WO2004007363A1 - Fine carbon sheet laminate having structure of week interlaminar bonding force and method for preparation thereof - Google Patents

Fine carbon sheet laminate having structure of week interlaminar bonding force and method for preparation thereof Download PDF

Info

Publication number
WO2004007363A1
WO2004007363A1 PCT/JP2003/008726 JP0308726W WO2004007363A1 WO 2004007363 A1 WO2004007363 A1 WO 2004007363A1 JP 0308726 W JP0308726 W JP 0308726W WO 2004007363 A1 WO2004007363 A1 WO 2004007363A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet laminate
fine carbon
carbon sheet
layers
fine
Prior art date
Application number
PCT/JP2003/008726
Other languages
French (fr)
Japanese (ja)
Inventor
Kunio Nishimura
Takayuki Tsukada
Original Assignee
Bussan Nanotech Research Institute Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bussan Nanotech Research Institute Inc. filed Critical Bussan Nanotech Research Institute Inc.
Priority to AU2003248258A priority Critical patent/AU2003248258A1/en
Publication of WO2004007363A1 publication Critical patent/WO2004007363A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols

Definitions

  • Fine carbon sheet laminate having a structure in which interlayer bonding strength is weak, and method of manufacturing the same
  • the present invention relates to a fine carbon sheet laminate having a structure in which interlayer bonding is weak, and a method for producing the same.
  • the sheet includes a flat sheet, a curved sheet, and a sheet that is not completely closed continuously.
  • fine carbon materials that have attracted attention as basic materials for nanotechnology include fullerenes and fine carbon fibers.
  • fine carbon fibers There are several types of fine carbon fibers depending on the fiber diameter, and they are called vapor-grown carbon fibers, carbon nanofibers, and carbon nanotubes.
  • the crystal structure of these fine carbon materials takes a variety of forms, such as a sheet in which carbon atoms are bonded in a hexagonal mesh (Graph Ensheet), a single carbon nanotube (SWNT) in which one layer is cylindrical, and a Graph Ensheet.
  • Graph Ensheet a hexagonal mesh
  • SWNT single carbon nanotube
  • MWNT multi-walled carbon nanotubes
  • MWNT multi-walled carbon nanotubes
  • nanocone having a crystal structure intermediate between the two, that is, a cone-shaped crystal structure in which the crystal plane extends at a certain angle with respect to the central axis thereof.
  • Examples of the fine carbon material having a shape other than the tubular shape include a rifon-like fine carbon material having a structure in which a graph ensheet is laminated so as to be orthogonal to a fiber direction, and a coil-like fine material having an amorphous structure having no crystallinity. And carbon materials.
  • carbon nanotubes are the finest and have a fiber diameter of less than 100 nm, so the diameter and the geometrical shape (helical structure) of the winding of the sheet are determined by the chiral index, and the metal is determined by the chiral index.
  • properties of semiconductors Its unique physical properties Therefore, it is expected to be widely applied to nanoelectronic materials, composite materials, catalyst support for fuel cells, etc., and gas absorption.
  • carbon nanotubes used as filler materials for electronic materials and composite materials preferably have good crystallinity, are straight, have a small fiber diameter, and are uniform. If it is curled instead of straight, the fibers tend to get entangled and become flocked. When it becomes a floc, it is difficult to grind, it is difficult to arrange fibers when used, and even when it is added to a resin or the like as a filler material, it is difficult to uniformly disperse it, making it difficult to obtain a composite material with desired characteristics . Therefore, it is currently considered difficult to use fine carbon sheets with incomplete crystal structures and tubes.
  • These fine carbon materials are synthesized by an arc discharge method using a carbon electrode, a laser oven method, or a method of chemically pyrolyzing hydrocarbon gas using transition metal fine particles as a catalyst (CVD method, CCVD method). .
  • the carbon nanotubes described in Hyperion, US Pat. No. 4,632,230, Japanese Patent Application Laid-Open No. 3-174018, etc. are fibrils substantially consisting of a continuous multilayer of carbon atoms having a graphite structure, and are regularly arranged. Consisting of multiple layers of aligned carbon atoms, each layer and core are arranged substantially concentrically with the fibril cylinder axis, and each carbon atom layer has its C axis substantially perpendicular to the fibril cylinder axis. It is a fibril made of graphite.
  • a method such as a melt spinning method disclosed in JP-A-2002-29719 clearly shows a graphitic carbon.
  • a method for producing a carbon nanotube having a crystalline structure is disclosed.
  • These fine carbon fibers are formed by laminating a graph ensheet, winding in a tubular shape, and encasing the tube in a multilayered form.
  • the graph encased has hexagonal meshes of carbon atoms formed without defects. .
  • the fine carbon sheet laminate of the present invention has a layer structure having a regularity and a strong bond like a graphite structure, because the graphene sheets having different chirality exist at random. Unlike the above, the degree of freedom between layers increases, Expected to be.
  • the present invention provides a fine carbon sheet laminate having a new structure different from a turbostratic structure and a method for producing the same.
  • a graph ensheet composed of carbon atoms is laminated.
  • the sheet includes a flat sheet, a curved sheet, and a multilayer sheet having a structure in which sheets that are not completely closed continuously as a tube are laminated.
  • the long side of each sheet is almost the same length, at least 100 nm or more, the short side is 3 nm or more, preferably 10 nm or more, and the short side length of each sheet may be different.
  • the carbon atoms that make up the layers exhibit crystallinity in the CO direction, unlike conventional graphite, because each layer has a chirality sheet with different chirality that is randomly combined. It is a fine carbon sheet laminate with a unique structure that does not have a 1: 1 ratio and has a unique structure in which the layers are bonded by a weak bonding force that is not bonded by van der Waals forces such as a graphite structure.
  • These fine carbon sheet laminates have the above-mentioned Graphitization factor g, which is a standard index indicating the physical state of graphite.
  • g (3.44-d 002 ) / (3.44-3.354) (1) may take a positive value of 0 or more, but it cannot be said that graphite is a graphite solely based on these physical properties.
  • the lattice spacing (002) which is a parameter of the lattice spacing (002) in Angstroms, which is a parameter of d M2 X-ray diffraction of the sheet laminate, is apparent from the analysis result of the electron microscope as though it has a graphite structure.
  • fine carbon fibers satisfying the above conditions do not have a graphite structure.
  • the fine carbon sheet laminate of the present invention does not have a graphite structure or a turbostratic structure.
  • the fine carbon sheet laminate having a structure that is not graphite according to the present invention has a laminate structure having a flat, curved, or almost tube-like shape, and the mutual relationship of graph sheets is random. It is characterized by having a structure.
  • a laminate of fine carbon sheets having such a structure exhibits surprisingly significant industrial-use properties compared to conventional carbon nanotubes having a graphitic structure.
  • each graph enclosure behaves as a single graph enclosure.
  • the graphene sheet itself is tightly coupled (Rigid) between C and C by SP 2 hybrid orbitals, and the Phonon phenomenon occurs. That is, the CC bond, which is harder than the bond between metal atoms, makes the conductivity of heat, that is, physical vibration, very high.
  • the thermal conductivity of the CC bond is 2000 WZm ° K, which is more than several times that of the metal bond.
  • the graphene that constitutes the graphene mainly has a negative graph initiation factor, so that the daraphen layer can vibrate without receiving mutual interference. It is possible to have higher thermal conductivity than metal.
  • the outermost layer of the graph ensheet is less susceptible to electronic interference from inside the tube, and the electrons on the graph ensheet easily react with substances outside the tube. Become.
  • the dalaphen layer is wide, other substances can be easily introduced between the layers.
  • the graph ensheet layer interval is wider than conventional carbon nanotubes, fullerenes, metal-encapsulated fullerenes, which have a high degree of freedom between layers and are relatively large,> It can be introduced between layers. This space can be secured if the distance between the layers is at least larger than 0.4 nm.
  • FIG. 1 is a diagram schematically showing a reaction apparatus of Example 1.
  • FIG. 2 is a diagram schematically showing a reaction apparatus of Example 2.
  • FIG. 3 is a transmission electron micrograph of the fine carbon sheet laminate obtained in Example 1.
  • FIG. 4 is a transmission electron micrograph of the fine carbon sheet laminate obtained in Example 2.
  • the chirality of such a fine carbon sheet laminate is determined by the molecular dynamics method.
  • a simulation was performed using the method (for the molecular dynamics calculation method, see Shigeo Maruyama, "Carbon Nanotubes (2002) Chapter 7: Generation and Mechanism of Single-Walled Carbon Nanotubes”).
  • Table 1 shows the chirality of the outer and inner layers of the fen sheet. It is clear that the chirality of the outer layer and the inner layer of such a fine carbon sheet laminate is stochastically determined, and in the case of a multilayer tube, it is probable that all layers have the same chirality. In this simulation, the chirality is calculated only at the extremes of metallic or semiconducting, but in reality, there is an intermediate chirality, so it is very unlikely that all layers will have the same chirality. With a low probability, it is clear that the fine carbon sheet laminate of the present invention has a random chirality.
  • the fine carbon sheet laminate of the present invention can be manufactured by the following method.
  • hydrogen compound is introduced into the reactor together with a carrier gas consisting of methane or an inert gas, 2 X 1 0 5 P a pressure below the reaction furnace temperature 6 0 O: ⁇ 1 2 5 0 ° C in a chemical heat Decomposition (CVD method).
  • transition metal catalyst may be used by being supported on a carrier (CCVD method).
  • transition metal examples include iron, cobalt, nickel, yttrium, titanium, vanadium, manganese, chromium, copper, niobium, molybdenum, palladium, stainless steel, and platinum.
  • transition metal compound these oxides, nitrates, sulfates, acetates, chlorides and the like can be used.
  • Compounds containing sulfur include sulfur alone, and H 2 S, CS 2 , S ⁇ 2 , thiol, thioether, and thiophene.
  • the fine carbon sheet laminate of the present invention has significant features as described above as compared with conventional carbon nanotubes, and thus has a wide range of applications.
  • the method of use is broadly classified into a method of using as a sheet and a method of using as a powder.
  • a method of using as a sheet there are fields that use characteristics such as electron emission capability and conductivity in addition to FEDs, semiconductor devices, and the like.
  • a 0-dimensional composite material such as a slurry
  • a linearly processed 1-dimensional composite material It can be used for 3D composites such as 2D composites (cloth, film, paper) processed into a sheet shape, and 4) complex molded products and blocks.
  • a conductive resin and a conductive resin molded product by being mixed with a resin, for example, for packaging materials, gaskets, containers, resistors, conductive fibers, adhesives, inks, and paints.
  • Example 1 Many of these are used as fillers and can be used as substitutes for conventional carbon fibers and beads. For example, they are applied to battery pole materials, switches, and vibration-proof materials. Example Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples. Example 1
  • the reactor was manufactured by the CVD method using the reactor shown in Fig. 1.
  • the raw material liquid was converted into minute droplets using an ultrasonic atomizer, and the droplets were carried into the system from the upper part of the reactor with the use of the Helium gas.
  • Helium gas was flowed from the upper part to the lower part of the reactor as an atmospheric gas, and pyrolyzed under the following reaction conditions.
  • Reactor temperature 1200 ° C
  • Atmosphere gas helium (200 ml / min) + hydrogen (40 ml / min)
  • TEM transmission electron microscope
  • Catalyst preparation 1.68 g of cobalt nitrate hexahydrate was dissolved in about 1 Om 1 of water, and 4 lm l of 0.14 M aqueous solution of ammonium molybdate was added and mixed. 75 g was mixed well in an evaporating dish to form a slurry. After drying in a dryer at 120 ° C for 1 ⁇ , the mixture was ground in a mortar to prepare a catalyst.
  • Reactor Horizontal tubular furnace with quartz reaction tube, catalyst particles are placed on a quartz plate and reacted It was set near the center of the tube.
  • Catalyst activation and reaction Heated to 800 t: under argon flow, held for 30 minutes, then bubbling argon into ethanol heated to 50 ° C, and introducing ethanol vapor into the reactor. To react on the catalyst. After introducing steam for 30 minutes, cooling was performed while flowing only argon gas, and then the product was taken out.
  • FIG. 4 shows a TEM photograph of the obtained fine carbon sheet laminate.
  • the fine carbon sheet laminate of the present invention is suitable as a conductive resin mixed with a resin, an electromagnetic wave shielding paint, and molded into a conductive resin molded article, an electromagnetic wave shielding material and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

A fine carbon sheet laminate having a structure of week interlaminar bonding force, wherein at least two graphene sheets composed of carbon atoms having a long side of 100 nm or more and a short side of 3 nm or more are laminated, respective layers have long sides of a similar length and short sides being different in length, respective groups of carbon atoms constituting two adjacent layers coordinate with each other in a relationship exhibiting no crystallinity in the C0 direction, two layers are bonded with each other with a bonding force weaker than the van der Waals force required for forming a graphite structure, the distance between two adjacent layers is 0.344 nm or more, and chiralities of respective layers are combined at random; and a method for preparing the fine carbon sheet laminate which comprises pyrolyzing an organic compound containing a Group VI element of the Periodic Table in the presence of a transition metal ultra-fine particle catalyst.

Description

明 細 書  Specification
層間相互の結合力の弱い構造を持つ微細な炭素シート積層体及びその製造方法 Fine carbon sheet laminate having a structure in which interlayer bonding strength is weak, and method of manufacturing the same
技術分野 Technical field
本発明は、 層間相互の結合力の弱い構造を持つ微細な炭素シート積層体及びそ の製造方法に関する。 シートは扁平なもの、 曲面状のもの及び筒状であって連続 的に完全に閉じてないものも含む。  The present invention relates to a fine carbon sheet laminate having a structure in which interlayer bonding is weak, and a method for producing the same. The sheet includes a flat sheet, a curved sheet, and a sheet that is not completely closed continuously.
背景技術 Background art
近年ナノテクノロジーの基盤材料として注目されている微細炭素材料には、 フ ラーレン、 微細炭素繊維などがある。 微細炭素繊維は、 繊維径によっていくつか の種類があり、 気相法炭素繊維、 カーボンナノファイバ一、 カーボンナノチュー ブなどと呼ばれている。  In recent years, fine carbon materials that have attracted attention as basic materials for nanotechnology include fullerenes and fine carbon fibers. There are several types of fine carbon fibers depending on the fiber diameter, and they are called vapor-grown carbon fibers, carbon nanofibers, and carbon nanotubes.
これらの微細炭素材料の結晶構造は多様な形態をとり、 炭素原子が六角網目状 に結合したシート (グラフエンシート) 一層が円筒状になったシングルカーボン ナノチューブ (S WN T) やグラフエンシー卜の円筒が何層も入れ子状に積層し た多層カーボンナノチューブ (MWN T) がある。 さらには、 この両者の中間的 な結晶構造、 すなわち、 結晶面がその中心軸に対して一定の角度をなして広がり を有するコ一ン状の結晶構造を有するナノコーンなどがある。  The crystal structure of these fine carbon materials takes a variety of forms, such as a sheet in which carbon atoms are bonded in a hexagonal mesh (Graph Ensheet), a single carbon nanotube (SWNT) in which one layer is cylindrical, and a Graph Ensheet. There are multi-walled carbon nanotubes (MWNT) in which a number of cylinders are nested in layers. Further, there is a nanocone having a crystal structure intermediate between the two, that is, a cone-shaped crystal structure in which the crystal plane extends at a certain angle with respect to the central axis thereof.
また、 チューブ状以外の形状の微細炭素材料としては、 グラフエンシートが繊 維方向に対して直交するように積層された構造のリポン状微細炭素材料や結晶性 を示さないアモルファス構造のコィル状微細炭素材料などが挙げられる。  Examples of the fine carbon material having a shape other than the tubular shape include a rifon-like fine carbon material having a structure in which a graph ensheet is laminated so as to be orthogonal to a fiber direction, and a coil-like fine material having an amorphous structure having no crystallinity. And carbon materials.
なかでも、 カーボンナノチューブは最も微細な、 繊維径が 1 0 0 n m以下のも ので、 直径とシートの巻き方の幾何学形状 (らせん構造) がカイラル指数によつ て決定され、 カイラル指数によって金属や半導体の性質を示す。 その特異な物性 から、 ナノ電子材料、 複合材料、 燃料電池などの触媒担持、 ガス吸収などの広い 応用が期待されている。 Among them, carbon nanotubes are the finest and have a fiber diameter of less than 100 nm, so the diameter and the geometrical shape (helical structure) of the winding of the sheet are determined by the chiral index, and the metal is determined by the chiral index. And properties of semiconductors. Its unique physical properties Therefore, it is expected to be widely applied to nanoelectronic materials, composite materials, catalyst support for fuel cells, etc., and gas absorption.
電子材料や複合材料のフィラー材として用いる力一ボンナノチューブは、 良好 な結晶性を有し、 真直ぐであること、 繊維径が細く、 かつ均一であることが好ま しいとされている。 真直ぐでなく、 カールしている場合には、 繊維どうしが絡み やすく、 フロック状になりやすい。 フロック状になると、 粉碎しにくく、 使用時 に繊維を配列させ難くなるし、 フイラー材として樹脂等に添加する場合にも、 均 一に分散し難くなるので所望の特性の複合材料を得にくくなる。 従って、 結晶構 造及びチューブが完全でない微細炭素シ一トは利用しにくいとされているのが現 状である。  It is said that carbon nanotubes used as filler materials for electronic materials and composite materials preferably have good crystallinity, are straight, have a small fiber diameter, and are uniform. If it is curled instead of straight, the fibers tend to get entangled and become flocked. When it becomes a floc, it is difficult to grind, it is difficult to arrange fibers when used, and even when it is added to a resin or the like as a filler material, it is difficult to uniformly disperse it, making it difficult to obtain a composite material with desired characteristics . Therefore, it is currently considered difficult to use fine carbon sheets with incomplete crystal structures and tubes.
これらの微細炭素材料は、 炭素電極を用いたアーク放電法、 レーザーオーブン 法や、 遷移金属微粒子を触媒として用いて炭化水素ガス等を化学熱分解する方法 (CVD法、 CCVD法) で合成される。  These fine carbon materials are synthesized by an arc discharge method using a carbon electrode, a laser oven method, or a method of chemically pyrolyzing hydrocarbon gas using transition metal fine particles as a catalyst (CVD method, CCVD method). .
ところで、 従来知られている力一ボンナノチューブとして、  By the way, as conventionally known carbon nanotubes,
1) ハイペリオン (Hyperion) 社特許 US 4663230、 特開平 3— 1740 18等に記載のカーボンナノチューブは、 実質的にグラフアイト構造を持つ炭素 原子の連続的な多重層からなるフイブリルであり、 規則的に配列した炭素原子の 層の多層からなり、 各層とコアがフィブリルの円柱軸に実質的に同心円状に配置 されていて、 炭素原子の各層は C軸がフィブリルの円柱軸に実質的に直交してい る黒鉛質からなるフィブリルである。  1) The carbon nanotubes described in Hyperion, US Pat. No. 4,632,230, Japanese Patent Application Laid-Open No. 3-174018, etc. are fibrils substantially consisting of a continuous multilayer of carbon atoms having a graphite structure, and are regularly arranged. Consisting of multiple layers of aligned carbon atoms, each layer and core are arranged substantially concentrically with the fibril cylinder axis, and each carbon atom layer has its C axis substantially perpendicular to the fibril cylinder axis. It is a fibril made of graphite.
2) ハイペリオン社の特許を含め、 現在までに多くのカーボンナノチューブに関 する特許出願、 例えば特開平 05— 179514 (日機装) 、 06— 15701 6 (NEC) 、 06-2801 16 (NEC) 、 07- 150419 (昭和電工 ) 、 08- 100328 (キヤノン) 、 10— 273308 (三菱化学) 、 1 1 - 116218 (大阪瓦斯) 、 11一 180707 (NEC) , 1 1— 2636 10 (トヨタ) 、 2000— 95509 (昭和電工) 、 2000— 203819 (大阪瓦斯) 、 2000— 31 9783 (日進ナノテック) 、 2001— 809 13 (日機装) 、 2001— 1 1 5342 (ェ技院) 等が出願されているが、 こ れらは全て、 黒鉛又は黒鉛的構造を持つものと規定されている。 すなわち、 各層 間は黒鉛的にタイ卜に固定されている。 さらに炭素技術の標準的な物性値の表現 方法である (1) 式で示される Graphitization Factor (黒鉛化指数) gが正の 値をとるとされる。 2) To date, many patent applications related to carbon nanotubes, including Hyperion's patents, have been filed, for example, in Japanese Patent Application Laid-Open Nos. 05-179514 (Nikkiso), 06-157016 (NEC), 06-280116 (NEC), 07- 150419 (Showa Denko), 08-100328 (Canon), 10-273308 (Mitsubishi Chemical), 11-116218 (Osaka Gas), 11-180707 (NEC), 11-1-2636 10 (Toyota), 2000-95509 ( Showa Denko), 2000-203819 (Osaka Gas), 2000-31 9783 (Nisshin Nanotech), 2001-80913 (Nikkiso), 2001-11 15342 (E-gi-in), etc., all of which are graphite or graphite-like It is prescribed to have a structure. That is, the layers are fixed to the tile in a graphitic manner. Furthermore, it is assumed that the graphitization factor g shown in Eq. (1), which is a standard method of expressing physical property values in carbon technology, takes a positive value.
g= (3.44-d002) / (3.44- 3.354) (1) g = (3.44-d 002 ) / (3.44- 3.354) (1)
3) 曽根田 ( 「カーボンナノファイバ一による水素吸蔵」 、 NIRE ニュース (資 源環境技術総合研究所) 、 1998年 12月) は、 一酸化炭素から金属表面に析出す るカーボンナノチューブを電子顕微鏡 (SEM、 TEM) 等で観察している。 そ れによると、 1つのカーボンナノチューブは 「炭素質の積層構造が繊維軸に対し て一定の角度を持って発達し、円錐型構造 (conical structure) を形成している 」 もので、 乱層構造を持つことを観察している。 また、 別のグラフエンシー卜が C軸方向に特異的に成長している繊維状炭素、 すなわち、 ハイペリオン社等が開 示しているカーボンナノチューブは、 結晶性の高い黒鉛構造を持っていると、 報 告している。  3) Soneda (“Hydrogen storage with carbon nanofibers”, NIRE News (National Institute for Environmental Science and Resources), December 1998) published an electron microscope (SEM) using carbon nanotubes deposited on metal surfaces from carbon monoxide. , TEM). According to the report, one carbon nanotube is "a layered structure of carbonaceous material that develops at a certain angle with respect to the fiber axis to form a conical structure." Observe to have. In addition, fibrous carbon in which another graph enclosure is growing specifically in the C-axis direction, that is, carbon nanotubes disclosed by Hyperion, etc., has a highly crystalline graphite structure. Reported.
4) 特開 200 1— 3420 14の微小な針状物質の周囲に炭素結晶構造物を析 出させる方法ゃ特開 2002 - 297 19の溶融紡糸法のような方法は、 明らか に黒鉛的な炭素結晶構造のカーボンナノチューブを生成する方法を開示するもの である。  4) A method of depositing a carbon crystal structure around a fine needle-like substance disclosed in JP-A-2001-342014. A method such as a melt spinning method disclosed in JP-A-2002-29719 clearly shows a graphitic carbon. A method for producing a carbon nanotube having a crystalline structure is disclosed.
これらの微細炭素繊維は、 グラフエンシートが積層し、 筒状に巻かれ、 筒が入 れ子状に多層となっていて、 グラフエンシー卜は炭素原子の六角網目が欠陥なく 形成されている。  These fine carbon fibers are formed by laminating a graph ensheet, winding in a tubular shape, and encasing the tube in a multilayered form.The graph encased has hexagonal meshes of carbon atoms formed without defects. .
これに対して、 本発明の微細な炭素シート積層体は、 カイラリティーが異なるグ ラフエンシートが無作為に存在するので、 黒鉛構造のような規則性があつて強固 に結合されている層構造とは異なり、 層間の自由度が増し、 特異な性質を示すも のと期待される。 On the other hand, the fine carbon sheet laminate of the present invention has a layer structure having a regularity and a strong bond like a graphite structure, because the graphene sheets having different chirality exist at random. Unlike the above, the degree of freedom between layers increases, Expected to be.
本発明は、 乱層構造とも異なる新しい構造の微細な炭素シート積層体及びその 製造方法を提供するものである。  The present invention provides a fine carbon sheet laminate having a new structure different from a turbostratic structure and a method for producing the same.
本発明の微細炭素シート積層体は、 炭素原子から構成されるグラフエンシート が積層状になる。 シートは扁平なもの、 曲面状になっているもの、 チューブとし て連続的に完全には閉じていないシートが積層した構造を持つ多層のシートも含 む。 各シートの長辺はほぼ同一の長さで、 少なくとも 100 nm以上、 短辺は 3 nm以上、 好ましくは 10 nm以上で、 各シートの短辺の長さは、 異なっていて よい微細炭素シート積層体、 特に隣接する 2つの層の層間距離が 0. 344nm より大きい、 好ましくは 0. 4 nm以上の微細な炭素シートの積層体である。 各 層のカイラリティー (Chirality) の異なるクラフェンシートが無作為に組み合 わされて構成されているために、 従来の黒鉛と異なり、 層を構成する炭素原子同 士が CO方向に結晶性を持たず、 1 : 1に対応していない、 また層間も黒鉛構造 のようにファンデルワールス力で結合していない弱い結合力で結合している特異 な構造の微細な炭素シート積層体である。  In the fine carbon sheet laminate of the present invention, a graph ensheet composed of carbon atoms is laminated. The sheet includes a flat sheet, a curved sheet, and a multilayer sheet having a structure in which sheets that are not completely closed continuously as a tube are laminated. The long side of each sheet is almost the same length, at least 100 nm or more, the short side is 3 nm or more, preferably 10 nm or more, and the short side length of each sheet may be different. It is a laminate of fine carbon sheets, in particular with an interlayer distance between two adjacent layers of greater than 0.344 nm, preferably greater than 0.4 nm. Unlike conventional graphite, the carbon atoms that make up the layers exhibit crystallinity in the CO direction, unlike conventional graphite, because each layer has a chirality sheet with different chirality that is randomly combined. It is a fine carbon sheet laminate with a unique structure that does not have a 1: 1 ratio and has a unique structure in which the layers are bonded by a weak bonding force that is not bonded by van der Waals forces such as a graphite structure.
これらの微細な炭素シ一ト積層体は、 黒鉛の物理的状態を示す標準的な指数で ある上記 Graphitization factor g (黒鈴化指数)  These fine carbon sheet laminates have the above-mentioned Graphitization factor g, which is a standard index indicating the physical state of graphite.
g= (3.44-d 002) / (3.44-3.354) (1) が 0以上の正の値をとる場合もあるが、 この物性値のみによつて黒鉛であるとは 言いがたい。 シート積層体の dM2X線回折によるパラメーターである格子面間隔 (002) をオングストロームで表した面間距離は、 電子顕微鏡の解析結果から 見かけ上、 黒鉛構造を取っているように見られるが、 g = (3.44-d 002 ) / (3.44-3.354) (1) may take a positive value of 0 or more, but it cannot be said that graphite is a graphite solely based on these physical properties. The lattice spacing (002), which is a parameter of the lattice spacing (002) in Angstroms, which is a parameter of d M2 X-ray diffraction of the sheet laminate, is apparent from the analysis result of the electron microscope as though it has a graphite structure.
1) シート各層の短辺の幅が異なる。 また、 長辺方向も各層の末端がずれている ことがある。 従って、 平板にすると平面的に縦横に余りが生じる。  1) The width of the short side of each layer of the sheet is different. Also, the ends of each layer may be shifted in the long side direction. Therefore, when a flat plate is formed, a surplus occurs in the vertical and horizontal directions.
2 ) カイラリティ一が一定でないので、 平板にした場合、 炭素の位置が各層ごと に異なる。 従って、 チューブを構成する各グラフエンシー卜の炭素原子同士は 1 : 1に対応できない。 2) Since the chirality is not constant, the carbon position is different for each layer when it is made flat. Therefore, the number of carbon atoms in each graph sheet constituting the tube is 1 : Cannot respond to 1.
3 ) 本微細炭素シート積層体を構成するグラフエンシートは、 完璧な構造のもの ばかりでなく、 欠陥を含んでいるものも多い。 従って、 隣り合った層を構成する グラフエンシー卜の炭素原子は 1 : 1に対応できない。  3) The graph ensheets that make up the present fine carbon sheet laminate have not only a perfect structure but also many defects. Therefore, the carbon atoms of the graph sheets constituting the adjacent layers cannot correspond to 1: 1.
よって、 上記の条件を満たす微細炭素繊維は黒鉛構造にはならない。  Therefore, fine carbon fibers satisfying the above conditions do not have a graphite structure.
一方、 乱層構造の定義により、 長さ方向に長く、 完璧に構成されている微細な 炭素シート積層体は乱層構造であるともいえない。 従って、 本発明の微細な炭素 シート積層体は黒鉛構造でも、 乱層構造でもない。  On the other hand, according to the definition of the turbostratic structure, a fine carbon sheet laminate that is long in the length direction and is perfectly configured cannot be said to be a turbostratic structure. Therefore, the fine carbon sheet laminate of the present invention does not have a graphite structure or a turbostratic structure.
すなわち、 本発明の上記黒鉛でない構造を持つ微細な炭素シート積層体は、 扁 平、 曲面状又はほぼチューブに近い形状の積層構造を持ち、 かつグラフエンシー トの相互関係は無作為である相互構造を持つことを特徴としている。  That is, the fine carbon sheet laminate having a structure that is not graphite according to the present invention has a laminate structure having a flat, curved, or almost tube-like shape, and the mutual relationship of graph sheets is random. It is characterized by having a structure.
こうような構造を持つ微細炭素シート積層体は、 従来の黒鉛的構造のカーボン ナノチューブと比較して、 驚くべきほどの工業利用上の有意な特性を発現する。 第一に、 各グラフエンシートが相互にゆるい結合力によって固定されているの で、 各グラフエンシー卜が各々単独のグラフエンシート的に挙動する。 グラフェ ンシートそのものは S P 2混成軌道により、 C - C間が堅く (Rigi d) 結合されて いて、 Phonon 現象が起こる。 すなわち、 金属原子間の結合よりも堅い C-C結合 により、 熱、 すなわち物理的振動の伝導度が非常に高くなる。 C - C結合の熱伝 導度は、 2 0 0 0 WZm° Kで、 金属結合の数倍以上である。 本発明の微細な炭 素シート積層体は構成するグラフェンが、 主に負の Graph i t i zat i on Fac torを持 つので、 ダラフェン層が相互の干渉を受けることなく、 振動することが可能であ り、 金属に比べて高い熱伝導度を持つことが可能である。 A laminate of fine carbon sheets having such a structure exhibits surprisingly significant industrial-use properties compared to conventional carbon nanotubes having a graphitic structure. First, since each graph ensheet is fixed by a loose coupling force with each other, each graph enclosure behaves as a single graph enclosure. The graphene sheet itself is tightly coupled (Rigid) between C and C by SP 2 hybrid orbitals, and the Phonon phenomenon occurs. That is, the CC bond, which is harder than the bond between metal atoms, makes the conductivity of heat, that is, physical vibration, very high. The thermal conductivity of the CC bond is 2000 WZm ° K, which is more than several times that of the metal bond. In the fine carbon sheet laminate of the present invention, the graphene that constitutes the graphene mainly has a negative graph initiation factor, so that the daraphen layer can vibrate without receiving mutual interference. It is possible to have higher thermal conductivity than metal.
第二に、 上記の同じ理由により、 ダラフェン層間の干渉が無いので、 電子の移 動が容易であり、 すなわち電気伝導度が高くなる。  Secondly, for the same reason as above, there is no interference between the dalaphen layers, so that electrons can easily move, that is, the electric conductivity increases.
第三に、 黒鉛と異なる相互構造であることにより、 磁場をかけると抵抗が増え る。 この効果は具体的には電磁波遮蔽性として発現し、 吸収した電磁波を熱に変 換することにより高いステルス性を示す。 Third, due to the mutual structure different from graphite, resistance increases when a magnetic field is applied. This effect is manifested specifically as electromagnetic wave shielding, and converts absorbed electromagnetic waves into heat. It shows high stealth property by replacing.
第四に、 黒鉛と異なる相互構造であることにより、 最外層のグラフエンシート はチューブ内部からの電子的干渉を受けにくく、 グラフエンシート上の電子は容 易にチューブ外側の物質と反応しやすくなる。  Fourth, due to the mutual structure different from graphite, the outermost layer of the graph ensheet is less susceptible to electronic interference from inside the tube, and the electrons on the graph ensheet easily react with substances outside the tube. Become.
また、 本発明の微細炭素シート積層体は、 ダラフェン層間が広いことにより、 層間に他の物質を導入しやすい。 すなわち、 従来の力一ボンナノチューブに比べ てグラフエンシート層間隔が広いので、 層間の自由度が高く比較的大きな物質で あるフラーレン、 金属内包フラーレン >原子番号の大きな金属原子及びそのィォ ンを、 層間に導入可能である。 層間を少なくとも 0 . 4 n mより大きくすれば、 この空間を確保することができることになる。 図面の簡単な説明  Moreover, in the fine carbon sheet laminate of the present invention, since the dalaphen layer is wide, other substances can be easily introduced between the layers. In other words, since the graph ensheet layer interval is wider than conventional carbon nanotubes, fullerenes, metal-encapsulated fullerenes, which have a high degree of freedom between layers and are relatively large,> It can be introduced between layers. This space can be secured if the distance between the layers is at least larger than 0.4 nm. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例 1の反応装置を模式的に示す図である。  FIG. 1 is a diagram schematically showing a reaction apparatus of Example 1.
図 2は、 実施例 2の反応装置を模式的に示す図である。  FIG. 2 is a diagram schematically showing a reaction apparatus of Example 2.
図 3は、 実施例 1で得られた微細な炭素シート積層体の透過電子顕微鏡写真で ある。  FIG. 3 is a transmission electron micrograph of the fine carbon sheet laminate obtained in Example 1.
図 4は、 実施例 2で得られた微細な炭素シート積層体の透過電子顕微鏡写真で ある。 発明を実施するための最良の形態  FIG. 4 is a transmission electron micrograph of the fine carbon sheet laminate obtained in Example 2. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の層間距離が 0 . 3 4 4 n mよりも大きいが、 このような微細炭素シ一 ト積層体のカイラリティー (Ch i ra l i ty) の Charac ter i zat i onを分子動力学法を 用いてシミュレーションを行った (分子動力学計算方法については、 丸山茂夫 「カーボンナノチューブ (2 0 0 2 ) 第 7章:単層カーボンナノチューブの 生成とメカニズム」 を参照) 。  Although the interlayer distance of the present invention is greater than 0.344 nm, the chirality of such a fine carbon sheet laminate is determined by the molecular dynamics method. A simulation was performed using the method (for the molecular dynamics calculation method, see Shigeo Maruyama, "Carbon Nanotubes (2002) Chapter 7: Generation and Mechanism of Single-Walled Carbon Nanotubes").
その結果、 このように層間距離の大きい微細炭素シート積層体を構成するダラ フェンシートの外層と内層のカイラリティーの関係は、 表 1に示される。 このよ うな微細炭素シート積層体の外層及び内層のカイラリティ一は確率的に定まり、 多層のチューブの場合、 全層が同一のカイラリティ一であることは確率的に低い ことが明らかである。 このシミュレーションはカイラリティ一が金属的か半導体 的かの両極端のみで計算しているが、 実際には、 この中間のカイラリティーが存 在するので、 全層が同一のカイラリティ一になることは非常に低い確率になり、 本発明の微細炭素シート積層体はカイラリティ一が無作為であることが明らかで ある。 As a result, the dollar constituting the fine carbon sheet laminate having such a large interlayer distance is obtained. Table 1 shows the chirality of the outer and inner layers of the fen sheet. It is clear that the chirality of the outer layer and the inner layer of such a fine carbon sheet laminate is stochastically determined, and in the case of a multilayer tube, it is probable that all layers have the same chirality. In this simulation, the chirality is calculated only at the extremes of metallic or semiconducting, but in reality, there is an intermediate chirality, so it is very unlikely that all layers will have the same chirality. With a low probability, it is clear that the fine carbon sheet laminate of the present invention has a random chirality.
外層と内層の力イラリティ一の関係 The relationship between the outer layer and the inner layer
層間距離 [nm] 層のカイラリティー 存在する確率 [%] 外層 内層 Interlayer distance [nm] Chirality of layer Probability of existence [%] Outer layer Inner layer
0. 376 メタリック メタリック 22. 4 メタリック 半導体 16. 8 半導体 メタリック 15. 0 半導体 半導体 45. 8 0. 376 Metallic Metallic 22.4 Metallic semiconductor 16.8 Semiconductor Metallic 15.0 Semiconductor Semiconductor 45.8
0. 400 メタリック メタリック 12. 2 メタリック 半導体 15. 7 半導体 メタリック 26. 1 半導体 半導体 46. 10.400 Metallic Metallic 12.2 Metallic semiconductor 15.7 Semiconductor Metallic 26.1 Semiconductor Semiconductor 46.1
0. 431 メタリック メタリック 18. 7 メタリック 半導体 15. 4 半導体 メタリック 21. 1 半導体 半導体 44. 7 本発明の微細な炭素シート積層体は、 次のような方法によって製造することがで きる。 0.431 Metallic Metallic 18.7 Metallic semiconductor 15.4 Semiconductor Metallic 21.1 Semiconductor Semiconductor 44.7 The fine carbon sheet laminate of the present invention can be manufactured by the following method.
少なくとも 1種以上の遷移金属またはその化合物の超微粒子を触媒として、 周 期律表の第 VI 族元素を含有する化合物と炭素源となる有機化合物または周期律 表の第 VI 族元素を含有する有機化合物を水素、 メタン又は不活性ガスからなる キャリアガスとともに反応炉に導入し、 2 X 1 0 5 P a以下の圧力、 反応炉の温 度 6 0 O :〜 1 2 5 0 °Cで化学熱分解 (C V D法) する方法。 A compound containing a Group VI element in the periodic table and an organic compound serving as a carbon source or an organic compound containing a Group VI element in the periodic table, using at least one transition metal or ultrafine particles of the compound as a catalyst. hydrogen compound, is introduced into the reactor together with a carrier gas consisting of methane or an inert gas, 2 X 1 0 5 P a pressure below the reaction furnace temperature 6 0 O: ~ 1 2 5 0 ° C in a chemical heat Decomposition (CVD method).
また、 遷移金属触媒は担体に担持させて用いてもよい (C C VD法) 。  Further, the transition metal catalyst may be used by being supported on a carrier (CCVD method).
遷移金属としては、 例えば鉄、 コバルト、 ニッケル、 イットリウム、 チタン、 バナジウム、 マンガン、 クロム、 銅、 ニオブ、 モリブデン、 パラジウム、 夕ング ステン、 白金等が挙げられる。 遷移金属化合物としては、 これらの酸化物、 硝酸 塩、 硫酸塩、 酢酸塩、 塩化物等が使用できる。  Examples of the transition metal include iron, cobalt, nickel, yttrium, titanium, vanadium, manganese, chromium, copper, niobium, molybdenum, palladium, stainless steel, and platinum. As the transition metal compound, these oxides, nitrates, sulfates, acetates, chlorides and the like can be used.
周期律表の第 VI 族元素を含有する化合物としては、 酸素を含むものとして C 0、 C〇2、 有機化合物としてメタノール、 エタノール等のアルコール類、 ァセ トン、 メチルェチルケトン等のケトン類、 フエノール、 クレゾ一ル等のフエノー ル類、 ジェチルエーテル等のエーテル類、 ホルムアルデヒド、 ァセトアルデヒド 等のアルデヒド類、 酢酸、 プロピオン酸、 コハク酸、 アジピン酸等の有機酸およ び酢酸メチル, 酢酸ェチル等のエステル類が使用できる。 また、 硫黄を含む化合 物としては、 単体の硫黄、 及び H 2 S、 C S 2、 S〇2、 チオール、 チォエーテル 、 チォフェン類が挙げられる。 次に、 本発明の微細な炭素シート積層体の利用分野について説明する。 The compounds containing group VI elements of the periodic table, C 0, C_〇 2, alcohols such as methanol, ethanol, etc. as organic compounds, § seton, ketones such as methyl E chill ketone as containing oxygen Phenols such as phenol, cresol and the like; ethers such as getyl ether; aldehydes such as formaldehyde and acetoaldehyde; organic acids such as acetic acid, propionic acid, succinic acid and adipic acid; and methyl acetate; Esters such as ethyl acetate can be used. Compounds containing sulfur include sulfur alone, and H 2 S, CS 2 , S〇 2 , thiol, thioether, and thiophene. Next, the field of application of the fine carbon sheet laminate of the present invention will be described.
本発明の微細な炭素シート積層体は従来のカーボンナノチューブに比べ >上記 説明の有意な特徴を有するので、 その応用範囲は広い。  The fine carbon sheet laminate of the present invention has significant features as described above as compared with conventional carbon nanotubes, and thus has a wide range of applications.
利用方法としては、 シートとして利用する方法と、 粉体として利用する方法に 大別される。 シートとして利用する場合は、 F E D、 半導体素子、 他に電子放出能、 導電性 等の特性を利用する分野がある。 The method of use is broadly classified into a method of using as a sheet and a method of using as a powder. When used as a sheet, there are fields that use characteristics such as electron emission capability and conductivity in addition to FEDs, semiconductor devices, and the like.
粉体として利用する方法には、 その利用形態によって、 1 ) 粉体を分散し、 ス ラリー状のような 0次元の複合材、 2 ) 線状に加工した 1次元の複合材、 3 ) シ ート状に加工した 2次元の複合材 (布、 フィルム、 紙) 、 4 ) 複雑な成形体、 ブ ロック等の 3次元複合材に利用できる。  Depending on the type of application, 1) a 0-dimensional composite material, such as a slurry, 2) a linearly processed 1-dimensional composite material, It can be used for 3D composites such as 2D composites (cloth, film, paper) processed into a sheet shape, and 4) complex molded products and blocks.
これらの形態と目的とする機能を組み合わせることによって、 極めて広い適用 が可能になる。 これを機能別に具体例を示すと、 次のようなものが例示される。  By combining these forms with the desired functions, an extremely wide range of applications is possible. The following are examples when this is shown for each function.
1 ) 導電性を利用するもの  1) Use of conductivity
樹脂に混合することによる導電性樹脂及び導電性樹脂成型体として, 例えば包 装材、 ガスケット、容器、 抵抗体、 導電性繊維、 接着剤、 インク >塗料等に好適に 用いられる。  It is suitably used as a conductive resin and a conductive resin molded product by being mixed with a resin, for example, for packaging materials, gaskets, containers, resistors, conductive fibers, adhesives, inks, and paints.
2 ) 熱伝導性を利用するもの  2) Using thermal conductivity
上記導電性の利用の場合と同様な使い方ができる。  The same usage can be performed as in the case of using the conductivity.
3 ) 電磁波遮蔽性を利用するもの  3) Devices that use electromagnetic wave shielding
樹脂に混合することにより、 電磁波遮蔽性塗料や成形して電磁波遮蔽材等とし て好適である。  When mixed with resin, it is suitable as an electromagnetic wave shielding paint or an electromagnetic wave shielding material formed by molding.
4 ) 物理的特性を利用するもの  4) Those that use physical characteristics
摺動性を高めるために樹脂、 金属に混合してロール、 ブレーキ部品、 タイヤ、 ベアリング、歯車 >パンタグラフ等に利用する。  Used in rolls, brake parts, tires, bearings, gears, pantographs, etc. by mixing with resin and metal to enhance slidability.
また、 軽量で強靭な特性を活かして電線、 家電 ·車輛,飛行機等のボディ、 機 械のハゥジングに利用できる。  In addition, it can be used for housing electric wires, home appliances, vehicles, bodies of airplanes, etc., and machines, making use of its lightweight and tough characteristics.
これらの多くはフイラ一としての利用であり、 従来の炭素繊維、 ビーズの代替 としても使用でき、 例えば電池の極材、スィツチ、防振材に応用する。 実施例 以下、 実施例により本発明を更に詳しく説明するが、 本発明は下記の実施例に 何ら限定されるものではない。 実施例 1 Many of these are used as fillers and can be used as substitutes for conventional carbon fibers and beads. For example, they are applied to battery pole materials, switches, and vibration-proof materials. Example Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples. Example 1
縦型反応炉を使用し、 図 1に示す反応装置により CVD法で製造した。  Using a vertical reactor, the reactor was manufactured by the CVD method using the reactor shown in Fig. 1.
超音波噴霧器で原料液を微小な液滴とし、 これをヘリゥムガスで反応炉上部よ り系内へキャリーした。 また、 雰囲気ガスとしてヘリウムガスを反応炉上部より 下部へ流し、 下記の反応条件により熱分解した。  The raw material liquid was converted into minute droplets using an ultrasonic atomizer, and the droplets were carried into the system from the upper part of the reactor with the use of the Helium gas. Helium gas was flowed from the upper part to the lower part of the reactor as an atmospheric gas, and pyrolyzed under the following reaction conditions.
生成物は自重により落下し反応炉下部の回収箱およびフィル夕一で回収した。 原料液:酢酸鉄 0. 1 5 gを溶解したエタノール 1 0 0m 1  The product dropped by its own weight and was collected in the collection box at the lower part of the reactor and at Filluichi. Raw material liquid: ethanol dissolved 0.15 g of iron acetate 100 m1
反応装置:内径 7 6 φの S i Cチューブ  Reactor: SiC tube with inner diameter of 76φ
反応炉温度: 1 2 0 0 °C  Reactor temperature: 1200 ° C
雰囲気ガス :ヘリウム (200m l /m i n) +水素 (40m l /m i n) 得られた微細な炭素シート積層体の透過電子顕微鏡 (TEM) 写真を図 3とし て示す。  Atmosphere gas: helium (200 ml / min) + hydrogen (40 ml / min) A transmission electron microscope (TEM) photograph of the obtained fine carbon sheet laminate is shown in FIG.
この図から、 約 1 nmに 3層のグラフエンシー卜が積層された微細な炭素シー 卜の積層体が確認できる。 また、 シートの網目構造が完璧ではなく、 欠陥の多い グラフエンシートであることが示される。 実施例 2  From this figure, it can be seen that a laminate of fine carbon sheets in which three layers of graphent are laminated at about 1 nm. In addition, it is shown that the mesh structure of the sheet is not perfect, and the graph ensheet is defective. Example 2
横型反応炉を用い、 図 2に示す反応装置により C C VD法で製造した。  It was manufactured by the CCVD method using a horizontal reactor and the reactor shown in Fig. 2.
触媒調製:硝酸コバルト六水和物 1. 6 8 gを約 1 Om 1の水に溶解後、 0. 14 Mのモリブデン酸アンモニゥム水溶液を 4 lm l添加混合し、 この液と Mg 〇粉末 8. 7 5 gを蒸発皿でよく混合してスラリー状とした。 1 2 0°Cの乾燥機 で 1晚乾燥後乳鉢にて粉砕して触媒を調製した。  Catalyst preparation: 1.68 g of cobalt nitrate hexahydrate was dissolved in about 1 Om 1 of water, and 4 lm l of 0.14 M aqueous solution of ammonium molybdate was added and mixed. 75 g was mixed well in an evaporating dish to form a slurry. After drying in a dryer at 120 ° C for 1 晚, the mixture was ground in a mortar to prepare a catalyst.
反応装置:石英反応管の横型管状炉、 触媒粒子は石英製の板の上に乗せ、 反応 管中央付近にセットした。 Reactor: Horizontal tubular furnace with quartz reaction tube, catalyst particles are placed on a quartz plate and reacted It was set near the center of the tube.
触媒の賦活および反応:アルゴン流通下、 8 0 0 t:まで加熱し、 3 0分保持後 、 5 0 °Cに加温したエタノールにアルゴンをバブリングして、 エタノール蒸気を 反応炉内へ導入して触媒上で反応させた。 3 0分蒸気を導入後、 アルゴンガスの みを流通しつつ冷却してから、 生成物を取り出した。  Catalyst activation and reaction: Heated to 800 t: under argon flow, held for 30 minutes, then bubbling argon into ethanol heated to 50 ° C, and introducing ethanol vapor into the reactor. To react on the catalyst. After introducing steam for 30 minutes, cooling was performed while flowing only argon gas, and then the product was taken out.
得られた微細な炭素シート積層体の T E Mによる写真を図 4に示す。  FIG. 4 shows a TEM photograph of the obtained fine carbon sheet laminate.
この図から、 グラフエンシートが 2層積層されており、 また実施例 1と同じく 欠陥の多いグラフエンシートであることが示される。 産業上の利用可能性  From this figure, it is shown that the graph ensheet has two layers of graph ensheets and has many defects as in Example 1. Industrial applicability
本発明の微細炭素シート積層体は、 樹脂に混合することによる導電性樹脂、 電 磁波遮蔽性塗料及び成形して導電性樹脂成型体、 電磁波遮蔽材料等として好適で ある。  The fine carbon sheet laminate of the present invention is suitable as a conductive resin mixed with a resin, an electromagnetic wave shielding paint, and molded into a conductive resin molded article, an electromagnetic wave shielding material and the like.
また、 摺動性を高めるために榭脂、 金属に混合してロール、 ブレーキ部品、 夕 ィャ、 ベアリング、 歯車、 パン夕グラフ等に、 さらに軽量で強靭な特性を活かし て電線、 家電 ·車両 ·飛行機のボディ、 機械のハウジングに利用できる。  In addition, it is mixed with resin and metal to improve the slidability, and is used for rolls, brake parts, gears, bearings, gears, pan and night graphs, etc. · Available for aircraft body, machine housing.

Claims

請 求 の 範 囲 The scope of the claims
1 . 炭素原子から構成される少なくとも 2枚のグラフエンシートで、 長辺の長さ が少なくとも 1 0 0 n m以上である該シー卜が多層に積層して、 各層の長辺がほ ぼ同一で、 隣りあった層を構成する炭素原子同士が C 0方向に結晶性のない配位 関係にあり、 層間が黒鉛構造を構成するために必要なファンデルワールス力より 弱い結合力で結合していることを特徴とする層間相互の結合力の弱い構造を持つ 微細な炭素シート積層体。 1. At least two graph ensheets composed of carbon atoms, the sheets having a long side of at least 100 nm or more are laminated in multiple layers, and the long sides of each layer are almost the same. The carbon atoms that constitute the adjacent layers have a coordination relationship with no crystallinity in the C0 direction, and the layers are bonded with a bonding force that is weaker than the van der Waals force required to form a graphite structure. A fine carbon sheet laminate having a structure in which the bonding strength between layers is weak.
2 . 積層したグラフエンシー卜の短辺の長さが、 それぞれ異なる請求の範囲 1記 載の微細な炭素シート積層体。  2. The fine carbon sheet laminate according to claim 1, wherein the lengths of the short sides of the laminated graph sheets are different from each other.
3 . 積層したグラフエンシートの短辺の長さが、 3 n m以上である請求の範囲 1 または 2記載の微細な炭素シート積層体。  3. The fine carbon sheet laminate according to claim 1 or 2, wherein the length of the short side of the laminated graph ensheet is 3 nm or more.
4 . 積層したダラフェンシートの長辺の長さがそれぞれ異なる請求の範囲 1ない し 3記載の微細な炭素シ一ト積層体。  4. The fine carbon sheet laminate according to any one of claims 1 to 3, wherein the long sides of the laminated Dalafen sheets are different from each other.
5 . 積層したグラフエンシートの隣り合った層を構成するシートのカイラリティ 一が無作為に組み合わされていることを特徴とする請求の範囲 1ないし 4記載の 微細な炭素シート積層体。 5. The fine carbon sheet laminate according to any one of claims 1 to 4, wherein chirality of sheets constituting adjacent layers of the laminated graph ensheets is randomly combined.
6 . 積層したグラフエンシー卜の網目構造が完璧ではないシートから構成される 請求の範囲 1ないし 5記載の微細な炭素シート積層体。  6. The fine carbon sheet laminate according to any one of claims 1 to 5, comprising a sheet in which the network structure of the laminated graph enclosure is not perfect.
7 . 積層構造における隣りあった層の網目構造を構成する炭素原子が 1 : 1に規 則的に対応していない請求の範囲 1ないし 6記載の微細な炭素シート積層体。7. The fine carbon sheet laminate according to any one of claims 1 to 6, wherein carbon atoms constituting a network structure of adjacent layers in the laminate structure do not regularly correspond to 1: 1.
8 . 請求の範囲 1ないし 7記載の微細な炭素シート積層体を短辺方向に巻くが、 連続的に完全には閉じていないチューブ状のシート積層体。 8. A tube-shaped sheet laminate in which the fine carbon sheet laminate according to claims 1 to 7 is wound in the short side direction, but is not completely closed continuously.
9 . 請求の範囲 8記載の微細な炭素シート積層体の長さと不完全チューブの比で あるァスぺクト比が 1 0 0以上である微細な炭素シート積層体。  9. A fine carbon sheet laminate according to claim 8, wherein an aspect ratio, which is a ratio of the length of the fine carbon sheet laminate to the incomplete tube, is 100 or more.
1 0 . 前記ァスぺクト比が 1 0 0 0 0以上である請求の範囲 9に記載の微細な炭 素シート積層体。 10. The fine coal according to claim 9, wherein the aspect ratio is 100 000 or more. Element sheet laminate.
1 1 . グラフエンシートからなる微細炭素シート積層体の層間に形成される中空 部分にフラーレン、 金属内包フラーレン、 金属原子及び/又は金属原子イオンを 充填した構造を持つ請求の範囲 1ないし 1 0のいずれかに記載の微細な炭素シー ト積層体。  11. The method according to claim 1, which has a structure in which a hollow portion formed between layers of the fine carbon sheet laminate composed of a graphene sheet is filled with fullerene, metal-encapsulated fullerene, metal atoms and / or metal atom ions. The fine carbon sheet laminate according to any one of the above.
1 2 . グラフエンシー卜からなる微細な炭素シート積層体を製造する方法におい て、 少なくとも 1種類以上の遷移金属又はその化合物の超微粒子を触媒として、 周期律表の VI族元素を含有する化合物と有機化合物または周期律表の VI族元素 を含有する有機化合物を 2 X 1 0 5 P a以下の圧力下で化学熱分解 (C V D) す る請求の範囲 1ないし 1 1のいずれかに記載の微細な炭素シート積層体の製造方 法。 12. In a method for producing a fine carbon sheet laminate composed of a graphitic sheet, a compound containing a Group VI element of the periodic table using at least one kind of transition metal or ultrafine particles of the compound as a catalyst according to any one to no claim 1, wherein you chemical pyrolysis (CVD) 1 1 the organic compound containing a group VI element of the organic compound or the periodic table under 2 X 1 0 5 P a pressure below the A method for producing a fine carbon sheet laminate.
1 3 . グラフエンシー卜からなる微細な炭素シート積層体を製造する方法におい て、 少なくとも 1種類以上の遷移金属またはその化合物の超微粒子触媒を担体に 担持させて、 周期律表の VI 族元素を含有する化合物と有機化合物または周期律 表の VI 族元素を含有する有機化合物を 2 X 1 0 5 P a以下の圧力下で熱分解す る触媒化学気相合成法 (C C V D法) による請求の範囲 1ないし 1 1のいずれか に記載の微細な炭素シート積層体の製造方法。 13. In a method for producing a fine carbon sheet laminate composed of a graphitic sheet, at least one kind of transition metal or an ultrafine catalyst of a compound thereof is supported on a carrier, and a group VI element of the periodic table is provided. containing compound and an organic compound or an organic compound containing a group VI elements of the periodic table 2 X 1 0 5 P a following catalytic chemical vapor phase synthesis method you pyrolysis under pressure (CCVD method) by the claims The method for producing a fine carbon sheet laminate according to any one of ranges 1 to 11.
PCT/JP2003/008726 2002-07-16 2003-07-09 Fine carbon sheet laminate having structure of week interlaminar bonding force and method for preparation thereof WO2004007363A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003248258A AU2003248258A1 (en) 2002-07-16 2003-07-09 Fine carbon sheet laminate having structure of week interlaminar bonding force and method for preparation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-206457 2002-07-16
JP2002206457 2002-07-16

Publications (1)

Publication Number Publication Date
WO2004007363A1 true WO2004007363A1 (en) 2004-01-22

Family

ID=30112796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008726 WO2004007363A1 (en) 2002-07-16 2003-07-09 Fine carbon sheet laminate having structure of week interlaminar bonding force and method for preparation thereof

Country Status (2)

Country Link
AU (1) AU2003248258A1 (en)
WO (1) WO2004007363A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790242B1 (en) 2007-10-09 2010-09-07 University Of Louisville Research Foundation, Inc. Method for electrostatic deposition of graphene on a substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001080913A (en) * 1999-07-13 2001-03-27 Nikkiso Co Ltd Carbonaceous nanotube, fiber assembly and production of carbonaceous nanotube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001080913A (en) * 1999-07-13 2001-03-27 Nikkiso Co Ltd Carbonaceous nanotube, fiber assembly and production of carbonaceous nanotube

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ENDO M. ET AL.: "stacking nature of graphene layers in carbon nanotubes and nanofibres", J. PHYS. CHEM. SOLIDS, vol. 58, no. 11, 1997, pages 1707 - 1712, XP000905021 *
SHIGEO MARUYAMA ET AL.: "Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol", CHEM. PHYS. LETT., vol. 360, 10 July 2002 (2002-07-10), pages 229 - 234, XP002967770 *
WENCAI REN ET AL.: "Morphology diameter distribution and raman scattering measurements of double-walled carbon nanotubes synthesized by catalytic decomposition of methane", CHEM. PHYS. LETT., vol. 359, 20 June 2002 (2002-06-20), pages 196 - 202, XP002973970 *
ZHOU O. ET AL.: "Defects in carbon nanostructures", SCIENCE, vol. 263, 1994, pages 1744 - 1747, XP002967052 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790242B1 (en) 2007-10-09 2010-09-07 University Of Louisville Research Foundation, Inc. Method for electrostatic deposition of graphene on a substrate

Also Published As

Publication number Publication date
AU2003248258A1 (en) 2004-02-02

Similar Documents

Publication Publication Date Title
Jia et al. Advances in production and applications of carbon nanotubes
Zhao et al. Growth of carbon nanocoils by porous α-Fe 2 O 3/SnO 2 catalyst and its buckypaper for high efficient adsorption
JP3761561B1 (en) Fine carbon fiber with various structures
Coville et al. A review of shaped carbon nanomaterials
Shaikjee et al. The synthesis, properties and uses of carbon materials with helical morphology
Awasthi et al. Synthesis of carbon nanotubes
US7592389B2 (en) Conductive polymeric structures containing graphite nanofibers having graphite parallel to the growth axis
US20060008408A1 (en) Fibrous nano-carbon and preparation method thereof
Li et al. Micro-nanospheres assembled with helically coiled nitrogen-doped carbon nanotubes: fabrication and microwave absorption properties
WO2007035442A2 (en) Conductive silicone and methods for preparing same
KR101627016B1 (en) Highly dispersible carbon nano structures and method for preparation thereof, and polymer composite comprising the carbon nano structures
CA2629849A1 (en) Mixed structures of single walled and multi walled carbon nanotubes
De et al. Carbon nanotube as electrode materials for supercapacitors
Zhu et al. Direct fabrication of single-walled carbon nanotube macro-films on flexible substrates
Monthioux et al. Carbon nanotubes
Dhand et al. Synthesis and comparison of different spinel ferrites and their catalytic activity during chemical vapor deposition of polymorphic nanocarbons
Kichambare et al. Thin film metallic catalyst coatings for the growth of multiwalled carbon nanotubes by pyrolysis of xylene
WO2004007363A1 (en) Fine carbon sheet laminate having structure of week interlaminar bonding force and method for preparation thereof
WO2004005596A1 (en) Fine carbon fiber having specific interlaminar structure and method for preparation thereof
Ismael Mechanical properties of nanotubes
KR100472123B1 (en) Preparation methode for fibrous nano cabon with hollow
KR100483803B1 (en) Preparation method for fibrous nano-carbon
Lashmore et al. Direct CVD Synthesis of Carbon Nanotube Aerogels and Textiles
KR20140142838A (en) A method for preparing carbon nanofibers and carbon nanofibers prepared by using same
KR100713609B1 (en) Fibrous carbon composed of two carbon nano-fibils

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP