WO2004072157A1 - Polytetrafluoroethylene fibrous powder, polytetrafluoroethylene paper-like material, polytetrafluoroethylene molding and process for producing the polytetrafluoroethylene fibrous powder - Google Patents

Polytetrafluoroethylene fibrous powder, polytetrafluoroethylene paper-like material, polytetrafluoroethylene molding and process for producing the polytetrafluoroethylene fibrous powder Download PDF

Info

Publication number
WO2004072157A1
WO2004072157A1 PCT/JP2004/001187 JP2004001187W WO2004072157A1 WO 2004072157 A1 WO2004072157 A1 WO 2004072157A1 JP 2004001187 W JP2004001187 W JP 2004001187W WO 2004072157 A1 WO2004072157 A1 WO 2004072157A1
Authority
WO
WIPO (PCT)
Prior art keywords
polytetrafluoroethylene
powder
ptfe
paper
fibrous powder
Prior art date
Application number
PCT/JP2004/001187
Other languages
French (fr)
Japanese (ja)
Inventor
Norihiko Miki
Tadao Hayashi
Tetsuya Higuchi
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to JP2005504949A priority Critical patent/JP4277854B2/en
Publication of WO2004072157A1 publication Critical patent/WO2004072157A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/08Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons
    • D01F6/12Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons from polymers of fluorinated hydrocarbons
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/12Organic non-cellulose fibres from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/14Polyalkenes, e.g. polystyrene polyethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene

Definitions

  • the present invention relates to a polytetrafluoroethylene papermaking material excellent in pressure equalizing property, air permeability, and dust collecting property, a polytetrafluoroethylene fiber fibrous powder as a raw material thereof, a molded article made of the papermaking material, and production.
  • the present invention relates to a method for producing a highly efficient polytetrafluoroethylene fibrous powder. More specifically, the present invention relates to a method for producing a polytetrafluoroethylene fibrous powder capable of obtaining a polytetrafluoroethylene paper having a smooth surface and excellent air permeability when formed.
  • PTFE Polytetrafluoroethylene
  • Japanese Patent Publication No. 45-8165 discloses a PTFE fibrous powder having an average fiber length of 100 to 500 m and an average shape factor of 5 or more, or a filler mixed uniformly with this.
  • a method is disclosed in which a paper composition is dispersed in a liquid to form a paper stock, which is made and dried, and then the paper is peeled off from the substrate and fired.
  • the PTFE fibrous powder used here is a material that strongly shears raw PTFE at high temperatures. It is obtained by crushing by applying force.
  • the pulverizer itself may be heated or the powder may be heated, and it is further described that a method of pulverizing while blowing hot air is most preferable.
  • a method of pulverizing while blowing hot air is most preferable.
  • pulverization is performed at a temperature of about 20 to 50 ° C, but when processed at this temperature, relatively fine PTFE powder with a particle size of 5 im or less is generated, and is made of hard PTFE with low air permeability. There is a problem of becoming paper.
  • the present invention has been made to overcome the above problems by clarifying the above problems, and has a uniform distribution of physical properties, and is excellent in cohesiveness, pressure equalization, air permeability, and dust collecting properties. It is an object of the present invention to provide a PTFE fibrous powder, a molded article made of the PTFE paper product, and a method for producing the PTFE fibrous powder having excellent production efficiency.
  • the present invention relates to a differential scanning calorimeter performed at a heating rate of 5 ° C. per minute.
  • the analysis relates to a PTFE fibrous powder having a peak area ratio on the low temperature side of the obtained endothermic curve of 88.5% or more of the total peak area.
  • the PTFE fibrous powder preferably has an average fiber length of 100 to 5000 mm and an average shape factor of 5 or more.
  • the specific surface area measured by the nitrogen adsorption method is preferably 4.0 m 2 Zg or more.
  • the present invention also relates to a polytetrafluoroethylene papermaking product obtained by using the PTFE fibrous powder as a raw material and going through a papermaking process.
  • the peak area ratio on the low-temperature side in the obtained melting endothermic curve is 88.5% or more of the total peak area.
  • a method for producing a polytetrafluoroethylene fibrous powder having an average fiber length of 100 to 5,000 m and an average shape factor of 5 or more, comprising supplying a raw material polytetrafluoroethylene powder. Feeding the raw material polytetrafluoroethylene powder from the hopper to a stretching treatment tank, stretching by a stretching means, and classifying after stretching.
  • the present invention relates to a method for producing a fluoroethylene fibrous powder.
  • the supply of the raw material polytetrafluoroethylene powder from the hopper to the stretching treatment tank is performed by using the flow of a medium. It is preferable to remove the polytetrafluoroethylene powder having a particle size of 5.0 m or less by a classification step performed after the stretching treatment.
  • the amount of energy applied to the polytetrafluoroethylene powder from the stretching means during the stretching process is preferably 10 to 200 kcalZkg.
  • the present invention relates to a molded article obtained from the PTFE paper product.
  • BRIEF DESCRIPTION OF THE FIGURES Figure 1 shows an example of a melting endothermic curve obtained by analyzing PTF powder with a differential scanning calorimeter, and two peak curves obtained by separating the peaks of the melting endothermic curve.
  • Fig. 1 shows an example of a melting endothermic curve (hereinafter also referred to as a DSC curve) obtained by analyzing PTFE powder with a differential scanning calorimeter (solid line), and two peak curves obtained by separating the peaks of the DSC curve. (Broken line).
  • a DSC curve melting endothermic curve obtained by analyzing PTFE powder with a differential scanning calorimeter
  • Differential scanning calorimeter measurement of PTFE fine powder with normal molecular weight shows that there is a double peak or a clear shoulder from around 337 to around 340 ° C as shown in Fig. 1.
  • a single peak is observed. This is due to the release of the first (lower temperature) peak (or shoulder) due to the release of the micro-Brownian motion of molecules that have been unraveled during the polymerization process of PTFE, and the micro-Brownian motion of the molecules that have not progressed during the polymerization process.
  • the molecular weight of PTFE molecules is much larger than that of general-purpose molten resins, it may be more energy stable to organize them with a single molecular chain than to organize them as a group.
  • the molecules are present in a state where the binding force from the surroundings is relatively small, so that the conformational stabilization of one molecular chain is likely to occur.
  • some molecules are organized by interference from external forces such as shear force and intermolecular force.
  • the disintegration of molecules progresses further, and the more fusion between tissues occurs, the more the molded product with excellent cohesion and shape can be obtained.
  • the stress is transmitted uniformly, and the pressure is excellent.
  • the disentanglement of the molecular chains may have occurred during the temperature rise.However, if only the thermal disentanglement operation was used, it would be difficult to achieve uniform control of the disassembly, and some excess heat would be applied. In such a case, there is a problem that the site is firmly organized and loses the adhesion to other tissues. To avoid this, it is preferable to use unraveling by external force and unraveling by heat at the same time.
  • the peak area in the melting endothermic curve obtained by the differential scanning calorimeter is directly proportional to the calorific value, and is proportional to the number of molecules in a generally accepted range. Therefore, as shown in Figure 1, two pins When a DSC curve with a single peak or peak is separated into two normal or other distribution curves, as shown by the dashed lines, the molecule whose peak area on the cold side is unraveled And the area of the peak (P H ) on the high temperature side can be considered to be proportional to the number of undissociated molecules, so that the ratio of the dissociated PTFE molecules is It can be evaluated by the ratio of the area of the low-temperature side peak (P L ) to the total peak area in the melting endothermic curve obtained by the differential scanning calorimeter.
  • a double peak or a single peak with a distinct shoulder can be mathematically understood as a composite curve with three or more multiple normal distributions, but since it has two vertices, it has two normal distributions or Separation as a distribution curve similar to this is considered sufficiently valid, and reasonable results have been obtained in the study of the present invention.
  • the composite absorption peak can usually be separated by approximation using a Gaussian-Lorentian type curve.
  • the degree of divergence is smaller, and this method is also used in the computational software attached to many commercially available analytical instruments.
  • the basic peak position is determined by giving the two apparent vertices found in the PTFE powder as a raw material as initial values and performing approximation without any restriction.
  • the basic peak positions obtained in this way are 339.14 ° «0 and 33.43.01, and based on this, the linear and half-value widths are not limited, and only the peak temperature is the initial value. From this, the composite curve was separated into two by approximation with the range limited to 0.6 to 0.7 or less, and the peak area was determined. In this study, we tried to reduce the time required for convergence of values. For this purpose, information on the raw material powder was used, but it can also be obtained directly from the melting curve of the fibrous powder.
  • the PTFE fibrous powder of the present invention was subjected to differential scanning calorimetry analysis at a heating rate of 5 ° C per minute, and the peak area on the low temperature side of the obtained melting endothermic curve was 88.5% of the total peak area. It is preferably 92.0% or more and 99.5% or less. If the low-temperature side peak area is less than 88.5% of the total peak area, the cohesive force tends to be insufficient and the molded article tends to lose its shape, and the obtained paper tends to have poor cushioning properties. is there. As already mentioned, when the peak area on the low temperature side is too large, that is, when two peaks (or shoulders) are not observed, it is often impossible to obtain a desirable state of molding the paper.
  • the specific surface area of the raw material greatly affects its cohesion, that is, the mechanical properties of the molded product.
  • the specific surface area of the PTFE fibrous powder may be 4.0 m 2 / g or more. More preferably, it is not less than 5.0 m 2 Zg and not more than 8.5 m 2 Zg.
  • the specific surface area is a value measured by a nitrogen adsorption method.
  • the fibrous powder is likely to be densely packed, resulting in a large weight per unit area of the paper, resulting in low air permeability and a tendency to hardly exhibit cushioning properties. .
  • the raw material powder has a fibrous shape.
  • the shape factor can indicate that the raw material is fibrous.
  • amorphous powders exhibiting cohesive strength as paper show cohesive strength but may not be fibrous in view factor.
  • the fibrous state means that all or a part thereof is stretched by an external force and can exhibit anisotropy in physical properties.
  • the raw material PTFE used in the present invention may be a homopolymer of tetrafluoroethylene (hereinafter abbreviated as TFE), or 95 to 100 mol% of TFE, and the formula (I):
  • R f is a fluorine-containing alkyl group having 1 to 3 carbon atoms
  • fluoroolefin represented by the formula (I) examples include perfluoroolefins such as hexafluoropropylene (hereinafter abbreviated as HFP).
  • fluorine-containing (alkyl vinyl ether) represented by the formula (II) examples include perfluoro (methyl vinyl ether) (hereinafter abbreviated as PMVE), perfluoro (ethyl vinyl ether) (hereinafter abbreviated as PEVE), and perfluoro. (Propyl vinyl ether) (hereinafter abbreviated as PPVE).
  • the raw material PTFE powder used in the present invention can be obtained by polymerization using a polymerization initiator in the presence of a water-soluble fluorinated dispersant.
  • a polymerization initiator include persulfates and organic peroxides
  • the chain transfer agent include hydrogen and hydrocarbons such as propane, and water-soluble compounds such as ethanol.
  • the raw material PTFE powder thus obtained preferably has an average particle size of 5 to 2000 m. If the average particle size is less than 5 zzm, the paper will be hard and have low air permeability due to the large amount of fine powder after treatment. If the average particle size exceeds 2 OO Om, coarse powder will remain after the treatment, resulting in a paper with a rough surface.
  • the PTFE fibrous powder of the present invention can be produced by the following production method using, for example, an apparatus having a raw material hopper, a stretching tank, and a classification device.
  • the raw material PTFE powder is charged from a supply machine into a raw material hopper,
  • the raw material PTFE powder is supplied from the hopper to the stretching tank.
  • the supply of the raw PTFE powder to the drawing tank may be performed by dropping under its own weight, or may be performed mechanically depending on the form of the raw PTFE powder, but the shape of the obtained PTFE fibrous powder is completely controlled.
  • the stretching treatment tank is provided with stretching means (details will be described later).
  • Use fibrous powder when processing the raw material PTFE powder, it is preferable to control the amount of energy applied to the PTFE powder during the process to control the degree of unraveling of the PTFE fibrous powder.
  • the raw material PTFE powder In the step of supplying the raw material PTFE powder from the raw material hopper to the stretching tank, if a material having a small particle size is used, it hardens in the hopper, and it becomes difficult to drop and supply the PTFE powder by its own weight. In that case, a liquid such as water can be forcibly supplied to the stretching tank as a medium.
  • a liquid medium When the obtained PTFE fiber powder is stored without immediately sending it to the papermaking process, it is not preferable to use a liquid medium, so supply the raw PTFE powder using a gas such as dry air as the medium. be able to. However, it is not preferable because it may affect the movement of the rotating body in the stretching tank or the discharge of the stretched raw PTFE powder.
  • a PTFE fibrous powder having an average fiber length of 100 to 500; m and an average shape factor of 5 or more can be produced very efficiently.
  • the stretching treatment temperature preferably utilizes the frictional heat during stretching. This tends to make it easier to fibrillate and to obtain powder having a relatively stable fiber length. Therefore, it is preferable that the stretching means performs a stretching process using a frictional force.
  • a stretching means includes, for example, a hammer mill and a screen mill, and is preferably an apparatus capable of applying a shearing force in one direction only by a rotating body to stretch the raw material powder.
  • the amount of energy applied to the PTFE powder from the stretching means during the stretching process is 10 to 200 kcal Zkg, it is possible to prevent the generation of PTFE aggregates.
  • the PTFE paper made from the PTFE fibrous powder obtained in this way has much entanglement between the fibrous powders, and is locally excellent in cushioning properties accompanied by heat fusion between the powders. Papermaking can be obtained.
  • the amount of energy added to the PTFE powder from the stretching means is less than 10 kca 1 Zkg, short fibrous powders increase and sufficient physical entanglement cannot be obtained.
  • the amount of energy applied to the PTFE powder from the stretching means during the stretching process can be defined by the amount of energy given to the stretching means.
  • the amount of energy given to the stretching means is the amount of energy per 1 kg of the PTFE powder required to maintain the number of revolutions of the stretching when the PTFE powder is stretched by the stretching means. It can be obtained from the difference between the current values of When using a medium to supply the raw material to the stretching tank, the amount of heat to be applied must be calculated based on the room temperature of 40 ° C or less, including the amount of heat given from the temperature difference with the medium.
  • the raw material PTFE powder is processed, and then classified using a classifier.
  • the average fiber length is preferably from 100 to 4000. If the average fiber length is less than 100 zm, a part of the average fiber length will fall off from the net-like base material during papermaking, causing pinholes. On the other hand, if the average fiber length exceeds 5000 m, it will be difficult to produce paper with a uniform thickness because the fiber length is long.
  • the classification device include a classification screen and the like, and a device capable of separating powder at a predetermined size as a boundary is preferable.
  • removing the PTFE fibrous powder having a particle size of 5 m or less is preferable in that the air permeability of the PTFE paper made using the powder is improved, and the PTFE is excellent in flexibility and cushioning property. Further, it is preferable to remove the PTFE fibrous powder having a particle size of lOzm or less.
  • the particle size is measured using a laser diffraction type particle size distribution analyzer HELO S & RODOS system (manufactured by SYMPATEC) while dispersing the PTFE fiber powder with 3 bar compressed air.
  • Particle size refers to 50% particle size.
  • the average view factor of the PTFE fibrous powder is preferably 5 or more, more preferably 10 or more.
  • the upper limit of the average view factor is not particularly limited, but is preferably 1000 or less.
  • the average form factor is obtained by dividing the fiber length by the fiber width. When the average form factor is less than 5, the paper is difficult to peel off from the net-like base material after firing, resulting in a poorly finished paper having poor surface smoothness and appearance (fluffing, distortion).
  • the PTFE fibrous powder thus obtained can be paper-made by the following method.
  • the PTFE fibrous powder is uniformly dispersed in water or the like with a dispersant. And is considered as stock.
  • an organic polymer reinforced fiber, an inorganic filler and the like may be added to the stock.
  • the stock is formed on a substrate such as a net. After that, it is dried and fired to obtain PTFE paper.
  • a filter having a larger area can be installed without backing, thereby reducing the size of the filter unit.
  • the thickness of the PTFE paper obtained by papermaking depends on the intended use, but is preferably 0.02 mm or more and 8.00 mm or less, more preferably 0.05 mmL3 ⁇ 4 and 6.0 mm or less. More preferably, it is more than 0.10 mm and less than 4.00 mm. When the thickness is less than 0.02 mm, the trapping capacity tends to be insufficient when used as a filler. If the thickness is greater than 8.0 mm, the paper material will creep under its own weight, and the uniformity of the basis weight tends to be impaired.
  • the surface smoothness of the PTFE paper obtained by papermaking is preferably 10.5 m or less, more preferably 10.0 m or less. If the surface smoothness is larger than 10.5 m, it tends to fluff and dust during handling.
  • the surface smoothness is an arithmetic average roughness measured by a stylus type surface roughness meter, as described later.
  • the air permeability of the PTFE paper obtained by making the paper depends on the use of the PTFE paper, but 5.5 sec / cm ⁇ ) ⁇ 30 OmL or more, 14.0 sec cZcm ⁇ i ) ⁇ 30 OmL or less, more preferably 6.0 sec / cm (i) * 300 mL or more, and 13.0 sec / c ⁇ ⁇ 300 mL or less. If the value of the air permeability is less than 5.5 se ⁇ / ⁇ -300 ml, the collection efficiency of the fill tends to be inferior, and the value of the air permeability is 14.0 se ⁇ / ⁇ - If it is larger than 30 OmL, the processing capacity tends to be poor. As described later, the air permeability is required for 30 OmL of air to pass through a 1 cm (f) orifice using a Gurley tester. Measured time.
  • the paper product of the present invention is not only used in a so-called paper form, but also processed into a cubic shape and used as a molded product.
  • a plate-like material having irregularities such as an exterior plate is obtained.
  • it when it is fixed in a cylindrical shape, it can be used as a belt-shaped cushion material or a filter.
  • the PTFE molded article of the present invention can be applied to more various uses. For example, to provide high dimensional stability such as high strength that cannot be exhibited by a molded product of PTFE alone, such as resistance to riff, it is possible to mix and mold with powders of aramide, fiber, fibrid, etc. Good. Abrasion resistance can be expected to be improved by mixing with fibers and fibers made of polyvinyl thiazole.
  • the fibrous powder of the present invention Even if the molded product obtained from the mixture with other materials has a shape such as a columnar or rectangular parallelepiped, if the fibrous powder of the present invention is used, a relatively dry dispersing method can be used to obtain a relatively dispersible material. Good complexes are obtained. Dry mixing is easy, but wet mixing may be used if necessary. It is also possible to obtain mixed paper products based on these findings.
  • the melting point of the mating partner material is preferably 200 or more, more preferably 220 ° C. or more, so as not to impair the high heat resistance of PTFE.
  • the component does not necessarily need to be organic, and one or more mating materials should be appropriately selected according to the purpose.
  • Examples of these include fibers such as polyparaphenylenebenzoxazole, liquid crystalline polyester, aramide pulp, glass, and carbon, but the present invention is not limited to these examples.
  • the melting point is a value determined by the DSC method.
  • the mating material used in the composite has high heat resistance, but it always has high heat resistance depending on applications that do not particularly require heat resistance. No need. For example, if it is desired to improve the strength of the paper while maintaining the charging characteristics of PTFE, it is possible to select a cut material of acrylic fiber, fibrid, etc. as the mating material.
  • Polyamide, polyester, polyolefin, etc. can also be selected as mating materials for bulky paper materials to expand.
  • the paper product of the present invention can be applied to various uses owing to its excellent heat resistance, but in some cases, it can be used as a more suitable one by forming the above-mentioned composite paper product.
  • a core material for compression molding it is possible to prevent the occurrence of abrasion at the edge of the sheet stamping molded product and the die, and it is possible to ensure excellent releasability continuously.
  • a filter medium it can not only electrostatically collect dust, but also exhibit durability against strong acids and strong alkalis and filterability at high temperatures. If it is used as a wire wrapping covering material, it has pores inside, so it can exhibit more excellent insulation properties and can also be expected to have properties as a heat insulating layer.
  • the PTFE fibrous powder is in a very bulky state, it is very easy to mix with other materials in a dry state, and thus it is suitable as a raw material for a composite molded product.
  • the weight fraction of PTFE is less than 2%, the properties of PTFE will not be sufficiently exhibited, and if it exceeds 98%, the effect of adding components other than PTFE will be sufficient. Can not be obtained. Therefore, the weight fraction of components other than PTFE contained in the mixed molded product is preferably from 2 to 98%, more preferably from 4 to 96%, and still more preferably from 5 to 95%.
  • the powder is measured with an electron microscope, and the obtained length in the fiber direction of 200 points or more is the value obtained by arithmetic averaging. In the measurement, those with a length of 80 tim or less shall not be measured.
  • the powder is measured with an electron microscope, and the length in the fiber direction obtained is divided by the width of the fiber. The following shall not be measured.
  • the standard sample is a specially-made paper whose compression work X 100 (%) is 60%.
  • the measurement was performed using RPC-220 manufactured by Seiko Instruments Inc. at a heating rate of 5 ° CZ for a sample amount of 3 mg. JIS—K7123 was referenced.
  • a differential scanning calorimeter analysis was performed at a heating rate of 5 ° C / min, and the obtained DSC curve was separated into two peak curves using a Gaussian-Lorentian type curve, and the area of the low-temperature side peak was calculated. Divide by peak area to calculate peak area ratio.
  • the PTFE paper is measured using a dial gauge H type (pressurized 200 g or less).
  • the specific surface area of the powder was evaluated by the nitrogen adsorption method using Biosorb manufactured by Yuasa Ionics Co., Ltd. in a standard accessory cell.
  • tensile strength (tensile strength) Using a Tensilon STA-1 150 manufactured by Orientec Co., Ltd., a sample having a width of 15 mm was measured at a distance between chucks of 100 mm and a tensile speed of 20 OmmZ, and tensile strength was calculated by the following conversion formula.
  • a polymer obtained by emulsion polymerization of 100 mol% of tetrafluoroethylene was used as a raw material PTFE powder (average particle size: 570 ⁇ m).
  • the obtained raw material PTFE powder was fed into a hopper by a feeder.
  • the PTFE powder was supplied to a stretching tank equipped with a rotary blade (tank inner diameter: 16 Om ⁇ ) and stretched while appropriately assisting with dry air.
  • the grinding capacity was 10-15 kgZ hours.
  • the results of calculating the amount of energy applied to the raw material powder at this time are as shown in Table 1.
  • the lower surface of the stretching tank is partially meshed, so that only small pieces of a certain size are allowed to exit the stretching tank. This was treated with a standard classification sieve to remove powder of 5 m or less.
  • a PTFE fibrous powder was obtained in the same manner as in Example 1 except that the raw PTFE powder was supplied to the stretching tank with hot air at the temperature shown in Table 2 and stretched.
  • the obtained PTFE fibrous powder had the average fiber length, average shape coefficient, peak area ratio, and specific surface area shown in Table 2, respectively.
  • Example 2 papermaking was performed in the same manner as in Example 1 to obtain PTFE paper having a thickness of 0.47 to 0.51 mm.
  • the surface smoothness, air permeability, cushioning property, and tensile strength of the obtained PTFE paper were as shown in Table 2.
  • the PTFE paper obtained in Comparative Example 1 has remarkably poor air permeability, and is not at all suitable for filter use.
  • any of the PTFE papers was frayed at the time of cutting and was inferior in dimensional retention of the cut portion. Table 2
  • a mixed paper product was obtained in the same manner as in Example 1, except that 2 parts by weight of aramide pulp (manufactured by Toray Industries, Inc., Kepler pulp) was added to 8 parts by weight of the PTF E fibrous powder during wet papermaking.
  • the coefficient of linear thermal expansion from room temperature to 250 ° C. was measured and found to be 0.5 ppm, indicating that it exhibited excellent hot dimensional stability.
  • a PTFE paper product having a uniform physical property distribution and excellent in cohesiveness, surface smoothness, pressure equalization, air permeability, dust collecting property, electrical properties, and mechanical properties.
  • a PTFE fibrous powder having an average fiber length of 100 to 500 Atm and an average shape factor of 5 or more.

Abstract

A polytetrafluoroethylene fibrous powder which when subjected to differential scanning calorimetry performed at a rate of temperature rise of 5°C/min, exhibits a ratio of low temperature side peak area of 88.5% or more based on the whole peak area in an obtained fusion endothermic curve. There is also provided a paper-like material constituted of the polytetrafluoroethylene fibrous powder, which excels in uniform pressure capability, air permeability and dust collection performance.

Description

明 糸田 ポリテトラフルォロェチレン繊維状粉体、 ポリテトラフルォロェチレン抄紙物、 ポリテトラフルォロェチレン成形体、 およびポリテトラフルォロェチレン繊維状粉体の製造方法 技術分野  Akira Itoda Polytetrafluoroethylene fibrous powder, polytetrafluoroethylene papermaking, polytetrafluoroethylene molded product, and method for producing polytetrafluoroethylene fibrous powder
本発明は、 均圧性、 通気性、 粉塵捕集性に優れるポリテトラフルォロェ チレン抄紙物、 その原料であるポリテトラフルォロェチレン繊維状粉体、 前記抄紙物からなる成形体、 および生産効率に優れたポリテトラフルォロ エチレン繊維状粉体の製造方法に関する。 詳細には、 抄造した場合に表面 が滑らかで、 通気性に優れるポリテトラフルォロェチレン製ペーパーを得 ることのできるポリテトラフルォロエチレン繊維状粉体の製造方法に関す る。 背景技術  The present invention relates to a polytetrafluoroethylene papermaking material excellent in pressure equalizing property, air permeability, and dust collecting property, a polytetrafluoroethylene fiber fibrous powder as a raw material thereof, a molded article made of the papermaking material, and production. The present invention relates to a method for producing a highly efficient polytetrafluoroethylene fibrous powder. More specifically, the present invention relates to a method for producing a polytetrafluoroethylene fibrous powder capable of obtaining a polytetrafluoroethylene paper having a smooth surface and excellent air permeability when formed. Background art
ポリテトラフルォロエチレン (以下、 P T F Eと略す) は、 優れた耐薬 品性、 耐熱性、 機械的特性、 電気的特性を有しており、 その用途は工業的 用途を中心として多岐にわたっている。 したがって、 その使用形態もさま ざまであり、 紙状品は濾紙、 断熱材、 絶縁材などに使用されている。  Polytetrafluoroethylene (hereinafter abbreviated as PTFE) has excellent chemical resistance, heat resistance, mechanical properties, and electrical properties, and its use is wide-ranging, mainly for industrial use. Therefore, it can be used in a variety of forms, and paper-like products are used for filter paper, thermal insulation, and insulation.
紙状品の製造方法としては、 種々の方法が知られている。 たとえば、 特 公昭 4 5— 8 1 6 5号公報には、 平均繊維長 1 0 0〜 5 0 0 0 m、 平均 形態係数 5以上である P T F E繊維状粉末あるいはこれに充填材を均一に 混合してなる組成物を液体中に分散させて紙料とし、 これを抄造、 乾燥し たのち、 基材から抄紙を剥離して焼成する方法が開示されている。 ここで 使用される P T F E繊維状粉末は、 原料 P T F Eを高温において強い剪断 力を作用させることにより粉碎して得られる。 この粉砕時に、 粉碎機自体 を加熱する、 または粉末を加熱してもよいことが記載されており、 さらに 熱風を吹き込みながら粉碎する方法が最も好ましいことが記載されている。 しかしながら、 そのような記載があるのみで、 具体的な実施内容および 実施例については開示がなく、 粉砕処理時の温度条件についても記載はな い。 従来、 20〜 50°C程度の温度条件で粉砕処理されているが、 この温 度条件で処理すると、 粒径 5 im以下の比較的細かい PTFE粉末が生成 し、 通気性の低い、 硬い PTFE製ペーパーになるという問題がある。 これに対して発明者らは、 特公昭 40- 11642号公報、 あるいは特 公昭 45 - 14127号公報などに記載されるように、 PTFE抄紙物の 製法を見出し、 これがクッション性、 均圧性に優れることを見出した。 し かしながら、 いかなる性質を満たす P T F E繊維状粉体をもつてすれば、 クッション材、 フィルター材などに適した均一な抄紙物が得られるかにつ いては知見がなかった。 Various methods are known as a method for producing a paper-like article. For example, Japanese Patent Publication No. 45-8165 discloses a PTFE fibrous powder having an average fiber length of 100 to 500 m and an average shape factor of 5 or more, or a filler mixed uniformly with this. A method is disclosed in which a paper composition is dispersed in a liquid to form a paper stock, which is made and dried, and then the paper is peeled off from the substrate and fired. The PTFE fibrous powder used here is a material that strongly shears raw PTFE at high temperatures. It is obtained by crushing by applying force. At the time of this pulverization, it is described that the pulverizer itself may be heated or the powder may be heated, and it is further described that a method of pulverizing while blowing hot air is most preferable. However, only such a description is given, but no specific contents and examples are disclosed, and no description is given of the temperature conditions at the time of the pulverization treatment. Conventionally, pulverization is performed at a temperature of about 20 to 50 ° C, but when processed at this temperature, relatively fine PTFE powder with a particle size of 5 im or less is generated, and is made of hard PTFE with low air permeability. There is a problem of becoming paper. On the other hand, the present inventors have found a method for producing a PTFE paper product as described in Japanese Patent Publication No. 40-11642 or Japanese Patent Publication No. 45-14127, which has excellent cushioning and pressure equalizing properties. Was found. However, there was no knowledge on what kind of properties PTFE fibrous powder could be used to obtain a uniform paper product suitable for cushioning materials and filter materials.
また機械強度を改善するためには手作業での補強糸の取付や金網による 裏打ちが必要となり、 結果として歪の不均一性が耐用寿命を短くするなど の問題があるほか、 PTFEの優れた電気特性を活かして基板材として使 用する場合、 自己保持性の問題から薄化が困難であった。 発明の開示  In order to improve mechanical strength, it is necessary to manually attach reinforcing threads and back up with wire mesh, resulting in problems such as non-uniformity of strain, shortening of service life, and the excellent electrical properties of PTFE. When used as a substrate material taking advantage of its characteristics, it was difficult to make it thinner due to the problem of self-holding. Disclosure of the invention
本発明は、 前記課題を明らかにして、 これを克服するものであり、 均一 な物性分布を有し、 凝集性、 均圧性、 通気性、 粉塵捕集性に優れる PTF E抄紙物、 その原料となる PTFE繊維状粉体、 前記 PTFE抄紙物から なる成形体、 および生産効率に優れた前記 P T F E繊維状粉体の製造方法 を提供することにある。  The present invention has been made to overcome the above problems by clarifying the above problems, and has a uniform distribution of physical properties, and is excellent in cohesiveness, pressure equalization, air permeability, and dust collecting properties. It is an object of the present invention to provide a PTFE fibrous powder, a molded article made of the PTFE paper product, and a method for producing the PTFE fibrous powder having excellent production efficiency.
すなわち、 本発明は、 毎分 5 °Cの昇温速度で為される示差走査型熱量計 分析において、 得られる溶融吸熱曲線における低温側のピーク面積比率が 全ピーク面積の 88. 5%以上である PTFE繊維状粉体に関する。 That is, the present invention relates to a differential scanning calorimeter performed at a heating rate of 5 ° C. per minute. The analysis relates to a PTFE fibrous powder having a peak area ratio on the low temperature side of the obtained endothermic curve of 88.5% or more of the total peak area.
前記 PTFE繊維状粉体において、 平均繊維長 100〜 5000M m、 および平均形態係数 5以上であることが好ましい。  The PTFE fibrous powder preferably has an average fiber length of 100 to 5000 mm and an average shape factor of 5 or more.
窒素吸着法により測定される比表面積が 4. 0m2Zg以上であること が好ましい。 The specific surface area measured by the nitrogen adsorption method is preferably 4.0 m 2 Zg or more.
また、 本発明は、 前記 PTFE繊維状粉体を原料とし、 抄紙工程を経る ことにより得られるポリテトラフルォロエチレン抄紙物に関する。  The present invention also relates to a polytetrafluoroethylene papermaking product obtained by using the PTFE fibrous powder as a raw material and going through a papermaking process.
さらに本発明は、 毎分 5 °Cの昇温速度で為される示差走査型熱量計分析 において、 得られる溶融吸熱曲線における低温側のピーク面積比率が全ピ ーク面積の 88. 5%以上であり、 平均繊維長が 100〜5000 mで あり、 平均形態係数が 5以上であるポリテ卜ラフルォロエチレン繊維状粉 体の製造方法であつて、 原料ポリテトラフルォロェチレン粉末を.供給手段 によりホッパーに送り込む工程、 前記原料ポリテトラフルォロエチレン粉 末を前記ホッパーから延伸処理槽に供給する工程、 延伸手段により延伸処 理する工程、 および延伸処理したのちに分級する工程からなるポリテトラ フルォロエチレン繊維状粉体の製造方法に関する。  Furthermore, in the present invention, in a differential scanning calorimeter analysis performed at a heating rate of 5 ° C per minute, the peak area ratio on the low-temperature side in the obtained melting endothermic curve is 88.5% or more of the total peak area. A method for producing a polytetrafluoroethylene fibrous powder having an average fiber length of 100 to 5,000 m and an average shape factor of 5 or more, comprising supplying a raw material polytetrafluoroethylene powder. Feeding the raw material polytetrafluoroethylene powder from the hopper to a stretching treatment tank, stretching by a stretching means, and classifying after stretching. The present invention relates to a method for producing a fluoroethylene fibrous powder.
前記製造方法において、 ホッパーから延伸処理槽への原料ポリテトラフ ルォロエチレン粉末の供給を、 媒体の流動を用いて行なうことが好ましい。 延伸処理後に行なう分級工程により、 粒径 5. 0 m以下のポリテトラ フルォロエチレン粉末を除去することが好ましい。  In the above production method, it is preferable that the supply of the raw material polytetrafluoroethylene powder from the hopper to the stretching treatment tank is performed by using the flow of a medium. It is preferable to remove the polytetrafluoroethylene powder having a particle size of 5.0 m or less by a classification step performed after the stretching treatment.
前記延伸処理時に前記延伸手段からポリテトラフルォロェチレン粉末に 加えるエネルギー量が 10〜200 k c a lZk gであることが好ましい。 また、 本発明は、 前記 PTFE抄紙物より得られる成形体に関する。 図面の簡単な説明 図 1は、 P T F Ε粉末を示差走査型熱量計で分析して得られる溶融吸熱 曲線の例、 およびこの溶融吸熱曲線をピーク分離して得た 2つのピーク曲 線である。 発明を実施するための最良の形態 The amount of energy applied to the polytetrafluoroethylene powder from the stretching means during the stretching process is preferably 10 to 200 kcalZkg. In addition, the present invention relates to a molded article obtained from the PTFE paper product. BRIEF DESCRIPTION OF THE FIGURES Figure 1 shows an example of a melting endothermic curve obtained by analyzing PTF powder with a differential scanning calorimeter, and two peak curves obtained by separating the peaks of the melting endothermic curve. BEST MODE FOR CARRYING OUT THE INVENTION
図 1に、 P T F E粉末を示差走査型熱量計で分析して得られる溶融吸熱 曲線 (以下、 D S C曲線ともいう) の例 (実線) 、 およびこの D S C曲線 をピーク分離して得た 2つのピーク曲線 (破線) を示す。  Fig. 1 shows an example of a melting endothermic curve (hereinafter also referred to as a DSC curve) obtained by analyzing PTFE powder with a differential scanning calorimeter (solid line), and two peak curves obtained by separating the peaks of the DSC curve. (Broken line).
通常の分子量を有する P T F Eのフアインパウダーを示差走査型熱量計 測定すると、 図 1に示すように、 3 3 7 付近から 3 4 0 °C付近にかけて、 ダブルピークあるいは明確にショルダ一を有することが確認されるシング ルピークが見られる。 これは、 P T F Eの重合過程において解きほぐしが 進んだ分子のミクロブラウン運動の解放による第 1の (低温側の) ピーク (またはショルダー) と、 重合過程において解きほぐしが進んでいない分 子のミクロブラウン運動の解放による第 2の (高温側の) ピーク (または ショルダー) からなるものであり、 P T F Eの重合過程において解きほぐ しが進んでいない分子は、 昇温により、 まず解きほぐしが起こり、 その後 に分子のミクロブラウン運動の解放が発生するため、 第 1のピーク発生か らタイムラグが生じて、 見掛け上高温側に融解ピーク (またはショルダー ) が生じる。 そのためにあまりに遅い昇温速度で測定を行うと、 タイムラ グは非常に小さなものとなり、 見掛け上から区別することが難しくなる。  Differential scanning calorimeter measurement of PTFE fine powder with normal molecular weight shows that there is a double peak or a clear shoulder from around 337 to around 340 ° C as shown in Fig. 1. A single peak is observed. This is due to the release of the first (lower temperature) peak (or shoulder) due to the release of the micro-Brownian motion of molecules that have been unraveled during the polymerization process of PTFE, and the micro-Brownian motion of the molecules that have not progressed during the polymerization process. Molecules that consist of a second (high-temperature side) peak (or shoulder) due to release, and that have not progressed during the polymerization of PTFE Since the release of the micro-Brownian motion occurs, a time lag occurs from the occurrence of the first peak, and a melting peak (or shoulder) appears on the apparently higher temperature side. Therefore, if the measurement is performed at a too slow heating rate, the time lag will be very small, and it will be difficult to distinguish from the apparent appearance.
P T F E分子は、 汎用の溶融樹脂と比較してその分子量が非常に大きい ために、 集団として組織化するよりも一本の分子鎖で組織化する方がより エネルギー的に安定化する場合がある。 特に重合過程においては比較的周 囲からの拘束力の少ない状態で分子が存在するために、 一本の分子鎖での コンフオメーシヨン的安定化は生じ易い状況にあるといえる。 しかしなが ら理想空間における重合 ·成長反応とは異なり、 少なからず周囲から剪断 力などの外力や、 分子間力による干渉を受ける中では組織化する分子もあ る。 Since the molecular weight of PTFE molecules is much larger than that of general-purpose molten resins, it may be more energy stable to organize them with a single molecular chain than to organize them as a group. In particular, it can be said that in the polymerization process, the molecules are present in a state where the binding force from the surroundings is relatively small, so that the conformational stabilization of one molecular chain is likely to occur. But Unlike the polymerization and growth reaction in the ideal space, some molecules are organized by interference from external forces such as shear force and intermolecular force.
P T F E粉体を成形し焼結する過程では、 より分子の解きほぐしが進行 し、 組織間での融着が多く生じるほど、 凝集力に優れた型崩れのない成形 品が得られるばかりでなく、 抄紙物の場合では応力が均一に伝達され、 均 圧性に優れたものとなる。  In the process of molding and sintering the PTFE powder, the disintegration of molecules progresses further, and the more fusion between tissues occurs, the more the molded product with excellent cohesion and shape can be obtained. In the case of an object, the stress is transmitted uniformly, and the pressure is excellent.
分子鎖の解きほぐしが昇温中に発生しているであろうことは前述したが、 熱的な解きほぐし操作のみに依存する場合、 その均一な制御が困難であり、 部分的に過剰な熱が掛かつた場合にはその部位が強固に組織化してしまい、 他の組織との融着性を喪失してしまうという問題がある。 これを回避する には外力による解きほぐしと、 熱による解きほぐしを併用することが好ま しい。  As mentioned above, the disentanglement of the molecular chains may have occurred during the temperature rise.However, if only the thermal disentanglement operation was used, it would be difficult to achieve uniform control of the disassembly, and some excess heat would be applied. In such a case, there is a problem that the site is firmly organized and loses the adhesion to other tissues. To avoid this, it is preferable to use unraveling by external force and unraveling by heat at the same time.
分子の解きほぐしが完了してしまつている場合、 抄紙物の成形が好まし い状態にできない場合が多い。 これは抄紙という操作の過程において、 P T F E繊維状粉体に掛かる外力および熱が、 その組織化を進行させてしま い、 抄紙物として組織化させる際の最適状態を通過してしまっていること に原因があると考えられる。 このため P T F E繊維状粉体は抄紙前に最適 の解きほぐし状態にあることが、 抄紙物の性状を制御する上で必要である ことが容易に理解される。 解きほぐしが完全に完了してしまった P T F E 粉体の D S C曲線上の融解ピークはシングルピ一クとなり、 3 2 5〜3 2 8 °C付近へとシフトしてしまい、 本発明の P T F E繊維状粉体には含まれ ない。  When the disentanglement of molecules has been completed, it is often not possible to make papermaking into a favorable state. This is because, during the operation of papermaking, the external force and heat applied to the PTFE fibrous powder have advanced their organization, and have passed the optimal state for organization as paper. It seems that there is a cause. For this reason, it is easily understood that it is necessary to control the properties of the paper-making material so that the PTFE fibrous powder is in an optimum loosened state before paper-making. The melting peak on the DSC curve of the PTFE powder that has been completely unraveled is a single peak and shifts to around 325 to 328 ° C, and the PTFE fibrous powder of the present invention Is not included.
示差走査型熱量計において得られる溶融吸熱曲線におけるピーク面積は、 その熱量と正比例し、 また一般に許容される範囲においてその分子の数に 比例するものであるといえる。 したがって、 図 1に示すように、 2つのピ ークあるいはショルダ一の明確な 1つのピ一クを有する D S C曲線を破線 に示すような 2つの正規分布あるいはその他の分布曲線に分離した場合、 低温側のピーク の面積が解きほぐされている分子の数に比例する ものであり、 高温側のピーク (P H) の面積が解きほぐされていない分子 の数に比例するものであると考えることができるので、 解きほぐされた P T F E分子の比率は、 示差走査型熱量計において得られる溶融吸熱曲線に おける低温側のピーク (P L) の面積と全ピーク面積との比によって評価 することが可能である。 It can be said that the peak area in the melting endothermic curve obtained by the differential scanning calorimeter is directly proportional to the calorific value, and is proportional to the number of molecules in a generally accepted range. Therefore, as shown in Figure 1, two pins When a DSC curve with a single peak or peak is separated into two normal or other distribution curves, as shown by the dashed lines, the molecule whose peak area on the cold side is unraveled And the area of the peak (P H ) on the high temperature side can be considered to be proportional to the number of undissociated molecules, so that the ratio of the dissociated PTFE molecules is It can be evaluated by the ratio of the area of the low-temperature side peak (P L ) to the total peak area in the melting endothermic curve obtained by the differential scanning calorimeter.
ダブルピークあるいは明確なショルダーを持つシングルピークは、 数学 的には 3つ以上の複数の正規分布による合成曲線として理解することも可 能であるが、 2つの頂点を持つことから 2つの正規分布あるいはそれに類 する分布曲線として分離することは充分妥当であると考えられ、 本発明の 検討においても妥当な結果が得られている。 これは部分的に解きほぐされ た分子も、 評価上は解きほぐしに必要な熱量の小さいものとして、 解きほ ぐされていない分子の正規分布に含まれているものと理解すればよい。 前記複合吸収ピークは、 通常は Gaussian-Lorentian型の曲線を用いて 近似することで分離することが可能である。 Gaussian 型あるいは Lorentian型の曲線のいずれかのみを用いる場合に比べて乖離の度合いが 少ない特徴があり、 市販されている多くの分析機器に附属の計算ソフトゥ エアでもこの手法が用いられている。 本発明においては原料となる P T F E粉体に見られる見掛け上の二つの頂点を初期値として与え、 これに制限 を与えず近似を行うことで、 基本的なピーク位置を決定する。 これによつ て得られた基本ピーク位置は 3 3 9 . 1 4 °«0と3 4 3 . 0 1でであり、 こ れを基準として線形 ·半値幅は制限なし、 ピーク温度のみ初期値から 0 . 6〜0 . 7 以下に制限して近似を行うことで、 複合曲線を二つに分離し、 そのピーク面積を求めた。 今回の検討では値の収束に要する時間の短縮の ために原料粉体の情報を利用したが、 直接的に繊維状粉体の融解曲線から 求めることもできる。 A double peak or a single peak with a distinct shoulder can be mathematically understood as a composite curve with three or more multiple normal distributions, but since it has two vertices, it has two normal distributions or Separation as a distribution curve similar to this is considered sufficiently valid, and reasonable results have been obtained in the study of the present invention. This means that even partially unmoltened molecules are considered to have a small calorific value for unmolling, and are included in the normal distribution of unmolten molecules. The composite absorption peak can usually be separated by approximation using a Gaussian-Lorentian type curve. Compared to using either Gaussian-type or Lorentian-type curves alone, the degree of divergence is smaller, and this method is also used in the computational software attached to many commercially available analytical instruments. In the present invention, the basic peak position is determined by giving the two apparent vertices found in the PTFE powder as a raw material as initial values and performing approximation without any restriction. The basic peak positions obtained in this way are 339.14 ° «0 and 33.43.01, and based on this, the linear and half-value widths are not limited, and only the peak temperature is the initial value. From this, the composite curve was separated into two by approximation with the range limited to 0.6 to 0.7 or less, and the peak area was determined. In this study, we tried to reduce the time required for convergence of values. For this purpose, information on the raw material powder was used, but it can also be obtained directly from the melting curve of the fibrous powder.
本発明の P T F E繊維状粉体は、 毎分 5 °Cの昇温速度で示差走査型熱量 計分析を行ない、 求めた溶融吸熱曲線の低温側のピーク面積が、 全ピーク 面積の 88. 5%以上であり、 92. 0%以上、 99. 5%以下であるこ とが好ましい。 低温側ピーク面積が全ピーク面積の 88. 5%未満である 場合、 凝集力が不足し成形品の形崩れが生じやすい傾向があり、 また、 得 られた抄紙物のクッション性が乏しくなる傾向がある。 低温側のピーク面 積が大きすぎ、 すなわち 2つのピーク (あるいはショルダー) が見られな いような場合、 抄紙物の成形が好ましい状態にできない場合が多いのは、 すでに述べたとおりである。  The PTFE fibrous powder of the present invention was subjected to differential scanning calorimetry analysis at a heating rate of 5 ° C per minute, and the peak area on the low temperature side of the obtained melting endothermic curve was 88.5% of the total peak area. It is preferably 92.0% or more and 99.5% or less. If the low-temperature side peak area is less than 88.5% of the total peak area, the cohesive force tends to be insufficient and the molded article tends to lose its shape, and the obtained paper tends to have poor cushioning properties. is there. As already mentioned, when the peak area on the low temperature side is too large, that is, when two peaks (or shoulders) are not observed, it is often impossible to obtain a desirable state of molding the paper.
一般に抄紙や圧縮成形などの成形方法では、 分子レベルでの均一な融解 を伴う成形方法と異なり、 原料の比表面積がその凝集力、 すなわち成形物 の機械特性に大きく関与し、 ある一定の範囲において比表面積が大きいほ ど、 その成形物の機械特性は向上する。 これは個々の原料の接触面積は増 大することにより、 組織としての応力伝達点が増加し、 結果として組織全 体の機械特性が向上することによる。 これは P T F Eの場合も同様であり、 PTFE繊維状粉体の比表面積が大きいほど、 その凝集力は増大し、 組織 として型崩れがなく機械特性により優れたものが得られる。 一方で P T F E繊維状粉体同士の融着が多く生じるほど、 抄紙物の比表面積は小さくな り、 ある一定程度以上の比表面積の減少率を示すことは抄紙物の物性を推 測する上で重要なパラメ一夕になると言える。  In general, in molding methods such as papermaking and compression molding, unlike the molding method that involves uniform melting at the molecular level, the specific surface area of the raw material greatly affects its cohesion, that is, the mechanical properties of the molded product. The larger the specific surface area, the better the mechanical properties of the molded product. This is due to an increase in the contact area of the individual raw materials, thereby increasing the stress transmission point as a structure, and as a result, improving the mechanical properties of the whole structure. This is the same in the case of PTFE. As the specific surface area of the PTFE fibrous powder increases, the cohesive force increases, and a structure that does not lose its shape and has more excellent mechanical properties can be obtained. On the other hand, the more the PTFE fibrous powders are fused together, the smaller the specific surface area of the paper product, and the specific surface area reduction rate exceeding a certain level is a prerequisite for estimating the physical properties of the paper product. It can be said that it will be an important night.
これは、 PTFE繊維状粉末およびその成形品の場合についても同様で あり、 PTFE繊維状粉末の比表面積が大きいほど、 その凝集力が大きく、 型崩れがなく機械的特性に優れた成形品が得られる。 そこで、 本発明にお いて、 PTFE繊維状粉末の比表面積は 4. 0m2/g以上であることが 好ましく、 5. 0m2Zg以上、 8. 5m2Zg以下であることがより好 ましい。 なお、 ここで比表面積とは、 窒素吸着法によって測定した値であ る。 比表面積が 4. 0m2/g未満である場合、 凝集力が不足し成形時に 型崩れが生じやすくなる。 また、 成形品が均一性に欠けるものとなり、 所 望の物性が得られなくなってしまう。 比表面積が 8. 5m2Zgよりも大 きい場合、 繊維状粉体が密に充填され易く得られる抄紙物の目付重量が大 きくなり、 通気性が低くクッション性を発現し難くなる傾向がある。 また紙としての特性を発揮させるには原料粉体の形状が繊維状であるこ とが好ましく、 一般には形態係数で繊維状であることを示すことができる が、 多数のひげが伸びたような形状をとる不定形粉体に関しては、 紙とし ての凝集力を示す一方で形態係数的には繊維状であるとはいえない場合も ある。 このような場合には比表面積を形態係数に併せて規定することで、 紙としての性質を発揮し得る原料であるか判断することができる。 これら を鑑みれば繊維状であるとは、 その全部ないしは一部が外力により延伸さ れ、 物性的に異方性を示し得るものと考えてよい。 The same applies to the case of the PTFE fibrous powder and its molded product.The greater the specific surface area of the PTFE fibrous powder, the greater the cohesive force of the PTFE fibrous powder. Can be Therefore, in the present invention, the specific surface area of the PTFE fibrous powder may be 4.0 m 2 / g or more. More preferably, it is not less than 5.0 m 2 Zg and not more than 8.5 m 2 Zg. Here, the specific surface area is a value measured by a nitrogen adsorption method. When the specific surface area is less than 4.0 m 2 / g, the cohesive force is insufficient, and the mold easily collapses during molding. In addition, the molded product lacks uniformity, and the desired physical properties cannot be obtained. If the specific surface area is larger than 8.5 m 2 Zg, the fibrous powder is likely to be densely packed, resulting in a large weight per unit area of the paper, resulting in low air permeability and a tendency to hardly exhibit cushioning properties. . In order to exhibit the properties of paper, it is preferable that the raw material powder has a fibrous shape.In general, the shape factor can indicate that the raw material is fibrous. In some cases, amorphous powders exhibiting cohesive strength as paper show cohesive strength but may not be fibrous in view factor. In such a case, by defining the specific surface area together with the view factor, it can be determined whether or not the raw material can exhibit the properties as paper. In view of these, it may be considered that the fibrous state means that all or a part thereof is stretched by an external force and can exhibit anisotropy in physical properties.
本発明において使用する原料 P T F Eとしては、 テトラフルォロェチレ ン (以下、 TFEと略す) の単独重合体でもよいし、 TFE95〜100 モル%と、 式 (I) :  The raw material PTFE used in the present invention may be a homopolymer of tetrafluoroethylene (hereinafter abbreviated as TFE), or 95 to 100 mol% of TFE, and the formula (I):
CX2 =CY (CF2 ) n Z (I) CX 2 = CY (CF 2 ) n Z (I)
(式中、 X、 Yおよび Zは同じかまたは異なり、 いずれも水素原子または フッ素原子、 nは 1〜5の整数) で示されるフルォロォレフイン、 および 式 (II) :  (Wherein, X, Y and Z are the same or different, each is a hydrogen atom or a fluorine atom, and n is an integer of 1 to 5), and a formula (II):
CF2 =CF-ORf (II) CF 2 = CF-OR f (II)
(式中、 Rf は炭素数 1〜3の含フッ素アルキル基) で示される含フッ素 (アルキルビエルエーテル) (以下、 PAVEと略す) よりなる群から選 ばれた少なくとも 1種のモノマ一 0〜5モル%との変性された TFE共重 合体 (変性 PTFE) があげられる。 (Wherein, R f is a fluorine-containing alkyl group having 1 to 3 carbon atoms) At least one monomer selected from the group consisting of fluorine-containing (alkyl bier ether) (hereinafter abbreviated as PAVE) Modified TFE weight with 5 mol% Coalescence (modified PTFE).
前記式 (I) で示されるフルォロォレフインとしては、 たとえばへキサ フルォロプロピレン (以下、 HFPと略す) などのパーフルォロォレフィ れる。  Examples of the fluoroolefin represented by the formula (I) include perfluoroolefins such as hexafluoropropylene (hereinafter abbreviated as HFP).
また、 前記式 (II) で示される含フッ素 (アルキルビニルエーテル) と しては、 パーフルォロ (メチルビニルエーテル) (以下、 PMVEと略す ) 、 パーフルォロ (ェチルビニルエーテル) (以下、 P EVEと略す) 、 パーフルォロ (プロピルビニルエーテル) (以下、 PPVEと略す) があ げられる。  Examples of the fluorine-containing (alkyl vinyl ether) represented by the formula (II) include perfluoro (methyl vinyl ether) (hereinafter abbreviated as PMVE), perfluoro (ethyl vinyl ether) (hereinafter abbreviated as PEVE), and perfluoro. (Propyl vinyl ether) (hereinafter abbreviated as PPVE).
本発明で使用する原料 P T F E粉末は、 水溶性含フッ素分散剤の存在下 に重合開始剤を用いて重合することにより得られる。 得られる重合体の分 子量を低分子量化するには、 重合開始剤の量を増やす、 連鎖移動剤を添加 する、 または変性モノマーの添加などの方法が採用される。 重合開始剤と しては、 たとえば過硫酸塩や有機過酸化物などが、 連鎖移動剤としてはた とえば水素、 プロパンなどの炭化水素、 エタノールなどの水溶性化合物な どがあげられる。  The raw material PTFE powder used in the present invention can be obtained by polymerization using a polymerization initiator in the presence of a water-soluble fluorinated dispersant. In order to reduce the molecular weight of the obtained polymer, methods such as increasing the amount of a polymerization initiator, adding a chain transfer agent, or adding a modifying monomer are employed. Examples of the polymerization initiator include persulfates and organic peroxides, and examples of the chain transfer agent include hydrogen and hydrocarbons such as propane, and water-soluble compounds such as ethanol.
このようにして得られる原料 PTFE粉末の平均粒径は、 5〜2000 mであることが好ましい。 平均粒径が 5 zzmより小さいと、 処理後に微 粉末が多いため、 硬く通気性の低いペーパーとなる。 また、 平均粒径が 2 O O O mをこえると、 処理後に粗粉が残るため、 表面の粗いぺーパ一と なる。  The raw material PTFE powder thus obtained preferably has an average particle size of 5 to 2000 m. If the average particle size is less than 5 zzm, the paper will be hard and have low air permeability due to the large amount of fine powder after treatment. If the average particle size exceeds 2 OO Om, coarse powder will remain after the treatment, resulting in a paper with a rough surface.
本発明の PTFE繊維状粉体は、 たとえば原料ホッパー、 延伸処理槽ぉ よび分級装置を有する装置により、 以下のような製造方法で製造すること ができる。  The PTFE fibrous powder of the present invention can be produced by the following production method using, for example, an apparatus having a raw material hopper, a stretching tank, and a classification device.
まず前記原料 P TF E粉末を供給機から原料ホッパーに投入し、 原料ホ ッパーから延伸処理槽へ原料 P T F E粉末の供給を行なう。 延伸処理槽へ の原料 P T F E粉末の供給は、 自重による落下によってなされてもよく、 原料 P T F E粉末の形態によっては機械的に行なってもよいが、 得られる P T F E繊維状粉体の形状を完全に制御するためには、 液体や気体などの 流動性の高い媒体によってなされるほうが好ましい。 First, the raw material PTFE powder is charged from a supply machine into a raw material hopper, The raw material PTFE powder is supplied from the hopper to the stretching tank. The supply of the raw PTFE powder to the drawing tank may be performed by dropping under its own weight, or may be performed mechanically depending on the form of the raw PTFE powder, but the shape of the obtained PTFE fibrous powder is completely controlled. In order to achieve this, it is preferable to use a medium having a high fluidity such as a liquid or a gas.
延伸処理槽には、 延伸手段 (詳細は後述) が設けられており、 原料 P T £粉末を延伸処理して?丁 £繊維状粉体とする。 ここで、 原料 P T F E粉末を処理する際に、 工程中に P T F E粉末に加えるエネルギー量を制 御して、 P T F E繊維状粉体の解きほぐしの進行度を制御することが好ま しい。  The stretching treatment tank is provided with stretching means (details will be described later). Use fibrous powder. Here, when processing the raw material PTFE powder, it is preferable to control the amount of energy applied to the PTFE powder during the process to control the degree of unraveling of the PTFE fibrous powder.
ついで、 分級装置により、 充分に延伸された粉末だけが選別され、 次の 分級装置へと送られる。 それ以外の粉末は延伸処理槽に戻され、 さらに処 理される。 最後に、 分級装置により (測定方法は後述する) 、 粒径 5 m 以下の P T F E粉末が除去され、 本発明の P T F E繊維状粉末が得られる。 以下、 各工程について詳述する。  Then, only the fully drawn powder is sorted out by the classifier and sent to the next classifier. Other powders are returned to the stretching tank for further processing. Finally, the PTF powder having a particle size of 5 m or less is removed by a classifier (the measuring method will be described later), and the PTF E fibrous powder of the present invention is obtained. Hereinafter, each step will be described in detail.
前記原料 P T F E粉末を原料ホッパーから延伸処理槽に供給する工程に おいて、 粒径の小さなものを用いる場合にはホッパー内で固まってしまい、 自重で落下供給させることが困難になる。 その場合は水などの液体を媒体 として延伸処理槽へ強制的に供給することができる。 得られた P T F E繊 維状粉体を即時に抄紙工程に送ることなく貯蔵する場合は、 液状媒体を用 いることは好ましくないため、 乾燥空気などの気体を媒体として原料 P T F E粉体の供給を行うことができる。 ただし、 延伸処理槽内の回転体の動 き、 あるいは延伸処理済の原料 P T F E粉体の排出に影響をおよぼす場合 があるのであまり好ましくない。 このような操作により、 平均繊維長を 1 0 0〜5 0 0 0; m、 平均形態係数 5以上の P T F E繊維状粉末を非常に 効率よく製造することができる。 また延伸処理温度は、 延伸時の摩擦熱を利用することが好ましい。 これ により、 フィブリル化しやすくなり、 比較的安定した繊維長の粉末が得ら れる傾向にある。 したがって、 前記延伸手段としては、 摩擦力を利用して 延伸処理を行うものが好ましい。 このような延伸手段としては、 たとえば ハンマーミル、 スクリーンミルなどがあげられるが、 回転体により一方向 にのみ剪断力を与え、 原料粉体を延伸し得る装置であることが好ましい。 前記延伸処理時に延伸手段から P T F E粉末に加えるエネルギー量を 1 0〜200 kc a l Zk gに制御することにより、 PTFE塊状物の発生 を防ぐことが可能となる。 とくに、 エネルギー量を 10~60 k c a 1Z k gに制御することが好ましい。 これによつて得られた P T F E繊維状粉 末で抄造した PTFE紙は、 繊維状粉体同士の絡み合いが多く得られ、 局 部的には粉同士の熱融着を伴うクッション性の優れた P T F E抄紙物を得 ることができる。 ここで、 延伸手段から PTFE粉末に加えるエネルギー 量が 10 k c a 1 Zk g未満であると、 短い繊維状粉末が多くなり充分な 物理的絡み合いが得られない。 また、 前記エネルギー量が 200 k c a 1 /kgをこえると、 繊維状粉体同士の熱融着が起こり難い傾向にある。 ここで、 延伸処理時に延伸手段から P TF E粉末に加える前記エネルギ 一量は、 延伸手段に与えるエネルギー量で定義をすることができる。 延伸 手段に与えるエネルギー量は、 P T F E粉末を前記延伸手段で延伸する際 に、 延伸回転数を維持するのに要する前記 PTFE粉末 1 kgあたりのェ ネルギー量のことで、 延伸時と空転時に延伸手段の電流値の差から求める ことができる。 媒体を用いて延伸処理槽への原料を供給する場合は、 与え る熱量は 40°C以下の室温を基準とし、 媒体との温度差から与えられる熱 量も含めて算出しなければならない。 In the step of supplying the raw material PTFE powder from the raw material hopper to the stretching tank, if a material having a small particle size is used, it hardens in the hopper, and it becomes difficult to drop and supply the PTFE powder by its own weight. In that case, a liquid such as water can be forcibly supplied to the stretching tank as a medium. When the obtained PTFE fiber powder is stored without immediately sending it to the papermaking process, it is not preferable to use a liquid medium, so supply the raw PTFE powder using a gas such as dry air as the medium. be able to. However, it is not preferable because it may affect the movement of the rotating body in the stretching tank or the discharge of the stretched raw PTFE powder. By such an operation, a PTFE fibrous powder having an average fiber length of 100 to 500; m and an average shape factor of 5 or more can be produced very efficiently. The stretching treatment temperature preferably utilizes the frictional heat during stretching. This tends to make it easier to fibrillate and to obtain powder having a relatively stable fiber length. Therefore, it is preferable that the stretching means performs a stretching process using a frictional force. Such a stretching means includes, for example, a hammer mill and a screen mill, and is preferably an apparatus capable of applying a shearing force in one direction only by a rotating body to stretch the raw material powder. By controlling the amount of energy applied to the PTFE powder from the stretching means during the stretching process to 10 to 200 kcal Zkg, it is possible to prevent the generation of PTFE aggregates. In particular, it is preferable to control the energy amount to 10 to 60 kca 1Z kg. The PTFE paper made from the PTFE fibrous powder obtained in this way has much entanglement between the fibrous powders, and is locally excellent in cushioning properties accompanied by heat fusion between the powders. Papermaking can be obtained. Here, if the amount of energy added to the PTFE powder from the stretching means is less than 10 kca 1 Zkg, short fibrous powders increase and sufficient physical entanglement cannot be obtained. On the other hand, when the energy amount exceeds 200 kca 1 / kg, heat fusion between the fibrous powders tends to hardly occur. Here, the amount of energy applied to the PTFE powder from the stretching means during the stretching process can be defined by the amount of energy given to the stretching means. The amount of energy given to the stretching means is the amount of energy per 1 kg of the PTFE powder required to maintain the number of revolutions of the stretching when the PTFE powder is stretched by the stretching means. It can be obtained from the difference between the current values of When using a medium to supply the raw material to the stretching tank, the amount of heat to be applied must be calculated based on the room temperature of 40 ° C or less, including the amount of heat given from the temperature difference with the medium.
PTF E粉末を処理したのちに分級する工程においては、 原料 P T F E 粉体を処理後、 分級装置により分級操作を行う。 この分級操作により、 延 伸が不充分である P T F E繊維状粉末が、 延伸処理槽から流出することを 防ぐことができる。 そのため、 平均繊維長 100〜5000 mを有する PTFE繊維状粉末を効率よく得ることができる。 とくに、 平均繊維長は 100〜 4000 であることが好ましい。 前記平均繊維長が 100 z m未満であると、 抄造する際に、 網状の基材から一部脱落し、 ピンホール の原因となる。 また、 平均繊維長が 5000 mをこえると、 繊維長が長 いため、 厚みの均一なペーパーをつくることが困難となる。 分級装置とし ては、 分級用スクリーンなどがあげられるが、 所定サイズを境界として粉 体を分離し得るものが好ましい。 In the process of classifying PTFE powder after processing, the raw material PTFE powder is processed, and then classified using a classifier. By this classification operation, It is possible to prevent PTFE fibrous powder with insufficient elongation from flowing out of the stretching treatment tank. Therefore, a PTFE fibrous powder having an average fiber length of 100 to 5000 m can be efficiently obtained. In particular, the average fiber length is preferably from 100 to 4000. If the average fiber length is less than 100 zm, a part of the average fiber length will fall off from the net-like base material during papermaking, causing pinholes. On the other hand, if the average fiber length exceeds 5000 m, it will be difficult to produce paper with a uniform thickness because the fiber length is long. Examples of the classification device include a classification screen and the like, and a device capable of separating powder at a predetermined size as a boundary is preferable.
さらに、 粒径 5 m以下の PTFE繊維状粉末を除去することで、 前記 粉末を使用して抄造された P T F E抄紙物の通気性が向上し、 しなやかで クッション性に優れる点で好ましい。 さらには、 粒径 l O zm以下の PT F E繊維状粉末を除去することが好ましい。  Furthermore, removing the PTFE fibrous powder having a particle size of 5 m or less is preferable in that the air permeability of the PTFE paper made using the powder is improved, and the PTFE is excellent in flexibility and cushioning property. Further, it is preferable to remove the PTFE fibrous powder having a particle size of lOzm or less.
ここで、 前記粒径の測定は、 レーザー回折式粒度分布測定装置 HE LO S&RODOSシステム (SYMPATEC社製) を用いて、 PTFE繊 維状粉末を 3 b a rの圧縮エアで分散させながら測定する。 粒径とは 50 %粒径をいう。  Here, the particle size is measured using a laser diffraction type particle size distribution analyzer HELO S & RODOS system (manufactured by SYMPATEC) while dispersing the PTFE fiber powder with 3 bar compressed air. Particle size refers to 50% particle size.
また、 PTFE繊維状粉末の平均形態係数は 5以上が好ましく、 10以 上であることがより好ましい。 また、 平均形態係数の上限値は特に限定さ れないが、 1000以下であることが好ましい。 前記平均形態係数とは、 繊維幅で繊維長を割って得られるものである。 前記平均形態係数が 5より 小さいと、 焼成後に網状の基材から剥離しにくく、 表面平滑性や外観 (毛 羽立ち、 歪み) などが劣る仕上がりのわるいペーパーとなる。  Further, the average view factor of the PTFE fibrous powder is preferably 5 or more, more preferably 10 or more. The upper limit of the average view factor is not particularly limited, but is preferably 1000 or less. The average form factor is obtained by dividing the fiber length by the fiber width. When the average form factor is less than 5, the paper is difficult to peel off from the net-like base material after firing, resulting in a poorly finished paper having poor surface smoothness and appearance (fluffing, distortion).
このようにして得られた P T F E繊維状粉末は、 以下の方法によって、 抄紙することができる。  The PTFE fibrous powder thus obtained can be paper-made by the following method.
まず、 前記 PTFE繊維状粉末は、 分散剤により水中などに均一に分散 され、 紙料とされる。 このとき紙料に、 有機高分子強化繊維、 無機充填材 などを添加してもよい。 この紙料を網状などの基材上に抄造する。 そのの ち、 乾燥、 焼成して、 PTFE製ペーパーが得られる。 特に有機高分子強 化繊維を含有する場合、 より大面積のフィルターを裏打ちすることなく設 置することができ、 これによりフィル夕ュニッ卜の小型化が図れる。 First, the PTFE fibrous powder is uniformly dispersed in water or the like with a dispersant. And is considered as stock. At this time, an organic polymer reinforced fiber, an inorganic filler and the like may be added to the stock. The stock is formed on a substrate such as a net. After that, it is dried and fired to obtain PTFE paper. In particular, when organic polymer-reinforced fibers are contained, a filter having a larger area can be installed without backing, thereby reducing the size of the filter unit.
抄紙して得た PTFE製ペーパーの厚さは、 その用途にもよるが、 0. 02mm以上、 8. 00mm以下であることが好ましく、 0. 05mnL¾ 上、 6. 0 0mm以下であることがより好ましく、 0. 1 0 mm以上、 4 . 00mm以下であることがさらに好ましい。 厚さが 0. 02mm未満で ある場合、 フィル夕として用いた場合に、 捕集能力が不足する傾向がある。 厚さが 8. 0 0mmよりも大きい場合、 抄紙物が自重によりクリープ変形 してしまうため、 目付の均一性が損なわれてしまう傾向がある。  The thickness of the PTFE paper obtained by papermaking depends on the intended use, but is preferably 0.02 mm or more and 8.00 mm or less, more preferably 0.05 mmL¾ and 6.0 mm or less. More preferably, it is more than 0.10 mm and less than 4.00 mm. When the thickness is less than 0.02 mm, the trapping capacity tends to be insufficient when used as a filler. If the thickness is greater than 8.0 mm, the paper material will creep under its own weight, and the uniformity of the basis weight tends to be impaired.
また、 抄紙して得た PTFE製ペーパーの表面平滑性は、 1 0. 5 m 以下が好ましく、 1 0. 0 m以下がより好ましい。 表面平滑度が 1 0. 5 mよりも大きい場合、 ハンドリング時に毛羽立ち、 ダストを生じてし まう傾向がある。 なお、 ここで表面平滑性とは、 後述のとおり、 触針式表 面粗さ計による算術平均粗さである。  Further, the surface smoothness of the PTFE paper obtained by papermaking is preferably 10.5 m or less, more preferably 10.0 m or less. If the surface smoothness is larger than 10.5 m, it tends to fluff and dust during handling. Here, the surface smoothness is an arithmetic average roughness measured by a stylus type surface roughness meter, as described later.
また、 抄紙して得た PTFE製ペーパーの透気度は、 PTFE製べ一パ —の用途にもよるが、 5. 5 s e c/cm<) · 3 0 OmL以上、 14. 0 s e cZcm<i) · 3 0 OmL以下であることが好ましく、 6. 0 s e c/ cm(i) * 3 0 0mL以上、 1 3. 0 s e c / c πιφ · 30 0 mL以下であ ることがさらに好ましい。 透気度の値が 5. 5 s e ο/οπιφ - 3 0 0m L未満である場合、 フィル夕としての捕集効率に劣る傾向があり、 透気度 の値が 14. 0 s e ο/οτηφ - 3 0 OmLよりも大きい場合、 処理能力 に劣る傾向がある。 なお、 ここで透気度は、 後述のとおり、 ガーレ試験機 を用いて、 3 0 OmLの空気が 1 cm(f)のオリフィスを通過するのに要す る時間を測定したものである。 The air permeability of the PTFE paper obtained by making the paper depends on the use of the PTFE paper, but 5.5 sec / cm <) · 30 OmL or more, 14.0 sec cZcm <i ) · 30 OmL or less, more preferably 6.0 sec / cm (i) * 300 mL or more, and 13.0 sec / cπιφ · 300 mL or less. If the value of the air permeability is less than 5.5 se ο / οπιφ-300 ml, the collection efficiency of the fill tends to be inferior, and the value of the air permeability is 14.0 se ο / οτηφ- If it is larger than 30 OmL, the processing capacity tends to be poor. As described later, the air permeability is required for 30 OmL of air to pass through a 1 cm (f) orifice using a Gurley tester. Measured time.
本発明の抄紙物は、 いわゆる紙状のまま用いられるばかりではなく、 立 体形状に加工されて成形品としても使用される。 例えば抄紙物をシートス タンピング成形すると、 外装板のように凹凸のある板状物が得られる。 ま た例えば、 筒状にして固定すると、 ベルト状のクッション材あるいはフィ ルターなどとして用いることができる。 このように抄紙物を立体形状に加 ェすることで、 基材への貼り付けなどによらず立体形状を付与し、 その形 状に基づく機能を発現させることも可能である。  The paper product of the present invention is not only used in a so-called paper form, but also processed into a cubic shape and used as a molded product. For example, when a paper product is subjected to sheet stamping, a plate-like material having irregularities such as an exterior plate is obtained. Further, for example, when it is fixed in a cylindrical shape, it can be used as a belt-shaped cushion material or a filter. By adding a paper product to a three-dimensional shape in this way, it is possible to impart a three-dimensional shape without relying on affixing to a base material, and to exert a function based on the shape.
P T F Eでは発揮し得ない物性を他材との複合化により付与することで、 本発明の P T F E成形物はより多様な用途に適用することができる。 たと えば P T F E単体の成形物では発揮されえない高強度ゃリフ口一耐性など の熱間寸法安定性を付与するにはァラミドからなる粉体、 繊維、 フイブリ ッドなどと混合し、 成形すればよい。 ポリべンズチアゾールからなる繊維、 フイブリッドなどと混合すれば耐磨耗性の向上が期待できる。 他材との混 合物から得られる成形物は、 円柱状や直方体などの形状であっても、 本発 明の繊維状粉体を用いれば、 容易な乾式の混合法で比較的分散性のよい複 合体が得られる。 乾式での混合は容易であるが、 必要に応じて湿式の混合 を用いてもよい。 これらの知見をもとに混合抄紙物を得ることもまた可能 である。 このように、 複合化する相手材は P T F Eの高い耐熱性を損なわ ないために、 その融点が 2 0 0 以上であることが好ましく、 より好まし くは 2 2 0 °C以上である。 その成分が有機物である必要は必ずしもなく、 目的に応じて適宜 1種ないしは 2種以上の相手材が選択されるべきである。 これらの例としては、 ポリパラフエ二レンベンズォキサゾ一ル、 液晶性ポ リエステル、 ァラミドパルプ、 ガラス、 炭素などの各繊維があげられるが、 本発明はこれらの例に制限されるものではない。 また融点は D S C法によ り求められる数値である。 前述したように耐熱性を維持する上では、 複合化する際の相手材が高い 耐熱性を有していることが好ましいが、 耐熱性を特に必要としない用途に よっては必ずしも高い耐熱性を備える必要はない。 たとえば P T F Eの備 える帯電特性を維持しつつ、 その抄紙物の強度を向上させたい場合はァク リル繊維の裁断物、 フイブリツドなどを相手材として選択することも可能 であり、 ロフティング加工などにより嵩高く抄紙物を膨張させるには、 ポ リアミド、 ポリエステル、 ポリオレフインなどを相手材として選択するこ ともできる。 By imparting physical properties that cannot be exhibited by PTFE by combining with other materials, the PTFE molded article of the present invention can be applied to more various uses. For example, to provide high dimensional stability such as high strength that cannot be exhibited by a molded product of PTFE alone, such as resistance to riff, it is possible to mix and mold with powders of aramide, fiber, fibrid, etc. Good. Abrasion resistance can be expected to be improved by mixing with fibers and fibers made of polyvinyl thiazole. Even if the molded product obtained from the mixture with other materials has a shape such as a columnar or rectangular parallelepiped, if the fibrous powder of the present invention is used, a relatively dry dispersing method can be used to obtain a relatively dispersible material. Good complexes are obtained. Dry mixing is easy, but wet mixing may be used if necessary. It is also possible to obtain mixed paper products based on these findings. As described above, the melting point of the mating partner material is preferably 200 or more, more preferably 220 ° C. or more, so as not to impair the high heat resistance of PTFE. The component does not necessarily need to be organic, and one or more mating materials should be appropriately selected according to the purpose. Examples of these include fibers such as polyparaphenylenebenzoxazole, liquid crystalline polyester, aramide pulp, glass, and carbon, but the present invention is not limited to these examples. The melting point is a value determined by the DSC method. As described above, in order to maintain heat resistance, it is preferable that the mating material used in the composite has high heat resistance, but it always has high heat resistance depending on applications that do not particularly require heat resistance. No need. For example, if it is desired to improve the strength of the paper while maintaining the charging characteristics of PTFE, it is possible to select a cut material of acrylic fiber, fibrid, etc. as the mating material. Polyamide, polyester, polyolefin, etc. can also be selected as mating materials for bulky paper materials to expand.
本発明の抄紙物は、 その優れた耐熱性から様々な用途に適用し得るが、 場合によっては前述の複合抄紙物化することでさらに適したものとして使 用することができる。 たとえば圧縮成形用中子材として用いれば、 シート スタンピング成形物と金型のエツジ部での擦れ傷の発生を防ぐことができ る上、 優れた離型性を連続して確保できる。 また濾材として使用すれば静 電的に集塵することができる他、 強酸、 強アルカリに対する耐久性、 高温 下での濾別性を発揮させることができる。 電線巻付被覆材として使用すれ ば内部に空孔を有することからより優れた絶縁特性を発揮する他、 断熱層 としての特性も期待できる。 筒型ベルト材にするには筒状のシームレスメ ッシュを用いて抄紙することで容易にシ一ムレスで離型性に優れたシーム レスベルトを得ることができ、 さらに強度が必要であれば強化繊維と混合 抄紙すればよい。 半田リフ口一加工用位置決め型紙として用いれば、 半田 付着も少なく作業性に格段の向上が期待できる。 絶縁紙として用いた場合、 周囲からの液剤などの付着を防ぎ、 ポンプュニットなどの制御部を安全に 長時間保護することができる。 情報処理速度、 通信速度の高速化に伴い回 路基板材にも高周波に対応する低誘電率が求められるが、 これに P T F E 製ペーパーあるいは混合抄紙物を適用すれば、 優れた電気特性を発揮する だけでなく、 強化材と複合化すれば充分な寸法安定性、 耐熱性も期待でき る。 特開 2002-23131号公報にあるように PTFE製ペーパーを 液晶製造ラインの中でクッション材として用いることは公知であるが、 そ の他の用途においては求められるクッション性は様々であり、 寸法安定性 ゃ耐磨耗性も求められる範囲であれば混合抄紙物を適用することができる。 The paper product of the present invention can be applied to various uses owing to its excellent heat resistance, but in some cases, it can be used as a more suitable one by forming the above-mentioned composite paper product. For example, when used as a core material for compression molding, it is possible to prevent the occurrence of abrasion at the edge of the sheet stamping molded product and the die, and it is possible to ensure excellent releasability continuously. In addition, when used as a filter medium, it can not only electrostatically collect dust, but also exhibit durability against strong acids and strong alkalis and filterability at high temperatures. If it is used as a wire wrapping covering material, it has pores inside, so it can exhibit more excellent insulation properties and can also be expected to have properties as a heat insulating layer. To make a cylindrical belt material, it is easy to obtain a seamless belt with excellent releasability by making paper using a cylindrical seamless mesh, and strengthen it if further strength is required. It is only necessary to mix paper with fiber. If it is used as a positioning pattern paper for processing the solder riff opening, it is expected that there will be little solder adhesion and a marked improvement in workability. When used as insulating paper, it prevents liquids and the like from adhering to the surroundings and protects control units such as the pump unit safely for a long time. With the increase in information processing speed and communication speed, circuit boards are also required to have low dielectric constants that can handle high frequencies.However, if PTFE paper or mixed paper is used, only excellent electrical properties will be exhibited. Instead, if combined with a reinforcing material, sufficient dimensional stability and heat resistance can be expected You. Although it is known to use PTFE paper as a cushioning material in a liquid crystal production line as disclosed in JP-A-2002-23131, the cushioning properties required for other uses are various, and dimensional stability is required. Properties 混合 Mixed paper products can be applied as long as abrasion resistance is also required.
PTF E繊維状粉体は非常に嵩高い状態にあるため、 乾燥状態で他材と の混合が非常に容易であるため、 複合成形物の原料として好適である。 これらの用途において他材と複合化する場合、 P T F Eの重量分率が 2 %未満であれば PTFEの特性が充分に発揮されず、 また 98%を超えれ ば PTFE以外の成分を添加した効果が充分に得られない。 したがって混 合成形物に含有される P T F E以外の成分の重量分率は 2〜 98 %が好ま しく、 より好ましくは 4〜96%であり、 さらに好ましくは 5〜95%で める。  Since the PTFE fibrous powder is in a very bulky state, it is very easy to mix with other materials in a dry state, and thus it is suitable as a raw material for a composite molded product. When compounding with other materials in these applications, if the weight fraction of PTFE is less than 2%, the properties of PTFE will not be sufficiently exhibited, and if it exceeds 98%, the effect of adding components other than PTFE will be sufficient. Can not be obtained. Therefore, the weight fraction of components other than PTFE contained in the mixed molded product is preferably from 2 to 98%, more preferably from 4 to 96%, and still more preferably from 5 to 95%.
つぎに、 本発明を実施例に基づいてさらに具体的に説明するが、 本発明 はこれらのみに限定されない。  Next, the present invention will be described more specifically based on examples, but the present invention is not limited thereto.
なお、 本発明の実施例で測定した各物性値は、 つぎの方法で測定したも のである。  The physical properties measured in the examples of the present invention were measured by the following methods.
(平均繊維長)  (Average fiber length)
粉末を電子顕微鏡で測定し、 得られた繊維方向の長さ 200点以上を算 術平均により求める値であって、 測定にあたっては、 長さ 80 tim以下の ものを測定しないものとする。  The powder is measured with an electron microscope, and the obtained length in the fiber direction of 200 points or more is the value obtained by arithmetic averaging. In the measurement, those with a length of 80 tim or less shall not be measured.
(平均形態係数)  (Average view factor)
粉末を電子顕微鏡で測定し、 得られた繊維方向の長さを繊維の幅で割つ て得られる形態係数 200点以上を算術平均により求められる値であって、 測定にあたっては、 長さ 80 m以下のものを測定しないものとする。  The powder is measured with an electron microscope, and the length in the fiber direction obtained is divided by the width of the fiber. The following shall not be measured.
(透気度)  (Air permeability)
PTFE製ペーパーを、 ガーレ試験機を用いて、 300mLの空気が 1 c m Φのオリフィスを通過するのに要する時間を測定する。 Using a Gurley tester, 300mL of air Measure the time required to pass through the cm Φ orifice.
(表面平滑性)  (Surface smoothness)
PTF Ε製ペーパーを触針式表面粗さ計により、 算術平均粗さを測定す る。  Measure the arithmetic average roughness of PTFTF paper with a stylus type surface roughness meter.
(クッション性)  (Cushioning)
コンプレツションテスターを用いて、 PTFE製ペーパーの圧縮仕事量 および 10回くり返した場合の圧縮回復仕事量を測定し、 標準サンプルを 100としたときの相対値で表わす。 クッション性が大きいほど、 数値は 大きい。 標準サンプルとは、 圧縮回復仕事量 圧縮仕事量 X 100 (%) の値が 60%の 丁 £製ぺーパーをぃぅ。  Using a compression tester, the compression work of PTFE paper and the compression recovery work after 10 repetitions were measured, and expressed as a relative value when the standard sample was taken as 100. The higher the cushioning, the higher the value. The standard sample is a specially-made paper whose compression work X 100 (%) is 60%.
(示差走査型熱量測定)  (Differential scanning calorimetry)
セイコーインスツルメンッ株式会社製 R PC— 220を用いて、 昇温速 度 5°CZ分、 サンプル量 3 mgにて測定を行った。 J I S— K7123を 参考とした。  The measurement was performed using RPC-220 manufactured by Seiko Instruments Inc. at a heating rate of 5 ° CZ for a sample amount of 3 mg. JIS—K7123 was referenced.
(ピーク面積比率)  (Peak area ratio)
毎分 5 °Cの昇温速度で示差走査型熱量計分析を行ない、 得られた D S C 曲線を Gaussian-Lorentian型の曲線を用いて 2つのピーク曲線へと分離 し、 低温側ピークの面積を全ピーク面積で除算し、 ピーク面積比率を算出 する。  A differential scanning calorimeter analysis was performed at a heating rate of 5 ° C / min, and the obtained DSC curve was separated into two peak curves using a Gaussian-Lorentian type curve, and the area of the low-temperature side peak was calculated. Divide by peak area to calculate peak area ratio.
(抄紙厚み)  (Papermaking thickness)
該 PTFE製ペーパーをダイヤルゲージ H型 (加圧 200 g以下のタイ プ) を用いて測定する。  The PTFE paper is measured using a dial gauge H type (pressurized 200 g or less).
(比表面積)  (Specific surface area)
湯浅アイォニクス株式会社製 Biosorbを用い、 標準付帯セルにて窒素吸 着法により、 粉体の比表面積の評価を行った。  The specific surface area of the powder was evaluated by the nitrogen adsorption method using Biosorb manufactured by Yuasa Ionics Co., Ltd. in a standard accessory cell.
(抗張力) (株) オリエンテック製テンシロン STA— 1 150を用い、 15mm 巾のサンプルをチャック間距離 100mm、 引張速度 20 OmmZ分にし て測定し、 下記の換算式で抗張力を算出した。 (tensile strength) Using a Tensilon STA-1 150 manufactured by Orientec Co., Ltd., a sample having a width of 15 mm was measured at a distance between chucks of 100 mm and a tensile speed of 20 OmmZ, and tensile strength was calculated by the following conversion formula.
抗張力 (MP a) = (測定値 (N) /\ 5mm) Zサンプル厚さ (mm) 実施例 1〜 3  Tensile strength (MPa) = (Measured value (N) / \ 5mm) Z sample thickness (mm) Examples 1-3
テトラフルォロエチレン 100モル%を乳化重合させた重合体を、 原料 PTFE粉末 (平均粒径 570 ^m) とした。 得られた原料 PTFE粉末 を供給機によりホッパーに送り込んだ。 つぎに、 前記 PTFE粉末を適宜 乾燥空気により補助しながら回転翼を備えた延伸処理槽 (槽内径 16 Om πι ) に供給し延伸処理した。 粉砕能力は 10〜1 5 kgZ時間であった。 このときの原料粉末に与えたエネルギー量を算出した結果は、 表 1に記載 のとおりであった。  A polymer obtained by emulsion polymerization of 100 mol% of tetrafluoroethylene was used as a raw material PTFE powder (average particle size: 570 ^ m). The obtained raw material PTFE powder was fed into a hopper by a feeder. Next, the PTFE powder was supplied to a stretching tank equipped with a rotary blade (tank inner diameter: 16 Omπι) and stretched while appropriately assisting with dry air. The grinding capacity was 10-15 kgZ hours. The results of calculating the amount of energy applied to the raw material powder at this time are as shown in Table 1.
延伸処理槽の下面は一部メッシュとなっており、 一定サイズょりも小さ なもののみ延伸処理槽から出るようにした。 これを標準分級ふるいにて処 理することで 5 m以下の粉体を除去した。  The lower surface of the stretching tank is partially meshed, so that only small pieces of a certain size are allowed to exit the stretching tank. This was treated with a standard classification sieve to remove powder of 5 m or less.
得られた PTFE繊維状粉末 10重量部に対し、 分散剤 (東邦化学工業 Dispersant (Toho Chemical Industry)
(株) 製、 ノナール 206) 0. 25重量部、 水 1000重量部を混合し て紙料とした。 前記紙料を丸網型抄紙機にて抄造した。 抄紙速度は lmZ 分であった。 ついで、 乾燥 (150で、 10分) 、 焼成 (380°C、 10 分) し、 それぞれ厚み 0. 49〜0. 52 mmの PTFE製ペーパーを得 た。 0.25 parts by weight of water and 1000 parts by weight of water were mixed to obtain a stock. The stock was made with a round mesh paper machine. The papermaking speed was lmZ minutes. Then, it was dried (150, 10 minutes) and fired (380 ° C, 10 minutes) to obtain 0.49 to 0.52 mm thick PTFE paper.
得られた PTFE製ペーパーの表面平滑性、 透気度、 クッション性およ び抗張力は、 表 1に示すとおりであった。 何れのペーパーにおいても適度 な透気性を有し、 表面の平滑なものが得られている。 また何れのペーパー も裁断時に端部にほつれを発生させることはなく、 良好な凝集力を発揮し ている。 表 1 The surface smoothness, air permeability, cushioning property, and tensile strength of the obtained PTFE paper were as shown in Table 1. All papers have moderate air permeability and smooth surfaces. In addition, none of the papers exhibited fraying at the edges during cutting, and exhibited good cohesive strength. table 1
Figure imgf000020_0001
Figure imgf000020_0001
比較例 1〜 3 Comparative Examples 1-3
表 2に記載の温度の熱風で原料 PTFE粉末を延伸処理槽に供給し、 延 伸処理した以外は、 実施例 1と同様にして PTFE繊維状粉末を得た。 得 られた PTFE繊維状粉末は、 それぞれ表 2に記載の平均繊維長、 平均形 態係数、 ピーク面積比率および比表面積を有していた。  A PTFE fibrous powder was obtained in the same manner as in Example 1 except that the raw PTFE powder was supplied to the stretching tank with hot air at the temperature shown in Table 2 and stretched. The obtained PTFE fibrous powder had the average fiber length, average shape coefficient, peak area ratio, and specific surface area shown in Table 2, respectively.
ついで、 実施例 1と同様にして抄造し、 それぞれ厚み 0. 47〜0. 5 1 mmの PTFE製ペーパーを得た。 得られた P T F E製ペーパーの表面 平滑性、 透気度、 クッション性、 および抗張力は、 表 2に示すとおりであ つた。 比較例 1で得られた P T F E製ペーパーは透気性が著しく悪くフィ ルター用途に全く適さない。 また何れの P T F E製ペーパーにおいても裁 断時にほつれが生じてしまい、 カツト部の寸法保持性に劣ることが確認さ れた。 表 2 Then, papermaking was performed in the same manner as in Example 1 to obtain PTFE paper having a thickness of 0.47 to 0.51 mm. The surface smoothness, air permeability, cushioning property, and tensile strength of the obtained PTFE paper were as shown in Table 2. The PTFE paper obtained in Comparative Example 1 has remarkably poor air permeability, and is not at all suitable for filter use. In addition, it was confirmed that any of the PTFE papers was frayed at the time of cutting and was inferior in dimensional retention of the cut portion. Table 2
Figure imgf000021_0001
Figure imgf000021_0001
^ 1 ピーク位置が完全により低温側にシフトしてしまい、 解きほぐ しが完全に終了してしまっている。  ^ 1 The peak position has shifted completely to the lower temperature side, and the unraveling has been completely completed.
2 測定途中に解けてしまい測定不能  2 Unmeasurable due to melting during measurement
実施例 4 Example 4
湿式抄紙時に PTF E繊維状粉末 8重量部に対して、 ァラミドパルプ ( 東レ (株) 製、 ケプラーパルプ) を 2重量部添加したほかは実施例 1と同 様の操作により混合抄紙物を得た。 室温から 2 5 0°Cでの線熱膨張係数を 測定したところ 0. 5 p pmであり、 優れた熱間寸法安定性を示すことが 確認された。 産業上の利用可能性  A mixed paper product was obtained in the same manner as in Example 1, except that 2 parts by weight of aramide pulp (manufactured by Toray Industries, Inc., Kepler pulp) was added to 8 parts by weight of the PTF E fibrous powder during wet papermaking. The coefficient of linear thermal expansion from room temperature to 250 ° C. was measured and found to be 0.5 ppm, indicating that it exhibited excellent hot dimensional stability. Industrial applicability
本発明によれば、 均一な物性分布を有し、 凝集性、 表面平滑性、 均圧性、 通気性、 粉塵捕集性、 電気的特性、 機械的特性に優れる PTFE抄紙物を得 ることができる。 また、 本発明によれば、 平均繊維長 1 0 0〜5 0 0 0 Atm、 平均形態係数 5以上の P T F E繊維状粉末を効率よく得ることができる。  According to the present invention, it is possible to obtain a PTFE paper product having a uniform physical property distribution and excellent in cohesiveness, surface smoothness, pressure equalization, air permeability, dust collecting property, electrical properties, and mechanical properties. . Further, according to the present invention, it is possible to efficiently obtain a PTFE fibrous powder having an average fiber length of 100 to 500 Atm and an average shape factor of 5 or more.

Claims

請求の範囲 The scope of the claims
1. 毎分 5 °Cの昇温速度で為される示差走査型熱量計分析において、 得 られる溶融吸熱曲線における低温側のピーク面積比率が全ピーク面積の 88. 5%以上であるポリテトラフルォロエチレン繊維状粉体。 1. In a differential scanning calorimeter analysis performed at a heating rate of 5 ° C / min, polytetrafluoyl whose peak area ratio on the low-temperature side in the obtained melting endothermic curve is 88.5% or more of the total peak area Polyethylene fibrous powder.
2. 平均繊維長 100〜 5000^ m、 および平均形態係数 5以上であ る請求の範囲第 1項記載のポリテトラフルォロエチレン繊維状粉体。 2. The polytetrafluoroethylene fibrous powder according to claim 1, having an average fiber length of 100 to 5000 m and an average view factor of 5 or more.
3. 窒素吸着法により測定される比表面積が 4. 0m2Zg以上である 請求の範囲第 1項記載のポリテトラフルォロエチレン繊維状粉体。3. The polytetrafluoroethylene fibrous powder according to claim 1, wherein the specific surface area measured by a nitrogen adsorption method is 4.0 m 2 Zg or more.
4. 請求の範囲第 1項記載のポリテトラフルォロェチレン繊維状粉体を 原料とし、 抄紙工程を経ることにより得られるポリテトラフルォロェチ レン抄紙物。 4. A polytetrafluoroethylene papermaking product obtained by using the polytetrafluoroethylene fibrous powder according to claim 1 as a raw material and passing through a papermaking process.
5. 毎分 5 °Cの昇温速度で為される示差走査型熱量計分析において、 得 られる溶融吸熱曲線における低温側のピーク面積比率が全ピーク面積の 88. 5 %以上であり、 平均繊維長が 100〜 5000 mであり、 平 均形態係数が 5以上であるポリテトラフルォロェチレン繊維状粉体の製 造方法であつて、 原料ポリテトラフルォロェチレン粉末を供給手段によ りホッパーに送り込む工程、 前記原料ポリテトラフルォロェチレン粉末 を前記ホッパーから延伸処理槽に供給する工程、 延伸手段により延伸処 理する工程、 および延伸処理したのちに分級する工程からなるポリテト ラフルォロェチレン繊維状粉体の製造方法。  5. In the differential scanning calorimeter analysis performed at a heating rate of 5 ° C / min, the peak area ratio on the low-temperature side in the obtained melting endothermic curve is 88.5% or more of the total peak area, and the average fiber A method for producing a polytetrafluoroethylene fibrous powder having a length of 100 to 5000 m and an average view factor of 5 or more, wherein a raw material polytetrafluoroethylene powder is supplied by a supply means. A step of feeding the raw material polytetrafluoroethylene powder from the hopper to a stretching tank, a step of stretching by stretching means, and a step of classifying after stretching. A method for producing a styrene fibrous powder.
6. ホッパ一から延伸処理槽への原料ポリテトラフルォロェチレン粉末 の供給を、 媒体の流動を用いて行なう請求の範囲第 5項記載のポリテト ラフルォロェチレン繊維状粉体の製造方法。  6. The method for producing a polytetrafluoroethylene fibrous powder according to claim 5, wherein the supply of the raw material polytetrafluoroethylene powder from the hopper to the stretching tank is carried out by using the flow of a medium.
7. 延伸処理後に行なう分級工程により、 粒径 5. 以下のポリテ トラフルォロエチレン粉末を除去する請求の範囲第 5項記載のポリテト ラフルォロェチレン繊維状粉体の製造方法。 7. The polytetrat according to claim 5, wherein a polytetrafluoroethylene powder having a particle size of 5 or less is removed by a classification step performed after the stretching treatment. A method for producing lafluoroethylene fibrous powder.
8. 前記延伸処理時に前記延伸手段からポリテトラフルォロエチレン粉 末に加えるエネルギー量が 10〜200 kc a l/k gである請求の範 囲第 5項記載のポリテトラフルォロェチレン繊維状粉体の製造方法。 8. The polytetrafluoroethylene fibrous powder according to claim 5, wherein the amount of energy applied to the polytetrafluoroethylene powder from the stretching means during the stretching treatment is 10 to 200 kcal / kg. How to make the body.
9. 請求の範囲第 4項記載のポリテトラフルォロェチレン抄紙物より得 られる成形体。 9. A molded article obtained from the polytetrafluoroethylene paper-making product according to claim 4.
PCT/JP2004/001187 2003-02-12 2004-02-05 Polytetrafluoroethylene fibrous powder, polytetrafluoroethylene paper-like material, polytetrafluoroethylene molding and process for producing the polytetrafluoroethylene fibrous powder WO2004072157A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005504949A JP4277854B2 (en) 2003-02-12 2004-02-05 Polytetrafluoroethylene fibrous powder, polytetrafluoroethylene paper product, polytetrafluoroethylene molded article, and method for producing polytetrafluoroethylene fibrous powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-33233 2003-02-12
JP2003033233 2003-02-12

Publications (1)

Publication Number Publication Date
WO2004072157A1 true WO2004072157A1 (en) 2004-08-26

Family

ID=32866218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001187 WO2004072157A1 (en) 2003-02-12 2004-02-05 Polytetrafluoroethylene fibrous powder, polytetrafluoroethylene paper-like material, polytetrafluoroethylene molding and process for producing the polytetrafluoroethylene fibrous powder

Country Status (4)

Country Link
JP (1) JP4277854B2 (en)
CN (1) CN100374485C (en)
TW (1) TWI299044B (en)
WO (1) WO2004072157A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0896017A1 (en) * 1996-04-24 1999-02-10 Daikin Industries, Limited Fluoropolymer powder and process for preparing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1185282C (en) * 1995-03-15 2005-01-19 大金工业株式会社 Production of polytetrafluoroethylene moulding powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0896017A1 (en) * 1996-04-24 1999-02-10 Daikin Industries, Limited Fluoropolymer powder and process for preparing the same

Also Published As

Publication number Publication date
CN1717436A (en) 2006-01-04
CN100374485C (en) 2008-03-12
TW200426161A (en) 2004-12-01
JPWO2004072157A1 (en) 2006-06-01
TWI299044B (en) 2008-07-21
JP4277854B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
KR101720369B1 (en) Composite with low content of metal
WO2015108021A1 (en) Stampable sheet
WO2010048496A1 (en) Composite ptfe material and applications thereof
JP2011144473A (en) Carbon fiber/thermoplastic resin composite material, method for producing the same and electric field-shielding material
JP3152748U (en) Carbon nonwoven fabric
JP2012192645A (en) Method for manufacturing molded article
JP6364774B2 (en) Ultra high molecular weight polyethylene particles and molded articles comprising the same
KR101772039B1 (en) Preparation Method of Composite Material having improved conductivity
JPH1150338A (en) Production of carbon short fiber
WO2004072157A1 (en) Polytetrafluoroethylene fibrous powder, polytetrafluoroethylene paper-like material, polytetrafluoroethylene molding and process for producing the polytetrafluoroethylene fibrous powder
EP1950328A1 (en) Synthetic fiber
JP6331123B2 (en) Carbon fiber composite material
TW201016911A (en) Pitch-derived graphitized short fiber and molded object obtained using same
WO2009133874A1 (en) Porous sheet, process for production thereof, and heat-insulating sheet
US20170101529A1 (en) Fluororesin composition and method for its production, as well as molded product, foamed molded product and covered electric wire
JP2005133260A (en) Composite paper-like material
WO1996011781A1 (en) Polytetrafluoroethylene molding powder and processes
JP2004224646A (en) Method of producing bamboo charcoal, bamboo charcoal, and bamboo charcoal-blended sheet
KR20170018479A (en) Semiconductor manufacture component
JPH037307A (en) Pellet structure of fiber reinforced thermoplastic resin
Grady et al. Single‐walled carbon nanotube/ultrahigh‐molecular‐weight polyethylene composites with percolation at low nanotube contents
JP3977001B2 (en) Heating element
JP6699258B2 (en) Separator
JP6809333B2 (en) Sheet manufacturing method
JP2019104072A (en) Method for producing resin sheet and cutting blade

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005504949

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20048014615

Country of ref document: CN

122 Ep: pct application non-entry in european phase