embodiments, the method of the present invention comprises the following steps:
1) Inducing differentiation of a cell isolated from a living body using one or more selected from the group consisting of dexamethasone, an immunosuppressant, a bone morphogenetic protein, and an osteogenic fluid factor,
2) Introducing osteoinductive transcription factor and vascular endothelial growth factor genes into the cells using an adenovirus vector, an adeno-associated vector, or a retrovirus vector,
3) One or two or more living organisms selected from the group consisting of porous hydroxyapatite, α-TCP, β-TCP, collagen, polylactic acid, polyglycolic acid, hyaluronic acid, and complexes thereof. 3D culture using compatible material as a scaffold.

本発明はまた、本発明の方法によって作製された骨組織を含むインプラントを提供する。このインプラントは骨欠損部の再生医療に有用である。   The present invention also provides an implant comprising bone tissue made by the method of the present invention. This implant is useful for regenerative medicine of bone defects.

本発明によれば、生体から取り出した細胞を培養・組織化して限りなく生体に近い骨組織を再構築することができる。   According to the present invention, cells taken from a living body can be cultured and organized, and bone tissue close to the living body can be reconstructed.

以下、本発明について詳細に説明する。
本発明は、骨誘導性転写因子及び血管内皮細胞増殖因子の遺伝子を単離された細胞に導入し、該細胞を生体外で分化・増殖させる工程を含む、骨組織の作製方法に関する。
Hereinafter, the present invention will be described in detail.
The present invention relates to a method for producing bone tissue, which comprises the steps of introducing osteoinductive transcription factor and vascular endothelial growth factor genes into isolated cells, and differentiating and proliferating the cells in vitro.

1.骨誘導性転写因子
本発明で用いられる骨誘導性転写因子は、未分化の細胞を骨に分化誘導する、骨誘導性の転写因子で、例えばCbfa1、Cbfb、osterix等を挙げることができる。Cbfa1は1993年京都大学の小川らによってクローニングされ、大阪大学の小守らにより間葉系幹細胞から骨芽細胞に分化誘導するのに必要不可欠であることが確認された転写因子である(Komori, T. et al., (1997) Cell 89, 755-764)。Cbfbは造血に関与する因子として知られてきたが、近年Runx2との相互作用により骨形成に必須の役割を担っていることが確認された。また、Osterixは骨組織特異的に発現するZinc-Finger型転写因子であり、骨芽細胞の分化等、骨形成に重要な役割を担っていることが確認されている。
1. Osteoinductive transcription factor The osteoinductive transcription factor used in the present invention is an osteoinductive transcription factor that induces differentiation of undifferentiated cells into bone. Examples thereof include Cbfa1, Cbfb, and osterix. Cbfa1 is a transcription factor that was cloned by Ogawa et al. In Kyoto University in 1993 and confirmed to be essential for inducing differentiation from mesenchymal stem cells to osteoblasts by Komori et al. At Osaka University (Komori, T et al., (1997) Cell 89, 755-764). Although Cbfb has been known as a factor involved in hematopoiesis, it has been confirmed in recent years that it plays an essential role in bone formation through interaction with Runx2. Osterix is a Zinc-Finger transcription factor expressed specifically in bone tissue and has been confirmed to play an important role in osteogenesis such as osteoblast differentiation.

これらの骨誘導性転写因子をコードする遺伝子の配列は既に公知であり、当該配列に基づき、骨髄由来細胞等から抽出されたRNAを用いて常法に従い調製することができる。例えば、Cbfa1(ヒト:GenBank Accession Number AH005498、マウス:GenBank Accession Number AF010284等)、Cbfb(ヒト:GenBank Accession Number NM_022845, NM_001755、マウス:GenBank Accession Number NM_022309等)、osterix(ヒト:GenBank Accession Number AF466179、マウス:GenBank Accession Number AY803733等)の配列が公開されている。   The sequences of genes encoding these osteoinductive transcription factors are already known, and can be prepared according to conventional methods using RNA extracted from bone marrow-derived cells and the like based on the sequences. For example, Cbfa1 (human: GenBank Accession Number AH005498, mouse: GenBank Accession Number AF010284, etc.), Cbfb (human: GenBank Accession Number NM_022845, NM_001755, mouse: GenBank Accession Number NM_022309, etc.), osterix (human: GenBank Accession Number AF466179, mouse) : GenBank Accession Number AY803733 etc.) has been published.

2.血管内皮細胞増殖因子(VEGF)
本発明で用いられる血管内皮細胞増殖因子(VEGF)は、in vitroでの血管誘導を飛躍的に向上させ、迅速な骨再生を可能にする。VEGFをコードする遺伝子の配列は既に公知(ヒト:GenBank Accession Number AY047581、マウス:GenBank Accession Number NM_009505)であり、当該配列に基づき、細胞から抽出されたRNAを用いて常法に従い調製することができる。
2. Vascular endothelial growth factor (VEGF)
Vascular endothelial growth factor (VEGF) used in the present invention dramatically improves blood vessel induction in vitro and enables rapid bone regeneration. The sequence of the gene encoding VEGF is already known (human: GenBank Accession Number AY047581, mouse: GenBank Accession Number NM_009505). Based on this sequence, it can be prepared according to a conventional method using RNA extracted from cells. .

3.細胞
本発明に用いられる細胞は、分化・増殖能力を有する未分化の細胞であり、たとえば、間葉系幹細胞、造血幹細胞、骨格筋幹細胞、神経幹細胞及び肝臓幹細胞、脂肪細胞等を挙げることができる。特に、骨髄由来の間葉系幹細胞、骨芽細胞、脂肪細胞が好ましく、脂肪細胞は脂肪前駆細胞を含むものとする。生体、特に脂肪組織から単離された脂肪細胞中には、体性幹細胞を含むfibroblast-like-cellが多く存在し、本発明で用いられる脂肪細胞には、そのような体性幹細胞が含まれていてもよい。
3. Cells The cells used in the present invention are undifferentiated cells having differentiation / proliferation ability, and examples thereof include mesenchymal stem cells, hematopoietic stem cells, skeletal muscle stem cells, neural stem cells, liver stem cells, and adipocytes. . In particular, bone marrow-derived mesenchymal stem cells, osteoblasts, and adipocytes are preferable, and the adipocytes include adipose precursor cells. There are many fibroblast-like-cells containing somatic stem cells in adipose cells isolated from living organisms, particularly adipose tissue, and the adipocytes used in the present invention contain such somatic stem cells. It may be.

細胞は、市販のものを用いても、常法に従って調製してもよいが、患者の生体から単離された細胞を好適に用いることができる。該細胞は患者から採取された後、常法に従って結合組織等を除去して調製することが好ましい。また、細胞は初代培養細胞を用いることが好ましく、継代して用いてもよいが、継代数は2回以下であることが好ましい。   Although a commercially available thing may be used for a cell, and it may prepare according to a conventional method, the cell isolated from the patient's biological body can be used conveniently. The cells are preferably prepared by removing connective tissue and the like according to a conventional method after being collected from a patient. Moreover, it is preferable to use a primary cultured cell as the cell, and it may be used after passage, but the passage number is preferably 2 times or less.

4.生体適合性材料
本発明に用いられる生体適合性材料は、細胞培養の足場になると同時に、細胞ごと生体内に適用され、骨代替用インプラントとして機能する。ここで、「生体適合性材料」とは、生体に対して親和性が高く、安全性の確認されている材料を意味する。そのような材料としては、SUS316L、バイタリウム及びTi-6Al-4V等の金属材料、超高分子量ポリエチレン、MMA骨セメント、ポリ乳酸やポリグリコール酸、及びそれらの誘導体(例えば、PLLA(poly-l-lactic acid)とPDLA(poly-d-lactic acid)の重合体等)、ポリエチレンテレフタレート及びポリプロピレン等の高分子材料、ハイドロキシアパタイト、β-TCP、α-TCP及びバイオガラス等のセラミックス材料等を挙げることができる。ただし、細胞培養の足場として用いられるという点で、特にハイドロキシアパタイト、β-TCP、α-TCPなどの多孔性セラミックス材料、コラーゲン、ポリ乳酸やポリグリコール酸、及びそれらの誘導体(例えば、PLLA(poly-l-lactic acid)とPDLA(poly-d-lactic acid)の重合体等)、ならびにこれらの複合体、あるいは吸収性合成ポリマーを用いることが好ましい。
4). Biocompatible material The biocompatible material used in the present invention serves as a scaffold for cell culture, and at the same time is applied in vivo to the whole cell and functions as a bone substitute implant. Here, the “biocompatible material” means a material that has a high affinity for a living body and has been confirmed to be safe. Such materials include metal materials such as SUS316L, vitalium and Ti-6Al-4V, ultrahigh molecular weight polyethylene, MMA bone cement, polylactic acid and polyglycolic acid, and derivatives thereof (for example, PLLA (poly-l -lactic acid) and PDLA (poly-d-lactic acid) polymers), polymer materials such as polyethylene terephthalate and polypropylene, ceramic materials such as hydroxyapatite, β-TCP, α-TCP and bioglass be able to. However, in terms of being used as a scaffold for cell culture, porous ceramic materials such as hydroxyapatite, β-TCP, α-TCP, collagen, polylactic acid, polyglycolic acid, and derivatives thereof (for example, PLLA (poly -l-lactic acid) and PDLA (poly-d-lactic acid) polymers, etc.), and their composites or absorbent synthetic polymers are preferably used.

前記生体適合性材料は、細胞の均一な播種が可能となるよう、多孔性であることが好ましい。なお、本明細書中において「多孔(性)」とは、気孔率が40%以上を意味するものとする。また、孔の大きさは特に限定されないが、骨再生が起きやすいという点では直径200μm〜500μmが好ましい。   The biocompatible material is preferably porous so that cells can be uniformly seeded. In the present specification, “porous” means that the porosity is 40% or more. The size of the hole is not particularly limited, but a diameter of 200 μm to 500 μm is preferable in that bone regeneration is likely to occur.

前記生体適合性材料は、インプラントの目的や適用部位により、適宜最適なものを選ぶことが好ましい。たとえば、強度を必要とする移植箇所(あるいは手術法)については、ハイドロキシアパタイトが好ましく、強度を必要としない移植箇所(あるいは手術法)については、生体吸収性のβ-TCPなどが好ましい。   The biocompatible material is preferably selected as appropriate depending on the purpose and application site of the implant. For example, hydroxyapatite is preferable for a transplanted site (or surgical method) that requires strength, and bioabsorbable β-TCP is preferable for a transplanted site (or surgical method) that does not require strength.

前記生体適合性材料の形態及び形状は、特に限定されず、スポンジ、メッシュ、不繊布状成形物、ディスク状、フィルム状、棒状、粒子状、及びペースト状等、任意の形態及び形状を用いることができる。こうした形態や形状は、インプラントの目的に応じて適宜選択すればよい。   The form and shape of the biocompatible material are not particularly limited, and any form and shape such as a sponge, a mesh, a non-woven fabric-shaped product, a disk shape, a film shape, a rod shape, a particle shape, and a paste shape are used. Can do. Such form and shape may be appropriately selected according to the purpose of the implant.

5.骨組織再生
本発明の方法は、具体的には次の工程を含む:
1)ヒト細胞をin vitroで骨細胞へ分化誘導する工程
2)上記細胞に、骨誘導性転写因子及び血管内皮細胞増殖因子の遺伝子をトランスフェクトする工程
3)上記細胞を、生体適合性材料に播種して三次元的に培養、増殖させる工程。
5. Bone tissue regeneration The method of the present invention specifically comprises the following steps:
1) Step of inducing differentiation of human cells into bone cells in vitro 2) Step of transfecting the cells with genes of osteoinductive transcription factor and vascular endothelial growth factor 3) Using the cells as biocompatible materials The process of seeding and culturing and growing three-dimensionally.

(1)細胞の分化誘導
細胞は適当な薬剤を用いて処理することにより、目的とする組織を構築する細胞に分化誘導をしておくことが必要である。たとえば、デキサメタゾン、FK-506及びシクロスポリン等の免疫抑制剤、BMP-2、BMP-4、BMP-5、BMP-6、BMP-7及びBMP-9等の骨形成タンパク質(BMP: Bone Morphogenic Proteins)、TGFβ等の骨形成液性因子から選ばれる1種又は2種以上を添加することにより細胞を骨系細胞に分化誘導する。
(1) Induction of cell differentiation It is necessary to induce differentiation of cells that constitute the target tissue by treating the cells with an appropriate drug. For example, immunosuppressants such as dexamethasone, FK-506 and cyclosporine, and bone morphogenetic proteins (BMP) such as BMP-2, BMP-4, BMP-5, BMP-6, BMP-7 and BMP-9 The cells are induced to differentiate into bone cells by adding one or more selected from osteogenic factors such as TGFβ.

(2)骨誘導性転写因子及び血管内皮細胞増殖因子の遺伝子の導入
骨誘導性転写因子及び血管内皮細胞増殖因子の遺伝子は、常法に従い、公知の配列を基に調製することができる。たとえば、骨芽細胞からRNAを抽出し、公知の配列を元にプライマーを作製し、PCR法でクローニングすることにより目的とする増殖因子遺伝子のcDNAが調製できる。
(2) Introduction of genes for osteoinductive transcription factor and vascular endothelial growth factor The genes for osteoinductive transcription factor and vascular endothelial growth factor can be prepared based on known sequences in accordance with conventional methods. For example, a cDNA of a desired growth factor gene can be prepared by extracting RNA from osteoblasts, preparing a primer based on a known sequence, and cloning by PCR.

本発明において、骨誘導性転写因子及び血管内皮細胞増殖因子の遺伝子の細胞への導入は、動物細胞のトランスフェクションに通常用いられる方法、たとえばリン酸カルシウム法、リポフェクション法、エレクトロポレーション法、マイクロインジェクション法、レトロウイルスやバキュロウイルスをベクターとして用いる方法等を用いることができるが、アデノウイルス又はレトロウイルスをベクターとして用いる方法が安全性、導入効率の点から好ましく、特にアデノウイルスを用いた方法が最も好ましい。   In the present invention, the genes for osteoinductive transcription factor and vascular endothelial growth factor are introduced into cells by methods usually used for transfection of animal cells, such as calcium phosphate method, lipofection method, electroporation method, microinjection method. A method using a retrovirus or baculovirus as a vector can be used, but a method using an adenovirus or a retrovirus as a vector is preferable from the viewpoint of safety and introduction efficiency, and a method using an adenovirus is particularly preferable. .

前記アデノウイルスベクターの調製は、例えばMiyakeらの方法(Miyake, S. et al, Proc. Natl. Acad. Sci. 93:1320-1324,(1993))に基づいて行えばよいが、市販のAdenovirus Cre/1oxP Kit(宝酒造社製)を用いることもできる。このキットはP1ファージのCreリコンビナーゼとその認識配列である1oxPを用いた新たな発現制御系(Kanegae Y. et.al., 1995 Nucl. Acids Res. 23,3816)による組換えアデノウイルスベクター作製キットで、転写因子遺伝子を組み込んだ組換えアデノウイルスベクターを簡便に作製することができる。   The adenovirus vector may be prepared based on, for example, the method of Miyake et al. (Miyake, S. et al, Proc. Natl. Acad. Sci. 93: 1320-1324, (1993)). Cre / 1oxP Kit (Takara Shuzo) can also be used. This kit is a recombinant adenovirus vector production kit using a new expression control system (Kanegae Y. et.al., 1995 Nucl. Acids Res. 23,3816) using Cre recombinase of P1 phage and its recognition sequence 1oxP. Thus, a recombinant adenoviral vector incorporating a transcription factor gene can be easily prepared.

なお、アデノウイルス感染のMOI(mu1tip1icity of infection)は、組み込んだ遺伝子及び導入する細胞に依存しているため適宜決定する必要がある。ラットの間葉系幹細胞や骨芽細胞、脂肪細胞に遺伝子導入する場合、骨誘導性転写因子(Cbfa1)組換えアデノウイルスはMOI=200〜1000(より好ましくは500前後)、VEGF組換えアデノウイルスはMOI=50〜200(より好ましくは100前後)がよい。   Note that the MOI (mu1tip1icity of infection) of adenovirus infection depends on the incorporated gene and the cell to be introduced, and must be determined as appropriate. When introducing genes into rat mesenchymal stem cells, osteoblasts, and adipocytes, the osteoinductive transcription factor (Cbfa1) recombinant adenovirus is MOI = 200 to 1000 (more preferably around 500), VEGF recombinant adenovirus Is preferably MOI = 50 to 200 (more preferably around 100).

(3)細胞培養
骨誘導性転写因子及び血管内皮細胞増殖因子の遺伝子を導入した細胞の培養は、前記した生体適合性材料からなる足場に、該細胞を播種して、通常の方法により行えばよい。
(3) Cell culture Culture of cells into which the genes for osteoinductive transcription factor and vascular endothelial growth factor have been introduced can be carried out by seeding the cells on a scaffold made of the above-mentioned biocompatible material and by a usual method. Good.

細胞の播種は、足場である生体適合性材料に単に播種するだけでもよく、あるいは、緩衝液、生理食塩水、注射用溶媒、あるいはコラーゲン溶液等の液体とともに混合して播種してもよい。また、材料によって、細胞が孔の中にスムーズに入らない場合は、引圧条件下で播種してもよい。   Cell seeding may be performed simply by seeding on a biocompatible material that is a scaffold, or may be seeded by mixing with a liquid such as a buffer solution, physiological saline, a solvent for injection, or a collagen solution. In addition, depending on the material, if the cells do not enter the pores smoothly, they may be seeded under attractive conditions.

播種する細胞の数(播種密度)は細胞の形態を維持して組織再生をより効率よく行わせるため、用いる細胞や足場材料に応じて適宜調整することが望ましい。たとえば、骨芽細胞であれば、播種密度は100万個/ml以上であることが望ましい。   The number of cells to be seeded (seeding density) is preferably adjusted as appropriate according to the cells and the scaffold material used in order to maintain the cell morphology and allow tissue regeneration to be performed more efficiently. For example, in the case of osteoblasts, the seeding density is preferably 1 million cells / ml or more.

細胞培養は、足場である生体適合性材料のもとで行う。培地としては、MEM培地、α-MEM培地、DMEM培地等、公知の培地を培養する細胞に合わせて適宜選んで用いることができる。また、該培地には、FBS(Sigma社製)、Antibiotic-Antimycotic(GIBCO BRL社製)等の抗生物質等を添加しても良い。培養は、3〜10% CO2、30〜40度、特に5% CO2、37度の条件下で行うことが望ましい。培養期間は、特に限定されないが、少なくとも4、好ましくは7日、より好ましくは10日程度であるとよい。 Cell culture is performed under a biocompatible material that is a scaffold. As the medium, a MEM medium, an α-MEM medium, a DMEM medium, or the like can be appropriately selected and used according to the cells in which a known medium is cultured. In addition, antibiotics such as FBS (manufactured by Sigma) and Antibiotic-Antimycotic (manufactured by GIBCO BRL) may be added to the medium. The culture is desirably performed under conditions of 3 to 10% CO 2 , 30 to 40 degrees, particularly 5% CO 2 and 37 degrees. The culture period is not particularly limited, but may be at least 4, preferably 7 days, more preferably about 10 days.

6.インプラントの利用
本発明の方法によって再生された組織は、足場材料である生体適合性材料とともに、埋入あるいは注入することで、骨代替用インプラントとして利用することができる。
6). Utilization of Implant The tissue regenerated by the method of the present invention can be used as a bone substitute implant by being implanted or injected together with a biocompatible material that is a scaffold material.

本発明のインプラントの形態及び形状は、特に限定されず、スポンジ、メッシュ、不繊布状成形物、ディスク状、フィルム状、棒状、粒子状、及びペースト状等、任意の形態及び形状を用いることができる。こうした形態や形状は、インプラントの目的に応じて適宜選択すればよい。   The form and shape of the implant of the present invention are not particularly limited, and any form and shape such as sponge, mesh, non-woven fabric-shaped product, disk shape, film shape, rod shape, particle shape, and paste shape may be used. it can. Such form and shape may be appropriately selected according to the purpose of the implant.

本発明のインプラントは、その目的と効果を損なわない範囲において、適宜他の成分を含んでいてもよい。そのような成分としては、例えば、塩基性線維芽細胞増殖因子(bFGF)、血小板分化増殖因子(PDGF)、インスリン、インスリン様増殖因子(IGF)、肝細胞増殖因子(HGF)、グリア誘導神経栄養因子(GDNF)、神経栄養因子(NF)、ホルモン、サイトカイン、骨形成因子(BMP)、トランスフォーミング増殖因子(TGF)、血管内皮細胞増殖因子(VEGF)等の増殖因子、骨形成タンパク質、St、Mg、Ca及びCO3等の無機塩、クエン酸及びリン脂質等の有機物、薬剤等を挙げることができる。 The implant of the present invention may appropriately contain other components as long as its purpose and effect are not impaired. Such components include, for example, basic fibroblast growth factor (bFGF), platelet differentiation growth factor (PDGF), insulin, insulin-like growth factor (IGF), hepatocyte growth factor (HGF), glial-induced neurotrophic Factors (GDNF), neurotrophic factors (NF), hormones, cytokines, bone morphogenetic factors (BMP), transforming growth factors (TGF), vascular endothelial growth factor (VEGF) and other growth factors, bone morphogenetic proteins, St, Examples thereof include inorganic salts such as Mg, Ca and CO 3 , organic substances such as citric acid and phospholipid, drugs and the like.

本発明のインプラントにおいて、骨細胞・組織の構築は移植前(in vitro)のみならず、移植後の骨欠損部(in vivo)においても引き続き行われてよい。本発明のインプラントは、骨親和性及び骨形成能が高く、生体適用後すみやかに生体骨と一体化し、骨欠損部の良好な再生を可能にする。特に、大型の骨欠損(1 cm径以上)においては、多孔性材料の中央部まで自然な血管導入が困難なため、大型骨欠損の十分な治療ができなかった。本発明のごとく、VEGFの遺伝子導入を用いれば、中央部までの血管導入を可能にすることができ、大型骨欠損の十分な治療を行うことができる。   In the implant of the present invention, the construction of bone cells / tissues may be continued not only before transplantation (in vitro) but also in a bone defect portion (in vivo) after transplantation. The implant of the present invention has high bone affinity and bone forming ability, and immediately integrates with a living bone after application to a living body, thereby enabling a good regeneration of a bone defect. In particular, in large bone defects (1 cm diameter or more), it is difficult to introduce a natural blood vessel up to the central part of the porous material. If VEGF gene transfer is used as in the present invention, it is possible to introduce blood vessels up to the central part and to sufficiently treat large bone defects.

以下、実施例により本発明についてさらに詳細に説明するが、これらの実施例は本発明の範囲を限定するものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, these Examples do not limit the scope of the present invention.

実施例1:Cbfa1、VEGF 遺伝子導入によるin vitroでの骨再生
[方 法]
(1)アデノウイルス発現ベクターの作製
マウスの骨芽細胞から単離したTotal RNAからAMV reverse transcriptaseを用いてcDNAを合成し、これを鋳型としてCbfa1のcDNA に特異的なプライマー:
sense primer:5’-ATGCTTCATTCGCCTCACAAAC-3’ (配列番号1)
antisense primer:5’-TCTGTTTGGCGGCCATATTGA-3’ (配列番号2)
を用いてPCRによりCbfa1(til-1) cDNA(GenBank Accession Number AF010284)を増幅して得、シークエンスにより配列を確認した。Cbfa1 cDNAはTA cloning vector (pCR II-TOPO, Invitrogen)にクローニングして大量調製した。Cbfa1 cDNAを制限酵素 Spe IとEcoR Vで切り出し、平滑末端に処理した。
Example 1: In vitro bone regeneration by Cbfa1, VEGF gene transfer
[Method]
(1) Preparation of adenovirus expression vector cDNA was synthesized from total RNA isolated from mouse osteoblasts using AMV reverse transcriptase, and using this as a template, a primer specific for Cbfa1 cDNA:
sense primer: 5'-ATGCTTCATTCGCCTCACAAAC-3 '(SEQ ID NO: 1)
antisense primer: 5'-TCTGTTTGGCGGCCATATTGA-3 '(SEQ ID NO: 2)
Was used to amplify Cbfa1 (til-1) cDNA (GenBank Accession Number AF010284) by PCR, and the sequence was confirmed by sequencing. Cbfa1 cDNA was cloned into TA cloning vector (pCR II-TOPO, Invitrogen) and prepared in large quantities. Cbfa1 cDNA was excised with restriction enzymes Spe I and EcoR V, and treated with blunt ends.

マウスVEGFのcDNA(GenBank Accession Number NM_009505)は、東京工業大学 渡辺氏より供与を受けた。VEGF cDNAも同様に大量調製し、制限酵素 EcoRIで切り出した後、平滑末端に処理した。   Mouse VEGF cDNA (GenBank Accession Number NM_009505) was provided by Mr. Watanabe, Tokyo Institute of Technology. Similarly, a large amount of VEGF cDNA was prepared, cut out with the restriction enzyme EcoRI, and then processed into blunt ends.

Cbfa1 cDNA及びVEGF cDNA を、それぞれAdenovirus Cre/loxP kit(宝酒造, 6151)を用いてコスミドベクター pAxCALNLwのSwa Iサイトに挿入し、Kitの説明書に従ってCbfa1組換えアデノウイルス(Adv-Cbfa1)及びVEGF組換えアデノウイルス(Adv-VEGF)を作製した。作製したウイルスの力価は、それぞれ約1011PFU/ml(Adv-Cbfa1)、約2.5×109 PFU/m1(Adv-VEGF)の価を示し、感染効率が非常に高かった。これらのウイルスはE1領域欠失のため、標的細胞内では増殖することはできず、一過性の性質をもつ。また、目的遺伝子の上流にスタッファーをもつため、Creリコンビナーゼ発現ウイルスと共感染のときのみ遺伝子を発現する。Creリコンビナーゼ発現アデノウイルス(Adv-cre)はキットに付属されていたものを用いた。 Cbfa1 cDNA and VEGF cDNA were inserted into the Swa I site of the cosmid vector pAxCALNLw using Adenovirus Cre / loxP kit (Takara Shuzo, 6151), respectively. A replacement adenovirus (Adv-VEGF) was prepared. The titers of the viruses produced were about 10 11 PFU / ml (Adv-Cbfa1) and about 2.5 × 10 9 PFU / m1 (Adv-VEGF), respectively, and the infection efficiency was very high. Because these viruses lack the E1 region, they cannot grow in target cells and have a transient nature. In addition, since it has a stuffer upstream of the target gene, the gene is expressed only when co-infection with a Cre recombinase-expressing virus. The Cre recombinase-expressing adenovirus (Adv-cre) used was included in the kit.

(2)骨髄細胞の採取及び培養方法
Rat Bone Marrow Osteobrast (RBMO) は6週令のFisherラット(オス)の大腿骨よりManiatopoulosらの方法(Maniatopoulos, C., Sodek, J., and Melcher, A. H. (1988) Cell Tissue Res. 254, 317-330)に従って採取した。15%FBS(Sigma, F-9423)、Antibiotic-Antimycotic (GIBCO BRL, 15240-062) 添加MEM培地 (nacalai tesque, 214-42)でコンフルエントになるまで培養した。直径3.5cmのdishに約40万個の細胞を継代培養後、上述の培地に5 nM Dexamethasone (Sigma, D-8893)、10 mM β-glycerophosphate (Sigma, G-9891)、50 μg/ml ascorbic acid phosphate(Wako, 013-12061)を添加し、翌日、RBMOにCbfa1組換えアデノウイルスとVEGF組換えアデノウイルスを同時に、それぞれmultiplicity of infection (MOI)=500及びMOI=100で、Creリコンビナーゼ遺伝子組換えアデノウイルスと共感染させた。また、上記と同量のCbfa1組換えアデノウイルス、VEGF組換えアデノウイルスをそれぞれ単独で、RMBOにCreリコンビナーゼ遺伝子組換えアデノウイルスと共感染させた。対照として、目的遺伝子を導入していない空のアデノウイルス(Adv-mock)を同様に共感染させた細胞、及び未処理の細胞を同様に後述の実験に供した。
(2) Bone marrow cell collection and culture method
Rat Bone Marrow Osteobrast (RBMO) was obtained from Maniatopoulos et al. (Maniatopoulos, C., Sodek, J., and Melcher, AH (1988) Cell Tissue Res. 254, 317 -330). The cells were cultured in MEM medium (nacalai tesque, 214-42) supplemented with 15% FBS (Sigma, F-9423) and Antibiotic-Antimycotic (GIBCO BRL, 15240-062) until confluent. After subculturing approximately 400,000 cells in a dish with a diameter of 3.5 cm, add 5 nM Dexamethasone (Sigma, D-8893), 10 mM β-glycerophosphate (Sigma, G-9891), 50 μg / ml in the above medium. Ascorbic acid phosphate (Wako, 013-12061) was added, and the next day, Cbfa1 recombinant adenovirus and VEGF recombinant adenovirus were simultaneously added to RBMO, respectively, with multiplicity of infection (MOI) = 500 and MOI = 100, respectively, and Cre recombinase gene Co-infected with recombinant adenovirus. In addition, RMBO was co-infected with Cre recombinase gene recombinant adenovirus in the same amounts as above, respectively, Cbfa1 recombinant adenovirus and VEGF recombinant adenovirus. As controls, cells co-infected with empty adenovirus (Adv-mock) into which the gene of interest was not introduced and untreated cells were similarly subjected to the experiments described later.

(3)脂肪細胞の採取及び培養方法
初代培養様脂肪細胞(FAT)は8週令のFisherラット(オス)の腹部皮下脂肪から採取した。皮下脂肪を生理食塩水で洗った後、細断し、0.075%コラゲナーゼを37度で30分間処理し、細胞を分散させた。10% FBS(Sigma, F-9423)添加DMEM 培地(Sigma, D-5796)で中和した後、遠心し、その沈殿物を160 mM 塩化アンモニウム水溶液で10分間処理した。その後遠心して得られた上清を100μmのナイロンメッシュでろ過し、10% FBS、Antibiotic-Antimycotic (GIBCO BRL, 15240-062)添加DMEM 培地でコンフルエントになるまで培養した。直径3.5cmのdishに約40万個の細胞を継代培養後、上述の培地にadipogenic supplement として250 nM Dexamethasone (Sigma, D-8893)、0.5 mM 1-metyl-3-isobutylxanthin (Sigma, I-7018)、10 μg/ml insulin (Sigma, I-5500)を、あるいはOsteogenic supplementとして5 nM Dexamethasone (Sigma, D-8893)、10 mM β-glycerophosphate (Sigma, G-9891)、50 μg/ml ascorbic acid phosphate(Wako, 013-12061)を添加して培養した。
(3) Adipocyte collection and culture method Primary culture-like adipocytes (FAT) were collected from abdominal subcutaneous fat of 8-week-old Fisher rats (male). The subcutaneous fat was washed with physiological saline and then shredded and treated with 0.075% collagenase at 37 degrees for 30 minutes to disperse the cells. The mixture was neutralized with DMEM medium (Sigma, D-5796) supplemented with 10% FBS (Sigma, F-9423), centrifuged, and the precipitate was treated with 160 mM ammonium chloride aqueous solution for 10 minutes. Thereafter, the supernatant obtained by centrifugation was filtered through a 100 μm nylon mesh, and cultured in a DMEM medium supplemented with 10% FBS and Antibiotic-Antimycotic (GIBCO BRL, 15240-062) until confluent. After subculturing approximately 400,000 cells in a 3.5 cm diameter dish, 250 nM Dexamethasone (Sigma, D-8893), 0.5 mM 1-metyl-3-isobutylxanthin (Sigma, I- 7018), 10 μg / ml insulin (Sigma, I-5500), or 5 nM Dexamethasone (Sigma, D-8893), 10 mM β-glycerophosphate (Sigma, G-9891), 50 μg / ml ascorbic as an osteogenic supplement Acid phosphate (Wako, 013-12061) was added and cultured.

翌日、FATにCbfa1組換えアデノウイルスとVEGF組換えアデノウイルスを同時に、それぞれmultiplicity of infection (MOI)=500及びMOI=100で、Creリコンビナーゼ遺伝子組換えアデノウイルスと共感染させた。また、上記と同量のCbfa1組換えアデノウイルス、VEGF組換えアデノウイルスをそれぞれ単独で、RMBOにCreリコンビナーゼ遺伝子組換えアデノウイルスと共感染させた。対照として、目的遺伝子を導入していない空のアデノウイルス(Adv-mock)を同様に共感染させた細胞、及び未処理の細胞を同様に後述の実験に供した。これらのアデノウイルス感染細胞はすべて上述のOsteogenic supplementを加えた骨芽細胞分化培地で培養した。また未処理の細胞に関してはOsteogenic supplementを加えた脂肪細胞分化培地及びOsteogenic supplementを加えた骨芽細胞分化培地で培養した。   The next day, the Cbfa1 recombinant adenovirus and the VEGF recombinant adenovirus were simultaneously co-infected with Cre recombinase gene recombinant adenovirus at multiplicity of infection (MOI) = 500 and MOI = 100, respectively. In addition, RMBO was co-infected with Cre recombinase gene recombinant adenovirus in the same amounts as above, respectively, Cbfa1 recombinant adenovirus and VEGF recombinant adenovirus. As controls, cells co-infected with empty adenovirus (Adv-mock) into which the gene of interest was not introduced and untreated cells were similarly subjected to the experiments described later. All these adenovirus-infected cells were cultured in an osteoblast differentiation medium supplemented with the above-mentioned Osteogenic supplement. Untreated cells were cultured in an adipocyte differentiation medium supplemented with osteogenic supplement and an osteoblast differentiation medium supplemented with osteogenic supplement.

(4)細胞数の計測法
各細胞(RBMOあるいはFAT)を1% glutalaldehyde in PBSで5分間固定した後、蒸留水で2回洗い、0.1% crystal violetで30分間室温で染色した。蒸留水で3回洗って余分な染料を除いた後、10% acetic acid, 1% Triton X-100で脱色した。脱色液を希釈し吸収波長595nmの吸光度を測定した。検量線は細胞を適当な濃度で播種し(duplicate)、上述の染色の後、トリプシン処理により単離した細胞をカウントすることにより作製した。
(4) Cell number measurement method Each cell (RBMO or FAT) was fixed with 1% glutalaldehyde in PBS for 5 minutes, washed twice with distilled water, and stained with 0.1% crystal violet for 30 minutes at room temperature. After washing with distilled water 3 times to remove excess dye, the color was decolorized with 10% acetic acid and 1% Triton X-100. The decolorizing solution was diluted and the absorbance at an absorption wavelength of 595 nm was measured. The calibration curve was prepared by counting the cells isolated by trypsin treatment after the cells were seeded at an appropriate concentration (duplicate) and stained as described above.

(5)アルカリフォスファターゼ活性の測定
各細胞(RBMOあるいはFAT)を100 mM Tris (pH 7.5), 5mM MgCl2で洗った後スクレイパーで集め、500μlの100 mM Tris (pH 7.5), 5mM MgCl2, 1% Triton X-100に懸濁して超音波破砕した。破砕後6,000gで5分間遠心して上清を回収した。酵素活性は0.056 M 2-amono-2-methyl-1,3-propandiol (pH 9.9), 10 mM p-nitrophenyl phosphate, 2 mM MgCl2 に各上清5μlを加え、37℃で30分間インキュベートした後、すぐにマイクロプレートリーダーで吸収波長405 nmの吸光度を測定して求めた。検量線はρ-nitrophenolを用いて作製した。
(5) Measurement of alkaline phosphatase activity Each cell (RBMO or FAT) was washed with 100 mM Tris (pH 7.5), 5 mM MgCl 2 , collected with a scraper, and 500 μl of 100 mM Tris (pH 7.5), 5 mM MgCl 2 , 1 Suspended in% Triton X-100 and sonicated. After crushing, the supernatant was collected by centrifugation at 6,000 g for 5 minutes. Enzyme activity was 0.056 M 2-amono-2-methyl-1,3-propandiol (pH 9.9), 10 mM p-nitrophenyl phosphate, 2 mM MgCl 2 after adding 5 μl of each supernatant and incubating at 37 ° C. for 30 minutes The absorbance at an absorption wavelength of 405 nm was immediately measured using a microplate reader. A calibration curve was prepared using ρ-nitrophenol.

(6)カルシウム量の測定
各細胞(RBMOあるいはFAT)を10%ホルマリン緩衝液で固定し、一昼夜0.6 M HClで脱灰した。脱灰液を希釈しCalcium reagents(Sigma, 587, 360-11)を用い、説明書に従ってカルシウム量を測定した。
(6) Measurement of calcium content Each cell (RBMO or FAT) was fixed with 10% formalin buffer, and decalcified with 0.6 M HCl overnight. The decalcified solution was diluted and the amount of calcium was measured using Calcium reagents (Sigma, 587, 360-11) according to the instructions.

(7)アリザリンレッド染色
各細胞(RBMOあるいはFAT)を10%ホルマリン緩衝液で5分間固定し、蒸留水で軽く洗い1%アリザリンレッド水溶液を加えて2分間インキュベートした。その後蒸留水で何度も洗い、結果をスキャナーで取り込んで比較した。
(7) Alizarin red staining Each cell (RBMO or FAT) was fixed with 10% formalin buffer for 5 minutes, washed lightly with distilled water, added with 1% alizarin red aqueous solution and incubated for 2 minutes. After that, it was washed many times with distilled water, and the results were captured with a scanner and compared.

(8)オステオカルシン量の測定
各細胞(FAT)について、感染から1、2、3週間後の培養上清を回収した。RAT OSTEOCALCIN EIA KIT (Biomedical Technologies Inc.,Stoughton, MA, USA)を用いて、キットに添付されたプロトコールに従ってオステオカルシン量を計測した。
(8) Measurement of osteocalcin level For each cell (FAT), the culture supernatant after 1, 2 and 3 weeks from the infection was collected. The amount of osteocalcin was measured using RAT OSTEOCALCIN EIA KIT (Biomedical Technologies Inc., Stoughton, MA, USA) according to the protocol attached to the kit.

(9)グリセロール−3−リン酸デヒドロゲナーゼ(GPDH)活性の測定
各細胞(FAT)について、感染から3、7、10、14日後のグリセロール−3−リン酸デヒドロゲナーゼ(GPDH)活性を測定した。測定用サンプルはアルカリフォスファターゼ活性測定用サンプルと同様の方法で調製し、GPDH活性はGPDH活性測定キット(WAKO 309-06141)を用いて測定した。各サンプルの5μlをキットに添付されていた酵素抽出液で10倍希釈し(50μl)、これに100μlの反応溶液を加えてマイクロプレートリーダーで吸収波長340nmの吸光度の減少を測定した。一分間あたりの吸光度の変化量よりGPDH活性ユニットを求めた。
(9) Measurement of glycerol-3-phosphate dehydrogenase (GPDH) activity For each cell (FAT), glycerol-3-phosphate dehydrogenase (GPDH) activity was measured 3, 7, 10, and 14 days after infection. The measurement sample was prepared in the same manner as the alkaline phosphatase activity measurement sample, and GPDH activity was measured using a GPDH activity measurement kit (WAKO 309-06141). 5 μl of each sample was diluted 10-fold with the enzyme extract attached to the kit (50 μl), 100 μl of the reaction solution was added thereto, and the decrease in absorbance at an absorption wavelength of 340 nm was measured with a microplate reader. The GPDH activity unit was determined from the amount of change in absorbance per minute.

[結 果]
1.間葉系幹細胞(RMBO)
(1)細胞数の変化
Cbfa1及びVEGF遺伝子を単独あるいは同時導入した細胞(RBMO)の細胞増殖曲線を比較した結果を図2に示す。その結果、Cbfa1及びVEGF遺伝子を導入した細胞(Adv-Cbfa1+Adv-VEGF)とCbfa1遺伝子を単独導入した細胞(Adv-Cbfa1)では、非感染細胞(Control, Adv-mock)やVEGF遺伝子を単独導入した細胞(Adv-VEGF)に比較して顕著に高い細胞増殖能が確認された。細胞の増殖能力の高さは、アデノウイルス感染による細胞へのダメージが低いことを示唆している。
[Result]
1. Mesenchymal stem cells (RMBO)
(1) Change in the number of cells
FIG. 2 shows the results of comparison of cell growth curves of cells (RBMO) into which Cbfa1 and VEGF genes were introduced alone or simultaneously. As a result, in cells introduced with Cbfa1 and VEGF genes (Adv-Cbfa1 + Adv-VEGF) and cells introduced with Cbfa1 gene alone (Adv-Cbfa1), non-infected cells (Control, Adv-mock) and VEGF gene were introduced alone. Significantly higher cell proliferation ability was confirmed compared to cells (Adv-VEGF). The high proliferation ability of the cells suggests that the damage to the cells due to adenovirus infection is low.

(2)Cbfa1及びVEGF遺伝子発現の検出
各細胞(RBMO)におけるCbfa1及びVEGF遺伝子の発現量をノーザンハイブリダイゼーションにより検出した結果を図3に示す。図中、左からControl、Adv-VEGF、Adv-Cbfa1、Adv-Cbfa1+Adv-VEGFの結果を示す。また上段はfull lengthのCbfa1 cDNA、中段はfull lengthのVEGF cDNAを、下段はinternal standardとしてGAPDHをプローブとして同じメンブレンにハイブリさせた結果である。Cbfa1及びVEGF遺伝子を同時導入した細胞では、感染後3日目において非常に高いCbfa1及びVEGFの発現が認められた。一方、非感染細胞ではCbfa1及びVEGF遺伝子の発現は観察されなかった。
(2) Detection of Cbfa1 and VEGF gene expression The results of detecting the expression levels of Cbfa1 and VEGF genes in each cell (RBMO) by Northern hybridization are shown in FIG. In the figure, the results of Control, Adv-VEGF, Adv-Cbfa1, Adv-Cbfa1 + Adv-VEGF are shown from the left. The upper row shows the result of hybridizing the full length Cbfa1 cDNA, the middle row with the full length VEGF cDNA, and the lower row with GAPDH as a probe on the same membrane as an internal standard. In the cells into which Cbfa1 and VEGF genes were simultaneously introduced, very high Cbfa1 and VEGF expression was observed on the third day after infection. On the other hand, expression of Cbfa1 and VEGF genes was not observed in uninfected cells.

(3)アルカリフォスファターゼ活性の比較
各細胞(RBMO)におけるアルカリフォスファターゼ活性(ALP activity)の測定結果を図4に示す。図中、左からControl、Adv-VEGF、Adv-Cbfa1、Adv-Cbfa1+Adv-VEGF、Adv-mockの結果を示す。Cbfa1及びVEGF遺伝子を同時導入した細胞では、Cbfa1を単独導入した細胞よりも、骨芽細胞の分化マーカーであるアルカリフォスファターゼ活性が顕著に誘導された。一方、非感染細胞(Control)やVEGF遺伝子を単独導入した細胞(Adv-VEGF)ではアルカリフォスファターゼ活性はほとんど確認されなかった。Osteogenic supplementによっても、アルカリフォスファターゼ活性は誘導されたが、Cbfa1及びVEGF遺伝子を同時導入した細胞に比べると非常に低い値であった。
(3) Comparison of alkaline phosphatase activity The measurement results of alkaline phosphatase activity (ALP activity) in each cell (RBMO) are shown in FIG. In the figure, the results of Control, Adv-VEGF, Adv-Cbfa1, Adv-Cbfa1 + Adv-VEGF, and Adv-mock are shown from the left. In the cells into which Cbfa1 and VEGF genes were simultaneously introduced, alkaline phosphatase activity, which is an osteoblast differentiation marker, was remarkably induced as compared with cells into which Cbfa1 was introduced alone. On the other hand, alkaline phosphatase activity was hardly confirmed in non-infected cells (Control) and cells introduced with VEGF gene alone (Adv-VEGF). Alkaline phosphatase activity was also induced by Osteogenic supplement, but it was very low compared to cells into which Cbfa1 and VEGF genes were introduced simultaneously.

(4)カルシウム量の測定
各細胞(RBMO)の、感染後1、2、3週間後におけるカルシウム量の測定結果を図5に示す。図中、左からControl、Adv-VEGF、Adv-Cbfa1、Adv-Cbfa1+Adv-VEGFの結果を示す。Cbfa1及びVEGF遺伝子を同時導入した細胞と、Cbfa1を単独導入した細胞では、顕著なカルシウムの分泌誘導が確認された。一方、非感染細胞(Control)やVEGF遺伝子を単独導入した細胞(Adv-VEGF)ではカルシウムの分泌はほとんど認められなかった。
(4) Measurement of calcium content Fig. 5 shows the measurement results of calcium content of each cell (RBMO) at 1, 2, and 3 weeks after infection. In the figure, the results of Control, Adv-VEGF, Adv-Cbfa1, Adv-Cbfa1 + Adv-VEGF are shown from the left. Significant induction of calcium secretion was confirmed in cells into which Cbfa1 and VEGF genes were introduced at the same time and cells into which Cbfa1 was introduced alone. On the other hand, calcium secretion was hardly observed in non-infected cells (Control) and cells into which VEGF gene was introduced (Adv-VEGF).

(5)石灰化の観察
各細胞(RBMO)を感染後1、2、3週間後にアリザリンレッド染色した結果を図6に示す。Cbfa1とVEGF遺伝子を同時導入した細胞と、Cbfa1を単独導入した細胞では、石灰化の進行が確認されたが、非感染細胞(Control)やVEGF遺伝子を単独導入した細胞(Adv-VEGF)では石灰化はほとんど認められなかった。
(5) Observation of calcification FIG. 6 shows the results of staining each cell (RBMO) with alizarin red 1, 2, and 3 weeks after infection. Progression of calcification was confirmed in cells introduced with Cbfa1 and VEGF gene at the same time, and cells introduced with Cbfa1 alone, but calcification was observed in non-infected cells (Control) and cells introduced with VEGF gene alone (Adv-VEGF). Almost no change was observed.

2.脂肪細胞(FAT)
(1)細胞数の変化
Cbfa1及びVEGF遺伝子を単独あるいは同時導入した細胞(FAT)の細胞増殖曲線を比較した結果を図7に示す。その結果、Cbfa1及びVEGF遺伝子を導入した細胞(Adv-Cbfa1+Adv-VEGF)とCbfa1遺伝子を単独導入した細胞(Adv-Cbfa1)では、非感染細胞(Control, Adv-mock)やVEGF遺伝子を単独導入した細胞(Adv-VEGF)に比較して顕著に高い細胞増殖能が確認された。細胞の増殖能力の高さは、アデノウイルス感染による細胞へのダメージが低いこと、及び脂肪細胞が脱分化して骨芽細胞様細胞へと分化誘導されていることを示唆している。
2. Fat cells (FAT)
(1) Change in the number of cells
FIG. 7 shows the results of comparison of cell growth curves of cells (FAT) into which Cbfa1 and VEGF genes were introduced alone or simultaneously. As a result, in cells introduced with Cbfa1 and VEGF genes (Adv-Cbfa1 + Adv-VEGF) and cells introduced with Cbfa1 gene alone (Adv-Cbfa1), non-infected cells (Control, Adv-mock) and VEGF gene were introduced alone. Significantly higher cell proliferation ability was confirmed compared to cells (Adv-VEGF). The high proliferation ability of the cells suggests that the damage to the cells due to adenovirus infection is low, and that adipocytes are dedifferentiated and induced to differentiate into osteoblast-like cells.

(2)アルカリフォスファターゼ活性の比較
各細胞(FAT)におけるアルカリフォスファターゼ活性(ALP activity)の測定結果を図8に示す。図中、左からControl、Adv-VEGF、Adv-Cbfa1、Adv-Cbfa1+Adv-VEGF、Adv-mockの結果を示す。Cbfa1及びVEGF遺伝子を同時導入した細胞では、Cbfa1を単独導入した細胞よりも、骨芽細胞の分化マーカーであるアルカリフォスファターゼ活性が顕著に誘導された。一方、非感染細胞(Control)やVEGF遺伝子を単独導入した細胞(Adv-VEGF)ではアルカリフォスファターゼ活性はほとんど確認されなかった。Osteogenic supplementによっても、アルカリフォスファターゼ活性は誘導されたが、Cbfa1及びVEGF遺伝子導入細胞に比べると非常に低い値であった。
(2) Comparison of alkaline phosphatase activity Measurement results of alkaline phosphatase activity (ALP activity) in each cell (FAT) are shown in FIG. In the figure, the results of Control, Adv-VEGF, Adv-Cbfa1, Adv-Cbfa1 + Adv-VEGF, and Adv-mock are shown from the left. In the cells into which Cbfa1 and VEGF genes were simultaneously introduced, alkaline phosphatase activity, which is an osteoblast differentiation marker, was remarkably induced as compared with cells into which Cbfa1 was introduced alone. On the other hand, alkaline phosphatase activity was hardly confirmed in non-infected cells (Control) and cells introduced with VEGF gene alone (Adv-VEGF). Alkaline phosphatase activity was also induced by Osteogenic supplement, but it was very low compared to Cbfa1 and VEGF gene-introduced cells.

(3)オステオカルシン量の測定
各細胞(FAT)の、感染後1、2、3週間後における培地中に分泌されたオステオカルシン量の測定結果を図9に示す。図中、左からControl、Adv-VEGF、Adv-Cbfa1、Adv-Cbfa1+Adv-VEGFの結果を示す。Cbfa1及びVEGF遺伝子を同時導入した細胞と、Cbfa1を単独導入した細胞では、非感染細胞(Control)やVEGF遺伝子を単独導入した細胞(Adv-VEGF)に比較して、顕著なオステオカルシンの分泌誘導が確認された。また。Cbfa1及びVEGF遺伝子を同時導入した細胞では、Cbfa1を単独導入した細胞よりも、早期に顕著なオステオカルシンの分泌が誘導された。
(3) Measurement of the amount of osteocalcin FIG. 9 shows the results of measurement of the amount of osteocalcin secreted into the medium after 1, 2 and 3 weeks after infection of each cell (FAT). In the figure, the results of Control, Adv-VEGF, Adv-Cbfa1, Adv-Cbfa1 + Adv-VEGF are shown from the left. Cells with Cbfa1 and VEGF genes introduced at the same time, and cells with Cbfa1 introduced alone, showed significant induction of osteocalcin secretion compared to uninfected cells (Control) and cells introduced with VEGF gene alone (Adv-VEGF). confirmed. Also. In cells into which Cbfa1 and VEGF genes were introduced simultaneously, significant osteocalcin secretion was induced earlier than cells in which Cbfa1 was introduced alone.

(4)カルシウム量の測定
各細胞(FAT)の、感染後1、2、3週間後におけるカルシウム量の測定結果を図10に示す。図中、左からControl、Adv-VEGF、Adv-Cbfa1、Adv-Cbfa1+Adv-VEGFの結果を示す。Cbfa1及びVEGF遺伝子を同時導入した細胞と、Cbfa1を単独導入した細胞では、非感染細胞(Control)やVEGF遺伝子を単独導入した細胞(Adv-VEGF)に比較して、顕著なカルシウムの分泌誘導が確認された。
(4) Measurement of calcium content Fig. 10 shows the measurement results of the calcium content of each cell (FAT) at 1, 2, and 3 weeks after infection. In the figure, the results of Control, Adv-VEGF, Adv-Cbfa1, Adv-Cbfa1 + Adv-VEGF are shown from the left. Cells with Cbfa1 and VEGF genes introduced at the same time, and cells with Cbfa1 introduced alone, showed a significant induction of calcium secretion compared to uninfected cells (Control) and cells introduced with VEGF gene alone (Adv-VEGF). confirmed.

(5)石灰化の観察
各細胞(RBMO)を感染後1、2、3週間後にアリザリンレッド染色した結果を図11に示す。Cbfa1及びVEGF遺伝子を同時導入した細胞と、Cbfa1を単独導入した細胞では、石灰化の進行が確認されたが、非感染細胞(Control)やVEGF遺伝子を単独導入した細胞(Adv-VEGF)では石灰化はほとんど認められなかった。
(5) Observation of calcification FIG. 11 shows the results of staining each cell (RBMO) with alizarin red 1, 2, and 3 weeks after infection. Progression of calcification was confirmed in cells with Cbfa1 and VEGF genes introduced at the same time, and cells with Cbfa1 introduced alone, but calcification was observed in uninfected cells (Control) and cells introduced with VEGF gene alone (Adv-VEGF). Almost no change was observed.

(6)グリセロール−3−リン酸デヒドロゲナーゼ活性の比較
各細胞(FAT)におけるGPDH活性の測定結果を図12に示す。図中、左からControl、Adv-VEGF、Adv-Cbfa1、Adv-Cbfa1+Adv-VEGF、Adv-mockの結果を示す。非感染コントロール(Control)、あるいは空ベクター感染コントロール(Adv-mock)の細胞にのみ、脂肪代謝系の酵素であり、脂肪細胞のマーカーでもあるGPDH活性が認められた。本実施例に用いた細胞が、脂肪への分化能を維持していることを示す。
(6) Comparison of glycerol-3-phosphate dehydrogenase activity FIG. 12 shows the measurement results of GPDH activity in each cell (FAT). In the figure, the results of Control, Adv-VEGF, Adv-Cbfa1, Adv-Cbfa1 + Adv-VEGF, and Adv-mock are shown from the left. GPDH activity, which is an enzyme of fat metabolism system and a marker of adipocytes, was observed only in cells of non-infected control (Control) or empty vector infected control (Adv-mock). It shows that the cells used in this example maintain the ability to differentiate into fat.

実施例2:ラット生体内移植後の骨再生
[方 法]
(1)ラット背上皮皮下移植
実施例1の方法に従い、コンフルエントになった細胞(RBMOあるいはFAT)にCbfa1組換えアデノウイルス及び/又はVEGF組換えアデノウイルスとCreリコンビナーゼ遺伝子組換えアデノウイルスを共感染させた。対照として未処理の細胞を同様に後述の実験に供した。各細胞を円柱形のOPLAコンポジット(BD Biosciences, 直径5 mm×高さ3 mm)に細胞濃度100万個/mlで減圧下(100 mHg)で吸着させ、翌日ラットの背上皮皮下に移植した。移植後にコンポジットを摘出し、ヘマトキシリン/エオジン染色して観察した。
Example 2: Bone regeneration after in vivo implantation in rats
[Method]
(1) Rat dorsal epithelial subcutaneous transplantation Confluent cells (RBMO or FAT) were co-infected with Cbfa1 recombinant adenovirus and / or VEGF recombinant adenovirus and Cre recombinase gene recombinant adenovirus according to the method of Example 1. I let you. As a control, untreated cells were similarly subjected to the experiment described below. Each cell was adsorbed to a cylindrical OPLA composite (BD Biosciences, diameter 5 mm × height 3 mm) at a cell concentration of 1 million cells / ml under reduced pressure (100 mHg), and transplanted subcutaneously to the rat back epithelium the next day. After transplantation, the composite was removed and observed by staining with hematoxylin / eosin.

(2)ラット大腿骨欠損部移植
実施例1の方法に従い、コンフルエントになった細胞(RBMOあるいはFAT)にCbfa1組換えアデノウイルス及び/又はVEGF組換えアデノウイルスとCreリコンビナーゼ遺伝子組換えアデノウイルスを共感染させた。対照として未処理の細胞を同様に後述の実験に供した。各細胞を円柱形のOPLAコンポジット(BD Biosciences, 直径5 mm×高さ3 mm)に細胞濃度100万個/mlで減圧下(100 mHg)で吸着させ、翌日ラットの大腿骨欠損部位に移植した。欠損部位はラットの大腿骨にドリルで2.5 mm立方の穴を開けて作製し、そこに上記のコンポジットを移植し、数週間後に摘出した。
(2) Rat femoral defect transplantation According to the method of Example 1, cells confluent (RBMO or FAT) were combined with Cbfa1 recombinant adenovirus and / or VEGF recombinant adenovirus and Cre recombinase gene recombinant adenovirus. Infected. As a control, untreated cells were similarly subjected to the experiment described below. Each cell was adsorbed to a cylindrical OPLA composite (BD Biosciences, diameter 5 mm x height 3 mm) at a cell concentration of 1 million cells / ml under reduced pressure (100 mHg) and transplanted to the femoral defect site of the rat the next day. . The defect site was created by drilling a 2.5 mm cubic hole in the femur of a rat, implanting the composite above, and removing it several weeks later.

(3)組織切片作製、染色法
摘出したコンポジットを4% paraformaldehyde, 0.05% glutaraldehydeでマイクロウェーブ固定した後、翌日10% EDTA, 100 mM Tris (pH7.4)中で約2週間脱灰した。脱灰後、エタノールで脱水し、レモゾールで透徹し、パラフィンに包埋した。5μmの厚さで切片を作製し、脱パラフィン後、ヘマトキシリン続いてエオジンで染色した。サンプルは光学顕微鏡(IX-70, Olympus, Tokyo, Japan)で観察し、CCDカメラ(CoolSNAP cf, ROPER Scientific)により取り込んだデジタルイメージは MetaMorph softwareで解析した。
(3) Preparation of tissue section and staining method The excised composite was microwave fixed with 4% paraformaldehyde, 0.05% glutaraldehyde, and then decalcified in 10% EDTA, 100 mM Tris (pH 7.4) for about 2 weeks. After decalcification, it was dehydrated with ethanol, clarified with remosol, and embedded in paraffin. Sections were prepared with a thickness of 5 μm, deparaffinized, and then stained with hematoxylin followed by eosin. Samples were observed with an optical microscope (IX-70, Olympus, Tokyo, Japan), and digital images captured by a CCD camera (CoolSNAP cf, ROPER Scientific) were analyzed with MetaMorph software.

[結 果]
1.間葉系幹細胞(RMBO)
(1)ラット背上皮皮下移植(移植後8週間目)
ラット背上皮皮下移植8週間目におけるコンポジットのヘマトキシリン/エオジン染色像を図13に示す。新生骨のポア(孔)に対して占める割合は、画像解析から、非感染細胞(コントロール)で18%、Cbfa1遺伝子導入細胞で51%、Cbfa1, VEGF同時遺伝子導入細胞で84%であった。Cbfa1及びVEGF遺伝子を同時導入した細胞(Adv-Cbfa1+Adv-VEGF)を吸着したコンポジットは、非感染細胞(Control)やVEGF遺伝子を単独導入した細胞(Adv-VEGF)に比較して顕著に高い骨再生が認められる。また、Cbfa1及びVEGF遺伝子を同時導入した細胞(Adv-Cbfa1+Adv-VEGF)を吸着したコンポジットは、Cbfa1を単独導入した細胞(Adv-Cbfa1)を吸着したコンポジットと比較して、より多くかつ広範囲な骨再生が観察できる(写真、矢印)。
[Result]
1. Mesenchymal stem cells (RMBO)
(1) Rat dorsal epithelial subcutaneous transplantation (8 weeks after transplantation)
FIG. 13 shows a hematoxylin / eosin stained image of the composite at 8 weeks after subcutaneous implantation of rat back epithelium. Based on image analysis, the ratio of new bones to pores (pores) was 18% for non-infected cells (control), 51% for Cbfa1 gene-introduced cells, and 84% for Cbfa1 and VEGF co-transfected cells. Composites adsorbed with Cbfa1 and VEGF gene co-introduced cells (Adv-Cbfa1 + Adv-VEGF) have significantly higher bone regeneration than uninfected cells (Control) or cells with VEGF gene introduced alone (Adv-VEGF) Is recognized. In addition, the composite that adsorbs cells (Adv-Cbfa1 + Adv-VEGF) into which Cbfa1 and VEGF genes have been introduced at the same time has a larger and wider range of bone compared to the composite that has adsorbed Cbfa1 alone (Adv-Cbfa1). Reproduction can be observed (photograph, arrow).

(2)ラット大腿骨欠損部移植(移植後5週間目)
ラット大腿骨欠損部移植5週間目におけるコンポジットのヘマトキシリン/エオジン染色像を図14に示す。非感染細胞(Control)に比べてCbfa1遺伝子を単独導入した細胞(Adv-Cbfa1)を吸着したコンポジットの方が、皮質骨の部分の骨再生が進行しており、皮質骨の欠損部位の大きさが小さくなってきている様子が観察される。Cbfa1及びVEGF遺伝子を同時導入した細胞(Adv-Cbfa1+Adv-VEGF)を吸着したコンポジットは、移植したコンポジットの溶解及び順調な骨再生が観察され、さらに移植したコンポジットと皮質骨の融合が観察できる。
(2) Rat femoral defect transplantation (5 weeks after transplantation)
FIG. 14 shows a hematoxylin / eosin stained image of the composite at 5 weeks after transplantation of the rat femur defect. Compared to uninfected cells (Control), the composite with adsorbed cells (Adv-Cbfa1) into which Cbfa1 gene has been introduced alone is undergoing bone regeneration in the cortical bone, and the size of the cortical bone defect site It is observed that is getting smaller. In the composite adsorbed with cells (Adv-Cbfa1 + Adv-VEGF) into which Cbfa1 and VEGF genes have been introduced simultaneously, dissolution of the transplanted composite and smooth bone regeneration can be observed, and fusion between the transplanted composite and cortical bone can be observed.

2.脂肪細胞(FAT)
(1)ラット背上皮皮下移植(移植後8週間目)
ラット背上皮皮下移植8週間目におけるコンポジットのヘマトキシリン/エオジン染色像を図15に示す。Cbfa1及びVEGF遺伝子を同時導入した細胞(Adv-Cbfa1+Adv-VEGF)を吸着したコンポジットは、Cbfa1を単独導入した細胞(Adv-Cbfa1)を吸着したコンポジットよりも、より多くかつ広範囲な骨再生が観察される(写真、矢印)。
2. Fat cells (FAT)
(1) Rat dorsal epithelial subcutaneous transplantation (8 weeks after transplantation)
FIG. 15 shows a hematoxylin / eosin stained image of the composite at 8 weeks after subcutaneous implantation of rat back epithelium. More and more widespread bone regeneration was observed in the composite adsorbed with Cbfa1 and VEGF gene (Adv-Cbfa1 + Adv-VEGF) than the composite with Cbfa1 alone (Adv-Cbfa1). (Photo, arrow).

(2)ラット大腿骨欠損部移植(移植後5週間目)
ラット大腿骨欠損部移植5週間目におけるコンポジットのヘマトキシリン/エオジン染色像を図16に示す。新生骨のポア(孔)に対して占める割合は、画像解析から、非感染細胞(コントロール)で7%、Cbfa1遺伝子導入細胞で20%、Cbfa1, VEGF同時遺伝子導入細胞で35%であった。非感染細胞(Control)に比べてCbfa1遺伝子を単独導入した細胞(Adv-Cbfa1)を吸着したコンポジットの方が、皮質骨の部分の骨再生が進行しており、皮質骨の欠損部位の大きさが小さくなってきている様子が観察される。Cbfa1及びVEGF遺伝子を同時導入した細胞(Adv-Cbfa1+Adv-VEGF)を吸着したコンポジットは、移植したコンポジットの溶解及び順調な骨再生が観察され、さらに移植したコンポジットと皮質骨の完全な融合が観察できた。
(2) Rat femoral defect transplantation (5 weeks after transplantation)
FIG. 16 shows a hematoxylin / eosin-stained image of the composite at 5 weeks after transplantation of the rat femoral defect. From the image analysis, the ratio of new bones to pores (pores) was 7% for non-infected cells (control), 20% for Cbfa1 gene-introduced cells, and 35% for Cbfa1 and VEGF co-transfected cells. Compared to uninfected cells (Control), the composite with adsorbed cells (Adv-Cbfa1) into which Cbfa1 gene has been introduced alone is undergoing bone regeneration in the cortical bone, and the size of the cortical bone defect site It is observed that is getting smaller. In the composite adsorbed with cells (Adv-Cbfa1 + Adv-VEGF) into which Cbfa1 and VEGF genes were introduced at the same time, dissolution and smooth bone regeneration of the transplanted composite were observed, and complete fusion of the transplanted composite and cortical bone could be observed. It was.

本発明によれば、生体から取り出した細胞を培養・組織化して限りなく生体に近い骨組織を再構築することができる。本発明の方法は、再生医療の分野で有用である。   According to the present invention, cells taken from a living body can be cultured and organized, and bone tissue close to the living body can be reconstructed. The method of the present invention is useful in the field of regenerative medicine.

図1は、Cbfa1及び/又はVEGF遺伝子組替えアデノウイルスベクターの構造を示す。FIG. 1 shows the structure of a Cbfa1 and / or VEGF gene recombinant adenovirus vector. 図2は、Cbfa1及び/又はVEGF遺伝子を導入した細胞(RBMO)の細胞増殖曲線を示す。図中、◆:Control、■:Adv-VEGF、▲:Adv-Cbfa1、×:Adv-Cbfa1+Adv-VEGF、*:Adv-mock。FIG. 2 shows a cell growth curve of cells (RBMO) into which Cbfa1 and / or VEGF genes have been introduced. In the figure, ◆: Control, ■: Adv-VEGF, ▲: Adv-Cbfa1, ×: Adv-Cbfa1 + Adv-VEGF, *: Adv-mock. 図3は、Cbfa1及び/又はVEGF遺伝子を導入した細胞(RBMO)のノーザンハイブリダイゼーションの結果を示す。図中、左からControl、Adv-VEGF、Adv-Cbfa1、Adv-Cbfa1+Adv-VEGF。また上段はfull lengthのCbfa1 cDNA、中段はfull lengthのVEGF cDNAを、下段はinternal standardとしてGAPDHをプローブとして同じメンブレンにハイブリさせた結果。FIG. 3 shows the results of Northern hybridization of cells (RBMO) into which Cbfa1 and / or VEGF genes have been introduced. In the figure, Control, Adv-VEGF, Adv-Cbfa1, Adv-Cbfa1 + Adv-VEGF from the left. The upper panel shows the result of hybridizing the full length Cbfa1 cDNA, the middle panel with the full length VEGF cDNA, and the lower panel with GAPDH as the internal standard. 図4は、Cbfa1及び/又はVEGF遺伝子を導入した細胞(RBMO)におけるアルカリフォスファターゼ活性(ALP activity)の測定結果を示す。図中、左からControl、Adv-VEGF、Adv-Cbfa1、Adv-Cbfa1+Adv-VEGF、Adv-mock。FIG. 4 shows the measurement results of alkaline phosphatase activity (ALP activity) in cells (RBMO) introduced with Cbfa1 and / or VEGF gene. In the figure, Control, Adv-VEGF, Adv-Cbfa1, Adv-Cbfa1 + Adv-VEGF, Adv-mock from the left. 図5は、Cbfa1及び/又はVEGF遺伝子を導入した細胞(RBMO)におけるカルシウム量を示す。図中、左からControl、Adv-VEGF、Adv-Cbfa1、Adv-Cbfa1+Adv-VEGF。FIG. 5 shows the amount of calcium in cells (RBMO) into which Cbfa1 and / or VEGF genes have been introduced. In the figure, Control, Adv-VEGF, Adv-Cbfa1, Adv-Cbfa1 + Adv-VEGF from the left. 図6は、Cbfa1及び/又はVEGF遺伝子を導入した細胞(RBMO)の、感染後1、2、3週間後のアリザリンレッド染色像を示す。FIG. 6 shows images of alizarin red staining of cells (RBMO) into which Cbfa1 and / or VEGF genes have been introduced 1, 2, and 3 weeks after infection. 図7は、Cbfa1及び/又はVEGF遺伝子を導入した細胞(FAT)の細胞増殖曲線を示す。図中、◆:Control、■:Adv-VEGF、▲:Adv-Cbfa1、×:Adv-Cbfa1+Adv-VEGF、*:Adv-mock。FIG. 7 shows a cell growth curve of cells (FAT) into which Cbfa1 and / or VEGF genes have been introduced. In the figure, ◆: Control, ■: Adv-VEGF, ▲: Adv-Cbfa1, ×: Adv-Cbfa1 + Adv-VEGF, *: Adv-mock. 図8は、Cbfa1及び/又はVEGF遺伝子を導入した細胞(FAT)におけるアルカリフォスファターゼ活性(ALP activity)の測定結果を示す。図中、左からControl、Adv-VEGF、Adv-Cbfa1、Adv-Cbfa1+Adv-VEGF、Adv-mock。FIG. 8 shows the measurement results of alkaline phosphatase activity (ALP activity) in cells (FAT) into which Cbfa1 and / or VEGF genes have been introduced. In the figure, Control, Adv-VEGF, Adv-Cbfa1, Adv-Cbfa1 + Adv-VEGF, Adv-mock from the left. 図9は、Cbfa1及び/又はVEGF遺伝子を導入した細胞(FAT)の、感染後1、2、3週間後におけるオステオカルシン量の測定結果を示す。図中、左からControl、Adv-VEGF、Adv-Cbfa1、Adv-Cbfa1+Adv-VEGF。FIG. 9 shows the measurement results of the amount of osteocalcin in cells into which Cbfa1 and / or VEGF gene had been introduced (FAT) 1, 2, and 3 weeks after infection. In the figure, Control, Adv-VEGF, Adv-Cbfa1, Adv-Cbfa1 + Adv-VEGF from the left. 図10は、Cbfa1及び/又はVEGF遺伝子を導入した細胞(FAT)におけるカルシウム量を示す。図中、左からControl、Adv-VEGF、Adv-Cbfa1、Adv-Cbfa1+Adv-VEGF。FIG. 10 shows the amount of calcium in cells (FAT) into which Cbfa1 and / or VEGF genes have been introduced. In the figure, Control, Adv-VEGF, Adv-Cbfa1, Adv-Cbfa1 + Adv-VEGF from the left. 図11は、Cbfa1及び/又はVEGF遺伝子を導入した細胞(FAT)の、感染後1、2、3週間後のアリザリンレッド染色像を示す。FIG. 11 shows alizarin red-stained images of cells (FAT) into which Cbfa1 and / or VEGF genes have been introduced 1, 2, and 3 weeks after infection. 図12は、Cbfa1及び/又はVEGF遺伝子を導入した細胞(FAT)におけるグリセロール−3−リン酸デヒドロゲナーゼ活性の測定結果を示す。図中、左からControl、Adv-VEGF、Adv-Cbfa1、Adv-Cbfa1+Adv-VEGF、Adv-mock。FIG. 12 shows the measurement results of glycerol-3-phosphate dehydrogenase activity in cells (FAT) into which Cbfa1 and / or VEGF genes were introduced. In the figure, Control, Adv-VEGF, Adv-Cbfa1, Adv-Cbfa1 + Adv-VEGF, Adv-mock from the left. 図13は、Cbfa1及び/又はVEGF遺伝子を導入した細胞(RMBO)を吸着させたコンポジットのラット背上皮皮下移植8週間目のヘマトキシリン/エオジン染色像を示す。図中、左上:Control、左下:Adv-Cbfa1、右上:Adv-VEGF、右下:Adv-Cbfa1+Adv-VEGF。FIG. 13 shows a hematoxylin / eosin stained image 8 weeks after subcutaneous implantation of rat dorsal epithelium of a composite adsorbed with cells (RMBO) introduced with Cbfa1 and / or VEGF gene. In the figure, upper left: Control, lower left: Adv-Cbfa1, upper right: Adv-VEGF, lower right: Adv-Cbfa1 + Adv-VEGF. 図14は、Cbfa1及び/又はVEGF遺伝子を導入した細胞(RMBO)を吸着させたコンポジットのラット大腿骨欠損部移植5週間目のヘマトキシリン/エオジン染色像を示す。図中、左上:Control、左下:Adv-Cbfa1、右上:Adv-VEGF、右下:Adv-Cbfa1+Adv-VEGF。FIG. 14 shows a hematoxylin / eosin-stained image 5 weeks after transplantation of a rat femoral defect part of a composite adsorbed with cells (RMBO) into which Cbfa1 and / or VEGF genes were introduced. In the figure, upper left: Control, lower left: Adv-Cbfa1, upper right: Adv-VEGF, lower right: Adv-Cbfa1 + Adv-VEGF. 図15は、Cbfa1及び/又はVEGF遺伝子を導入した細胞(FAT)を吸着させたコンポジットのラット背上皮皮下移植8週間目のヘマトキシリン/エオジン染色像を示す。図中、右上:Control、左下:Adv-Cbfa1、右下:Adv-Cbfa1+Adv-VEGF。FIG. 15 shows a hematoxylin / eosin stained image 8 weeks after subcutaneous implantation of rat dorsal epithelium of a composite adsorbed with cells (FAT) into which Cbfa1 and / or VEGF gene has been introduced. In the figure, upper right: Control, lower left: Adv-Cbfa1, lower right: Adv-Cbfa1 + Adv-VEGF. 図16は、Cbfa1及び/又はVEGF遺伝子を導入した細胞(FAT)を吸着させたコンポジットのラット大腿骨欠損部移植5週間目のヘマトキシリン/エオジン染色像を示す。図中、右上:Control、左下:Adv-Cbfa1、右下:Adv-Cbfa1+Adv-VEGF。FIG. 16 shows a hematoxylin / eosin-stained image 5 weeks after transplantation of a rat femoral defect part of a composite adsorbed with cells (FAT) into which Cbfa1 and / or VEGF genes were introduced. In the figure, upper right: Control, lower left: Adv-Cbfa1, lower right: Adv-Cbfa1 + Adv-VEGF.

配列番号1−人工配列の説明:プライマー
配列番号2−人工配列の説明:プライマー
SEQ ID NO: 1-description of artificial sequence: primer SEQ ID NO: 2-description of artificial sequence: primer

Claims (10)

骨誘導性転写因子及び血管内皮細胞増殖因子の遺伝子を単離された細胞に導入し、該細胞を三次元培養する工程を含む、骨組織の作製方法。   A method for producing a bone tissue, comprising a step of introducing osteoinductive transcription factor and vascular endothelial growth factor genes into isolated cells and culturing the cells three-dimensionally. 前記細胞が間葉系幹細胞である、請求項1に記載の方法。   The method of claim 1, wherein the cell is a mesenchymal stem cell. 前記細胞が骨芽細胞である、請求項1に記載の方法。   The method of claim 1, wherein the cell is an osteoblast. 前記細胞が脂肪細胞である、請求項1に記載の方法。   The method of claim 1, wherein the cell is an adipocyte. 前記細胞が初代培養細胞である、請求項1〜4のいずれか1項に記載の方法。   The method according to any one of claims 1 to 4, wherein the cell is a primary cultured cell. 前記細胞が患者から単離された細胞である、請求項1〜5のいずれか1項に記載の方法。   6. The method according to any one of claims 1 to 5, wherein the cell is a cell isolated from a patient. 骨誘導性転写因子がCbfa1、Cbfb、又はosterixである、請求項1〜6のいずれか1項に記載の方法。   The method according to any one of claims 1 to 6, wherein the osteoinductive transcription factor is Cbfa1, Cbfb, or osterix. 前記細胞を、多孔性ハイドロキシアパタイト、α-TCP、β-TCP、コラーゲン、ポリ乳酸、ポリグリコール酸、及びヒアルロン酸、ならびにこれらの複合体からなる群より選ばれる1種又は2種以上の生体適合性材料を足場として三次元培養することを特徴とする、請求項1〜7のいずれか1項に記載の方法。   One or more biocompatible materials selected from the group consisting of porous hydroxyapatite, α-TCP, β-TCP, collagen, polylactic acid, polyglycolic acid, hyaluronic acid, and complexes thereof. The method according to any one of claims 1 to 7, characterized in that a three-dimensional culture is performed using a sex material as a scaffold. 以下の工程を含む、請求項7に記載の方法。
1)生体から単離した細胞をデキサメタゾン、免疫抑制剤、骨形成蛋白質、及び骨形成液性因子からなる群より選ばれる1種又は2種以上を用いて分化誘導する、
2)上記細胞に骨誘導性転写因子及び血管内皮細胞増殖因子の遺伝子をアデノウイルスベクター、アデノ随伴ベクター、又はレトロウイルスベクターを用いて導入する、
3)上記細胞を多孔性ハイドロキシアパタイト、α-TCP、β-TCP、コラーゲン、ポリ乳酸、ポリグリコール酸、及びヒアルロン酸、ならびにこれらの複合体からなる群より選ばれる1種又は2種以上の生体適合性材料を足場として三次元培養する。
The method of Claim 7 including the following processes.
1) Inducing differentiation of a cell isolated from a living body using one or more selected from the group consisting of dexamethasone, an immunosuppressant, a bone morphogenetic protein, and an osteogenic fluid factor,
2) Introducing osteoinductive transcription factor and vascular endothelial growth factor genes into the cells using an adenovirus vector, an adeno-associated vector, or a retrovirus vector,
3) One or two or more living organisms selected from the group consisting of porous hydroxyapatite, α-TCP, β-TCP, collagen, polylactic acid, polyglycolic acid, hyaluronic acid, and complexes thereof. 3D culture using compatible material as a scaffold.
請求項1〜9のいずれか1項に記載の方法によって作製された骨組織を含むインプラント。   An implant comprising bone tissue made by the method of any one of claims 1-9.
JP2006046928A 2005-02-25 2006-02-23 Method for regenerating osseous tissue Pending JP2006263459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006046928A JP2006263459A (en) 2005-02-25 2006-02-23 Method for regenerating osseous tissue

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005051714 2005-02-25
JP2006046928A JP2006263459A (en) 2005-02-25 2006-02-23 Method for regenerating osseous tissue

Publications (1)

Publication Number Publication Date
JP2006263459A true JP2006263459A (en) 2006-10-05

Family

ID=37200002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006046928A Pending JP2006263459A (en) 2005-02-25 2006-02-23 Method for regenerating osseous tissue

Country Status (1)

Country Link
JP (1) JP2006263459A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210062959A (en) * 2019-11-22 2021-06-01 강원대학교산학협력단 Composition for stem cell bone differentiation promoting comprising Cbf beta protein and bone differentiation promoting method using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003011343A1 (en) * 2001-07-27 2003-02-13 National Institute Of Advanced Industrial Science And Technology Method of regenerating bone/chondral tissues by transferring transcriptional factor gene
WO2003070291A1 (en) * 2002-02-19 2003-08-28 National Institute Of Advanced Industrial Science And Technology Implant containing cells having growhfactor gene transferred thereinto
WO2004074489A1 (en) * 2003-02-18 2004-09-02 Japan Science And Technology Agency Method of forming bone/cartilage tissue with use of fat cell
WO2004090161A1 (en) * 2003-04-14 2004-10-21 Novartis Ag Gene expression associated with osteoblast differentiation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003011343A1 (en) * 2001-07-27 2003-02-13 National Institute Of Advanced Industrial Science And Technology Method of regenerating bone/chondral tissues by transferring transcriptional factor gene
WO2003070291A1 (en) * 2002-02-19 2003-08-28 National Institute Of Advanced Industrial Science And Technology Implant containing cells having growhfactor gene transferred thereinto
WO2004074489A1 (en) * 2003-02-18 2004-09-02 Japan Science And Technology Agency Method of forming bone/cartilage tissue with use of fat cell
WO2004090161A1 (en) * 2003-04-14 2004-10-21 Novartis Ag Gene expression associated with osteoblast differentiation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210062959A (en) * 2019-11-22 2021-06-01 강원대학교산학협력단 Composition for stem cell bone differentiation promoting comprising Cbf beta protein and bone differentiation promoting method using the same
KR102334983B1 (en) * 2019-11-22 2021-12-06 강원대학교산학협력단 Composition for stem cell bone differentiation promoting comprising Cbf beta protein and bone differentiation promoting method using the same

Similar Documents

Publication Publication Date Title
Yin et al. Recent advances in scaffold design and material for vascularized tissue‐engineered bone regeneration
Rowland et al. Regulation of decellularized tissue remodeling via scaffold-mediated lentiviral delivery in anatomically-shaped osteochondral constructs
Liu et al. Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop
Savarino et al. The performance of poly-ε-caprolactone scaffolds in a rabbit femur model with and without autologous stromal cells and BMP4
Liu et al. Reconstruction of alveolar bone defects using bone morphogenetic protein 2 mediated rabbit dental pulp stem cells seeded on nano-hydroxyapatite/collagen/poly (L-lactide)
Tian et al. Myogenic differentiation of human bone marrow mesenchymal stem cells on a 3D nano fibrous scaffold for bladder tissue engineering
Farag et al. The effect of decellularized tissue engineered constructs on periodontal regeneration
Mandal et al. Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds
Zhang et al. Synthesis and inflammatory response of a novel silk fibroin scaffold containing BMP7 adenovirus for bone regeneration
Bellas et al. Sustained volume retention in vivo with adipocyte and lipoaspirate seeded silk scaffolds
Cornejo et al. Effect of adipose tissue-derived osteogenic and endothelial cells on bone allograft osteogenesis and vascularization in critical-sized calvarial defects
TW200813225A (en) Biocompatible scaffolds and adipose-derived stem cells
Xing et al. Osteogenic differentiation evaluation of an engineered extracellular matrix based tissue sheet for potential periosteum replacement
Sadeghinia et al. Nano-hydroxy apatite/chitosan/gelatin scaffolds enriched by a combination of platelet-rich plasma and fibrin glue enhance proliferation and differentiation of seeded human dental pulp stem cells
Cao et al. A biomimetic biphasic scaffold consisting of decellularized cartilage and decalcified bone matrixes for osteochondral defect repair
Wang et al. In Vivo bone tissue induction by freeze-dried collagen-nanohydroxyapatite matrix loaded with BMP2/NS1 mRNAs lipopolyplexes
JP4921692B2 (en) Bone and cartilage regeneration method by gene transfer of transcription factor
JP4428693B2 (en) Implants containing cells introduced with growth factor genes
Wang et al. The combination of a 3D-Printed porous Ti–6Al–4V alloy scaffold and stem cell sheet technology for the construction of biomimetic engineered bone at an ectopic site
Zhang et al. Platelet‐derived growth factor BB gene‐released scaffolds: biosynthesis and characterization
Zuo et al. Osteogenic growth peptide (OGP)-loaded amphiphilic peptide (NapFFY) supramolecular hydrogel promotes osteogenesis and bone tissue reconstruction
Zhu et al. Three-dimensionally printed porous biomimetic composite for sustained release of recombinant human bone morphogenetic protein 9 to promote osteointegration
Weng et al. Engineering of axially vascularized bone tissue using natural coral scaffold and osteogenic bone marrow mesenchymal stem cell sheets
JP2016524967A (en) Functionalized three-dimensional scaffold using microstructure for tissue regeneration
Glaeser et al. iPSC-neural crest derived cells embedded in 3D printable bio-ink promote cranial bone defect repair

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120131