WO2004074406A1 - Process for producing premium fischer-tropsch diesel and lube base oils - Google Patents
Process for producing premium fischer-tropsch diesel and lube base oils Download PDFInfo
- Publication number
- WO2004074406A1 WO2004074406A1 PCT/US2004/004306 US2004004306W WO2004074406A1 WO 2004074406 A1 WO2004074406 A1 WO 2004074406A1 US 2004004306 W US2004004306 W US 2004004306W WO 2004074406 A1 WO2004074406 A1 WO 2004074406A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fischer
- tropsch
- fraction
- diesel
- zone
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/04—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
- C10G65/043—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a change in the structural skeleton
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1022—Fischer-Tropsch products
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/30—Physical properties of feedstocks or products
- C10G2300/304—Pour point, cloud point, cold flow properties
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4018—Spatial velocity, e.g. LHSV, WHSV
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/04—Diesel oil
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/10—Lubricating oil
Definitions
- the present invention relates to the production of a premium Fischer-Tropsch derived diesel product produced by the blending of a Fischer-Tropsch derived diesel fraction and a heavier isomerized Fischer-Tropsch derived base oil fraction to meet at least one pre-selected target property for the diesel product.
- Fischer-Tropsch derived transportation fuels meeting the specifications for diesel fuels have certain advantageous properties which make it possible to prepare a premium diesel fuel having very low sulfur content and an excellent cetane number.
- additional processing operations must be carried out to produce a suitable diesel fuel.
- Fischer-Tropsch derived products generally contain a significant proportion of olefins, in order to improve the oxidation stability a hydroprocessing operation, such as mild hydrotreating, is usually necessary to saturate the double bonds.
- the isoparaffin content usually must be increased by a dewaxing step.
- the cost of the dewaxing step may make the Fischer-Tropsch derived diesel fuel uncompetitive with conventional petroleum derived diesel fuels.
- Premium lubricating base oils may also be prepared from Fischer-Tropsch derived hydrocarbons, but due to the high proportion of linear paraffins in the product a dewaxing step also is required to improve the cold flow properties prior to sale.
- lubricating base oils generally are produced in smaller quantities than transportation fuels and have a higher commercial value, so the dewaxing operation is not commercially impractical.
- the present invention is directed to an integrated process which is able to produce a premium Fischer-Tropsch derived diesel fuel in combination with a premium Fischer-Tropsch derived lubricating base oil.
- the properties of the base oil fraction recovered from the syncrude are carefully controlled to produce a product which after further processing may be blended back into the diesel fraction to produce a diesel fuel having the desired properties.
- the process of the invention is advantageous because it is possible to produce a premium diesel fuel without hydroisomerizing the entire diesel product. This decrease in feed results in significant savings in capital costs due to the smaller vessel size required for the isomerization reactor. By significantly lowering the cost of processing the Fischer-Tropsch derived diesel fuel, it is possible to produce a premium product which is competitive in cost with conventional petroleum derived diesel fuel.
- the Fischer-Tropsch syncrude fraction which is processed into diesel fuels usually will have a boiling range between about 150 degrees F (about 65 degrees C) and about 750 degrees F (about 400 degrees C), typically between about 400 degrees F ( about 205 degrees C) and about 600 degrees F (about 315 degrees C). The majority of the hydrocarbons boiling in the range of diesel will contain between about 9 and about 19 carbon atoms in the molecule.
- Lubricating base oils are generally prepared from that portion of the Fischer-Tropsch syncrude boiling above about 600 degrees F (about 315 degrees C) and containing at least 20 carbon atoms in the molecule. However, the initial boiling point of the base oil fraction may be higher, for example about 750 degrees F (about 400 degrees C).
- Naphtha which is also produced by the process of present invention has a boiling range below that of diesel but above that of the normally gaseous hydrocarbons, such as butane and propane. Accordingly, naphtha generally has a boiling range between ambient temperature and about 150 degrees F (about 65 degrees C), and the molecules boiling within this range will contain between about 5 and about 8 carbon atoms.
- the naphtha produced by this process will usually have a low octane rating due to the highly paraffinic nature of Fischer-Tropsch materials. Consequently, the naphtha produced by this process generally is not suitable for use as a transportation fuel without further processing. However, the naphtha produced may be used as feed to an ethylene cracker without additional processing. Hydrocarbons having less than 5 carbon atoms in the molecule are normally gaseous at ambient temperature and are included among the overhead gases and may be recycled upstream in the Fischer-Tropsch processing train before or after optionally recovering the LPG (C and C 4 ) fraction.
- the temperature conditions under which the separation between the diesel fraction and the base oil fraction is made is carefully controlled to assure that the portion of the isomerized base oil fraction which is blended back into the diesel fraction will produce a diesel product having the desired properties.
- the hydroprocessing operations to which the feed is subjected prior to separation of the diesel and base oil fractions is for a different purpose, typically involving a hydrotreating operation to remove sulfur and nitrogen (see U.S. Patent No. 5,976,354) or a hydrocracking operation to reduce the average molecular weight of the feed (see U.S. Patent No. 6,337,010 B1 ).
- the hydroprocessing operation is primarily intended to saturate the olefins and to remove the oxygenates.
- the words “comprises” or “comprising” are intended as an open-ended transition meaning the inclusion of the named elements, but not necessarily excluding other unnamed elements.
- the phrases “consists essentially of or “consisting essentially of” are intended to mean the exclusion of other elements of any essential significance to the composition.
- the phrases “consisting of or “consists of” are intended as a transition meaning the exclusion of all but the recited elements with the exception of only minor traces of impurities.
- the present invention is directed to a process for producing a premium Fischer-Tropsch diesel fuel which comprises (a) treating a waxy Fischer-Tropsch feed recovered from a Fischer-Tropsch synthesis in a hydroprocessing zone under hydroprocessing conditions in the presence of a hydroprocessing catalyst intended to saturate the olefins and to remove the oxygenates that are present in the feed, whereby a first Fischer-Tropsch intermediate product is produced with reduced olefins and oxygenates relative to the Fischer-Tropsch feed; (b) separating the first Fischer-Tropsch intermediate product in a separation zone into a heavy Fischer-Tropsch fraction and a light Fischer-Tropsch fraction under controlled separation conditions wherein the light Fischer-Tropsch fraction is characterized by an end boiling point falling within the boiling range of diesel, and the heavy Fischer-Tropsch fraction being characterized by a boiling range above that of the light Fischer-Tropsch fraction; (c) contacting the heavy Fischer-Tropsch fraction with a hydroisomerization catalyst in a
- the heavy Fischer-Tropsch fraction will generally have an initial boiling point within the lower end of the boiling range for lubricating base oil and the upper end of the boiling range for diesel, i.e., the initial boiling point will usually be between about 550 degrees F (about 285 degrees C) and about 750 degrees F (about 400 degrees C).
- the initial boiling point will usually be between about 550 degrees F (about 285 degrees C) and about 750 degrees F (about 400 degrees C).
- it may under certain circumstances be desirable to produce more of the heavy fraction by lowering the initial boiling point of the heavy fraction below 600 degrees F, perhaps as low as 450 degrees F (about 230 degrees C). In this instance, the amount of the heavy fraction that will be isomerized and blended back into the diesel will be significantly increased.
- the hydroprocessing conditions in the first step of the process used to saturate the olefins and remove the oxygenates present in the Fischer-Tropsch feed are preferably mild and usually are selected to minimize the cracking of the molecules.
- the amount of diesel or of lubricating base oil may be maximized. For example, by operating at a higher conversion, typically greater than about 20 percent conversion, the amount of diesel produced by the process may be increased, since a portion of the C 2 o plus molecules present in the feed will be cracked into products within the boiling range of transportation fuels.
- the amount of base oil produced will be maximized due to the very low cracking rate.
- conversion of a hydrocarbon feedstock refers to the percent of the hydrocarbons recovered from the hydroprocessing zone which have an initial boiling point above a given reference temperature following the conversion of the Fischer-Tropsch feed into products boiling below the reference temperature. See U.S. Patent No. 6,224,747.
- the reference temperature selected is usually about 650 degrees F (340 degrees C).
- a portion of the isomerized heavy Fischer-Tropsch fraction produced is blended back with the diesel in order to meet the target value for one or more pre-selected specifications for diesel.
- the specification or specifications selected will depend on the nature of the operation, and the market into which the diesel product is to be sold. Generally, the diesel specification or specifications selected will include one or more of the cold filter plugging point, the cloud point, or the pour point. Each of these specifications may be readily controlled in the diesel product by the blending back a portion of the isomerized heavy Fischer-Tropsch fraction.
- the separation zone will include at least two separation zones, referred to herein as a first and a second separation zone.
- the first separation zone which in most embodiments will comprise a hot high pressure separator, is used to separate the heavy Fischer-Tropsch fraction from the naphtha, diesel and gaseous hydrogen rich fraction and usually will be operated at a temperature which is about 50 degrees F (28 degrees C) below the temperature of the hydroprocessing zone.
- the second separation zone which in most embodiments will comprise a cold high pressure separator, is used to separate the overhead gases from the remaining hydrocarbons boiling in the range of transportation fuels.
- the operation of the separation zone is critical to the invention, since the separation between the heavy and light Fischer-Tropsch fractions will determine how much of those hydrocarbons boiling in the diesel range will be isomerized along with the heavy fraction which is will be blended back as part of the final diesel product.
- a stripping gas be used.
- Stripping gases such as, for example, steam or hydrogen may be employed in the hot high pressure separator.
- hydrogen is preferred as the stripping gas in the present scheme.
- the drawing is a diagram illustrating a process scheme which represents one embodiment of the invention.
- the present invention may be more clearly understood by reference to the drawing which represents one embodiment of the process scheme.
- the Fischer-Tropsch condensate feed 2 and the Fischer-Tropsch waxy feed 4 are shown separately prior to entering the hydrotreating reactor 6 via a common conduit 8 where the feeds are also mixed with hydrogen from line 11 which is provided by make-up hydrogen entering by lines 9 and 10 and by recycle hydrogen from line 28.
- the olefins present in the feed are saturated and the oxygenates, mostly consisting of alcohols, are removed.
- the effluent from the hydrotreating reactor referred to in this disclosure as the first Fischer-Tropsch intermediate is carried via line 12 to the first separation zone 14 comprising a hot high pressure separator where the heavy Fischer-Tropsch fraction comprising primarily waxy material boiling in the base oil range, but also including at least some hydrocarbons boiling in the diesel range, are separated from a lower boiling Fischer-Tropsch fract :ion which includes hydrocarbons boiling both in the range of naphtha and diesel as well as overhead gaseous comprising hydrogen and C 4 minus hydrocarbons.
- the hot high pressure separator is usually operated at a temperature that is at least 50 degrees F (28 degrees C) below the operating temperature of the hydrotreating reactor 6.
- the heavy Fischer-Tropsch fraction is collected in condu it 16 and carried to the hydroisomerization unit 18. Hydrogen for the somerization step is added from make-up hydrogen via lines 9 and 19.
- the lower boiling hydrocarbons and overhead gaseous are collected by conduit 20 and carried to the second separation zone which comprises a cold high pressure separator 22.
- the hydrogen rich overhead gaseous are separated from those hydrocarbons boiling in the range of transportation fuels.
- the hydrogen rich overhead gases pass via line 24 to an optional recycle gas scrubber 26 in order to remove any hydrogen sulfide or ammonia present prior to being sent via line 28 to the recycle gas compressor 30 to be recycled by line 11 back to the hydrotreating reactor 6.
- the hydrocarbons comprising primarily those boiling within the range of naphtha and diesel are recovered by line 32 from the cold high pressure separator and sent to a low pressure separator 34.
- the heavy Fischer-Tropsch fraction which contains most of the Fischer-Tropsch wax is isomerized to increase the isoparaffin content of the fraction and improve its cold flow properties, such as the cold filter plugging point, the pour point, and the VI, as well as the cloud point.
- the isomerized heavy Fischer-Tropsch fraction is collected in line 36 and passed to the hydrofinishing reactor 38 where the oxidation stability is further improved.
- the isomerized and hydrofinished heavy fraction is carried by line 40 to a high pressure separator 42 where the hydrogen rich overhead gases are collected and carried by line 44 back to the cold high pressure separator 22 to be recycled to the hydrotreating unit.
- the effluent from cold high pressure separator containing the heavy fraction is carried by line 46 to the low pressure separator 34 where the isomerized and hydrofinished heavy fraction are mixed with the light fraction coming from the cold high pressure separator 22.
- the overhead gases comprising primarily C 4 minus hydrocarbons are collected from the top of the low pressure separator by line 47 and carried to the top of a product stripper 48.
- the mixture of heavy and light Fischer-Tropsch fractions are collected in line 49 from the bottom of the low pressure separator and passed to the lower section of the product stripper 48 where additional C 4 minus hydrocarbons are separated from the C 5 plus hydrocarbons.
- the C4 minus hydrocarbons are collected from stripper by conduit 50.
- the product stream comprising C 5 plus hydrocarbons are collected in line 52 and passed to the atmospheric distillation unit 54 where the naphtha 56 and diesel 58 are collected separately from any remaining C 4 minus hydrocarbons in line 60.
- the heavy bottoms fraction is collected and sent via line 62 to the vacuum distillation unit 64 where the light base oil fraction 66, medium base oil fraction 68, and heavy base oil fraction 70 are shown being separately collected.
- the non- waxy molecules are removed from the feed to the hydroisomerization unit 18 and prevented from contacting the isomerization catalyst.
- the light Fischer-Tropsch fraction comprising the majority of the diesel and substantially all of the naphtha fraction thus bypass the isomerization operation making the isomerization step much more efficient, since it handles a smaller volume of hydrocarbons than it might otherwise. Only that fraction containing the majority of the Fischer-Tropsch wax will enter the hydroisomerization zone. This separation step also is used to meet the specifications for the diesel fuel that is produced by the integrated process.
- the overall cold flow properties and cloud point of the diesel product is improved without the necessity of hydroisomerizing and hydrofinishing the entire diesel product.
- Most of the heavy fraction which is recovered with the diesel product from the atmospheric distillation column 54 will comprise a lighter base oil fraction, i.e., the base oil fraction which has an upper boiling point of less than 750 degrees F (400 degrees C).
- the amount of isomerized and hydrofinished base oil blended into the diesel product may be controlled.
- the operation of the hydroisomerization unit may be controlled to optimize the conversion of the heavy fraction which also will contribute to the properties of the final diesel product recovered from the operation.
- the operation of the hydroprocessing unit may be varied to make more hydrocarbons boiling in the range of transportation fuels.
- the larger molecules may be cracked to yield more diesel.
- the process of the present invention also allows for the efficient recycling of the hydrogen rich C minus overhead gases to the hydroprocessing zone, the catalytic dewaxing zone, and the hydrofinishing zone. It is generally advantageous to operate the hydroprocessing reactor, catalytic dewaxing reactor, and hydrofinishing reactor at substantially the same pressure, since such operation reduces the capital cost by saving on the need for additional pumps and compressors.
- hydroisomerization generally has an optimal reaction pressure below that for hydrocracking, hydrotreating, and hydrofinishing. Therefore, it may be advantageous under certain circumstances to operate the catalytic dewaxing unit at a lower pressure than the hydroprocessing unit and the hydrofinishing unit. See for example, U.S. Patent No. 6,337,010 B1.
- liquid and gaseous hydrocarbons are formed by contacting a synthesis gas (syngas) comprising a mixture of hydrogen and carbon monoxide with a Fischer-Tropsch catalyst under suitable temperature and pressure reactive conditions.
- the Fischer-Tropsch reaction is typically conducted at temperatures of from about 300 degrees F to about 700 degrees F (about 150 degrees C to about 370 degrees C) preferably from about 400 degrees F to about 550 degrees F (about 205 degrees C to about 230 degrees C); pressures of from about 10 psia to about 600 psia (0.7 bars to 41 bars), preferably 30 psia to 300 psia (2 bars to 21 bars), and catalyst space velocities of from about 100 cc/g/hr. to about 10,000 cc/g/hr., preferably 300 cc/g/hr. to 3,000 cc/g/hr.
- the products may range from Ci to C 2 oo plus hydrocarbons with a majority, by weight, in the C 5 -C 100 plus range.
- the reaction can be conducted in a variety of reactor types, for example, fixed bed reactors containing one or more catalyst beds, slurry reactors, fluidized bed reactors, or a combination of different type reactors. Such reaction processes and reactors are well known and documented in the literature.
- Slurry Fischer-Tropsch processes which is a preferred process for producing the feed stocks used for carrying out the invention, utilize superior heat (and mass) transfer characteristics for the strongly exothermic synthesis reaction and are able to produce relatively high molecular weight, paraffinic hydrocarbons when using a cobalt catalyst.
- a syngas comprising a mixture of hydrogen and carbon monoxide is bubbled up in the reactor as a third phase through a slurry which comprises a particulate Fischer-Tropsch type hydrocarbon synthesis catalyst dispersed and suspended in a slurry liquid comprising hydrocarbon products of the synthesis reaction which are liquid at the reaction conditions.
- the mole ratio of the hydrogen to the carbon monoxide may broadly range from about 0.5 to about 4, but is more typically within the range of from about 0.7 to about 2.75 and preferably from about 0.7 to about 2.5.
- a particularly preferred Fischer-Tropsch process is taught in EP 0609079, also completely incorporated herein by reference for all purposes.
- Suitable Fischer-Tropsch catalysts comprise one or more Group VIII catalytic metals such as Fe, Ni, Co, Ru and Re, with cobalt generally being one preferred embodiment. Additionally, a suitable catalyst may contain a promoter. Thus, in one embodiment, the Fischer-Tropsch catalyst will comprise effective amounts of cobalt and one or more of Re, Ru, Pt, Fe, Ni, Th, Zr, Hf, U, Mg and La on a suitable inorganic support material, preferably one which comprises one or more refractory metal oxides. In general, the amount of cobalt present in the catalyst is between about 1 and about 50 weight percent of the total catalyst composition.
- the catalysts can also contain basic oxide promoters such as Th0 2 , La 2 03, MgO, K 2 0 and Ti0 2 , promoters such as Zr0 2 , noble metals (Pt, Pd, Ru, Rh, Os, Ir), coinage metals (Cu, Ag, Au), and other transition metals such as Fe, Mn, Ni, and Re.
- Suitable support materials include alumina, silica, magnesia and titania or mixtures thereof.
- Preferred supports for cobalt containing catalysts comprise alumina or titania. Useful catalysts and their preparation are known and illustrated in U.S. Patent No. 4,568,663, which is intended to be illustrative but non-limiting relative to catalyst selection.
- the products from the Fischer-Tropsch process usually are collected separately as a waxy fraction which contains the majority of the Fischer-Tropsch wax, a condensate fraction which contains the hydrocarbons boiling in the range of transportation fuels, and a gaseous fraction containing unreacted hydrogen and carbon monoxide and C 4 minus hydrocarbons.
- the waxy fraction is normally a solid at ambient temperature and represents the fraction which makes up the majority of the material that will be isomerized in the present process.
- the condensate fraction in addition to containing most of the hydrocarbons boiling in the range of naphtha and diesel, also contains oxygenates, mostly in form of alcohols, which must be removed prior to further processing. All of the fractions contain a significant amount of olefins which must be saturated in the hydroprocessing step.
- Hydroprocessing in the present invention refers to the step intended primarily for the purpose of removing any residual nitrogen, saturating the olefins, and removing oxygenates that may be present in the Fischer-Tropsch feed stock. By increasing the severity of the hydroprocessing step, the amount of diesel recovered in the final product slate may be increased.
- hydroprocessing is intended to refer to either hydrotreating or hydrocracking. Hydroisomerization and hydrofinishing, while also a type of hydroprocessing, will be treated separately because of their different functions in the process scheme.
- Hydrotreating refers to a catalytic process, usually carried out in- the presence of free hydrogen, in which the primary purpose when used to process conventional petroleum derived feed stocks is the removal of various metal contaminants, such as arsenic; heteroatoms, such as sulfur and nitrogen; and aromatics from the feed stock.
- the primary purpose is to saturate the olefins and remove the oxygenates in the feed stock prior to the catalytic dewaxing operation.
- hydrotreating refers to a hydroprocessing operation in which the conversion is 20 percent or less.
- Hydrocracking refers to a catalytic process, usually carried out in the presence of free hydrogen, in which the cracking of the larger hydrocarbon molecules is the primary purpose of the operation.
- the conversion rate for hydrocracking shall be more than 20 percent. Hydrogenation of the olefins and removal of the oxygenates as well as denitrification of the feedstock also will occur.
- cracking of the hydrocarbon molecules may be desirable in order to increase the yield of diesel and minimize the amount of heavy Fischer-Tropsch fraction passing through the catalytic dewaxing operation.
- Catalysts used in carrying out hydrotreating and hydrocracking operations are well known in the art. See for example U.S. Patent Nos. 4,347,121 and 4,810,357, the contents of which are hereby incorporated by reference in their entirety, for general descriptions of hydrotreating, hydrocracking, and of typical catalysts used in each of the processes.
- Suitable catalysts include noble metals from Group VIIIA (according to the 1975 rules of the International Union of Pure and Applied Chemistry), such as platinum or palladium on an alumina or siliceous matrix, and unsulfided Group VIIIA and Group VIB, such as nickel-molybdenum or nickel-tin on an alumina or siliceous matrix.
- Group VIIIA accordinging to the 1975 rules of the International Union of Pure and Applied Chemistry
- unsulfided Group VIIIA and Group VIB such as nickel-molybdenum or nickel-tin on an alumina or siliceous matrix.
- 3,852,207 describes a suitable noble metal catalyst and mild conditions.
- Other suitable catalysts are described, for example, in U.S. Patent Nos. 4,157,294 and 3,904,513.
- the non-noble hydrogenation metals such as nickel-molybdenum, are usually present in the final catalyst composition as oxides, or more preferably or possibly, as sulfides when such compounds are readily formed from the particular metal involved.
- Preferred non-noble metal catalyst compositions contain in excess of about 5 weight percent, preferably about 5 to about 40 weight percent molybdenum and/or tungsten, and at least about 0.5, and generally about 1 to about 15 weight percent of nickel and/or cobalt determined as the corresponding oxides.
- Catalysts containing noble metals, such as platinum contain in excess of 0.01 percent metal, preferably between 0.1 and 1.0 percent metal. Combinations of noble metals may also be used, such as mixtures of platinum and palladium.
- the hydrogenation components can be incorporated into the overall catalyst composition by any one of numerous procedures.
- the hydrogenation components can be added to matrix component by co-mulling, impregnation, or ion exchange and the Group VI components, i.e.; molybdenum and tungsten can be combined with the refractory oxide by impregnation, co-mulling or co-precipitation.
- the Group VI components i.e.; molybdenum and tungsten can be combined with the refractory oxide by impregnation, co-mulling or co-precipitation.
- these components can be combined with the catalyst matrix as the sulfides, that is generally not preferred, as the sulfur compounds can interfere with the Fischer-Tropsch catalysts.
- the matrix component can be of many types including some that have acidic catalytic activity.
- Ones that have activity include amorphous silica-alumina or may be a zeolitic or non-zeolitic crystalline molecular sieve.
- suitable matrix molecular sieves include zeolite Y, zeolite X and the so called ultra stable zeolite Y and high structural silica:alumina ratio zeolite Y such as that described in U.S. Patent Nos. 4,401 ,556; 4,820,402; and 5,059,567.
- Small crystal size zeolite Y such as that described in U.S. Patent No. 5,073,530 can also be used.
- Non-zeolitic molecular sieves which can be used include, for example, silicQaluminophosphat.es (SAPO), ferroaluminophosphate, titanium aluminophosphate and the various ELAPO molecular sieves described in U.S. Patent No. 4,913,799 and the references cited therein. Details regarding the preparation of various non-zeolite molecular sieves can be found in U.S. Patent Nos. 5,114,563 (SAPO) and 4,913,799 and the various references cited in U.S. Patent No. 4,913,799. Mesoporous molecular sieves can also be used, for example the M41 S family of materials as described in J. Am. Chem.
- Suitable matrix materials may also include synthetic or natural substances as well as inorganic materials such as clay, silica and/or metal oxides such as silica-alumina, silica-magnesia, silica-zirconia, silica-thoria, silica-berylia, silica-titania as well as ternary compositions, such as silica-alumina-thoria, silica-alumina-zirconia, silica-alumina-magnesia, and silica-magnesia zirconia.
- the latter may be either naturally occurring or in the form of gelatinous precipitates or gels including mixtures of silica and metal oxides.
- Naturally occurring clays which can be composited with the catalyst include those of the montmorillonite and kaolin families. These clays can be used in the raw state as originally mined or initially subjected to calumniation, acid treatment or chemical modification.
- more than one catalyst type may be used in the reactor.
- the different catalyst types can be separated into layers or mixed.
- the overall LHSV is about 0.1 hr-1 to about 15.0 hr-1 (v/v), preferably from about 0.25 hr-1 to about 2.5 hr-1.
- the reaction pressure generally ranges from about 500 psig to about 3500 psig (about 10.4 MPa to about 24.2 MPa, preferably from about 1500 psig to about 5000 psig (about 3.5 MPa to about 34.5 MPa).
- Hydrogen consumption is typically from about 500 to about 2500 SCF per barrel of feed (89.1 to 445 m3 H2/m3 feed).
- Temperatures in the reactor will range from about 400 degrees F to about 950 degrees F (about 205 degrees C to about 510 degrees C), preferably ranging from about 650 degrees F to about 850 degrees F (about 340 degrees C to about 455 degrees C).
- Typical hydrotreating conditions vary over a wide range.
- the overall LHSV is about 0.5 to 5.0.
- the total pressure ranging from about 200 psig to about 2000 psig.
- Hydrogen recirculation rates are typically greater than 50 SCF/Bbl, and are preferably between 1000 and 5000 SCF/Bbl.
- Temperatures in the reactor will range from about 400 degrees F to about 800 degrees F (about 205 degrees C to about 425 degrees C).
- the separation zone is used to separate those hydrocarbons boiling in the range of transportation fuels, i.e., in range of naphtha and diesel (referred to as the light Fischer-Tropsch fraction) from those hydrocarbons boiling in the base oil range (referred to as the heavy Fischer-Tropsch fraction) from the first Fischer-Tropsch intermediate product collected from the hydroprocessing operation.
- the cut-point for the separation between the heavy Fischer-Tropsch fraction and the light Fischer-Tropsch fraction will be within the temperature range of between about 550 degrees F and about 750 degrees F (about 285 degrees C to about 400 degrees C). Usually the cut-point will be about 600 degrees F (315 degrees C).
- the cut-point may be as low as 450 degrees F (about 230 degrees C).
- the precise cut-point selected will depend upon how much of the base oil present in the first Fischer-Tropsch intermediate product is selected for isomerization.
- the selection of how much base oil to send to the catalytic dewaxing zone will depend upon the target value selected for the property or properties of the final diesel product. In general, the lower the cut-point between the heavy and light fractions, the more Fischer-Tropsch wax will be sent to the catalytic dewaxing zone. More wax isomerization will result in improved cold-flow properties in the diesel product. However, most of the Fischer-Tropsch wax is concentrated in the higher boiling fractions.
- the separation zone will comprise at least two separation vessels.
- the separation zone comprises a hot high pressure separator and a cold high pressure separator.
- the hot high pressure separator makes the initial separation between the heavy Fischer-Tropsch fraction and the light Fischer-Tropsch fraction. While this separation will take place at a relatively high temperature, it usually will still be at a temperature that is at least 50 degrees F (30 degrees C) lower than the temperature in the hydroprocessing reactor.
- the cold high pressure separator the overhead gases are separated from the hydrocarbons boiling in the range of those transportation fuels which will not pass through the catalytic dewaxing zone.
- Catalytic dewaxing consists of three main classes, conventional hydrodewaxing, complete hydroisomerization dewaxing, and partial hydroisomerization dewaxing. All three classes involve passing a mixture of a waxy hydrocarbon stream and hydrogen over a catalyst that contains an acidic component to reduce the normal and slightly branched iso-paraffins in the feed and increase the proportion of other non-waxy species.
- the method selected for dewaxing a feed typically depends on the product quality, and the wax content of the feed, with conventional hydrodewaxing often preferred for low wax content feeds.
- the method for dewaxing can be effected by the choice of the catalyst.
- n-hexadecane conversion using conventional hydrodewaxing catalysts will exhibit a selectivity to isomerized hexadecanes of less than 10 percent
- partial hydroisomerization dewaxing catalysts will exhibit a selectivity to isomerized hexadecanes of greater than 10 percent to less than 40 percent
- complete hydroisomerization dewaxing catalysts will exhibit a selectivity to isomerized hexadecanes of greater than or equal to 40 percent, preferably greater than 60 percent, and most preferably greater than 80 percent.
- the pour point is lowered by selectively cracking the wax molecules mostly to smaller paraffins using a conventional hydrodewaxing catalyst, such as, for example ZSM-5. Metals may be added to the catalyst, primarily to reduce fouling.
- conventional hydrodewaxing may be used to increase the yield of diesel in the final product slate by cracking the Fischer-Tropsch wax molecules.
- the isomerization of the paraffins also is used to improve the cold flow properties and cloud point of the diesel fraction.
- Typical conditions for hydroisomerization as used in the present process involve temperatures from about 400 degrees F to about 800 degrees F (about 200 degrees C to about 425 degrees C), pressures from about 100 psig to 2000 psig, and space velocities from about 0.2 to 5 hr-1.
- Complete hydroisomerization dewaxing typically achieves high conversion levels of wax by isomerization to non-waxy iso-paraffins while at the same time minimizing the conversion by cracking. Since wax conversion can be complete, or at least very high, this process typically does not need to be combined with additional dewaxing processes to produce a lubricating oil base stock with an acceptable pour point.
- Complete hydroisomerization dewaxing uses a dual-functional catalyst consisting of an acidic component and an active metal component having hydrogenati oi n activity. Both components are required to conduct the isomerizati oi n reaction. The acidic component of the catalysts used in complete hydroi s.
- omerization preferably include an intermediate pore SAPO, such as SAPO-11 , SAPO-31 , and SAPO-41 , with SAPO-11 being particularly preferred.
- Intermediate pore zeolites such as ZSM-22, ZSM-23, SSZ-32, ZSM-35, and ZSM-48, also may be used in carrying out complete hydroisomerization dewaxing.
- Typical active metals include molybdenum, nickel, vanadium, cobalt, tungsten, zinc, platinum, and palladium. The metals platinum and palladium are especially preferred as the active metals, with platinum most commonly used.
- partial hydroisomerization dewaxing a portion of the wax is isomerized to iso-paraffins using catalysts that can isomerize paraffins selectively, but only if the conversion of wax is kept to relatively low values (typically below 50 percent). At higher conversions, wax conversion by cracking becomes significant, and yield losses of lubricating base stock becomes uneconomical.
- the catalysts used in partial hydroisomerization dewaxing include both an acidic component and a hydrogenation component.
- the acidic catalyst components useful for partial hydroisomerization dewaxing include amorphous silica aluminas, fluorided alumina, and 12-ring zeolites (such as Beta, Y zeolite, L zeolite).
- the hydrogenation component of the catalyst is the same as already discussed with complete hydroisomerization dewaxing. Because the wax conversion is incomplete, partial hydroisomerization dewaxing must be supplemented with an additional dewaxing technique, typically solvent dewaxing, complete hydroisomerization dewaxing, or conventional hydrodewaxing in order to produce a lubricating base stock with an acceptable pour point (below about +10 degrees F or -12 degrees C).
- the metal be deposited on the catalyst using a non-aqueous method.
- Catalysts particularly catalysts containing SAPO's, on which the metal has been deposited using the non-aqueous method, have shown greater selectivity and activity than those catalysts which have used an aqueous method to deposit the active metal.
- the non-aqueous deposition of active metals on non-zeolitic molecular sieves is taught in U.S. Patent No. 5,939,349. In general, the process involves dissolving a compound of the active metal in a non-aqueous, non-reactive solvent and depositing it on the molecular sieve by ion exchange or impregnation.
- Hydrofinishing operations are intended to improve the UV stability and color of the products. It is believed this is accomplished by saturating the double bonds present in the hydrocarbon molecules, including those found in aromatics, especially polycyclic aromatics. As shown in the drawing, only the heavy Fischer-Tropsch fraction which has passed through the catalytic dewaxer is sent to a hydrofinisher. A general description of the hydrofinishing process may be found in U.S. Patent Nos. 3,852,207 and 4,673,487.
- UV stability refers to the stability of the lubricating base oil or other products when exposed to ultraviolet light and oxygen. Instability is indicated when a visible precipitate forms or darker color develops upon exposure to ultraviolet light and air which results in a cloudiness or floe in the product. It may also be desirable that the diesel product prepared by the process of the present invention be UV stabilized prior to marketing in which case this fraction may also be hydrofinished.
- the total pressure in the hydrofinishing zone will be between about 200 psig and about 3000 psig, with pressures in the range of about 500 psig and about 2000 psig being preferred.
- Temperature ranges in the hydrofinishing zone are usually in the range of from about 400 degrees F (about 205 degrees C) to about 650 degrees F (about 345 degrees C).
- the LHSV is usually within the range of from about 0.3 to about 5.0.
- Hydrogen is usually supplied to the hydrofinishing zone at a rate of from about 1000 to about 10,000 SCF per barrel of feed. Typically the hydrogen is fed at a rate of about 3000 SCF per barrel of feed.
- Suitable hydrofinishing catalysts typically contain a Group VIII metal component together with an oxide support.
- Metals or compounds of the following metals are useful in hydrofinishing catalysts include nickel, ruthenium, rhodium, iridium, palladium, platinum, and osmium.
- the metal or metals will be platinum, palladium or mixtures of platinum and palladium.
- the refractory oxide support usually consists of alumina, silica, silica-alumina, silica-alumina-zirconia, and the like.
- the catalyst may optionally contain a zeolite component.
- Typical hydrofinishing catalysts are disclosed in U.S. Patent Nos. 3,852,207; 4,157,294; and 4,673,487.
- the final diesel product is prepared by blending a lower boiling fraction of the isomerized heavy fraction back into the diesel fraction recovered from the separation zone. As illustrated in the drawing the isomerized heavy fraction and the light fraction are blended together in the low pressure separator.
- the diesel product, including part of the isomerized heavy fraction, is shown in the drawing as being separated from the lighter naphtha, C minus fraction, and base oil in the atmospheric fractionation unit.
- the various lube fractions may be further separated, if desired in a vacuum fractionation column.
- the properties of diesel product may be controlled at several points in the process.
- the first control point and the most important are in the separation zone.
- the separation zone controls how much of the waxy material which will be included in the diesel product will pass though the hydroisomerization operation.
- the second point of control resides in the hydroisomerization unit.
- the properties of the diesel product may be controlled in the fractionation step. How much of the isomerized base oil fraction remains as part of the diesel product also will help determine what the final properties of the diesel product will be.
- the diesel fraction and isomerized base oil fraction are blended to achieve a target value for at least one diesel specification.
- the diesel specifications will usually be selected from one or more of the cold filter plugging point, the cloud point, and the pour point.
- the target value will usually be a temperature of -10 degrees C or less, preferably -20 degrees C or less.
- the target value for cloud point will usually be a temperature of -8 degrees C or less, preferably -18 degrees C or less.
- the target value for pour point will typically be -15 degrees C or less, preferably -25 degrees C or less.
- the cold filter plugging point (“CFPP”) is a standard test used to determine the ease with which fuel moves under suction through a filter grade representative of field equipment. The determination is repeated periodically during steady cooling of the fueJ sample, the lowest temperature at which the minimum acceptable level of filterability is still achieved being recorded as the "CFPP" temperature of the sample.
- the details of the CFPP test and cooling regime are specified in ASTM D-6371.
- pour point is the temperature at which a sample of the diesel fuel will begin to flow under carefully controlled conditions. In this disclosure, pour point, unless stated otherwise, is determined by the standard analytical method ASTM D-5950.
- the present invention may also be used to produce a premium Fischer-Tropsch derived lubricating base oil.
- Fischer-Tropsch derived base oils recovered from the process of this invention typically will contain very low sulfur and aromatics, have excellent oxidation stability, and excellent cold flow properties.
- the lubricating base oils recovered from the process will have a kinematic viscosity of at least 3 cSt at 100 degrees C, preferably at least 4 cSt; a pour point below 20 degrees C, preferably below -12 degrees C; and a VI that is usually greater than 90, preferably greater than 100.
- the lower boiling base oils usually will be included in the final diesel blend, therefore, there is very little of the low viscosity material recovered from the vacuum distillation column.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Lubricants (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2004213790A AU2004213790B2 (en) | 2003-02-18 | 2004-02-11 | Process for producing premium fischer-tropsch diesel and lube base oils |
JP2006503566A JP5042622B2 (en) | 2003-02-18 | 2004-02-11 | Fischer-Tropsch Premium Diesel and Method for Producing Lubricating Base Oil |
BRPI0407537-4A BRPI0407537A (en) | 2003-02-18 | 2004-02-11 | process to produce a special fischer-tropsch diesel fuel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/369,083 | 2003-02-18 | ||
US10/369,083 US20040159582A1 (en) | 2003-02-18 | 2003-02-18 | Process for producing premium fischer-tropsch diesel and lube base oils |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004074406A1 true WO2004074406A1 (en) | 2004-09-02 |
Family
ID=32850279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2004/004306 WO2004074406A1 (en) | 2003-02-18 | 2004-02-11 | Process for producing premium fischer-tropsch diesel and lube base oils |
Country Status (6)
Country | Link |
---|---|
US (2) | US20040159582A1 (en) |
JP (1) | JP5042622B2 (en) |
AU (1) | AU2004213790B2 (en) |
BR (1) | BRPI0407537A (en) |
WO (1) | WO2004074406A1 (en) |
ZA (1) | ZA200506511B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1776439A1 (en) * | 2004-07-08 | 2007-04-25 | Conocophillips Company | Synthetic hydrocarbon products |
JP2008534772A (en) * | 2005-04-05 | 2008-08-28 | エクソンモービル リサーチ アンド エンジニアリング カンパニー | Paraffinic hydroisomerized oil as a wax crystal modifier |
Families Citing this family (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7345211B2 (en) * | 2004-07-08 | 2008-03-18 | Conocophillips Company | Synthetic hydrocarbon products |
US7708878B2 (en) * | 2005-03-10 | 2010-05-04 | Chevron U.S.A. Inc. | Multiple side draws during distillation in the production of base oil blends from waxy feeds |
US20070293408A1 (en) | 2005-03-11 | 2007-12-20 | Chevron Corporation | Hydraulic Fluid Compositions and Preparation Thereof |
US7674364B2 (en) | 2005-03-11 | 2010-03-09 | Chevron U.S.A. Inc. | Hydraulic fluid compositions and preparation thereof |
US7578926B2 (en) * | 2005-04-20 | 2009-08-25 | Chevron U.S.A. Inc. | Process to enhance oxidation stability of base oils by analysis of olefins using Â1H NMR |
US20080053868A1 (en) * | 2005-06-22 | 2008-03-06 | Chevron U.S.A. Inc. | Engine oil compositions and preparation thereof |
FR2888584B1 (en) * | 2005-07-18 | 2010-12-10 | Inst Francais Du Petrole | PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING OF FISCHER-TROPSCH PROCESSES USING A MULTIFUNCTIONAL GUARD BED |
US7459597B2 (en) * | 2005-12-13 | 2008-12-02 | Neste Oil Oyj | Process for the manufacture of hydrocarbons |
US7906013B2 (en) | 2006-12-29 | 2011-03-15 | Uop Llc | Hydrocarbon conversion process |
AU2008256579B2 (en) * | 2007-05-31 | 2012-05-24 | Sasol Technology (Pty) Ltd | Cold flow response of diesel fuels by fraction replacement |
US20090036333A1 (en) * | 2007-07-31 | 2009-02-05 | Chevron U.S.A. Inc. | Metalworking Fluid Compositions and Preparation Thereof |
US20090036338A1 (en) * | 2007-07-31 | 2009-02-05 | Chevron U.S.A. Inc. | Metalworking Fluid Compositions and Preparation Thereof |
US20090036546A1 (en) * | 2007-07-31 | 2009-02-05 | Chevron U.S.A. Inc. | Medicinal Oil Compositions, Preparations, and Applications Thereof |
US20090036337A1 (en) * | 2007-07-31 | 2009-02-05 | Chevron U.S.A. Inc. | Electrical Insulating Oil Compositions and Preparation Thereof |
US20090062163A1 (en) * | 2007-08-28 | 2009-03-05 | Chevron U.S.A. Inc. | Gear Oil Compositions, Methods of Making and Using Thereof |
US20090062166A1 (en) | 2007-08-28 | 2009-03-05 | Chevron U.S.A. Inc. | Slideway Lubricant Compositions, Methods of Making and Using Thereof |
US20090062162A1 (en) * | 2007-08-28 | 2009-03-05 | Chevron U.S.A. Inc. | Gear oil composition, methods of making and using thereof |
US7932217B2 (en) * | 2007-08-28 | 2011-04-26 | Chevron U.S.A., Inc. | Gear oil compositions, methods of making and using thereof |
US20090088353A1 (en) * | 2007-09-27 | 2009-04-02 | Chevron U.S.A. Inc. | Lubricating grease composition and preparation |
US20090088352A1 (en) * | 2007-09-27 | 2009-04-02 | Chevron U.S.A. Inc. | Tractor hydraulic fluid compositions and preparation thereof |
EA017519B1 (en) * | 2007-09-28 | 2013-01-30 | Джэпэн Ойл, Гэз Энд Металз Нэшнл Корпорейшн | Process for producing diesel fuel base and diesel fuel base obtained |
US7803269B2 (en) * | 2007-10-15 | 2010-09-28 | Uop Llc | Hydroisomerization process |
US20090163391A1 (en) * | 2007-12-20 | 2009-06-25 | Chevron U.S.A. Inc. | Power Transmission Fluid Compositions and Preparation Thereof |
AU2008347111B2 (en) * | 2007-12-31 | 2013-04-18 | Exxonmobil Research And Engineering Company | Integrated two-stage desulfurization/dewaxing with stripping high-temperature separator |
US20090298732A1 (en) * | 2008-05-29 | 2009-12-03 | Chevron U.S.A. Inc. | Gear oil compositions, methods of making and using thereof |
US8999141B2 (en) * | 2008-06-30 | 2015-04-07 | Uop Llc | Three-phase hydroprocessing without a recycle gas compressor |
US9279087B2 (en) * | 2008-06-30 | 2016-03-08 | Uop Llc | Multi-staged hydroprocessing process and system |
US8008534B2 (en) * | 2008-06-30 | 2011-08-30 | Uop Llc | Liquid phase hydroprocessing with temperature management |
HUE030927T2 (en) | 2009-06-12 | 2017-06-28 | Albemarle Europe Sprl | Sapo molecular sieve catalysts and their preparation and uses |
US8202480B2 (en) * | 2009-06-25 | 2012-06-19 | Uop Llc | Apparatus for separating pitch from slurry hydrocracked vacuum gas oil |
US8231775B2 (en) | 2009-06-25 | 2012-07-31 | Uop Llc | Pitch composition |
US8540870B2 (en) * | 2009-06-25 | 2013-09-24 | Uop Llc | Process for separating pitch from slurry hydrocracked vacuum gas oil |
US8221706B2 (en) * | 2009-06-30 | 2012-07-17 | Uop Llc | Apparatus for multi-staged hydroprocessing |
US8518241B2 (en) * | 2009-06-30 | 2013-08-27 | Uop Llc | Method for multi-staged hydroprocessing |
US20110024328A1 (en) * | 2009-07-31 | 2011-02-03 | Chevron U.S.A. Inc. | Distillate production in a hydrocarbon synthesis process. |
US8349776B2 (en) * | 2009-09-29 | 2013-01-08 | Chevron Oronite Company Llc | Trunk piston engine lubricating oil compositions |
US8906224B2 (en) * | 2009-12-23 | 2014-12-09 | Exxonmobil Research And Engineering Company | Sweet or sour service catalytic dewaxing in block mode configuration |
US9290703B2 (en) * | 2010-04-23 | 2016-03-22 | Exxonmobil Research And Engineering Company | Low pressure production of low cloud point diesel |
US8455406B2 (en) | 2010-10-28 | 2013-06-04 | Chevron U.S.A. Inc. | Compressor oils having improved oxidation resistance |
CN103459572A (en) | 2011-04-05 | 2013-12-18 | 雪佛龙奥伦耐有限责任公司 | Low viscosity marine cylinder lubricating oil compositions |
US9028673B2 (en) * | 2011-11-09 | 2015-05-12 | Exxonmobil Research And Engineering Company | Production of low cloud point distillates |
US9206374B2 (en) | 2011-12-16 | 2015-12-08 | Chevron Oronite Sas | Trunk piston engine lubricating oil compositions |
US20150175909A1 (en) * | 2011-12-29 | 2015-06-25 | Shell Oil Company | Process for hydrotreating a hydrocarbon oil |
US9150470B2 (en) | 2012-02-02 | 2015-10-06 | Uop Llc | Process for contacting one or more contaminated hydrocarbons |
US9453169B2 (en) | 2013-09-13 | 2016-09-27 | Uop Llc | Process for converting fischer-tropsch liquids and waxes into lubricant base stock and/or transportation fuels |
WO2015067724A1 (en) | 2013-11-06 | 2015-05-14 | Chevron Oronite Technology B.V. | Marine diesel cylinder lubricant oil compositions |
US10669506B2 (en) | 2013-11-06 | 2020-06-02 | Chevron Oronite Technology B.V. | Marine diesel cylinder lubricant oil compositions |
CN104498090B (en) * | 2014-12-17 | 2017-03-08 | 王树宽 | Perhydro moulded coal tar naphthenic base oils and the system and method for low-coagulation diesel oil |
CN104611056B (en) * | 2015-02-11 | 2017-03-08 | 武汉凯迪工程技术研究总院有限公司 | A kind of hydrotreating method of Low Temperature Fischer Tropsch synthetic product |
US10407640B2 (en) | 2015-07-22 | 2019-09-10 | Chevron Oronite Technology B.V. | Marine diesel cylinder lubricant oil compositions |
KR102517043B1 (en) | 2016-08-29 | 2023-04-04 | 셰브런 오로나이트 테크놀로지 비.브이. | Marine Diesel Cylinder Lubricant Composition |
US20190256791A1 (en) | 2016-10-12 | 2019-08-22 | Chevron Oronite Technology B.V. | Marine diesel lubricant oil compositions |
KR102613198B1 (en) | 2016-10-18 | 2023-12-15 | 셰브런 오로나이트 테크놀로지 비.브이. | Marine diesel lubricant composition |
CN107418622B (en) * | 2017-06-07 | 2019-06-18 | 神华集团有限责任公司 | Improve the device and method of F- T synthesis diesel oil density |
JP7208504B2 (en) | 2019-03-11 | 2023-01-19 | cTangent株式会社 | soundproof material |
CN116178096B (en) * | 2022-12-05 | 2024-09-10 | 国家能源集团宁夏煤业有限责任公司 | Method and device for separating 1-hexene from Fischer-Tropsch oil |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3431194A (en) * | 1966-10-14 | 1969-03-04 | Exxon Research Engineering Co | Process for lowering the pour point of a middle distillate |
US4080397A (en) * | 1976-07-09 | 1978-03-21 | Mobile Oil Corporation | Method for upgrading synthetic oils boiling above gasoline boiling material |
EP0323092A2 (en) * | 1987-12-18 | 1989-07-05 | Exxon Research And Engineering Company | Process for the hydroisomerization of Fischer-Tropsch wax to produce lubricating oil |
US4943672A (en) * | 1987-12-18 | 1990-07-24 | Exxon Research And Engineering Company | Process for the hydroisomerization of Fischer-Tropsch wax to produce lubricating oil (OP-3403) |
EP0583836A1 (en) * | 1992-08-18 | 1994-02-23 | Shell Internationale Researchmaatschappij B.V. | Process for the preparation of hydrocarbon fuels |
US5378348A (en) * | 1993-07-22 | 1995-01-03 | Exxon Research And Engineering Company | Distillate fuel production from Fischer-Tropsch wax |
US5888376A (en) * | 1996-08-23 | 1999-03-30 | Exxon Research And Engineering Co. | Conversion of fischer-tropsch light oil to jet fuel by countercurrent processing |
US6436278B1 (en) * | 1999-09-30 | 2002-08-20 | Institut Francais Du Petrole | Process for producing gasoline with an improved octane number |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4610778A (en) * | 1983-04-01 | 1986-09-09 | Mobil Oil Corporation | Two-stage hydrocarbon dewaxing process |
US5833837A (en) * | 1995-09-29 | 1998-11-10 | Chevron U.S.A. Inc. | Process for dewaxing heavy and light fractions of lube base oil with zeolite and sapo containing catalysts |
ES2207741T3 (en) * | 1996-07-16 | 2004-06-01 | Chevron U.S.A. Inc. | PROCEDURE FOR THE PRODUCTION OF A LUBRICATING OIL BASED MATERIAL. |
US5976354A (en) * | 1997-08-19 | 1999-11-02 | Shell Oil Company | Integrated lube oil hydrorefining process |
US5980729A (en) * | 1998-09-29 | 1999-11-09 | Uop Llc | Hydrocracking process |
US6337010B1 (en) * | 1999-08-02 | 2002-01-08 | Chevron U.S.A. Inc. | Process scheme for producing lubricating base oil with low pressure dewaxing and high pressure hydrofinishing |
US6432297B1 (en) * | 2000-10-23 | 2002-08-13 | Uop Llc | Method to produce lube basestock |
-
2003
- 2003-02-18 US US10/369,083 patent/US20040159582A1/en not_active Abandoned
-
2004
- 2004-02-11 WO PCT/US2004/004306 patent/WO2004074406A1/en active Application Filing
- 2004-02-11 JP JP2006503566A patent/JP5042622B2/en not_active Expired - Fee Related
- 2004-02-11 ZA ZA200506511A patent/ZA200506511B/en unknown
- 2004-02-11 AU AU2004213790A patent/AU2004213790B2/en not_active Ceased
- 2004-02-11 BR BRPI0407537-4A patent/BRPI0407537A/en not_active IP Right Cessation
- 2004-06-30 US US10/883,304 patent/US20040232045A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3431194A (en) * | 1966-10-14 | 1969-03-04 | Exxon Research Engineering Co | Process for lowering the pour point of a middle distillate |
US4080397A (en) * | 1976-07-09 | 1978-03-21 | Mobile Oil Corporation | Method for upgrading synthetic oils boiling above gasoline boiling material |
EP0323092A2 (en) * | 1987-12-18 | 1989-07-05 | Exxon Research And Engineering Company | Process for the hydroisomerization of Fischer-Tropsch wax to produce lubricating oil |
US4943672A (en) * | 1987-12-18 | 1990-07-24 | Exxon Research And Engineering Company | Process for the hydroisomerization of Fischer-Tropsch wax to produce lubricating oil (OP-3403) |
EP0583836A1 (en) * | 1992-08-18 | 1994-02-23 | Shell Internationale Researchmaatschappij B.V. | Process for the preparation of hydrocarbon fuels |
US5378348A (en) * | 1993-07-22 | 1995-01-03 | Exxon Research And Engineering Company | Distillate fuel production from Fischer-Tropsch wax |
US5888376A (en) * | 1996-08-23 | 1999-03-30 | Exxon Research And Engineering Co. | Conversion of fischer-tropsch light oil to jet fuel by countercurrent processing |
US6436278B1 (en) * | 1999-09-30 | 2002-08-20 | Institut Francais Du Petrole | Process for producing gasoline with an improved octane number |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1776439A1 (en) * | 2004-07-08 | 2007-04-25 | Conocophillips Company | Synthetic hydrocarbon products |
EP1776439A4 (en) * | 2004-07-08 | 2010-04-21 | Conocophillips Co | Synthetic hydrocarbon products |
JP2008534772A (en) * | 2005-04-05 | 2008-08-28 | エクソンモービル リサーチ アンド エンジニアリング カンパニー | Paraffinic hydroisomerized oil as a wax crystal modifier |
Also Published As
Publication number | Publication date |
---|---|
US20040159582A1 (en) | 2004-08-19 |
AU2004213790A1 (en) | 2004-09-02 |
BRPI0407537A (en) | 2006-02-14 |
JP2006518796A (en) | 2006-08-17 |
AU2004213790B2 (en) | 2010-07-29 |
US20040232045A1 (en) | 2004-11-25 |
ZA200506511B (en) | 2006-11-29 |
JP5042622B2 (en) | 2012-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2004213790B2 (en) | Process for producing premium fischer-tropsch diesel and lube base oils | |
US6605206B1 (en) | Process for increasing the yield of lubricating base oil from a Fischer-Tropsch plant | |
CA2498907C (en) | Production of fuels and lube oils from fischer-tropsch wax | |
AU2003270493B2 (en) | Heavy lube oil from Fischer-Tropsch wax | |
US20050245778A1 (en) | Hydrotreating of fischer-tropsch derived feeds prior to oligomerization using an ionic liquid catalyst | |
US6962651B2 (en) | Method for producing a plurality of lubricant base oils from paraffinic feedstock | |
US6702937B2 (en) | Process for upgrading Fischer-Tropsch products using dewaxing and hydrofinishing | |
AU2004288897B2 (en) | Integrated process for the production of lubricating base oils and liquid fuels from Fischer-Tropsch materials using split feed hydroprocessing | |
AU2003229055B2 (en) | Process for upgrading fischer-tropsch products using dewaxing and hydrofinishing | |
EP1812532A1 (en) | Process to prepare a base oil | |
ZA200509230B (en) | Process for upgrading fischer-tropsch products using dewaxing and hydrofinishing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004213790 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200506511 Country of ref document: ZA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006503566 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2004213790 Country of ref document: AU Date of ref document: 20040211 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2004213790 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: PI0407537 Country of ref document: BR |
|
122 | Ep: pct application non-entry in european phase |