WO2004070954A1 - A/d conversion circuit device - Google Patents

A/d conversion circuit device Download PDF

Info

Publication number
WO2004070954A1
WO2004070954A1 PCT/JP2003/001196 JP0301196W WO2004070954A1 WO 2004070954 A1 WO2004070954 A1 WO 2004070954A1 JP 0301196 W JP0301196 W JP 0301196W WO 2004070954 A1 WO2004070954 A1 WO 2004070954A1
Authority
WO
WIPO (PCT)
Prior art keywords
comparator
input signal
input
conversion circuit
circuit device
Prior art date
Application number
PCT/JP2003/001196
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Ito
Hisao Suzuki
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to AU2003207239A priority Critical patent/AU2003207239A1/en
Priority to PCT/JP2003/001196 priority patent/WO2004070954A1/en
Publication of WO2004070954A1 publication Critical patent/WO2004070954A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0675Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
    • H03M1/0678Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components
    • H03M1/068Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components the original and additional components or elements being complementary to each other, e.g. CMOS
    • H03M1/0682Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components the original and additional components or elements being complementary to each other, e.g. CMOS using a differential network structure, i.e. symmetrical with respect to ground
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/36Analogue value compared with reference values simultaneously only, i.e. parallel type
    • H03M1/361Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type
    • H03M1/362Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type the reference values being generated by a resistive voltage divider
    • H03M1/365Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type the reference values being generated by a resistive voltage divider the voltage divider being a single resistor string

Definitions

  • the present invention relates to an A / D conversion circuit device that converts an analog signal into a digital signal.
  • the present invention relates to an A / D conversion circuit device capable of suppressing fluctuations in reference potential and performing a good comparison operation.
  • a / D conversion As an influential AZD conversion circuit device that converts an analog signal into a digital signal at high speed (hereinafter abbreviated as A / D conversion), the following non-patent document 1 is exemplified as a prior art document.
  • a / D conversion circuit device There is an A / D conversion circuit device called a parallel type in which a plurality of comparators are arranged and an analog input signal is compared with a plurality of reference potentials at once.
  • a method of generating a reference potential generally uses a resistance dividing circuit.
  • FIG. 5 shows a configuration diagram of an A / D conversion circuit device for obtaining a reference potential by a resistance dividing circuit.
  • this AZD conversion circuit device the potential difference between the potential VRH of the high-potential power supply connected to the terminal 105 and the potential VRL of the low-potential power supply connected to the terminal 108 is determined by a plurality of resistance elements ( In the figure, two resistors 106 and ⁇ 07 are shown, each of which has a resistance value of r.)
  • a resistor divider 101 is connected in series to divide the voltage.
  • a reference potential V1 is generated at a node 109 which is a connection point of the resistive elements in the resistance dividing circuit 101.
  • the inverted input terminal IM is connected to the node 109 and the reference potential V1 is input.
  • the non-inverted input terminal IP is the analog input signal via the terminal 102.
  • VIN is input.
  • VIN and VI are compared, and an A / D conversion is performed by outputting a digital output signal VUT from the output terminal 103.
  • the following non-patent document 1 is exemplified.
  • FIG. 6 is an example of the input section of the comparator 104.
  • the non-inverting input terminal IP and the inverting input terminal IM are connected to a differential pair composed of a field effect transistor (hereinafter abbreviated as FET) 112, 113.
  • FET field effect transistor
  • the comparison operation is based on the input voltage difference between the analog input signal VIN input to the non-inverting input terminal IP and the reference potential V1 input to the inverting input terminal IM. This is performed by shunting currents II and 12 between the nodes 12 and 11.
  • the analog input signal V IN changes, so that the current I 1 changes.
  • the current I 2 also fluctuates.
  • Due to the fluctuation of the current 12 the drain voltage of the FET 113 changes. Due to the fluctuation of the drain voltage, charge and discharge of the parasitic capacitance 1 16 of the FET 113 occurs.
  • the current i flows in and out of the gate of FET113 via the inverting input terminal.
  • FIG. 7 is a circuit diagram of the AZD conversion circuit device of FIG. 5 when the current i is regarded as the current source 11 1. Equation (1) is obtained when the potential V 1, of the node 109 when the current i flows, is obtained.
  • V I ' (1/2) * (V H + VR L-i * r)
  • the current i flows in and out of the gate of the FET 113 through the inverting input terminal due to the charging and discharging of the charge to and from the parasitic capacitance 116.
  • the reference potential V1 fluctuates.
  • the comparator 104 compares the analog input signal VIN with V 1, when the reference potential V 1 changes to VI ′. Therefore, in this A / D conversion circuit device, there is a problem that the analog input signal VIN cannot be compared with the accurate reference potential V 1.
  • the time at which this variation occurs depends on the parasitic capacitance Since it is determined by a time constant determined by 1 16 and the resistance value of the resistance element in the resistance dividing circuit 101, it is greatly affected when performing high-speed AZD conversion.
  • the resistance value r should be reduced. However, by reducing the resistance value r, the current that constantly flows through the resistance dividing circuit 101 increases, which is a problem from the viewpoint of power consumption.
  • the present invention has been made to solve the problems of the prior art. That is, the purpose is to provide an A / D conversion circuit device that suppresses the reference potential fluctuation caused by charging and discharging the parasitic capacitance of the comparator, and obtains the reference potential that enables high-speed and accurate comparison operation by a resistance dividing circuit. It is to provide. Disclosure of the invention
  • an AZD conversion circuit device wherein at least two resistance elements connecting two voltage sources are connected in series, and a resistance element row is formed at a connection point of the resistance element row.
  • An A / D conversion circuit device comprising at least one reference potential and at least one first comparator to which a first input signal is inputted, wherein the A / D conversion circuit device is provided for each first comparator, At least one second comparator to which at least one reference potential input to the first comparator and a second input signal are input is provided.
  • the reference potential input to the first comparator is also input to the second comparator in addition to the first comparator.
  • the A / D conversion circuit device is the A / D conversion circuit device according to claim 1, wherein the first comparator and the second comparator have an equivalent circuit configuration, and the first comparator is Among the connection points of the resistance element row, a connection point at a predetermined position is connected to a center connection point having the same resistance value from any of the two voltage sources, and the second comparator is connected to a predetermined position with respect to the center connection point. It is characterized in that connection points located symmetrically with the position are connected.
  • the two connection points symmetrical with respect to the center connection point are connected to the first comparator and the second comparator, and the first and second comparators have an equivalent circuit configuration. Therefore, the charging and discharging of the parasitic capacitance of the input terminal of each comparator is symmetrical with each other, and the fluctuation of the reference potential caused by the charging and discharging is equal. The fluctuation of the reference potential can be suppressed by the symmetric and equivalent fluctuation amount.
  • the resistance element row has a center connection point having the same resistance value from any of the two voltage sources among the connection points. It is characterized in that equivalent resistance elements are arranged at symmetrical positions with respect to.
  • an equivalent resistance element is arranged between the connection points located symmetrically with respect to the center connection point.
  • a reference potential symmetric with respect to the reference potential generated at the center connection point can be generated at two connection points symmetrically positioned with respect to the center connection point.
  • the A / D conversion circuit device in the A / D conversion circuit device according to claim 1, by inputting the source input signal, an in-phase input signal having the same phase as the source input signal and a reverse phase having the opposite phase.
  • a signal input section for outputting a phase input signal the in-phase input signal is input to the first comparator as a first input signal, and the anti-phase input signal is input to the second comparator as a second input signal It is characterized by being performed.
  • the in-phase input signal and the in-phase input signal are generated based on the source input signal in the signal input section, and the in-phase input signal is first compared as the first input signal.
  • the negative-phase input signal is input to the second comparator as a second input signal.
  • the first comparator and the second comparator By inputting the source input signal, the first comparator and the second comparator And input signals having an opposite phase relationship to each other.
  • the in-phase input signal is obtained by folding an in-phase input signal with respect to a center potential generated at a center connection point. Signal.
  • to fold the in-phase input signal with respect to the center potential means to invert the potential by the potential difference from the center potential to the in-phase input signal on the opposite side to the in-phase input signal with respect to the center potential.
  • the in-phase input signal and the anti-phase input signal have a potential difference equal to each other with respect to the central potential, and are in a phase opposite to each other.
  • the in-phase input signal is an analog signal and the anti-phase input signal is an inverted analog signal. Is preferred.
  • the input terminal of the first comparator to which the first input signal is input, and the second input signal are input. Both of the input terminals of the second comparator are inverting input terminals or non-inverting input terminals.
  • both the first input signal input to the first comparator and the second input signal input to the second comparator are an inverting input terminal or a non-inverting input. Input to the terminal.
  • An A / D conversion circuit device is the A / D conversion circuit device according to claim 1, wherein a comparison result is output from one of the first comparator and the second comparator.
  • the output of the first comparator and the output of the second comparator have an inverse logic relationship with each other, a comparison result can be obtained only with the output from one of the comparators.
  • at least one first comparator and at least one second comparator have an equivalent circuit configuration. Preferably, there is. Thereby, the circuit characteristics between the comparators can be matched.
  • FIG. 1 is a configuration diagram of a 2-bit A / D conversion circuit device of an embodiment.
  • FIG. 2 is a configuration diagram of a circuit device for obtaining V IN and V INB.
  • FIG. 3 shows the reference potential in the 2-bit AZD conversion circuit device of the embodiment.
  • FIG. 4 is a waveform chart showing voltage conditions used in the simulation.
  • FIG. 5 is a configuration diagram of an A / D conversion circuit using a conventional resistance dividing circuit.
  • FIG. 6 is an equivalent circuit of the input section of the comparator.
  • FIG. 7 is a circuit diagram when the fluctuating current i is regarded as a current source.
  • FIG. 1 shows an example in which the present invention is applied to a 2-bit parallel A / D conversion circuit device as an embodiment of the present invention.
  • the input voltage range of the parallel A / D converter circuit device of the present embodiment is the potential VRH by the high potential side power supply connected to the terminal 11 and the potential VRH by the low potential side power supply connected to the terminal 16. Voltages between the potential VRL and the reference potentials VI to V3 are output.
  • the resistance elements 12 to 15 are arranged symmetrically with respect to a point having the same resistance value as viewed from the power supply on the high potential side and from the power supply on the low potential side.
  • the nodes 17 to 19 are connected to the inverting input terminals IM of the comparators 8 to 10 in addition to the inverting input terminals IM of the comparators 5 to 7 for performing the A / D conversion operation. That is, the comparators 5 and 8 are connected to the node 17, the comparator 6 and the comparator 9 are connected to the node 18, and the comparator 7 and the comparator 10 are connected to the node 19, respectively.
  • the analog input signal VIN is input from the terminal 3 to the non-inverting input terminals IP of the comparators 5 to 7. Further, a non-inverting input terminal IP of the comparators 8 to 10 receives a reverse-phase signal VINB of the analog input signal VIN from the terminal 4.
  • This inverted-phase signal VINB is obtained by inverting the analog input signal VIN around a center potential which is equidistant from the potential VRH and the potential VRL. That is, the comparator 5 and the comparator 10, the comparator 6 and the comparator 9, and the comparator 7 and the comparator 8 receive signals having phases opposite to each other.
  • each set of comparators (5 and 10; 6 and 9; and 7 and 8) operating in opposite phases has the same circuit configuration.
  • the above-mentioned center potential is a potential generated at the node 18 which has the same resistance value when viewed from the high-potential side power supply and the low-potential side power supply in the resistance dividing circuit 1 and is a reference.
  • the potential V 2 corresponds to this.
  • the analog input signal VIN and the negative-phase signal VINB can be generated by a circuit as shown in FIG. 2, for example. In the circuit of FIG. 2, by inputting the analog signal V 0 from the terminal 31, the analog input signal VIN in phase with the analog signal V 0 is input to the terminal 39, and the analog signal V 0 is input to the terminal 40. Can output the reverse phase signal VINB. In the circuit of FIG. 2, terminal 31 is connected to the non-inverting input terminal IP of amplifier 41.
  • Node 43 is connected via resistor element 35 (resistance value R 2).
  • a node 44 is connected via a resistor 44 (resistance value R 5) to a node 49, and a ground potential 33 is connected via a capacitor 32.
  • Node 44 is connected to node 47 and to the inverting input terminal IM of amplifier 41.
  • the node 47 is connected to the node 45 via the resistance element 34 (resistance value R 1) and to the non-inverting input terminal IP of the amplifier 42.
  • Node 49 is connected to node 48 and to the inverting input terminal IM of amplifier 42.
  • Node 45 is connected to the output terminal of amplifier 41 and to node 46.
  • Node 46 is connected to node 48 via resistor element 37 (resistance value R4) and to terminal 39.
  • Node 48 is connected to node 50 via resistance element 36 (resistance value R 3).
  • Node 50 is connected to the output terminal of amplifier 42 and to terminal 40.
  • V I N ((R 1 / R 2) + 1) * V 0
  • V I N B (1+ (R 4 / R 5)-((R 1 * R 4) / (R 2 * R 3))) N V 0
  • the negative-phase signal VINB becomes a negative-phase signal of the analog input signal VIN.
  • the reference potential V1 generated at the node 17 is (3/4) * AV + VRL.
  • the reference potential V2 generated at the node 18 is (274) * AV + VRL
  • the reference potential V3 generated at the node 19 is (1Z4) * AV + VRL.
  • the comparator 5 when the analog input signal VIN fluctuates in the comparator 5, the comparator 5 It is assumed that a current i flows from the inverting input terminal IM to the node 17 when the parasitic capacitance of the inverting input terminal IM occurs.
  • the current i is a transient current, and flows through the resistance dividing circuit 1 as an alternating current. That is, the current i flows through the combined resistance in which r and 3 r are connected in parallel.
  • the parasitic capacitance of the inverting input terminal IM of the comparator 10 is charged and discharged due to the fluctuation of the negative-phase signal VINB, and the current i ′ flows.
  • the comparator 5 and the comparator 10 have the same circuit configuration, and the potential relationship between the analog input signal VIN and the reference potential V1 in the comparator 5 and the negative-phase signal VINB in the comparator 10 and the reference The potential relationship with the potential V3 is opposite to each other. Therefore, current i, has the same magnitude as current i and flows in the opposite direction to current i.
  • the current i 5 will be flowing to the inverting input terminal IM of the comparator 1 0 from the node 1-9, the current i with respect to the combined capacitance connected between r and 3 r in parallel flows also reverse.
  • the fluctuation of the reference potential caused by the flow of the current i is offset by the current i,.
  • Output signals from the comparators 5 to 7 are input to the encoder 2.
  • the comparators 5 to 7 generally have the same performance. That is, the comparators 5 to 7 need to have the same circuit configuration. Further, as described above, the circuit configurations of the comparators 5 to 7 and the comparators 8 to 10 that operate in the opposite phase to the comparators 5 to 7 need to be the same. From the above, it is preferable that the circuit configurations of all the comparators 5 to 10 be the same.
  • the output signals from the actual use comparators 5 to 7 are thermometer codes, converted by the encoder 2, and output to the terminals 20 and 21 as 2-bit digital values.
  • FIG. 3 shows the variation of the reference voltage V1 in the 2-bit parallel A / D converter circuit device shown in FIG.
  • the resistance value r is 10 M ⁇
  • the parasitic capacitance value C 0 (the capacitance value of the parasitic capacitance 1 16 in FIG. 6) is 2.28 fF.
  • the potential VRH from the high-potential power supply is 838 mV
  • the potential VRL from the low-potential power supply is 812 mV
  • the analog input signal VIN is a sine wave (center potential 82 5 mV, amplitude 13 mV, frequency 13 kHz).
  • the negative-phase signal VI NB is obtained by inverting the analog input signal VIN with respect to the central potential of 825 mV.
  • the potential VRH from the high-voltage power supply, the potential VRL from the low-voltage power supply, the analog input signal VIN, and the negative-phase signal VI NB are illustrated in FIG.
  • FIG. 3 the change 61 of the reference potential VI in the 2-bit A / D converter circuit device of FIG. 1 is shown in comparison with the change 62 of the reference potential V1 in the conventional AZD conversion circuit device. ing. As can be seen from this figure, the amount of change in the reference potential V1 in the 2-bit A / D conversion circuit device shown in FIG. 1 is significantly reduced as compared with the case of the prior art.
  • two comparators 5 to 7 and two comparators 8 to 10 are provided at each of the nodes 17 to 19 in the resistance dividing circuit 1. Connect as a pair. Further, the comparators 5 to 7 and the comparators which are located symmetrically with respect to the node 18 having the same resistance value when viewed from the power supply on the high potential side and the power supply on the low potential side in the resistance dividing circuit 1
  • the circuit configurations of 10 to 8 are the same. By inputting input signals having phases opposite to each other with respect to the central potential V2, which is the reference potential output to the node 18, to the comparators 5 to 7 and the comparators 8 to 10, the reference potential changes. Can be reduced. This enables fast and accurate A / D conversion.
  • the resistance division circuit 1 has a large number of resistance elements 12 to 15.
  • the resistance in the resistance dividing circuit 1 A method of reducing the resistance values of the elements 12 to 15 is given.
  • the resistance element 1 in the resistance division circuit 1 Decreasing the resistance values of 2 to 15 increases the current flowing through the resistance elements, which leads to an increase in power consumption by the resistance elements 12 to 15. Therefore, it is not realistic to reduce the resistance values of the resistance elements 12 to 15 in the resistance division circuit 1.
  • the time during which the reference potential fluctuates is determined by a time constant determined by the resistance values of the resistance elements 12 to 15 in the resistance division circuit 1 and the capacitance value of the parasitic capacitance (the resistance element 1 2 in the resistance division circuit 1).
  • the time constant increases because the resistance value needs to be increased as described above, so that the fluctuation time of the reference potential becomes longer, and in the parallel A / D conversion circuit device according to the related art, According to the present invention, it is possible to suppress the fluctuation of the reference potential without reducing the resistance values of the resistance elements 12 to 15 in the resistance division circuit 1. That is, the parallel AZD conversion circuit device of the present invention can provide a high-speed and accurate comparison operation.
  • the present invention is effective when applied to such a case, and can effectively suppress the potential fluctuation of the reference potential in a multi-bit parallel A / D conversion circuit device to which a large number of resistance elements are connected. Even when a large number of resistance elements are connected and have a large resistance value and thus have a large time constant with respect to the parasitic capacitance, high-speed operation can be performed by suppressing potential fluctuations at the reference potential.
  • the present invention is effective when applied to a multi-bit parallel A / D conversion circuit device that requires a high-speed A / D conversion operation.
  • the resistance elements 12 to 15 in the resistance division circuit 1 in FIG. 1 are an example of a resistance element row, and divide a potential between a potential VRH and a potential VRL given by a power supply to generate a resistance element.
  • Reference potentials V1 to V3 are generated at connection nodes 17 to 19 of 12 to 15 respectively.
  • Comparators 5 to 7 are examples of first comparator
  • the comparators 8 to 10 are examples of the second comparator.
  • the comparators 5 and 10, 6 and 9, and 7 and 8 have equivalent circuit configurations. As a result, the charging and discharging of the parasitic capacitance of the input terminal of each comparator becomes symmetrical with each other, and the fluctuation of the reference potential caused by the charging and discharging becomes equal. The fluctuation of the reference potential can be suppressed by the symmetric and equivalent fluctuation amount.
  • the resistance elements 12 to 15 in the resistance division circuit 1 are arranged symmetrically as the center connection point 18 at the point where the resistance value is the same when viewed from the high-potential side power supply or the low-potential side power supply. It is desirable to be done. Thereby, a reference potential symmetric with respect to the reference potential generated at the center connection point 18 can be generated at two connection points symmetrically positioned with respect to the center connection point 18.
  • FIG. 2 shows an example of the signal input unit.
  • the phase signal VINB can be supplied.
  • the negative phase signal VINB is a signal obtained by folding back the analog input signal VIN with respect to the center potential V2 that is equidistant from the potential VRH and the potential VRL.
  • the fold of the analog input signal VIN with respect to the center potential V 2 means that the potential difference from the center potential V 2 to the analog input signal VIN is equal to the potential on the opposite side of the center potential V 2 from the analog input signal VIN. Is to invert.
  • the analog input signal VIN and the negative-phase signal VINB have a potential difference equal to each other with respect to the central potential V2 and are in a reverse-phase relationship. Accordingly, input signals having a phase opposite to each other with respect to the center potential V 2 can be input to the comparators 5 to 7 and the comparators 8 to 10 ⁇ Non-inversion of the comparators 5 to 7
  • the analog input signal VIN is input to the input terminal IP.
  • the non-inverter input terminals IP of the comparators 8 to 10 receive the inverted-phase signal V ⁇ .
  • Reference potentials V1 to V3 generated at nodes 17 to 19 are applied to the inverting input terminals IM of the comparators 5 to 7 and the comparators 8 to 10.
  • the reference potentials V1 to V3 generated at the nodes 17 to 19 may be input to the non-inverting input terminals IP of the comparators 5 to 7 and the comparators 8 to 10.
  • comparators 5 to 7 The analog input signal VIN is input to the inverting input terminal IM, and the negative-phase signal VINB is input to the inverting input terminals IM of the comparators 8 to 10.
  • the potential relationship of the input signal with respect to the symmetrical reference potential becomes opposite in phase between the comparators 5 to 7 and the comparators 10 to 8 at the symmetrical positions. 7 through 7 and the comparators 10 through 8 at the symmetric positions, the fluctuation of the reference potential due to the charging and discharging of the parasitic capacitance can be offset.
  • the present invention is not limited to the above-described embodiment, and it goes without saying that various improvements and modifications can be made without departing from the spirit of the present invention.
  • the parallel type A / D conversion circuit device has been described.
  • the present invention can be applied to A / D conversion circuit devices other than the parallel type.
  • the present invention can be applied to a parallel section of a serial-parallel AZD conversion circuit device.
  • each comparator is assumed to be the same. However, in addition to the case where the circuit configuration of each comparator is completely the same, even if the circuit configuration of each comparator is not the same, the same The current i flowing out and in due to the parasitic capacitance of the input terminal of the comparator when the analog input signal is input may be the same.
  • an equivalent comparator is provided at a symmetric position of the resistance dividing circuit. Accordingly, it is possible to provide an A / D conversion circuit device capable of performing a high-speed and accurate comparison operation by canceling a potential fluctuation of a reference potential caused by charging / discharging a parasitic capacitance existing in an input stage of a comparator.

Abstract

The difference between high/low potentiasls (VRH, VRL) is divided by a vesistance dividing circuit (1) with a center potential (V2) centered, so that reference potentials (V1-V3) develop in nodes (17-19) and are inputted to the inverse input terminals (IM) of comparators (5-7) and comparators (8-10). An analog input signal (VIN) is inputted to the non-inverse input terminal (IP) of the comparators (5-7), and the opposie phase signal (VINB) of the analog input signal (VIN) to the non-inverse input terminal (IP) of the comparators (8-10). Each set of the comparators (5 and 10, 6 and 9, 7 and 8) in opposite phase input relations has equivalent circuit configurations. Thus, the fluctuation in the reference potential due to parasitic capacitors existing at the input stages of the capacitors (5-7) is cancelled, so that a rapid and accurate comparing operation is possible.

Description

明 細 書  Specification
A/D変換回路装置 技術分野 A / D conversion circuit device
本発明は、 アナログ信号をデジタル信号に変換する A/D変換回路装 置に関するものである。 特に基準電位の変動を抑え、 良好な比較動作が 行える A/D変換回路装置に関するものである。 背景技術  The present invention relates to an A / D conversion circuit device that converts an analog signal into a digital signal. In particular, the present invention relates to an A / D conversion circuit device capable of suppressing fluctuations in reference potential and performing a good comparison operation. Background art
高速にアナログ信号をデジタル信号に変換 (以下、 A/D変換と略記 する。)する有力な AZD変換回路装置として、先行技術文献として下記 の非特許文献 1が例示される。 比較器を複数個並べ、 アナログ入力信号 と、 複数の基準電位との比較を一度に行う並列型と呼ばれる A/D変換 回路装置がある。 並列型 A/D変換回路装置においては、 基準電位を生 成する方法として抵抗分割回路を用いる方法が一般的である。  As an influential AZD conversion circuit device that converts an analog signal into a digital signal at high speed (hereinafter abbreviated as A / D conversion), the following non-patent document 1 is exemplified as a prior art document. There is an A / D conversion circuit device called a parallel type in which a plurality of comparators are arranged and an analog input signal is compared with a plurality of reference potentials at once. In a parallel type A / D conversion circuit device, a method of generating a reference potential generally uses a resistance dividing circuit.
基準電位を抵抗分割回路により得る A/D変換回路装置の構成図を第 5図に示す。 この AZD変換回路装置においては、 端子 105に接続さ れた高電位側の電源による電位 VRHと端子 1 08に接続された低電位 側の電源による電位 VR Lとの電位差を、 複数の抵抗素子 (図中におい ては、 1 0 6および Γ 07の 2個を図示している。 それそれの抵抗値は rである。) を直列に接続して分圧する抵抗分割回路 1 0 1を有する。抵 抗分割回路 1 0 1内の抵抗素子の接続点であるノ一ド 1 09においては、 基準電位 V 1が生成される。比較器 1 04が有する 2つの入力端子の内、 反転入力端子 I Mはノード 1 0 9に接続され基準電位 V 1が入力される < 非反転入力端子 I Pは、 端子 1 02を介してアナログ入力信号 V I Nが 入力される。 比較器 1 04では、 V I Nと V Iとが比較され、 出力端子 1 03からデジタル出力信号 V〇 UTが出力されることにより A/D変 換がなされる。 先行技術文献として、 下記の非特許文献 1が例示される。 FIG. 5 shows a configuration diagram of an A / D conversion circuit device for obtaining a reference potential by a resistance dividing circuit. In this AZD conversion circuit device, the potential difference between the potential VRH of the high-potential power supply connected to the terminal 105 and the potential VRL of the low-potential power supply connected to the terminal 108 is determined by a plurality of resistance elements ( In the figure, two resistors 106 and Γ07 are shown, each of which has a resistance value of r.) A resistor divider 101 is connected in series to divide the voltage. A reference potential V1 is generated at a node 109 which is a connection point of the resistive elements in the resistance dividing circuit 101. Of the two input terminals of the comparator 104, the inverted input terminal IM is connected to the node 109 and the reference potential V1 is input. <The non-inverted input terminal IP is the analog input signal via the terminal 102. VIN is input. In the comparator 104, VIN and VI are compared, and an A / D conversion is performed by outputting a digital output signal VUT from the output terminal 103. As the prior art document, the following non-patent document 1 is exemplified.
相良 岩男著、 「AZD · D/A変換回路入門」、 初版 5刷、 日刊工業新 聞社、 1 9 9 9年 2月 1 0日、 p . 2 1 6 - 2 1 7 Iwao Sagara, "Introduction to AZD / D / A Converter Circuits", First Edition, 5th Edition, Nikkan Kogyo Shinbunsha, February 10, 1990, p. 2 16-2 17
第 6図は、 比較器 1 0 4の入力部の例である。 非反転入力端子 I P、 反転入力端子 I Mは、電界効果トランジスタ(以下、 F E Tと略記する。) 1 1 2、 1 1 3により構成される差動ペアに接続されている。 比較動作 は、 非反転入力端子 I Pに入力されるアナログ入力信号 V I Nと反転入 力端子 I Mに入力される基準電位 V 1 との入力電圧差に基づいて、 バイ ァス電流 Iが各々の F E T 1 1 2、 1 1 3間で電流 I I、 1 2として分 流されることにより行なわれる。 比較動作の際、 アナログ入力信号 V I Nは変動するため、 電流 I 1が変動する。 そのことに伴い電流 I 2も変 動する。 電流 1 2の変動により、 F E T 1 1 3のドレイン電圧が変動す る。 このドレイン電圧の変動により、 F E T 1 1 3の持つ寄生容量 1 1 6に対する電荷の充放電が生ずる。 その結果、 F E T 1 1 3のゲートか ら反転入力端子を介して電流 iの流出入が生じる。  FIG. 6 is an example of the input section of the comparator 104. The non-inverting input terminal IP and the inverting input terminal IM are connected to a differential pair composed of a field effect transistor (hereinafter abbreviated as FET) 112, 113. The comparison operation is based on the input voltage difference between the analog input signal VIN input to the non-inverting input terminal IP and the reference potential V1 input to the inverting input terminal IM. This is performed by shunting currents II and 12 between the nodes 12 and 11. During the comparison operation, the analog input signal V IN changes, so that the current I 1 changes. As a result, the current I 2 also fluctuates. Due to the fluctuation of the current 12, the drain voltage of the FET 113 changes. Due to the fluctuation of the drain voltage, charge and discharge of the parasitic capacitance 1 16 of the FET 113 occurs. As a result, the current i flows in and out of the gate of FET113 via the inverting input terminal.
第 7図は、 電流 iを電流源 1 1 Ίとみなした場合の第 5図の AZD変 換回路装置の回路図である。 電流 iが流れる場合のノード 1 0 9の電位 V 1, を求めると式 ( 1 ) となる。  FIG. 7 is a circuit diagram of the AZD conversion circuit device of FIG. 5 when the current i is regarded as the current source 11 1. Equation (1) is obtained when the potential V 1, of the node 109 when the current i flows, is obtained.
式 ( 1 )  Equation (1)
V I ' = ( 1 /2 ) * (V H + VR L - i * r)  V I '= (1/2) * (V H + VR L-i * r)
式 ( 1 ) より、 ノード 1 0 9の基準電位 V 1は、 V I (= ( 1 / 2 ) * (VRH + VR L)) に対して ( 1 / 2 ) * i * rだけ変動する。 すな わち、 この A/D変換回路装置においては、 寄生容量 1 1 6に対する電 荷の充放電による F E T 1 1 3のゲートから反転入力端子を介した電流 iの流出入が発生することにより、 基準電位 V 1が変動してしまう。  According to the equation (1), the reference potential V1 of the node 109 changes by (1/2) * i * r with respect to VI (= (1/2) * (VRH + VRL)). In other words, in this A / D conversion circuit device, the current i flows in and out of the gate of the FET 113 through the inverting input terminal due to the charging and discharging of the charge to and from the parasitic capacitance 116. The reference potential V1 fluctuates.
比較器 1 0 4は、 基準電位 V 1が V I ' へ変動することにより、 アナ ログ入力信号 V I Nを V 1, と比較する。 そのためこの A/D変換回路 装置においては、 アナログ入力信号 V I Nを正確な基準電位 V 1 と比較 することができなく問題である。 この変動の発生する時間は、 寄生容量 1 1 6と抵抗分割回路 1 0 1内の抵抗素子の抵抗値とにより定まる時定 数で決まるため、 高速な AZD変換を行う場合に大きな影響を受ける。 The comparator 104 compares the analog input signal VIN with V 1, when the reference potential V 1 changes to VI ′. Therefore, in this A / D conversion circuit device, there is a problem that the analog input signal VIN cannot be compared with the accurate reference potential V 1. The time at which this variation occurs depends on the parasitic capacitance Since it is determined by a time constant determined by 1 16 and the resistance value of the resistance element in the resistance dividing circuit 101, it is greatly affected when performing high-speed AZD conversion.
また、 V Iから V I, への変動量を小さく しょうとすれば抵抗値 rを 小さくすれば良い。 しかしながら、 抵抗値 rを小さくすることにより、 抵抗分割回路 1 0 1に定常的に流れる電流が大きくなり、 消費電力の観 点から見て問題である。  To reduce the amount of change from V I to V I, the resistance value r should be reduced. However, by reducing the resistance value r, the current that constantly flows through the resistance dividing circuit 101 increases, which is a problem from the viewpoint of power consumption.
本発明は、 従来技術が有する問題点を解決するためになされたもので ある。 すなわちその目的とするところは、 比較器の寄生容量への充放電 によって生じる基準電位変動を抑え、 高速かつ正確な比較動作を可能と する基準電位を抵抗分割回路により得る A / D変換回路装置を提供する ことにある。 発明の開示  The present invention has been made to solve the problems of the prior art. That is, the purpose is to provide an A / D conversion circuit device that suppresses the reference potential fluctuation caused by charging and discharging the parasitic capacitance of the comparator, and obtains the reference potential that enables high-speed and accurate comparison operation by a resistance dividing circuit. It is to provide. Disclosure of the invention
前記目的を達成するために、 請求項 1に係る A Z D変換回路装置は、 2つの電圧源間を結ぶ少なくとも 2個の抵抗素子を直列に接続した抵抗 素子列と、 抵抗素子列の接続点に生成される少なく とも 1つの基準電位 と第 1の入力信号とが入力される少なく とも 1つの第 1比較器とを備え る A / D変換回路装置であって、 第 1比較器ごとに備えられ、 第 1比較 器に入力される少なく とも 1つの基準電位と第 2の入力信号とが入力さ れる少なくとも 1つの第 2比較器を備えることを特徴とする。  In order to achieve the above object, an AZD conversion circuit device according to claim 1, wherein at least two resistance elements connecting two voltage sources are connected in series, and a resistance element row is formed at a connection point of the resistance element row. An A / D conversion circuit device comprising at least one reference potential and at least one first comparator to which a first input signal is inputted, wherein the A / D conversion circuit device is provided for each first comparator, At least one second comparator to which at least one reference potential input to the first comparator and a second input signal are input is provided.
請求項 1の A / D変換回路装置では、 第 1比較器に入力される基準電 位が、 第 1の比較器に加え第 2の比較器にも入力される。  In the A / D conversion circuit device according to claim 1, the reference potential input to the first comparator is also input to the second comparator in addition to the first comparator.
請求項 2に係る A / D変換回路装置は、 請求項 1の A / D変換回路装 置において、 第 1比較器と第 2比較器とは等価な回路構成であり、 第 1 比較器は、 抵抗素子列の接続点のうち、 2つの電圧源の何れからの抵抗 値も等しい中心接続点に対して所定位置にある接続点が接続され、 第 2 比較器は、 中心接続点に対して所定位置とは対称の位置にある接続点が 接続されることを特徴とする。  The A / D conversion circuit device according to claim 2 is the A / D conversion circuit device according to claim 1, wherein the first comparator and the second comparator have an equivalent circuit configuration, and the first comparator is Among the connection points of the resistance element row, a connection point at a predetermined position is connected to a center connection point having the same resistance value from any of the two voltage sources, and the second comparator is connected to a predetermined position with respect to the center connection point. It is characterized in that connection points located symmetrically with the position are connected.
請求項 2の A / D変換回路装置では、 抵抗素子列において、 2つの電 圧源の何れからの抵抗値も等しい中心接続点に対して対称な位置にある 2つの接続点の内、 一方の接鐃点が接続される第 1比較器と、 他方の接 続点が接続される第 2比較器とが等価な回路構成である。 In the A / D conversion circuit device according to claim 2, in the resistor element row, two Of the two connection points that are symmetrical with respect to the center connection point where the resistance values from any of the pressure sources are equal, the first comparator to which one contact point is connected and the other connection point are connected This is an equivalent circuit configuration to the second comparator.
これにより、 中心接続点に対して対称な位置にある 2つの接続点が、 第 1比較器と第 2比較器とに接続されると共に、 第 1および第 2比較器 は共に等価な回路構成であるので、 各比較器の入力端子が持つ寄生容量 への充放電は互いに対称の関係となると共に、 充放電により生じる基準 電位の変動は同等となる。 対称かつ同等な変動量により基準電位の変動 を抑えることができる。  As a result, the two connection points symmetrical with respect to the center connection point are connected to the first comparator and the second comparator, and the first and second comparators have an equivalent circuit configuration. Therefore, the charging and discharging of the parasitic capacitance of the input terminal of each comparator is symmetrical with each other, and the fluctuation of the reference potential caused by the charging and discharging is equal. The fluctuation of the reference potential can be suppressed by the symmetric and equivalent fluctuation amount.
請求項 3に係る A / D変換回路装置では、 請求項 1または 2の A Z D 変換回路装置において、 抵抗素子列は、 接続点のうち 2つの電圧源の何 れからの抵抗値も等しい中心接続点に対して対称な位置に等価な抵抗素 子が配列されることを特徴とする。  In the A / D conversion circuit device according to claim 3, in the AZD conversion circuit device according to claim 1 or 2, the resistance element row has a center connection point having the same resistance value from any of the two voltage sources among the connection points. It is characterized in that equivalent resistance elements are arranged at symmetrical positions with respect to.
請求項 3の A / D変換回路装置では、 中心接続点に対して、 相互に対 称の位置にある接続点間に等価な抵抗素子が配置される。  In the A / D conversion circuit device according to claim 3, an equivalent resistance element is arranged between the connection points located symmetrically with respect to the center connection point.
これにより、 中心接続点において生成される基準電位に対して対称な 基準電位を中心接続点に対して対称な位置にある 2つの接続点に生成す ることができる。  Thus, a reference potential symmetric with respect to the reference potential generated at the center connection point can be generated at two connection points symmetrically positioned with respect to the center connection point.
請求項 4に係る A / D変換回路装置では、 請求項 1の A/ D変換回路 装置において、 源入力信号を入力することにより、 源入力信号と同相で ある同相入力信号と逆相である逆相入力信号とを出力する信号入力部を 備え、 同相入力信号は、 第 1の入力信号として第 1比較器に入力され、 逆相入力信号は、 第 2の入力信号として第 2比較器に入力されることを 特徴とする。  In the A / D conversion circuit device according to claim 4, in the A / D conversion circuit device according to claim 1, by inputting the source input signal, an in-phase input signal having the same phase as the source input signal and a reverse phase having the opposite phase. A signal input section for outputting a phase input signal, the in-phase input signal is input to the first comparator as a first input signal, and the anti-phase input signal is input to the second comparator as a second input signal It is characterized by being performed.
請求項 4の A / D変換回路装置では、 信号入力部おいて同相入力信号 と逆相入力信号とを源入力信号を元に生成し、 同相入力信号は第 1の入 力信号として第 1比較器に、 逆相入力信号は第 2の入力信号として第 2 比較器に入力される。  In the A / D conversion circuit device according to claim 4, the in-phase input signal and the in-phase input signal are generated based on the source input signal in the signal input section, and the in-phase input signal is first compared as the first input signal. The negative-phase input signal is input to the second comparator as a second input signal.
これにより、 源入力信号を入力することで、 第 1比較器と第 2比較器 とに互いに逆相の関係となる入力信号を供給することができる。 By inputting the source input signal, the first comparator and the second comparator And input signals having an opposite phase relationship to each other.
請求項 5に係る A / D変換回路装置では、 請求項 4の A / D変換回路 装置において、 逆相入力信号は、 中心接続点に生成される中心電位に対 して、 同相入力信号を折り返した信号であることを特徴とする。  In the A / D conversion circuit device according to claim 5, in the A / D conversion circuit device according to claim 4, the in-phase input signal is obtained by folding an in-phase input signal with respect to a center potential generated at a center connection point. Signal.
ここで、 中心電位に対して同相入力信号を折り返すとは、 中心電位か ら同相入力信号への電位差だけ、 中心電位に対して同相入力信号とは反 対側に電位を反転させることである。 すなわち、 同相入力信号と逆相入 力信号とは、 中心電位に対して互いに等しい電位差を有して逆相となる 関係にある。  Here, to fold the in-phase input signal with respect to the center potential means to invert the potential by the potential difference from the center potential to the in-phase input signal on the opposite side to the in-phase input signal with respect to the center potential. In other words, the in-phase input signal and the anti-phase input signal have a potential difference equal to each other with respect to the central potential, and are in a phase opposite to each other.
これにより、 中心電位に対して互いに逆相となる関係にある入力信号 を第 1比較器と第 2比較器とに入力することができる。  With this, input signals having a relationship of opposite phases to each other with respect to the center potential can be input to the first comparator and the second comparator.
請求項 6に係る A / D変換回路装置では、 請求項 4または 5に記載の 並列型 A Z D変換回路装置において、 同相入力信号はアナログ信号であ り、 逆相入力信号は反転アナログ信号であることが好ましい。  In the A / D conversion circuit device according to claim 6, in the parallel AZD conversion circuit device according to claim 4 or 5, the in-phase input signal is an analog signal and the anti-phase input signal is an inverted analog signal. Is preferred.
請求項 7に係る A Z D変換回路装置では、 請求項 1の A / D変換回路 装置において、 第 1の入力信号が入力される第 1比較器の入力端子、 お よび第 2の入力信号が入力される第 2比較器の入力端子は共に、 反転入 力端子または非反転入力端子であることを特徴とする。  In the AZD conversion circuit device according to claim 7, in the A / D conversion circuit device according to claim 1, the input terminal of the first comparator to which the first input signal is input, and the second input signal are input. Both of the input terminals of the second comparator are inverting input terminals or non-inverting input terminals.
請求項 7の A / D変換回路装置では、 第 1比較器に入力される第 1の 入力信号および第 2比較器に入力される第 2の入力信号は共に、 反転入 力端子または非反転入力端子に入力される。  In the A / D conversion circuit device according to claim 7, both the first input signal input to the first comparator and the second input signal input to the second comparator are an inverting input terminal or a non-inverting input. Input to the terminal.
これにより、 第 1比較器の入力端子に入力される第 1の入力信号と基 準電位との間の電位関係と、 第 2比較器の入力端子に入力される第 2の 入力信号と基準電位との間の電位関係とは、 互いに逆相の関係となる。 第 1比較器の入力端子が持つ寄生容量への充放電により発生する基準電 圧の変動と、 第 2比較器の入力端子が持つ寄生容量への充放電により発 生する基準電圧の変動とは逆相の関係になり、 各々の基準電位の変動は 抑制される。 比較動作時の基準電圧の変動が抑制され高速かつ正確な比 較動作を実現できる。 請求項 8に係る A/D変換回路装置では、 請求項 1の A/D変換回路 装置において、 第 1比較器または第 2比較器の何れか一方より比較結果 を出力することを特徴としている。 Thus, the potential relationship between the first input signal input to the input terminal of the first comparator and the reference potential, and the second input signal input to the input terminal of the second comparator and the reference potential And the potential relationship between the two are opposite to each other. The fluctuation of the reference voltage generated by charging and discharging the parasitic capacitance of the input terminal of the first comparator and the fluctuation of the reference voltage generated by charging and discharging the parasitic capacitance of the input terminal of the second comparator There is an anti-phase relationship, and the fluctuation of each reference potential is suppressed. The fluctuation of the reference voltage during the comparison operation is suppressed, and a high-speed and accurate comparison operation can be realized. An A / D conversion circuit device according to claim 8 is the A / D conversion circuit device according to claim 1, wherein a comparison result is output from one of the first comparator and the second comparator.
第 1比較器の出力と、 第 2比較器の出力とは、 互いに逆論理の関係た め、何れか一方の比較器からの出力のみで比較結果を得ることができる。 請求項 9に係る A/D変換回路装置では、 請求項 1の A/D変換回路 装置において、 少なく とも 1つの第 1比較器および少なく とも 1つの第 2比較器は何れも等価な回路構成であることが好ましい。 これにより、 比較器間の回路特性を合致させることができる。 図面の簡単な説明  Since the output of the first comparator and the output of the second comparator have an inverse logic relationship with each other, a comparison result can be obtained only with the output from one of the comparators. In the A / D conversion circuit device according to claim 9, in the A / D conversion circuit device according to claim 1, at least one first comparator and at least one second comparator have an equivalent circuit configuration. Preferably, there is. Thereby, the circuit characteristics between the comparators can be matched. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 実施形態の 2ビッ ト A/D変換回路装置の構成図である。 第 2図は、 V I Nと V I NBとを得るための回路装置の構成図である。 第 3図は、 実施形態の 2ビッ ト AZD変換回路装置における基準電位 FIG. 1 is a configuration diagram of a 2-bit A / D conversion circuit device of an embodiment. FIG. 2 is a configuration diagram of a circuit device for obtaining V IN and V INB. FIG. 3 shows the reference potential in the 2-bit AZD conversion circuit device of the embodiment.
V 1の変動をシミユレ一シヨンした結果である。 This is the result of simulation of the fluctuation of V1.
第 4図は、 シミュレーションにおいて使用した電圧条件を示す波形図 である。  FIG. 4 is a waveform chart showing voltage conditions used in the simulation.
第 5図は、 従来技術による抵抗分割回路を用いた A/D変換回路の構 成図である。  FIG. 5 is a configuration diagram of an A / D conversion circuit using a conventional resistance dividing circuit.
第 6図は、 比較器の入力部の等価回路である。  FIG. 6 is an equivalent circuit of the input section of the comparator.
第 7図は、 変動電流 iを電流源とみなした場合の回路図である。 発明を実施するための最良の形態  FIG. 7 is a circuit diagram when the fluctuating current i is regarded as a current source. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の A/D変換回路装置について具体化した実施形態を第 1図乃至第 4図に基づき図面を参照しつつ詳細に説明する。  Hereinafter, an embodiment of an A / D conversion circuit device according to the present invention will be described in detail with reference to the drawings based on FIG. 1 to FIG.
第 1図は、 本発明の実施形態として 2ビッ ト並列型 A/D変換回路装 置に対して、 本発明を適用する場合の一例である。  FIG. 1 shows an example in which the present invention is applied to a 2-bit parallel A / D conversion circuit device as an embodiment of the present invention.
抵抗分割回路 1では、 直列接続された複数の抵抗素子 (図中において は、 1 2乃至 1 5の 4個を例示している。 それそれの抵抗素子 12乃至 1 5が持つ抵抗値はすべて rである。 ) により、 本実施形態の並列型 A / D変換回路装置の入力電圧範囲である端子 1 1に接続された高電位側 の電源による電位 V R Hと端子 1 6に接続された低電位側の電源による 電位 V R Lとの間を分圧して、 各基準電位 V I乃至 V 3を出力する。 抵 抗素子 1 2乃至 1 5は、 高電位側の電源から見ても、 低電位側の電源か ら見ても同じ抵抗値となる点を中心にして対称に配置されている。 In the resistance division circuit 1, a plurality of resistance elements connected in series (four elements 12 to 15 are illustrated in the figure. Each of the resistance elements 12 to The resistance values of 15 are all r. ), The input voltage range of the parallel A / D converter circuit device of the present embodiment is the potential VRH by the high potential side power supply connected to the terminal 11 and the potential VRH by the low potential side power supply connected to the terminal 16. Voltages between the potential VRL and the reference potentials VI to V3 are output. The resistance elements 12 to 15 are arranged symmetrically with respect to a point having the same resistance value as viewed from the power supply on the high potential side and from the power supply on the low potential side.
また各ノード 1 7乃至 1 9には、 A / D変換動作が行われる比較器 5 乃至 7の反転入力端子 I Mに加えて比較器 8乃至 1 0の反転入力端子 I Mが接続される。 すなわち、 ノード 1 7には比較器 5と比較器 8、 ノー ド 1 8には比較器 6と比較器 9、 ノード 1 9には比較器 7と比較器 1 0 がそれそれ接続されている。  The nodes 17 to 19 are connected to the inverting input terminals IM of the comparators 8 to 10 in addition to the inverting input terminals IM of the comparators 5 to 7 for performing the A / D conversion operation. That is, the comparators 5 and 8 are connected to the node 17, the comparator 6 and the comparator 9 are connected to the node 18, and the comparator 7 and the comparator 10 are connected to the node 19, respectively.
比較器 5乃至 7の非反転入力端子 I Pには、 端子 3よりアナログ入力 信号 V I Nが入力される。 また、 比較器 8乃至 1 0の非反転入力端子 I Pには、 端子 4よりアナログ入力信号 V I Nの逆相信号 V I N Bが入力 される。 この逆相信号 V I N Bは、 電位 V R Hと電位 V R Lとから等距 離にある中心電位を中心としてアナログ入力信号 V I Nを反転させたも のである。 すなわち、 比較器 5と比較器 1 0、 比較器 6と比較器 9およ び比較器 7と比較器 8は、 互いに逆相の信号が入力される。 ここで、 互 いに逆相で動作する各組の比較器 ( 5と 1 0、 6と 9、 および 7と 8 ) は同一の回路構成を持つ。 尚、 上記の中心電位とは、 抵抗分割回路 1内 の高電位側の電源から見ても、 低電位側の電源から見ても同じ抵抗値と なるノード 1 8に生成される電位であり基準電位 V 2がこれにあたる。 尚、 アナログ入力信号 V I Nと逆相信号 V I N Bとは、 例えば第 2図 に示したような回路により生成することができる。 第 2図の回路におい ては、 アナログ信号 V 0を端子 3 1より入力することにより、 端子 3 9 にアナログ信号 V 0と同相なアナログ入力信号 V I Nを、 端子 4 0にァ ナログ信号 V 0とは逆相な逆相信号 V I N Bを出力することができる。 第 2図の回路において、 端子 3 1は増幅器 4 1の非反転入力端子 I P に接続される。 ノード 4 3は、 抵抗素子 3 5 (抵抗値 R 2 ) を介してノ ード 44と、 抵抗素子 38 (抵抗値 R 5 ) を介してノード 49と、 容量 素子 32を介して接地電位 33と接続されている。 ノード 44は、 ノー ド 47に接続されると共に、 増幅器 4 1の反転入力端子 I Mに接続され る。 ノード 47は、 抵抗素子 34 (抵抗値 R 1 ) を介してノード 45に 接続されると共に、 増幅器 42の非反転入力端子 I Pに接続される。 ノ —ド 49は、 ノード 48に接続されると共に、 増幅器 42の反転入力端 子 IMに接続される。 ノード 45は、 増幅器 4 1の出力端子と、 ノード 46に接続される。 ノード 46は、 抵抗素子 37 (抵抗値 R4) を介し てノード 48に接続されると共に、 端子 39に接続される。 ノード 48 は、 抵抗素子 3 6 (抵抗値 R 3 ) を介してノード 50に接続される。 ノ —ド 5 0は、 増幅器 42の出力端子に接続されると共に、 端子 40に接 続される。 The analog input signal VIN is input from the terminal 3 to the non-inverting input terminals IP of the comparators 5 to 7. Further, a non-inverting input terminal IP of the comparators 8 to 10 receives a reverse-phase signal VINB of the analog input signal VIN from the terminal 4. This inverted-phase signal VINB is obtained by inverting the analog input signal VIN around a center potential which is equidistant from the potential VRH and the potential VRL. That is, the comparator 5 and the comparator 10, the comparator 6 and the comparator 9, and the comparator 7 and the comparator 8 receive signals having phases opposite to each other. Here, each set of comparators (5 and 10; 6 and 9; and 7 and 8) operating in opposite phases has the same circuit configuration. The above-mentioned center potential is a potential generated at the node 18 which has the same resistance value when viewed from the high-potential side power supply and the low-potential side power supply in the resistance dividing circuit 1 and is a reference. The potential V 2 corresponds to this. The analog input signal VIN and the negative-phase signal VINB can be generated by a circuit as shown in FIG. 2, for example. In the circuit of FIG. 2, by inputting the analog signal V 0 from the terminal 31, the analog input signal VIN in phase with the analog signal V 0 is input to the terminal 39, and the analog signal V 0 is input to the terminal 40. Can output the reverse phase signal VINB. In the circuit of FIG. 2, terminal 31 is connected to the non-inverting input terminal IP of amplifier 41. Node 43 is connected via resistor element 35 (resistance value R 2). A node 44 is connected via a resistor 44 (resistance value R 5) to a node 49, and a ground potential 33 is connected via a capacitor 32. Node 44 is connected to node 47 and to the inverting input terminal IM of amplifier 41. The node 47 is connected to the node 45 via the resistance element 34 (resistance value R 1) and to the non-inverting input terminal IP of the amplifier 42. Node 49 is connected to node 48 and to the inverting input terminal IM of amplifier 42. Node 45 is connected to the output terminal of amplifier 41 and to node 46. Node 46 is connected to node 48 via resistor element 37 (resistance value R4) and to terminal 39. Node 48 is connected to node 50 via resistance element 36 (resistance value R 3). Node 50 is connected to the output terminal of amplifier 42 and to terminal 40.
第 2図の回路において、 端子 3 1にアナログ信号 V 0を入力した場合 に、 端子 3 9に出力されるアナログ入力信号 V I Nは式 (2) となる。 また端子 40に出力される逆相信号 V I NBは式 (3) となる。  In the circuit of FIG. 2, when the analog signal V 0 is input to the terminal 31, the analog input signal V IN output to the terminal 39 is expressed by the following equation (2). In addition, the inverted-phase signal V I NB output to the terminal 40 is represented by Expression (3).
式 ( 2 )  Equation (2)
V I N= ((R 1/R 2 ) + 1 ) * V 0  V I N = ((R 1 / R 2) + 1) * V 0
式 (3)  Equation (3)
V I N B = (1+ (R 4/R 5 ) - ((R 1 *R 4) / (R 2 *R 3 ))) ネ V 0  V I N B = (1+ (R 4 / R 5)-((R 1 * R 4) / (R 2 * R 3))) N V 0
式 ( 2 ) および ( 3 ) により、 抵抗値 R 1乃至 R 5を適宜選択するこ とにより、 逆相信号 V I NBはアナログ入力信号 V I Nの逆相信号とな る o  By appropriately selecting the resistance values R1 to R5 according to the equations (2) and (3), the negative-phase signal VINB becomes a negative-phase signal of the analog input signal VIN.
第 1図の回路において、 △ V = VR H— VR Lと定義すると、 ノード 17に生成される基準電位 V 1は ( 3/4) *AV + VRLとなる。 同 様にノード 1 8に生成される基準電位 V 2は (274) *AV + VRL と、 ノード 1 9に生成される基準電位 V 3は ( 1Z4) *AV + VRL となる。 ここで比較器 5と比較器 1 0に注目する。 例えば、 比較器 5に おいて、 アナログ入力信号 V I Nが変動することにより、 比較器 5の反 転入力端子 I Mの持つ寄生容量への充放電が発生した際に、 電流 iが反 転入力端子 I Mよりノード 1 7へ流れるとする。 電流 iは過渡的な電流 であり、 抵抗分割回路 1に交流電流として流れる。 すなわち、 rと 3 r とを並列に接続した合成抵抗に対して電流 iが流れることとなる。 In the circuit of FIG. 1, if it is defined that ΔV = VRH—VRL, the reference potential V1 generated at the node 17 is (3/4) * AV + VRL. Similarly, the reference potential V2 generated at the node 18 is (274) * AV + VRL, and the reference potential V3 generated at the node 19 is (1Z4) * AV + VRL. Here, attention is focused on the comparator 5 and the comparator 10. For example, when the analog input signal VIN fluctuates in the comparator 5, the comparator 5 It is assumed that a current i flows from the inverting input terminal IM to the node 17 when the parasitic capacitance of the inverting input terminal IM occurs. The current i is a transient current, and flows through the resistance dividing circuit 1 as an alternating current. That is, the current i flows through the combined resistance in which r and 3 r are connected in parallel.
—方、 比較器 1 0においては、 逆相信号 V I N Bが変動することによ り、比較器 1 0の反転入力端子 I Mの持つ寄生容量への充放電が発生し、 電流 i ' が流れる。 ここで、 比較器 5 と比較器 1 0は同一の回路構成を 有すると共に、 比較器 5におけるアナログ入力信号 V I Nと基準電位 V 1との電位関係と、 比較器 1 0における逆相信号 V I N Bと基準電位 V 3との電位関係は、互いに逆相の関係にある。 したがって、 電流 i, は、 電流 iと大きさが同じで、 電流 iとは逆方向に流れる。 すなわち、 電流 i 5はノード 1 9より比較器 1 0の反転入力端子 I Mへ流れることなり、 rと 3 rとを並列に接続した合成容量に対して電流 iとは逆方向に流れ る。これにより、電流 iが流れることにより発生する基準電位の変動が、 電流 i, により相殺される。 同様の現象が、 比較器 6と、 比較器 9 との 間に、 および比較器 7と、 比較器 8との間に成り立つ。 そのため、 基準 電圧 V 1乃至 V 3の変動が相殺され、正確な各基準電位 V 1乃至 V 3と、 アナログ入力信号 V I Nとの比較を行うことができる。 On the other hand, in the comparator 10, the parasitic capacitance of the inverting input terminal IM of the comparator 10 is charged and discharged due to the fluctuation of the negative-phase signal VINB, and the current i ′ flows. Here, the comparator 5 and the comparator 10 have the same circuit configuration, and the potential relationship between the analog input signal VIN and the reference potential V1 in the comparator 5 and the negative-phase signal VINB in the comparator 10 and the reference The potential relationship with the potential V3 is opposite to each other. Therefore, current i, has the same magnitude as current i and flows in the opposite direction to current i. That is, the current i 5 will be flowing to the inverting input terminal IM of the comparator 1 0 from the node 1-9, the current i with respect to the combined capacitance connected between r and 3 r in parallel flows also reverse. Thus, the fluctuation of the reference potential caused by the flow of the current i is offset by the current i,. Similar phenomena hold between the comparator 6 and the comparator 9 and between the comparator 7 and the comparator 8. Therefore, the fluctuations of the reference voltages V1 to V3 are canceled out, and the accurate reference potentials V1 to V3 can be compared with the analog input signal VIN.
比較器 5乃至 7からの出力信号はエンコーダ 2に入力される。ここで、 比較器 5乃至 7は同等の性能を有することが一般的である。 すなわち、 比較器 5乃至 7は回路構成を同一する必要がある。 また、 前述のように 比較器 5乃至 7と、 比較器 5乃至 7と逆相で動作する比較器 8乃至 1 0 との回路構成は同一にする必要がある。 以上より、 すべての比較器 5乃 至 1 0の回路構成は同一であることが好ましい。 実使用比較器 5乃至 7 からの出力信号はサーモメーターコードでありエンコーダ 2により変換 され、 2ビッ トのデジタル値として端子 2 0、および 2 1に出力される。 第 3図は、 第 1図の 2 ビッ ト並列型 A / D変換回路装置における基準 電圧 V 1の変動を、 比較器 8乃至 1 0を備えない従来技術による 2 ビッ ト並列型 A / D変換回路装置における基準電圧 V 1の変動の場合と比較 するために行ったシミュレーションの結果である。 ここでは、 抵抗値 r を 1 0 M Ω、寄生容量値 C 0 (第 6図における寄生容量 1 1 6の容量値) を 2. 2 8 f Fとした。 また、 高電位側の電源による電位 VRHを 83 8 mV、 低電位側の電源による電位 VR Lを 8 1 2 mV、 アナログ入力 信号 V I Nを正弦波 (中心電位 82 5 mV、 振幅 1 3 mV、 周波数 1 3 kH z) とした。 逆相信号 V I NBは中心電位 82 5 mVに対してアナ ログ入力信号 V I Nを反転させたものである。 高電圧側の電源による電 位 V R H、低電位側の電源による電位 V R L、アナログ入力信号 V I N、 逆相信号 V I NBは、 第 4図に図示される。 Output signals from the comparators 5 to 7 are input to the encoder 2. Here, the comparators 5 to 7 generally have the same performance. That is, the comparators 5 to 7 need to have the same circuit configuration. Further, as described above, the circuit configurations of the comparators 5 to 7 and the comparators 8 to 10 that operate in the opposite phase to the comparators 5 to 7 need to be the same. From the above, it is preferable that the circuit configurations of all the comparators 5 to 10 be the same. The output signals from the actual use comparators 5 to 7 are thermometer codes, converted by the encoder 2, and output to the terminals 20 and 21 as 2-bit digital values. FIG. 3 shows the variation of the reference voltage V1 in the 2-bit parallel A / D converter circuit device shown in FIG. 1 by using the conventional 2-bit parallel A / D converter without the comparators 8 to 10. Comparison with the case of fluctuation of reference voltage V1 in circuit device This is the result of a simulation performed to perform the simulation. Here, the resistance value r is 10 MΩ, and the parasitic capacitance value C 0 (the capacitance value of the parasitic capacitance 1 16 in FIG. 6) is 2.28 fF. In addition, the potential VRH from the high-potential power supply is 838 mV, the potential VRL from the low-potential power supply is 812 mV, and the analog input signal VIN is a sine wave (center potential 82 5 mV, amplitude 13 mV, frequency 13 kHz). The negative-phase signal VI NB is obtained by inverting the analog input signal VIN with respect to the central potential of 825 mV. The potential VRH from the high-voltage power supply, the potential VRL from the low-voltage power supply, the analog input signal VIN, and the negative-phase signal VI NB are illustrated in FIG.
第 3図においては、 第 1図の 2ビッ ト A/D変換回路装置における基 準電位 V Iの変化 6 1を、 従来技術の AZD変換回路装置における基準 電位 V 1の変化 62と比較して示している。 この図から読み取れるよう に第 1図の 2ビッ ト A/D変換回路装置における基準電位 V 1の変化量 は、 従来技術の場合に対して大幅に低減されている。  In FIG. 3, the change 61 of the reference potential VI in the 2-bit A / D converter circuit device of FIG. 1 is shown in comparison with the change 62 of the reference potential V1 in the conventional AZD conversion circuit device. ing. As can be seen from this figure, the amount of change in the reference potential V1 in the 2-bit A / D conversion circuit device shown in FIG. 1 is significantly reduced as compared with the case of the prior art.
以上に説明した実施形態の並列型 A/D変換回路装置によれば、 抵抗 分割回路 1内の各ノード 1 7乃至 1 9に、 比較器 5乃至 7および比較器 8乃至 1 0を 2個 1組として接続する。 更に抵抗分割回路 1内の高電位 側の電源から見ても低電位側の電源から見ても同じ抵抗値となるノード 1 8に対して、 対称な位置である比較器 5乃至 7と比較器 10乃至 8と の回路構成を同一とする。 比較器 5乃至 7と比較器 8乃至 10とに、 ノ —ド 18に出力される基準電位である中心電位 V 2に対して互いに逆相 となる入力信号を入力することにより、 基準電位の変動を低減すること ができる。 これにより高速かつ正確な A/D変換が可能である。  According to the parallel-type A / D conversion circuit device of the embodiment described above, two comparators 5 to 7 and two comparators 8 to 10 are provided at each of the nodes 17 to 19 in the resistance dividing circuit 1. Connect as a pair. Further, the comparators 5 to 7 and the comparators which are located symmetrically with respect to the node 18 having the same resistance value when viewed from the power supply on the high potential side and the power supply on the low potential side in the resistance dividing circuit 1 The circuit configurations of 10 to 8 are the same. By inputting input signals having phases opposite to each other with respect to the central potential V2, which is the reference potential output to the node 18, to the comparators 5 to 7 and the comparators 8 to 10, the reference potential changes. Can be reduced. This enables fast and accurate A / D conversion.
抵抗分割回路 1を使用した並列型 A/D変換回路装置においては、 抵 抗分割回路 1内に多数の抵抗素子 1 2乃至 1 5を有している。 従来技術 による並列型 A/D変換回路装置において、 比較器 5乃至 7の入力端子 に存在する寄生容量への充放電電流による基準電位の変動を小さくする ためには、 抵抗分割回路 1内の抵抗素子 1 2乃至 1 5の抵抗値を小さく する方法が挙げられる。 しかしながら、 抵抗分割回路 1内の抵抗素子 1 2乃至 1 5の抵抗値を小さくすることは抵抗素子に流れる電流を大きく することになり、 抵抗素子 1 2乃至 1 5による消費電力の増大を招くこ ととなる。 したがって、 抵抗分割回路 1内の抵抗素子 1 2乃至 1 5の抵 抗値を小さくすることは現実的ではない。 In the parallel A / D conversion circuit device using the resistance division circuit 1, the resistance division circuit 1 has a large number of resistance elements 12 to 15. In the parallel type A / D converter circuit device according to the prior art, in order to reduce the fluctuation of the reference potential due to the charging / discharging current to the parasitic capacitance existing at the input terminals of the comparators 5 to 7, the resistance in the resistance dividing circuit 1 A method of reducing the resistance values of the elements 12 to 15 is given. However, the resistance element 1 in the resistance division circuit 1 Decreasing the resistance values of 2 to 15 increases the current flowing through the resistance elements, which leads to an increase in power consumption by the resistance elements 12 to 15. Therefore, it is not realistic to reduce the resistance values of the resistance elements 12 to 15 in the resistance division circuit 1.
また、 基準電位の変動が発生する時間は抵抗分割回路 1内の抵抗素子 1 2乃至 1 5の抵抗値と寄生容量の容量値により定まる時定数で定まる ( 抵抗分割回路 1内の抵抗素子 1 2乃至 1 5は、 前述のように抵抗値を大 きくする必要があるため時定数が大きくなる。 そのため、 基準電位の変 動時間が長くなり、 従来技術による並列型 A / D変換回路装置において は、 高速に A Z D変換を実施することは困難である。 本発明によれば、 抵抗分割回路 1内の抵抗素子 1 2乃至 1 5の抵抗値を小さくすることな く、 基準電位の変動を抑えることができる。 すなわち、 本発明の並列型 AZ D変換回路装置においては、 高速かつ正確な比較動作を提供するこ とができる。 The time during which the reference potential fluctuates is determined by a time constant determined by the resistance values of the resistance elements 12 to 15 in the resistance division circuit 1 and the capacitance value of the parasitic capacitance ( the resistance element 1 2 in the resistance division circuit 1). As described above, the time constant increases because the resistance value needs to be increased as described above, so that the fluctuation time of the reference potential becomes longer, and in the parallel A / D conversion circuit device according to the related art, According to the present invention, it is possible to suppress the fluctuation of the reference potential without reducing the resistance values of the resistance elements 12 to 15 in the resistance division circuit 1. That is, the parallel AZD conversion circuit device of the present invention can provide a high-speed and accurate comparison operation.
また、 従来技術においては、 並列型 A / D変換回路装置において、 ま たは、 抵抗分割回路に接続される抵抗素子を更に多数接続した場合にお いて、 各比較器の寄生容量を介して流れる電流が多数の抵抗素子を流れ ることによる基準電位の電位変動は大きなものとなるおそれがある。 本 発明はこのような場合に適用して有効であり、 抵抗素子が多数接続され る多ビッ トの並列型 A/ D変換回路装置について、 基準電位の電位変動 を有効に抑制することができる。 抵抗素子が多数接続され大きな抵抗値 を有することから寄生容量との間で大きな時定数を有してしまう場合に も、 基準電位における電位変動の抑制により高速動作を行うことができ ることと相俟って、 高速な A / D変換動作が必要とされる多ビッ トの並 列型 A/ D変換回路装置に適用して有効である。  Also, in the prior art, in a parallel A / D conversion circuit device, or when a larger number of resistance elements connected to a resistance division circuit are connected, the current flows through the parasitic capacitance of each comparator. The potential fluctuation of the reference potential due to the current flowing through many resistance elements may be large. The present invention is effective when applied to such a case, and can effectively suppress the potential fluctuation of the reference potential in a multi-bit parallel A / D conversion circuit device to which a large number of resistance elements are connected. Even when a large number of resistance elements are connected and have a large resistance value and thus have a large time constant with respect to the parasitic capacitance, high-speed operation can be performed by suppressing potential fluctuations at the reference potential. In addition, the present invention is effective when applied to a multi-bit parallel A / D conversion circuit device that requires a high-speed A / D conversion operation.
ここで、 第 1図の抵抗分割回路 1内の抵抗素子 1 2乃至 1 5は、 抵抗 素子列の一例であり、 電源により与えられた電位 V R Hと電位 V R Lと の間の電位を分割し抵抗素子 1 2乃至 1 5の接続ノード 1 7乃至 1 9に 基準電位 V 1乃至 V 3を生成する。 比較器 5乃至 7が第 1比較器の一例 であり、 また比較器 8乃至 1 0が第 2比較器の一例である。 比較器 5と 1 0、 6 と 9、 7と 8は、 互いに等価な回路構成である。 これにより、 各比較器の入力端子が持つ寄生容量への充放電は互いに対称の関係とな ると共に、 充放電により生じる基準電位の変動は同等となる。 対称かつ 同等な変動量により基準電位の変動を抑えることができる。 Here, the resistance elements 12 to 15 in the resistance division circuit 1 in FIG. 1 are an example of a resistance element row, and divide a potential between a potential VRH and a potential VRL given by a power supply to generate a resistance element. Reference potentials V1 to V3 are generated at connection nodes 17 to 19 of 12 to 15 respectively. Comparators 5 to 7 are examples of first comparator And the comparators 8 to 10 are examples of the second comparator. The comparators 5 and 10, 6 and 9, and 7 and 8 have equivalent circuit configurations. As a result, the charging and discharging of the parasitic capacitance of the input terminal of each comparator becomes symmetrical with each other, and the fluctuation of the reference potential caused by the charging and discharging becomes equal. The fluctuation of the reference potential can be suppressed by the symmetric and equivalent fluctuation amount.
抵抗分割回路 1内の各抵抗素子 1 2乃至 1 5は、 高電位側の電源から 見ても低電位側の電源から見ても同じ抵抗値となる点を中心接続点 1 8 として対称に配置されることが望ましい。 これにより、 中心接続点 1 8 において生成される基準電位に対して対称な基準電位を、 中心接続点 1 8に対して対称な位置にある 2つの接続点に生成することができる。  The resistance elements 12 to 15 in the resistance division circuit 1 are arranged symmetrically as the center connection point 18 at the point where the resistance value is the same when viewed from the high-potential side power supply or the low-potential side power supply. It is desirable to be done. Thereby, a reference potential symmetric with respect to the reference potential generated at the center connection point 18 can be generated at two connection points symmetrically positioned with respect to the center connection point 18.
第 2図は信号入力部の一例であり、 アナログ信号 V 0を入力すること で、 比較器 5乃至 7と比較器 8乃至 1 0とに、 互いに逆相の関係となる アナログ入力信号 V I Nと逆相信号 V I N Bとを供給することができる < 逆相信号 V I N Bは、 電位 V R Hと電位 V R Lとから等距離にある中 心電位 V 2に対して、アナログ入力信号 V I Nを折り返した信号である。 ここで、中心電位 V 2に対してアナログ入力信号 V I Nを折り返すとは、 中心電位 V 2からアナログ入力信号 V I Nへの電位差だけ、 中心電位 V 2に対してアナログ入力信号 V I Nとは反対側に電位を反転させること である。 すなわち、 アナログ入力信号 V I Nと逆相信号 V I N Bとは、 中心電位 V 2に対して互いに等しい電位差を有して逆相となる関係にあ る。 これにより、 中心電位 V 2に対して互いに逆相となる関係にある入 力信号を比較器 5乃至 7と比較器 8乃至 1 0とに入力することができる < 比較器 5乃至 7の非反転入力端子 I Pは、 アナログ入力信号 V I Nが 入力される。 一方、 比較器 8乃至 1 0の非反転子入力端子 I Pは、 逆相 信号 V ΓΝ Βが入力される。 比較器 5乃至 7、 および比較器 8乃至 1 0 の反転入力端子 I Mには、 ノード 1 7乃至 1 9に生成される基準電位 V 1乃至 V 3がされる。 ここで、 比較器 5乃至 7、 および比較器 8乃至 1 0の非反転入力端子 I Pに、 ノード 1 7乃至 1 9に生成される基準電位 V 1乃至 V 3を入力しても良い。 この場合においては、 比較器 5乃至 7 の反転入力端子 I Mにアナログ入力信号 V I Nを、 比較器 8乃至 1 0の 反転入力端子 I Mに逆相信号 V I N Bを入力する。 FIG. 2 shows an example of the signal input unit. By inputting the analog signal V 0, the comparators 5 to 7 and the comparators 8 to 10 have opposite phases to each other. The phase signal VINB can be supplied. <The negative phase signal VINB is a signal obtained by folding back the analog input signal VIN with respect to the center potential V2 that is equidistant from the potential VRH and the potential VRL. Here, the fold of the analog input signal VIN with respect to the center potential V 2 means that the potential difference from the center potential V 2 to the analog input signal VIN is equal to the potential on the opposite side of the center potential V 2 from the analog input signal VIN. Is to invert. That is, the analog input signal VIN and the negative-phase signal VINB have a potential difference equal to each other with respect to the central potential V2 and are in a reverse-phase relationship. Accordingly, input signals having a phase opposite to each other with respect to the center potential V 2 can be input to the comparators 5 to 7 and the comparators 8 to 10 <Non-inversion of the comparators 5 to 7 The analog input signal VIN is input to the input terminal IP. On the other hand, the non-inverter input terminals IP of the comparators 8 to 10 receive the inverted-phase signal VΓΝ. Reference potentials V1 to V3 generated at nodes 17 to 19 are applied to the inverting input terminals IM of the comparators 5 to 7 and the comparators 8 to 10. Here, the reference potentials V1 to V3 generated at the nodes 17 to 19 may be input to the non-inverting input terminals IP of the comparators 5 to 7 and the comparators 8 to 10. In this case, comparators 5 to 7 The analog input signal VIN is input to the inverting input terminal IM, and the negative-phase signal VINB is input to the inverting input terminals IM of the comparators 8 to 10.
これにより、 各比較器 5乃至 7と対称位置にある各比較器 1 0乃至 8 との間で、 対称関係にある基準電位に対する入力信号の電位関係が逆相 の関係となるので、 比較器 5乃至 7と、 対称位置にある比較器 1 0乃至 8との間で寄生容量への充放電に起因する基準電位の変動を相殺するこ とができる。  As a result, the potential relationship of the input signal with respect to the symmetrical reference potential becomes opposite in phase between the comparators 5 to 7 and the comparators 10 to 8 at the symmetrical positions. 7 through 7 and the comparators 10 through 8 at the symmetric positions, the fluctuation of the reference potential due to the charging and discharging of the parasitic capacitance can be offset.
エンコーダ 2には、 比較器 5乃至 7からの出力のみが入力される。 比 較器 5乃至 7からの出力と比較器 8乃至 1 0からの出力とは互いに逆論 理の関係にある。 そのため、 エンコーダ 2には、 比較器 5乃至 7からの 出力に代えて比較器 8乃至 1 0からの出力を入力しても良い。 また、 す ぺての比較器、 比較器の回路構成は同一であることが一般的である。  Only the outputs from the comparators 5 to 7 are input to the encoder 2. The outputs from the comparators 5 to 7 and the outputs from the comparators 8 to 10 have an inverse relationship to each other. Therefore, the outputs from the comparators 8 to 10 may be input to the encoder 2 instead of the outputs from the comparators 5 to 7. In general, all the comparators and the circuit configuration of the comparators are the same.
尚、 本発明は前記実施形態に限定されるものではなく、 本発明の趣旨 を逸脱しない範囲内で種々の改良、 変形が可能であることは言うまでも ない。 実施形態においては、 並列型 A / D変換回路装置について述べた が、 並列型以外の A/ D変換回路装置についても本発明を適用すること は可能である。 例えば、 直並列型 A Z D変換回路装置の並列部に本発明 を適用することができる。  Note that the present invention is not limited to the above-described embodiment, and it goes without saying that various improvements and modifications can be made without departing from the spirit of the present invention. In the embodiment, the parallel type A / D conversion circuit device has been described. However, the present invention can be applied to A / D conversion circuit devices other than the parallel type. For example, the present invention can be applied to a parallel section of a serial-parallel AZD conversion circuit device.
また、 本実施形態においては、 各比較器の回路構成を同一としたが、 各比較器の回路構成が全く同一である場合の他、 各比較器の回路構成が 全く同一でなく とも、 同一のアナログ入力信号を入力した際に比較器の 入力端子が持つ寄生容量により流出入する電流 iが同一であることでも よい。  Further, in the present embodiment, the circuit configuration of each comparator is assumed to be the same. However, in addition to the case where the circuit configuration of each comparator is completely the same, even if the circuit configuration of each comparator is not the same, the same The current i flowing out and in due to the parasitic capacitance of the input terminal of the comparator when the analog input signal is input may be the same.
また、 各比較器 5乃至 1 0が同一ではなくとも、 基準電位の変動を相 殺する対称位置に存在する比較器 ( 5 と 1 0、 6と 9、 7と 8 ) のペア で同一、 または等価の回路構成であればよい。 産業上の利用可能性  Even if the comparators 5 to 10 are not the same, the pair of comparators (5 and 10, 6 and 9, 7 and 8) located at symmetrical positions that cancel the fluctuation of the reference potential is the same, or Any equivalent circuit configuration may be used. Industrial applicability
本発明によれば、 抵抗分割回路の対称位置に等価な比較器を備えること により、 比較器の入力段に存在する寄生容量への充放電によって生じる 基準電位の電位変動を相殺して、 高速かつ正確な比較動作が可能な A / D変換回路装置を提供することができる。 According to the present invention, an equivalent comparator is provided at a symmetric position of the resistance dividing circuit. Accordingly, it is possible to provide an A / D conversion circuit device capable of performing a high-speed and accurate comparison operation by canceling a potential fluctuation of a reference potential caused by charging / discharging a parasitic capacitance existing in an input stage of a comparator.

Claims

請 求 の 範 囲 The scope of the claims
1 . 2つの電圧源間を結ぶ少なくとも 2個の抵抗素子を直列に接続し た抵抗素子列と、 前記抵抗素子列の接続点に生成される少なく とも 1つ の基準電位と第 1の入力信号とが入力される少なく とも 1つの第 1比較 器とを備える A/ D変換回路装置であって、 1. A resistance element row in which at least two resistance elements connecting two voltage sources are connected in series, at least one reference potential generated at a connection point of the resistance element row, and a first input signal A / D conversion circuit device comprising at least one first comparator to which
前記第 1比較器ごとに備えられ、 前記第 1比較器に入力される前記少 なく とも 1つの基準電位と第 2の入力信号とが入力される少なく とも 1 つの第 2比較器を備えることを特徴とする A/ D変換回路装置。  And at least one second comparator provided for each of the first comparators, the at least one reference potential input to the first comparator and the second input signal being input to the first comparator. A / D conversion circuit device.
2 . 前記第 1比較器と前記第 2比較器とは等価な回路構成であり、 前 記第 1比較器は、 前記抵抗素子列の前記接続点のうち、 前記 2つの電圧 源の何れからの抵抗値も等しい中心接続点に対して所定位置にある前記 接続点が接続され、 前記第 2比較器は、 前記中心接続点に対して前記所 定位置とは対称の位置にある接続点が接続されることを特徴とする請求 項 1に記載の A/ D変換回路装置。 2. The first comparator and the second comparator have an equivalent circuit configuration, and the first comparator is configured such that, from among the connection points of the resistor element row, any one of the two voltage sources The connection point at a predetermined position is connected to a center connection point having the same resistance value, and the second comparator is connected to a connection point at a position symmetrical to the predetermined position with respect to the center connection point. The A / D conversion circuit device according to claim 1, wherein
3 . 前記抵抗素子列は、 前記接続点のうち前記 2つの電圧源の何れか らの抵抗値も等しい中心接続点に対して対称な位置に等価な抵抗素子が 配列されることを特徴とする請求項 1または 2に記載の A / D変換回路  3. The resistive element array is characterized in that equivalent resistive elements are arranged at symmetrical positions with respect to a center connection point having the same resistance value from any of the two voltage sources among the connection points. The A / D conversion circuit according to claim 1 or 2.
4 . 源入力信号を入力することにより、 前記源入力信号と同相である 同相入力信号と逆相である逆相入力信号とを出力する信号入力部を備え、 前記同相入力信号は、 前記第 1の入力信号として前記第 1比較器に入 力され、 前記逆相入力信号は、 前記第 2の入力信号として前記第 2比較 器に入力されることを特徴とする請求項 1に記載の A / D変換回路装置,4. A signal input unit that receives a source input signal to output an in-phase input signal that is in phase with the source input signal and an in-phase input signal that is in phase opposite to the source input signal, and the in-phase input signal is the first input signal. 2. The A / A converter according to claim 1, wherein the input signal is input to the first comparator as the second input signal, and the negative-phase input signal is input to the second comparator as the second input signal. 3. D conversion circuit device,
5 . 前記逆相入力信号は、 前記中心接続点に生成される中心電位に対 して、 前記同相入力信号を折り返した信号であることを特徴とする請求 項 4に記載の並列型 A/ D変換回路装置。 5. The parallel A / D according to claim 4, wherein the opposite-phase input signal is a signal obtained by folding the in-phase input signal with respect to a center potential generated at the center connection point. Conversion circuit device.
6 . 前記同相入力信号はアナログ信号であり、 前記逆相入力信号は反 転アナログ信号であることを特徴とする請求項 4または 5に記載の並列 型 A/ D変換回路装置。 6. The parallel signal according to claim 4, wherein the in-phase input signal is an analog signal, and the anti-phase input signal is an inverted analog signal. Type A / D conversion circuit device.
7 . 前記第 1の入力信号が入力される前記第 1比較器の入力端子、 お よび前記第 2の入力信号が入力される前記第 2比較器の入力端子は共に. 反転入力端子または非反転入力端子であることを特徴とする請求項 1に 記載の A/D変換回路装置。  7. Both the input terminal of the first comparator to which the first input signal is input and the input terminal of the second comparator to which the second input signal is input. Inverting input terminal or non-inverting terminal The A / D conversion circuit device according to claim 1, wherein the A / D conversion circuit device is an input terminal.
8 . 前記第 1比較器または前記第 2比較器の何れか一方より比較結果 を出力することを特徴とする請求項 1に記載の並列型 A / D変換回路装  8. The parallel A / D conversion circuit device according to claim 1, wherein a comparison result is output from one of the first comparator and the second comparator.
9 . 前記少なく とも 1つの第 1比較器および前記少なく とも 1つの第 比較器は何れも等価な回路構成であることを特徴とする請求項 1に記 載の A/ D変換回路装置。 9. The A / D conversion circuit device according to claim 1, wherein each of the at least one first comparator and the at least one first comparator has an equivalent circuit configuration.
PCT/JP2003/001196 2003-02-05 2003-02-05 A/d conversion circuit device WO2004070954A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003207239A AU2003207239A1 (en) 2003-02-05 2003-02-05 A/d conversion circuit device
PCT/JP2003/001196 WO2004070954A1 (en) 2003-02-05 2003-02-05 A/d conversion circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/001196 WO2004070954A1 (en) 2003-02-05 2003-02-05 A/d conversion circuit device

Publications (1)

Publication Number Publication Date
WO2004070954A1 true WO2004070954A1 (en) 2004-08-19

Family

ID=32843970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001196 WO2004070954A1 (en) 2003-02-05 2003-02-05 A/d conversion circuit device

Country Status (2)

Country Link
AU (1) AU2003207239A1 (en)
WO (1) WO2004070954A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416484A (en) * 1993-04-15 1995-05-16 Tektronix, Inc. Differential comparator and analog-to-digital converter comparator bank using the same
WO2001013521A2 (en) * 1999-08-13 2001-02-22 Koninklijke Philips Electronics N.V. An analog to digital converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416484A (en) * 1993-04-15 1995-05-16 Tektronix, Inc. Differential comparator and analog-to-digital converter comparator bank using the same
WO2001013521A2 (en) * 1999-08-13 2001-02-22 Koninklijke Philips Electronics N.V. An analog to digital converter

Also Published As

Publication number Publication date
AU2003207239A1 (en) 2004-08-30

Similar Documents

Publication Publication Date Title
JP5141450B2 (en) Digital input class D amplifier
CN108989951B (en) Ground switch for speaker current sensing
WO2011145152A1 (en) Digital-analog converter and digital-analog conversion device
JP2008236010A (en) Digital input class-d amplifier
CN103297056A (en) D/a converter
KR100825769B1 (en) On-chip reference current and voltage generating circuits
JP5566211B2 (en) Switched capacitor D / A converter
JP7106916B2 (en) Operational amplifier circuit and current detection device using the same
IT202000004159A1 (en) Corresponding voltage-to-current converter, device and procedure
JP2009027540A (en) Class d amplifier
US9143156B1 (en) High-resolution digital to analog converter
TW200524291A (en) Differential switching circuit and digital-to-analog converter
JP2017192099A (en) Successive comparison type a-d converter
US7911366B2 (en) Gray code current mode analog-to-digital converter
US7215271B2 (en) Method and apparatus for forming transient response characteristics
KR100767581B1 (en) Differential type operational amplifier
JP2000323991A (en) Voltage generating circuit and d/a converting circuit
US7061280B2 (en) Signal detection circuit
JP5763112B2 (en) Switched capacitor circuit
WO2004070954A1 (en) A/d conversion circuit device
CN111669130B (en) Automatic eliminating circuit for input offset voltage of operational amplifier
JP4682419B2 (en) Variable gain amplifier circuit
JP2014057135A (en) Semiconductor device
JP5440143B2 (en) Voltage addition circuit and D / A conversion circuit
US8610614B1 (en) CMOS current-mode folding amplifier

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP