WO2004070095A1 - Fine carbon fiber with various structures - Google Patents

Fine carbon fiber with various structures Download PDF

Info

Publication number
WO2004070095A1
WO2004070095A1 PCT/JP2004/001400 JP2004001400W WO2004070095A1 WO 2004070095 A1 WO2004070095 A1 WO 2004070095A1 JP 2004001400 W JP2004001400 W JP 2004001400W WO 2004070095 A1 WO2004070095 A1 WO 2004070095A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine carbon
carbon fiber
cross
axial direction
fiber according
Prior art date
Application number
PCT/JP2004/001400
Other languages
French (fr)
Japanese (ja)
Inventor
Takayuki Tukada
Kazuhiro Osato
Kunio Nishimura
Kojuro Takahashi
Morinobu Endo
Fuminori Munekane
Syuji Tsuruoka
Original Assignee
Bussan Nanotech Research Institute Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bussan Nanotech Research Institute Inc. filed Critical Bussan Nanotech Research Institute Inc.
Publication of WO2004070095A1 publication Critical patent/WO2004070095A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols

Definitions

  • the present invention relates to fine carbon fibers having a variety of structures and formed of a cylindrical laminate of fine carbon sheets.
  • Carbon fiber is a well-known fibrous carbon, but in recent years, fine carbon fiber has attracted attention.
  • fine carbon fibers There are several types of fine carbon fibers depending on the fiber diameter, and are called vapor-grown carbon fibers, carbon nanofibers, and carbon nanotubes.
  • carbon nanotubes are the finest, with a fiber diameter of less than 100 nm, and their unique physical properties are expected to be widely applied to nanoelectronic materials, composite materials, catalyst support for fuel cells, etc., and gas absorption. Have been.
  • Carbon nanotubes include a sheet of carbon atoms bonded in a net shape (Dalaphen sheet) Single carbon nanotube (S WNT) with one layer of cylinder ⁇ Multilayer force with multiple layers of graphene sheet cylinders nested Monobon nanotubes (MWNT) are known.
  • the geometry of the diameter and the winding of the sheet is determined by the chiral index, which indicates the properties of the metal or semiconductor.
  • These carbon nanotubes are produced by the arc discharge method using a carbon electrode, the laser-oven method, the method of chemically and thermally decomposing hydrocarbon gas using transition metal fine particles as a catalyst (chemical vapor deposition (CVD) method, It is synthesized by catalytic chemical vapor deposition (CC VD).
  • CVD chemical vapor deposition
  • C VD catalytic chemical vapor deposition
  • Hyperion's patent U.S. Pat.
  • carbon nanotubes described in 174018 which are fibrils consisting of a continuous multi-layer of carbon atoms having a substantially graphite structure, each of which consists of multiple layers of regularly arranged carbon atoms, The core and the core are arranged substantially concentrically with the cylindrical axis of the fibril, and each layer of carbon atoms is a fibril made of graphite whose C axis is substantially perpendicular to the cylindrical axis of the fibril.
  • substantially used by Hyperion refers to "measured along the axis of the structure, in a plane, or by volume,” according to the patent application of Hyperion, JP-T-2000-511864. 95% of the value of physical properties at the time should be within V-10% of the average value.
  • a graphite crystal lattice draws points or lines at lattice points determined by black reflection. If the graphite structure is imperfect, these points will be lines, otherwise the lattice points (1 12) will not be clearly visible. Therefore, it is not Graphite if at least the point or line at grid point (1 12) does not appear clearly.
  • the Magnetoresistance value it is determined whether or not a graphite-like structure is included using the electromagnetic properties of graphite. Specifically, at a certain temperature, the Magnetoresistance is measured with respect to the magnetic flux density. When the specimen contains graphite, the Magnetoresistance value increases as the magnetic flux density increases. When no graphite is included, the value decreases with a negative value. In the case of imperfect graphite, the value temporarily becomes negative and gradually increases to a positive value as the magnetic flux density increases. Also, the higher the measurement temperature, the larger the value.
  • the present invention provides a novel structure characterized by having preferable physical properties as a composite material filler, that is, having high dispersibility in a matrix material in a composite material, and having as small a thickness as possible and relatively linear.
  • the present invention provides fine carbon fibers, preferably having a maximum fiber diameter of 100 nm or less. Disclosure of the invention
  • the fine carbon fiber of the present invention has a structure in which a discontinuous surface having a non-circular cross section perpendicular to the axial direction of the cylinder is provided over a part of the length in the axial direction.
  • the fine carbon fiber of the present invention is hardly bent and can be provided with elasticity, that is, the property of trying to return to the original shape even after being deformed. Can be understood. Therefore, the entangled structure in the aggregated structure is difficult to remove, and can be easily dispersed when mixed with the matrix material.
  • An aspect ratio having a continuous hollow portion connected in the axial direction is 10 5 or less, and a cross section perpendicular to the axis at an arbitrary position in the axial direction shows a contour-like stripe pattern by observation with an electron microscope. Fine carbon fibers with uneven sheet spacing.
  • the fine carbon fiber of the present invention has at least one or more refraction points in the axial direction, and the both sides sandwiching the refraction point are linear, and the length of the linear portion is perpendicular to the axis.
  • the area of the cross section perpendicular to the axis on both sides at the refraction point varies discontinuously, there is a portion where the graph ensheet is discontinuous, and the graph ensheet has a six-membered ring. There are carbocyclic structures that are not.
  • a cross section perpendicular to the axis at an arbitrary position in the axial direction shows a contour-like striped pattern when observed by an electron microscope, and the interval of the daraphen sheet in the cross section extends over the entire fiber length. It consists of a non-graphite multilayer structure with adjacent graph ensheet layers that change, and the value of Magnetoresistance takes a negative value with respect to the change in magnetic flux density. Not clearly. Also, it is a fine carbon fiber in which the maximum diameter of the cross section of the hollow part is 10 nm or less, the variation is 2 nm or less, and the difference between the maximum value and the minimum value of the cross section is 1% or more.
  • amorphous carbon precipitates on the outermost layer surface of the fiber, the maximum thickness is 10 nm or less, and the specific surface area of the fiber is 20 OmVg or less.
  • the fine carbon fiber of the present invention is a fine carbon fiber having an outer diameter of 100 nm or less in a cross section perpendicular to an axis as produced by a CVD or CCVD method at a temperature of 1300 ° C. or less, and preferably further comprises It was obtained by processing at 3000 ° C or less.
  • the present invention further includes an aggregate of fine carbon fibers having a fiber diameter of 100 nm or less containing 0.001% or more of the fine carbon fibers having any one or more of the above structures.
  • an aggregate of fine carbon fibers having a fiber diameter of 100 nm or less containing 0.001% or more of the fine carbon fibers having any one or more of the above structures.
  • the fine carbon fiber of the present invention has the following characteristics.
  • the method of use is broadly classified into a method using as a single fiber and a method using as a powder.
  • a single fiber When used as a single fiber, there are fields that utilize characteristics such as electron emission capability, conductivity, and superconductivity, in addition to FEDs, electron microscope elements, semiconductor elements.
  • a 0-dimensional composite material such as slurry
  • 2) a linearly processed 1-dimensional composite material 3) a sheet
  • 3D composite materials such as 2D composite materials (fabric, film, paper) processed into a shape
  • complex molded objects and blocks By combining these forms with the desired functions, an extremely wide range of applications is possible. The following is an example of a specific example of this for each function.
  • a conductive resin and a conductive resin molded product by being mixed with a resin, for example, for packaging materials, gaskets, containers, resistors, conductive fibers, electric wires, adhesives, inks, paints, and the like. Similar effects can be expected with composite materials added to inorganic materials, especially ceramics and metals, in addition to composite materials with resins.
  • Fine fibers have excellent strength, are flexible, and have excellent properties of the filter constituting the network structure. By utilizing this characteristic, it is possible to contribute to strengthening the electrodes of energy devices such as lithium-ion secondary batteries, lead-acid batteries, capacitors, and fuel cells and improving the cycle characteristics.
  • FIG. 1 is a transmission electron micrograph of the fine carbon fiber of the present invention.
  • FIG. 2 is a transmission electron micrograph of the fine carbon fiber of the present invention.
  • FIG. 3 is a transmission electron micrograph of the fine carbon fiber of the present invention.
  • FIG. 4 is a transmission electron micrograph of the fine carbon fiber of the present invention.
  • FIG. 5 is a transmission electron micrograph of the fine carbon fiber obtained in Example 1.
  • FIG. 6 is a transmission electron micrograph of the fine carbon fiber obtained in Example 2.
  • FIG. 7 is a diagram schematically illustrating the synthesis apparatus according to the first embodiment.
  • FIG. 8 is a diagram schematically showing the high-temperature heat treatment apparatuses of Examples 1 and 2.
  • FIG. 9 is a diagram schematically illustrating the synthesizer according to the second embodiment.
  • FIG. 10 is a photograph showing an X-ray diffraction grating image of the fine carbon fibers obtained in Example 1.
  • FIG. 11 is a diagram showing Magnetoresistance of the fine carbon fibers obtained in Example 1.
  • FIG. 12 is a SEM photograph of a composite material using the fine carbon fibers obtained in Example 1.
  • Figure 13 is a SEM photograph of a composite material using conventional fine carbon fibers.
  • the fine carbon fiber having a unique structure of the present invention can be produced by the following method. With the extension of the conventional technology for the production of vapor-grown carbon fiber (VGCF), even the CVD method requires a long synthesis time and does not produce fine materials.
  • VGCF vapor-grown carbon fiber
  • organic compounds such as hydrocarbons are chemically pyrolyzed by CVD method or CCVD method using transition metal ultrafine particles as catalyst, but they are fine carbon fiber nuclei, intermediate products and products in the reactor. Shortening the residence time of the fiber to obtain the fiber and subjecting it to a high-temperature heat treatment is a preferable method for producing a preferable fine carbon fiber.
  • the catalyst and raw material carbon compound are preheated to 300 ° C or more and charged into the furnace in gaseous form.
  • the fiber obtained by the above method is subjected to a high-temperature heat treatment at 3000 ° C or lower by an appropriate method.
  • the As Grown fiber obtained above absorbs many hydrocarbons due to its unique process, and is industrially useful. This hydrocarbon is separated for use. Therefore, for example, heat treatment is performed at a temperature of 1500 ° C. or less to separate the layers. In addition, heat treatment is performed at a processing temperature higher than the synthesis temperature, because the development of crystals is not sufficient with the hydrocarbon separation process alone.
  • high-temperature heat treatment is performed at a temperature of 2000 ° C. or more.
  • a reducing gas or a trace amount of carbon monoxide gas may be added to an inert gas atmosphere to protect the crystal.
  • Fine carbon fibers were synthesized using toluene as a raw material by the CVD method.
  • Figure 7 shows the synthesizer
  • the reaction was carried out in a reducing atmosphere of hydrogen gas using a mixture of Fe-mouth sen and thiophene as a catalyst.
  • the toluene and the catalyst were heated to 375 ° C together with hydrogen gas, supplied to the reactor, and reacted at 1200 ° C with a residence time of 8 seconds. Atmospheric gases were separated by separation and reused.
  • the hydrocarbon concentration in the furnace gas was 7% by volume.
  • the tar content of the synthesized fine carbon fiber of As Grown was 10%.
  • the fiber was heated to 1200, held for 30 minutes to perform a hydrocarbon separation treatment, and further subjected to a high-temperature heat treatment at 280 ° C.
  • Figure 8 shows the equipment for the hydrocarbon separation and high-temperature heat treatment process.
  • Fig. 5 shows an electron micrograph of the obtained fine carbon fiber after the high-temperature heat treatment at 2800 ° C.
  • Benzene is used as a carbon raw material, and the catalysts, huasen and thiophene, are dissolved, vaporized at 380 ° C, and introduced into the reactor.
  • the temperature of the reactor was 1150 ° (The atmosphere in the furnace was a hydrogen gas atmosphere.
  • the residence time of hydrogen gas and raw material gas in the furnace was 7 seconds.
  • As Gro dragon collected downstream of the furnace The tar content of the carbon fibers was 14%.
  • FIG. 6 shows an electron micrograph of the fine carbon fibers after the high-temperature heat treatment at 2800 ° C.
  • Example 1 A diffraction grating image of the fine carbon fiber obtained in Example 1 was taken using an X-ray diffractometer.
  • FIG. 10 shows the obtained diffraction grating image.
  • Example 2 For 1.00 g of the fine carbon fiber obtained in Example 1, a thickener (Susu Co., Ltd.) 19.00 g (5% CNT) and 49.0 g (2.0% CNT) were mixed with 3 pounds of heat-resistant inorganic adhesive made of Ripound and mixed at 2000 rpm for 10 minutes using a centrifugal mixer. The resulting product was linearly adhered in a lmm width on a 125 ⁇ thick polyimide resin (UPILEX S, manufactured by Ube Industries, Ltd.).
  • UPILEX S manufactured by Ube Industries, Ltd.
  • Example 1 The fine carbon fiber obtained in Example 1, methanol, water, and methylcellulose were mixed at a weight ratio of 20: 20: 9: 1, and granulated for 15 minutes by Vertical Granule Yule (manufactured by Parex Co., Ltd.). Thereafter, methanol and water were removed by drying at a temperature of 100 ° C or more by a drier to obtain granules of fine carbon fibers having an average particle diameter of 500 m. Next, 5% by weight of the fine carbon fiber granules were added to the polycarbonate resin, and the mixture was melted and mixed with a vented twin screw extruder (trade name: TEM35, manufactured by Toshiba Machine Co., Ltd.), and the pellets were mixed. Manufactured. Figure 12 shows an SEM photograph of the composite material obtained after melt mixing. Comparative Example 1
  • the conventional fine carbon fiber has a cohesive structure that is not easily unraveled and clings to the central part.
  • the fine carbon fibers of the present invention are hardly entangled in the aggregated structure and are easily dispersed when mixed with the matrix material.
  • the fine carbon fiber of the present invention is used for FED, electron microscope element, semiconductor element, conductive fiber, electric wire, electromagnetic wave shielding material, battery electrode, brake part as composite material, and furthermore, home appliance, vehicle, airplane body and machine housing. It can be suitably used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Fibers (AREA)

Abstract

Fine carbon fiber having fiber-like substances of such a structure that tubular graphen sheets are radially stacked relative to the axial direction, wherein the sheets forming tubes comprise discontinuous surfaces forming straight lines or curved lines not having continuous curvatures in parts of the cross sections of the tubes perpendicular to the axial direction thereof throughout parts of the axial lengths thereof, the maximum diameters of the cross sections of the tubes are 100 nm or smaller, continuous hollow parts continued to each other in the axial direction are provided at the centers of the cross sections, and an aspect ratio is 105 or less. The fine carbon fiber is formed in a non-graphite multi-layer structure in which the cross section perpendicular to the axis thereof at any axial position shows a contour-like stripe pattern by the observation with an electron microscope and the intervals between the graphen sheets in the cross section vary throughout the fiber.

Description

多様な構造を持つ微細な炭素繊維 技術分野 Fine carbon fiber with various structures
本発明は、 多様な構造を持つ、 微細な炭素シートの筒状積層体からなる微細 な炭素繊維に関する。 明  The present invention relates to fine carbon fibers having a variety of structures and formed of a cylindrical laminate of fine carbon sheets. Light
 Fine
背景技術 Background art
炭素繊維は良く知られた繊維状の炭素であるが、 近年微細炭素繊維が注目さ れている。 微細炭素繊維は、 繊維径によっていくつかの種類があり、 気相法炭 素繊維、 カーボンナノファイバ一、 カーボンナノチューブなどと呼ばれている 。 なかでも、 カーボンナノチューブは最も微細な、 繊維径が 1 0 0 n m以下の もので、 その特異な物性から、 ナノ電子材料、 複合材料、 燃料電池などの触媒 担持、 ガス吸収などの広い応用が期待されている。  Carbon fiber is a well-known fibrous carbon, but in recent years, fine carbon fiber has attracted attention. There are several types of fine carbon fibers depending on the fiber diameter, and are called vapor-grown carbon fibers, carbon nanofibers, and carbon nanotubes. Among them, carbon nanotubes are the finest, with a fiber diameter of less than 100 nm, and their unique physical properties are expected to be widely applied to nanoelectronic materials, composite materials, catalyst support for fuel cells, etc., and gas absorption. Have been.
カーボンナノチューブには、 炭素原子が網状に結合したシート (ダラフェン シート) 一層が筒状になったシングルカーボンナノチューブ (S WN T) ゃグ ラフェンシートの筒が何層も入れ子状に積層した多層力一ボンナノチューブ ( MWN T) が知られている。 直径とシートの巻き方の幾何学形状がカイラル指 数によって決定され、 カイラル指数によって金属や半導体の性質を示す。  Carbon nanotubes include a sheet of carbon atoms bonded in a net shape (Dalaphen sheet) Single carbon nanotube (S WNT) with one layer of cylinder 多層 Multilayer force with multiple layers of graphene sheet cylinders nested Monobon nanotubes (MWNT) are known. The geometry of the diameter and the winding of the sheet is determined by the chiral index, which indicates the properties of the metal or semiconductor.
これらのカーボンナノチューブは、 炭素電極を用いたアーク放電法やレーザ 一オーブン法、 遷移金属微粒子を触媒として用いて炭化水素ガス等を化学熱分 解する方法 (化学気相蒸着 (C VD) 法、 触媒化学蒸着 (C C VD) 法) で合 成される。  These carbon nanotubes are produced by the arc discharge method using a carbon electrode, the laser-oven method, the method of chemically and thermally decomposing hydrocarbon gas using transition metal fine particles as a catalyst (chemical vapor deposition (CVD) method, It is synthesized by catalytic chemical vapor deposition (CC VD).
従来知られている力一ボンナノチューブとして、  As a conventionally known carbon nanotube,
1 ) ハイペリオン (Hyper i on)社の特許、 米国特許 4 6 6 3 2 3 0ゃ特開平 0 3 - 174018に記載のカーボンナノチューブがあるが、 これらは実質的にグ ラファイト構造を持つ炭素原子の連続的な多重層からなるフィプリルであり、 規則的に配列した炭素原子の層の多層からなり、 各層とコアがフィブリルの円 柱軸に実質的に同心円状に配置されていて、 炭素原子の各層は C軸がフィプリ ルの円柱軸に実質的に直交している黒鉛質からなるフィブリルである。 ここで 、 ハイペリオン社の使う 「実質的」 とは、 ハイペリオン社の特許出願、 特表 2 000-511864号によれば、 「構造体の軸に沿って、 または平面内で、 あるいは体積で測定した時の物理的性質の値の 95%平均値の V- 10%以内 に入ること」 を意味する。 1) Hyperion's patent, U.S. Pat. -There are carbon nanotubes described in 174018, which are fibrils consisting of a continuous multi-layer of carbon atoms having a substantially graphite structure, each of which consists of multiple layers of regularly arranged carbon atoms, The core and the core are arranged substantially concentrically with the cylindrical axis of the fibril, and each layer of carbon atoms is a fibril made of graphite whose C axis is substantially perpendicular to the cylindrical axis of the fibril. Here, "substantially" used by Hyperion refers to "measured along the axis of the structure, in a plane, or by volume," according to the patent application of Hyperion, JP-T-2000-511864. 95% of the value of physical properties at the time should be within V-10% of the average value. "
2) ハイペリオン社の特許を含め、 現在までに多くの力一ボンナノチューブに 関する特許出願、 特開平 05— 179514、 特開平 06— 157016、 特 開平 06— 280116、 特開平 07— 150419、 特開平 08— 1003 28、 特開平 10— 273308、 特開平 1 1一 116218、 特開平 1 1― 180707、 特開平 1 1— 263610、 特開 2000— 95509、 特開 2000— 203819、 特開 2000— 319783、 特開 2001— 80 913、 特開 2001— 115342、 特開 2002— 154813、 米国特 許第 6221330、 米国特許第 6333016及び米国特許第 641348 7などがなされているが、 これらは全て、 黒鉛又は黒鉛的構造を持つものと規 定されている。 すなわち、 各層間は黒鉛的にタイトに固定されている。 さらに 炭素技術の標準的な物性値の表現方法である ( 1 ) 式で示される Graphitization Factor (黒鉛化指数) gが正の値をとるとされる。 2) To date, many patent applications related to carbon nanotubes, including Hyperion's patents, have been filed in Japanese Patent Application Laid-open Nos. Hei 05-179514, Hei 06-157016, Heikai Hei 06-280116, Hei Hei 07-150419, Hei 08-150419, Hei 08 — 1003 28, JP 10-273308, JP 11-116218, JP 11-180707, JP 11-263610, JP 2000-95509, JP 2000-203819, JP 2000-319783, JP 2001-80913, JP 2001-115342, JP 2002-154813, U.S. Pat.No. 6,221,330, U.S. Pat. No. 6,333,016 and U.S. Pat. It is defined as having That is, the layers are fixed tightly like graphite. Furthermore, it is assumed that the Graphitization Factor (g) shown in Eq. (1), which is a standard method for expressing physical property values in carbon technology, takes a positive value.
g= (3.44-d 002) / (3.44— 3.354) (1) 3) 曽根田は、 「カーボンナノファイバーによる水素吸蔵」 (NIRE ニュース 、 資源環境技術総合研究所、 1998年 12月) で、 一酸化炭素から金属表面 に析出するカーボンナノチューブを電子顕微鏡 (SEM、 TEM) 等で観察し た結果を報告している。 それによると、 1つのカーボンナノチューブは 「炭素 質の積層構造が繊維軸に対して一定の角度を持って発達し、円錐型構造 ( conical structure) を形成している」 もので、 乱層構造を持つことを観察し ている。 また、 別のグラフェンシ一トが C軸方向に特異的に成長している繊維 状炭素、 すなわち、 ハイペリオン社等が開示している力一ボンナノチューブは 、 結晶性の高い黒鉛構造を持っていると、 報告している。 g = (3.44-d 002 ) / (3.44— 3.354) (1) 3) Soneda wrote “Oxidation of Hydrogen with Carbon Nanofibers” (NIRE News, National Institute for Resources and Environment Technology, December 1998). We report the results of observing carbon nanotubes deposited on the metal surface from carbon with an electron microscope (SEM, TEM). According to that, one carbon nanotube is called "carbon The quality of the laminated structure develops at a certain angle with respect to the fiber axis, forming a conical structure. " In addition, fibrous carbon in which another graphene sheet grows specifically in the C-axis direction, that is, carbon nanotubes disclosed by Hyperion, etc. has a highly crystalline graphite structure. It is reported.
ここで、 炭素からなる物質あるいは炭素からなる繊維質物質が、 黒鉛 (Gra - phite あるいは Graphitic) であるかないか判定する方法としては、 X線 電 子線回折による判定方法 (Kerry, B.T., Physics of Graphite, Applied Science Publishers (1981) ) 及び Magnetoresistance による判定方法 ( Dresselhaus, M.S., Graphite Fibers and Filaments, Spring-Verlag (1988) ) がある。  Here, as a method for determining whether a carbon substance or a fibrous substance composed of carbon is graphite (Gra-phite or Graphitic), a determination method using X-ray electron diffraction (Kerry, BT, Physics of Graphite, Applied Science Publishers (1981)) and a determination method using Magnetoresistance (Dreselhaus, MS, Graphite Fibers and Filaments, Spring-Verlag (1988)).
X線 Z電子線回折による方法では、 黒鉛結晶格子がブラック反射により決め られた格子点に点あるいは線を描く。 黒鉛の構造が不完全な場合、 これらの点 は線になり、 黒鉛質を含まない場合は格子点 (1 12) が明確に現れない。 し たがって、 少なくとも格子点 (1 12) の点または線が明確に現れない場合に は、 黒鉛質 (Graphite) ではない。  In the X-ray and Z-electron diffraction methods, a graphite crystal lattice draws points or lines at lattice points determined by black reflection. If the graphite structure is imperfect, these points will be lines, otherwise the lattice points (1 12) will not be clearly visible. Therefore, it is not Graphite if at least the point or line at grid point (1 12) does not appear clearly.
Magnetoresistance 値による方法では、 黒鉛の電磁気特性を利用して黒鉛的 (Graphitic) な構造を含むか否かを判定する。 具体的には、 ある温度におい て、 Magnetoresistance を磁束密度に対して測定する。 被検体が黒鉛質を含む 場合には、 磁束密度の増加に対して Magnetoresistance値が正の値で増加する 。 黒鉛質を含まない場合には、 負の値で減少する。 不完全な黒鉛質を含む場合 には、 磁束密度が増加するに従い、 一旦負の値になり、 次第に正の値に変わり 増加する。 また、 測定温度が高いほどより大きな値をとる。  In the method based on the Magnetoresistance value, it is determined whether or not a graphite-like structure is included using the electromagnetic properties of graphite. Specifically, at a certain temperature, the Magnetoresistance is measured with respect to the magnetic flux density. When the specimen contains graphite, the Magnetoresistance value increases as the magnetic flux density increases. When no graphite is included, the value decreases with a negative value. In the case of imperfect graphite, the value temporarily becomes negative and gradually increases to a positive value as the magnetic flux density increases. Also, the higher the measurement temperature, the larger the value.
上記特許、 文献には製造方法としてアーク法、 レーザーアブレーシヨン法な どの極めて高温で炭素を蒸発させて製造する方法と、 触媒を無機担体に担持さ せた C CVD法等が開示されている。 いずれの方法においても微細炭素繊維あ るいはカーボンナノチューブは、 同心円状のグラフエンシートの積層構造及び 長軸方向に一様な形状を有しており、 黒鉛的な構造を持っていると報告されて いる。 しかし、 同心円状のグラフエンシートの積層構造では、 繊維は変形し易 くなるため、 繊維同士がファンデルワールス力で凝集して、 繊維の集合体は一 本一本の繊維が絡み合った構造となり易い。 したがって、 このような凝集構造 を有する粒子を複合材料用フィラーとしてマトリックス材料に混合して分散さ せようとすると、 絡み合った凝集粒子は容易に解かれず、 分散させるのが困難 であるという問題があつた。 The above patents and documents disclose methods for producing carbon by evaporating carbon at an extremely high temperature, such as an arc method and a laser ablation method, and a CCVD method in which a catalyst is supported on an inorganic carrier. . In either case, fine carbon fiber Alternatively, carbon nanotubes are reported to have a laminated structure of concentric graphene sheets and a uniform shape in the longitudinal direction, and have a graphite-like structure. However, in the laminated structure of concentric graphene sheets, the fibers are easily deformed, so that the fibers are aggregated by Van der Waals force, and the aggregate of fibers becomes a structure in which fibers are entangled one by one. easy. Therefore, when particles having such an aggregated structure are mixed and dispersed in a matrix material as a filler for a composite material, the entangled aggregated particles are not easily unraveled and are difficult to disperse. Atsuta.
そこで、 本発明は、 複合材用フイラ一として好ましい物性、 すなわち複合材 料におけるマトリックス材料への高分散性を有し、 できる限り細く、 比較的直 線性を持つことを特徴とする新規な構造の微細炭素繊維で、 好ましくは繊維最 大径 1 0 0 n m以下の微細炭素繊維を提供するものである。 発明の開示  Accordingly, the present invention provides a novel structure characterized by having preferable physical properties as a composite material filler, that is, having high dispersibility in a matrix material in a composite material, and having as small a thickness as possible and relatively linear. The present invention provides fine carbon fibers, preferably having a maximum fiber diameter of 100 nm or less. Disclosure of the invention
本発明の微細炭素繊維は、 筒の軸方向に直角の断面の形状が非円形となる不 連続な面を軸方向の一部の長さに渉って有する構造を導入したものである。 これにより、 本発明の微細炭素繊維は、 曲がりにくく、 弾性、 すなわち変形 後も元の形状に戻ろうとする性質を付与することができるので、 凝集時に絡み 合った構造となりにくく、 絡み合っても容易に解すことができる。 したがって 、 凝集構造中で絡み合い構造をとりがたく、 マトリックス材料に混合する際に 容易に分散させることができる。  The fine carbon fiber of the present invention has a structure in which a discontinuous surface having a non-circular cross section perpendicular to the axial direction of the cylinder is provided over a part of the length in the axial direction. Thereby, the fine carbon fiber of the present invention is hardly bent and can be provided with elasticity, that is, the property of trying to return to the original shape even after being deformed. Can be understood. Therefore, the entangled structure in the aggregated structure is difficult to remove, and can be easily dispersed when mixed with the matrix material.
本発明の微細炭素繊維の構造を図 1〜6により、 詳しく説明する。  The structure of the fine carbon fiber of the present invention will be described in detail with reference to FIGS.
筒状のグラフエンシートが軸方向に対する放射方向に積層した構造の繊維状 物質であって、 筒を構成するシートが、 その筒の軸方向に直角の断面の一部に 連続的な曲率を持たない直線又は曲線となる不連続な面を軸方向の一部の長さ に渉って有し、 その筒の該断面の最大径が 1 0 O n m以下、 該断面の中心部に 軸方向に連なる連続した中空部を有するアスペクト比が 105以下であり、 軸 方向の任意の位置における軸に直角の断面が電子顕微鏡による観察で等高線様 の縞模様を示し、 該断面でグラフエンシートの間隔が不均一な微細炭素繊維で ある。 A fibrous material with a structure in which cylindrical graph ensheets are laminated in the radial direction with respect to the axial direction, and the sheet constituting the cylinder has a continuous curvature in a part of the cross section perpendicular to the axial direction of the cylinder. There is a discontinuous surface that does not have a straight line or curve over a part of the length in the axial direction, and the maximum diameter of the section of the cylinder is 10 O nm or less, and the center of the section is An aspect ratio having a continuous hollow portion connected in the axial direction is 10 5 or less, and a cross section perpendicular to the axis at an arbitrary position in the axial direction shows a contour-like stripe pattern by observation with an electron microscope. Fine carbon fibers with uneven sheet spacing.
また、 本発明の微細炭素繊維は、 軸方向に少なくとも一箇所以上の屈折点を 有し、 その屈折点を挟む両側は直線状であって、 その直線部分の長さが軸に直 角の断面の最大径以上であり、 屈折点ではその両側で軸に直角の断面の面積が 、 非連続的に変化し、 グラフエンシートが非連続である部分が存在し、 そして グラフエンシートに 6員環ではない炭素環構造が存在する。  Further, the fine carbon fiber of the present invention has at least one or more refraction points in the axial direction, and the both sides sandwiching the refraction point are linear, and the length of the linear portion is perpendicular to the axis. At the refraction point, the area of the cross section perpendicular to the axis on both sides at the refraction point varies discontinuously, there is a portion where the graph ensheet is discontinuous, and the graph ensheet has a six-membered ring. There are carbocyclic structures that are not.
さらに、 本発明の微細炭素繊維は、 軸方向の任意の位置における軸に直角の 断面が電子顕微鏡による観察で等高線様の縞模様を示し、 該断面でダラフェン シートの間隔が繊維長全体に渉り変化する隣り合うグラフエンシート層を有す る非黒鉛性の多層構造からなり、 Magnetoresistance の値が磁束密度の変化に 対して負の値をとり、 X線回折の格子点で (1 12) 点を明瞭に有しない。 ま た、 中空部の断面の最大径が、 10nm以下で、 その変化量が 2 nm以下、 断 面積の最大値と最小値の差が 1 %以上である微細炭素繊維である。  Further, in the fine carbon fiber of the present invention, a cross section perpendicular to the axis at an arbitrary position in the axial direction shows a contour-like striped pattern when observed by an electron microscope, and the interval of the daraphen sheet in the cross section extends over the entire fiber length. It consists of a non-graphite multilayer structure with adjacent graph ensheet layers that change, and the value of Magnetoresistance takes a negative value with respect to the change in magnetic flux density. Not clearly. Also, it is a fine carbon fiber in which the maximum diameter of the cross section of the hollow part is 10 nm or less, the variation is 2 nm or less, and the difference between the maximum value and the minimum value of the cross section is 1% or more.
本発明の微細炭素繊維は、 また、 繊維の最外層表面にアモルファス炭素が析 出し、 その最大厚みが 10 nm以下であり、 繊維の比表面積が 20 OmVg 以下である。  In the fine carbon fiber of the present invention, amorphous carbon precipitates on the outermost layer surface of the fiber, the maximum thickness is 10 nm or less, and the specific surface area of the fiber is 20 OmVg or less.
本発明の微細炭素繊維は、 CVDまたは CCVD法で 1300°C以下の温度 で製造されたままの軸に直角の断面の外径が 100 nm以下の微細炭素繊維、 および好ましくは、 その繊維をさらに 3000°C以下で処理して得たものであ る。  The fine carbon fiber of the present invention is a fine carbon fiber having an outer diameter of 100 nm or less in a cross section perpendicular to an axis as produced by a CVD or CCVD method at a temperature of 1300 ° C. or less, and preferably further comprises It was obtained by processing at 3000 ° C or less.
本発明は、 さらに上記特徴の構造のいずれか 1つ以上を持つ微細炭素繊維を 全体の 0. 001 %以上含む繊維径 100 nm以下の微細炭素繊維集合体も含 むものである。 本発明の微細炭素繊維の利用にあたっては、 この集合体の形態 で利用されることが多い。 The present invention further includes an aggregate of fine carbon fibers having a fiber diameter of 100 nm or less containing 0.001% or more of the fine carbon fibers having any one or more of the above structures. When using the fine carbon fiber of the present invention, the form of this aggregate Often used in
次に、 本発明の微細炭素繊維の利用分野について説明する。  Next, the field of use of the fine carbon fiber of the present invention will be described.
本発明の微細炭素繊維は、 以下のような特性を有する。  The fine carbon fiber of the present invention has the following characteristics.
A) 導電性が高い  A) High conductivity
B ) 熱伝導性が高い  B) High thermal conductivity
C ) 摺動性が良い  C) Good slidability
D) 化学的安定性が良い  D) Good chemical stability
これらの特性を活かして複合材フィラーとして広い範囲に利用できる。  Utilizing these properties, it can be used in a wide range as a composite filler.
利用方法としては、 単繊維として利用する方法と、 粉体として利用する方法 に大別される。 単繊維として利用する場合は、 F E D、 電子顕微鏡素子、 半導 体素子、 他に電子放出能、 導電性、 超伝導性等の特性を利用する分野がある。 粉体として利用する方法には、 その利用形態によって、 1 ) 粉体を分散し、 ス ラリー状のような 0次元の複合材、 2 ) 線状に加工した 1次元の複合材、 3 ) シート状に加工した 2次元の複合材 (布、 フィルム、 紙) 、 4 ) 複雑な成形体 、 ブロック等の 3次元複合材に利用できる。 これらの形態と目的とする機能を, 組み合わせることによって、 極めて広い適用が可能になる。 これを機能別に具 体例を示すと、 次のようなものが例示される。  The method of use is broadly classified into a method using as a single fiber and a method using as a powder. When used as a single fiber, there are fields that utilize characteristics such as electron emission capability, conductivity, and superconductivity, in addition to FEDs, electron microscope elements, semiconductor elements. Depending on the form of use, 1) a 0-dimensional composite material, such as slurry, 2) a linearly processed 1-dimensional composite material, 3) a sheet It can be used for 3D composite materials such as 2D composite materials (fabric, film, paper) processed into a shape, and 4) complex molded objects and blocks. By combining these forms with the desired functions, an extremely wide range of applications is possible. The following is an example of a specific example of this for each function.
1 ) 導電性を利用するもの  1) Use of conductivity
樹脂に混合することによる導電性樹脂及び導電性樹脂成型体として, 例えば 包装材、 ガスケット、容器、 抵抗体、 導電性繊維、 電線、 接着剤、 インク、塗料 等に好適に用いられる。 また、 樹脂との複合材に加え、 無機材料、 特にセラミ ック、 金属等の材料に添加した複合材においても同様の効果が期待できる。 It is suitably used as a conductive resin and a conductive resin molded product by being mixed with a resin, for example, for packaging materials, gaskets, containers, resistors, conductive fibers, electric wires, adhesives, inks, paints, and the like. Similar effects can be expected with composite materials added to inorganic materials, especially ceramics and metals, in addition to composite materials with resins.
2 ) 熱伝導性を利用するもの 2) Using thermal conductivity
上記導電性の利用の場合と同様な使い方ができる。  The same usage can be performed as in the case of using the conductivity.
3 ) 電磁波遮蔽性を利用するもの 3) Devices that use electromagnetic wave shielding
樹脂に混合することにより、 電磁波遮蔽性塗料や成形して電磁波遮蔽材等と して好適である。 By mixing it with resin, it can be used as an electromagnetic wave shielding paint or molded electromagnetic wave shielding material. It is suitable.
4 ) 物理的特性を利用するもの  4) Those that use physical characteristics
摺動性を高めるために樹脂、 金属に混合してロール、 ブレーキ部品、 タイヤ 、 ベアリング、歯車、パンタグラフ等に利用する。  Used in rolls, brake parts, tires, bearings, gears, pantographs, etc. by mixing with resin and metal to enhance slidability.
また、 軽量で強靭な特性を活かして電線、 家電 ·車輛 ·飛行機等のボディ、 機械のハウジングに利用できる。  Utilizing its light weight and tough properties, it can be used for electric wires, home appliances, vehicles, airplanes, etc. bodies, and machine housings.
このほか、 従来の炭素繊維、 ビーズの代替としても使用でき、 例えば電池の 極材、スィッチ、防振材に応用する。  In addition, it can also be used as a substitute for conventional carbon fibers and beads. For example, it is applied to battery pole materials, switches, and vibration damping materials.
5 ) フィラー特性を利用するもの  5) Those utilizing filler characteristics
微細繊維は優れた強度を持ち、 柔軟性があり、 網目構造を構成するフイラ一 特性が優れている。 この特性を利用することによって、 リチウムイオン 2次電 池、 鉛蓄電池、 キャパシター、 燃料電池等のエネルギーディバイスの電極の強 化とサイクル特性の向上に寄与できる。 図面の簡単な説明  Fine fibers have excellent strength, are flexible, and have excellent properties of the filter constituting the network structure. By utilizing this characteristic, it is possible to contribute to strengthening the electrodes of energy devices such as lithium-ion secondary batteries, lead-acid batteries, capacitors, and fuel cells and improving the cycle characteristics. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の微細炭素繊維の透過電子顕微鏡写真である。  FIG. 1 is a transmission electron micrograph of the fine carbon fiber of the present invention.
図 2は、 本発明の微細炭素繊維の透過電子顕微鏡写真である。  FIG. 2 is a transmission electron micrograph of the fine carbon fiber of the present invention.
図 3は、 本発明の微細炭素繊維の透過電子顕微鏡写真である。  FIG. 3 is a transmission electron micrograph of the fine carbon fiber of the present invention.
図 4は、 本発明の微細炭素繊維の透過電子顕微鏡写真である。  FIG. 4 is a transmission electron micrograph of the fine carbon fiber of the present invention.
図 5は、 実施例 1で得られた微細炭素繊維の透過電子顕微鏡写真である。 図 6は、 実施例 2で得られた微細炭素繊維の透過電子顕微鏡写真である。 図 7は、 実施例 1の合成装置を模式的に示す図である。  FIG. 5 is a transmission electron micrograph of the fine carbon fiber obtained in Example 1. FIG. 6 is a transmission electron micrograph of the fine carbon fiber obtained in Example 2. FIG. 7 is a diagram schematically illustrating the synthesis apparatus according to the first embodiment.
図 8は、 実施例 1及び 2の高温熱処理装置を模式的に示す図である。  FIG. 8 is a diagram schematically showing the high-temperature heat treatment apparatuses of Examples 1 and 2.
図 9は、 実施例 2の合成装置を模式的に示す図である。  FIG. 9 is a diagram schematically illustrating the synthesizer according to the second embodiment.
図 1 0は、 実施例 1で得られた微細炭素繊維の X線による回折格子像を示す 写真である。 図 11は、 実施例 1で得られた微細炭素繊維の Magnetoresistanceを示す図 である。 FIG. 10 is a photograph showing an X-ray diffraction grating image of the fine carbon fibers obtained in Example 1. FIG. 11 is a diagram showing Magnetoresistance of the fine carbon fibers obtained in Example 1.
図 12は、 実施例 1で得られた微細炭素繊維を用いた複合材料の S EM写真 である。  FIG. 12 is a SEM photograph of a composite material using the fine carbon fibers obtained in Example 1.
図 13は、 従来の微細炭素繊維を用いた複合材料の S EM写真である。 発明を実施するための最良の形態  Figure 13 is a SEM photograph of a composite material using conventional fine carbon fibers. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の独自の構造を持つ微細炭素繊維は、 以下の方法で製造できる。 従来の気相成長炭素繊維 (VGCF) の製造技術の延長では、 たとえ CVD 法でも合成時間が長く、 細いものが生成しない。  The fine carbon fiber having a unique structure of the present invention can be produced by the following method. With the extension of the conventional technology for the production of vapor-grown carbon fiber (VGCF), even the CVD method requires a long synthesis time and does not produce fine materials.
基本的には、 遷移金属超微粒子を触媒として炭化水素等の有機化合物を CV D法又は CCVD法で化学熱分解するが、 反応炉内の微細炭素繊維核、 中間生 成物及び生成物である繊維の滞留時間を短くして繊維を得、 これをさらに高温 熱処理することが、 好ましい微細炭素繊維を製造する好適な方法である。  Basically, organic compounds such as hydrocarbons are chemically pyrolyzed by CVD method or CCVD method using transition metal ultrafine particles as catalyst, but they are fine carbon fiber nuclei, intermediate products and products in the reactor. Shortening the residence time of the fiber to obtain the fiber and subjecting it to a high-temperature heat treatment is a preferable method for producing a preferable fine carbon fiber.
(1) 合成方法  (1) Synthesis method
通常行われている炭化水素等の CVD法または CCVD法を用いて合成でき るが、 その際、  It can be synthesized using the usual CVD or CCVD method for hydrocarbons, etc.
A) 物質収支から計算した炭素の炉内滞留時間を 10秒以下にする  A) Reduce the carbon residence time in the furnace calculated from the material balance to 10 seconds or less
B) 反応速度を大きくするために、 炉内温度を 1000°C以上にする。  B) In order to increase the reaction rate, raise the furnace temperature to 1000 ° C or more.
C) 触媒および原料炭素化合物は 300°C以上に予熱してガス状で炉内に投入 する。 C) The catalyst and raw material carbon compound are preheated to 300 ° C or more and charged into the furnace in gaseous form.
D) 炉内ガス中の炭素濃度をある一定 (20容量%) 以下の濃度に制御する。 (2) 高温熱処理プロセス  D) Control the concentration of carbon in the furnace gas to a certain concentration (20% by volume) or less. (2) High temperature heat treatment process
本発明の微細炭素繊維を効率よく製造するには、 上記の方法で得た繊維を適 切な方法で 3000 °C以下の高温熱処理する。 上記で得た As Grownの繊維は 、 そのユニークなプロセスのため多くの炭化水素を吸着していて、 工業的に利 用するためには、 この炭化水素を分離する。 そのため、 例えば 1 5 0 0 °C以下 の温度で熱処理して分離する。 さらに、 炭化水素分離プロセスだけでは結晶の 発達が十分でないので、 合成温度より高い処理温度で熱処理する。 In order to efficiently produce the fine carbon fiber of the present invention, the fiber obtained by the above method is subjected to a high-temperature heat treatment at 3000 ° C or lower by an appropriate method. The As Grown fiber obtained above absorbs many hydrocarbons due to its unique process, and is industrially useful. This hydrocarbon is separated for use. Therefore, for example, heat treatment is performed at a temperature of 1500 ° C. or less to separate the layers. In addition, heat treatment is performed at a processing temperature higher than the synthesis temperature, because the development of crystals is not sufficient with the hydrocarbon separation process alone.
3 0 0 0 °C以下の高温熱処理には、 従来から行われているプロセスを適用で きる。 その条件として、  Conventional processes can be applied to the high-temperature heat treatment at 300 ° C. or lower. As the condition,
A) 上記 C V D法又は C C V D法で得た繊維を 1 5 0 0 °C以下の温度で炭化水 素を分離する。  A) Separate the hydrocarbons from the fibers obtained by the above CVD method or CVCD method at a temperature of 1500 ° C or less.
B ) 次段階として、 2 0 0 0 °C以上の温度で高温熱処理する。  B) As a next step, high-temperature heat treatment is performed at a temperature of 2000 ° C. or more.
この際、 結晶を保護するために不活性ガス雰囲気中に還元ガスや微量の一酸 化炭素ガスを添加してもよい。 実施例  At this time, a reducing gas or a trace amount of carbon monoxide gas may be added to an inert gas atmosphere to protect the crystal. Example
以下、 実施例により本発明を更に詳しく説明するが、 本発明は下記の実施例 に何ら限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
実施例 1 Example 1
C V D法によって、 トルエンを原料として微細炭素繊維を合成した。  Fine carbon fibers were synthesized using toluene as a raw material by the CVD method.
合成装置を図 7に示す。  Figure 7 shows the synthesizer.
触媒としてフエ口セン及びチォフェンの混合物を使用し、 水素ガスの還元雰 囲気で行った。 トルエン、 触媒を水素ガスとともに 3 7 5 °Cに加熱し、 反応炉 に供給し、 1 2 0 0 °Cで滞留時間 8秒で反応させた。 雰囲気ガスはセパレー夕 により分離して、 循環使用した。 炉内ガス中の炭化水素濃度は 7容量%であつ た。  The reaction was carried out in a reducing atmosphere of hydrogen gas using a mixture of Fe-mouth sen and thiophene as a catalyst. The toluene and the catalyst were heated to 375 ° C together with hydrogen gas, supplied to the reactor, and reacted at 1200 ° C with a residence time of 8 seconds. Atmospheric gases were separated by separation and reused. The hydrocarbon concentration in the furnace gas was 7% by volume.
合成された As Grownの微細炭素繊維のタール含有率は 1 0 %であった。 次に、 この繊維を 1 2 0 0 まで昇温し、 3 0分保持することにより炭化水 素分離処理を行い、 さらに、 2 8 0 0 °Cで高温熱処理をした。 炭化水素分離及 び高温熱処理工程の装置を図 8に示す。 得られた 2800°Cでの高温熱処理後の微細炭素繊維の電子顕微鏡写真を図 5に示す。 The tar content of the synthesized fine carbon fiber of As Grown was 10%. Next, the fiber was heated to 1200, held for 30 minutes to perform a hydrocarbon separation treatment, and further subjected to a high-temperature heat treatment at 280 ° C. Figure 8 shows the equipment for the hydrocarbon separation and high-temperature heat treatment process. Fig. 5 shows an electron micrograph of the obtained fine carbon fiber after the high-temperature heat treatment at 2800 ° C.
この図から、 特異な構造を持つ微細炭素繊維が確認できる。 生成した繊維の 径は、 SEMの観察の結果、 ある程度のばらつきがあり、 10〜60 ηπιφ、 比表面積は 49m2/gであった。 実施例 2 From this figure, fine carbon fibers having a unique structure can be confirmed. Observation by SEM showed some variation in the diameter of the formed fiber. The diameter was 10 to 60 ηπιφ, and the specific surface area was 49 m 2 / g. Example 2
図 9示す合成装置と図 8に示す高温熱処理装置を使用した。  The synthesis apparatus shown in FIG. 9 and the high-temperature heat treatment apparatus shown in FIG. 8 were used.
ベンゼンを炭素原料とし、 触媒のフエ口セン、 チォフェンを溶解した後、 3 80°Cで気化し、 反応炉に導入する。 反応炉の温度は 1150° (、 炉内の雰囲 気は水素ガス雰囲気とした。 水素ガス及び原料ガスの炉内の滞留時間は 7秒と した。 炉の下流で回収された As Gro龍の炭素繊維のタ一ル含有率は 14 %で あった。  Benzene is used as a carbon raw material, and the catalysts, huasen and thiophene, are dissolved, vaporized at 380 ° C, and introduced into the reactor. The temperature of the reactor was 1150 ° (The atmosphere in the furnace was a hydrogen gas atmosphere. The residence time of hydrogen gas and raw material gas in the furnace was 7 seconds. As Gro dragon collected downstream of the furnace The tar content of the carbon fibers was 14%.
次に、 この繊維を 1200°Cで 35分保持する熱処理を行った後、 この炭素 繊維の比表面積を測定したところ、 43m2/gであった。 さらに、 2800 °Cでの高温熱処理後の微細炭素繊維の電子顕微鏡写真を図 6に示す。 実施例 3 Next, after performing a heat treatment of holding the fiber at 1200 ° C. for 35 minutes, the specific surface area of the carbon fiber was measured and found to be 43 m 2 / g. FIG. 6 shows an electron micrograph of the fine carbon fibers after the high-temperature heat treatment at 2800 ° C. Example 3
実施例 1で得られた微細炭素繊維を X線回折装置を用いて、 回折格子像を撮 影した。 得られた回折格子像を図 10に示す。  A diffraction grating image of the fine carbon fiber obtained in Example 1 was taken using an X-ray diffractometer. FIG. 10 shows the obtained diffraction grating image.
この結果より、 格子点 (1 12) は観察されなかった。 したがって、 本発明 の微細炭素繊維は、 黒鉛的 (Graphitic) な物性を持たない。 実施例 4  From this result, the lattice point (1 12) was not observed. Therefore, the fine carbon fiber of the present invention does not have graphite-like physical properties. Example 4
Magnetoresistanceの測定  Magnetoresistance measurement
実施例 1で得られた微細炭素繊維 1. 00 gに対して、 増粘材 (株式会社ス リ一ポンド製、 耐熱性無機接着剤スリーポンド 3732) を 19. 00 g (C NT 5%) および 49. 0 g (CNT2. 0 %) 混合し、 遠心混合機で 200 0 r pm 10分間混練したものを 125μπι厚のポリイミド樹脂 (宇部興産 株式会社製、 ュ一ピレックス S) 上に lmm幅で直線状に付着させた。 For 1.00 g of the fine carbon fiber obtained in Example 1, a thickener (Susu Co., Ltd.) 19.00 g (5% CNT) and 49.0 g (2.0% CNT) were mixed with 3 pounds of heat-resistant inorganic adhesive made of Ripound and mixed at 2000 rpm for 10 minutes using a centrifugal mixer. The resulting product was linearly adhered in a lmm width on a 125 μπι thick polyimide resin (UPILEX S, manufactured by Ube Industries, Ltd.).
次に、 このポリイミト。 樹脂に対し、 磁束密度および温度を変化させた時の Magnetoresistance の値を測定した。 その結果を表 1および図 11に示す。 図 11より、 実施例 1で得られた微細炭素繊維は、 磁束密度が上昇するにつれて Magnetoresistance が負の値で減少し、 かつ 77Kと 273K (室温) での Resistivity Ratio が正、 すなわち温度が上がっても Magnetoresistanceが負 のままであった。 したがって、 この微細炭素繊維は、 黒鉛的 (Graphitic) な 物性を持たない。 表 1  Next, this polyimito. The value of Magnetoresistance when the magnetic flux density and temperature were changed for the resin was measured. The results are shown in Table 1 and FIG. According to FIG. 11, the fine carbon fiber obtained in Example 1 has a negative value of Magnetoresistance as the magnetic flux density increases, and a positive Resistivity Ratio at 77K and 273K (room temperature), that is, the temperature increases. Magnetoresistance also remained negative. Therefore, this fine carbon fiber does not have graphitic properties. table 1
Figure imgf000013_0001
実施例 5
Figure imgf000013_0001
Example 5
実施例 1で得られた微細炭素繊維とメタノール、 水およびメチルセルロース を 20 : 20 : 9 : 1の重量割合で混合し、 バーチカルグラ二ユレ一夕 (株式 会社パゥレックス製) により 15分造粒した。 その後、 100°C以上の温度で 乾燥機により乾燥してメタノールと水を除去し、 平均粒径 500 mの微細炭 素繊維の顆粒体を得た。 次に、 ポリ力一ポネート樹脂に対して、 この微細炭素繊維顆粒体を 5重量% 加え、 ベント式二軸押し出し機 (商品名 T E M 3 5、 東芝機械社製) にて溶融 混合し、 ペレットを製造した。 ここで得られた溶融混合後の複合材料の S E M 写真を図 1 2に示す。 比較例 1 The fine carbon fiber obtained in Example 1, methanol, water, and methylcellulose were mixed at a weight ratio of 20: 20: 9: 1, and granulated for 15 minutes by Vertical Granule Yule (manufactured by Parex Co., Ltd.). Thereafter, methanol and water were removed by drying at a temperature of 100 ° C or more by a drier to obtain granules of fine carbon fibers having an average particle diameter of 500 m. Next, 5% by weight of the fine carbon fiber granules were added to the polycarbonate resin, and the mixture was melted and mixed with a vented twin screw extruder (trade name: TEM35, manufactured by Toshiba Machine Co., Ltd.), and the pellets were mixed. Manufactured. Figure 12 shows an SEM photograph of the composite material obtained after melt mixing. Comparative Example 1
従来の微細炭素繊維を用いて、 実施例 5と同様にしてペレツトを製造した。 得られた複合材料の S E M写真を図 1 3に示す。  Pellets were produced in the same manner as in Example 5 using conventional fine carbon fibers. The SEM photograph of the obtained composite material is shown in FIG.
図 1 3に示すように、 従来の微細炭素繊維は、 凝集構造が容易に解かれず、 中央の部分にかたまつている。 これに対して、 図 1 2に示すように、 本発明の 微細炭素繊維は、 凝集構造中で絡み合い構造をとりがたく、 マトリックス材料 に混合する際に容易に分散することがわかる。 産業上の利用可能性  As shown in Fig. 13, the conventional fine carbon fiber has a cohesive structure that is not easily unraveled and clings to the central part. In contrast, as shown in FIG. 12, it can be seen that the fine carbon fibers of the present invention are hardly entangled in the aggregated structure and are easily dispersed when mixed with the matrix material. Industrial applicability
本発明の微細炭素繊維は、 F E D、 電子顕微鏡素子、 半導体素子、 複合材料 として導電性繊維、 電線、 電磁波遮蔽材、 電池の電極、 ブレーキ部品、 さらに 家電製品 ·車輛 ·飛行機のボディや機械のハウジングに好適に利用できる。  The fine carbon fiber of the present invention is used for FED, electron microscope element, semiconductor element, conductive fiber, electric wire, electromagnetic wave shielding material, battery electrode, brake part as composite material, and furthermore, home appliance, vehicle, airplane body and machine housing. It can be suitably used.

Claims

請 求 の 範 囲 The scope of the claims
1 . 筒状のグラフエンシートが軸方向に対する放射方向に積層した構造の繊維 状物質において、 筒を構成するシートが、 その筒の軸方向に直角の断面の一部 に連続的な曲率を持たない直線又は曲線となる不連続な面を軸方向の一部の長 さに渉って有し、 その筒の該断面の最大径が 1 0 0 n m以下であり、 該断面の 中心部に軸方向に連なる連続した中空部を有するァスぺクト比が 1 0 5以下の 微細炭素繊維。 1. In a fibrous material with a structure in which cylindrical graph ensheets are laminated in the radial direction with respect to the axial direction, the sheet constituting the cylinder has a continuous curvature in a part of the cross section perpendicular to the axial direction of the cylinder. A straight or curved discontinuous surface over a part of the length in the axial direction, the maximum diameter of the cross section of the cylinder is 100 nm or less, and the axis is located at the center of the cross section. § scan Bae transfected ratio 1 0 5 or less of the fine carbon fibers having a continuous hollow portion continuous in the direction.
2 . 前記の繊維状物質において、 軸方向の任意の位置における軸に直角の断面 が電子顕微鏡による観察で等高線様の縞模様を示し、 該断面でグラフエンシー トの間隔が不均一である請求の範囲 1記載の微細炭素繊維。  2. In the fibrous substance, a cross section perpendicular to the axis at an arbitrary position in the axial direction shows a contour-like stripe pattern by observation with an electron microscope, and the intervals of the graph sheets are non-uniform in the cross section. The fine carbon fiber according to item 1.
3 . 前記の繊維状物質において、 軸方向に少なくとも一箇所以上の屈折点を有 し、 その屈折点を挟む両側は直線状であって、 その直線部分の長さが軸に直角 の断面の最大径以上である請求の範囲 1又は 2記載の微細炭素繊維。  3. The fibrous substance has at least one or more refraction points in the axial direction, and both sides sandwiching the refraction points are linear, and the length of the linear portion is the maximum of a cross section perpendicular to the axis. 3. The fine carbon fiber according to claim 1, which is not less than a diameter.
4. 屈折点では、 その両側で軸に直角の断面の面積が、 非連続的に変化し、 グ ラフエンシートが非連続である部分が存在する請求の範囲 3記載の微細炭素繊 維。 4. The fine carbon fiber according to claim 3, wherein, at the refraction point, the area of the cross section perpendicular to the axis on both sides thereof changes discontinuously, and there is a portion where the graph ensheet is discontinuous.
5 . 屈折点では、 グラフエンシートに 6員環ではない炭素環構造が存在する請 求の範囲 4記載の微細炭素繊維。  5. The fine carbon fiber according to claim 4, wherein a carbon ring structure other than a 6-membered ring is present in the graph ensheet at the refraction point.
6 . 繊維状物質の最内殻の筒状ダラフェンシートが軸方向に渉って異なる断面 積を有し、 その断面積の最大値と最小値の差が 1 %以上である請求の範囲 1な いし 5のいずれかに記載の微細炭素繊維。 6. The innermost tubular dalaphen sheet of fibrous material has different cross-sectional areas in the axial direction, and the difference between the maximum value and the minimum value of the cross-sectional area is 1% or more. A fine carbon fiber according to any one of No. 5 to No. 5.
7 . 前記の繊維状物質が、 軸方向の任意の位置における軸に直角の断面が電子 顕微鏡による観察で等高線様の縞模様を示し、 該断面でグラフエンシートの間 隔が繊維長全体に渉り変化する隣り合うグラフエンシート層を有する非黒鉛性 の多層構造からなる請求の範囲 1記載の微細炭素繊維。 7. In the fibrous substance, a cross section perpendicular to the axis at an arbitrary position in the axial direction shows a contour-like stripe pattern when observed with an electron microscope, and the interval between the graph ensheets covers the entire fiber length at the cross section. 2. The fine carbon fiber according to claim 1, which has a non-graphite multilayer structure having adjacent graphene sheet layers that vary.
8. 前記繊維状物質が、 Magnetoresistance の値が、 磁束密度の変化に対して 負の値をとることを特徴とする請求の範囲 7記載の微細炭素繊維。 8. The fine carbon fiber according to claim 7, wherein the fibrous substance has a value of Magnetoresistance that takes a negative value with respect to a change in magnetic flux density.
9. 前記繊維状物質が、 X線回折の格子点で (112) 点を明瞭に有しないこ とを特徴とする請求の範囲 7記載の微細炭素繊維。  9. The fine carbon fiber according to claim 7, wherein the fibrous substance does not clearly have a (112) point in a lattice point of X-ray diffraction.
10. 中空部分の断面の最大径が、 10 nm以下で繊維の軸方向で変化してい て、 その変化量が 2 nm以下である請求の範囲 7ないし 9のいずれかに記載の 微細炭素繊維。  10. The fine carbon fiber according to any one of claims 7 to 9, wherein the maximum diameter of the cross section of the hollow portion changes in the axial direction of the fiber at 10 nm or less, and the change amount is 2 nm or less.
11. 繊維の最外層表面にアモルファス炭素が析出し、 その最大厚みが 10 n m以下である請求の範囲 1ないし 10のいずれかに記載の微細炭素繊維。 11. The fine carbon fiber according to any one of claims 1 to 10, wherein amorphous carbon is precipitated on the outermost layer surface of the fiber, and has a maximum thickness of 10 nm or less.
12. 比表面積が 200m2Zg以下である請求の範囲 1ないし 11のいずれ かに記載の微細炭素繊維。 12. The fine carbon fiber according to any one of claims 1 to 11, which has a specific surface area of 200 m 2 Zg or less.
PCT/JP2004/001400 2003-02-10 2004-02-10 Fine carbon fiber with various structures WO2004070095A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003032733 2003-02-10
JP2003-032733 2003-02-10

Publications (1)

Publication Number Publication Date
WO2004070095A1 true WO2004070095A1 (en) 2004-08-19

Family

ID=32844345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001400 WO2004070095A1 (en) 2003-02-10 2004-02-10 Fine carbon fiber with various structures

Country Status (1)

Country Link
WO (1) WO2004070095A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088416A (en) * 2015-07-10 2015-11-25 中国工程物理研究院化工材料研究所 Graphene-based hollow fiber and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248440A (en) * 1989-03-22 1990-10-04 Asahi Chem Ind Co Ltd Carbonaceous fiber aggregate
JPH02503334A (en) * 1988-01-28 1990-10-11 ハイピリオン・カタリシス・インターナシヨナル carbon fibrils
WO2001077423A1 (en) * 2000-04-12 2001-10-18 Showa Denko K.K. Fine carbon fiber and process for producing the same, and conductive material comprising the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02503334A (en) * 1988-01-28 1990-10-11 ハイピリオン・カタリシス・インターナシヨナル carbon fibrils
JPH02248440A (en) * 1989-03-22 1990-10-04 Asahi Chem Ind Co Ltd Carbonaceous fiber aggregate
WO2001077423A1 (en) * 2000-04-12 2001-10-18 Showa Denko K.K. Fine carbon fiber and process for producing the same, and conductive material comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088416A (en) * 2015-07-10 2015-11-25 中国工程物理研究院化工材料研究所 Graphene-based hollow fiber and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100682425B1 (en) Fine carbon fibers having various configurations
Coville et al. A review of shaped carbon nanomaterials
CA2600311C (en) Composite material
KR100980186B1 (en) Carbon fiber conjugate and composite material using the same
AU2010328139B2 (en) CNT-infused fibers in thermoplastic matrices
WO2010002004A1 (en) Carbon fiber and composite material
JP4004502B2 (en) Method for producing ultrafine fibrous nanocarbon
CA2576733C (en) Carbon fibrous structure
KR20140134142A (en) Highly dispersible carbon nano structures and method for preparation thereof, and polymer composite comprising the carbon nano structures
US10934637B2 (en) Process for producing fabric of continuous graphene fiber yarns from functionalized graphene sheets
EP1950253A1 (en) Recycled composite material
WO2007049748A1 (en) Composite material
RU2346090C2 (en) Ultra-thin carbon fibers with different structures
US10927478B2 (en) Fabric of continuous graphene fiber yarns from functionalized graphene sheets
JP2007119931A (en) Synthetic fiber
JP2007138338A (en) Composite material
WO2004070095A1 (en) Fine carbon fiber with various structures
Loutfy et al. Commercial production of fullerenes and carbon nanotubes
JP5242124B2 (en) Fine carbon fiber and composite material
KR100472123B1 (en) Preparation methode for fibrous nano cabon with hollow
Hirahara Carbon Nanocoils
WO2004007363A1 (en) Fine carbon sheet laminate having structure of week interlaminar bonding force and method for preparation thereof
JP2009096694A5 (en)
WO2004005596A1 (en) Fine carbon fiber having specific interlaminar structure and method for preparation thereof
KR100713609B1 (en) Fibrous carbon composed of two carbon nano-fibils

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP