WO2004070807A1 - Substrate treating device and substrate treating method - Google Patents

Substrate treating device and substrate treating method Download PDF

Info

Publication number
WO2004070807A1
WO2004070807A1 PCT/JP2004/000859 JP2004000859W WO2004070807A1 WO 2004070807 A1 WO2004070807 A1 WO 2004070807A1 JP 2004000859 W JP2004000859 W JP 2004000859W WO 2004070807 A1 WO2004070807 A1 WO 2004070807A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
annular
inert gas
processing
processing liquid
Prior art date
Application number
PCT/JP2004/000859
Other languages
French (fr)
Japanese (ja)
Inventor
Riichiro Harano
Original Assignee
Personal Creation Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003025819A external-priority patent/JP2004265912A/en
Priority claimed from JP2003025818A external-priority patent/JP2004265911A/en
Priority claimed from JP2003025816A external-priority patent/JP2004265909A/en
Priority claimed from JP2003025817A external-priority patent/JP2004265910A/en
Application filed by Personal Creation Ltd. filed Critical Personal Creation Ltd.
Publication of WO2004070807A1 publication Critical patent/WO2004070807A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Definitions

  • the present invention relates to a substrate processing apparatus and a substrate processing method.
  • the present invention relates to a substrate processing apparatus and a substrate processing method, and more particularly, to a substrate processing apparatus having improved processing effectiveness, efficiency, uniformity, and accuracy without adversely affecting the environment. And a method for processing a substrate.
  • F EOL processing F EOL processing
  • B EOL processing B EOL processing
  • the washing process of the substrate which removes foreign substances, unnecessary films or unnecessary processing liquids attached to the substrate with a chemical solution or pure water, is an indispensable process. Whether to do so will have a significant effect on the manufacturing cost of the semiconductor substrate.
  • Substrate cleaning treatments are classified into surface treatment, bevel treatment, and side surface treatment of the substrate according to the treatment position of the substrate.
  • Surface treatment and bevel treatment are both sides that simultaneously treat the back and front surfaces of the substrate.
  • Processing is classified into single-sided processing, which processes one side at a time.
  • the cleaning process of the substrate consists of the chemical treatment process of treating the portion to be cleaned with a predetermined chemical solution, the rinsing process of rinsing the chemically treated portion with pure water, and the rinsing portion.
  • it consists of a drying process step of drying with an inert gas.
  • a separate collection process is performed in parallel in order to collect used chemical solution or pure water and to reuse it in some cases.
  • Such a substrate cleaning process is performed by a so-called spin-type single-wafer process, in which a processing fluid such as a chemical solution, pure water, or an inert gas is supplied to a central portion of a high-speed rotating substrate, and these processing fluids are supplied. It utilizes the fact that it flows radially outward from the center toward the periphery of the substrate due to the action of centrifugal force.
  • the structure of the semiconductor substrate is determined for each layer by repeating a film forming process and a lithographic process, and a multilayer wiring structure is formed.
  • the procedure is outlined below.
  • a contact hole or a peer hole is formed in the insulating film.
  • a metal for wiring is buried in the contact hole or via hole.
  • a wiring metal is formed by the Lisodara process and is covered with an interlayer insulating film to form a wiring layer. Thus, one layer of wiring is completed.
  • Such foreign matter to be removed is diffused and adheres to the front surface, the back surface, the side peripheral surface, and the bevel portion (oblique portion of the side surface) of the substrate, that is, the entire surface of the substrate, and is completely removed from the substrate. Failure to do so will adversely affect patterning accuracy or device characteristics, as well as cause cross-contamination.
  • the former wiring metal copper atoms are representative of impurities that diffuse at a high speed into Si crystal, Si 02 and the like, deteriorating device characteristics and causing cross-contamination of equipment and facilities.
  • the above-described substrate cleaning steps are becoming increasingly important in order to prevent copper intrusion.
  • the latter interlayer insulating film is formed by spin coating because it is almost impossible to form it by conventional CVD. In this case, the excess film goes around to the opposite surface of the substrate and adheres around the periphery of the substrate. In this regard, the cleaning step for efficiently removing the extra film adhered around the peripheral portion.
  • a substrate processing apparatus for processing the surface of a substrate with a chemical solution or pure water is disclosed in, for example, Japanese Patent Application Publication No. 2002-93891.
  • the substrate processing apparatus includes: a substrate rotating unit for rotating the substrate in a substantially horizontal plane; a substrate supporting unit for supporting the substrate in a substantially horizontal plane; and a processing liquid toward a substantially center of the surface of the substrate. And an inert gas ejecting means for injecting an inert gas (for example, nitrogen gas) toward the substrate so as to surround the treating liquid supply region on the surface of the substrate.
  • an inert gas ejecting means for injecting an inert gas (for example, nitrogen gas) toward the substrate so as to surround the treating liquid supply region on the surface of the substrate.
  • the processing liquid By supplying the processing liquid toward substantially the center of the surface of the substrate to be processed, the processing liquid scatters in the radial direction of the substrate on the surface of the substrate due to centrifugal force, thereby processing the surface of the substrate. .
  • the inert gas injected toward the surface of the substrate has an adverse effect on the processing of the substrate by the processing liquid. More specifically, the inert gas is used to prevent the surface of the substrate to be processed from coming into direct contact with air, so that the flow of the processing solution is substantially directed toward the center of the surface of the substrate to which the processing liquid is first supplied. It is sprayed to cover around.
  • the pressure suddenly rises in a substantially pulse shape on the surface of the substrate at a point where the jet of the inert gas collides.
  • the substrate is warped during the processing step, and a decompression portion is generated on the surface of the substrate in a region radially outward from the collision point of the inert gas, and mist of the processing liquid generated at the center of the substrate is generated. Attach to the surface, which hinders more uniform processing of the substrate.
  • Japanese Patent Application Publication Nos. 09-92637 and 10-229062 which are Japanese Patent Application Publication Nos. JP-A-09-92637 and JP-A-10-229062, describe a conventional substrate cleaning technique.
  • a substrate processing apparatus for processing an annular region with a processing liquid is disclosed.
  • the apparatus has a processing liquid jet nozzle for supplying a processing liquid for processing the surface of a substrate rotatably held in a substantially horizontal plane to a desired annular area near an outer peripheral edge of the substrate.
  • another processing liquid was directed to the vicinity of the outer peripheral edge of each of the upper and lower surfaces of the substrate in order to remove unnecessary thin films formed near the outer peripheral edge of the substrate.
  • the processing liquid injection nozzle By jetting from the processing liquid injection nozzle, the vicinity of the outer peripheral edge of the substrate is processed with the processing liquid to remove unnecessary thin films.
  • Japanese Patent Application Laid-Open No. 11-8192 which is a Japanese Patent Application Publication, discloses a substrate processing apparatus for supplying a processing liquid to a desired annular region near the outer peripheral edge of a substrate.
  • the processing liquid supplied to the upper surface of the substrate is spilled to the lower surface of the substrate, and an annular liquid film utilizing the capillary phenomenon is formed on the lower surface of the substrate.
  • the area is being treated with the treatment liquid.
  • the processing liquid is supplied to the vicinity of the outer peripheral edge of the substrate by spraying, uniform and accurate processing such as that achieved by processing utilizing centrifugal force is performed near the outer peripheral edge of the substrate. Can't do it.
  • the processing liquid is sprayed to collide with the upper and lower surfaces of the substrate, there is a problem that only a desired annular region near the outer peripheral edge of the upper and lower surfaces of the substrate cannot be accurately processed.
  • the lower surface is processed by circulating the processing liquid supplied to the upper surface to the lower surface, so that the processing is performed only while the substrate is rotating at a low speed or stopped. Even if the rotation speed is low, the sensitivity of the amount of processing solution wraparound to the number of rotations of the substrate is too high, so that uniform and accurate processing can be achieved, for example, by processing using centrifugal force. There is a problem that control cannot be performed near the outer peripheral edge of the lower surface of the substrate.
  • the processing apparatus includes a rotating unit for rotating the substrate in a substantially horizontal plane, and a processing liquid supplied to the surface of the substrate.
  • the processing liquid is supplied to the surface of the substrate while rotating the spin chuck about a substantially vertical axis while supporting the substrate to be processed by the support surfaces of the plurality of support members.
  • the processing liquid is scattered outward in the radial direction of the substrate by the centrifugal force, so that the entire surface of the substrate can be processed with the processing liquid.
  • the processing liquid attached to the substrate becomes a resistance, and the substrate slides out with respect to the support surface of the support member.
  • the support member cannot continue to support the same position on the substrate.
  • the portion of the surface supported by the support member moves and is exposed from the support member, thereby enabling processing with the processing liquid, thereby preventing uneven processing of the side peripheral surface of the substrate due to the support of the substrate. It becomes possible.
  • the support surface of the support member which is usually harder than the substrate, wears over time, and wear powder is generated. Such contaminants can be mixed into the surface of the substrate and adversely affect the quality of the product, or cause cross-contamination. There is a demand to minimize the occurrence of sliding parts near the substrate in the substrate processing process.
  • a substrate processing unit provided with an apparatus for separating and recovering a processing solution that has processed the substrate is disclosed in, for example, Japanese Patent Application Laid-Open Publication No. It is disclosed in JP-A-5-283395.
  • the substrate processing unit rotates the substrate supported from below about a vertical axis, thereby processing the substrate surface with the processing liquid, and separately collects the processed processing liquid.
  • a treatment liquid separation and recovery device for the The treatment liquid separation / recovery device includes an annular inlet arranged to surround the periphery of the substrate for receiving the treatment liquid that is blown radially outward of the substrate by centrifugal force, and a processing liquid flowing from the annular inlet.
  • a plurality of annular flow paths provided with an outlet from which the fluid flows out, and a drive device for vertically moving a support for supporting the substrate with respect to the plurality of annular flow paths.
  • the plurality of annular flow paths are arranged in a vertically stacked manner, and in each of the annular flow paths, an annular wall extending in a vertical direction is provided to receive the discharged processing liquid, and the annular wall is annular.
  • a discharge port for discharging the mist in the annular flow path is provided on the opposite side of the inlet, that is, on the side farther from the substrate.
  • Each of the annular flow paths communicates with the annular space surrounding the plurality of annular flow paths from the outside through each outlet, and the annular space is drawn by the exhaust device, and is formed in each annular flow path through each mist outlet. Mist is sucked.
  • the processing liquid that has processed the substrate can be centrifugally moved to the radius of the substrate. It is blown outward, drips into small drops through the annular inlet and hits the annular wall, and is received in the annular channel. Drops of the processing liquid are condensed in the annular flow path, and are discharged from the outlet, for example, by a pump, so that the processing liquid can be separated and collected. Thereby, the mist of the processing liquid generated in the annular flow path can be exhausted through the annular space.
  • annular flow path used for separation and recovery according to the processing solution, it is possible to prevent different processing solutions from mixing during the separation and recovery, and to reuse the separated and recovered processing solution. be able to.
  • each of the plurality of annular channels has a fixed arrangement, and the annular inlet and mist outlet of each of the annular channels are always open. Therefore, the processing liquid or the mist that is being separated and collected from the annular inlet or the mist outlet enters the annular flow path that is not used for the separation and collection. Even if such a contaminated annular flow path is used, it is difficult to reuse the separated and recovered processing solution as it is.
  • the plurality of annular flow paths are arranged in a vertically stacked manner, the space in the vertical direction of the processing unit increases, and therefore, the separation and recovery of mist is uneven in the vertical direction. Tends to occur.
  • mist generated during the separation and collection of the processing liquid falls on the processing surface of the substrate, deteriorating the quality of the substrate. More specifically, when the processing liquid scattered in the radial direction of the substrate due to the centrifugal force hits the annular wall, a considerable amount of mist of the processing liquid is generated. The processing solution splashed back rebounds back to the substrate. For this reason, the mist of the processing liquid rides on the flow of the processing liquid that has bounced back to the substrate, floats from the annular inlet toward the substrate, and finally descends to the upper surface of the substrate. As a result, the quality of the processed substrate is deteriorated, and the separation and recovery rate of the processing liquid is reduced.
  • An object of the present invention is to provide a substrate processing apparatus and a processing method capable of improving effectiveness, efficiency, uniformity, and accuracy without adversely affecting the environment.
  • Another object of the present invention is to provide a substrate processing apparatus which enables uniform processing of a substrate surface while maintaining the vicinity of the substrate surface in an inert gas atmosphere.
  • Another object of the present invention is to support a substrate without causing sliding movement between the substrate and the substrate during high-speed rotation of the substrate when contacting and supporting a plurality of circumferential positions on the side peripheral surface of the substrate. It is an object of the present invention to provide a substrate processing apparatus and a processing method capable of moving these plurality of contact support portions on the side peripheral surface of the substrate while moving the substrate.
  • a further object of the present invention is to supply a processing fluid to a surface of a substrate while rotating the substrate at a high speed in a substantially horizontal plane, thereby treating or drying the surface of the substrate without causing deterioration of the substrate. It is another object of the present invention to provide a substrate processing apparatus and a processing method capable of reliably processing or drying the side peripheral surface of a substrate using such a processing fluid.
  • Another object of the present invention is to ensure the separation and collection efficiency of the processing solution without deteriorating the quality of the substrate. It is an object of the present invention to provide a substrate processing apparatus which can perform the processing.
  • Substrate rotation holding means for rotating while holding the substrate in a substantially horizontal plane
  • a processing liquid supply means for supplying a processing liquid to the surface of the substrate, wherein the processing liquid supply means supplies the processing liquid in a substantially vertical direction toward a substantially center of the substrate. Having a liquid supply nozzle,
  • an inert gas injection nozzle for injecting an inert gas toward the surface so that the vicinity of the surface is an inert gas atmosphere
  • a baffle plate installed between the surface and the inert gas injection nozzle so as to receive the inert gas flow injected from the inert gas injection nozzle and deflect the flow toward the outside of the substrate;
  • the baffle plate has a through hole for partially branching the deflected flow toward the outside of the substrate so as to maintain the vicinity of the surface in an inert gas atmosphere,
  • the inflow opening of the inert gas branch flow formed on the surface of the baffle plate on the side of the inert gas injection nozzle of the baffle plate is offset from the inert gas injection nozzle.
  • the outlet opening of the branch flow of the inert gas formed on the surface opposite to the surface of the baffle plate is formed inward from the inlet opening.
  • an inert gas atmosphere is provided near the substrate surface.
  • Inert gas is injected from the active gas injection nozzle toward the surface.
  • the processing liquid supplied to the surface of the substrate rotating in a substantially horizontal plane tends to scatter outward on the substrate in the radial direction of the substrate by the action of centrifugal force.
  • the inert gas flow is received by a baffle plate provided between the substrate surface and the inert gas injection nozzle, and is deflected to a flow toward the outside of the substrate.
  • a portion of the deflected flow then passes through the inflow openings of the plurality of through holes in the baffle, through the outflow opening formed on the opposite surface of the baffle surface, and toward the substrate surface.
  • the outflow opening is offset inward from the inflow opening, so that the inert gas passing through each through hole is directed toward the center of the substrate to which the processing liquid is supplied.
  • the baffle plate by receiving the inert gas jet directed toward the substrate surface by the baffle plate, it is possible to prevent the inert gas jet from directly hitting the substrate surface, prevent the substrate from being adversely affected, and reduce the pressure around the direct hit portion.
  • the mist of the processing solution and the mist during spin drying By keeping the vicinity of the surface of the substrate in an inert gas atmosphere while preventing it from adhering to the substrate, effective and uniform treatment of the substrate surface can be achieved.
  • the inert gas injection nozzle has a form of an annular nozzle arranged so as to surround the processing liquid supply nozzle,
  • the baffle plate has a shape of a disk arranged concentrically with the annular nozzle and substantially parallel to the substrate,
  • the through hole has a plurality of branch flow paths each having a predetermined inclination such that the inert gas branch flow hits the processing liquid flow from the processing liquid supply nozzle just before the surface of the substrate.
  • the plurality of branch channels are arranged at equal angular intervals in the circumferential direction of the baffle plate.
  • the substrate rotating means has a spin chuck rotatable around a substantially vertical axis, and a rotation driving means for rotating the spin chuck,
  • the substrate support means includes a support fixed to an upper surface of the spin chuck and extending from the upper surface toward the substrate.
  • the baffle plate extends from the surface of the baffle plate so that the deflected flow toward the outside of the substrate is restricted to an area outside the inflow opening of the plurality of branch flow paths between the baffle plate and the upper surface. It is preferable to have a protruding ring portion protruding toward the inert gas injection nozzle.
  • the spin chuck has a through hole around its rotation axis
  • the inner tube and the outer tube are disposed concentrically around a rotation axis of the spin chuck, and the processing liquid supply nozzle is formed by an upper peripheral edge of the inner tube;
  • the inert gas annular nozzle is formed between an upper peripheral edge of the outer tube and an outer peripheral surface of the inner tube, and the baffle plate is fixed to an outer peripheral surface of the inner tube above the inert gas annular nozzle. It is better to be done.
  • Processing liquid supply means for supplying a processing liquid for processing the upper surface of the substrate rotatably held in a substantially horizontal plane to the upper surface of the substrate;
  • a processing region limiting means for limiting the supply of the processing liquid to the upper surface of the substrate to a desired annular region on the upper surface of the substrate;
  • the processing liquid supply means includes: a fixed lower surface that forms a gap through which a fluid flows between the upper surface of the substrate; and a processing liquid provided to the fixed lower surface so as to face the gap.
  • An annular flow path extending obliquely downward toward the upper surface of the substrate and radially outward to the annular outflow opening;
  • the processing region limiting means has an inert gas outlet opening for injecting an inert gas, provided in a region of the fixed lower surface surrounded by an inner peripheral edge of the annular outlet opening so as to face the gap.
  • an inert gas atmosphere facing inward from the annular processing liquid flow toward the upper surface of the substrate so as to form a gas barrier along the vicinity of the inner peripheral edge.
  • the pressure is maintained at a predetermined value.
  • the substrate processing apparatus further includes a vertical moving means for vertically moving the fixed lower surface, and adjusts a distance between the fixed lower surface and the upper surface of the substrate by the vertical moving means. It is preferable to adjust the annular area of the processing liquid supplied to the upper surface of the substrate as desired.
  • the substrate processing apparatus also has a concave portion that is depressed from the fixed lower surface,
  • the inert gas outflow opening is formed by a peripheral edge that forms a boundary with the recess on the fixed lower surface, and preferably has a circular opening substantially concentric with the annular outflow opening.
  • Processing liquid supply means for supplying a processing liquid for processing the upper surface of the substrate rotatably held in a substantially horizontal plane to the upper surface of the substrate;
  • the processing liquid supply means includes: a fixed lower surface that forms a gap through which a fluid flows between the upper surface of the substrate; and a processing liquid provided to the fixed lower surface so as to face the gap.
  • the processing region limiting means includes: a region on the fixed lower surface surrounded by an inner peripheral edge of the annular outflow opening so as to inject the first inert gas outward from the inside of the annular outflow opening through the gap.
  • a first inert gas provided to face the gap for injecting a first inert gas An outflow opening, and a second inert gas outflow opening for injecting a second inert gas, provided in a region of the fixed lower surface surrounding the outer peripheral edge of the annular flow fil opening so as to face the gap.
  • the processing liquid supplied from the annular outflow opening is entrained toward the outside of the substrate by the first inert gas ejected from the first inert gas outflow opening, and the second inert gas outflow opening is
  • the structure is such that the substrate is drawn outward from the substrate by the second inert gas injected from the mouth.
  • the substrate processing apparatus further includes a vertical direction moving means for moving the fixed lower surface in a vertical direction, and the distance between the fixed lower surface and the upper surface of the substrate is adjusted by the vertical direction moving means.
  • the annular region of the processing liquid supplied to the upper surface of the substrate is preferably adjusted as desired.
  • the substrate processing apparatus further has an annular flow path extending obliquely downward toward the upper surface of the substrate and radially outward to the second inert gas outflow opening,
  • the second inert gas outflow opening is preferably in the form of an annular outflow opening substantially concentric with the annular outflow opening.
  • the annular flow path is tapered toward the annular outflow opening.
  • a rotating means for rotating the substrate in a horizontal plane a processing liquid supply means for supplying a processing liquid to the surface of the substrate, a spin chuck rotatable about a substantially vertical axis, and an axis on the spin chuck.
  • Each of the plurality of support pins has a support side surface for supporting the side peripheral surface of the substrate from the side, and a horizontal cross section of the support side forms an arc centered on the axis of each support pin.
  • Each of the side surfaces can rotate around the axis,
  • rotation driving means for rotating the plurality of support pins in the same direction around the respective axes while synchronizing the plurality of support pins
  • the configuration is such that
  • the substrate while supporting the side peripheral surface of the substrate from the side by the support member, the substrate is rotated in a substantially horizontal plane, and the processing liquid is supplied to the surface of the rotating substrate, whereby the centrifugal force is increased. Due to the action of the above, the processing liquid scatters outward in the radial direction of the substrate, and as a result, it becomes possible to process the entire surface of the substrate.
  • each of the plurality of support pins has a cutout portion that extends laterally and upward with respect to the axis.
  • the rotation driving means is connected to each support pin concentrically with the axis of each of the plurality of support pins, and is capable of rotating about the axis, a plurality of first gears;
  • a cam having a curved profile so as to make point contact with the inclined surface, and movable vertically, and rotatable about the rotation axis of the spin chuck integrally with the spin chuck;
  • the cam follower is pushed out in the rotation direction via the inclined surface, and the second gear is relatively rotated with respect to the spin chuck.
  • the inclined surface has a circular cross section with respect to the inclination direction of the inclined surface
  • the cam is formed of a cylindrical roller, and is arranged in such a direction as to bring its peripheral side surface into point contact with the inclined surface. Is good.
  • the plurality of support pins are arranged at equal angular intervals in a circumferential direction around a rotation axis of the spin chuck.
  • a substrate processing apparatus for processing by supplying a processing liquid to a surface of a substrate rotatably arranged in a horizontal plane
  • a pot disposed to surround the periphery of the substrate and having an annular opening facing inward toward the periphery of the substrate; An annular partition extending inside the pot from near the annular opening toward the bottom of the pot 1;
  • An annular partition vertical moving means for vertically moving the annular partition, and by positioning the annular partition at an upper level of the annular opening, an inner peripheral surface of the annular partition is processed liquid from a substrate.
  • a guide surface for guiding the oil from the annular opening to the bottom of the pot,
  • the outer peripheral surface of the annular partition forms another guide surface for guiding the processing liquid from the substrate from the annular opening to the bottom of the pot. It has a configuration.
  • each of the adjacent annular partitions when the inner peripheral edge of each of the adjacent annular partitions is positioned at the annular opening, the gap between the inner peripheral edges of the other adjacent annular partitions can be prevented from inflow of mist generated from the scattering of the processing liquid.
  • the other adjacent annular partitions should be positioned close to each other in the up-down direction so that the size is as large as possible.
  • each of the plurality of annular partitions includes an umbrella portion inclined inward and upward toward the annular opening, and a cylindrical portion having an upper peripheral end connected to the umbrella portion and extending upward from the bottom of the pot. It is better to have
  • the umbrella portion has an annular protrusion extending outward from a connection portion with the cylindrical portion, and is disposed above the bottom of the pot so as to surround the cylindrical portion below the annular protrusion.
  • An annular partition wall is provided extending to
  • the annular flow path is formed by an oblique flow path formed by the head portions of adjacent annular partitions, and an inner peripheral surface of the cylindrical portion of the outer annular partition and an outer peripheral surface of the annular partition. And an inner flow path formed by an inner peripheral surface of the partition wall and an outer peripheral surface of the cylindrical portion of the outer annular partition.
  • an inverted U-shaped channel may be formed.
  • the outer flow path communicates with a processing liquid outlet at a lowermost end thereof, and the inner flow path communicates with a mist outlet at a lowermost end thereof. It is preferable that the inside of the annular flow path is drawn by an exhaust device through an outlet.
  • the outermost annular partition of the plurality of annular partitions may form an annular flow path between the outer peripheral surface and the inner peripheral surface of the outer peripheral wall of the pot. Further, the innermost annular partition of the plurality of annular partitions forms an annular flow path between its inner peripheral surface and the inner peripheral surface of the inner peripheral wall of the pot. May be.
  • the above-described substrate processing apparatus may further include a plurality of through-holes distributed in a circumferential direction in a mist inflow opening formed by an upper peripheral edge of the partition and an inner peripheral surface of the annular partition adjacent to the inside. It is preferable that an annular conductance adjusting plate having holes is provided, and the size of each of the plurality of through-holes is reduced as it approaches the mist outlet. Further, it has a rotary support ⁇ for supporting the substrate and an annular receiver for receiving the processing liquid for paddling in the innermost clean flow path substantially below the outer peripheral edge of the rotary support base. Good.
  • Rotation holding means for rotating while holding the substrate in a substantially horizontal plane
  • Processing liquid supply means for supplying a processing liquid to the surface of the substrate
  • a substrate processing apparatus having:
  • a pot having an inwardly facing annular opening disposed so as to surround the periphery of the substrate; and an upward and inward direction from the bottom toward the annular opening to partition the bottom of the pot into an annular shape, respectively.
  • a plurality of annular partitions extending and spaced apart in the pot;
  • annular partition vertical moving means for vertically moving the annular partition, wherein the inner peripheral edge of each of the adjacent annular partitions is formed into an annular shape so that the processing liquid flowing from the annular opening can be received.
  • FIG. 1 is a schematic vertical sectional view of a first embodiment of a substrate processing unit according to the present invention.
  • FIG. 2 is a plan view of a substrate supporting portion of the substrate supporting device of FIG.
  • FIG. 3 is a diagram showing the operation of the support pins of the substrate support device of FIG.
  • FIG. 4 is a schematic vertical sectional view of the substrate supporting device of FIG.
  • FIG. 5 is a view from the line VI—VI in FIG.
  • FIG. 6 is a diagram in which the upper surface bevel processing apparatus of FIG. 1 is in a standby position.
  • FIG. 7 is a plan view showing opening and closing of the shirt shown in FIG.
  • FIG. 8 is a partial longitudinal sectional view showing the configuration of the top bevel processing apparatus of FIG.
  • FIG. 9 is an enlarged view of part A of FIG.
  • FIG. 10 is a partial longitudinal sectional view showing a configuration around a baffle plate of the lower surface processing apparatus of FIG.
  • FIG. 11 is a plan view taken along line AA of FIG.
  • FIG. 12 is a partial longitudinal sectional view showing the configuration of the apparatus for separating and recovering treatment liquid of FIG.
  • FIG. 13 is a partial vertical cross-sectional view showing another configuration of the treatment liquid separation / recovery device of FIG.
  • FIG. 14 is a partial vertical sectional view showing the operation of the apparatus for separating and recovering treatment liquid of FIG.
  • FIG. 15 is a partial longitudinal sectional view showing the operation of the apparatus for separating and recovering treatment liquid of FIG.
  • FIG. 16 is a partial vertical sectional view showing the operation of the apparatus for separating and recovering treatment liquid of FIG.
  • FIG. 17 is a schematic longitudinal sectional view of a second embodiment of the substrate processing unit according to the present invention.
  • FIG. 18 is a schematic diagram showing the adjustment operation of the beveled annular region by the upper surface bevel processing apparatus of FIG. Preferred Embodiments of the Invention ''
  • FIG. 1 is a schematic longitudinal sectional view of a first embodiment of a substrate processing unit according to the present invention.
  • FIG. 2 is a plan view of a substrate supporting portion of the substrate supporting device of FIG.
  • FIG. 3 is a view showing the operation of the support pins of the substrate support device of FIG.
  • FIG. 4 is a schematic longitudinal sectional view of the substrate supporting device of FIG.
  • FIG. 5 is a view from the line VI—VI in FIG.
  • FIG. 6 is a diagram in which the upper-side bevel processing apparatus of FIG. 1 is in a standby position.
  • FIG. 7 is a plan view showing opening and closing of the shirt shown in FIG.
  • FIG. 8 is a partial longitudinal sectional view showing the configuration of the top bevel processing apparatus of FIG. FIG.
  • FIG. 9 is an enlarged view of part A of FIG.
  • FIG. 10 is a partial longitudinal sectional view showing a configuration around a baffle plate of the lower surface processing apparatus of FIG.
  • FIG. 11 is a plan view taken along line AA of FIG.
  • FIG. 12 is a partial vertical cross-sectional view showing the configuration of the apparatus for separating and recovering treatment liquid of FIG.
  • FIG. 13 is a partial vertical cross-sectional view showing another configuration of the treatment liquid separation / recovery device of FIG.
  • FIGS. 14 to 16 are partial longitudinal sectional views showing the operation of the apparatus for separating and recovering treatment liquid of FIG.
  • FIG. 18 is a schematic diagram showing the adjustment operation of the beveled annular region by the upper surface beveling apparatus of FIG.
  • the substrate processing unit 10 includes a substrate rotating device 12, a substrate support device 14, a processing liquid supply device 16 for the substrate, and a processing liquid separation and recovery device. It is roughly composed of 18.
  • substrate treatment is used to include a substrate cleaning process using a processing fluid, a drying process, a rinsing process, and an etching process.
  • the substrate rotating device 12 is a spinning rotatable about a substantially vertical axis X. It has a chuck 20 and a drive unit 22 that rotationally drives the spin chuck 20.
  • the spin chuck 20 faces the lower surface A2 of the substrate A, and has a disk portion 24 centered on the axis X and a shaft portion 26 connected to the lower side of the disk portion 24.
  • the disk portion 24 has a substantially horizontal upper surface 28 forming a so-called chuck surface, and a central portion of the upper surface 28 faces a gap 30 between the lower surface A 1 of the substrate A and the upper surface 28.
  • a through hole 32 is provided.
  • the size of the upper surface 28 is larger than the outer diameter of the substrate A, and the outer diameter of the substrate A is, for example, 8 inches; or 12 inches.
  • a support pin 34 for supporting the substrate A is provided on the upper surface 28 so that the support pin 34 for supporting the substrate A rotates about the axis X.
  • the shaft portion 26 extends downward concentrically with the disk portion 24, and its side surface is supported by a housing 38 via a bearing 36.
  • the diameter of the shaft portion 26 is smaller than the diameter of the disk portion 24, so that an annular opening space below the disk portion 24 has a support pin driving device 3 for relatively rotating a support pin 34 described later. 9 are provided.
  • a bearing 40 is arranged below the shaft portion 26, and the bearing 40 supports the shaft portion 26, that is, the spin chuck 20 so as to be rotatable about a rotation axis X.
  • the driving section 22 has a mechanism for rotating the shaft section 26, and includes a motor 42, a pulley 44 connected to the motor 42, a pulley 46 connected to the shaft section 26, and a portion between the pulleys. And a power transmission belt 48 for transmitting the rotation of the motor.
  • the drive section 22 rotates the shaft 26, the disk section 24, and thus the support pin 34 supporting the substrate A, about the rotation axis X.
  • the rotation speed of the substrate A is determined according to the process of the substrate A, and is generally 200 to 3,000 rpm in the case of the treatment process, and is higher than 3,000 to 5,000 rpm in the case of the drying process. 000 rpm. As shown in FIGS.
  • the support device 14 for the substrate A has six support pins 34 for supporting the substrate A substantially horizontally on the upper surface 28 as described above.
  • the disk 24 is substantially upright by being penetrated through the disk portion 24, and is rotatably mounted on the disk 24.
  • Four support pins 50 are provided inside the support pins 34 in a substantially upright state, respectively. Fixed for 4.
  • the six support pins 34 are arranged on the circumference at equal angular intervals in the circumferential direction around the axis X according to the size of the substrate A to be processed, while four support pins 50 are provided. Are similarly fixedly arranged on the circumference at equal angular intervals in the circumferential direction around the axis X.
  • the number of support pins is at least three or more.
  • each of the plurality of support pins 34 has a support side surface 54 that supports the side peripheral surface 52 of the substrate A from the side, and a horizontal cross section of the support side surface 54 is
  • Each support pin 34 forms an arc centered on the axis Y (in this embodiment, a semicircle), and the support side surfaces 54 are each centered on the axis Y. It can rotate.
  • the support pins 50 contact and support the lower surface A2 of the substrate A from below when the substrate A is not supported by the support pins 34, respectively.
  • Each of the plurality of support pins 34 has a cutout 56 that extends laterally and upward with respect to the axis Y, and as described later, by rotating each support pin 34 about the axis Y, The notch 56 is directed toward the side peripheral surface 52 of the board A, thereby releasing the support of the board A by the support pins 34 and supporting the board A by the support pins 50.
  • «A can be lifted directly from below by a transfer robot arm, for example.
  • the same number of first gears 58 as the number of the support pins 34 and the first A gear mechanism 62 including a second gear 60 meshing with each of the gears 58 is provided below the disk portion 24 of the spin chuck 20, the same number of first gears 58 as the number of the support pins 34 and the first A gear mechanism 62 including a second gear 60 meshing with each of the gears 58 is provided.
  • the plurality of first gears 58 are respectively connected to the lower ends of the corresponding support pins 34 concentrically with the axis Y, and are rotatable about the axis Y.
  • the second gear 60 is connected to the spin chuck 20 concentrically with the rotation axis X of the spin chuck 20, and is rotatable integrally with the spin chuck 20 about the rotation axis Y.
  • the second gear 60 is formed by a cam mechanism 72 comprising a cylindrical cam 64 and a cam follower 70 having an inclined surface 68 which is in contact with a side peripheral surface 66 of the cylindrical cam 64.
  • the first gear 58 rotates around the axis X, whereby each of the plurality of first gears 58 rotates, and thus each of the support pins 34 rotates relative to the spin chuck 20.
  • a cylindrical cam 64 is provided at the upper end of a shaft 73 extending in a substantially vertical direction and rotatable about the axis X.
  • the lower surface of the second gear 60 is provided with a cam follower 70 extending downward from the lower surface thereof and having a slope 68 at the lower end so as to be inclined in the rotational tangential direction of the second gear 60.
  • the cylindrical cam 64 can move up and down, and can rotate about the rotation axis X integrally with the spin chuck 20.
  • the inclined surface 68 is a curved surface having a circular cross section with respect to the inclination direction of the inclined surface 68, and is arranged in such a direction that the side peripheral surface 66 of the cylindrical cam 64 comes into point contact with the inclined surface 68. It is preferable that the cam follower 70 and the cylindrical cam 64 have a curved profile that makes point contact with each other. As long as they make point contact or line contact, for example, the inclined surface 68 is made flat, and the cam is formed. It may be in the form of a pole.
  • a spring (not shown) having one end fixed to the lower surface of the second gear 60 and the other end fixed to the lower surface of the disk portion 24 is attached to the lower surface of the second gear 60, 60 corresponds to spin chuck 20 Then, when the relative rotation is made by a predetermined angle, the urging force of the panel acts to rotate the second gear 60 in the reverse direction.
  • the screw shaft 74 is connected to the motor 78 through the coupling 76, and the screw nut 74 is fixed to the screw shaft 74. 0 is screwed.
  • the outer annular member 82 to which the fixing nut 80 is fixed is connected to the inner annular member 86 to which the lower end of the shaft 73 is fixed via a bearing 84, and the upper end of the shaft 73 is a linear bearing. 8 Vertically movable by 8 As a result, when the motor 78 is driven, the fixing nut 80, and thus the shaft 73, which is connected to the fixing nut 80 via the bearing 84, moves in the vertical direction, and the shaft portion 26 moves along the axis. By rotating about X, the shaft 73 also rotates integrally with the shaft part 26 via the member 90.
  • the cam follower 70 is pushed out in the rotational direction through the inclined surface 68, and the second gear 60 is spun.
  • the substrate A is rotated relative to the chuck 20 by rotating the spin chuck 20 in the same direction about the respective axis Y while synchronizing the plurality of support pins 34 with each other.
  • the support pin 34 can be rotated relative to the spin chuck 20 in a manner of rolling contact with each of the support side surfaces.
  • the substrate processing unit 10 includes a substrate processing unit 10 disposed above the upper surface A 1 of the substrate A. It has a bevel processing unit 16A on the upper surface of the substrate A and a processing unit 16B for the entire lower surface of the substrate installed below the lower surface A2 of the substrate A.
  • the processing liquid is an acid, alkali or organic solvent or other chemical liquid, pure water or deionized water, etc., the processing content, for example, which foreign matter such as particles, polymers, metals, etc., or oxidation It may be determined as appropriate depending on which film, such as a film, a nitrided film, and an altered film generated by CMP.
  • the bevel processing unit 16A of the board A has a holding position above the shutter 92 (see Fig. 7) that can be opened and closed horizontally, and an operation below the shutter 92. It is connected to a motor 96 through a gear mechanism 94 so that it can move up and down between In order to prevent the processing solution from dripping at the position and dropping onto the surface of the substrate A, the shirt 92 is provided with a processing liquid receiving groove 98 corresponding to the position at which the processing liquid hangs.
  • the bevel processing unit 16A has a main body 102 in which an annular flow path 100 for supplying a processing liquid to the substrate A is formed. Unlike the spin chuck 20, the main body 102 is settled without rotating in the operating position. The distance from the upper surface A1 of the substrate A at the operating position is from 0.5 mm to 31.
  • the main body ⁇ 02 has an annular-flat lower surface 104, and the lower surface 104 is disposed so as to be substantially parallel to the substrate A, and a fluid flows between the lower surface 104 and the upper surface A1 of the substrate A.
  • the gap 31 is formed.
  • An annular outflow port 106 for the processing liquid is provided on the lower surface 104 so as to face the gap 31, and an annular outflow opening 1 diagonally downward and radially outward toward the upper surface A 1 of the substrate A.
  • An annular channel 100 is formed so as to extend to 06.
  • the annular flow path 100 is tapered toward the annular discharge opening 106.
  • the inclination angle j3 of the annular flow passage 100 around the annular outflow opening 106 is such that the processing liquid flowing out from the annular outflow opening 106 is directed to the outside of the substrate A.
  • the angle is at least an acute angle, and is determined in detail according to the type of the processing solution, the flow rate, the outlet opening area, and the like, and is preferably from 10 ° to 30 °.
  • an annular storage section 108 for temporarily storing the processing liquid is provided so as to circulate with the annular flow path 100, and the upstream side of the annular storage section 108 is provided with:
  • a plurality of pipes 114 communicating with the processing liquid inlets 112 provided in the upper surface 110 of the main body 102 in the circumferential direction are provided in communication with the annular reservoir 108. .
  • Each processing solution inlet 1 1 2 is connected to a processing solution supply source (not shown) of a chemical solution or pure water via a flow meter, a regulating valve, and a branch pipe (not shown) (see FIG. 1). ).
  • a processing solution supply source not shown
  • the processing liquid that has flowed in from each processing liquid inlet 1 12 reaches the annular reservoir 108 through each pipe 114, and the processing liquid that has been once stored therein flows into the annular flow path.
  • the processing liquid is supplied to the substrate A by flowing in a direction from the annular outflow opening 106 to the outside of the substrate A through 100.
  • the region of the lower surface 104 surrounded by the inner peripheral edge 1 16 FIG.
  • a concave portion 1 18 having a circular horizontal cross section recessed from the lower surface 104 is provided. Peripheral edge that forms a boundary with concave portion 1 18 on lower surface 104 so that first inert gas outflow opening 120 for injecting nitrogen gas, which is the first inert gas, faces gap 31. It has a form of a circular opening substantially concentric with the annular outflow opening 106.
  • the first inert gas flows into the concave portion 118 through the inlet opening 117 communicating with the inert gas supply source (not shown) via the flow controller, the regulating valve, and the filter.
  • the gas flows radially outward of the substrate A through the gap 31 through the inert gas outflow opening 120.
  • a second inert gas outlet opening 126 (FIG. ) Is formed inside the main body 102, and an annular flow path 1 2 extends obliquely downward toward the upper surface A 1 of the substrate A and radially outward to the second inert gas outflow opening 1 26. 8 is formed.
  • the second inert gas outflow opening 126 has a form of an annular outflow opening that is substantially concentric with the annular outflow opening 106. As shown in FIG.
  • the inclination angle ⁇ ⁇ ⁇ of the annular flow path around the second inert gas outflow opening 126 is “second inert gas-outflow opening 126”.
  • the angle is at least an acute angle so as to be directed outward, and is determined in detail according to the type of gas, flow rate, outlet opening area, etc., and is preferably from 10 ° to 30 °.
  • annular reservoir 1 27 for temporarily storing an inert gas is provided so as to circulate through the annular flow path 128, and on the upstream side of the annular reservoir 1 27, the main body 10
  • a plurality of pipes 131 which communicate with each of a plurality of second inert gas inlets 1229 provided in the circumferential direction on the upper surface 110 of the second 2, are provided so as to circulate with the annular reservoir 127.
  • the second inert gas inlet 1 29 connects a branch pipe (not shown) to an inert gas supply source (not shown) via a flow controller, a regulating valve, and a filter. (See Fig.
  • the second inert gas that has flowed in from each second inert gas inlet port 12 9 passes through each pipe 13 1 and the annular reservoir 1 2 7, the second inert gas once stored therein flows through the annular flow path 128 to the outside of the substrate A from the annular outflow opening 126, and flows to the substrate A.
  • the annular processing liquid flows from the annular outflow opening 1 26 to the upper surface A 1 of the substrate A.
  • the first inert gas from the first inert gas outflow opening 120 is supplied to the outside of the substrate A through the gap 31 so that the inert gas atmosphere facing from the inside is maintained at a predetermined pressure which is at least a negative pressure.
  • the processing liquid supplied from the annular outlet opening 106 receives the first inert gas ejected from the first inert gas outlet opening 120. While being entrained by the gas toward the outside of the substrate A, the gas is drawn outward from the substrate A by the second inert gas injected from the second inert gas outflow opening 126.
  • the supply of the processing liquid to the upper surface A1 of the substrate A can be limited to a desired annular region on the upper surface of the substrate A. As described above, in any case, by selecting the diameter of the annular outflow opening 106 of the processing liquid, it becomes possible to determine the annular region for processing the upper surface A1 of the substrate A.
  • the vertical driving mechanism of the main body 102 shown in FIG. Projection of the annular outflow opening 106 onto the upper surface A1 of the substrate A held vertically in the horizontal direction, that is, by moving the position so that the position does not change.
  • the distance between the substrate and the upper surface A 1 of the substrate may be adjusted.
  • the processing liquid is discharged at a constant inclination angle j8 (see FIG. 9).
  • the bevel processing unit 16A is exclusively used for adjusting the bevel processing annular area.
  • Driving means for precisely moving 102 in the vertical direction may be provided.
  • the beveled annular region may be adjusted by simultaneously changing the vertical movement of the main body 102 and the flow rate of the second inert gas.
  • An outer pipe 130 for supplying an inert gas (nitrogen gas) and an inner pipe 130 are provided.
  • the outer tube 130 extends to the upper surface 28 of the spin chuck 20 through the through holes 3 and 2 in a non-contact manner with the through hole 3 2, and the inner tube 13 2 has a lower end surface of the outer tube 130. It extends through the outer tube 130 through the outer tube 130 so as to protrude from the upper surface of the spin chuck 20.
  • the inner tube 13 2 and the outer tube 130 are arranged concentrically around the rotation axis X of the spin chuck 20, and are moved toward the approximate center of the substrate A by the upper peripheral edge 1 36 of the inner tube 13 2.
  • a processing liquid supply nozzle 138 for supplying the processing liquid in a substantially vertical direction is formed, while a processing liquid supply nozzle 1380 is formed between the upper peripheral edge 140 of the outer pipe 130 and the outer peripheral surface 142 of the inner pipe 132.
  • an inert gas injection nozzle 14-4 for injecting an inert gas toward the lower surface A2 is formed so that the vicinity of the lower surface A2 of the substrate A is in an inert gas atmosphere.
  • the inert gas injection nozzle 144 has a form of an annular nozzle arranged so as to surround the processing liquid supply nozzle 138.
  • a baffle plate 16 is provided between the lower surface A 2 of the substrate A and the inert gas injection nozzle 14 4, and the outer peripheral surface 1 of the inner pipe 1 3 2 is provided above the inert gas annular nozzle 1 4 4. 42, and has the form of a disk arranged concentrically with the annular nozzle and substantially parallel to the substrate A.
  • the baffle plates 1 4 6 are arranged at equal angular intervals in the circumferential direction of the baffle plates 1 4 6.
  • Each of the through holes 1 4 8 has an inflow opening 1 5 2 for an inert gas branch flow formed on the baffle plate surface 150 on the side of the inert gas injection nozzle of the baffle plate 1 46.
  • the outlet opening 15 4 of the inert gas branch flow formed on the surface opposite to the baffle plate surface 150 is offset from the gas injection nozzle 1 4 4 and is located inward from the inlet opening 1 5 2. Each of them has a predetermined inclination such that the inert gas branch flow hits the processing liquid flow from the processing liquid supply nozzle 138 in front of the surface of the substrate A, as shown in FIG. Prepare.
  • the number of the through holes 144 and the opening area may be selected according to the flow rate of the inert gas from the inert gas injection nozzle 144.
  • the baffle plate 1 4 6 is arranged in a region outside the inflow openings 1 5 2 of the plurality of branch flow paths so that the deflected flow toward the outside of the substrate A is restricted between the upper surface 28 and the baffle plate. It has a projecting ring portion 156 projecting from the surface of the substrate 146 toward the inert gas injection nozzle 144. This prevents the inert gas flow deflected by the baffle plate 146 from causing a diffuser effect such as drawing the inert gas flow toward the partially branched substrate A.
  • the baffle plate 146 receives the flow of the inert gas injected from the inert gas injection nozzle 144 and changes the flow toward the outside of the substrate A.
  • the flow deflected toward the outside of the substrate A is partially branched by the through hole 148, and the direct flow to the substrate A by the jet flow of the inert gas injection nozzle 144 is avoided, and the substrate A
  • a decompression part is created around the direct hit part, and mist of the processing liquid adheres to the surface of the substrate.
  • a pot 16 having an inwardly facing annular opening 158 arranged to surround the periphery of the substrate A is described.
  • the pot 160 includes an annular upper wall 162 extending obliquely inward and upward, an annular lower wall 166 having a substantially flat bottom surface 164, an annular upper wall 162, and an annular lower wall.
  • An outer peripheral wall 1668 and an inner peripheral wall 170 between the wall 1166 and an annular eave 1 74 of a predetermined length from the upper peripheral edge 172 of the annular upper wall 162 is substantially vertical In the direction of the ring, eaves of circular eaves 1 7 4
  • the upper peripheral edge 178 of the 170 forms an annular opening 158.
  • the inside of the pot 160 extends upwardly and inward from the bottom 16 4 toward the annular opening 1 58 so as to partition the bottom 16 4 of the pot 160 into an annular shape.
  • each of the annular partitions 180A, 180B, and 180C can be vertically moved independently of each other by a vertical drive mechanism 182, as described later.
  • the outer annular partitions 1 8 0 By positioning the inner peripheral edges 1 8 3 of the adjacent annular partitions 1 8 3 in the annular openings 1 58 so that the processing liquid flowing from the annular openings 1 5 8 can be received, the outer annular partitions 1 8 0
  • the inner peripheral surface 184 of the inner wall 18 and the outer peripheral surface 1886 of the inner annular partition 180 form an annular flow path 189 communicating with the bottom surface 164.
  • the annular partition 180 is positioned above the annular opening 158, that is, above the level at which the processing liquid from the substrate A scatters outward.
  • the inner peripheral surface 1803 of 180 forms a guide surface for guiding the processing liquid from the substrate A from the annular opening 158 to the bottom surface 164 of the pot 160, and the annular partition 180 is formed.
  • the outer peripheral surface 186 of the annular partition 180 is processed from the substrate A. It forms another guide surface for guiding the liquid from the annular opening 158 to the bottom surface 164 of the pot 160.
  • the vertical length of the circular eaves 1 7 4 is three circular partitions 180 A, 180 B, 180 C When each is positioned at the highest position in the pot 160 by the vertical drive mechanism 18 2, the length such that all the upper peripheral edges 18 3 of the three annular partitions 180 are hidden by the annular eaves 1 74 It is preferred that This makes it possible to prevent the processing liquid from the substrate A or the mist generated from the processing liquid from entering between the inner peripheral edges 183 of the adjacent annular partitions 180.
  • Each of the plurality of annular partitions 180 is provided with an umbrella portion 188 that is inclined inward and upward toward the annular opening 158, and an upper peripheral end is connected to the umbrella portion 188, and And a cylindrical portion 190 extending upward from the bottom.
  • the inclination of the umbrella portion 188 is substantially parallel to the upper peripheral wall 162 of the pot 160.
  • a fixed cylindrical portion 192 extends upward from the bottom surface 164 so as to surround the outer peripheral surface of the cylindrical portion 190.
  • the outer peripheral surface of the cylindrical portion 190 and the inner peripheral surface of the fixed cylindrical portion 192 have a predetermined clearance, for example, 0.5 mm, and the fixed cylindrical portion 192 has an umbrella portion 188 at the top. It has such a height that the cylindrical portion 190 and the fixed cylindrical portion 192 overlap each other even when reaching the position.
  • Each of the umbrella portions 188 has an annular protrusion 194 extending outward from a connection portion with the cylindrical portion 190, and the cylindrical portion 190 is provided below the annular protrusion 194.
  • An annular partition 196 extending upward from the bottom surface 164 of the port 160 is provided so as to surround the annular partition 189 so that the annular flow path 189 is formed by an umbrella 1 of an adjacent annular partition 180.
  • An oblique flow path 1 98 formed by 8 8 and an outer flow path 2 0 formed by an inner peripheral surface of a cylindrical portion 190 of the outer annular partition 180 and an outer peripheral surface of the annular partition 196.
  • an inner flow path 2 10 formed by the inner peripheral surface of the annular partition wall 1 96 and the outer peripheral surface of the cylindrical portion 1 90 of the outer annular partition 1 80, and the outer flow path 2 0 4
  • the inner flow path 210 forms an inverted U-shaped flow path.
  • the outer flow path 204 communicates with a processing liquid outlet (not shown) at its lowermost end, and the inner flow path 210 communicates with a mist outlet (not shown) at its lowermost end.
  • the inside of the annular flow passage 189 is drawn by an exhaust device (not shown) through the outlet.
  • the outermost annular partition 180A is provided between the outer peripheral surface and the inner peripheral surface 2 12 of the outer peripheral wall 16 8 of the pot 16 0.
  • the innermost annular partition 180 C located between the inner peripheral surface thereof and the inner peripheral wall 170 of the pot 160 is formed.
  • an annular receiver 218 is provided substantially immediately below the outer peripheral edge of the spin chuck 20 for receiving a processing liquid for paddling, thereby providing a low-speed rotation like paddling processing.
  • the processing liquid can be Separation and recovery, and in particular, mixing with the processing liquid separated and recovered in the innermost annular flow path can be prevented.
  • the mist inflow opening formed by the upper peripheral edge of the annular bulkhead 196 and the inner peripheral surface of the fixed cylindrical portion 192 adjacent to the inside has a plurality of through holes 224 distributed in the circumferential direction.
  • An annular conductance adjusting plate 226 is provided, and the size of each of the plurality of through holes 224 is made smaller as it is closer to the mist outlet. As a result, it is possible to prevent the mist collection from being biased in the circumferential direction.
  • a shaft connecting member 228 is provided on the inner peripheral surface of the annular partition 180, and the upper end of the shaft connecting member 228 is provided.
  • the part is fixed to the inner peripheral surface 184, the lower end is open, and the hollow part faces downward.
  • a hollow cylindrical member 230 extending upward from the bottom surface 164, and the hollow cylindrical member 230 has a diameter such that the hollow cylindrical member 230 fits in the hollow portion of the shaft connecting member 228.
  • the lower end of the shaft 2 3 2 is connected to the shaft 2 3 6 via a coupling 2 3 4, the lower end of the shaft 2 3 6 is screwed into a nut 2 3 8, and the nut 2 3 8 is a pair of gears 2 40 is fixed to one of the gears, and the other gear is connected to the motor.
  • the rotation of the motor 2 42 causes the shaft 2 36 screwed to the nut 2 38 via the pair of gear wheels 240 to rotate, thereby moving up and down, thus moving the shaft 2 32,
  • the annular partition 180 can be moved in the vertical direction via the shaft connecting member 222.
  • a cam mechanism may be used as a modification of the above-described vertical drive mechanism.
  • the cam mechanism 250 is fixed to a shaft 252 rotatable by a motor 251, and follows three flat cams 25 4 substantially parallel to each other, and follows the respective profiles of the flat cams 2 54. It has a cylindrical cam follower 258 fixed to the lower end of a vertically extending shaft 256 connected to each annular partition 180. According to this, each annular partition 180 can move up and down in a predetermined relative positional relationship through a different cam profile by a single motor.
  • the material of the member of the processing unit 10 that comes into contact with the processing liquid is preferably selected from synthetic resins such as Teflon, polypropylene, PVDF, and pinyl chloride according to the processing liquid to be used.
  • the operation of the processing unit for the substrate having the above-described configuration includes the steps of loading the board A, the processing step of the base A, the rinsing step of the substrate A, the drying step of the substrate A, and the processing step, the rinsing step, and the drying step. The process will be described separately for the process of recovering the processing liquid, rinsing liquid, and drying gas that is performed in conjunction with the process.
  • the substrate A is arranged such that the upper surface of the substrate A where the elements are formed is on the upper surface and the lower surface where the elements are not formed is the lower surface, and the upper surface includes the bevel portion where the elements are not formed.
  • An example will be described in which the outer peripheral edge is processed in parallel with the entire lower surface and the side peripheral surface.
  • the top bevel processing unit 16 A Before loading the board A, position the top bevel processing unit 16 A in the standby position.
  • the substrate A to be processed is transferred to the upper surface of the spin chuck 20 by a transfer port pot (not shown).
  • each support pin 34 is rotated, and the notch 56 is placed inward toward the center of the substrate A.
  • the substrate A is supported from below by the respective support pins 50 by a transfer port pot (not shown), and the respective support pins 34 are rotated by themselves, and the arc-side peripheral surface 54 is brought into contact with the peripheral edge 52 of the substrate A.
  • the substrate A is supported substantially horizontally.
  • the shutter 92 is opened, and the upper bevel processing unit 16A is moved downward from the standby position to the operating position.
  • the positioning of the upper surface bevel processing unit to the operating position and the process of loading the substrate A are completed.
  • the spin chuck 20 is rotated by the motor 42 to rotate the substrate A about the axis X at a predetermined rotation speed.
  • the substrate A rotates at a predetermined rotational speed about the vertical axis X while being supported by the support pins 34.
  • the processing on the entire lower surface and the side peripheral surface is performed in parallel.
  • a processing liquid is supplied from the processing liquid supply nozzle 1338 and a nitrogen gas is supplied from the inert gas supply nozzle 144 toward the approximate center of the lower surface A2 of the substrate A.
  • the nitrogen gas jetted from the inert gas supply nozzle 144 toward the lower surface A2 of the substrate A is received by the baffle plate 146, and the flow is deflected radially outward, and A part of the gas flow passes through the through hole 1 4 8 to the lower surface A 2 of the substrate A, and on the way, it hits the flow of the processing solution and covers the area around the flow of the processing solution.
  • the nitrogen gas flow deflected by the baffle plate 1 46 flows backward from the through hole 1 48 by preventing the diffuser effect by restricting the flow between the projecting ring 15 6 and the upper surface 28. Without drawing in, flows outwardly of the substrate A substantially parallel to the upper surface 28, meets the lower surface A 2 of the substrate A, and merges with the inert gas flow deflected by the lower surface A 2.
  • the inert gas atmosphere is maintained around the center of the substrate A, and the processing liquid on the substrate A is obstructed by the inert gas jet. Without this, the fluid flows outward in the radial direction of the substrate A due to the centrifugal force, so that the entire surface of the substrate A can be uniformly treated.
  • the supply of the processing liquid to the upper surface A1 of the substrate A is limited to a desired annular region of the upper surface A1 of the substrate A. It is possible to do.
  • the processing liquid supplied from the annular outlet opening 106 receives the first inert gas jetted from the first inert gas outlet opening 120. While being entrained by the active gas toward the outside of the substrate A, the second inert gas ejected from the second inert gas outflow opening 126 pulls the substrate A outward by the second inert gas.
  • the supply of the processing liquid to the upper surface A1 of the substrate A can be limited to a desired annular region of the upper surface A1 of the substrate A.
  • Rotating speed, gas flow rate, treatment liquid flow rate, position of annular opening, half of opening, when using only the first inert gas or the case where both the first inert gas and the second inert gas are used It may be appropriately selected from the viewpoint of precisely processing a desired annular region near the outer peripheral edge of the substrate A according to conditions such as a radial width and a processing liquid discharge angle.
  • the main body 102 is different from the spin chuck 20 in that the substrate A is not rotated during the processing of the substrate A, so that the processing liquid and the inert gas are separated from the processing liquid and the inert gas. It is possible to easily supply from each supply source to each of the rectangular flow paths 100 and 128 provided inside the main body 102 via a branch pipe. As described above, only the desired annular region on the upper surface of the substrate A can be uniformly and accurately processed in the circumferential direction.
  • the width of the bevel annular processing region that is, the bevel annular processing region Can be adjusted to a desired width and area.
  • the cylindrical follower 64 is moved upward by the motor 780 so that the cam follower 70 is moved.
  • the second chuck 60 is pushed out in the direction of rotation of the substrate A, and the first gear 58 engaging with the second gear 60, and thus each support pin 34 is rotated together with the spin chuck 20 at a high speed.
  • the contact support portion on the side peripheral surface of the substrate A which is supported from the side by the support pins 34, is exposed from the support pins.
  • the substrate A can be rotationally moved within the angular range ⁇ by the urging force of the panel.
  • the exposed contact support portion can be treated with the processing solution for the upper surface treatment or the processing solution for the lower surface treatment, and the portion of the side peripheral surface 54 of the support pin 34 supporting the substrate ⁇ is removed. Washing is also possible. This makes it possible to prevent uneven processing on the side peripheral surface of the substrate A and to suppress cross contamination caused by the support pins 34. At this time, since the board A moves in a rolling contact manner without sliding on the side peripheral surface 54 of the support pin 34, the generation of abrasion powder due to the sliding as in the prior art is reduced. It is possible to avoid.
  • the annular partitions 180A, 180B, and 180C are all positioned at the uppermost positions, so that the inner peripheral surface of the annular partition 180C and the pot 160
  • An annular channel is formed with the inner peripheral wall of the pipe.
  • the processing liquid and the inert gas that have processed the upper and lower surfaces of the substrate A scatter outward in the radial direction of the substrate A, and flow into the inside of the pot 160 through the annular opening 158.
  • the inflowing processing liquid is first received by the inner peripheral surface of the outer annular partition 180 C of the umbrella 180 C, and is not rebounded and returned to the substrate A from the annular opening 158.
  • the flow first flows through the outer flow path 204, and the processing liquid is separated and collected from the processing outlet.
  • the mist flows through the internal flow path 210 while being drawn by the suction device through the mist outlet, passes through the through-holes 224 of the conductance adjusting plate 226 of the pot 166, and rotates around the circumference.
  • Directional It is finally recovered from the mist outlet while preventing the mist flow from being biased.
  • the other annular partitions 180A and 180B are positioned at positions close to each other, so that the liquid and the mist generated therefrom enter the other annular flow passages 189. Inflow can be prevented.
  • the inner flow path 210 and the outer flow path 204 are formed as inverted U-shaped flow paths, and priority is given to recovering a mist generated from the flow of the processing liquid as a liquid rather than recovering the mist as a mist. Thereby, the recovery yield of the processing liquid can be improved.
  • the substrate A can be returned to the processing solution supply source of the processing unit and reused as appropriate.
  • the rinsing step and the drying step of the substrate A use pure water in the rinsing step and use an inert gas in the drying step.
  • the process is substantially the same as the process for substrate A described above except that the rotation speed of substrate A is different from the process. For each of the drying steps, the processing liquid recovery step will be described.
  • annular partition 180 C is moved down to the level of the upper surface 28, while the annular partition 180 B is moved. Move to the bottom level of the circular eaves 1 7 4.
  • annular flow path of the rinsing liquid is formed by the inner peripheral surface 1884 of the annular partition 180B and the outer peripheral surface 186 of the annular partition 180C.
  • the rinsing liquid scattered in all directions from the upper surface A1 of the substrate A becomes annular, similarly to the recovery of the processing liquid in the processing step of the substrate A. It flows into the annular channel 189 through the opening 158. More specifically, first, the rinsing liquid is received by the inner peripheral surfaces of the umbrella portions 188B, C of the outer annular partitions 180B, C, flows through the oblique flow path 198, and flows into the outer flow path 2 Leads to 0 4.
  • the annular projecting portion 1994C prevents the rinsing liquid flowing in the oblique flow path 198 from being short-circuited directly to the outflow opening. Every time the rinse liquid hits the inner wall of the flow path, mist is generated, and the generated mist is drawn to the mist discharge port of the inner flow path 210 by the exhaust device. The rinsing liquid is then recovered through the outlet and reused.
  • the space particularly, the vertical direction It is possible to collect the processing solution independently depending on the processing solution used without occupying a large amount of space, and to reuse the processing solution under appropriate processing known to those skilled in the art. It comes out.
  • the annular partition 180 B is moved downward to the level of the upper surface 28 from the arrangement of the annular partition 180 in FIG. 8 OA Move down Wakasen.
  • an annular flow path is formed by the inner peripheral surface 183 of the annular partition 180 and the outer peripheral surface 186 of the annular partition 180B.
  • the inner peripheral edge 18 3 of the annular partition 180 is used as the lower edge 17 of the annular eave 17 4 regardless of which annular flow path 18 is used. 6, or by positioning it on the upper periphery of the spin chuck 20, it becomes possible to prevent the processing liquid or mist from entering the unrecovered annular channel 189.
  • the process reverse to the process of loading substrate A is performed.
  • the upper surface bevel processing unit 16A is moved upward from the operating position to the holding position.
  • the support pins 34 are rotated by a predetermined angle, and the support of the substrate A is released by turning the cylindrical peripheral surface 54 supporting the substrate A outward.
  • the substrate A is supported in contact with the support pins 50 from below.
  • the board A can be lifted from the support pins 34 and unloaded by extending the fork of the transfer port pot (not shown) below the board A and moving the fork upward. Become.
  • the unloading process of the substrate A is completed.
  • the single wafer processing of the substrate A is completed.
  • the apparatus for separating and recovering treatment liquid is capable of vertically moving the three annular partitions independently with respect to the pot 160, and the bot 1 is formed by these annular partitions 180.
  • the inside of the bot is partitioned, in order to prevent foreign substances such as abrasion powder from entering the separated and collected processing solution, all the components inside the bot 160, including the three annular partitions, are An interval is ensured so that sliding parts do not occur.
  • the substrate processing unit 10 described above is particularly effective for the following steps.
  • an interlayer insulating film is formed to remove the extra film attached around the periphery of the substrate.
  • FIG. 17 is a schematic longitudinal sectional view of a second embodiment of the substrate processing unit according to the present invention.
  • the characteristic of the substrate processing unit 300 is that a processing unit similar to the processing unit 16 B for the lower surface A 2 of the substrate A is provided on the upper surface A 1 of the substrate A instead of the upper surface bevel processing unit 16 A of FIG. It is also adopted.
  • This upper surface processing unit has exactly the same configuration as the processing unit in the first embodiment.
  • the entire upper and lower surfaces of the substrate A can be processed simultaneously. After the process, it is effective to efficiently remove particles or impurities adhering to the entire both surfaces of the substrate.
  • the processing liquid is supplied to the upper surface A1 of the substrate A that rotates at a high speed and approximately at the center of the substrate A
  • the processing liquid is blown radially outward of the substrate A by centrifugal force, thereby processing the entire upper surface from the center of the substrate A to the peripheral edge of the substrate A. It becomes possible to process with a liquid.
  • the inert gas injected toward the upper surface is once received by the baffle plate 1 4 6 ′, and is deflected to the flow toward the outside of the substrate A, and a part of such a deflected flow is branched.
  • the upper surface A 1 is uniformly processed, and at the same time, the jet of the inert gas is prevented from directly flowing on the upper surface A 1 of the substrate A.
  • An inert gas atmosphere is formed around the center of the upper surface A1, and it is possible to prevent the occurrence of a war mark on the upper surface A1. Further, in the same manner as in the first embodiment, it is possible to separate and collect at once the processing liquid obtained by processing the upper and lower surfaces of the substrate A.
  • the inert gas may be supplied to the substrate A without supplying the processing liquid to any of the upper and lower surfaces. As a result, it is possible to prevent the processing liquid from flowing to the opposite surface.
  • the substrate is held from the side while supporting the substrate in a non-contact manner from below the substrate A by using a Bernoulli chuck or air bearing without employing a support pin for supporting the substrate from below. It is also possible.
  • the number of annular partitions may be determined according to the type of chemical solution or the like to be used.
  • the pot may be divided into two by one annular partition.
  • the substrate processing apparatus of the present invention it is possible to uniformly process the substrate surface while maintaining the vicinity of the substrate surface in an inert gas atmosphere.
  • the substrate processing apparatus of the present invention it is possible to uniformly and precisely process only the desired annular region on the upper surface of the substrate.
  • substrate processing apparatus when contacting and supporting the several circumferential position of the side peripheral surface of a board
  • the substrate processing apparatus and the processing method of the present invention when the substrate is processed or dried by supplying a processing fluid to the surface of the substrate while rotating the substrate at a high speed in a substantially horizontal plane, deterioration of the substrate can be prevented. It is possible to reliably process or dry the side peripheral surface of the substrate using such a processing fluid without causing the generation.
  • the separation and collection efficiency of a processing liquid can be ensured, without deteriorating the quality of a board

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

A substrate treating device capable of increasing the effectiveness, efficiency, uniformity, and accuracy of the treatment of a substrate without affecting the environment, comprising an inert gas injection nozzle (144) injecting inert gas so as to form an inert gas atmosphere near the surface of the substrate and a baffle plate (146) receiving the flow of the inert gas injected from the inert gas injection nozzle (144) and deflecting the flow of the inert gas to a flow going toward the outside of the substrate. The baffle plate (146) comprises escape holes (148), and the escape holes (48) are formed such that inflow openings (152) for inert gas branched flow formed on the surface of the baffle plate (146) on the inert gas injection nozzle side of the baffle plate (146) are disposed offset to the outside of the inert gas injection nozzle (144) and outflow openings (154) for the inert gas branched flow formed on the surface of the baffle plate (146) on the opposite side thereof are formed on the inside of the inflow openings (152).

Description

明 細 書 発明の名称  Description Name of Invention
基板の処理装置及び基板の処理方法 発明の属する技術分野  TECHNICAL FIELD The present invention relates to a substrate processing apparatus and a substrate processing method.
本発明は、 基板の処理装置及び基板の処理方法に関し、 更に詳細には、 環境に悪影響を 与えることなしに、 処理の有効性、 効率性、 均一性、 及び精確性を向上した基板の処理装 置及び基板の処理方法に関する。 発明の背景  The present invention relates to a substrate processing apparatus and a substrate processing method, and more particularly, to a substrate processing apparatus having improved processing effectiveness, efficiency, uniformity, and accuracy without adversely affecting the environment. And a method for processing a substrate. Background of the Invention
半導体基板の製造工程において、 基板の表面上に素子を形成する処理は最近、 いわゆる In the process of manufacturing a semiconductor substrate, a process of forming an element on the surface of the substrate has recently been called a so-called process.
F E O L処理と、 いわゆる B E O L処理との 2つに分化している。 いずれの処理において も、 基板に付着した異物、 不要な膜或いは不要な処理液を薬液或いは純水によって取り除 く基板の洗诤処理は、 必要不可欠な工程であり、 この工程をいかに効率的に行うかが、 半 導体基板の製造コストに多大な影響を与える。 基板の洗浄処理は、 基板の処理位置に応じ て、基板の表面処理、ベベル処理及び側周面処理に分類され、表面処理及びべベル処理は、 更に基板の裏面及び表面とを同時に処理する両面処理、 片面ずつ処理する片面処理に分類 される。 It is divided into two types: F EOL processing and so-called B EOL processing. In any treatment, the washing process of the substrate, which removes foreign substances, unnecessary films or unnecessary processing liquids attached to the substrate with a chemical solution or pure water, is an indispensable process. Whether to do so will have a significant effect on the manufacturing cost of the semiconductor substrate. Substrate cleaning treatments are classified into surface treatment, bevel treatment, and side surface treatment of the substrate according to the treatment position of the substrate. Surface treatment and bevel treatment are both sides that simultaneously treat the back and front surfaces of the substrate. Processing is classified into single-sided processing, which processes one side at a time.
基板の処理位置がどこであれ、 基板の洗浄処理は、 所定の薬液によって洗浄すべき個所 を処理する化学処理工程、化学処理した個所を純水によりリンス処理するリンス処理工程、 リンス処理された個所を例えば不活性ガスにより乾燥させる乾燥処理工程から構成され、 各工程において、 使用した薬液或いは純水を回収し 場合により再使用するために分別回 収処理工程が併行して行われる。 このような基板の洗浄処理は、 いわゆるスピン式枚葉処 理により行われ、 高速回転する基板の中心部に薬液、 純水、 不活性ガス等の処理流体を供 給し、 これらの処理流体が遠心力の作用により中心部から基板の周縁に向かって半径方向 外方に流れることを利用している。  Regardless of the processing position of the substrate, the cleaning process of the substrate consists of the chemical treatment process of treating the portion to be cleaned with a predetermined chemical solution, the rinsing process of rinsing the chemically treated portion with pure water, and the rinsing portion. For example, it consists of a drying process step of drying with an inert gas. In each process, a separate collection process is performed in parallel in order to collect used chemical solution or pure water and to reuse it in some cases. Such a substrate cleaning process is performed by a so-called spin-type single-wafer process, in which a processing fluid such as a chemical solution, pure water, or an inert gas is supplied to a central portion of a high-speed rotating substrate, and these processing fluids are supplied. It utilizes the fact that it flows radially outward from the center toward the periphery of the substrate due to the action of centrifugal force.
昨今、このような洗浄処理は、 第 1に処理の有効性、 第 2に処理の効率性、 第 3に処理の 均一性、 第 4に処理の精確性夫々の観点において、 素子形成処理の技術進展に対応しきれ ない状況が生じている。 以下に、 素子形成処理の技術進展内容を説明し、 次に洗浄処理の 各工程毎に技術上の問題点を具体的に i½明する。 In recent years, such cleaning treatments have been developed based on the element formation processing technology in terms of firstly the effectiveness of the process, the second, the efficiency of the process, the third, the uniformity of the process, and the fourth, the accuracy of the process. Some situations have not been able to keep up with progress. The following describes the technological progress of the element formation process, and then describes the cleaning process. The technical problems are specifically explained for each process.
( 1 ) 素子形成処理の進展  (1) Progress of device formation processing
超 L S Iデバイスの高性能化及び高集積化の要請から、 半導体基板は、 水平方向には微 細化が、 一方垂直方向には配線の多層化が夫々追求されている。  Due to the demand for higher performance and higher integration of ultra-LSI devices, semiconductor substrates are being miniaturized in the horizontal direction and multilayer wiring is being pursued in the vertical direction.
より詳細には、 製造工程中の特に配線工程は、 従来から、 成膜工程とリソグラフイエ程 の繰り返しによって、 1層毎に半導体基板の構造が決定され、 多層配線構造が形成される が、 その手順は概略以下のとおりである。  More specifically, especially in the wiring process during the manufacturing process, conventionally, the structure of the semiconductor substrate is determined for each layer by repeating a film forming process and a lithographic process, and a multilayer wiring structure is formed. The procedure is outlined below.
リソグラフイエ程により、 絶縁膜にコンタクトホール或いはピアホールを形成する。 次 いで、 コンタクトホール或いはビアホール中へ配線用金属を埋め込む。 次いで、 リソダラ フイエ程により配線金属を成膜し、 それを層間絶縁膜で覆って配線層を形成する。 以上に より 1層分の配線が完成する。  According to the lithographic process, a contact hole or a peer hole is formed in the insulating film. Next, a metal for wiring is buried in the contact hole or via hole. Next, a wiring metal is formed by the Lisodara process and is covered with an interlayer insulating film to form a wiring layer. Thus, one layer of wiring is completed.
この場合、 リソグラフイエ程において一時的に利用される不要なレジスト膜を基板から 完全に取り除く必要がある。 また、 リソグラフイエ程において形成されるコンタクトホー ル或いはピアホールからはみ出した余分な金属は、 エッチバック或いは C M Pにより除去 されるが、 除去した金属を基板から完全に取り除くのに基板の洗浄が必要となる。 更に、 層間絶縁膜を形成するのに用いた処理液を基板から完全に取り除くのに基板の洗浄が必要 となる。  In this case, it is necessary to completely remove the unnecessary resist film temporarily used in the lithography process from the substrate. Excess metal protruding from the contact hole or peer hole formed in the lithographic process is removed by etch-back or CMP, but cleaning of the substrate is required to completely remove the removed metal from the substrate. . Further, cleaning of the substrate is required to completely remove the processing solution used for forming the interlayer insulating film from the substrate.
このような除去すべき異物は、 基板の表面、 裏面、 側周面及びべベル部 (側面の縁斜め 部分)、つまり基板の全表面に亘り拡散して付着しており、完全に基板から除去されないと、 パターニング精度或いはデバイス特性に悪影響を与えるのはもちろん、 クロスコンタミネ ——ンョンの原因ともなる。  Such foreign matter to be removed is diffused and adheres to the front surface, the back surface, the side peripheral surface, and the bevel portion (oblique portion of the side surface) of the substrate, that is, the entire surface of the substrate, and is completely removed from the substrate. Failure to do so will adversely affect patterning accuracy or device characteristics, as well as cause cross-contamination.
この点に関連して いわゆる配線遅延対策として、 低抵抗の配線金属として銅が、 一方 低誘電率の層間絶縁膜として 10 w - k材が注目を集めている。  In this connection, attention has been paid to copper as a low-resistance wiring metal and 10 wk material as a low dielectric constant interlayer insulating film as a so-called wiring delay countermeasure.
しかしながら、 前者の配線金属について、 銅原子は、 S i結晶、 S i 02 等に高速で拡 散する不純物の代表であり、 デバイス特性を劣化させるとともに、 装置や設備のクロスコ ンタミネ一シヨンを引き起こす。 この点で、 銅の拡散侵入を防止するために、 上述の基板 の洗浄工程はその重要性を増す一方である。 一方、 後者の層間絶縁膜について、 従来の C V Dにより成膜するのが略不可能であることから、 スピンコーティングにより成膜されて いる。 この場合、 余分な膜が基板の反対面にまで回り込んで基板の周縁部まわりに付着す る。 この点で、 このような周縁部まわりに付着した余分な膜を効率的に除去する洗浄工程 の開発が要望されている。 . . However, with respect to the former wiring metal, copper atoms are representative of impurities that diffuse at a high speed into Si crystal, Si 02 and the like, deteriorating device characteristics and causing cross-contamination of equipment and facilities. In this regard, the above-described substrate cleaning steps are becoming increasingly important in order to prevent copper intrusion. On the other hand, the latter interlayer insulating film is formed by spin coating because it is almost impossible to form it by conventional CVD. In this case, the excess film goes around to the opposite surface of the substrate and adheres around the periphery of the substrate. In this regard, the cleaning step for efficiently removing the extra film adhered around the peripheral portion. There is a demand for development. .
( 2 ) 表面処理における問題点  (2) Problems in surface treatment
従来の基板の処理装置について説明すれば、 基板の表面を薬液或いは純水によって処理 するための基板の処理装置が、 例えば日本国特許出願公開第 2002— 93891号公報に開示さ れている。  With respect to a conventional substrate processing apparatus, a substrate processing apparatus for processing the surface of a substrate with a chemical solution or pure water is disclosed in, for example, Japanese Patent Application Publication No. 2002-93891.
この基板の処理装置は、 基板を略水平面内で回転させるための基板の回転手段と、 基板 を略水平面内に支持するための基板の支持手段と、 基板の表面の略中心に向けて処理液を 供給するための処理液供給手段と、 基板の表面の処理液供給領域を取り囲むように基板に 向けて不活性ガス(例えば、窒素ガス)を噴射するための不活性ガス噴射手段とを有する。 このような構成によれば、 基板の表面に向けて不活性ガスを噴射することにより、 基板 の表面近傍を不活性ガス雰囲気としたうえで、 略水平面内で高速回転 (例えば、 数千 rpm) する基板の表面の略中心に向けて処理液を供給することにより、 処理液は遠心力により基 板の表面上を基板の放射方向へ飛散して、それにより基板の表面を処理することができる。 しかしながら、 このような基板の処理装置には、 以下のような技術的問題点がある。 すなわち、 基板の表面に向けて噴射される不活性ガスが、 処理液による基板の処理に悪 影響を及ぼす点である。 より詳細には、 不活性ガスは、 処理される基板の表面が直接空気 に触れないようにする目的で、 処理液が最初に供給される基板の表面の略中心に向けて、 処理液の流れのまわりを覆うように噴射される。 基板の表面中心に供給された処理液が、 基板の表面にぶっかって偏向されて、 遠心力により基板の放射方向に拡散しょうとすると き、 基板に向けて噴射された不活性ガス流れにより邪魔されて、 処理液により基板の表面 全体を均一に処理することが困難となる。  The substrate processing apparatus includes: a substrate rotating unit for rotating the substrate in a substantially horizontal plane; a substrate supporting unit for supporting the substrate in a substantially horizontal plane; and a processing liquid toward a substantially center of the surface of the substrate. And an inert gas ejecting means for injecting an inert gas (for example, nitrogen gas) toward the substrate so as to surround the treating liquid supply region on the surface of the substrate. According to such a configuration, by injecting an inert gas toward the surface of the substrate, the vicinity of the surface of the substrate is set to an inert gas atmosphere, and at a high speed in a substantially horizontal plane (for example, several thousand rpm). By supplying the processing liquid toward substantially the center of the surface of the substrate to be processed, the processing liquid scatters in the radial direction of the substrate on the surface of the substrate due to centrifugal force, thereby processing the surface of the substrate. . However, such a substrate processing apparatus has the following technical problems. In other words, the inert gas injected toward the surface of the substrate has an adverse effect on the processing of the substrate by the processing liquid. More specifically, the inert gas is used to prevent the surface of the substrate to be processed from coming into direct contact with air, so that the flow of the processing solution is substantially directed toward the center of the surface of the substrate to which the processing liquid is first supplied. It is sprayed to cover around. When the processing liquid supplied to the center of the substrate surface is deflected by hitting the surface of the substrate and trying to diffuse in the radial direction of the substrate by centrifugal force, it is obstructed by the flow of the inert gas injected toward the substrate. Therefore, it becomes difficult to uniformly treat the entire surface of the substrate with the treatment liquid.
また、 不活性ガスの流量は相当大きいため、 基板の表面は不活性ガスの噴流が衝突する 点で、 圧力が急激に略パルス状に上昇する。 このため、 処理工程中基板に反りが生じると ともに、 基板の表面において不活性ガスの衝突点より半径方向外方領域に減圧部が生じ、 基板の中心部で生じた処理液のミストが基板の表面に付着し、 これにより、 よりいつそう 基板の均一な処理が阻害される。  In addition, since the flow rate of the inert gas is considerably large, the pressure suddenly rises in a substantially pulse shape on the surface of the substrate at a point where the jet of the inert gas collides. As a result, the substrate is warped during the processing step, and a decompression portion is generated on the surface of the substrate in a region radially outward from the collision point of the inert gas, and mist of the processing liquid generated at the center of the substrate is generated. Attach to the surface, which hinders more uniform processing of the substrate.
一方で、 このような基板の処理への悪影響を回避するために、 不活性ガスの流量を低減 すると、 基板の処理中に表面近傍を常時不活性ガス雰囲気に維持することが困難となり、 それにより例えば、 基板の表面にウォー夕一マークが生じて、 製品の品質を損ない、 処理 の有効性自体を低下させることになる。 ( 3 ) ベベル処理にお る^題点 On the other hand, if the flow rate of the inert gas is reduced in order to avoid such adverse effects on the processing of the substrate, it becomes difficult to constantly maintain the vicinity of the surface in an inert gas atmosphere during the processing of the substrate. For example, the formation of war marks on the surface of a substrate can impair product quality and reduce the effectiveness of processing. (3) ^ bevel processing
従来の基板の洗浄技術について説明すれば、 日本国特許出願公開公報である特開平第 09-92637号公報及び特開平第 10-229062号公報には、基板の上面及び下面の外周縁近傍の 所望環状領域を処理液で処理する基板処理装置が開示されている。 この装置は、 略水平面 内で回転可能に保持された基板の表面を処理する処理液を基板の外周縁近傍の所望環状領 域に供給するための処理液噴射ノズルを有する。 基板の上面を処理液で処理した後、 基板 の外周縁近傍に形成された不要な薄膜を除去するために、 別の処理液を基板の上面及び下 面夫々の外周縁近傍部分に向けられた処理液噴射ノズルから噴射させることによって、 基 板の外周縁近傍を処理液で処理して、 不要な薄膜を除去するようにしている。  Japanese Patent Application Publication Nos. 09-92637 and 10-229062, which are Japanese Patent Application Publication Nos. JP-A-09-92637 and JP-A-10-229062, describe a conventional substrate cleaning technique. A substrate processing apparatus for processing an annular region with a processing liquid is disclosed. The apparatus has a processing liquid jet nozzle for supplying a processing liquid for processing the surface of a substrate rotatably held in a substantially horizontal plane to a desired annular area near an outer peripheral edge of the substrate. After treating the upper surface of the substrate with the processing liquid, another processing liquid was directed to the vicinity of the outer peripheral edge of each of the upper and lower surfaces of the substrate in order to remove unnecessary thin films formed near the outer peripheral edge of the substrate. By jetting from the processing liquid injection nozzle, the vicinity of the outer peripheral edge of the substrate is processed with the processing liquid to remove unnecessary thin films.
また、 日本国特許出願公開公報である特開平 11-8192号公報には、 基板の外周縁近傍の 所望環状領域に処理液を供給する基板処理装置が開示されている。 この装置では、 基板が 低速回転している間又は停止している間、 基板の上面に供給した処理液を基板の下面に回 り込ませると共に、 毛細管現象を利用した環状液膜を基板の下面に近接させた筒体と基板 の下面との間に形成し、 処理液が環状液膜よりも内方に進入するのを防止することによつ て、 基板の下面の外周縁近傍の所望環状領域を処理液で処理している。  Further, Japanese Patent Application Laid-Open No. 11-8192, which is a Japanese Patent Application Publication, discloses a substrate processing apparatus for supplying a processing liquid to a desired annular region near the outer peripheral edge of a substrate. In this system, while the substrate is rotating at a low speed or stopped, the processing liquid supplied to the upper surface of the substrate is spilled to the lower surface of the substrate, and an annular liquid film utilizing the capillary phenomenon is formed on the lower surface of the substrate. Formed between the cylindrical body close to the substrate and the lower surface of the substrate to prevent the processing liquid from entering inward of the annular liquid film, thereby forming a desired annular shape near the outer peripheral edge of the lower surface of the substrate. The area is being treated with the treatment liquid.
しかしながら、 前者の装置では、 処理液を噴射によって基板の外周縁近傍に供給してい るので、 例えば遠心力を利用した処理によって達成されるような均一且つ精確な処理を基 板の外周縁近傍に行うことができない。 そのうえ、 処理液を噴射して基板の上面及び下面 に衝突させているので、 基板の上面及び下面の外周縁近傍の所望環状領域だけを精確に処 理できないという問題を有する。  However, in the former apparatus, since the processing liquid is supplied to the vicinity of the outer peripheral edge of the substrate by spraying, uniform and accurate processing such as that achieved by processing utilizing centrifugal force is performed near the outer peripheral edge of the substrate. Can't do it. In addition, since the processing liquid is sprayed to collide with the upper and lower surfaces of the substrate, there is a problem that only a desired annular region near the outer peripheral edge of the upper and lower surfaces of the substrate cannot be accurately processed.
また、 後者の装置では、 上面に供給した処理液を下面に回り込ませることにより、 下面 の処理を行っているので、 基板が低速回転している間又は停止している間にしか処理を行 うことができず、 たとえ低速回転であっても、 基板の回転数に対する処理液の回り込み量 の感度が高すぎるため、 例えば遠心力を利用した処理によつて達成されるような均一且つ 精確な処理制御を基板の下面の外周縁近傍に行うことができないという問題を有する。 In the latter device, the lower surface is processed by circulating the processing liquid supplied to the upper surface to the lower surface, so that the processing is performed only while the substrate is rotating at a low speed or stopped. Even if the rotation speed is low, the sensitivity of the amount of processing solution wraparound to the number of rotations of the substrate is too high, so that uniform and accurate processing can be achieved, for example, by processing using centrifugal force. There is a problem that control cannot be performed near the outer peripheral edge of the lower surface of the substrate.
( 4 ) 側周面処理における問題点 (4) Problems in side surface treatment
従来の基板の処理装置について説明すれば、 基板の支持に起因する処理むらを防止する ことが可能な半導体基板の処理装置が、例えば日本国特許出願公開公報である特開平 2002 一 93891号公報に開示されている。  If a conventional substrate processing apparatus is described, a semiconductor substrate processing apparatus capable of preventing processing unevenness due to substrate support is disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-93891. It has been disclosed.
この処理装置は、 略水平面内で基板を回転させる回転手段と、 基板の表面に処理液を供 S 給する処理液. ft裣手 ¾と 略 直な軸線を中心に 0転可熊なスピン ヤックと、 このスピ ンチャック上で、 この軸線を中心とする円周上に固定配置され、 略水平に基板を支持する ための複数の支持部材と、 を有する。 The processing apparatus includes a rotating unit for rotating the substrate in a substantially horizontal plane, and a processing liquid supplied to the surface of the substrate. S Processing solution to be supplied.ft 裣 ¾ ¾ ¾ ¾ ス ピ ン ス ピ ン ス ピ ン ス ピ ン ス ピ ン ス ピ ン ス ピ ン ス ピ ン ス ピ ン ス ピ ン ス ピ ン ス ピ ン ス ピ ン ス ピ ン ス ピ ン ス ピ ン ス ピ ン ス ピ ン ス ピ ン ス ピ ン ス ピ ン ス ピ ン ス ピ ン ス ピ ン ス ピ ン ス ピ ン ス ピ ン ス ピ ン ス ピ ン ス ピ ンAnd a plurality of support members for supporting the substrate.
このような構成によれば、 処理対象である基板を複数の支持部材の支持面により支持し ながらスピンチャックを略鉛直な軸線を中心に回転させつつ、 基板の表面に処理液を供給 することにより、 遠心力により処理液が基板の半径方向外方に飛散する結果、 基板の表面 全体を処理液により処理することが可能となる。  According to such a configuration, the processing liquid is supplied to the surface of the substrate while rotating the spin chuck about a substantially vertical axis while supporting the substrate to be processed by the support surfaces of the plurality of support members. As a result, the processing liquid is scattered outward in the radial direction of the substrate by the centrifugal force, so that the entire surface of the substrate can be processed with the processing liquid.
更に、 基板に付着した処理液が抵抗となって、 基板が支持部材の支持面に対して滑り出 すことにより、 支持部材が基板の同じ位置を支持し続けることができなくなり、 基板の側 周面のうち支持部材によって支持される部分が移動して支持部材から露出することにより、 処理液による処理が可能となる結果、 基板の支持に起因する基板の側周面の処理むらを防 止することが可能となる。  Furthermore, the processing liquid attached to the substrate becomes a resistance, and the substrate slides out with respect to the support surface of the support member. As a result, the support member cannot continue to support the same position on the substrate. The portion of the surface supported by the support member moves and is exposed from the support member, thereby enabling processing with the processing liquid, thereby preventing uneven processing of the side peripheral surface of the substrate due to the support of the substrate. It becomes possible.
このように、 この処理装置によれば、 基板の表面だけでなく、 基板の側周面をも処理す ることが可能であり、 それにより処理むらを防止することができる。  As described above, according to this processing apparatus, not only the surface of the substrate but also the side peripheral surface of the substrate can be processed, thereby preventing processing unevenness.
しかしながら、 このような基板の処理装置には、 以下のような技術的問題がある。  However, such a substrate processing apparatus has the following technical problems.
第 1に、 基板の表面が支持部材の支持面に対して摺動するため、 時間経過とともに、 通 常基板より硬度の小さい支持部材の支持面が摩耗し、 摩耗粉が発生する。 このような異物 は、 基板の表面に混入して悪影響を及ぼし、 製品の品質劣化を引き起こすか、 或いはクロ スコンタミネーシヨンを生じる。 基板の処理工程において、 基板の近くで摺動部分が生じ るのは極力回避することが要望されている。  First, since the surface of the substrate slides with respect to the support surface of the support member, the support surface of the support member, which is usually harder than the substrate, wears over time, and wear powder is generated. Such contaminants can be mixed into the surface of the substrate and adversely affect the quality of the product, or cause cross-contamination. There is a demand to minimize the occurrence of sliding parts near the substrate in the substrate processing process.
第 2に、 より高速回転 (例えば、 2, 000ないし 3, 000rpm) で基板を回転することが要求 される乾燥工程においては 上述のような摺動を防止するために、 基板の回転中に押付部 材により基板を支持部材の支持面と協働して固定している。基板のこの被押付部分(通常、 基板の周縁部) は、 上述の処理工程と異なり、 乾燥工程中、 常時、 基板は同じ位置が押付 部材により押付けられているため、 この被押付部分の乾燥が略不可能であり、 第 1の問題 点と同様に、 被押付部分である基板周縁部の乾燥不完全部分が原因で製品の品質劣化を引 き起こす。  Second, in the drying process where the substrate needs to be rotated at a higher speed (for example, 2,000 to 3,000 rpm), pressing is performed while the substrate is rotating to prevent the above-mentioned sliding. The substrate fixes the substrate in cooperation with the support surface of the support member. This pressed portion of the substrate (usually, the peripheral portion of the substrate) is different from the above-described processing step. During the drying process, the substrate is always pressed at the same position by the pressing member. It is almost impossible, and as with the first problem, the quality of the product is degraded due to the incompletely dried portion of the peripheral portion of the substrate, which is the pressed portion.
( 5 ) 分別回収処理における問題点  (5) Problems in separation and collection processing
半導体ウェハ一である基板を枚葉式に処理する際、 基板を処理した処理液を分別回収す る装置を備えた基板の処理ュニッ 卜が、 例えば日本国特許出願公開公報である特開平 5-283395号公報に開示されている。 When processing a substrate, which is a semiconductor wafer, in a single-wafer manner, a substrate processing unit provided with an apparatus for separating and recovering a processing solution that has processed the substrate is disclosed in, for example, Japanese Patent Application Laid-Open Publication No. It is disclosed in JP-A-5-283395.
この基板の処理ュニットは、 下方から支持された基板を鉛直軸線を中心に回転させるこ とにより、 基板の表面を処理液によって処理する基板の処理装置と、 処理後の処理液を分 別回収するための処理液分別回収装置とを有している。 処理液分別回収装置は、 遠心力に よって基板の半径方向外方に飛ばされる処理液を受け入れるために基板の周囲を取り囲む ように配置された環状流入口と、 この環状流入口から流入した処理液が流出する流出口と を備えた、 複数の環状流路と、 基板を支持する支持台を複数の環状流路に対して上下方向 に移動させる駆動装置とを有する。 複数の環状流路は、 上下方向に積み重ねた形態で配置 され、 各環状流路内には、 飛ばされてきた処理液を受け止めるために、 鉛直方向に延びる 環状壁が設けられ、 環状壁に関して環状流入口の反対側、 すなわち基板から遠い側に、 環 状流路内のミストを排出する排出口が設けられている。 環状流路は夫々、 各排出口を通じ て、 複数の環状流路を外側から取り囲む環状スペースに連通しており、 環状スペースは、 排気装置により引かれ、 各ミスト排出口を通じて各環状流路内のミストが吸引されるよう になっている。  The substrate processing unit rotates the substrate supported from below about a vertical axis, thereby processing the substrate surface with the processing liquid, and separately collects the processed processing liquid. And a treatment liquid separation and recovery device for the The treatment liquid separation / recovery device includes an annular inlet arranged to surround the periphery of the substrate for receiving the treatment liquid that is blown radially outward of the substrate by centrifugal force, and a processing liquid flowing from the annular inlet. A plurality of annular flow paths provided with an outlet from which the fluid flows out, and a drive device for vertically moving a support for supporting the substrate with respect to the plurality of annular flow paths. The plurality of annular flow paths are arranged in a vertically stacked manner, and in each of the annular flow paths, an annular wall extending in a vertical direction is provided to receive the discharged processing liquid, and the annular wall is annular. A discharge port for discharging the mist in the annular flow path is provided on the opposite side of the inlet, that is, on the side farther from the substrate. Each of the annular flow paths communicates with the annular space surrounding the plurality of annular flow paths from the outside through each outlet, and the annular space is drawn by the exhaust device, and is formed in each annular flow path through each mist outlet. Mist is sucked.
このような構成によれば、 駆動装置により処理液の分別回収に使用する環状流路の上下 レベルまで支持台を移動しておくことにより、 基板を処理した処理液は、 遠心力によって 基板の半径外方に飛ばされ、細かいしずくとなって環状流入口を通って環状壁にぶっかり、 環状流路内に受け入れられる。 処理液のしずくは、 環状流路内で凝縮し、 例えばポンプに よって、 流出口から排出され、 処理液を分別回収することができると同時に、 排気装置に よって環状流路内の空気を吸引することにより、 環状流路内に発生した処理液のミストを 環状スペースを通じて排気することができる。  According to such a configuration, by moving the support base to the upper and lower levels of the annular flow path used for separating and collecting the processing liquid by the driving device, the processing liquid that has processed the substrate can be centrifugally moved to the radius of the substrate. It is blown outward, drips into small drops through the annular inlet and hits the annular wall, and is received in the annular channel. Drops of the processing liquid are condensed in the annular flow path, and are discharged from the outlet, for example, by a pump, so that the processing liquid can be separated and collected. Thereby, the mist of the processing liquid generated in the annular flow path can be exhausted through the annular space.
かくして、 処理液に応じて分別回収に使用する環状流路を選択することにより、 異なる 処理液が分別回収の際に混ざらないようにすることが可能であり、 分別回収した処理液を 再利用することができる。  Thus, by selecting the annular flow path used for separation and recovery according to the processing solution, it is possible to prevent different processing solutions from mixing during the separation and recovery, and to reuse the separated and recovered processing solution. be able to.
しかしながら、 このような処理ユニットには、 以下のような技術的問題がある。  However, such a processing unit has the following technical problems.
第 1に、 複数の環状流路夫々は、 固定配置であり、 環状流路夫々の環状流入口及びミス ト排出口は常時開いたままである。 したがって、 分別回収に使用されない環状流路内に、 環状流入口或いはミスト排出口から分別回収中の処理液、 或いはミストが混入する。 この ように汚染された環状流路を使用しても、 分別回収した処理液をそのまま再利用に供する のは困難である。 第 2に、 複数の環状流路は上下方向に積み重なる形態で酉 3置されているため、 処理ュニ ットの上下方向のスペースが嵩み、 そのためミストの分別回収性に関して、 上下方向に偏 りが生じ易い。 First, each of the plurality of annular channels has a fixed arrangement, and the annular inlet and mist outlet of each of the annular channels are always open. Therefore, the processing liquid or the mist that is being separated and collected from the annular inlet or the mist outlet enters the annular flow path that is not used for the separation and collection. Even if such a contaminated annular flow path is used, it is difficult to reuse the separated and recovered processing solution as it is. Secondly, since the plurality of annular flow paths are arranged in a vertically stacked manner, the space in the vertical direction of the processing unit increases, and therefore, the separation and recovery of mist is uneven in the vertical direction. Tends to occur.
第 3に、 処理液の分別回収の際に発生したミストが、 基板の処理面に降りかかり、 基板 の品質を劣化させることである。 より詳細には、 遠心力によって基板の放射方向に飛散し た処理液が環状壁にぶっかる際、 かなりの量の処理液のミストが発生-し、 鉛直方向に延び る環状壁にほぼ水平方向にぶっかった処理液は、 基板に戻るようにはね返る。 このため、 処理液のミストは、 基板に戻るようにはね返った処理液の流れに乗って、 環状流入口から 基板に向って浮遊し、 ついには、 基板の上面に降りかかる。 それにより、 処理後の基板の 品質を劣化させるとともに、 処理液の分別回収率が低下する。  Third, mist generated during the separation and collection of the processing liquid falls on the processing surface of the substrate, deteriorating the quality of the substrate. More specifically, when the processing liquid scattered in the radial direction of the substrate due to the centrifugal force hits the annular wall, a considerable amount of mist of the processing liquid is generated. The processing solution splashed back rebounds back to the substrate. For this reason, the mist of the processing liquid rides on the flow of the processing liquid that has bounced back to the substrate, floats from the annular inlet toward the substrate, and finally descends to the upper surface of the substrate. As a result, the quality of the processed substrate is deteriorated, and the separation and recovery rate of the processing liquid is reduced.
以上の説明から明らかなように、 環境に悪影響を与えることなしに、 有効性、 効率性、 均一性及び精確性を確保することにより、 昨今の素子形成技術の進展に対応可能な基板の 洗浄技術が業界内で強く要望されている。 発明の概要  As is clear from the above description, substrate cleaning technology that can respond to recent advances in device formation technology by ensuring effectiveness, efficiency, uniformity, and accuracy without adversely affecting the environment. Is strongly desired in the industry. Summary of the Invention
本願発明の目的は、 環境に悪影響を与えることなしに、 有効性、 効率性、 均一性及び精 確性を向上することが可能な基板の処理装置及び処理方法を提供することにある。  An object of the present invention is to provide a substrate processing apparatus and a processing method capable of improving effectiveness, efficiency, uniformity, and accuracy without adversely affecting the environment.
本願発明の他の目的は、 基板表面近傍を不活性ガス雰囲気に維持しつつ、 基板表面の均 一な処理を可能にする、 基板の処理装置を提供することにある。  Another object of the present invention is to provide a substrate processing apparatus which enables uniform processing of a substrate surface while maintaining the vicinity of the substrate surface in an inert gas atmosphere.
本願発明の更なる目的は、 基板の上面の所望環状領域のみを均一且つ精密に処理するこ とが可能な基板処理装置を提供することにある。  It is a further object of the present invention to provide a substrate processing apparatus capable of uniformly and precisely processing only a desired annular region on the upper surface of a substrate.
本願発明の他の目的は、 基板の側周面の周方向複数位置を接触支持する場合に、 基板の 高速回転中に、 基板との間で摺動運動を生じさせることなく、 基板を支持しつつ基板の側 周面のこれらの複数の接触支持部を移動させることが可能な、 基板の処理装置及び処理方 法を提供することにある。  Another object of the present invention is to support a substrate without causing sliding movement between the substrate and the substrate during high-speed rotation of the substrate when contacting and supporting a plurality of circumferential positions on the side peripheral surface of the substrate. It is an object of the present invention to provide a substrate processing apparatus and a processing method capable of moving these plurality of contact support portions on the side peripheral surface of the substrate while moving the substrate.
本願発明の更なる目的は、 基板を略水平面内で高速回転させながら処理流体を基板の表 面に供給することにより基板の表面を処理する或いは乾燥する際、 基板の劣化を生じるこ となしに、 このような処理流体を利用して基板の側周面をも確実に処理或いは乾燥するこ とが可能な基板の処理装置及び処理方法を提供することにある。  A further object of the present invention is to supply a processing fluid to a surface of a substrate while rotating the substrate at a high speed in a substantially horizontal plane, thereby treating or drying the surface of the substrate without causing deterioration of the substrate. It is another object of the present invention to provide a substrate processing apparatus and a processing method capable of reliably processing or drying the side peripheral surface of a substrate using such a processing fluid.
本発明の他の目的は、 基板の品質を劣化させることなく、 処理液の分別回収効率を確保 することが可能な基板の処理装置を提供することにある。 Another object of the present invention is to ensure the separation and collection efficiency of the processing solution without deteriorating the quality of the substrate. It is an object of the present invention to provide a substrate processing apparatus which can perform the processing.
上記目的を達成するために、 本発明の一つの観点によれば、  To achieve the above object, according to one aspect of the present invention,
略水平面内で基板を保持しつつ回転させるための基板の回転保持手段と、  Substrate rotation holding means for rotating while holding the substrate in a substantially horizontal plane,
基板の表面に処理液を供給する処理液供給手段と、 を有する基板の処理装置において、 該処理液供給手段は、 基板の略中心に向かって、 処理液を略鉛直な方向に供給する処理 一液供給ノズルを有し、  A processing liquid supply means for supplying a processing liquid to the surface of the substrate, wherein the processing liquid supply means supplies the processing liquid in a substantially vertical direction toward a substantially center of the substrate. Having a liquid supply nozzle,
更に、 該表面近傍を不活性ガス雰囲気とするように、 該表面に向かって、 不活性ガスを 噴射する不活性ガス噴射ノズルと、  Further, an inert gas injection nozzle for injecting an inert gas toward the surface so that the vicinity of the surface is an inert gas atmosphere,
前記不活性ガス噴射ノズルから噴射する不活性ガス流れを受けて、 基板の外方に向かう 流れに偏向するように、 前記表面と前記不活性ガス噴射ノズルとの間に設置された邪魔板 を更に有し、  A baffle plate installed between the surface and the inert gas injection nozzle so as to receive the inert gas flow injected from the inert gas injection nozzle and deflect the flow toward the outside of the substrate; Have
この邪魔板は、 該表面近傍を不活性ガス雰囲気に維持するように基板の外方に向かう前 記偏向された流れを一部分岐させるための抜け穴を有し、  The baffle plate has a through hole for partially branching the deflected flow toward the outside of the substrate so as to maintain the vicinity of the surface in an inert gas atmosphere,
この抜け穴は、 前記邪魔板の前記不活性ガス噴射ノズル側の邪魔板表面に形成される前 記不活性ガス分岐流れの流入開口が、 前記不活性ガス噴射ノズルより外方にオフセット配 置されるとともに、 前記邪魔板表面の反対表面に形成される前記不活性ガス分岐流れの流 出開口は、 前記流入開口より内方に形成される構成としてある。  In the through hole, the inflow opening of the inert gas branch flow formed on the surface of the baffle plate on the side of the inert gas injection nozzle of the baffle plate is offset from the inert gas injection nozzle. The outlet opening of the branch flow of the inert gas formed on the surface opposite to the surface of the baffle plate is formed inward from the inlet opening.
このように構成された基板の処理装置においては、 処理液供給ノズルから基板の略中心 に向かって略鉛直な方向に供給される一方で、 基板表面近傍を不活性ガス雰囲気とするよ うに、 不活性ガス噴射ノズルから表面に向かって、 不活性ガスが噴射される。 その際、 略 水平面内で回転する基板の表面に供給された処理液は、 遠心力の作用により基板上で基板 の放射方向外方に飛散しょうとする。 そのとき、 不活性ガス流れは、 基板表面と不活性ガ ス噴射ノズルとの間に設置された邪魔板が受けて、基板の外方に向かう流れに偏向される。 次いで 偏向された流れの一部が、邪魔板に設けられた複数の抜け穴の流入開口を通って、 邪魔板表面の反対表面に形成される流出開口を通って、 基板表面に向かう。 その際、 流出 開口は、 流入開口に比べて内方にオフセット配置されているので、 各抜け穴を通過する不 活性ガスは、 処理液が供給される基板の中心部に向かう。  In the substrate processing apparatus configured as described above, while being supplied in a substantially vertical direction from the processing liquid supply nozzle toward the substantially center of the substrate, an inert gas atmosphere is provided near the substrate surface. Inert gas is injected from the active gas injection nozzle toward the surface. At that time, the processing liquid supplied to the surface of the substrate rotating in a substantially horizontal plane tends to scatter outward on the substrate in the radial direction of the substrate by the action of centrifugal force. At that time, the inert gas flow is received by a baffle plate provided between the substrate surface and the inert gas injection nozzle, and is deflected to a flow toward the outside of the substrate. A portion of the deflected flow then passes through the inflow openings of the plurality of through holes in the baffle, through the outflow opening formed on the opposite surface of the baffle surface, and toward the substrate surface. At that time, the outflow opening is offset inward from the inflow opening, so that the inert gas passing through each through hole is directed toward the center of the substrate to which the processing liquid is supplied.
以上により、 邪魔板により基板の表面に向かう不活性ガス噴流を受けることにより、 不 活性ガス噴流による基板表面への直撃を回避して、 基板への悪影響を防止するとともに、 直撃部のまわりに減圧部を生じて処理液のミスト及びスピン乾燥時のミストが基板の表面 に付着するのを防止する一 で、 基板の表面近傍を不活性ガス雰囲気に維持することによ り、 基板表面の有効かつ均一な処理をすることが可能となる。 As described above, by receiving the inert gas jet directed toward the substrate surface by the baffle plate, it is possible to prevent the inert gas jet from directly hitting the substrate surface, prevent the substrate from being adversely affected, and reduce the pressure around the direct hit portion. The mist of the processing solution and the mist during spin drying By keeping the vicinity of the surface of the substrate in an inert gas atmosphere while preventing it from adhering to the substrate, effective and uniform treatment of the substrate surface can be achieved.
前記不活性ガス噴射ノズルは、 前記処理液供給ノズルのまわりを取り囲むように配置さ れた環状ノズルの形態を有し、  The inert gas injection nozzle has a form of an annular nozzle arranged so as to surround the processing liquid supply nozzle,
前記邪魔板は、 前記環状ノズルと同心状に、 且つ基板と略平行上に配置された円板の形 一態を有し、  The baffle plate has a shape of a disk arranged concentrically with the annular nozzle and substantially parallel to the substrate,
前記抜け穴は、 各々が前記不活性ガス分岐流れが基板の表面の手前で前記処理液供給ノ ズルからの処理液流れにぶっかるような所定の傾きを備えた、 複数の分岐流路を有し、 これらの複数の分岐流路は、 前記邪魔板の円周方向に互いに等角度間隔に配置されてい るのが好ましい。 更にまた、前記基板の回転手段は、略鉛直な軸線を中心に回転可能なスピンチャックと、 該スピンチャックを回転させるための回転駆動手段とを有し、  The through hole has a plurality of branch flow paths each having a predetermined inclination such that the inert gas branch flow hits the processing liquid flow from the processing liquid supply nozzle just before the surface of the substrate. Preferably, the plurality of branch channels are arranged at equal angular intervals in the circumferential direction of the baffle plate. Still further, the substrate rotating means has a spin chuck rotatable around a substantially vertical axis, and a rotation driving means for rotating the spin chuck,
前記基板の支持手段は、 前記スピンチャックの上面に固定され、 該上面から基板に向か つて延びる支持体を有し、  The substrate support means includes a support fixed to an upper surface of the spin chuck and extending from the upper surface toward the substrate.
前記邪魔板は、 前記複数の分岐流路の前記流入開口より外方領域に、 基板の外方に向か う前記偏向流れが、 前記上面との間で絞られるように、 前記邪魔板表面から前記不活性ガ ス噴射ノズルに向かって突出する突出リング部を有するのがよい。  The baffle plate extends from the surface of the baffle plate so that the deflected flow toward the outside of the substrate is restricted to an area outside the inflow opening of the plurality of branch flow paths between the baffle plate and the upper surface. It is preferable to have a protruding ring portion protruding toward the inert gas injection nozzle.
前記スピンチヤックは、 その回転軸線まわりに貫通穴を有し、  The spin chuck has a through hole around its rotation axis,
該貫通穴と非接触で該貫通穴を通って前記スピンチヤックの上面まで延びる、 不活性ガ スを供給するための外管と、 該外管の下端面を貫通して、 該外管内を前記スピンチャック の上面から突出するように延びる、 処理液を供給するための内管と、 を有し、  An outer tube for supplying an inert gas, which extends through the through hole to the upper surface of the spin chuck in a non-contact manner with the through hole; An inner pipe extending to protrude from the upper surface of the spin chuck, for supplying a processing liquid;
前記内管及び前記外管は、 前記スピンチヤックの回転軸線まわりに同心状に配置され、 前記処理液供給ノズルは、 前記内管の上周縁によって形成され、  The inner tube and the outer tube are disposed concentrically around a rotation axis of the spin chuck, and the processing liquid supply nozzle is formed by an upper peripheral edge of the inner tube;
前記不活性ガス環状ノズルは、前記外管の上周縁と前記内管の外周面との間に形成され、 前記邪魔板は、 前記不活性ガス環状ノズルの上方で前記内管の外周面に固定されるのが よい。  The inert gas annular nozzle is formed between an upper peripheral edge of the outer tube and an outer peripheral surface of the inner tube, and the baffle plate is fixed to an outer peripheral surface of the inner tube above the inert gas annular nozzle. It is better to be done.
上記目的を達成するために、 本発明の他の観点によれば、  To achieve the above object, according to another aspect of the present invention,
略水平面内で回転可能に保持された基板の上面を処理する処理液を基板の上面に供給す るための処理液供給手段と、 基板の上面への処理液の供給を基板の上面の所望環状領域に制限する処理領域制限手段 と、 を有する基板の上面の所望環状領域を処理する基板の処理装置において、 Processing liquid supply means for supplying a processing liquid for processing the upper surface of the substrate rotatably held in a substantially horizontal plane to the upper surface of the substrate; A processing region limiting means for limiting the supply of the processing liquid to the upper surface of the substrate to a desired annular region on the upper surface of the substrate;
前記処理液供給手段は、 基板の上面との間に流体が流れる間隙を形成する固定下面と、 この間隙に臨むように該固定下面に設けられた、 処理液を基板の上面に供給するための 環状流出開口と、  The processing liquid supply means includes: a fixed lower surface that forms a gap through which a fluid flows between the upper surface of the substrate; and a processing liquid provided to the fixed lower surface so as to face the gap. An annular outflow opening;
-基板の上面に向かって斜め下方に、 且つ半径方向外方に前記環状流出開口まで延びる環 状流路とを有し、  An annular flow path extending obliquely downward toward the upper surface of the substrate and radially outward to the annular outflow opening;
前記処理領域制限手段は、 該環状流出開口の内周縁に取り囲まれた前記固定下面の領域 に、 前記間隙に臨むように設けられた、 不活性ガスを噴射するための不活性ガス流出開口 を有し、  The processing region limiting means has an inert gas outlet opening for injecting an inert gas, provided in a region of the fixed lower surface surrounded by an inner peripheral edge of the annular outlet opening so as to face the gap. And
前記間隙の前記固定下面から前記基板の上面まで、 前記内周縁の近傍に沿ってガスバリ ァを形成するように、 基板の上面に向かう環状の処理液流れに内方から面する不活性ガス 雰囲気を所定圧力に保持する構成としている。  From the fixed lower surface of the gap to the upper surface of the substrate, an inert gas atmosphere facing inward from the annular processing liquid flow toward the upper surface of the substrate so as to form a gas barrier along the vicinity of the inner peripheral edge. The pressure is maintained at a predetermined value.
上記基板の処理装置は、 更に、 前記固定下面を鉛直方向に移動させるための鉛直方向移 動手段を有し、 該鉛直方向移動手段により、 前記固定下面と基板の上面との間の距離を調 整することにより、基板の上面に供給される処理液の環状領域を所望に調整するのがよい。 上記基板の処理装置は、 また、 前記固定下面から窪んだ凹部を有し、  The substrate processing apparatus further includes a vertical moving means for vertically moving the fixed lower surface, and adjusts a distance between the fixed lower surface and the upper surface of the substrate by the vertical moving means. It is preferable to adjust the annular area of the processing liquid supplied to the upper surface of the substrate as desired. The substrate processing apparatus also has a concave portion that is depressed from the fixed lower surface,
前記不活性ガス流出開口は、 前記固定下面の前記凹部との境界を構成する周縁により形 成され、 前記環状流出開口と略同心上の円形開口の形態を有するのがよい。  The inert gas outflow opening is formed by a peripheral edge that forms a boundary with the recess on the fixed lower surface, and preferably has a circular opening substantially concentric with the annular outflow opening.
上記目的を達成するために、 本発明の他の観点によれば、  To achieve the above object, according to another aspect of the present invention,
略水平面内で回転可能に保持された基板の上面を処理する処理液を基板の上面に供給す るための処理液供給手段と、  Processing liquid supply means for supplying a processing liquid for processing the upper surface of the substrate rotatably held in a substantially horizontal plane to the upper surface of the substrate;
基板の上面への処理液の供給を基板の上面の所望環状領域に制限する処理領域制限手段 と、 を有する基板の上面の所望環状領域を処理する基板の処理装置において..  A processing region limiting means for limiting supply of the processing liquid to the upper surface of the substrate to a desired annular region on the upper surface of the substrate; anda substrate processing apparatus for processing a desired annular region on the upper surface of the substrate having
前記処理液供給手段は、 基板の上面との間に流体が流れる間隙を形成する固定下面と、 この間隙に臨むように該固定下面に設けられた、 処理液を基板の上面に供給するための 環状流出開口とを有し、  The processing liquid supply means includes: a fixed lower surface that forms a gap through which a fluid flows between the upper surface of the substrate; and a processing liquid provided to the fixed lower surface so as to face the gap. An annular outflow opening,
前記処理領域制限手段は、 前記環状流出開口の内側から前記間隙を通つて外方に第 1不 活性ガスを噴射するように、 該環状流出開口の内周縁に取り囲まれた前記固定下面の領域 に、 前記間隙に臨むように設けられた、 第 1不活性ガスを噴射するための第 1不活性ガス 流出開口と、 該環状流 fil開口の外周縁を取り囲む前記固定下面の領域に、 前記間隙に臨む ように設けられた、 第 2不活性ガスを噴射するための第 2不活性ガス流出開口とを有し、 前記環状流出開口から供給する処理液は、 前記第 1不活性ガス流出開口から噴射する第 1不活性ガスによって基板の外方に向かって同伴されながら、 前記第 2不活性ガス流出開 口から噴射する第 2不活性ガスによって、基板の外方に向かって引かれる構成としている。 上記基板の処理装置は、 前記固定下面を鉛直方向に移動させるための鉛直方向移動手段 を更に有し、 該鉛直方向移動手段により、 前記固定下面と基板の上面との間の距離を調整 することにより、 基板の上面に供給される処理液の環状領域を所望に調整するのがよい。 上記基板の処理装置は、 更に、 基板の上面に向かって斜め下方に、 且つ半径方向外方に 前記第 2不活性ガス流出開口まで延びる環状流路を有し、 The processing region limiting means includes: a region on the fixed lower surface surrounded by an inner peripheral edge of the annular outflow opening so as to inject the first inert gas outward from the inside of the annular outflow opening through the gap. A first inert gas provided to face the gap for injecting a first inert gas An outflow opening, and a second inert gas outflow opening for injecting a second inert gas, provided in a region of the fixed lower surface surrounding the outer peripheral edge of the annular flow fil opening so as to face the gap. The processing liquid supplied from the annular outflow opening is entrained toward the outside of the substrate by the first inert gas ejected from the first inert gas outflow opening, and the second inert gas outflow opening is The structure is such that the substrate is drawn outward from the substrate by the second inert gas injected from the mouth. The substrate processing apparatus further includes a vertical direction moving means for moving the fixed lower surface in a vertical direction, and the distance between the fixed lower surface and the upper surface of the substrate is adjusted by the vertical direction moving means. Thus, the annular region of the processing liquid supplied to the upper surface of the substrate is preferably adjusted as desired. The substrate processing apparatus further has an annular flow path extending obliquely downward toward the upper surface of the substrate and radially outward to the second inert gas outflow opening,
前記第 2不活性ガス流出開口は、 前記環状流出開口と略同心状の環状流出開口の形態で あるのがよい。  The second inert gas outflow opening is preferably in the form of an annular outflow opening substantially concentric with the annular outflow opening.
更にまた、 前記環状流路は、 前記環状流出開口に向かって先細りに形成されているのが よい。  Furthermore, it is preferable that the annular flow path is tapered toward the annular outflow opening.
上記目的を達成するために、 本発明の別の観点によれば、  To achieve the above object, according to another aspect of the present invention,
水平面内で基板を回転させる回転手段と、 基板の表面に処理液を供給する処理液供給手 段と、 略鉛直な軸線を中心に回転可能なスピンチャックと、 このスピンチャック上で、 こ の軸線を中心とする円周上に配置され、 略水平に基板を支持するための、 複数の支持ピン と、 を有し、 略水平面内で回転する基板の表面に処理液を供給することにより、 基板を処 理する、 基板の処理装置において、  A rotating means for rotating the substrate in a horizontal plane, a processing liquid supply means for supplying a processing liquid to the surface of the substrate, a spin chuck rotatable about a substantially vertical axis, and an axis on the spin chuck. A plurality of support pins for supporting the substrate substantially horizontally, and a plurality of support pins for supporting the substrate substantially horizontally, and supplying the processing liquid to the surface of the substrate rotating in a substantially horizontal plane, thereby providing a substrate. In a substrate processing apparatus for processing
前記複数の支持ピンは夫々、 基板の側周面を側方から接触支持する支持側面を有し、 こ の支持側面の水平断面は、各支持ピンの軸線を中心とする円弧をなし、前記支持側面は夫々、 該軸線を中心として自転可能であり、  Each of the plurality of support pins has a support side surface for supporting the side peripheral surface of the substrate from the side, and a horizontal cross section of the support side forms an arc centered on the axis of each support pin. Each of the side surfaces can rotate around the axis,
更に、 前記複数の支持ピンを同期させながら、 夫々の前記軸線を中心として同一方向に 自転させるための自転駆動手段を有し、  Further, there is a rotation driving means for rotating the plurality of support pins in the same direction around the respective axes while synchronizing the plurality of support pins,
それにより、 前記スピンチャックの回転中に、 前記複数の支持ピンの各々を所定角度自 転させることにより、 基板を前記支持側面夫々に対してころがり接触の仕方で、 前記スピ ンチャックに対して相対回転させる構成としている。  Thereby, by rotating each of the plurality of support pins by a predetermined angle during rotation of the spin chuck, the substrate is relatively rotated with respect to the spin chuck in a manner of rolling contact with each of the support side surfaces. The configuration is such that
このような構成によれば、 支持部材によって基板の側周面を側方から支持しつつ、 基板 を略水平面内で回転させて、 回転する基板の表面に処理液を供給することにより、 遠心力 の作用により処理液が基板の半径方向外方に四方に飛散し、 その結果基板の表面全体を処 理することが可能となる。 According to such a configuration, while supporting the side peripheral surface of the substrate from the side by the support member, the substrate is rotated in a substantially horizontal plane, and the processing liquid is supplied to the surface of the rotating substrate, whereby the centrifugal force is increased. Due to the action of the above, the processing liquid scatters outward in the radial direction of the substrate, and as a result, it becomes possible to process the entire surface of the substrate.
その際、 基板の回転中に、 支持体に対して側周面の点或いは線接触位置をころがり運動 の仕方で相対回転させることにより、 摺動部分を生じることなしに、 回転支持体から露出 させ、 露出させた点或いは線接触位置を処理液によって処理することにより、 基板の側周 面をも確実に処理じて、 基板の支持に起因する処理むらを防止することが可能となる。 また、 前記複数の支持ピンは夫々、 前記軸線に対して側方に、 且つ上方に抜ける切り欠 き部を有するのが好ましい。  At this time, during rotation of the substrate, a point or a line contact position of the side peripheral surface with respect to the support is rotated relative to the support in a rolling motion, thereby exposing the support from the rotary support without causing a sliding portion. By treating the exposed point or line contact position with the treatment liquid, it is possible to reliably treat the side surface of the substrate and to prevent processing unevenness due to the support of the substrate. In addition, it is preferable that each of the plurality of support pins has a cutout portion that extends laterally and upward with respect to the axis.
更に、 前記自転駆動手段は、 前記複数の支持ピン夫々の前記軸線と同心状に各支持ピン に連結され、 前記軸線を中心に回転可能な、 複数の第 1歯車と、  Further, the rotation driving means is connected to each support pin concentrically with the axis of each of the plurality of support pins, and is capable of rotating about the axis, a plurality of first gears;
各第 1小歯車と嚙み合い、 前記スピンチャックの回転軸線と同心状に前記スピンチヤッ クに連結され、 且つ前記回転軸線を中心に前記スピンチヤックと一体に回転可能な第 2歯 車であって、 その回転接線方向に傾斜するように配置された傾斜面を備えたカムフォロワ を有する第 2歯車と、  A second gear meshing with each of the first small gears, connected to the spin chuck concentrically with the rotation axis of the spin chuck, and rotatable integrally with the spin chuck about the rotation axis; A second gear having a cam follower having an inclined surface arranged to be inclined in the rotational tangential direction;
前記傾斜面に点接触するような曲面状のプロファイルを有し、 且つ上下方向に移動可能 で、 前記スピンチャックと一体に前記スピンチャックの回転軸線を中心に回転可能なカム を有し、  A cam having a curved profile so as to make point contact with the inclined surface, and movable vertically, and rotatable about the rotation axis of the spin chuck integrally with the spin chuck;
該カムを上下方向に移動させることにより、 前記傾斜面を介して前記カムフォロワを回 転方向に押し出して、 前記第 2歯車を前記スピンチャックに対して相対回転させるのがよ い。  By moving the cam in the vertical direction, it is preferable that the cam follower is pushed out in the rotation direction via the inclined surface, and the second gear is relatively rotated with respect to the spin chuck.
更にまた、 前記傾斜面は、 傾斜面の傾斜方向に対する横断面が円弧状をなし、 前記カム は、 円筒ローラからなり、 その周側面を前記傾斜面に点接触させるような向きに配置され るのがよい。  Still further, the inclined surface has a circular cross section with respect to the inclination direction of the inclined surface, and the cam is formed of a cylindrical roller, and is arranged in such a direction as to bring its peripheral side surface into point contact with the inclined surface. Is good.
前記複数の支持ピンは、 前記スピンチャックの回転軸線を中心に周方向等角度間隔で配 置されるのがよい。  It is preferable that the plurality of support pins are arranged at equal angular intervals in a circumferential direction around a rotation axis of the spin chuck.
上記目的を達成するために、 本発明の他の観点によれば、  To achieve the above object, according to another aspect of the present invention,
水平面内で回転可能に配置された基板の表面に処理液を供給して処理する基板の処理装 置において、 ·  In a substrate processing apparatus for processing by supplying a processing liquid to a surface of a substrate rotatably arranged in a horizontal plane,
基板の周囲を取り囲むように配置され、 基板の周縁に向かって内方に臨む環状開口を有 するポッ卜と、 前記ポットの内部を前記環状開口近傍から前記ポッ 1 の底部に向かって延びる環 仕切 りと、 A pot disposed to surround the periphery of the substrate and having an annular opening facing inward toward the periphery of the substrate; An annular partition extending inside the pot from near the annular opening toward the bottom of the pot 1;
前記環状仕切りを上下方向に移動させる環状仕切り上下移動手段と、 を有し、 前記環状仕切りを前記環状開口の上レベルに位置決めすることにより、 前記環状仕切り の内周面が、 基板からの処理液を前記環状開口から前記ポッ卜の底部まで案内する案内面 を形成し、  An annular partition vertical moving means for vertically moving the annular partition, and by positioning the annular partition at an upper level of the annular opening, an inner peripheral surface of the annular partition is processed liquid from a substrate. A guide surface for guiding the oil from the annular opening to the bottom of the pot,
前記環状仕切りを前記環状開口の下レベルに位置決めすることにより、 前記環状仕切り の外周面が、 基板からの処理液を前記環状開口から前記ポットの前記底部まで案内する、 別の案内面を形成する構成としている。  By positioning the annular partition at a level below the annular opening, the outer peripheral surface of the annular partition forms another guide surface for guiding the processing liquid from the substrate from the annular opening to the bottom of the pot. It has a configuration.
また、 前記隣り合う環状仕切り夫々の内周縁を前記環状開口に位置決めする際、 それ以 外の隣り合う環状仕切り夫々の内周縁間の間隙を処理液の飛散から生じるミス卜の流入を 防止できるような大きさとするように、 それ以外の隣り合う環状仕切りを上下方向に近接 して位置決めするのがよい。  Further, when the inner peripheral edge of each of the adjacent annular partitions is positioned at the annular opening, the gap between the inner peripheral edges of the other adjacent annular partitions can be prevented from inflow of mist generated from the scattering of the processing liquid. The other adjacent annular partitions should be positioned close to each other in the up-down direction so that the size is as large as possible.
更に、 前記複数の環状仕切りの夫々は、 前記環状開口に向かって内方上向きに傾斜する 傘部と、 上周端が該傘部に連結され、 前記ポットの底部から上方に延出する円筒部とを有 するのがよい。  Further, each of the plurality of annular partitions includes an umbrella portion inclined inward and upward toward the annular opening, and a cylindrical portion having an upper peripheral end connected to the umbrella portion and extending upward from the bottom of the pot. It is better to have
更にまた、 前記傘部は、 前記円筒部との連結部から外方に向かって延びる環状張り出し 部を有し、 この環状張り出し部の下方で前記円筒部を取り囲むように、 前記ポットの底部 から上方に延びる環状隔壁が設けられ、  Still further, the umbrella portion has an annular protrusion extending outward from a connection portion with the cylindrical portion, and is disposed above the bottom of the pot so as to surround the cylindrical portion below the annular protrusion. An annular partition wall is provided extending to
それにより、 前記環状流路は、 隣り合う環状仕切りの前記傘部同士によって形成される 斜め流路と、 外側の環状仕切りの前記円筒部の内周面と前記環状隔壁の外周面とによって 形成される外流路と、 前記隔壁の内周面と外側の環状仕切りの前記円筒部の外周面とによ つて形成される内流路とから構成されており、 前記外流路と前記内流路とは、 逆 U字形流 路を形成するのもよい。  Thereby, the annular flow path is formed by an oblique flow path formed by the head portions of adjacent annular partitions, and an inner peripheral surface of the cylindrical portion of the outer annular partition and an outer peripheral surface of the annular partition. And an inner flow path formed by an inner peripheral surface of the partition wall and an outer peripheral surface of the cylindrical portion of the outer annular partition. Alternatively, an inverted U-shaped channel may be formed.
上記の基板の処理装置は、 これに加えて、 前記外流路は、 その最下端で処理液の流出口 と連通し、 前記内流路は、 その最下端でミスト流出口と連通し、 該ミスト流出口を通じて 排気装置により前記環状流路内が引かれているのがよい。 また、 前記複数の環状仕切りの うち最も外側に位置する環状仕切りは、 その外周面と前記ポットの外周壁の内周面との間 に環状流路を形成するのでもよい。 更に、 前記複数の環状仕切りのうち最も内側に位置す る環状仕切りは、 その内周面と前記ポットの内周壁の内周面との間に環状流路を形成する のでもよい。 In addition to the above, in the substrate processing apparatus, the outer flow path communicates with a processing liquid outlet at a lowermost end thereof, and the inner flow path communicates with a mist outlet at a lowermost end thereof. It is preferable that the inside of the annular flow path is drawn by an exhaust device through an outlet. The outermost annular partition of the plurality of annular partitions may form an annular flow path between the outer peripheral surface and the inner peripheral surface of the outer peripheral wall of the pot. Further, the innermost annular partition of the plurality of annular partitions forms an annular flow path between its inner peripheral surface and the inner peripheral surface of the inner peripheral wall of the pot. May be.
上記の基板の処理装置は、 更にまた、 前記隔壁の上周縁と内側に隣り合う前記環状仕切 りの内周面とにより形成されるミスト流入開口部に、 周方向に分散配置された複数の貫通 穴を備えた環状のコンダクタンス調整板を設け、 これらの複数の貫通穴夫々の大きさを、 前記ミスト流出口に近いほど小さくするのがよい。 更に、 基板を支持するための回転支持 ^と、 最も内側の前記潔状流路内で前記回転支持台の外周縁の略真下に、 パドリング用の 処理液を受けるための環状受けを有するのがよい。  The above-described substrate processing apparatus may further include a plurality of through-holes distributed in a circumferential direction in a mist inflow opening formed by an upper peripheral edge of the partition and an inner peripheral surface of the annular partition adjacent to the inside. It is preferable that an annular conductance adjusting plate having holes is provided, and the size of each of the plurality of through-holes is reduced as it approaches the mist outlet. Further, it has a rotary support ^ for supporting the substrate and an annular receiver for receiving the processing liquid for paddling in the innermost clean flow path substantially below the outer peripheral edge of the rotary support base. Good.
上記目的を達成するために、 本発明の他の観点によれば、  To achieve the above object, according to another aspect of the present invention,
略水平面内に基板を保持しつつ回転させる回転保持手段と、  Rotation holding means for rotating while holding the substrate in a substantially horizontal plane,
基板の表面に処理液を供給する処理液供給手段と、 Processing liquid supply means for supplying a processing liquid to the surface of the substrate,
を有する基板の処理装置において、 In a substrate processing apparatus having:
基板の周囲を取り囲むように配置された、 内方に臨む環状開口を有するポッ卜と、 夫々該ポッ卜の底部を環状に仕切るように、 該底部から上方且つ内方に前記環状開口に 向かって延び、 該ポット内で離間して配置された複数の環状仕切りと、  A pot having an inwardly facing annular opening disposed so as to surround the periphery of the substrate; and an upward and inward direction from the bottom toward the annular opening to partition the bottom of the pot into an annular shape, respectively. A plurality of annular partitions extending and spaced apart in the pot;
該環状仕切りを上下方向に移動させるための環状仕切り上下移動手段と、 を更に有し、 前記環状開口から流入する処理液を受け入れ可能なように、 隣り合う前記環状仕切り 夫々の内周縁を前記環状開口に位置決めすることにより、 外側の環状仕切りの内周面と内 側の環状仕切りの外周面とで、 前記底部に通じる環状流路を形成する構成としている。 図面の簡単な説明  And an annular partition vertical moving means for vertically moving the annular partition, wherein the inner peripheral edge of each of the adjacent annular partitions is formed into an annular shape so that the processing liquid flowing from the annular opening can be received. By positioning at the opening, the inner peripheral surface of the outer annular partition and the outer peripheral surface of the inner annular partition form an annular flow passage communicating with the bottom. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明による基板処理ュニッ卜の第 1実施形態の概略縦断面図である。  FIG. 1 is a schematic vertical sectional view of a first embodiment of a substrate processing unit according to the present invention.
図 2は、 図 1の基板の支持装置の基板支持部の平面図である。  FIG. 2 is a plan view of a substrate supporting portion of the substrate supporting device of FIG.
図 3は、 図 1の基板の支持装置の支持ピンの作用を示す図である。  FIG. 3 is a diagram showing the operation of the support pins of the substrate support device of FIG.
図 4は、 図 1の基板の支持装置の概略縦断面図である。  FIG. 4 is a schematic vertical sectional view of the substrate supporting device of FIG.
図 5は、 図 4の VI— VI線からみた図である。  FIG. 5 is a view from the line VI—VI in FIG.
図 6は、 図 1の上面べベル処理装置が控え位置にある図である。  FIG. 6 is a diagram in which the upper surface bevel processing apparatus of FIG. 1 is in a standby position.
図 7は、 図 6のシャツ夕一の開閉を示す平面図である。  FIG. 7 is a plan view showing opening and closing of the shirt shown in FIG.
図 8は、 図 1の上面べベル処理装置の構成を示す部分縦断面図である。  FIG. 8 is a partial longitudinal sectional view showing the configuration of the top bevel processing apparatus of FIG.
図 9は、 図 8の A部の拡大図である。  FIG. 9 is an enlarged view of part A of FIG.
図 1 0は、 図 1の下面処理装置の邪魔板まわりの構成を示す部分縦断面図である。 図 1 1は、 図 1 1の A— A線から見た平面図である。 FIG. 10 is a partial longitudinal sectional view showing a configuration around a baffle plate of the lower surface processing apparatus of FIG. FIG. 11 is a plan view taken along line AA of FIG.
図 1 2は、 図 1の処理液の分別回収装置の構成を示す部分縦断面図である。  FIG. 12 is a partial longitudinal sectional view showing the configuration of the apparatus for separating and recovering treatment liquid of FIG.
図 1 3は、 図 1の処理液の分別回収装置の別の構成を示す部分縦断面図である。  FIG. 13 is a partial vertical cross-sectional view showing another configuration of the treatment liquid separation / recovery device of FIG.
図 1 4は、 図 1の処理液の分別回収装置の作用を示す部分縦断面図である。  FIG. 14 is a partial vertical sectional view showing the operation of the apparatus for separating and recovering treatment liquid of FIG.
図 1 5は、 図 1の処理液の分別回収装置の作用を示す部分縦断面図である。  FIG. 15 is a partial longitudinal sectional view showing the operation of the apparatus for separating and recovering treatment liquid of FIG.
図 1 6は、 図 1の処理液の分別回収装置の作用を示す部分縦断面図である。  FIG. 16 is a partial vertical sectional view showing the operation of the apparatus for separating and recovering treatment liquid of FIG.
図 1 7は、 本発明による基板処理ュニットの第 2実施形態の概略縦断面図である。 図 1 8は、 図 1の上面べベル処理装置によるべベル処理環状領域の調整作用を示す概略 図である。 発明の好ましい実施の形態 '  FIG. 17 is a schematic longitudinal sectional view of a second embodiment of the substrate processing unit according to the present invention. FIG. 18 is a schematic diagram showing the adjustment operation of the beveled annular region by the upper surface bevel processing apparatus of FIG. Preferred Embodiments of the Invention ''
以下に、 図面を参照しながら、 本発明の実施形態に係る基板の処理ユニットを詳細に説 明する。  Hereinafter, a substrate processing unit according to an embodiment of the present invention will be described in detail with reference to the drawings.
図 1は、 本発明による基板の処理ユニットの第 1実施形態の概略縦断面図である。 図 2 は、 図 1の基板の支持装置の基板支持部の平面図である。 図 3は、 図 1の基板の支持装置 の支持ピンの作用を示す図である。図 4は、図 1の基板の支持装置の概略縦断面図である。 図 5は、 図 4の VI— VI線から見た図である。 図 6は、 図 1の上面べベル処理装置が控え位 置にある図である。 図 7は、 図 6のシャツ夕一の開閉を示す平面図である。 図 8は、 図 1 の上面べベル処理装置の構成を示す部分縦断面図である。 図 9は、 図 8の A部の拡大図で ある。 図 1 0は、 図 1の下面処理装置の邪魔板まわりの構成を示す部分縦断面図である。 図 1 1は、 図 1 1の A— A線からみた平面図である。 図 1 2は、 図 1の処理液の分別回収装 置の構成を示す部分縦断面図である。 図 1 3は、 図 1の処理液の分別回収装置の別の構成 を示す部分縦断面図である。 図 1 4ないし図 1 6は 図 1の処理液の分別回収装置の作用 を示す部分縦断面図である。 図 1 8は、 図 1の上面べベル処理装置によるべベル処理環状 領域の調整作用を示す概略図である。  FIG. 1 is a schematic longitudinal sectional view of a first embodiment of a substrate processing unit according to the present invention. FIG. 2 is a plan view of a substrate supporting portion of the substrate supporting device of FIG. FIG. 3 is a view showing the operation of the support pins of the substrate support device of FIG. FIG. 4 is a schematic longitudinal sectional view of the substrate supporting device of FIG. FIG. 5 is a view from the line VI—VI in FIG. FIG. 6 is a diagram in which the upper-side bevel processing apparatus of FIG. 1 is in a standby position. FIG. 7 is a plan view showing opening and closing of the shirt shown in FIG. FIG. 8 is a partial longitudinal sectional view showing the configuration of the top bevel processing apparatus of FIG. FIG. 9 is an enlarged view of part A of FIG. FIG. 10 is a partial longitudinal sectional view showing a configuration around a baffle plate of the lower surface processing apparatus of FIG. FIG. 11 is a plan view taken along line AA of FIG. FIG. 12 is a partial vertical cross-sectional view showing the configuration of the apparatus for separating and recovering treatment liquid of FIG. FIG. 13 is a partial vertical cross-sectional view showing another configuration of the treatment liquid separation / recovery device of FIG. FIGS. 14 to 16 are partial longitudinal sectional views showing the operation of the apparatus for separating and recovering treatment liquid of FIG. FIG. 18 is a schematic diagram showing the adjustment operation of the beveled annular region by the upper surface beveling apparatus of FIG.
図 1に示すように、 基板の処理ユニット 1 0は、 基板の回転装置 1 2と、 基板の支持装 置 1 4と、 基板への処理液の供給装置 1 6と、 処理液の分別回収装置 1 8とから概略構成 されている。 ここに、本明細書では、基板の処理とは、処理流体を用いた基板の洗浄処理、 乾燥処理、 リンス処理、 及びエッチング処理を含む意味に用いる。  As shown in FIG. 1, the substrate processing unit 10 includes a substrate rotating device 12, a substrate support device 14, a processing liquid supply device 16 for the substrate, and a processing liquid separation and recovery device. It is roughly composed of 18. Here, in this specification, the term “substrate treatment” is used to include a substrate cleaning process using a processing fluid, a drying process, a rinsing process, and an etching process.
図 1に示すように、 基板の回転装置 1 2は、 略鉛直な軸線 Xを中心に回転可能なスピン チャック 2 0と、 スピンチャック 2 0を回転駆動する駆動部 2 2とを有する。 スピンチヤ ック 2 0は、 基板 Aの下面 A 2に面し、 軸線 Xを中心とする円盤部 2 4と、 円盤部 2 4の 下側に連結されたシャフト部 2 6とを有する。 円盤部 2 4は、 いわゆるチャック面を形成 するほぼ水平な上面 2 8を有し、 上面 2 8の中心部には、 基板 Aの下面 A 1と上面 2 8と の間の間隙 3 0に臨む貫通孔 3 2が設けられている。 上面 2 8の大きさは、 基板 Aの外径 一より大きく、基板 Aの外径は、例えば 8インヂ;或いは 1 2インチである。上面 2 8には、 後述するように、 基板 Aを支持する支持ピン 3 4が設けられ、 基板 Aを支持する支持ピン 3 4ごと軸線 Xを中心として回転するようにしている。 As shown in FIG. 1, the substrate rotating device 12 is a spinning rotatable about a substantially vertical axis X. It has a chuck 20 and a drive unit 22 that rotationally drives the spin chuck 20. The spin chuck 20 faces the lower surface A2 of the substrate A, and has a disk portion 24 centered on the axis X and a shaft portion 26 connected to the lower side of the disk portion 24. The disk portion 24 has a substantially horizontal upper surface 28 forming a so-called chuck surface, and a central portion of the upper surface 28 faces a gap 30 between the lower surface A 1 of the substrate A and the upper surface 28. A through hole 32 is provided. The size of the upper surface 28 is larger than the outer diameter of the substrate A, and the outer diameter of the substrate A is, for example, 8 inches; or 12 inches. As will be described later, a support pin 34 for supporting the substrate A is provided on the upper surface 28 so that the support pin 34 for supporting the substrate A rotates about the axis X.
シャフト部 2 6は、 円盤部 2 4と同心状に下方に延び、 ベアリング 3 6を介してその側 面がハウジング 3 8によって支持されている。 シャフト部 2 6の径は、 円盤部 2 4の直径 よりも小さく、 それにより円盤部 2 4の下方の環状開きスペースには、 後述する支持ピン 3 4を相対回転させるための支持ピン駆動装置 3 9が設けられる。 シャフト部 2 6の下部 には、 軸受 4 0が配置され、 この軸受 4 0はシャフト部 2 6、 即ちスピンチャック 2 0を 回転軸線 Xを中心に回転可能に支承している。  The shaft portion 26 extends downward concentrically with the disk portion 24, and its side surface is supported by a housing 38 via a bearing 36. The diameter of the shaft portion 26 is smaller than the diameter of the disk portion 24, so that an annular opening space below the disk portion 24 has a support pin driving device 3 for relatively rotating a support pin 34 described later. 9 are provided. A bearing 40 is arranged below the shaft portion 26, and the bearing 40 supports the shaft portion 26, that is, the spin chuck 20 so as to be rotatable about a rotation axis X.
駆動部 2 2は、 シャフト部 2 6を回転させる機構を有し、 モータ 4 2、 モータ 4 2に連 結されたプーリ 4 4、 シャフト部 2 6に連結されたプーリ 4 6、 及び両プーリ間の回転を 伝動する伝動ベルト 4 8とを有する。 駆動部 2 2により、 シャフト 2 6、 円盤部 2 4、 か くして基板 Aを支持する支持ピン 3 4ごと回転軸線 Xを中心に回転するようになっている。 基板 Aの回転数は、 基板 Aの工程に応じて定められ、 一般的に処理工程の場合、 200rpmな いし 3, 000rpm、 乾燥工程の場合には、 それより高速の 3, 000 rpmないし 5, 000rpmである。 図 2ないし図 5に示すように、 基板 Aの支持装置 1 4は、 上述のように、 上面 2 8上に は、 略水平に基板 Aを支持するための 6本の支持ピン 3 4が夫々、 円盤部 2 4を貫通する ことにより略直立して円盤 2 4に対して回転可能に取り付けられ 支持ピン 3 4の内側に は、 4本の支持ピン 5 0が夫々、 略直立して円盤 2 4に対して固定されている。 6本の支 持ピン 3 4は、 処理対象である基板 Aの大きさに応じて、 軸線 Xを中心に周方向等角度間 隔で円周上に配置され、 一方 4本の支持ピン 5 0は、 同様に、 軸線 Xを中心に周方向等角 度間隔で円周上に固定配置される。 支持ピンの数は、 少なくとも 3つ以上である。  The driving section 22 has a mechanism for rotating the shaft section 26, and includes a motor 42, a pulley 44 connected to the motor 42, a pulley 46 connected to the shaft section 26, and a portion between the pulleys. And a power transmission belt 48 for transmitting the rotation of the motor. The drive section 22 rotates the shaft 26, the disk section 24, and thus the support pin 34 supporting the substrate A, about the rotation axis X. The rotation speed of the substrate A is determined according to the process of the substrate A, and is generally 200 to 3,000 rpm in the case of the treatment process, and is higher than 3,000 to 5,000 rpm in the case of the drying process. 000 rpm. As shown in FIGS. 2 to 5, the support device 14 for the substrate A has six support pins 34 for supporting the substrate A substantially horizontally on the upper surface 28 as described above. The disk 24 is substantially upright by being penetrated through the disk portion 24, and is rotatably mounted on the disk 24. Four support pins 50 are provided inside the support pins 34 in a substantially upright state, respectively. Fixed for 4. The six support pins 34 are arranged on the circumference at equal angular intervals in the circumferential direction around the axis X according to the size of the substrate A to be processed, while four support pins 50 are provided. Are similarly fixedly arranged on the circumference at equal angular intervals in the circumferential direction around the axis X. The number of support pins is at least three or more.
図 3に示すように、 複数の支持ピン 3 4は夫々、 基板 Aの側周面 5 2を側方から接触支 持する支持側面 5 4を有し、 この支持側面 5 4の水平断面は、 各支持ピン 3 4の軸線 Yを 中心とする円弧 (本実施形態では、 半円) をなし、 支持側面 5 4は夫々、 軸線 Yを中心と して自転可能である。 支持ピン 5 0は夫々、 基板 Aが支持ピン 3 4によって支持されない とき、 基板 Aの下面 A 2を下方から接触支持するようにしている。 複数の支持ピン 3 4は 夫々、 軸線 Yに対して側方且つ上方に抜ける切り欠き 5 6を有し、 後述するように、 各支 持ピン 3 4を軸線 Yを中心として自転させることによって、 基板 Aの側周面 5 2に対して 切り欠き 5 6を差し向けることにより、 各支持ピン 3 4による基板 Aの支持を解除して、 基板 Aの支持を支持ピン 5 0により行うとともに、 基 « Aを例えば搬送ロボットのアーム により下方から真上に持ち上げることが可能となる。 As shown in FIG. 3, each of the plurality of support pins 34 has a support side surface 54 that supports the side peripheral surface 52 of the substrate A from the side, and a horizontal cross section of the support side surface 54 is Each support pin 34 forms an arc centered on the axis Y (in this embodiment, a semicircle), and the support side surfaces 54 are each centered on the axis Y. It can rotate. The support pins 50 contact and support the lower surface A2 of the substrate A from below when the substrate A is not supported by the support pins 34, respectively. Each of the plurality of support pins 34 has a cutout 56 that extends laterally and upward with respect to the axis Y, and as described later, by rotating each support pin 34 about the axis Y, The notch 56 is directed toward the side peripheral surface 52 of the board A, thereby releasing the support of the board A by the support pins 34 and supporting the board A by the support pins 50. «A can be lifted directly from below by a transfer robot arm, for example.
支持ピン駆動装置 3 9について説明すれば、 図 4に示すように、 スピンチャック 2 0の 円盤部 2 4の下方には、 支持ピン 3 4の数と同数の第 1歯車 5 8と、 第 1歯車 5 8夫々と 嚙み合う第 2歯車 6 0とからなる歯車機構 6 2が設けられている。 複数の第 1歯車 5 8は 夫々、 対応する支持ピン 3 4の下端に軸線 Yと同心状に連結され、 軸線 Yを中心に回転可 能としてある。 一方、 第 2歯車 6 0は、 スピンチャック 2 0の回転軸線 Xと同心状にスピ ンチャック 2 0に連結され、 回転軸線 Yを中心にスピンチャック 2 0と一体に回転可能と してある。  To explain the support pin driving device 39, as shown in FIG. 4, below the disk portion 24 of the spin chuck 20, the same number of first gears 58 as the number of the support pins 34 and the first A gear mechanism 62 including a second gear 60 meshing with each of the gears 58 is provided. The plurality of first gears 58 are respectively connected to the lower ends of the corresponding support pins 34 concentrically with the axis Y, and are rotatable about the axis Y. On the other hand, the second gear 60 is connected to the spin chuck 20 concentrically with the rotation axis X of the spin chuck 20, and is rotatable integrally with the spin chuck 20 about the rotation axis Y.
第 2歯車 6 0は、 図 5に示すように、 円筒カム 6 4と円筒カム 6 4の側周面 6 6に当た る傾斜面 6 8を有するカムフォロワ 7 0とからなるカム機構 7 2により、 軸線 Xを中心に 回転し、 それにより複数の第 1歯車 5 8が夫々回転し、 かくして支持ピン 3 4夫々がスピ ンチャック 2 0に対して相対回転するようになっている。  As shown in FIG. 5, the second gear 60 is formed by a cam mechanism 72 comprising a cylindrical cam 64 and a cam follower 70 having an inclined surface 68 which is in contact with a side peripheral surface 66 of the cylindrical cam 64. The first gear 58 rotates around the axis X, whereby each of the plurality of first gears 58 rotates, and thus each of the support pins 34 rotates relative to the spin chuck 20.
カム機構 7 2について説明すれば、 図 4及び図 5に示すように、 軸線 Xを中心として回 転可能な略鉛直方向に延びるシャフト 7 3の上端に、 円筒カム 6 4が設けられ、 一方、 第 2歯車 6 0の下面には、 そこから下方に延びて、 下端に第 2歯車 6 0の回転接線方向に傾 斜するように配置された傾斜面 6 8を備えたカムフォロワ 7 0が設けられる。 円筒カム 6 4は、 後に説明するように、 上下方向に移動可能で、 スピンチャック 2 0と一体に回転軸 線 Xを中心に回転可能である。 傾斜面 6 8は 傾斜面 6 8の傾斜方向に対する横断面が円 弧状をなす曲面をなし、 円筒カム 6 4の側周面 6 6を傾斜面 6 8に点接触させる向きに配 置される。 カムフォロワ 7 0及び円筒カム 6 4は、 互いに点接触するような曲面状のプロ ファイルを備えるのが好ましく、 点接触或いは線接触をする限り、 例えば傾斜面 6 8を平 面状にして、 カムをポ一ル状としてもよい。  As for the cam mechanism 72, as shown in FIGS. 4 and 5, a cylindrical cam 64 is provided at the upper end of a shaft 73 extending in a substantially vertical direction and rotatable about the axis X. The lower surface of the second gear 60 is provided with a cam follower 70 extending downward from the lower surface thereof and having a slope 68 at the lower end so as to be inclined in the rotational tangential direction of the second gear 60. . As will be described later, the cylindrical cam 64 can move up and down, and can rotate about the rotation axis X integrally with the spin chuck 20. The inclined surface 68 is a curved surface having a circular cross section with respect to the inclination direction of the inclined surface 68, and is arranged in such a direction that the side peripheral surface 66 of the cylindrical cam 64 comes into point contact with the inclined surface 68. It is preferable that the cam follower 70 and the cylindrical cam 64 have a curved profile that makes point contact with each other. As long as they make point contact or line contact, for example, the inclined surface 68 is made flat, and the cam is formed. It may be in the form of a pole.
また、 第 2歯車 6 0の下面に一端が固定され、 円盤部 2 4の下面に他端が固定されたバ ネ (図示せず) を第 2歯車 6 0の下面に付設し、 第 2歯車 6 0がスピンチャック 2 0に対 して所定角度相対回転すると、 パネの付勢力が作用して第 2歯車 6 0を逆回転させるよう にしている。 A spring (not shown) having one end fixed to the lower surface of the second gear 60 and the other end fixed to the lower surface of the disk portion 24 is attached to the lower surface of the second gear 60, 60 corresponds to spin chuck 20 Then, when the relative rotation is made by a predetermined angle, the urging force of the panel acts to rotate the second gear 60 in the reverse direction.
円筒カム 6 4の上下移動機構について説明すれば、 図 4に示すように、 スクリユーシャ フト 7 4が、 カップリング 7 6を介してモータ 7 8に連結し、 スクリユーシャフト 7 4に 固定ナット 8 0が螺合する。 固定ナット 8 0が固定される外側環状部材 8 2は、 ベアリン ーグ 8 4を介してシャフト 7 3の下端が固定される内側環状部材 8 6に連結し、 シャフト 7 3の上端は、 リニアベアリング 8 8により上下方向可動に支承されている。 これにより、 モータ 7 8が駆動することにより、 固定ナット 8 0、 かくして固定ナット 8 0にべアリン グ 8 4を介して連結するシャフト 7 3が上下方向に移動しながら、 シャフト部 2 6が軸線 Xを中心として回転することにより、 部材 9 0を介してシャフト 7 3もシャフ卜部 2 6と 一体に回転するようになっている。  To explain the vertical movement mechanism of the cylindrical cam 64, as shown in FIG. 4, the screw shaft 74 is connected to the motor 78 through the coupling 76, and the screw nut 74 is fixed to the screw shaft 74. 0 is screwed. The outer annular member 82 to which the fixing nut 80 is fixed is connected to the inner annular member 86 to which the lower end of the shaft 73 is fixed via a bearing 84, and the upper end of the shaft 73 is a linear bearing. 8 Vertically movable by 8 As a result, when the motor 78 is driven, the fixing nut 80, and thus the shaft 73, which is connected to the fixing nut 80 via the bearing 84, moves in the vertical direction, and the shaft portion 26 moves along the axis. By rotating about X, the shaft 73 also rotates integrally with the shaft part 26 via the member 90.
以上の構成によれば、 モータ 7 8により円筒カム 6 4を上下方向に移動させることによ り、 傾斜面 6 8を介してカムフォロワ 7 0を回転方向に押し出して、 第 2歯車 6 0をスピ ンチャック 2 0に対して相対回転させる、 それにより、 スピンチャック 2 0の回転中に、 複数の支持ピン 3 4を同期させながら、夫々の軸線 Yを中心として同一方向に自転させて、 基板 Aを各支持ピン 3 4の支持側面夫々に対してころがり接触の仕方で、 スピンチャック 2 0に対して相対回転させることが可能となる。 第 2歯車 6 0がスピンチャック 2 0に対 して所定角度相対回転すると、 パネの付勢力が打ち勝って第 2歯車 6 0を逆回転させる。 これにより、 図 2に示すように、 角度 の範囲で基板 Aを回転させることが可能となる。 次に、 図 6ないし図 9を参照しながら、 基板への処理液の供給装置 1 6について説明す れば、 基板の処理ユニット 1 0は、 基板 Aの上面 A 1の上方に設置された基板の上面のベ ベル処理ュニット 1 6 Aと、 基板 Aの下面 A 2の下方に設置された基板の下面全体の処理 ユニット 1 6 Bとを有する。 処理液は、 酸、 アルカリ又は有機溶媒その他の薬液、 純水又 は脱イオン水等であり.,処理内容、例えば除去洗浄する対象が、パーティクル、ポリマ一, 金属等のどの異物か、 或いは酸化膜、 窒素化膜、 C M Pによって発生した変質膜等のどの 膜であるのかに応じて、 適宜決定すればよい。  According to the above configuration, by moving the cylindrical cam 64 in the vertical direction by the motor 78, the cam follower 70 is pushed out in the rotational direction through the inclined surface 68, and the second gear 60 is spun. The substrate A is rotated relative to the chuck 20 by rotating the spin chuck 20 in the same direction about the respective axis Y while synchronizing the plurality of support pins 34 with each other. The support pin 34 can be rotated relative to the spin chuck 20 in a manner of rolling contact with each of the support side surfaces. When the second gear 60 rotates relative to the spin chuck 20 by a predetermined angle, the biasing force of the panel overcomes and rotates the second gear 60 in the reverse direction. As a result, as shown in FIG. 2, the substrate A can be rotated within the range of the angle. Next, referring to FIGS. 6 to 9, the apparatus for supplying a processing liquid 16 to a substrate will be described. The substrate processing unit 10 includes a substrate processing unit 10 disposed above the upper surface A 1 of the substrate A. It has a bevel processing unit 16A on the upper surface of the substrate A and a processing unit 16B for the entire lower surface of the substrate installed below the lower surface A2 of the substrate A. The processing liquid is an acid, alkali or organic solvent or other chemical liquid, pure water or deionized water, etc., the processing content, for example, which foreign matter such as particles, polymers, metals, etc., or oxidation It may be determined as appropriate depending on which film, such as a film, a nitrided film, and an altered film generated by CMP.
まず、 ベベル処理ユニット 1 6 Aについて説明する。  First, the bevel processing unit 16A will be described.
図 6に示すように、 基板 Aのべベル処理ユニット 1 6 Aは、 水平方向に開閉可能なシャ ッ夕ー 9 2 (図 7参照) の上方の控え位置と、 シャッター 9 2の下方の作動位置との間を 上下方向に移動可能なように、 歯車機構 9 4を介してモータ 9 6に連結されており、 控え 位置において処理液が垂れて基板 Aの表面に滴下しないように、 シャツ夕一 9 2には、 処 理液が垂れる位置に対応して処理液の受け溝 9 8が設けられている。 As shown in Fig. 6, the bevel processing unit 16A of the board A has a holding position above the shutter 92 (see Fig. 7) that can be opened and closed horizontally, and an operation below the shutter 92. It is connected to a motor 96 through a gear mechanism 94 so that it can move up and down between In order to prevent the processing solution from dripping at the position and dropping onto the surface of the substrate A, the shirt 92 is provided with a processing liquid receiving groove 98 corresponding to the position at which the processing liquid hangs.
図 8に示すように、 ベベル処理ユニット 1 6 Aは、 内部に処理液を基板 Aに供給する環 状流路 1 0 0を形成した本体部 1 0 2を有する。 本体部 1 0 2は、 スピンチヤック 2 0と 異なり、 作動位置において回転することなく静置される。 作動位置における基板 Aの上面 A 1との間隔は、 0. 5mmないし 3 1である。 本体部 Γ0 2は、 環状の-平らな下面 1 0 4を 有し、 下面 1 0 4が基板 Aと略平行となるように配置され、 基板 Aの上面 A 1との間に流 体が流れる間隙 3 1を形成する。 間隙 3 1に臨むように、 処理液の環状流出口 1 0 6が下 面 1 0 4に設けられ、 基板 Aの上面 A 1に向かって斜め下方に、 且つ半径方向外方に環状 流出開口 1 0 6まで延びるように環状流路 1 0 0を形成する。 環状流路 1 0 0は、 環状流 出開口 1 0 6に向かって先細りに形成されている。 図 9に示すように、 環状流路 1 0 0の 環状流出開口 1 0 6まわりの傾斜角度 j3は、 環状流出開口 1 0 6から流出する処理液が基 板 Aの外方に差し向けられるように、 少なくとも鋭角であり、 詳細には処理液の種類、 流 量、 流出開口面積等に応じて定められるが、 1 0 ° ないし 3 0 ° が好ましい。 環状流路 1 0 0の上流側には、 処理液を一時的に溜める環状溜め部 1 0 8が環状流路 1 0 0と流通し て設けられ、 環状溜め部 1 0 8の上流側は、 本体部 1 0 2の上面 1 1 0に周方向に複数設 けられた処理液流入口 1 1 2の夫々に連通する管路 1 1 4が、 環状溜め部 1 0 8と流通し て設けられる。 各処理液流入口 1 1 2は、 薬液或いは純水の処理液供給源 (図示せず) に 流量計、 調整弁を介して、 分岐管 (図示せず) を通じて夫々接続される (図 1参照)。 これ により、 各処理液流入口 1 1 2より流入した処理液は、 各管路 1 1 4を通って環状溜め部 1 0 8に到り、 そこに一旦溜められた処理液は、 環状流路 1 0 0を通って環状流出開口 1 0 6から基板 Aの外方に向かう流れをなして基板 Aに処理液を供給するようになっている。 環状流出開口 1 0 6の内周縁 1 1 6 (図 9 ) に取り囲まれた下面 1 0 4の領域には、 下 面 1 0 4から窪んだ水平断面が円形の凹部 1 1 8が設けられ、 第 1不活性ガスである窒素 ガスを噴射するための第 1不活性ガス流出開口 1 2 0が、 間隙 3 1に臨むように、 下面 1 0 4の凹部 1 1 8との境界を構成する周縁 1 2 2により形成され、 環状流出開口 1 0 6と 略同心上の円形開口の形態を有する。これにより、第 1不活性ガスが不活性ガス供給源(図 示せず) に流量制御器、 調整弁、 フィルタ一を介して連通する流入開口 1 1 7を通じて凹 部 1 1 8内に流入し、 不活性ガス流出開口 1 2 0を経て間隙 3 1を通って基板 Aの外方に 放射状に流れるようにしている。 環状流出開口 1 0 6の外周縁 1 2 4と本体部 1 0 2の外周縁 1 2 5との間の下面 1 0 4 の領域には、 第 2不活性ガス流出開口 1 2 6 (図 9 ) が形成され、 本体部 1 0 2の内部に は、 基板 Aの上面 A 1に向かって斜め下方に、 半径方向外方に第 2不活性ガス流出開口 1 2 6まで延びる環状流路 1 2 8が形成される。 第 2不活性ガス流出開口 1 2 6は、 環状流 出開口 1 0 6と略同心状の環状流出開口の形態である。 図 9に示すように、 環状流路の第 2不活性ガス流出開口 1 2 6まわりの傾斜角度 Ύは「第 2不活性ガス-流出開口 1 2 6から 流出する第 2不活性ガスが基板 Aの外方に差し向けられるように、少なくとも鋭角であり、 詳細にはガスの種類、 流量、 流出開口面積等に応じて定められるが、 1 0 ° ないし 3 0 ° が好ましい。 環状流路 1 2 8の上流側には、 不活性ガスを一時的に溜める環状溜め部 1 2 7が環状流路 1 2 8と流通して設けられ、 環状溜め部 1 2 7の上流側は、 本体部 1 0 2の 上面 1 1 0に周方向に複数設けられた第 2不活性ガス流入口 1 2 9の夫々に連通する管路 1 3 1が、 環状溜め部 1 2 7と流通して設けられる。 各第 2不活性ガス流入口 1 2 9は、 不活性ガス供給源 (図示せず) に流量制御器、 調整弁、 フィルタ一を介して、 分岐管 (図 示せず) を通じて夫々接続される (図 1参照)。 これにより、 各第 2不活性ガス流入口 1 2 9より流入した第 2不活性ガスは、 各管路 1 3 1を通って環状溜め部 1 2 7に到り、 そこ に一旦溜められた第 2不活性ガスは、 環状流路 1 2 8を通って環状流出開口 1 2 6から基 板 Aの外方に向かう流れをなして基板 Aに不活性ガスを供給するようになっている。 このような構成により、 第 1不活性ガスのみを利用する場合、 環状流出開口 1 2 6から 基板 Aの上面 A 1に向かう環状の処理液流れに対して内方から面する不活性ガス雰囲気を 少なくとも負圧でない所定圧力に保持するように、 第 1不活性ガス流出開口 1 2 0からの 第 1不活性ガスを間隙 3 1を通して基板 Aの外方に流すことにより、 間隙 3 1の下面 1 0 4から基板 Aの上面 A 1まで、 内周縁 1 1 6の近傍に沿ってガスバリアを形成して、 基板 Aの上面 A 1への処理液の供給を基板 Aの上面の所望環状領域に制限することが可能とな る。 As shown in FIG. 8, the bevel processing unit 16A has a main body 102 in which an annular flow path 100 for supplying a processing liquid to the substrate A is formed. Unlike the spin chuck 20, the main body 102 is settled without rotating in the operating position. The distance from the upper surface A1 of the substrate A at the operating position is from 0.5 mm to 31. The main body Γ02 has an annular-flat lower surface 104, and the lower surface 104 is disposed so as to be substantially parallel to the substrate A, and a fluid flows between the lower surface 104 and the upper surface A1 of the substrate A. The gap 31 is formed. An annular outflow port 106 for the processing liquid is provided on the lower surface 104 so as to face the gap 31, and an annular outflow opening 1 diagonally downward and radially outward toward the upper surface A 1 of the substrate A. An annular channel 100 is formed so as to extend to 06. The annular flow path 100 is tapered toward the annular discharge opening 106. As shown in FIG. 9, the inclination angle j3 of the annular flow passage 100 around the annular outflow opening 106 is such that the processing liquid flowing out from the annular outflow opening 106 is directed to the outside of the substrate A. The angle is at least an acute angle, and is determined in detail according to the type of the processing solution, the flow rate, the outlet opening area, and the like, and is preferably from 10 ° to 30 °. On the upstream side of the annular flow path 100, an annular storage section 108 for temporarily storing the processing liquid is provided so as to circulate with the annular flow path 100, and the upstream side of the annular storage section 108 is provided with: A plurality of pipes 114 communicating with the processing liquid inlets 112 provided in the upper surface 110 of the main body 102 in the circumferential direction are provided in communication with the annular reservoir 108. . Each processing solution inlet 1 1 2 is connected to a processing solution supply source (not shown) of a chemical solution or pure water via a flow meter, a regulating valve, and a branch pipe (not shown) (see FIG. 1). ). As a result, the processing liquid that has flowed in from each processing liquid inlet 1 12 reaches the annular reservoir 108 through each pipe 114, and the processing liquid that has been once stored therein flows into the annular flow path. The processing liquid is supplied to the substrate A by flowing in a direction from the annular outflow opening 106 to the outside of the substrate A through 100. In the region of the lower surface 104 surrounded by the inner peripheral edge 1 16 (FIG. 9) of the annular outflow opening 106, a concave portion 1 18 having a circular horizontal cross section recessed from the lower surface 104 is provided. Peripheral edge that forms a boundary with concave portion 1 18 on lower surface 104 so that first inert gas outflow opening 120 for injecting nitrogen gas, which is the first inert gas, faces gap 31. It has a form of a circular opening substantially concentric with the annular outflow opening 106. As a result, the first inert gas flows into the concave portion 118 through the inlet opening 117 communicating with the inert gas supply source (not shown) via the flow controller, the regulating valve, and the filter. The gas flows radially outward of the substrate A through the gap 31 through the inert gas outflow opening 120. In the area of the lower surface 104 between the outer peripheral edge 124 of the annular outlet opening 106 and the outer peripheral edge 125 of the main body 102, a second inert gas outlet opening 126 (FIG. ) Is formed inside the main body 102, and an annular flow path 1 2 extends obliquely downward toward the upper surface A 1 of the substrate A and radially outward to the second inert gas outflow opening 1 26. 8 is formed. The second inert gas outflow opening 126 has a form of an annular outflow opening that is substantially concentric with the annular outflow opening 106. As shown in FIG. 9, the inclination angle ま わ り of the annular flow path around the second inert gas outflow opening 126 is “second inert gas-outflow opening 126”. The angle is at least an acute angle so as to be directed outward, and is determined in detail according to the type of gas, flow rate, outlet opening area, etc., and is preferably from 10 ° to 30 °. On the upstream side of 8, an annular reservoir 1 27 for temporarily storing an inert gas is provided so as to circulate through the annular flow path 128, and on the upstream side of the annular reservoir 1 27, the main body 10 A plurality of pipes 131, which communicate with each of a plurality of second inert gas inlets 1229 provided in the circumferential direction on the upper surface 110 of the second 2, are provided so as to circulate with the annular reservoir 127. The second inert gas inlet 1 29 connects a branch pipe (not shown) to an inert gas supply source (not shown) via a flow controller, a regulating valve, and a filter. (See Fig. 1.) As a result, the second inert gas that has flowed in from each second inert gas inlet port 12 9 passes through each pipe 13 1 and the annular reservoir 1 2 7, the second inert gas once stored therein flows through the annular flow path 128 to the outside of the substrate A from the annular outflow opening 126, and flows to the substrate A. With such a configuration, when only the first inert gas is used, the annular processing liquid flows from the annular outflow opening 1 26 to the upper surface A 1 of the substrate A. The first inert gas from the first inert gas outflow opening 120 is supplied to the outside of the substrate A through the gap 31 so that the inert gas atmosphere facing from the inside is maintained at a predetermined pressure which is at least a negative pressure. Flow from the lower surface 104 of the gap 31 to the upper surface A1 of the substrate A along the vicinity of the inner peripheral edge 116. To form A, that the supply of the processing liquid to the upper surface A 1 of the substrate A Do can be limited to a desired annular region of the upper surface of the substrate A.
また、 第 1不活性ガス及び第 2不活性ガスの両方を利用する場合、 環状流出開口 1 0 6 から供給する処理液が、 第 1不活性ガス流出開口 1 2 0から噴射する第 1不活性ガスによ つて基板 Aの外方に向かって同伴されながら、 第 2不活性ガス流出開口 1 2 6から噴射す る第 2不活性ガスによって、 基板 Aの外方に向かって引かれることにより、 第 1不活性ガ スのみを利用する場合と同様に、 基板 Aの上面 A 1への処理液の供給を基板 Aの上面の所 望環状領域に制限することが可能となる。 このように、 いずれの場合も処理液の環状流出開口 1 0 6の径を選択することにより、 基板 Aの上面 A 1を処理する環状領域を決定することが可能となる。 In the case where both the first inert gas and the second inert gas are used, the processing liquid supplied from the annular outlet opening 106 receives the first inert gas ejected from the first inert gas outlet opening 120. While being entrained by the gas toward the outside of the substrate A, the gas is drawn outward from the substrate A by the second inert gas injected from the second inert gas outflow opening 126. As in the case where only the first inert gas is used, the supply of the processing liquid to the upper surface A1 of the substrate A can be limited to a desired annular region on the upper surface of the substrate A. As described above, in any case, by selecting the diameter of the annular outflow opening 106 of the processing liquid, it becomes possible to determine the annular region for processing the upper surface A1 of the substrate A.
変 例として、 図 6に示す本体部 1 0 2の鉛直方向駆動機構を例えば、 サーポモ一夕等 分解能に優れた駆動手段にすることにより、 基板 Aをべベル処理する際に、 本体部 1 0 2 を鉛直方向、 すなわち略水平保持された基板 Aの上面 A 1への環状流出開口 1 0 6の投影 —位置が変動しないように移動させる仕方で、 ·本体部 1 Ό 2の下面 1 0 4と基板の上面 A 1 との距離を調整してもよい。 この場合、 下面 1 0 4と基板の上面 A 1との距離を変えるこ とにより、処理液により処理されるべベル処理環状領域の幅を調整することが可能となる。 より詳細には、 図 1 8の . (A) と図 1 8の (B ) とを比較すれば容易に理解可能なよう に、 処理液は一定の傾斜角度 j8 (図 9参照) により環状流出開口 1 0 6から基板の上面 A 1を基板 Aの半径方向外方に流出して、 基板 Aの外周縁まで及ぶ環状領域全体を処理する ことが可能であるが、 その際下面 1 0 4と基板の上面 A 1との距離 h ( h x < h 2 ) を小さ くするほど、 ベベル処理環状領域の内周縁を基板 Aのより内方とすることが可能となり、 それによりべベル処理環状領域の幅 t ( tェ〉 t 2 )を大きくすることが可能となる。なお、 ベベル処理ュニット 1 6 Aを控え位置と処理位置との間で上下方向に移動させる移動手段 (図 6のモータ 9 6 ) とは別に、 ベベル処理環状領域調整専用に、 処理位置において本体 部 1 0 2を精確に鉛直方向に移動させる駆動手段を設けてもよい。 As a modification, when the substrate A is beveled, the vertical driving mechanism of the main body 102 shown in FIG. Projection of the annular outflow opening 106 onto the upper surface A1 of the substrate A held vertically in the horizontal direction, that is, by moving the position so that the position does not change. The distance between the substrate and the upper surface A 1 of the substrate may be adjusted. In this case, by changing the distance between the lower surface 104 and the upper surface A1 of the substrate, it becomes possible to adjust the width of the beveled annular region to be treated with the treatment liquid. More specifically, as can be easily understood by comparing FIG. 18 (A) and FIG. 18 (B), the processing liquid is discharged at a constant inclination angle j8 (see FIG. 9). It is possible to flow the upper surface A1 of the substrate from the opening 106 radially outward of the substrate A to process the entire annular area extending to the outer peripheral edge of the substrate A. As the distance h (h x <h 2 ) from the upper surface A 1 of the substrate is reduced, the inner peripheral edge of the beveled annular region can be made more inward of the substrate A. it is possible to increase the width t (t E> t 2). In addition to the moving means (motor 96 in FIG. 6) for moving the bevel processing unit 16A in the vertical direction between the holding position and the processing position, the bevel processing unit 16A is exclusively used for adjusting the bevel processing annular area. Driving means for precisely moving 102 in the vertical direction may be provided.
以上のように、 単に本体部 1 0 2を鉛直方向に移動可能とすることにより、 ベベル処理 環状領域を所望の幅、 かくしてべベル処理環状領域の面積を調整することが可能となる。 なお、 傾斜角度 i3を小さくするほど、 本体部 1 0 2の鉛直方向移動に対するベベル処理環 状領域の幅変動の感度を上げることが可能である。 また、 本体部 1 0 2の鉛直方向位置を 一定にした場合には、 第 2不活性ガス流出開口 1 2 6からの第 2不活性ガスの流量 Vを調 整することにより、 ペペル処理環状領域の幅を調整することも可能であり、 流量を高める ほど (V X < V 2 ) ,ベペル処理環状領域の幅を小さくすること ( t ! > t 2 )が可能となる。 場合により、 本体部 1 0 2の鉛直方向移動と第 2不活性ガスの流量とを同時に変えること により、 ベベル処理環状領域を調整してもよい。 As described above, by simply moving the main body 102 in the vertical direction, it is possible to adjust the desired width of the beveled annular region and thus the area of the beveled annular region. It should be noted that the smaller the inclination angle i3, the higher the sensitivity of the width change of the beveled annular region to the vertical movement of the main body 102 can be. In addition, when the vertical position of the main body 102 is fixed, by adjusting the flow rate V of the second inert gas from the second inert gas outflow opening 126, the pepel-treated annular area is adjusted. it is also possible to adjust the width, the more increase the flow rate (V X <V 2), reducing the width of Beperu treatment annular region (t!> t 2) becomes possible. In some cases, the beveled annular region may be adjusted by simultaneously changing the vertical movement of the main body 102 and the flow rate of the second inert gas.
一方、図 1 0を参照しながら、基板 Aの下面の処理ュニット 1 6 Bについて説明すれば、 不活性ガス (窒素ガス) を供給するための外管 1 3 0と、 外管 1 3 0内を延びる、 処理液 を供給するための内管 1 3 2とを有する。 外管 1 3 0は、 貫通穴 3 2と非接触で貫通穴 3 · 2を通ってスピンチャック 2 0の上面 2 8まで延び、 内管 1 3 2は、 外管 1 3 0の下端面 1 3 4を貫通して、外管 1 3 0内をスピンチャック 2 0の上面から突出するように延びる。 内管 1 3 2及び外管 1 3 0は、 スピンチャック 2 0の回転軸線 Xまわりに同心状に配置さ れ、 内管 1 3 2の上周縁 1 3 6によって基板 Aの略中心に向かって、 処理液を略鉛直な方 向に供給する処理液供給ノズル 1 3 8が形成され、 一方外管 1 3 0の上周縁 1 4 0と内管 1 3 2の外周面 1 4 2との間に、基板 Aの下面 A 2近傍を不活性ガス雰囲気とするように、 下面 A 2に向かって不活性ガスを噴射する不活性ガス噴射ノズル 1 4-4が形成される。 不 活性ガス噴射ノズル 1 4 4は、 処理液供給ノズル 1 3 8のまわりを取り囲むように配置さ れた環状ノズルの形態を有する。 On the other hand, referring to FIG. 10, the processing unit 16 B on the lower surface of the substrate A will be described. An outer pipe 130 for supplying an inert gas (nitrogen gas) and an inner pipe 130 are provided. And an inner tube 132 for supplying the processing liquid. The outer tube 130 extends to the upper surface 28 of the spin chuck 20 through the through holes 3 and 2 in a non-contact manner with the through hole 3 2, and the inner tube 13 2 has a lower end surface of the outer tube 130. It extends through the outer tube 130 through the outer tube 130 so as to protrude from the upper surface of the spin chuck 20. The inner tube 13 2 and the outer tube 130 are arranged concentrically around the rotation axis X of the spin chuck 20, and are moved toward the approximate center of the substrate A by the upper peripheral edge 1 36 of the inner tube 13 2. A processing liquid supply nozzle 138 for supplying the processing liquid in a substantially vertical direction is formed, while a processing liquid supply nozzle 1380 is formed between the upper peripheral edge 140 of the outer pipe 130 and the outer peripheral surface 142 of the inner pipe 132. Then, an inert gas injection nozzle 14-4 for injecting an inert gas toward the lower surface A2 is formed so that the vicinity of the lower surface A2 of the substrate A is in an inert gas atmosphere. The inert gas injection nozzle 144 has a form of an annular nozzle arranged so as to surround the processing liquid supply nozzle 138.
基板 Aの下面 A 2と不活性ガス噴射ノズル 1 4 4との間には、邪魔板 1 4 6が設けられ、 不活性ガス環状ノズル 1 4 4の上方で内管 1 3 2の外周面 1 4 2に固定され、 環状ノズル と同心状に且つ基板 Aと略平行上に配置された円板の形態を有する。図 1 1に示すように、 邪魔板 1 4 6は、 邪魔板 1 4 6の円周方向に互いに等角度間隔に配置された、 8個の分岐 流路を構成する 8個の抜け穴 1 4 8を有し、 各抜け穴 1 4 8は、 邪魔板 1 4 6の不活性ガ ス噴射ノズル側の邪魔板表面 1 5 0に形成される不活性ガス分岐流れの流入開口 1 5 2が、 不活性ガス噴射ノズル 1 4 4より外方にオフセット配置されるとともに、 邪魔板表面 1 5 0の反対表面に形成される不活性ガス分岐流れの流出開口 1 5 4が、 流入開口 1 5 2より 内方に形成され、 各々が、 図 1 0に示すように、 不活性ガス分岐流れが基板 Aの表面の手 前で処理液供給ノズル 1 3 8からの処理液流れにぶっかるような所定の傾きを備える。 な お、 抜け穴 1 4 8の数、 開口面積は、 不活性ガス噴射ノズル 1 4 4からの不活性ガスの流 量等に応じて選択すればよい。  A baffle plate 16 is provided between the lower surface A 2 of the substrate A and the inert gas injection nozzle 14 4, and the outer peripheral surface 1 of the inner pipe 1 3 2 is provided above the inert gas annular nozzle 1 4 4. 42, and has the form of a disk arranged concentrically with the annular nozzle and substantially parallel to the substrate A. As shown in FIG. 11, the baffle plates 1 4 6 are arranged at equal angular intervals in the circumferential direction of the baffle plates 1 4 6. Each of the through holes 1 4 8 has an inflow opening 1 5 2 for an inert gas branch flow formed on the baffle plate surface 150 on the side of the inert gas injection nozzle of the baffle plate 1 46. The outlet opening 15 4 of the inert gas branch flow formed on the surface opposite to the baffle plate surface 150 is offset from the gas injection nozzle 1 4 4 and is located inward from the inlet opening 1 5 2. Each of them has a predetermined inclination such that the inert gas branch flow hits the processing liquid flow from the processing liquid supply nozzle 138 in front of the surface of the substrate A, as shown in FIG. Prepare. The number of the through holes 144 and the opening area may be selected according to the flow rate of the inert gas from the inert gas injection nozzle 144.
邪魔板 1 4 6は、 複数の分岐流路の流入開口 1 5 2より外方領域に、 基板 Aの外方に向 かう偏向流れが、 上面 2 8との間で絞られるように、 邪魔板 1 4 6表面から不活性ガス噴 射ノズル 1 4 4に向かって突出する突出リング部 1 5 6を有する。 これにより、 邪魔板 1 4 6により流れが偏向された不活性ガス流れが、 一部分岐した基板 Aに向かう不活性ガス 流れを引くようなディフユーザ効果が生じないようにしている。  The baffle plate 1 4 6 is arranged in a region outside the inflow openings 1 5 2 of the plurality of branch flow paths so that the deflected flow toward the outside of the substrate A is restricted between the upper surface 28 and the baffle plate. It has a projecting ring portion 156 projecting from the surface of the substrate 146 toward the inert gas injection nozzle 144. This prevents the inert gas flow deflected by the baffle plate 146 from causing a diffuser effect such as drawing the inert gas flow toward the partially branched substrate A.
このような構成によれば、 図 1 0に示すように、 邪魔板 1 4 6が不活性ガス噴射ノズル 1 4 4から噴射する不活性ガス流れを受けて、 基板 Aの外方に向かう流れに偏向するとと もに、 抜け穴 1 4 8により基板 Aの外方に向かう偏向された流れが一部分岐され、 不活性 ガス噴射ノズル 1 4 4の噴流による基板 Aへの直撃が回避されて、 基板 Aへの悪影響が防 止されるとともに、 直撃部のまわりに減圧部を生じて処理液のミス卜が基板の表面に付着 するのを防止する一方で、 基板 Aの下面 A 2、 特に処理液が最初に供給される中心部を不 活性ガス雰囲気に維持することにより、 基板表面の有効かつ均一な処理をすることが可能 となる。 According to such a configuration, as shown in FIG. 10, the baffle plate 146 receives the flow of the inert gas injected from the inert gas injection nozzle 144 and changes the flow toward the outside of the substrate A. In addition to the deflection, the flow deflected toward the outside of the substrate A is partially branched by the through hole 148, and the direct flow to the substrate A by the jet flow of the inert gas injection nozzle 144 is avoided, and the substrate A In addition to preventing adverse effects on the substrate, a decompression part is created around the direct hit part, and mist of the processing liquid adheres to the surface of the substrate. By keeping the lower surface A2 of the substrate A, especially the center where the processing liquid is first supplied, in an inert gas atmosphere, it is possible to treat the substrate surface effectively and uniformly It becomes.
次に、 図 1 2を参照しながら、 処理液の分別回収装置 1 8について説明すれば、 基板 A の周囲を取り囲むように配置された、 内方に臨む環状開口 1 5 8を有するポット 1 6 0が 設けられる。 ポット 1 6 0は、 内方に向かって斜め上方に延びる環状上壁 1 6 2と、 略平 らな底面 1 6 4を有する環状下壁 1 6 6と、 環状上壁 1 6 2と環状下壁 1 6 6との間の外 周壁 1 6 8及び内周壁 1 7 0とを有し、 環状上壁 1 6 2の上周縁 1 7 2から所定長さの環 状ひさし 1 7 4が略鉛直方向に垂下しており、 環状ひさし 1 7 4の下周縁 1 7 6と内周壁 Next, referring to FIG. 12, the treatment liquid separation / collection device 18 will be described. A pot 16 having an inwardly facing annular opening 158 arranged to surround the periphery of the substrate A is described. 0 is provided. The pot 160 includes an annular upper wall 162 extending obliquely inward and upward, an annular lower wall 166 having a substantially flat bottom surface 164, an annular upper wall 162, and an annular lower wall. An outer peripheral wall 1668 and an inner peripheral wall 170 between the wall 1166 and an annular eave 1 74 of a predetermined length from the upper peripheral edge 172 of the annular upper wall 162 is substantially vertical In the direction of the ring, eaves of circular eaves 1 7 4
1 7 0の上周縁 1 7 8とが環状開口 1 5 8を形成する。 ポット 1 6 0の内部には、 夫々ポ ット 1 6 0の底面 1 6 4を環状に仕切るように、 底面 1 6 4から上方且つ内方に環状開口 1 5 8に向かって延び、ポット 1 6 0内で離間して配置された三つの環状仕切り 1 8 0 A、The upper peripheral edge 178 of the 170 forms an annular opening 158. The inside of the pot 160 extends upwardly and inward from the bottom 16 4 toward the annular opening 1 58 so as to partition the bottom 16 4 of the pot 160 into an annular shape. Three annular partitions spaced apart within 60 0 180 A,
1 8 0 B、 1 8 0 Cが入れ子式に設けられる。 環状仕切り 1 8 0 A、 1 8 0 B、 1 8 0 C 夫々は、 後に説明するように、 上下駆動機構 1 8 2により互いに独立に上下方向に移動可 能にしてある。 180 B and 180 C are nested. Each of the annular partitions 180A, 180B, and 180C can be vertically moved independently of each other by a vertical drive mechanism 182, as described later.
環状開口 1 5 8から流入する処理液を受け入れ可能なように、 隣り合う環状仕切り 1 8 0夫々の内周縁 1 8 3を環状開口 1 5 8に位置決めすることにより、 外側の環状仕切り 1 8 0の内周面 1 8 4と内側の環状仕切り 1 8 0の外周面 1 8 6とで、 底面 1 6 4に通じる 環状流路 1 8 9を形成する。 また、 1つの環状仕切りからみれば、 環状仕切り 1 8 0を環 状開口 1 5 8の上レベル、 すなわち基板 Aからの処理液が外方に飛散するレベルより上に 位置決めすることにより、 環状仕切り 1 8 0の内周面 1 8 3が、 基板 Aからの処理液を環 状開口 1 5 8からポット 1 6 0の底面 1 6 4まで案内する案内面を形成し、 環状仕切り 1 8 0を環状開口 1 5 8の下レベル、 すなわち基板 Aからの処理液が外方に飛散するレベル より下に位置決めすることにより、 環状仕切り 1 8 0の外周面 1 8 6が、 基板 Aからの処 理液を環状開口 1 5 8からポット 1 6 0の底面 1 6 4まで案内する、 別の案内面を形成す ることになる。 隣り合う環状仕切り 1 8 0夫々の内周縁 1 8 3を環状開口 1 5 8に位置決 めする際、 それ以外の隣り合う環状仕切り 1 8 0を上下方向に近接して位置決めすること により、 処理液の飛散から生じるミストがそれ以外の隣り合う環状仕切り 1 8 0夫々の内 周縁 1 8 3間の間隙から環状流路内に流入するのを防止できる。 '  By positioning the inner peripheral edges 1 8 3 of the adjacent annular partitions 1 8 3 in the annular openings 1 58 so that the processing liquid flowing from the annular openings 1 5 8 can be received, the outer annular partitions 1 8 0 The inner peripheral surface 184 of the inner wall 18 and the outer peripheral surface 1886 of the inner annular partition 180 form an annular flow path 189 communicating with the bottom surface 164. From the viewpoint of one annular partition, the annular partition 180 is positioned above the annular opening 158, that is, above the level at which the processing liquid from the substrate A scatters outward. The inner peripheral surface 1803 of 180 forms a guide surface for guiding the processing liquid from the substrate A from the annular opening 158 to the bottom surface 164 of the pot 160, and the annular partition 180 is formed. By positioning the lower surface of the annular opening 158 below the level at which the processing liquid from the substrate A scatters outward, the outer peripheral surface 186 of the annular partition 180 is processed from the substrate A. It forms another guide surface for guiding the liquid from the annular opening 158 to the bottom surface 164 of the pot 160. When positioning the inner peripheral edge 1 8 3 of each adjacent annular partition 1 8 0 to the annular opening 1 8 8, processing is performed by positioning the other adjacent annular partitions 1 8 0 vertically adjacent to each other. It is possible to prevent the mist generated from the scattering of the liquid from flowing into the annular flow path from the gap between the inner peripheral edges 183 of the other adjacent annular partitions 180. '
環状ひさし 1 7 4の上下方向長さは、 三つの環状仕切り 1 8 0 A、 1 8 0 B、 1 8 0 C 夫々を上下駆動機構 1 8 2によりポット 1 6 0内で最も上方位置に位置決めしたとき、 三 つの環状仕切り 1 8 0の上周縁 1 8 3がすべて環状ひさし 1 7 4によって隠されるような 長さであるのが好ましい。 これにより、 隣り合う環状仕切り 1 8 0の内周縁 1 8 3の間か ら基板 Aからの処理液或いはそこから発生するミス卜が混入することを防止することが可 能となる。 The vertical length of the circular eaves 1 7 4 is three circular partitions 180 A, 180 B, 180 C When each is positioned at the highest position in the pot 160 by the vertical drive mechanism 18 2, the length such that all the upper peripheral edges 18 3 of the three annular partitions 180 are hidden by the annular eaves 1 74 It is preferred that This makes it possible to prevent the processing liquid from the substrate A or the mist generated from the processing liquid from entering between the inner peripheral edges 183 of the adjacent annular partitions 180.
複数の環状仕切り 1 8 0の夫々は、 環状開口 1 5 8に向かって内方上向きに傾斜する傘 部 1 8 8と、 上周端が傘部 1 8 8に連結され、 ポット 1 6 0の底部から上方に延出する円 筒部 1 9 0とを有する。 傘部 1 8 8の傾きは、 ポット 1 6 0の上周壁 1 6 2と略平行であ る。 円筒部 1 9 0の外周面を取り囲むように、 固定円筒部 1 9 2が底面 1 6 4から上方に 延びる。 円筒部 1 9 0の外周面と固定円筒部 1 9 2の内周面とは、 所定クリアランス、 例 えば 0. 5mmを有し、 固定円筒部 1 9 2は、 傘部 1 8 8が最も上方位置に達したときにも円 筒部 1 9 0と固定円筒部 1 9 2とが重なり合うような高さを有する。  Each of the plurality of annular partitions 180 is provided with an umbrella portion 188 that is inclined inward and upward toward the annular opening 158, and an upper peripheral end is connected to the umbrella portion 188, and And a cylindrical portion 190 extending upward from the bottom. The inclination of the umbrella portion 188 is substantially parallel to the upper peripheral wall 162 of the pot 160. A fixed cylindrical portion 192 extends upward from the bottom surface 164 so as to surround the outer peripheral surface of the cylindrical portion 190. The outer peripheral surface of the cylindrical portion 190 and the inner peripheral surface of the fixed cylindrical portion 192 have a predetermined clearance, for example, 0.5 mm, and the fixed cylindrical portion 192 has an umbrella portion 188 at the top. It has such a height that the cylindrical portion 190 and the fixed cylindrical portion 192 overlap each other even when reaching the position.
傘部 1 8 8は夫々、 円筒部 1 9 0との連結部から外方に向かって延びる環状張り出し部 1 9 4を有し、 この環状張り出し部 1 9 4の下方で円筒部 1 9 0を取り囲むように、 ポッ ト 1 6 0の底面 1 6 4から上方に延びる環状隔壁部 1 9 6が設けられ、 それにより、 環状 流路 1 8 9は、 隣り合う環状仕切り 1 8 0の傘部 1 8 8同士によって形成される斜め流路 1 9 8と、 外側の環状仕切り 1 8 0の円筒部 1 9 0の内周面と環状隔壁 1 9 6の外周面と によって形成される外流路 2 0 4と、 環状隔壁 1 9 6の内周面と外側の環状仕切り 1 8 0 の円筒部 1 9 0の外周面とによって形成される内流路 2 1 0とかち構成され、 外流路 2 0 4と内流路 2 1 0とは、 逆 U字形流路を形成する。  Each of the umbrella portions 188 has an annular protrusion 194 extending outward from a connection portion with the cylindrical portion 190, and the cylindrical portion 190 is provided below the annular protrusion 194. An annular partition 196 extending upward from the bottom surface 164 of the port 160 is provided so as to surround the annular partition 189 so that the annular flow path 189 is formed by an umbrella 1 of an adjacent annular partition 180. An oblique flow path 1 98 formed by 8 8 and an outer flow path 2 0 formed by an inner peripheral surface of a cylindrical portion 190 of the outer annular partition 180 and an outer peripheral surface of the annular partition 196. 4, an inner flow path 2 10 formed by the inner peripheral surface of the annular partition wall 1 96 and the outer peripheral surface of the cylindrical portion 1 90 of the outer annular partition 1 80, and the outer flow path 2 0 4 The inner flow path 210 forms an inverted U-shaped flow path.
外流路 2 0 4は、 その最下端で処理液流出口 (図示せず) と連通し、 内流路 2 1 0は、 その最下端でミスト流出口 (図示せず) と連通し、 ミスト流出口を通じて排気装置 (図示 せず) により環状流路 1 8 9内が引かれている。  The outer flow path 204 communicates with a processing liquid outlet (not shown) at its lowermost end, and the inner flow path 210 communicates with a mist outlet (not shown) at its lowermost end. The inside of the annular flow passage 189 is drawn by an exhaust device (not shown) through the outlet.
複数の環状仕切り 1 8 0のうち最も外側に位置する環状仕切り 1 8 0 Aは、 その外周面 とポット 1 6 0の外周壁 1 6 8の内周面 2 1 2との間に環状流路を形成し、 一方複数の環 状仕切り 1 8 0のうち最も内側に位置する環状仕切り 1 8 0 Cは、 その内周面とポット 1 6 0の内周壁 1 7 0の内周面 2 1 4との間に環状流路を形成する。 最も内側の環状流路内 には、 スピンチャック 2 0の外周縁の略真下に、 パドリング用の処理液を受けるための環 状受け 2 1 8が設けられ、 これによりパドリング処理のような低速回転 (例えば、 数ない し数十 rpm) のために処理液が環状開口 2 0 6に流入できない場合でも、 処理液を確実に 分別回収し、 特に最も内側の環状流路内に分別回収される処理液との混合を防止すること ができる。 Of the plurality of annular partitions 180, the outermost annular partition 180A is provided between the outer peripheral surface and the inner peripheral surface 2 12 of the outer peripheral wall 16 8 of the pot 16 0. On the other hand, among the plurality of annular partitions 180, the innermost annular partition 180 C located between the inner peripheral surface thereof and the inner peripheral wall 170 of the pot 160 is formed. To form an annular flow path. In the innermost annular flow path, an annular receiver 218 is provided substantially immediately below the outer peripheral edge of the spin chuck 20 for receiving a processing liquid for paddling, thereby providing a low-speed rotation like paddling processing. Even if the processing liquid cannot flow into the annular opening 206 due to (for example, a few or several tens of rpm), the processing liquid can be Separation and recovery, and in particular, mixing with the processing liquid separated and recovered in the innermost annular flow path can be prevented.
環状隔壁 1 9 6の上周縁と内側に隣り合う固定円筒部 1 9 2の内周面とにより形成され るミスト流入開口部には、 周方向に分散配置された複数の貫通穴 2 2 4を備えた環状のコ ンダクタンス調整板 2 2 6が設けられ、 これらの複数の貫通穴 2 2 4夫々の大きさを、 ミ スト流出口に近いほど小さくしてある。 これにより、 ミストの回収の周方向の偏りを防止 することが可能となる。  The mist inflow opening formed by the upper peripheral edge of the annular bulkhead 196 and the inner peripheral surface of the fixed cylindrical portion 192 adjacent to the inside has a plurality of through holes 224 distributed in the circumferential direction. An annular conductance adjusting plate 226 is provided, and the size of each of the plurality of through holes 224 is made smaller as it is closer to the mist outlet. As a result, it is possible to prevent the mist collection from being biased in the circumferential direction.
次に、 環状仕切り 1 8 0の上下駆動機構 1 8 2について説明すれば、 環状仕切り 1 8 0 の内周面には、 シャフト連結部材 2 2 8が付設され、 シャフト連結部材 2 2 8の上端部は 内周面 1 8 4に固定され、 下端部は開口して、 中空部が下方に臨む。 中空円筒部材 2 2 8 の真下には、 底面 1 6 4から上方に延びる中空円筒部材 2 3 0が設けられ、 中空円筒部材 2 3 0はシャフト連結部材 2 2 8の中空部に収まるような径を有する。 下壁 1 6 6及び中 空円筒部材 2 3 0を貫通して、 上方に延びるシャフ卜 2 3 2が、 中空部内を通り、 シャフ ト 2 3 2の上端がシャフト連結部材 2 2 8の上端部と連結する。シャフト 2 3 2の下端は、 カップリング 2 3 4を介してシャフト 2 3 6に連結し、 シャフト 2 3 6の下端は、 ナット 2 3 8に螺合し、 ナット 2 3 8は一対の歯車 2 4 0の一方に固定され、 他方の歯車はモー 夕 2 4 2に連結されている。 このような構成により、 モータ 2 4 2の回転により一対の歯 車 2 4 0を介してナツト 2 3 8に螺合するシャフト 2 3 6が回転することにより上下移動 し、 かくしてシャフト 2 3 2、 かくしてシャフト連結部材 2 2 8を介して環状仕切り 1 8 0が上下方向に移動可能となるようになつている。  Next, the vertical drive mechanism 182 of the annular partition 180 will be described. A shaft connecting member 228 is provided on the inner peripheral surface of the annular partition 180, and the upper end of the shaft connecting member 228 is provided. The part is fixed to the inner peripheral surface 184, the lower end is open, and the hollow part faces downward. Immediately below the hollow cylindrical member 228, there is provided a hollow cylindrical member 230 extending upward from the bottom surface 164, and the hollow cylindrical member 230 has a diameter such that the hollow cylindrical member 230 fits in the hollow portion of the shaft connecting member 228. Having. A shaft 23 extending upwardly through the lower wall 1666 and the hollow cylindrical member 230 passes through the hollow portion, and the upper end of the shaft 2332 is at the upper end of the shaft connecting member 228. Connect with The lower end of the shaft 2 3 2 is connected to the shaft 2 3 6 via a coupling 2 3 4, the lower end of the shaft 2 3 6 is screwed into a nut 2 3 8, and the nut 2 3 8 is a pair of gears 2 40 is fixed to one of the gears, and the other gear is connected to the motor. With such a configuration, the rotation of the motor 2 42 causes the shaft 2 36 screwed to the nut 2 38 via the pair of gear wheels 240 to rotate, thereby moving up and down, thus moving the shaft 2 32, Thus, the annular partition 180 can be moved in the vertical direction via the shaft connecting member 222.
図 1 3に示すように、上述の上下駆動機構の変形例として、カム機構を利用してもよい。 カム機構 2 5 0は、 モータ 2 5 1により回転可能なシャフト 2 5 2に固定され、 互いに略 平行な三つの平板カム 2 5 4と、 平板カム 2 5 4夫々のプロファイルに追従するように、 各環状仕切り 1 8 0に連結した上下方向に延びるシャフト 2 5 6の下端に固定された円筒 カムフォロワ 2 5 8とを有する。 これによれば、 単一のモータにより異なるカムプロファ ィルを通じて、 各環状仕切り 1 8 0が所定の相対位置関係をなして、 上下方向に移動する ことが可能となる。  As shown in FIG. 13, a cam mechanism may be used as a modification of the above-described vertical drive mechanism. The cam mechanism 250 is fixed to a shaft 252 rotatable by a motor 251, and follows three flat cams 25 4 substantially parallel to each other, and follows the respective profiles of the flat cams 2 54. It has a cylindrical cam follower 258 fixed to the lower end of a vertically extending shaft 256 connected to each annular partition 180. According to this, each annular partition 180 can move up and down in a predetermined relative positional relationship through a different cam profile by a single motor.
なお、 処理ユニット 1 0のうち処理液に接する部材の材質は、 使用する処理液に応じて テフロン、 ポリプロピレン、 P V D F或いは塩化ピニル等の合成樹脂から選択するのがよ い。 以上のような構成を有する基板の処理ュニッ卜の動作を、 碁板 Aの搬入工程、 基 Aの 処理工程、 基板 Aのリンス工程、 基板 Aの乾燥工程、 及び処理工程、 リンス工程、 乾燥ェ 程に付随して行われる処理液、 リンス液、 乾燥用ガスの回収工程に区切って説明する。 以 下では、 基板 Aの素子を形成した表面を上面に、 素子の形成されていない裏面を下面とな るように基板 Aを配置して、 上面の素子の形成されていないべベル部を含む外周縁部と、 下面全体並びに側周面とを併行して処理する場合を例に説明する。 The material of the member of the processing unit 10 that comes into contact with the processing liquid is preferably selected from synthetic resins such as Teflon, polypropylene, PVDF, and pinyl chloride according to the processing liquid to be used. The operation of the processing unit for the substrate having the above-described configuration includes the steps of loading the board A, the processing step of the base A, the rinsing step of the substrate A, the drying step of the substrate A, and the processing step, the rinsing step, and the drying step. The process will be described separately for the process of recovering the processing liquid, rinsing liquid, and drying gas that is performed in conjunction with the process. In the following, the substrate A is arranged such that the upper surface of the substrate A where the elements are formed is on the upper surface and the lower surface where the elements are not formed is the lower surface, and the upper surface includes the bevel portion where the elements are not formed. An example will be described in which the outer peripheral edge is processed in parallel with the entire lower surface and the side peripheral surface.
(1)基板 Aの搬入工程について  (1) Board A loading process
基板 Aを搬入する前に、上面べベル処理ュニット 1 6 Aを控え位置に位置決めしておく。 次いで、 処理すべき基板 Aを搬送口ポット (図示せず) によりスピンチャック 2 0の上面 まで搬送する。 この際、 図 3の (B ) に示すように、 各支持ピン 3 4を自転させて、 切り 欠き 5 6を基板 Aの中心に向かう内方に向けて置く。 次いで、 基板 Aを搬送口ポット (図 示せず) によって各支持ピン 5 0により下方から支持して、 各支持ピン 3 4を自転させて 円弧側周面 5 4を基板 Aの周縁 5 2に当てて、 図 3の (A) に示すように、 基板 Aを略水 平支持する。 次いで、 シャッター 9 2を開いて、 上面べベル処理ユニット 1 6 Aを控え位 置から作動位置まで下方に移動させる。 以上で、 上面べベル処理ユニットの作動位置への 位置決め、 及び基板 Aの搬入工程が完了する。  Before loading the board A, position the top bevel processing unit 16 A in the standby position. Next, the substrate A to be processed is transferred to the upper surface of the spin chuck 20 by a transfer port pot (not shown). At this time, as shown in FIG. 3B, each support pin 34 is rotated, and the notch 56 is placed inward toward the center of the substrate A. Next, the substrate A is supported from below by the respective support pins 50 by a transfer port pot (not shown), and the respective support pins 34 are rotated by themselves, and the arc-side peripheral surface 54 is brought into contact with the peripheral edge 52 of the substrate A. Then, as shown in FIG. 3A, the substrate A is supported substantially horizontally. Next, the shutter 92 is opened, and the upper bevel processing unit 16A is moved downward from the standby position to the operating position. Thus, the positioning of the upper surface bevel processing unit to the operating position and the process of loading the substrate A are completed.
(2)基板 Aの処理工程について  (2) Processing steps for substrate A
モータ 4 2によりスピンチャック 2 0を回転させて、 基板 Aを軸線 Xを中心として、 所 定回転数で回転させる。これにより、基板 Aは支持ピン 3 4によって接触支持されながら、 鉛直軸線 Xを中心として所定回転数で回転する。 次いで、 基板 Aの上面のベベル処理を行 いつつ、 下面全体並びに側周面の処理を併行して行う。  The spin chuck 20 is rotated by the motor 42 to rotate the substrate A about the axis X at a predetermined rotation speed. As a result, the substrate A rotates at a predetermined rotational speed about the vertical axis X while being supported by the support pins 34. Next, while performing the bevel processing on the upper surface of the substrate A, the processing on the entire lower surface and the side peripheral surface is performed in parallel.
まず、 図 1 0を参照しながら下面 A 2の処理について説明する。 基板 Aの下面 A 2の略 中心に向けて、 処理液供給ノズル 1 3 8から処理液を供給するとともに、 不活性ガス供給 ノズル 1 4 4から窒素ガスを供給する。 その際、 不活性ガス供給ノズル 1 4 4から基板 A の下面 A 2に向けて噴射される窒素ガスは、 邪魔板 1 4 6によって受けられ、 流れを半径 方向外方に偏向されるとともに、 窒素ガスの流れが一部抜け穴 1 4 8を通って基板 Aの下 面 A 2に向かい、 その途中で処理液の流れにぶっかり、 処理液の流れのまわりを覆うよう にしながら、 処理液の流れとともに基板 Aの下面 A 2において下面 A 2に沿って流れる。 これにより、 窒素ガスの基板 Aの下面 A 2への直撃を防止することにより、 基板 Aへの悪 影響を回避しつつ、 基板 Aの中心近傍を不活性ガス雰囲気に維持することにより、 下面 A 2にウォー夕一マ一クが発生するのを防止することが可能となる。 邪魔板 1 4 6によって 偏向された窒素ガス流れは、 流れが突出リング 1 5 6と上面 2 8との間で絞られることに より、 ディフューザ効果を防止して、 抜け穴 1 4 8から逆に流れを引き込むことなしに、 上面 2 8に略平行に基板 Aの外方に流れ、 基板 Aの下面 A 2にぶつかって下面 A 2によつ て偏向された不活性ガス流れと合流する。 これにより、 不活性ガスの噴流の基板 Aの直搫 を回避しつつ、 基板 Aの中心部まわりを不活性ガス雰囲気に維持するとともに、 基板 A上 の処理液が、 不活性ガスの噴流により邪魔されることなしに、 遠心力により基板 Aの半径 方向外方に流れ、 その結果基板 Aの表面全体を均一に処理することが可能となる。 First, the processing of the lower surface A2 will be described with reference to FIG. A processing liquid is supplied from the processing liquid supply nozzle 1338 and a nitrogen gas is supplied from the inert gas supply nozzle 144 toward the approximate center of the lower surface A2 of the substrate A. At this time, the nitrogen gas jetted from the inert gas supply nozzle 144 toward the lower surface A2 of the substrate A is received by the baffle plate 146, and the flow is deflected radially outward, and A part of the gas flow passes through the through hole 1 4 8 to the lower surface A 2 of the substrate A, and on the way, it hits the flow of the processing solution and covers the area around the flow of the processing solution. At the same time, it flows along the lower surface A2 on the lower surface A2 of the substrate A. This prevents the nitrogen gas from directly hitting the lower surface A2 of the substrate A, thereby avoiding adverse effects on the substrate A, and maintaining the vicinity of the center of the substrate A in an inert gas atmosphere. It is possible to prevent the occurrence of a warm and dark mark on 2. The nitrogen gas flow deflected by the baffle plate 1 46 flows backward from the through hole 1 48 by preventing the diffuser effect by restricting the flow between the projecting ring 15 6 and the upper surface 28. Without drawing in, flows outwardly of the substrate A substantially parallel to the upper surface 28, meets the lower surface A 2 of the substrate A, and merges with the inert gas flow deflected by the lower surface A 2. As a result, while avoiding the direct flow of the inert gas jet on the substrate A, the inert gas atmosphere is maintained around the center of the substrate A, and the processing liquid on the substrate A is obstructed by the inert gas jet. Without this, the fluid flows outward in the radial direction of the substrate A due to the centrifugal force, so that the entire surface of the substrate A can be uniformly treated.
一方、図 8及び図 9を参照しながら基板 Aの上面 A 1のべベル処理について説明すれば、 第 1不活性ガスのみを流す場合には、 環状流出開口 1 0 6からの処理液は、 基板 Aの上面 A 1 に向かう環状流れを形成するとともに、 第 1不活性ガス流出開口 1 2 0からの窒素ガ スは、 環状流出開口 1 0 6の内側から間隙 3 1を通って外方に流れる。 このとき、 間隙 3 1の下面 1 0 4から基板 Aの上面 A 1まで、 内周縁 1 1 6の近傍に沿ってガスパリアを形 成するように、 基板 Aの上面 A 1に向かう環状の処理液流れに内方から面する不活性ガス 雰囲気を少なくとも負圧でない所定圧力に保持することにより、 基板 Aの上面 A 1への処 理液の供給を基板 Aの上面 A 1の所望環状領域に制限することが可能となる。  On the other hand, if the bevel processing of the upper surface A1 of the substrate A is described with reference to FIGS. 8 and 9, when only the first inert gas is flown, the processing liquid from the annular outflow opening 106 is While forming an annular flow toward the upper surface A 1 of the substrate A, the nitrogen gas from the first inert gas outflow opening 120 flows outward through the gap 31 from inside the annular outflow opening 106. Flows. At this time, from the lower surface 104 of the gap 31 to the upper surface A1 of the substrate A, an annular processing solution toward the upper surface A1 of the substrate A so as to form a gas barrier along the vicinity of the inner peripheral edge 116. By maintaining the inert gas atmosphere facing the flow from at least a predetermined pressure that is not a negative pressure, the supply of the processing liquid to the upper surface A1 of the substrate A is limited to a desired annular region of the upper surface A1 of the substrate A. It is possible to do.
第 1不活性ガス及び第 2不活性ガスの両方を流す場合には、 環状流出開口 1 0 6から供 給される処理液は、 第 1不活性ガス流出開口 1 2 0から噴射する第 1不活性ガスによって 基板 Aの外方に向かって同伴されながら、 第 2不活性ガス流出開口 1 2 6から噴射する第 2不活性ガスによって、 基板 Aの外方に向かって引かれることにより、 第 1不活性ガスの みを流す場合と同様に、 基板 Aの上面 A 1への処理液の供給を基板 Aの上面 A 1の所望環 状領域に制限することが可能となる。  When both the first inert gas and the second inert gas are flowed, the processing liquid supplied from the annular outlet opening 106 receives the first inert gas jetted from the first inert gas outlet opening 120. While being entrained by the active gas toward the outside of the substrate A, the second inert gas ejected from the second inert gas outflow opening 126 pulls the substrate A outward by the second inert gas. As in the case of flowing only the inert gas, the supply of the processing liquid to the upper surface A1 of the substrate A can be limited to a desired annular region of the upper surface A1 of the substrate A.
第 1不活性ガスのみを流す場合と第 1不活性ガス及び第 2不活性ガスの両方を流す場合 との使い分けについては、 回転速度、 ガス流量、 処理液流量、 環状開口の位置、 開口の半 径方向幅、 処理液吐出角度等の条件に応じて、 基板 Aの外周縁近傍の所望環状領域を精密 に処理する観点から、 適宜選択すればよい。  Rotating speed, gas flow rate, treatment liquid flow rate, position of annular opening, half of opening, when using only the first inert gas or the case where both the first inert gas and the second inert gas are used It may be appropriately selected from the viewpoint of precisely processing a desired annular region near the outer peripheral edge of the substrate A according to conditions such as a radial width and a processing liquid discharge angle.
いずれの場合でも、 本体部 1 0 2はスピンチャック 2 0と異なり、 基板 Aの処理の際、 回転させずに静置しているので、 処理液及び不活性ガスを処理液及び不活性ガスの各供給 源から分岐管を介して本体部 1 0 2の内部に設けられた各缳状流路 1 0 0、 1 2 8へ簡便 に供給することが可能である。 以上のようにして、 基板 Aの上面の所望環状領域のみを周方向に均一に、 且つ精確に処 理することが可能となる。 In any case, the main body 102 is different from the spin chuck 20 in that the substrate A is not rotated during the processing of the substrate A, so that the processing liquid and the inert gas are separated from the processing liquid and the inert gas. It is possible to easily supply from each supply source to each of the rectangular flow paths 100 and 128 provided inside the main body 102 via a branch pipe. As described above, only the desired annular region on the upper surface of the substrate A can be uniformly and accurately processed in the circumferential direction.
この場合、 本体部 1 0 2を鉛直方向に移動させて、 下面 1 0 4と基板の上面 A 1との間 の距離を調整することにより、 ベベル環状処理領域の幅、 即ちべベル環状処理領域の面積 を所望幅、 面積に調整することが可能である。  In this case, by moving the main body portion 102 in the vertical direction and adjusting the distance between the lower surface 104 and the upper surface A1 of the substrate, the width of the bevel annular processing region, that is, the bevel annular processing region Can be adjusted to a desired width and area.
最後に、 基板 Aの側周面の処理に関し、 図 4に示すように、 基板 Aを高速回転中に、 モ —夕 7 8により円筒カム 6 4を上方に移動させることにより、 カムフォロワ 7 0が基板 A の回転方向に押し出されて、 第 2歯車 6 0、 それに嚙み合う各第 1歯車 5 8、 かくして各 支持ピン 3 4がスピンチヤック 2 0と一体で高速回転しながら、 スピンチャック 2 0に対 して所定角度相対回転して、 図 2に示すように、 各支持ピン 3 4により側方から支持され ていた基板 Aの側周面の接触支持部が各支持ピンから露出する。 パネの付勢力により基板 Aを角度範囲 αの範囲で回転移動させることが可能となる。 その結果、 露出した接触支持 部を上面処理の処理液或いは下面処理の処理液により処理することが可能となるとともに、 支持ピン 3 4の側周面 5 4の基板 Αを支持していた部分を洗浄することも可能となる。 こ れにより、 基板 Aの側周面の処理むらを防止するとともに、 支持ピン 3 4に起因するクロ スコンタミネーシヨンを抑制することが可能となる。 その際、 基板 Aは、 支持ピン 3 4の 側周面 5 4に対して摺動することなく、 ころがり接触の仕方で移動するので、 従来技術の ように、 摺動に伴う磨耗粉の発生を回避することが可能となる。  Finally, regarding the processing of the side peripheral surface of the substrate A, as shown in FIG. 4, while the substrate A is rotating at a high speed, the cylindrical follower 64 is moved upward by the motor 780 so that the cam follower 70 is moved. The second chuck 60 is pushed out in the direction of rotation of the substrate A, and the first gear 58 engaging with the second gear 60, and thus each support pin 34 is rotated together with the spin chuck 20 at a high speed. As shown in FIG. 2, the contact support portion on the side peripheral surface of the substrate A, which is supported from the side by the support pins 34, is exposed from the support pins. The substrate A can be rotationally moved within the angular range α by the urging force of the panel. As a result, the exposed contact support portion can be treated with the processing solution for the upper surface treatment or the processing solution for the lower surface treatment, and the portion of the side peripheral surface 54 of the support pin 34 supporting the substrate Α is removed. Washing is also possible. This makes it possible to prevent uneven processing on the side peripheral surface of the substrate A and to suppress cross contamination caused by the support pins 34. At this time, since the board A moves in a rolling contact manner without sliding on the side peripheral surface 54 of the support pin 34, the generation of abrasion powder due to the sliding as in the prior art is reduced. It is possible to avoid.
次に処理液の回収工程を説明する。  Next, a process of collecting the processing liquid will be described.
図 1 4に示すように、 環状仕切り 1 8 0 A、 1 8 0 B、 1 8 0 Cすべてを最上方位置に 位置決めし、 それにより環状仕切り 1 8 0 Cの内周面とポット 1 6 0の内周壁とで環状流 路を形成しておく。 基板 Aの上下面を処理した処理液及び不活性ガスは、 基板 Aの半径方 向外方に飛散して、 環状開口 1 5 8からポッ卜 1 6 0の内部に流入する。 流入した処理液 は、 まず外側の環状仕切り 1 8 0 Cの傘部 1 8 8 Cの内周面によって受けられ、 はね返つ て環状開口 1 5 8から基板 Aの方に戻されることなしに、 そこからポット 1 6 0の内部に 案内されて斜め流路を経て、 環状仕切り 1 8 0の壁にぶっかるたびにミストを発生させな がら、 環状張り出し部 1 9 4 C及び環状隔壁 1 9 6 Cにより内流路 2 1 0への短絡が防止 されることにより、 まず外流路 2 0 4を流れ、 処理流出口から処理液が分別回収される。 次いで、 ミストは、 ミスト流出口を介して吸引装置により引かれながら、 内流路 2 1 0を 流れ、 ポット 1 6 0のコンダクタンス調整板 2 2 6の各貫通穴 2 2 4を通って、 周方向の ミスト流れの偏りを防止しつつ、 最終的にミスト流出口から回収される。 この際、 他の環 状仕切り 1 8 0 A、 1 8 0 Bは互いに近接した位置に位置決めしておくことにより、 処理. 液およびそこから生じるミストが、 他の環状流路 1 8 9内に流入するのを防止することが できる。 このように、 内流路 2 1 0と外流路 2 0 4とを逆 U字形の流路として、 処理液の 流れから発生するミストをミストとして回収するより液体として回収することを優先させ ることにより、 処理液の回収歩留まりを向上させることが可能となる。 As shown in Fig. 14, the annular partitions 180A, 180B, and 180C are all positioned at the uppermost positions, so that the inner peripheral surface of the annular partition 180C and the pot 160 An annular channel is formed with the inner peripheral wall of the pipe. The processing liquid and the inert gas that have processed the upper and lower surfaces of the substrate A scatter outward in the radial direction of the substrate A, and flow into the inside of the pot 160 through the annular opening 158. The inflowing processing liquid is first received by the inner peripheral surface of the outer annular partition 180 C of the umbrella 180 C, and is not rebounded and returned to the substrate A from the annular opening 158. From there, it is guided into the inside of the pot 160, passes through the oblique flow path, and generates mist every time it hits the wall of the annular partition 180, while the annular overhang portion 19 4C and the annular partition wall 19 are formed. By preventing short circuit to the inner flow path 210 by 6C, the flow first flows through the outer flow path 204, and the processing liquid is separated and collected from the processing outlet. Next, the mist flows through the internal flow path 210 while being drawn by the suction device through the mist outlet, passes through the through-holes 224 of the conductance adjusting plate 226 of the pot 166, and rotates around the circumference. Directional It is finally recovered from the mist outlet while preventing the mist flow from being biased. At this time, the other annular partitions 180A and 180B are positioned at positions close to each other, so that the liquid and the mist generated therefrom enter the other annular flow passages 189. Inflow can be prevented. As described above, the inner flow path 210 and the outer flow path 204 are formed as inverted U-shaped flow paths, and priority is given to recovering a mist generated from the flow of the processing liquid as a liquid rather than recovering the mist as a mist. Thereby, the recovery yield of the processing liquid can be improved.
以上のように、 処理液の種類に応じて、 使用する環状流路を選択することにより、 他の 処理液と混合することなく分別回収を行うことが可能となるので、 回収した処理液は、 適 切な処理、 例えば、 処理液中の異物の除去処理を行った後、 基板 Aの処理ユニットの処理 液供給源に戻して、 適宜再利用することが可能となる。  As described above, by selecting the annular flow path to be used according to the type of the processing liquid, it becomes possible to perform the fractional recovery without mixing with other processing liquids. After performing an appropriate process, for example, a process of removing foreign substances in the processing solution, the substrate A can be returned to the processing solution supply source of the processing unit and reused as appropriate.
(3)基板 Aのリンス工程及び乾燥工程について (3) Rinsing and drying processes for substrate A
基板 Aのリンス工程及び乾燥工程については、 第 1に、 リンス工程では純水、 乾燥工程 では不活性ガスが利用される点で、薬液を利用する処理工程とは、処理流体が異なること、 第 2に、 乾燥工程では高速回転が要求される点で、 処理工程とは基板 Aの回転数が異なる こと以外は、 前述の基板 Aの処理工程と略同様であるので、 以下では、 リンス工程及び乾 燥工程夫々について、 処理液の回収工程を説明する。  First, the rinsing step and the drying step of the substrate A use pure water in the rinsing step and use an inert gas in the drying step. Second, since the drying process requires high-speed rotation, the process is substantially the same as the process for substrate A described above except that the rotation speed of substrate A is different from the process. For each of the drying steps, the processing liquid recovery step will be described.
まず、 図 1 5に示すように、 図 1 4の環状仕切り 1 8 0の位置から、 環状仕切り 1 8 0 Cを上面 2 8のレベルまで下方に移動させる一方で、 環状仕切り 1 8 0 Bを環状ひさし 1 7 4の下端レベルまで移動させる。 これにより、 環状仕切り 1 8 0 Bの内周面 1 8 4と環 状仕切り 1 8 0 Cの外周面 1 8 6とでリンス液の環状流路が形成される。  First, as shown in FIG. 15, from the position of the annular partition 180 in FIG. 14, the annular partition 180 C is moved down to the level of the upper surface 28, while the annular partition 180 B is moved. Move to the bottom level of the circular eaves 1 7 4. As a result, an annular flow path of the rinsing liquid is formed by the inner peripheral surface 1884 of the annular partition 180B and the outer peripheral surface 186 of the annular partition 180C.
この状態で、 基板 Aの上面 A 1をリンス液によりリンスを行えば、 基板 Aの処理工程に おける処理液の回収と同様に、 基板 Aの上面 A 1から四方に飛散するリンス液は、 環状開 口 1 5 8を通して環状流路 1 8 9に流入する。 より詳細には、 まずリンス液は外側の環状 仕切り 1 8 0 B , Cの傘部 1 8 8 B, Cの内周面によって受けられ、 斜め流路 1 9 8内を 流れて、 外流路 2 0 4に至る。 このとき、 環状張り出し部 1 9 4 Cにより、 斜め流路 1 9 8内を流れるリンス液が、 直接流出開口まで短絡することが防止される。 リンス液が流路 の内壁にぶっかるたびに、 ミストが生じるが、 生じたミストは、 排気装置により、 内流路 2 1 0のミスト排出口まで引かれる。 次いで、 リンス液は、 流出開口を通して回収され、 再使用される。  In this state, if the upper surface A1 of the substrate A is rinsed with a rinsing liquid, the rinsing liquid scattered in all directions from the upper surface A1 of the substrate A becomes annular, similarly to the recovery of the processing liquid in the processing step of the substrate A. It flows into the annular channel 189 through the opening 158. More specifically, first, the rinsing liquid is received by the inner peripheral surfaces of the umbrella portions 188B, C of the outer annular partitions 180B, C, flows through the oblique flow path 198, and flows into the outer flow path 2 Leads to 0 4. At this time, the annular projecting portion 1994C prevents the rinsing liquid flowing in the oblique flow path 198 from being short-circuited directly to the outflow opening. Every time the rinse liquid hits the inner wall of the flow path, mist is generated, and the generated mist is drawn to the mist discharge port of the inner flow path 210 by the exhaust device. The rinsing liquid is then recovered through the outlet and reused.
このように、 本実施形態による処理流体の回収工程によれば、 スペース、 特に上下方向 のスペースを大きく占有することなしに、 使用する処理液に応じて独立に処理液を回収す ることが可能であり、 当業者に周知な適切な処理のもとで処理液を再使用することがでぎ る。 As described above, according to the processing fluid recovery process according to the present embodiment, the space, particularly, the vertical direction It is possible to collect the processing solution independently depending on the processing solution used without occupying a large amount of space, and to reuse the processing solution under appropriate processing known to those skilled in the art. It comes out.
乾燥工程においては、 図 1 6に示すように、 図 1 5の環状仕切り 1 8 0の配置から、 環 状仕切り 1 8 0 Bを上面 2 8のレベルまで下方に移動させる一方で、 環状仕切り 1 8 O A 若千下方に移動させる。 これにより、 環状仕切り 1 8 0 の内周面1 8 3と環状仕切り 1 8 0 Bの外周面 1 8 6とで、 環状流路が形成される。 このあとは、 処理工程あるいはリ ンス工程の場合と同様であるので、 その説明は省略する。  In the drying step, as shown in FIG. 16, the annular partition 180 B is moved downward to the level of the upper surface 28 from the arrangement of the annular partition 180 in FIG. 8 OA Move down Wakasen. Thus, an annular flow path is formed by the inner peripheral surface 183 of the annular partition 180 and the outer peripheral surface 186 of the annular partition 180B. Subsequent steps are the same as those in the case of the processing step or the rinsing step, and a description thereof is omitted.
なお、図 1 4ないし図 1 6に示すように、いずれの環状流路 1 8 9を利用する場合でも、 環状仕切り 1 8 0の内周縁 1 8 3を環状ひさし 1 7 4の下周縁 1 7 6、 或いはスピンチヤ ック 2 0の上周縁に位置決めすることにより、 回収していない環状流路 1 8 9に処理液或 いはミストが混入するのを防止することが可能となる。  In addition, as shown in FIGS. 14 to 16, the inner peripheral edge 18 3 of the annular partition 180 is used as the lower edge 17 of the annular eave 17 4 regardless of which annular flow path 18 is used. 6, or by positioning it on the upper periphery of the spin chuck 20, it becomes possible to prevent the processing liquid or mist from entering the unrecovered annular channel 189.
(4)基板 Aの搬出工程 (4) Substrate A unloading process
基本的には、 基板 Aの搬入工程と逆の工程を行う。 まず、 処理液および不活性ガスの供 給を停止後、 上面べベル処理ュニット 1 6 Aを作動位置から控え位置まで上方に移動させ る。 次いで、 各支持ピン 3 4を所定角度自転させて、 基板 Aを支持する円筒側周面 5 4を 外方に向けて、 基板 Aの支持を解除する。 これにより、 基板 Aは、 各支持ピン 5 0より下 方から接触支持される。 この状態で、 搬送口ポット (図示せず) のフォークを基板 Aの下 方に延ばして、 フォークを上方に移動させることにより、 基板 Aを支持ピン 3 4から持ち 上げ、 搬出することが可能となる。 以上で、 基板 Aの搬出工程を終了する。 このようにし て、 基板 Aの枚葉処理が終了する。  Basically, the process reverse to the process of loading substrate A is performed. First, after the supply of the processing liquid and the inert gas is stopped, the upper surface bevel processing unit 16A is moved upward from the operating position to the holding position. Next, the support pins 34 are rotated by a predetermined angle, and the support of the substrate A is released by turning the cylindrical peripheral surface 54 supporting the substrate A outward. Thus, the substrate A is supported in contact with the support pins 50 from below. In this state, the board A can be lifted from the support pins 34 and unloaded by extending the fork of the transfer port pot (not shown) below the board A and moving the fork upward. Become. Thus, the unloading process of the substrate A is completed. Thus, the single wafer processing of the substrate A is completed.
本実施形態に係る処理液の分別回収装置は、 三つの環状仕切りを夫々独立にポット 1 6 0に対して上下方向に相対移動可能とするとともに、 これらの環状仕切り 1 8 0によりボ ット 1 6 0内を仕切っているが、 分別回収した処理液に摩耗粉等の異物が混入しないよう にするために、 三つの環状仕切りを含め、 ボット 1 6 0内部の全ての構成部材について、 部材間に間隔を確保して、 摺動部分が生じないようにしている。 なお、 三つの環状仕切り により仕切られた各環状流路内は、 前述のように、 外部から吸引しているので、 部材間の 間隙は、処理液或いはミストを分別回収する限りにおいて支障のない大きさにすればよい。 以上説明したような基板の処理ユニット 1 0は、 特に以下の工程に対して有効である。 第 1に、 銅配線を行う基板 Aの処理工程に特に有効である。 すなわち、 S i結晶、 S i 〇2に高速で拡散する銅によるクロスコンタミネ一シヨンを防止しつつ、 処理液を分別回 収して再利用しながら、 基板 Aの上面の精確且つ確実なベベル処理、 基板 Aの側周面の処 理、 及び下面全体の均一な処理を一度に行うことが可能となり、 それにより処理効率を飛 躍的に向上させることができる。 The apparatus for separating and recovering treatment liquid according to the present embodiment is capable of vertically moving the three annular partitions independently with respect to the pot 160, and the bot 1 is formed by these annular partitions 180. Although the inside of the bot is partitioned, in order to prevent foreign substances such as abrasion powder from entering the separated and collected processing solution, all the components inside the bot 160, including the three annular partitions, are An interval is ensured so that sliding parts do not occur. As described above, since the inside of each annular flow path partitioned by the three annular partitions is sucked from the outside, the gap between the members is large enough to separate and collect the processing liquid or mist. Just do it. The substrate processing unit 10 described above is particularly effective for the following steps. First, it is particularly effective in the process of processing substrate A for copper wiring. That, S i crystals while preventing cross-contamination Ne one Chillon with copper to diffuse at a high speed S i 〇 2, while recycling the treatment liquid was fractionally recovered, accurate and reliable bevel of the top surface of the substrate A The processing, the processing on the side peripheral surface of the substrate A, and the uniform processing on the entire lower surface can be performed at one time, thereby greatly improving the processing efficiency.
第 2に、いわゆる l ow- k材或いは hi gh- k材により—層間絶縁膜を形成する塲合のスピンコ —ト成膜工程に有効である。 すなわち、 スピンコートにより余分な膜が基板の裏面にまで 回り込んで形成されるので、 このような基板の周縁部まわりに付着した余分な膜を除去す るのに、層間絶縁膜が形成された表面を上面として、所望周縁部だけを処理すると同時に、 素子の形成されていない裏面は全体を処理することにより、 効率的な処理が可能となる。 次に、 図 1 7を参照して、 本発明による基板処理ユニットの第 2実施形態を説明する。 なお、第 1実施形態と同一の部分には同一符号を付すことにより、それらの説明は省略し、 以下に特徴部分について説明する。  Second, it is effective in a spin-coat film forming process in which an interlayer insulating film is formed using a so-called low-k material or high-k material. In other words, since an extra film is formed around the back surface of the substrate by spin coating, an interlayer insulating film is formed to remove the extra film attached around the periphery of the substrate. By treating only the desired peripheral portion with the front surface as the upper surface and simultaneously treating the entire back surface where no elements are formed, efficient processing is possible. Next, a second embodiment of the substrate processing unit according to the present invention will be described with reference to FIG. The same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. The characteristic parts will be described below.
図 1 7は、 本発明による基板処理ユニットの第 2実施形態の概略縦断面図である。 基板 処理ュニット 3 0 0の特徴は、 図 1の上面べベル処理ュニット 1 6 Aの代わりに、 基板 A の下面 A 2に対する処理ュニット 1 6 Bと同様な処理ュニットを基板 Aの上面 A 1に対し ても採用した点にある。 この上面処理ユニットは、 第 1実施形態における処理ユニットと その構成は全く同様である。  FIG. 17 is a schematic longitudinal sectional view of a second embodiment of the substrate processing unit according to the present invention. The characteristic of the substrate processing unit 300 is that a processing unit similar to the processing unit 16 B for the lower surface A 2 of the substrate A is provided on the upper surface A 1 of the substrate A instead of the upper surface bevel processing unit 16 A of FIG. It is also adopted. This upper surface processing unit has exactly the same configuration as the processing unit in the first embodiment.
このような構成によれば、 基板 Aの上下面に対して同時に同じ処理液を供給することに より、 上下面全体を併行して処理することが可能となるので、 特に成膜工程前後或いは C M P工程後において、 基板の両面全体に付着したパーティクル或いは不純物を効率的に除 去するのに有効である。  According to such a configuration, by supplying the same processing liquid to the upper and lower surfaces of the substrate A at the same time, the entire upper and lower surfaces can be processed simultaneously. After the process, it is effective to efficiently remove particles or impurities adhering to the entire both surfaces of the substrate.
基板 Aの上面 A 1の処理については、 第 1実施形態における下面 A 2の処理と同様に、 高速回転する基板 Aの上面 A 1に対して、 基板 Aの略中心に処理液を供給するとともに、 そのまわりを覆うように不活性ガスを噴射することにより、 処理液は遠心力により基板 A の半径方向外方に飛ばされ、 それにより、 基板 Aの中心から基板 Aの周縁まで上面全体を 処理液で処理することが可能となる。 その際、 上面に向かって噴射する不活性ガスを邪魔 板 1 4 6 'で一旦受けて、 基板 Aの外方に向かう流れに偏向するとともに、 このような偏 向流れの一部を分岐させて、 上面 A 1に向けて流すことにより、 上面 A 1が均一に処理さ れると同時に、 不活性ガスの噴流が基板 Aの上面 A 1を直擊することを回避しつつ、 なお 上面 A 1の中心部まわりを不活性ガス雰囲気として、 上面 A 1にウォー夕一マークが発生 するのを防止することが可能となる。 また、 第 1実施形態と同様な仕方で、 基板 Aの上下 を処理した処理液を一度に分別回収することが可能となる。 Regarding the treatment of the upper surface A1 of the substrate A, as in the treatment of the lower surface A2 in the first embodiment, the processing liquid is supplied to the upper surface A1 of the substrate A that rotates at a high speed and approximately at the center of the substrate A By injecting an inert gas so as to cover the surrounding area, the processing liquid is blown radially outward of the substrate A by centrifugal force, thereby processing the entire upper surface from the center of the substrate A to the peripheral edge of the substrate A. It becomes possible to process with a liquid. At that time, the inert gas injected toward the upper surface is once received by the baffle plate 1 4 6 ′, and is deflected to the flow toward the outside of the substrate A, and a part of such a deflected flow is branched. By flowing toward the upper surface A 1, the upper surface A 1 is uniformly processed, and at the same time, the jet of the inert gas is prevented from directly flowing on the upper surface A 1 of the substrate A. An inert gas atmosphere is formed around the center of the upper surface A1, and it is possible to prevent the occurrence of a war mark on the upper surface A1. Further, in the same manner as in the first embodiment, it is possible to separate and collect at once the processing liquid obtained by processing the upper and lower surfaces of the substrate A.
以上、本発明の実施形態を詳細に説明したが、本発明はこれに制限されるものではなく、 請求の範囲に記載された本発明の範囲内で種々の変更、 修正が可能である。 例えば、 上記 実施形態では、 上下面を併行して一度に処理したが、 それに限定されることなく、 当業者 なら本発明の範囲を逸脱することなく種々の変更が可能である。  As described above, the embodiments of the present invention have been described in detail. However, the present invention is not limited to the embodiments, and various changes and modifications can be made within the scope of the present invention described in the claims. For example, in the above embodiment, the upper and lower surfaces are processed at the same time, but the present invention is not limited thereto, and various modifications can be made by those skilled in the art without departing from the scope of the present invention.
例えば、 上下面のいずれかについて、 処理液を供給することなく、 不活性ガスのみを基 板 Aに向けて供給するのでもよい。 それにより、 処理液の反対面への回り込みを防止する ことが可能となる。  For example, only the inert gas may be supplied to the substrate A without supplying the processing liquid to any of the upper and lower surfaces. As a result, it is possible to prevent the processing liquid from flowing to the opposite surface.
また、 基板 Aの支持装置において、 下方から支持する支持ピンを採用することなしに、 ベルヌ一イチャック或いはエアべァリングにより基板 Aの下方から非接触の仕方で基板を 支持しつつ側方から保持することも可能である。  Also, in the supporting device for the substrate A, the substrate is held from the side while supporting the substrate in a non-contact manner from below the substrate A by using a Bernoulli chuck or air bearing without employing a support pin for supporting the substrate from below. It is also possible.
更に、 処理液の分別回収装置において、 環状仕切りの数は使用する薬液等の種類に応じて 決めればよく、 例えば 1枚の環状仕切りによりポットを 2つに仕切ってもよい。 Furthermore, in the separation and recovery apparatus for the treatment liquid, the number of annular partitions may be determined according to the type of chemical solution or the like to be used. For example, the pot may be divided into two by one annular partition.
本発明による基板の処理装置及び処理方法によれば、環境の悪影響を与えることなしに、 処理の有効性、 効率性、 均一性及び精確性を向上することが可能となる。  ADVANTAGE OF THE INVENTION According to the processing apparatus and processing method of the board | substrate by this invention, it becomes possible to improve the effectiveness, efficiency, uniformity, and precision of processing, without giving a bad influence on an environment.
本発明による基板の処理装置によれば、基板表面近傍を不活性ガス雰囲気に維持しつつ、 基板表面の均一な処理が可能となる。  According to the substrate processing apparatus of the present invention, it is possible to uniformly process the substrate surface while maintaining the vicinity of the substrate surface in an inert gas atmosphere.
本発明による基板の処理装置によれば、 基板の上面の所望環状領域のみを均一且つ精密 に処理することが可能である。  According to the substrate processing apparatus of the present invention, it is possible to uniformly and precisely process only the desired annular region on the upper surface of the substrate.
本発明による基板の処理装置によれば、 基板の側周面の周方向複数位置を接触支持する 場合に、 基板の高速回転中に、 基板との間で摺動運動を生じさせることなく、 基板を支持 しつつ基板の側周面のこれらの複数の接触支持部を移動させることが可能である。  ADVANTAGE OF THE INVENTION According to the board | substrate processing apparatus by this invention, when contacting and supporting the several circumferential position of the side peripheral surface of a board | substrate, a board | substrate does not generate | occur | produce a sliding motion with a board | substrate during high-speed rotation of a board | substrate. It is possible to move these plurality of contact supports on the side peripheral surface of the substrate while supporting the substrate.
本発明による基板の処理装置及び処理方法によれば、 基板を略水平面内で高速回転させ ながら処理流体を基板の表面に供給することにより基板の表面を処理する或いは乾燥する 際、 基板の劣化を生じることなしに、 このような処理流体を利用して基板の側周面をも確 実に処理或いは乾燥することが可能である。  According to the substrate processing apparatus and the processing method of the present invention, when the substrate is processed or dried by supplying a processing fluid to the surface of the substrate while rotating the substrate at a high speed in a substantially horizontal plane, deterioration of the substrate can be prevented. It is possible to reliably process or dry the side peripheral surface of the substrate using such a processing fluid without causing the generation.
本発明による基板の処理装置によれば、 基板の品質を劣化させることなく、 処理液の分 別回収効率を確保することが可能である。  ADVANTAGE OF THE INVENTION According to the board | substrate processing apparatus by this invention, the separation and collection efficiency of a processing liquid can be ensured, without deteriorating the quality of a board | substrate.

Claims

請求の範囲 The scope of the claims
1 . 略水平面内で基板を保持しつつ回転させるための基板の回転保持手段と、 1. a substrate rotation holding means for rotating the substrate while holding the substrate in a substantially horizontal plane;
基板の表面に処理液を供給する処理液供給手段と、を有する基板の処理装置において、 該処理液供給手段は、 基板の略中心に向かって、 処理液を略鉛直な方向に供給する処 理液供給ノズルを有し、  A processing liquid supply unit for supplying a processing liquid to a surface of the substrate, wherein the processing liquid supply unit supplies the processing liquid in a substantially vertical direction toward a substantially center of the substrate. Having a liquid supply nozzle,
更に、 該表面近傍を不活性ガス雰囲気とするように、 該表面に向かって、 不活性ガス を噴射する不活性ガス噴射ノズルと、  Further, an inert gas injection nozzle for injecting an inert gas toward the surface so that the vicinity of the surface is an inert gas atmosphere,
前記不活性ガス噴射ノズルから噴射する不活性ガス流れを受けて、 基板の外方に向か う流れに偏向するように、 前記表面と前記不活性ガス噴射ノズルとの間に設置された邪 魔板を更に有し、  An obstruction installed between the surface and the inert gas injection nozzle so as to receive the inert gas flow injected from the inert gas injection nozzle and deflect the flow toward the outside of the substrate. Further having a plate,
この邪魔板は、 該表面近傍を不活性ガス雰囲気に維持するように基板の外方に向かう 前記偏向された流れを一部分岐させるための抜け穴を有し、  The baffle plate has a through hole for partially branching the deflected flow toward the outside of the substrate so as to maintain the vicinity of the surface in an inert gas atmosphere,
この抜け穴は、 前記邪魔板の前記不活性ガス噴射ノズル側の邪魔板表面に形成される 前記不活性ガス分岐流れの流入開口が、 前記不活性ガス噴射ノズルより外方にオフセッ ト配置されるとともに、 前記邪魔板表面の反対表面に形成される前記不活性ガス分岐流 れの流出開口は、 前記流入開口より内方に形成される、 ことを特徴とする基板の処理装 置。  The through hole is formed such that the inflow opening of the inert gas branch flow formed on the surface of the baffle plate on the side of the inert gas injection nozzle of the baffle plate is offset outside the inert gas injection nozzle. The substrate processing apparatus according to claim 1, wherein an outlet opening of the branch flow of the inert gas formed on a surface opposite to a surface of the baffle plate is formed inside the inlet opening.
2 . 前記不活性ガス噴射ノズルは、 前記処理液供給ノズルのまわりを取り囲むように配 置された環状ノズルの形態を有し、  2. The inert gas injection nozzle has a form of an annular nozzle disposed so as to surround the processing liquid supply nozzle,
前記邪魔板は、 前記環状ノズルと同心状に、 且つ基板と略平行上に配置された円板の 形態を有し、  The baffle plate has the form of a disk arranged concentrically with the annular nozzle and substantially parallel to the substrate,
前記抜け穴は、 各々が前記不活性ガス分岐流れが基板の表面の手前で前記処理液供給 ノズルからの処理液流れにぶっかるような所定の傾きを備えた、複数の分岐流路を有し、 これらの複数の分岐流路は、 前記邪魔板の円周方向に互いに等角度間隔に配置されて いる、 請求項 1に記載の処理装置。  The through hole has a plurality of branch flow paths, each having a predetermined inclination such that the inert gas branch flow hits the processing liquid flow from the processing liquid supply nozzle in front of the surface of the substrate, 2. The processing apparatus according to claim 1, wherein the plurality of branch passages are arranged at equal angular intervals in a circumferential direction of the baffle plate.
3 . 前記基板の回転手段は、 略鉛直な軸線を中心に回転可能なスピンチャックと、 該ス ピンチャックを回転させるための回転駆動手段とを有し、  3. The substrate rotating means includes: a spin chuck rotatable around a substantially vertical axis; and a rotation driving means for rotating the spin chuck.
前記基板の支持手段は、 前記スピンチャックの上面に固定され、 該上面から基板に向 かって延びる支持体を有し、 前記邪魔板は、 前記複数の分岐流路の前記流入開口よ ό外方領域に、 基板の外方に向 かう前記偏向流れが、 前記上面との間で絞られるように、 前記邪魔板表面から前記不活 性ガス噴射ノズルに向かって突出する突出リング部を有する、 請求項 1に記載の処理装 . 前記スピンチャックは、 その回転軸線まわりに貫通穴を有し、 The substrate support means includes a support fixed to an upper surface of the spin chuck and extending from the upper surface toward the substrate, The baffle plate is formed from the surface of the baffle plate so that the deflected flow toward the outside of the substrate is confined to an area outside the inflow opening of the plurality of branch flow paths between the baffle plate and the upper surface. The processing device according to claim 1, further comprising a projecting ring portion projecting toward the inert gas injection nozzle.The spin chuck has a through hole around a rotation axis thereof.
該貫通穴と非接—触で該貫通穴を通って前記スピンチャックの上面まで延びる、'不活性 ガスを供給するための外管と、 該外管の下端面を貫通して、 該外管内を前記スピンチヤ ックの上面から突出するように延びる、 処理液を供給するための内管と、 を有し、 前記内管及び前記外管は、前記スピンチヤックの回転軸線まわりに同心状に配置され、 前記処理液供給ノズルは、 前記内管の上周縁によって形成され、  An outer tube for supplying an inert gas, extending through the through hole to the upper surface of the spin chuck in non-contact with the through hole, and penetrating a lower end surface of the outer tube; And an inner tube for supplying a processing liquid.The inner tube and the outer tube are arranged concentrically around the rotation axis of the spin chuck. The processing liquid supply nozzle is formed by an upper peripheral edge of the inner tube,
前記不活性ガス環状ノズルは、 前記外管の上周縁と前記内管の外周面との間に形成さ れ、  The inert gas annular nozzle is formed between an upper peripheral edge of the outer tube and an outer peripheral surface of the inner tube,
前記邪魔板は、 前記不活性ガス環状ノズルの上方で前記内管の外周面に固定される、 請求項 1に記載の処理装置。  The processing apparatus according to claim 1, wherein the baffle plate is fixed to an outer peripheral surface of the inner pipe above the inert gas annular nozzle.
. 略水平面内で回転可能に保持された基板の上面を処理する処理液を基板の上面に供 給するための処理液供給手段と、 . A processing liquid supply means for supplying a processing liquid for processing the upper surface of the substrate rotatably held in a substantially horizontal plane to the upper surface of the substrate;
基板の上面への処理液の供給を基板の上面の所望環状領域に制限する処理領域制限手 段と、 を有する基板の上面の所望環状領域を処理する基板の処理装置において、 前記処理液供給手段は、基板の上面との間に流体が流れる間隙を形成する固定下面と、 この間隙に臨むように該固定下面に設けられた、 処理液を基板の上面に供給するため の環状流出開口と、  A processing region restricting means for restricting supply of the processing liquid to the upper surface of the substrate to a desired annular region on the upper surface of the substrate; and a substrate processing apparatus for processing a desired annular region on the upper surface of the substrate, comprising: A fixed lower surface forming a gap through which a fluid flows between the upper surface of the substrate, an annular outflow opening provided on the fixed lower surface so as to face the gap, and for supplying a processing liquid to the upper surface of the substrate;
基板の上面に向かって斜め下方に、 且つ半径方向外方に前記環状流出開口まで延びる 環状流路とを有し、  An annular flow path extending obliquely downward toward the upper surface of the substrate and radially outward to the annular outflow opening;
前記処理領域制限手段は、 該環状流出開口の内周縁に取り囲まれた前記固定下面の領 域に、 前記間隙に臨むように設けられた、 不活性ガスを噴射するための不活性ガス流出 開口を有し、  The processing region limiting means includes an inert gas outflow opening for injecting an inert gas, provided in a region of the fixed lower surface surrounded by an inner peripheral edge of the annular outflow opening and facing the gap. Have
前記間隙の前記固定下面から前記基板の上面まで、 前記内周縁の近傍に沿つてガスバ リアを形成するように、 基板の上面に向かう環状の処理液流れに内方から面する不活性 ガス雰囲気を所定圧力に保持する、 ことを特徴とする基板の処理装置。 From the fixed lower surface of the gap to the upper surface of the substrate, an inert gas atmosphere facing inward from the annular processing liquid flow toward the upper surface of the substrate so as to form a gas barrier along the vicinity of the inner peripheral edge. A substrate processing apparatus, wherein the apparatus is maintained at a predetermined pressure.
. 前記固定下面を鉛直方向に移動させるための鉛直方向移動手段を更に有し、 該鉛直 方向移動手段により、 前記固定下面と基板の上面との間の距離を調整することにより、 基板の上面に供給される処理液の環状領域を所望に調整する、 請求項 5に記載の処理装 . 前記固定下面から窪んだ凹部を更に有し、 The apparatus further includes a vertical moving means for vertically moving the fixed lower surface. The processing device according to claim 5, wherein the direction moving means adjusts a distance between the fixed lower surface and the upper surface of the substrate to thereby adjust an annular region of the processing liquid supplied to the upper surface of the substrate as desired. Further comprising a recess recessed from the fixed lower surface,
前記不活性ガス流出開口は、 前記固定下面の前記凹部との境界を構成する周縁により 形成され、 前記環状流出開口と略同心上の円形開口の形態を有する—、 '請求項 5に記載の 基板の処理装置。  The substrate according to claim 5, wherein the inert gas outflow opening is formed by a peripheral edge forming a boundary with the recess on the fixed lower surface, and has a form of a circular opening substantially concentric with the annular outflow opening. Processing equipment.
. 略水平面内で回転可能に保持された基板の上面を処理する処理液を基板の上面に供 給するための処理液供給手段と、 . A processing liquid supply means for supplying a processing liquid for processing the upper surface of the substrate rotatably held in a substantially horizontal plane to the upper surface of the substrate;
基板の上面への処理液の供給を基板の上面の所望環状領域に制限する処理領域制限手 段と、 を有する基板の上面の所望環状領域を処理する基板の処理装置において、 前記処理液供給手段は、基板の上面との間に流体が流れる間隙を形成する固定下面と、 この間隙に臨むように該固定下面に設けられた、 処理液を基板の上面に供給するため の環状流出開口とを有し、  A processing region restricting means for restricting supply of the processing liquid to the upper surface of the substrate to a desired annular region on the upper surface of the substrate; and a substrate processing apparatus for processing a desired annular region on the upper surface of the substrate, comprising: Has a fixed lower surface forming a gap through which a fluid flows with the upper surface of the substrate, and an annular outflow opening provided on the fixed lower surface so as to face the gap for supplying a processing liquid to the upper surface of the substrate. Have
前記処理領域制限手段は、 前記環状流出開口の内側から前記間隙を通って外方に第 1 不活性ガスを噴射するように、 該環状流出開口の内周縁に取り囲まれた前記固定下面の 領域に、 前記間隙に臨むように設けられた、 第 1不活性ガスを噴射するための第 1不活 性ガス流出開口と、 該環状流出開口の外周縁を取り囲む前記固定下面の領域に、 前記間 隙に臨むように設けられた、 第 2不活性ガスを噴射するための第 2不活性ガス流出開口 とを有し、  The processing area limiting means is arranged in the area of the fixed lower surface surrounded by the inner peripheral edge of the annular outflow opening so as to inject the first inert gas outward from the inside of the annular outflow opening through the gap. A first inert gas outflow opening for injecting a first inert gas, which is provided so as to face the gap, and the fixed lower surface surrounding an outer peripheral edge of the annular outflow opening; A second inert gas outlet opening for injecting a second inert gas, which is provided so as to face
前記環状流出開口から供給する処理液は、 前記第 1不活性ガス流出開口から噴射する 第 1不活性ガスによって基板の外方に向かって同伴されながら、 前記第 2不活性ガス流 出開口から噴射する第 2不活性ガスによって、 基板の外方に向かって引かれる、 ことを 特徴とする基板の処理装置。 The processing liquid supplied from the annular outflow opening is ejected from the second inert gas outflow opening while being entrained toward the outside of the substrate by the first inert gas ejected from the first inert gas outflow opening. The substrate processing apparatus is drawn toward the outside of the substrate by the second inert gas.
. 前記固定下面を鉛直方向に移動させるための鉛直方向移動手段を更に有し、 該鉛直 方向移動手段により、 前記固定下面と基板の上面との間の距離を調整することにより、 基板の上面に供給される処理液の環状領域を所望に調整する、 請求項 8に記載の処理装  The apparatus further comprises a vertical moving means for vertically moving the fixed lower surface, and the vertical moving means adjusts a distance between the fixed lower surface and the upper surface of the substrate, so that the upper surface of the substrate is formed on the upper surface of the substrate. 9. The processing apparatus according to claim 8, wherein an annular region of the supplied processing liquid is adjusted as desired.
0 . 基板の上面に向かって斜め下方に、 且つ半径方向外方に前記第 2不活性ガス流出 開口まで延びる環状流路を更に有し、 前記第 2不活性ガス流出開口は、 前記環状流出開口と略同心状の環状流出開口の形態 である、 請求項 8に記載の基板の処理装置。0. It further has an annular flow path extending obliquely downward toward the upper surface of the substrate and radially outward to the second inert gas outflow opening, 9. The substrate processing apparatus according to claim 8, wherein the second inert gas outflow opening is in the form of an annular outflow opening substantially concentric with the annular outflow opening.
1 . 前記環状流路は、 前記環状流出開口に向かって先細りに形成されている、 請求項 8に記載の基板の処理装置。 9. The substrate processing apparatus according to claim 8, wherein the annular flow path is tapered toward the annular outflow opening.
2 . 水平面内で基板を回転させる回転手段と、 基板の表面に処理液を供給する処理液 供給手段と Γ略鉛直な軸線を中心に回転可能なスピンチヤックと、 このスピンチヤック 上で、 この軸線を中心とする円周上に配置され、 略水平に基板を支持するための、 複数 の支持ピンと、 を有し、 略水平面内で回転する基板の表面に処理液を供給することによ り、 基板を処理する、 基板の処理装置において、 2. A rotating means for rotating the substrate in a horizontal plane, a processing liquid supply means for supplying a processing liquid to the surface of the substrate, a spin chuck rotatable about a substantially vertical axis, and an axis on the spin chuck. And a plurality of support pins for supporting the substrate in a substantially horizontal direction, wherein the plurality of support pins are provided on the circumference of the substrate, and the processing liquid is supplied to the surface of the substrate rotating in a substantially horizontal plane. In a substrate processing apparatus for processing a substrate,
前記複数の支持ピンは夫々、 基板の側周面を側方から接触支持する支持側面を有し、 この支持側面の水平断面は、 各支持ピンの軸線を中心とする円弧をなし、 前記支持側面 は夫々、 該軸線を中心として自転可能であり、  Each of the plurality of support pins has a support side surface for supporting and supporting a side peripheral surface of the substrate from the side, and a horizontal cross section of the support side forms an arc around the axis of each support pin, and the support side surface Are each capable of rotating around the axis,
更に、 前記複数の支持ピンを同期させながら、 夫々の前記軸線を中心として同一方向 に自転させるための自転駆動手段を有し、  Further, there is a rotation driving means for rotating the plurality of support pins in the same direction around the respective axes while synchronizing the plurality of support pins,
それにより、 前記スピンチャックの回転中に、 前記複数の支持ピンの各々を所定角度 自転させることにより、 基板を前記支持側面夫々に対してころがり接触の仕方で、 前記 スピンチャックに対して相対回転させる、 ことを特徴とする、 基板の処理装置。 Accordingly, by rotating each of the plurality of support pins by a predetermined angle during rotation of the spin chuck, the substrate is relatively rotated with respect to the spin chuck in a manner of rolling contact with each of the support side surfaces. A substrate processing apparatus, characterized in that:
3 . 前記複数の支持ピンは夫々、 前記軸線に対して側方に、 且つ上方に抜ける切り欠 き部を有する、 請求項 1 2に記載の処理装置。 3. The processing apparatus according to claim 12, wherein each of the plurality of support pins has a cutout portion that extends laterally and upward with respect to the axis.
4 . 前記自転駆動手段は、 前記複数の支持ピン夫々の前記軸線と同心状に各支持ピン に連結され、 前記軸線を中心に回転可能な、 複数の第 1歯車と、 4. The rotation drive means is connected to each support pin concentrically with the axis of each of the plurality of support pins, and is capable of rotating about the axis, a plurality of first gears;
各第 1小歯車と嚙み合い、 前記スピンチャックの回転軸線と同心状に前記スピンチヤ ックに連結され ., 且つ前記回転軸線を中心に前記スピンチャックと一体に回転可能な第 2歯車であつて、 その回転接線方向に傾斜するように配置された傾斜面を備えたカムフ ォロワを有する第 2歯車と、  A second gear meshing with each of the first small gears and connected to the spin chuck concentrically with the rotation axis of the spin chuck, and rotatable integrally with the spin chuck about the rotation axis; A second gear having a cam follower having an inclined surface arranged to be inclined in the rotational tangential direction;
前記傾斜面に点接触するような曲面状のプロファイルを有し、 且つ上下方向に移動可 能で、 前記スピンチャックと一体に前記スピンチャックの回転軸線を中心に回転可能な カムを有し、  A cam having a curved profile so as to make point contact with the inclined surface, being movable up and down, and being rotatable about the rotation axis of the spin chuck integrally with the spin chuck;
該カムを上下方向に移動させることにより、 前記傾斜面を介して前記カムフォロワを 回転方向に押し出して、 前記第 2歯車を前記スピンチャックに対して相対回転させる、 請求項 1 2に記載の処理装置。By moving the cam in the vertical direction, the cam follower is pushed out in the rotational direction through the inclined surface, and the second gear is relatively rotated with respect to the spin chuck. The processing device according to claim 12.
5 . 前記傾斜面は、 傾斜面の傾斜方向に対する横断面が円弧状をなし、 前記カムは、 円筒ローラからなり、その周側面を前記傾斜面に点接触させるような向きに配置される、 請求項 1 4に記載の処理装置。 5. The inclined surface has an arc-shaped cross section with respect to the inclined direction of the inclined surface, and the cam is formed of a cylindrical roller, and is arranged in such a direction as to bring its peripheral side surface into point contact with the inclined surface. Item 15. A processing apparatus according to Item 14.
6 . 前記複数の支持ピンは、 前記スピンチャックの回転軸線を中心に周方向等角度間 隔で配置される、 請求項 1 2に記載の処理装置。 6. The processing apparatus according to claim 12, wherein the plurality of support pins are arranged at equal angular intervals in a circumferential direction around a rotation axis of the spin chuck.
7 . 基板のまわりを支持しながら、 基板を略水平面内で回転させて、 回転する基板の 表面に処理液を供給して処理する基板の処理方法において、  7. A substrate processing method in which a substrate is rotated in a substantially horizontal plane while supporting the periphery of the substrate, and a processing liquid is supplied to the surface of the rotating substrate for processing.
基板の側周面を側方から点或いは線接触支持する支持体を設ける段階と、  Providing a support that supports the side peripheral surface of the substrate from the side by point or line contact,
該支持体ごと一体で基板の中心を通る軸線を中心に基板を回転させる段階と、 基板の回転中に、 前記支持体に対して前記側周面の点或いは線接触位置を相対移動さ せることにより、 前記支持体から露出させる段階と、  Rotating the substrate about an axis passing through the center of the substrate integrally with the support; and moving a point or a line contact position on the side peripheral surface relative to the support during the rotation of the substrate. By exposing from the support,
露出させた点或いは線接触位置を処理液によつて処理する段階と、 を有する基板の処 理方法。  Treating the exposed point or line contact position with a treatment liquid.
8 . 水平面内で回転可能に配置された基板の表面に処理液を供給して処理する基板の 処理装置において、  8. In a substrate processing apparatus for processing by supplying a processing liquid to a surface of a substrate rotatably arranged in a horizontal plane,
基板の周囲を取り囲むように配置され、 基板の周縁に向かって内方に臨む環状開口を 有する: ^ッ卜と、  It is arranged to surround the periphery of the substrate and has an annular opening facing inward toward the periphery of the substrate:
前記ポットの内部を前記環状開口近傍から前記ポットの底部に向かって延びる環状仕 切りと、  An annular partition extending inside the pot from near the annular opening toward the bottom of the pot;
前記環状仕切りを上下方向に移動させる環状仕切り上下移動手段と、 を有し、 前記環状仕切りを前記環状開口の上レベルに位置決めすることにより、 前記環状仕切 りの内周面が、 基板からの処理液を前記環状開口から前記ポットの底部まで案内する案 内面を形成し、  An annular partition vertical moving means for vertically moving the annular partition, and by positioning the annular partition at an upper level of the annular opening, an inner peripheral surface of the annular partition is processed from a substrate. Forming an inner surface for guiding the liquid from the annular opening to the bottom of the pot,
前記環状仕切りを前記環状開口の下レベルに位置決めすることにより、 前記環状仕切 りの外周面が、 基板からの処理液を前記環状開口から前記ポットの前記底部まで案内す る、 別の案内面を形成する、 ことを特徴とする基板の処理装置。 By positioning the annular partition at a level below the annular opening, the outer peripheral surface of the annular partition guides another guide surface for guiding the processing liquid from the substrate from the annular opening to the bottom of the pot. Forming a substrate processing apparatus.
9 . 前記隣り合う環状仕切り夫々の内周縁を前記環状開口に位置決めする際、 それ以 外の隣り合う環状仕切り夫々の内周縁間の間隙を処理液の飛散から生じるミストの流入 を防止できるような大きさとするように、 それ以外の隣り合う環状仕切りを上下方向に 近接して位置決めする、 請求項 1 8に記載の処理装置。 9. When positioning the inner peripheral edge of each of the adjacent annular partitions in the annular opening, the gap between the inner peripheral edges of the other adjacent annular partitions can be prevented from inflow of mist generated from the scattering of the processing liquid. The other adjacent annular partitions are vertically 19. The processing apparatus according to claim 18, wherein the processing apparatus is positioned in close proximity.
0 . 前記複数の環状仕切りの夫々は、 前記環状開口に向かって内方上向きに傾斜する 傘部と、 上周端が該傘部に連結され、 前記ポットの底部から上方に延出する円筒部とを 有する、 請求項 1 8に記載の処理装置。0. Each of the plurality of annular partitions includes an umbrella portion inclined inward and upward toward the annular opening, and a cylindrical portion having an upper peripheral end connected to the umbrella portion and extending upward from the bottom of the pot. The processing device according to claim 18, comprising:
1 . 前記傘部は、 前記円筒部との連結部から外方に向かって延びる環状張り出し部を 有し、 この環状張り出し部の下方で前記円筒部を取り囲むように、一 記ポッ卜の底部か ら上方に延びる環状隔壁が設けられ、  1. The umbrella portion has an annular protrusion extending outward from a connection portion with the cylindrical portion, and the bottom portion of the pot is formed so as to surround the cylindrical portion below the annular protrusion. An annular partition wall extending upward from is provided,
それにより、 前記環状流路は、 隣り合う環状仕切りの前記傘部同士によって形成され る斜め流路と、 外側の環状仕切りの前記円筒部の内周面と前記環状隔壁の外周面とによ つて形成される外流路と、 前記隔壁の内周面と外側の環状仕切りの前記円筒部の外周面 とによって形成される内流路とから構成され、  Thereby, the annular flow path is formed by an oblique flow path formed by the head portions of the adjacent annular partitions, and the inner peripheral surface of the cylindrical portion and the outer peripheral surface of the annular partition of the outer annular partition. An outer channel formed by an inner channel formed by an inner peripheral surface of the partition and an outer peripheral surface of the cylindrical portion of the outer annular partition,
前記外流路と前記内流路とは、 逆 U字形流路を形成する、 請求項 1 8に記載の処理装 2 . 前記外流路は、 その最下端で処理液の流出口と連通し、 前記内流路は、 その最下 端でミスト流出口と連通し、 該ミスト流出口を通じて排気装置により前記環状流路内が 引かれている、 請求項 1 8に記載の処理装置。  The processing device according to claim 18, wherein the outer flow path and the inner flow path form an inverted U-shaped flow path. 2. The outer flow path communicates with a processing liquid outlet at a lowermost end thereof. 19. The processing apparatus according to claim 18, wherein the inner flow path communicates with a mist outlet at a lowermost end thereof, and the inside of the annular flow path is drawn by the exhaust device through the mist outlet.
3 . 前記複数の環状仕切りのうち最も外側に位置する環状仕切りは、 その外周面と前 記ポットの外周壁の内周面との間に環状流路を形成する、 請求項 1 9に記載の基板の処 4 . 前記複数の環状仕切りのうち最も内側に位置する環状仕切りは、 その内周面と前 記ポッ卜の内周壁の内周面との間に環状流路を形成する、請求項 1 9に記載の処理装置。 5 . 前記隔壁の上周縁と内側に隣り合う前記環状仕切りの内周面とにより形成される ミスト流入開口部に、 周方向に分散配置された複数の貫通穴を備えた環状のコンダク夕 ンス調整板を設け、  10. The annular partition according to claim 19, wherein the outermost annular partition among the plurality of annular partitions forms an annular flow path between the outer peripheral surface and the inner peripheral surface of the outer peripheral wall of the pot. Processing of the substrate 4. The innermost annular partition of the plurality of annular partitions forms an annular flow path between its inner peripheral surface and the inner peripheral surface of the inner peripheral wall of the pot. 19. The processing apparatus according to item 9. 5. An annular conductance adjustment having a plurality of through holes distributed in the circumferential direction at a mist inflow opening formed by an upper peripheral edge of the partition and an inner peripheral surface of the annular partition adjacent to the inside. Set up a board,
これらの複数の貫通穴夫々の大きさを、 前記ミスト流出口に近いほど小さくする、 請 求項 1 9に記載の処理装置。  The processing apparatus according to claim 19, wherein the size of each of the plurality of through holes is reduced as the size is closer to the mist outlet.
6 . 基板を支持するための回転支持台と、 最も内側の前記環状流路内で前記回転支持 台の外周縁の略真下に、 パドリング用の処理液を受けるための環状受けを更に有する、 請求項 1 9に記載の処理装置。  6. A rotating support for supporting a substrate, and an annular receiver for receiving a paddling treatment liquid substantially immediately below an outer peripheral edge of the rotating support in the innermost annular flow path. Item 19. A processing apparatus according to Item 19.
7 . 略水平面内に基板を保持しつつ回転させる回転保持手段と、 基板の表面に処理液 を供給する処理液供給手段と、 を有する基板の処理装置において、 7. Rotation holding means for rotating the substrate while holding it in a substantially horizontal plane, and treating liquid on the surface of the substrate A processing liquid supply means for supplying
基板の周囲を取り囲むように配置された、 内方に臨む環状開口を有するポットと、 夫々該ポッ卜の底部を環状に仕切るように、 該底部から上方且つ内方に前記環状開口 に向かって延び、 該ポット内で離間して配置された複数の環状仕切りと、  A pot having an inwardly facing annular opening disposed so as to surround the periphery of the substrate, and extending upwardly and inward from the bottom toward the annular opening to partition the bottom of the pot into an annular shape, respectively. A plurality of annular partitions spaced apart in the pot;
各環状仕切りを上下方向に移動させるための環状仕切り上下移動手段と、を更に有し、 前記環状開口から流入する処理液を受け入れ可能なように、 隣り合う前記環状仕切り 夫々の内周縁を前記環状開口に位置決めすることにより、 外側の環状仕切りの内周面と 内側の環状仕切りの外周面とで、 前記底部に通じる環状流路を形成する、 ことを特徴と する基板の処理装置。  An annular partition vertical moving means for moving each annular partition in the vertical direction, wherein the inner peripheral edge of each of the adjacent annular partitions is annularly formed so as to be able to receive the processing liquid flowing from the annular opening. A substrate processing apparatus, characterized in that an annular flow path communicating with the bottom is formed by an inner peripheral surface of an outer annular partition and an outer peripheral surface of an inner annular partition by being positioned at an opening.
PCT/JP2004/000859 2003-02-03 2004-01-29 Substrate treating device and substrate treating method WO2004070807A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2003-25817 2003-02-03
JP2003025819A JP2004265912A (en) 2003-02-03 2003-02-03 Processing system of substrate
JP2003025818A JP2004265911A (en) 2003-02-03 2003-02-03 System for processing substrate
JP2003-25818 2003-02-03
JP2003025816A JP2004265909A (en) 2003-02-03 2003-02-03 Support of substrate, processing system of substrate comprising support, and processing process of substrate
JP2003-25816 2003-02-03
JP2003025817A JP2004265910A (en) 2003-02-03 2003-02-03 Fractional recovery system of liquid for processing substrate, processing system of substrate equipped with that system, and fractional recovery method of liquid for processing substrate
JP2003-25819 2003-02-03

Publications (1)

Publication Number Publication Date
WO2004070807A1 true WO2004070807A1 (en) 2004-08-19

Family

ID=32854413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000859 WO2004070807A1 (en) 2003-02-03 2004-01-29 Substrate treating device and substrate treating method

Country Status (1)

Country Link
WO (1) WO2004070807A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7681581B2 (en) 2005-04-01 2010-03-23 Fsi International, Inc. Compact duct system incorporating moveable and nestable baffles for use in tools used to process microelectronic workpieces with one or more treatment fluids
CN103094151A (en) * 2011-10-27 2013-05-08 沈阳芯源微电子设备有限公司 Chemical liquid recovery device
CN103367207A (en) * 2012-03-30 2013-10-23 细美事有限公司 Apparatus for processing substrate
CN103730334A (en) * 2012-10-11 2014-04-16 沈阳芯源微电子设备有限公司 Chemical solution recycling device suitable for square substrate
US8899246B2 (en) 2011-11-23 2014-12-02 Lam Research Ag Device and method for processing wafer shaped articles
US8967167B2 (en) 2006-07-07 2015-03-03 Tel Fsi, Inc. Barrier structure and nozzle device for use in tools used to process microelectronic workpieces with one or more treatment fluids
US9039840B2 (en) 2008-05-09 2015-05-26 Tel Fsi, Inc. Tools and methods for processing microelectronic workpieces using process chamber designs that easily transition between open and closed modes of operation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187294A (en) * 1997-09-04 1999-03-30 Dainippon Screen Mfg Co Ltd Substrate-processing system
JP2001015402A (en) * 1999-06-28 2001-01-19 Dainippon Screen Mfg Co Ltd Substrate processor
JP2001015477A (en) * 1999-06-28 2001-01-19 Toshiba Corp Substrate-treating method and apparatus thereof
JP2001267278A (en) * 2000-03-16 2001-09-28 Mimasu Semiconductor Industry Co Ltd Wafer-surface treating apparatus with waste-liquid recovering mechanism
JP2002203891A (en) * 2000-12-28 2002-07-19 Kaijo Corp Wafer fixing mechanism for spin precessing equipment
JP2002359227A (en) * 2001-05-30 2002-12-13 Dainippon Screen Mfg Co Ltd Substrate treatment apparatus and method
JP2003007664A (en) * 2001-06-22 2003-01-10 Ses Co Ltd Method and apparatus for cleaning single wafer
JP2003017461A (en) * 2001-07-03 2003-01-17 Dainippon Screen Mfg Co Ltd Substrate treatment apparatus and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187294A (en) * 1997-09-04 1999-03-30 Dainippon Screen Mfg Co Ltd Substrate-processing system
JP2001015402A (en) * 1999-06-28 2001-01-19 Dainippon Screen Mfg Co Ltd Substrate processor
JP2001015477A (en) * 1999-06-28 2001-01-19 Toshiba Corp Substrate-treating method and apparatus thereof
JP2001267278A (en) * 2000-03-16 2001-09-28 Mimasu Semiconductor Industry Co Ltd Wafer-surface treating apparatus with waste-liquid recovering mechanism
JP2002203891A (en) * 2000-12-28 2002-07-19 Kaijo Corp Wafer fixing mechanism for spin precessing equipment
JP2002359227A (en) * 2001-05-30 2002-12-13 Dainippon Screen Mfg Co Ltd Substrate treatment apparatus and method
JP2003007664A (en) * 2001-06-22 2003-01-10 Ses Co Ltd Method and apparatus for cleaning single wafer
JP2003017461A (en) * 2001-07-03 2003-01-17 Dainippon Screen Mfg Co Ltd Substrate treatment apparatus and method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7681581B2 (en) 2005-04-01 2010-03-23 Fsi International, Inc. Compact duct system incorporating moveable and nestable baffles for use in tools used to process microelectronic workpieces with one or more treatment fluids
US8899248B2 (en) 2005-04-01 2014-12-02 Tel Fsi, Inc. Barrier structure and nozzle device for use in tools used to process microelectronic workpieces with one or more treatment fluids
US8967167B2 (en) 2006-07-07 2015-03-03 Tel Fsi, Inc. Barrier structure and nozzle device for use in tools used to process microelectronic workpieces with one or more treatment fluids
US8978675B2 (en) 2006-07-07 2015-03-17 Tel Fsi, Inc. Method and apparatus for treating a workpiece with arrays of nozzles
US9666456B2 (en) 2006-07-07 2017-05-30 Tel Fsi, Inc. Method and apparatus for treating a workpiece with arrays of nozzles
US9039840B2 (en) 2008-05-09 2015-05-26 Tel Fsi, Inc. Tools and methods for processing microelectronic workpieces using process chamber designs that easily transition between open and closed modes of operation
CN103094151A (en) * 2011-10-27 2013-05-08 沈阳芯源微电子设备有限公司 Chemical liquid recovery device
CN103094151B (en) * 2011-10-27 2015-07-22 沈阳芯源微电子设备有限公司 Chemical liquid recovery device
US8899246B2 (en) 2011-11-23 2014-12-02 Lam Research Ag Device and method for processing wafer shaped articles
CN103367207A (en) * 2012-03-30 2013-10-23 细美事有限公司 Apparatus for processing substrate
CN103730334A (en) * 2012-10-11 2014-04-16 沈阳芯源微电子设备有限公司 Chemical solution recycling device suitable for square substrate

Similar Documents

Publication Publication Date Title
US6770149B2 (en) Method and apparatus for cleaning treatment
EP1879216B1 (en) Liquid processing apparatus and method
US8152933B2 (en) Substrate processing apparatus, substrate processing method, and drain cup cleaning method
US6447608B1 (en) Spin coating apparatus
JP2004265912A (en) Processing system of substrate
EP1848024B1 (en) Liquid processing apparatus
US5829156A (en) Spin dryer apparatus
US8051862B2 (en) Liquid processing apparatus and liquid processing method
JP5694118B2 (en) Liquid processing apparatus and liquid processing method
JP2007318140A (en) Method and apparatus for processing substrate, and spray head used for the apparatus and method
KR20200045071A (en) Liquid supply nozzle and substrate processing apparatus
US11344910B2 (en) Spin dispenser module substrate surface protection system
WO2003105201A1 (en) Substrate processing device, substrate processing method, and developing device
JP7253029B2 (en) Substrate processing equipment
US11164760B2 (en) Etching apparatus and etching method
US6391110B1 (en) Method and apparatus for cleaning treatment
US11782348B2 (en) Apparatus for treating substrate
JP5512508B2 (en) Liquid processing apparatus and liquid processing method
JP2004265910A (en) Fractional recovery system of liquid for processing substrate, processing system of substrate equipped with that system, and fractional recovery method of liquid for processing substrate
WO2004070807A1 (en) Substrate treating device and substrate treating method
TWI809409B (en) Wafer processing apparatus
US7578887B2 (en) Apparatus for and method of processing substrate
JP5036415B2 (en) Liquid processing apparatus and liquid processing method
JP2002151455A (en) Cleaning apparatus for semiconductor wafer
JP2004265911A (en) System for processing substrate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase