WO2004069800A1 - Polynuclear organometallic complexes, organic el devices and organic el displays - Google Patents

Polynuclear organometallic complexes, organic el devices and organic el displays Download PDF

Info

Publication number
WO2004069800A1
WO2004069800A1 PCT/JP2003/001372 JP0301372W WO2004069800A1 WO 2004069800 A1 WO2004069800 A1 WO 2004069800A1 JP 0301372 W JP0301372 W JP 0301372W WO 2004069800 A1 WO2004069800 A1 WO 2004069800A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
structural formula
organometallic
atom
Prior art date
Application number
PCT/JP2003/001372
Other languages
French (fr)
Japanese (ja)
Inventor
Tasuku Satoh
Wataru Sotoyama
Norio Sawatari
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to AU2003207201A priority Critical patent/AU2003207201A1/en
Priority to PCT/JP2003/001372 priority patent/WO2004069800A1/en
Publication of WO2004069800A1 publication Critical patent/WO2004069800A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic System
    • C07F1/005Compounds containing elements of Groups 1 or 11 of the Periodic System without C-Metal linkages
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/114Poly-phenylenevinylene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • H10K85/143Polyacetylene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • H10K85/146Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE poly N-vinylcarbazol; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom

Definitions

  • the present invention relates to an organometallic dinuclear complex suitable as a light emitting material in an organic EL device, an organic EL device using the organometallic dinuclear complex, and the organic EL device.
  • the present invention relates to an organic EL display using an EL element.
  • BACKGROUND ART Organic EL devices have features such as self-emission and high-speed response, and are expected to be applied to flat panel displays.
  • organic thin films with hole transport properties and electron transport Since the two-layer type (laminated type) in which an organic thin film (electron transport layer) is laminated (for example, see Non-Patent Document 1), large-area light emission that emits light at a low voltage of 1 OV or less has been reported. It is gaining interest as an element.
  • the stacked organic EL device has a basic structure of a positive electrode / a hole transport layer / a light emitting layer / an electron transport layer / a negative electrode, wherein the light emitting layer is the same as the hole transport layer or the two-layer type.
  • the electron transport layer may have the same function.
  • the principle of light emission in the organic EL element is that when a voltage is applied between both electrodes, electrons are injected from the negative electrode side, holes are injected from the positive electrode side, and electrons are injected into the light emitting layer. This is a phenomenon in which light is emitted when the light emitting material of the light emitting layer is deactivated from the excited state to the ground state.
  • Organic EL devices are recently expected to be applied to full-color displays.
  • the full-color display it is necessary to arrange pixels that emit light of three primary colors of blue (B), green (G), and red (R) on a panel. ), Green (G), and red (R) light emission methods.
  • B White light emission (blue (B), green (G), and red (R) light
  • C Separating the light emission from the organic EL device that emits blue light into the three primary colors using a color filter.
  • a method has been proposed in which a color conversion layer using fluorescent light emission converts the light into green (G) and red (R) light.
  • a host material which is a main material, is doped with a small amount of a dye molecule having high fluorescent luminescence as a guest material to form a luminescent layer exhibiting high luminous efficiency.
  • an object of the present invention is to solve the conventional problems and achieve the following objects. That is, the present invention provides an organometallic dinuclear complex suitable as a light-emitting material in an organic EL device, and an organic EL using the organometallic dinuclear complex, which has excellent thermal and electrical stability, and is excellent in lifetime, luminous efficiency, and the like. It is an object of the present invention to provide a device and an organic EL display having a high performance and a long life using the organic EL device.
  • the organometallic dinuclear complex of the present invention is obtained by crosslinking at least two Group 1 metal elements in which a ligand having at least one ⁇ -conjugated moiety is coordinated and bonded with a halogen atom. It is characterized by being used for.
  • the emission wavelength can be changed and adjusted by appropriately changing the number and type of the ligand, the group 1B metal element and the halogen atom, and the desired red emission, green emission, blue emission, and the like can be obtained. can get. Further, since the organometallic dinuclear complex coordinates the ligand, it has excellent overall thermal and electrical stability.
  • the organic EL device of the present invention has an organic thin film layer between a positive electrode and a negative electrode, and the organic thin film layer is a group 1 metal having a ligand coordinated with at least one ⁇ -conjugated moiety. It contains, as a light-emitting material, an organometallic dinuclear complex in which at least two of the elements are crosslinked by a halogen atom.
  • FIG. 1 is a schematic explanatory view for explaining an example of a layer configuration in an organic EL device of the present invention.
  • FIG. 2 is a schematic explanatory view for explaining a structural example of a passive matrix organic EL display (passive matrix panel).
  • FIG. 3 is a schematic diagram for explaining a circuit in the passive matrix organic EL display (passive matrix panel) shown in FIG.
  • FIG. 4 is a schematic explanatory diagram for explaining an example of the structure of an active matrix type organic EL display (active matrix panel).
  • FIG. 5 is a schematic diagram for explaining a circuit in the active matrix organic EL display (active matrix panel) shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the organometallic dinuclear complex of the present invention has a structure in which at least two of Group 1 metal elements in which a ligand having at least one ⁇ -conjugated moiety is coordinated and bonded are cross-linked by a halogen atom. Used for EL elements.
  • the organometallic dinuclear complex is not particularly limited as long as it has the above structure, and can be selected according to the purpose.
  • a complex represented by the following structural formula (1) is preferable. ⁇
  • M represents a Group 1B metal element.
  • the group 1B metal element is a heavy metal that is extremely stable to oxygen, water, acid, and alkali metal, and is called a noble metal element, and examples thereof include Cu, Ag, and Au.
  • At least two group IB metal elements M are contained in the organometallic dinuclear complex.
  • X represents a halogen atom.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • L is a ligand coordinated and bonded to the group 1B metal element M so as to satisfy the stable coordination number of the group 1B metal element M, and is a ligand having at least one ⁇ -conjugated moiety.
  • the stable coordination number of the group 1 metal element is 4, the ligand L is selected such that the stable coordination number is 4, but the stable coordination number of this ligand is Also includes the number of halogen atoms bridging the Group 1 metal element.
  • represents the number of ligands L, and represents an integer of 1 to 2.
  • the ligand L is not particularly limited and may be appropriately selected depending on the intended purpose.
  • an atom capable of monodentate or bidentate or more coordination bond with the group 1B metal element may be selected from an aromatic ring. Preferred examples include those partially contained.
  • the atom is preferably selected from, for example, a nitrogen atom, an oxygen atom, a chalcogen (sulfur atom, selenium atom, tellurium atom, polonium atom) and a phosphorus atom.
  • a cyclic compound having a 1- to 6-membered aliphatic or aromatic ring containing a nitrogen atom is preferable.
  • quinoline, pyridine, 2 , 2, 1-biviridine, derivatives thereof, and the like are preferable, and among these, those represented by the following structural formula are more preferable.
  • R 1 represents one or more substituents each bonded to an arbitrary position of the cyclic structure, for example, a hydrogen atom, a halogen atom, an alkoxyl A group, an amino group, an alkyl group, a cycloalkyl group, an aryl group or an aryloxy group which may contain a nitrogen atom or a sulfur atom, which may be further substituted by a substituent.
  • the R 1 may be the same or different from each other, and are bonded to each other at any adjacent substitution position to form a nitrogen atom, a sulfur atom, or an oxygen. It may form an aromatic ring which may contain atoms, and these may be further substituted with a substituent.
  • p represents an integer of 0 to 5.
  • m represents an integer of 1 or more, preferably 1 to 200, and more preferably 1 to 50.
  • the organometallic dinuclear complex is represented by the following structural formula (2).
  • organometallic dinuclear complexes represented by the structural formula (2) those represented by the following structural formula are preferable.
  • the n is preferably 1 or 2, and specifically, the one represented by the following structural formula is preferable.
  • the organometallic dinuclear complex in the present invention also includes various derivatives of the organometallic dinuclear complex.
  • the method for producing the organometallic dinuclear complex of the present invention is not particularly limited, and can be appropriately selected from known methods according to the purpose.
  • J. Chem. Soc. Dalton The method described in Trans. 1986, 2303-2310 and the like are preferably exemplified.
  • a halide eg, CuI, CuCl, etc.
  • a saturated aqueous solution of potassium iodide are mixed with a solvent (eg, acetone). ), Mix and stir.
  • a compound capable of coordinating with the group 1B metal element for example, quinoline, pyridine, etc.
  • This mixed solution is refluxed for a certain period of time and then allowed to cool, whereby the organometallic dinuclear complex powder is precipitated.
  • the molecular structure of the organometallic dinuclear complex can be appropriately adjusted depending on the amount of the compound capable of coordinating with the mixed group 1B metal element and the conditions for crystal precipitation after reflux.
  • the organometallic dinuclear complex of the present invention can be suitably used in various fields, but can be suitably used as a light emitting material in an organic EL device, and is particularly preferably used in the following organic EL device of the present invention. can do.
  • the organometallic dinuclear complex of the present invention is used as a light emitting material in the organic EL device of the present invention, red light emission is obtained. (Organic EL device)
  • the organic EL device of the present invention has an organic thin film layer between a positive electrode and a negative electrode, and the organic thin film layer contains the organometallic dinuclear complex of the present invention as a light emitting material.
  • the organometallic dinuclear complex is contained in the organic thin-film layer as a light-emitting material, but may be contained in the light-emitting layer of the organic thin-film layer, or as a light-emitting layer also serving as an electron transport layer and a light-emitting layer. It may be contained in a hole-transporting layer or the like.
  • the organometallic dinuclear complex is contained in the light-emitting layer
  • the light-emitting layer may be formed by forming a film using the organometallic dinuclear complex alone, or may contain other materials in addition to the organometallic dinuclear complex. May be formed.
  • the light-emitting layer, the light-emitting layer and the electron transport layer, the light-emitting layer and the hole transport layer, and the like in the organic thin film layer contain the organometallic dinuclear complex of the present invention as a guest material. Further, it is preferable to further contain a host material having an emission wavelength near the light absorption wavelength of the guest material.
  • the host material is preferably contained in the light emitting layer, but may be contained in a hole transport layer, an electron transport layer, or the like.
  • the host material When the guest material and the host material are used in combination, when the organic EL emission occurs, the host material is first excited. Then, since the emission wavelength of the host material and the absorption wavelength of the guest material (organometallic dinuclear complex) overlap, the excitation energy is efficiently transferred from the host material to the guest material, and the host material is Since only the guest material that has returned to the ground state without emitting light and is in the excited state emits excitation energy as light, it is excellent in luminous efficiency, color purity, and the like.
  • the host material is generally excellent in film-forming properties, and thus is advantageous in that the light-emitting properties are maintained and the film forming properties are excellent.
  • the host material is not particularly limited and can be appropriately selected according to the purpose.
  • the host material preferably has a light emission wavelength near the light absorption wavelength of the guest material. Examples include a molecular host material and a polymer host material.
  • the low-molecular host material is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 4,4,1-bis (2,2,1-diphenylvinyl) _1,1,1-biphenyl. Nore (DP VB i), p-Seshikifenerinore (p-SP), 1, 3, 6, 8—Tetrafuerubirene (tppy), N, N, one dinaphthyl N, N, diphenyl 1 [1, [1,1-biphenyl] -14,4, diamine (NPD), oxine complex and carbazole derivative are preferred, and aromatic amine derivative represented by the following structural formula (3), 5) a carbazole derivative represented by the following formula, a oxine complex represented by the following structural formula (7), a 1,3,6,8-tetrafluorovinylene compound represented by the following structural formula (9), 11,4,1-bis (2,2'-diphenylvinyl) represented by 11) '-Biphenyl (DP
  • n represents an integer of 2 or 3.
  • Ar represents a divalent or trivalent aromatic group or a heterocyclic aromatic group.
  • R 2 and R 3 may be the same or different, and represent a monovalent aromatic group or a heterocyclic aromatic group.
  • the monovalent aromatic group or heterocyclic aromatic group is not particularly limited and can be appropriately selected depending on the purpose.
  • R represents a linking group, for example, preferably the following.
  • R 4 and R 5 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aralkyl group, an alkenyl group, an aryl group, a cyano group, an amino group, an acyl group, or an alkoxy group.
  • n represents an integer, preferably 2 or 3.
  • Ar is an aromatic group in which two benzene rings are connected via a single bond
  • R 4 and R 5 are hydrogen atoms
  • n 2
  • R 6 represents a hydrogen atom or a monovalent hydrocarbon group.
  • R 7 R 1 May be the same or different, and represent a hydrogen atom or a substituent.
  • Preferred examples of the substituent include an alkyl group, a cycloalkyl group and an aryl group, and these may be further substituted with a substituent.
  • the polymer host material is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include polyparaphenylene bulene (PPV), polythiophene (PAT), It is preferred to be selected from polyparaphenylene (PPP), polyvinylinole phenol (PVCz), polyfluorene (PF), polyacetylene (PA) and derivatives thereof.
  • PVP polyparaphenylene bulene
  • PAT polythiophene
  • PPP polyparaphenylene
  • PVCz polyvinylinole phenol
  • PF polyfluorene
  • PA polyacetylene
  • R represents a hydrogen atom, a halogen atom, an alkoxy group, an amino group, an alkyl group, a cycloalkyl group, an aryl group which may contain a nitrogen atom or a sulfur atom, and an aryloxy group. And these may be further substituted with a substituent.
  • X represents an integer.
  • polyvinyl carbazole (PVC z) represented by the following structural formula (14) is preferable in terms of efficient transfer of excitation energy.
  • R 11 and R 12 each represent a plurality of substituents provided at arbitrary positions of the cyclic structure, and each independently represents a hydrogen atom, a logen atom, an alkoxy group, an amino group, Group, an alkyl group, a cycloalkyl group, an aryl group which may contain a nitrogen atom or a sulfur atom, and an aryloxy group, which may be further substituted with a substituent.
  • any adjacent substitution positions may be bonded to each other to form an aromatic ring which may contain a nitrogen atom, a sulfur atom, and an oxygen atom. May be further substituted with a group.
  • X represents an integer.
  • the content of the organometallic dinuclear complex in the layer containing the organometallic dinuclear complex is preferably from 0.1 to 50% by mass, and more preferably from 0.5 to 20% by mass. No.
  • the content is less than 0.1% by mass, the lifetime and the luminous efficiency may not be sufficient, and the content is 50% by mass.
  • the ratio exceeds / 0 , the color purity may be reduced.
  • the ratio is more preferable than the above range, it is preferable in that the life and the luminous efficiency are excellent.
  • the light emitting layer in the organic EL device of the present invention can inject holes from the positive electrode, the hole injection layer, the hole transport layer, and the like when an electric field is applied, and the negative electrode, the electron injection layer, and the electron transport layer And the like, and further provides a field of recombination between the holes and the electrons, and the recombination energy generated at the time of the recombination causes the organometallic dinuclear complex (light emission) to emit light.
  • a material or a light-emitting molecule may contain other light-emitting materials other than the organometallic dinuclear complex within a range that does not impair the light emission.
  • the light emitting layer can be formed according to a known method.
  • Examples of the light emitting layer include a vapor deposition method, a wet film forming method, an MBE (molecular beam epitaxy) method, a cluster ion beam method, a molecular lamination method, an LB method, and a printing method. It can be preferably formed by a transfer method or the like.
  • the vapor deposition method is preferable because it can be easily and efficiently manufactured at low cost without using a waste liquid without using an organic solvent.
  • the light emitting layer is designed to have a single layer structure, For example, when the light emitting layer is formed as a hole transporting layer, a light emitting layer and an electron transporting layer, a wet film forming method is also preferable.
  • the evaporation method is not particularly limited and can be appropriately selected from known methods depending on the purpose.
  • Examples include a vacuum evaporation method, a resistance heating evaporation method, a chemical evaporation method, a physical evaporation method, and the like.
  • Examples of the chemical vapor deposition method include a plasma CVD method, a laser CVD method, a thermal CVD method, and a gas source CVD method.
  • the formation of the light emitting layer by the vapor deposition method may be performed, for example, by vacuum-depositing the organometallic dinuclear complex, when the light emitting layer contains the host material in addition to the organometallic dinuclear complex,
  • the co-evaporation of the complex and the host material by vacuum evaporation can be suitably performed. it can.
  • the former case is easy to manufacture because no co-evaporation is required.
  • the wet film forming method is not particularly limited and may be appropriately selected from known ones according to the purpose. Examples thereof include an inkjet method, a spin coating method, a kneading method, a bar coating method, and a coating method. Method, casting method, dip method, curtain coating method and the like.
  • a solution in which the material of the light emitting layer is dissolved or dispersed together with a resin component can be used (applied or the like).
  • a resin component for example, polybutyl rubazole, polycarbonate, or poly Vinyl chloride, polystyrene, polymethyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, hydrocarbon resin, ketone resin, phenoxy resin, polyamide, ethyl cellulose, cellulose acetate, ABS resin, polyurethane, melamine resin, unsaturated polyester resin, Alkyd resins, epoxy resins, silicone resins, and the like.
  • the formation of the light emitting layer by the wet film forming method is performed, for example, by using a solution (coating solution) of the organometallic dinuclear complex and the resin material to be used as necessary as a solvent (coating and drying).
  • a solution (coating solution) is prepared by dissolving the organometallic dinuclear complex, the host material, and the resin material used as required in a solvent.
  • the use (application and drying) can be suitably performed.
  • the thickness of the light emitting layer is preferably from 1 to 50 nm, more preferably from 3 to 20 nm.
  • the thickness of the light emitting layer is within the preferred numerical range, luminous efficiency, light emission luminance, and color purity of light emitted by the organic EL device are sufficient, and when the thickness is within the more preferred numerical range, the effect is conspicuous. It is advantageous in certain respects.
  • the organic EL device of the present invention has an organic thin film layer including a light emitting layer between a positive electrode and a negative electrode, and may have another layer such as a protective layer depending on the purpose.
  • the organic thin film layer has at least the light emitting layer, and further has a hole injection layer, a hole transport layer, a hole blocking layer, an electron transport layer, an electron injection layer, and the like, if necessary.
  • the positive electrode is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the organic thin film layer specifically, when the organic thin film layer has only the light emitting layer, the light emitting layer When the organic thin film layer further has the hole transport layer, the hole transport layer is provided. When the organic thin film layer further has the hole injection layer, the hole transport layer is provided. Those capable of supplying holes (carriers) are preferred.
  • the material of the positive electrode is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof. Among them, a material having a work function of 4 eV or more is preferable.
  • the material of the positive electrode include conductive metal oxides such as tin oxide, zinc oxide, indium oxide, and indium tin oxide (ITO); metals such as gold, silver, chromium, and nickel; Mixtures or laminates with metal oxides; inorganic conductive substances such as copper iodide and copper sulfide; organic conductive materials such as polyaniline, polythiophene and polypyrrole; and laminates of these with ITO, etc. Can be These may be used alone or in combination of two or more. Among these, conductive metal oxides are preferred, and ITO is particularly preferred from the viewpoints of productivity, high conductivity, transparency and the like.
  • the thickness of the positive electrode is not particularly limited and may be appropriately selected depending on the material and the like, but is preferably 1 to 500 nm, more preferably 20 to 200 nm.
  • the positive electrode is usually formed on a substrate made of glass such as soda lime glass or non-alkali glass, or a transparent resin.
  • the alkali-free glass or the soda-lime glass coated with a barrier coat such as silica is preferred from the viewpoint of reducing the ions eluted from the glass.
  • the thickness of the substrate is not particularly limited as long as the thickness is sufficient to maintain the mechanical strength. However, when glass is used as the substrate, the thickness is usually 0.2 mm or more, and 0.7 or more. mm or more is preferable.
  • the positive electrode may be formed, for example, by a vapor deposition method, a wet film formation method, an electron beam method, a sputtering method, a reactive sputtering method, an MBE (molecular beam epitaxy) method, a cluster-on-beam method, an ion plating method, a plasma polymerization method ( High-frequency excitation ion plating method), molecular lamination method, LB method, printing method, transfer method, chemical reaction method (sol-gel method, etc.) It can be suitably formed by the above-mentioned method such as a method of applying a dispersion of TO.
  • the positive electrode can be subjected to washing or other treatment to lower the driving voltage of the organic EL element or increase the luminous efficiency.
  • the other treatment for example, when the material of the positive electrode is ITO, a UV-ozone treatment, a plasma treatment and the like are preferably exemplified.
  • the negative electrode is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the organic thin film layer specifically, when the organic thin film layer has only the light emitting layer, the light emitting layer
  • the organic thin film layer further has the electron transport layer
  • electrons are supplied to the electron transport layer
  • the organic thin film layer has an electron injection layer between the organic thin film layer and the negative electrode, electrons are supplied to the electron injection layer.
  • the material of the negative electrode is not particularly limited, and may be appropriately selected according to the adhesion between the layer or molecules adjacent to the negative electrode such as the electron transport layer and the light emitting layer, ionization potential, stability, and the like. Examples thereof include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof.
  • the material of the negative electrode include Al metal (for example, Li, Na, K, Cs, etc.), alkaline earth metal (for example, Mg, Ca, etc.), gold, silver, lead, Aluminum, sodium-alloy alloys or their mixed metals, lithium-aluminum alloys or their mixed metals, magnesium-silver alloys or their mixed metals, rare earth metals such as indium and iturium, and their alloys, etc. Is mentioned.
  • a material having a work function of 4 eV or less is preferable, and aluminum, a lithium-aluminum alloy or a mixed metal thereof, a magnesium silver alloy or a mixed metal thereof is more preferable.
  • the thickness of the negative electrode is not particularly limited and may be appropriately selected depending on the material of the negative electrode, but is preferably 1 to 100 nm, more preferably 20 to 200 nm.
  • the negative electrode may be formed, for example, by a vapor deposition method, a wet film formation method, an electron beam method, a sputtering method, a reactive sputtering method, an MBE (molecular beam epitaxy) method, or a cluster ion beam.
  • the two or more materials When two or more materials are used in combination as the material of the negative electrode, the two or more materials may be simultaneously evaporated to form an alloy electrode or the like, or an alloy electrode or the like may be formed by depositing a previously prepared alloy. It may be formed.
  • the resistance values of the positive electrode and the negative electrode are preferably low, and are preferably several hundreds ⁇ / port or less.
  • the hole injection layer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the hole injection layer has a function of injecting holes from the positive electrode when an electric field is applied. Is preferred.
  • the material for the hole injection layer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • examples of the material include starburstamine represented by the following formula (4, 4,, 4,, -tris [3-Methylphenyl (phenyl) amino] triphenylamine: m—MTD AT A, copper phthalone anine, polyaniline and the like are preferred.
  • the thickness of the hole injection layer is not particularly limited and may be appropriately selected depending on the purpose.
  • the thickness is preferably about 1 to 100 nm, and more preferably 5 to 50 nm.
  • the hole injection layer may be formed, for example, by a vapor deposition method, a wet film formation method, an electron beam method, a sputtering method, a reactive sputtering method, a MBE (molecular beam epitaxy) method, a cluster ion beam method, an ion plating method, or a plasma deposition method. It can be suitably formed by the above-mentioned methods such as a synthesizing method (high-frequency excitation ion plating method), a molecular lamination method, an LB method, a printing method, and a transfer method.
  • the hole transport layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a layer having a function of transporting holes from the positive electrode when an electric field is applied is preferable.
  • the material of the hole transport layer is not particularly limited and may be appropriately selected depending on the purpose.
  • examples include an aromatic amine compound, carpazole, imidazole, triazole, oxazole, oxaziazole, polyarylalkane, pyrazoline, and virazolone.
  • Examples include polymers, thiophene oligomers and polymers, conductive high molecular oligomers such as polythiophene and polymers, carbon films, and the like.
  • aromatic amine compounds are preferable.
  • TPD N , N'-diphenyl N, N'-bis (3-methylphenyl)-[1,1, -biphenyl] -1,4, diamine
  • NPD N, N, dinaphthinole N
  • N, jiphenyiru [1,1,1biphenyl] -1,4,4, jiamin) and the like are more preferable.
  • the thickness of the hole transport layer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the thickness is usually 1 to 50 Onm, and preferably 10 to 10 Onm.
  • the hole transport layer can be formed, for example, by a vapor deposition method, a wet film formation method, an electron beam method, a sputtering method, a reactive sputtering method, a MBE (molecular beam epitaxy) method, a cluster ion beam method, an ion plating method, or plasma. It can be suitably formed by the above-mentioned methods such as a polymerization method (high-frequency excitation ion plating method), a molecular lamination method, an LB method, a printing method, and a transfer method.
  • the hole blocking layer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a layer having a function of blocking holes injected from the positive electrode is preferable.
  • the material of the hole blocking layer is not particularly limited, and can be appropriately selected depending on the purpose.
  • the holes transported from the positive electrode side are blocked by the hole blocking layer, and the electrons transported from the negative electrode pass through the hole blocking layer.
  • the electrons efficiently recombine with the holes in the light-emitting layer. Therefore, the recombination of the holes and the electrons in the organic thin-film layers other than the light-emitting layer occurs. Bonding can be prevented, and light emission from the organometallic dinuclear complex, which is the target light emitting material, can be efficiently obtained, which is advantageous in terms of color purity and the like.
  • the hole blocking layer is preferably disposed between the light emitting layer and the electron transport layer.
  • the thickness of the hole blocking layer is not particularly limited and may be appropriately selected depending on the purpose.
  • the thickness is usually about 1 to 500 nm, preferably 10 to 50 nm.
  • the hole blocking layer may have a single-layer structure or a laminated structure.
  • the hole blocking layer may be formed, for example, by a vapor deposition method, a wet film formation method, an electron beam method, a sputtering method, a reactive sputtering method, an MBE (molecular beam epitaxy) method, a cluster ion beam method, an ion plating method, It can be suitably formed by the above-mentioned methods such as a plasma polymerization method (high frequency excitation ion plating method), a molecular lamination method, an LB method, a printing method, and a transfer method.
  • the electron transport layer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples of the electron transport layer include a function of transporting electrons from the negative electrode and a function of blocking holes injected from the positive electrode. Those having any of them are preferable.
  • the material of the electron transport layer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a quinoline derivative such as the aluminum quinoline complex (A1q), an oxaziazole derivative, a triazonole derivative, and the like. Phenanthroline derivatives, perylene derivatives, pyridine derivatives, pyrimidine derivatives, quinoxaline derivatives, diphenylquinone derivatives, nitro-substituted fluorene derivatives, and the like.
  • A1q aluminum quinoline complex
  • Phenanthroline derivatives perylene derivatives
  • pyridine derivatives pyrimidine derivatives
  • quinoxaline derivatives diphenylquinone derivatives
  • nitro-substituted fluorene derivatives and the like.
  • the thickness of the electron transport layer is not particularly limited and may be appropriately selected depending on the purpose.
  • the thickness is usually about 1 to 500 nm, and preferably 10 to 50 nm.
  • the electron transport layer may have a single-layer structure or a multilayer structure.
  • an electron transporting material having a shorter light absorption edge than the above-mentioned organometallic dinuclear complex may be used as the electron transporting material used in the electron transporting layer adjacent to the light emitting layer. This is preferable from the viewpoint of limiting the light emitting region to the light emitting layer and preventing unnecessary light emission from the electron transport layer.
  • the electron transporting material having a shorter light absorption edge than the organometallic dinuclear complex include a phenanthone-containing phosphorus derivative, an oxaziazole derivative, and a triazole derivative, and are represented by the following structural formula (15).
  • Preferable examples include 2,9-dimethyl-14,7-diphenyl_1,10-phenanthroline (BCP) and the following compounds.
  • the electron transport layer may be formed, for example, by a vapor deposition method, a wet film formation method, an electron beam method, a sputtering method, a reactive sputtering method, an MBE (molecular beam epitaxy) method, a cluster-on-beam method, an ion plating method, or a plasma. It can be suitably formed by the above-mentioned methods such as a polymerization method (high-frequency excitation ion plating method), a molecular lamination method, an LB method, a printing method, and a transfer method.
  • the electron injection layer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a layer having a function of injecting electrons from the negative electrode and sending the electrons to the electron transport layer. preferable.
  • the material for the electron injection layer is not particularly limited and can be appropriately selected depending on the intended purpose.
  • alkali metal fluorides such as lithium fluoride and strontium fluoride And other earth metal fluorides.
  • the thickness of the electron injection layer is not particularly limited and can be appropriately selected depending on the purpose.
  • the thickness is usually about 0.1 to 10 nm, and preferably 0.5 to 2 nm.
  • the electron injection layer may be formed, for example, by a vapor deposition method, a wet film formation method, an electron beam method, a sputtering method, a reactive sputtering method, an MBE (molecular beam epitaxy) method, a cluster ion beam method, an ion plating method, a plasma polymerization method ( A high-frequency excitation ion plating method), a molecular lamination method, an LB method, a printing method, a transfer method, and the like can be suitably formed.
  • the organic EL device of the present invention may have other layers appropriately selected according to the purpose.
  • the other layers include a protective layer and the like.
  • the protective layer is not particularly limited, the force s that can be appropriately selected depending on the purpose, for example, the molecules or substances which promote deterioration of the organic EL elements such as moisture and oxygen from entering the organic EL device Are preferred.
  • the material of the protective layer for example, I n, Sn, Pb, Au, Cu, Ag, A and T i, metals such as N i, MgO, S i O , S i 0 2, A 1 2 0 3 , GeO, N i O, C a 0, B a 0, F e 2 0 3, Y 2 0 3, T i 0 metal oxides such as 2, S i N, nitrides such as S i N x O y , MgF 2, L i F, Al F 3, Ca F 2 metal fluorides such as, polyethylene having, polypropylene, polymethylmethacrylate, polyimide, polyurea, Po retainer trough Honoré O b ethylene, polyclonal port Torifunoreo port ethylene, poly Copolymer obtained by copolymerizing dichlorodifluoroethylene, a copolymer of ethylene with trichloroethylene and ethylene with dichlorodiphthalone, and a
  • the protective layer may be formed, for example, by a vapor deposition method, a wet film formation method, a sputtering method, a reactive sputtering method, an MBE (molecular beam epitaxy) method, a cluster ion beam method, an ion plating method, or a plasma polymerization method (high frequency excitation ion plating). Method), a printing method, a transfer method, and the like.
  • the structure of the organic EL device of the present invention is not particularly limited and may be appropriately selected depending on the purpose.
  • Examples of the layer structure include the following layer structures (1) to (13), (1) positive electrode / hole injection layer hole transport layer / light emitting layer Z electron transport layer Z electron injection layer / negative electrode; (2) positive electrode Z hole injection layer Z hole transport layer Z light emitting layer / electron transport Layer / negative electrode, (3) positive electrode / hole transport layer Z light emitting layer / electron transport layer / electron injection layer negative electrode, (4) positive electrode / hole transport layer / light emitting layer / electron transport layer negative electrode, (5) positive electrode / positive (6) Positive electrode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / negative electrode, (7) Positive hole / hole transport layer / electron transport layer / electron injecting layer / negative electrode (8) Positive electrode / Hole transport layer / Electron transport layer / Electron transport layer / Negative electrode; (9) Positive electrode / Hole injection layer / Positive electrode Hole transport layer and light emitting layer / Electron transport layer / Electron injection layer / Anode (10) Positive electrode
  • the organic EL element has the hole blocking layer
  • a layer in which the hole blocking layer is disposed between the light emitting layer and the electron transport layer is preferably exemplified.
  • FIG. 1 shows an embodiment of the above (4) positive electrode hole transport layer, light emitting layer, Z electron transport layer, and negative electrode.
  • the organic EL element 10 is formed on a glass substrate 12.
  • a positive electrode 14 for example, an ITO electrode
  • a hole transport layer 16 for example, a light-emitting layer 18, an electron transport layer 20, and a negative electrode 22 (for example, an A1-Li electrode).
  • the positive electrode 14 for example, an ITO electrode
  • the negative electrode 22 for example, an A 1 -Li electrode
  • An organic thin film layer 24 for emitting red light is formed by the hole transport layer 16, the light emitting layer 18, and the electron transport layer 20.
  • the emission peak wavelength of the organic EL device of the present invention is preferably from 600 to 650 nm.
  • the organic EL device emits red light at a voltage of 10 V or less, preferably emits red light at a voltage of 7 V or less, and more preferably emits red light at a voltage of 5 V or less.
  • the emission luminance of the organic EL device of the present invention at an applied voltage of 10 V is preferably 100 cd / m 2 or more, more preferably SOO cdZm 2 or more. It is particularly preferred that it is at least 0.000 cd / m 2 .
  • the organic EL device of the present invention includes, for example, a computer, an in-vehicle display, an outdoor display, a home appliance, a commercial appliance, a home appliance, a traffic display, a clock display, a power render display, and a luminescent display. Although it can be suitably used in various fields such as a cent screen, an acoustic device and the like, it can be particularly preferably used in the following organic EL display of the present invention.
  • the present invention EL display is not particularly limited except that the organic EL element of the present invention is used, and a known configuration can be appropriately adopted.
  • the organic EL display may be of a single-color emission type, of a multi-color emission type, or of a full-color type.
  • the organic EL display As a method of making the organic EL display a full-color type, for example, as described in “Monthly Display”, September 2000, pages 33 to 37, three primary colors (blue) are used. (B), green (G), and red (R)) OLEDs that emit light corresponding to each other are arranged on the substrate. There are known a white method that divides the light into three primary colors through a color filter, and a color conversion method that converts blue light emitted by an organic EL element for blue light emission into red (R) and green (G) through a fluorescent dye layer.
  • the organic EL element of the present invention used is for red light emission.Thus, a three-color light-emitting method, a color conversion method, and the like can be preferably used, and a three-color light-emitting method is particularly preferably used. can do.
  • the organic EL element of the present invention is used for emitting red light, and in addition, an organic EL element for emitting green light and an organic EL for emitting blue light are used. Elements are required.
  • the organic EL device for emitting blue light is not particularly limited and can be appropriately selected from known devices.
  • the layer configuration is ITO (positive electrode) / NP DZA 1—Li (negative electrode) And the like are preferably mentioned.
  • the organic EL device for emitting green light is not particularly limited and may be appropriately selected from known devices.
  • the layer configuration is ITO (positive electrode) Z or NP DZ or A. 1q / A1—Li (negative electrode), and the like are preferably mentioned.
  • the mode of the organic EL display is not particularly limited and can be appropriately selected depending on the purpose.
  • “Nikkei Electronics”, No. 765, March 13, 2003 A passive matrix panel, an active matrix panel, and the like, as described in the Japanese Journal, pages 55-62, are preferred.
  • the passive matrix panel has strip-shaped positive electrodes 14 (for example, ITO electrodes) arranged on a glass substrate 12 in parallel with each other.
  • a strip-shaped organic thin-film layer 24 for red light emission, an organic thin-film layer 26 for blue light emission, and an organic thin-film layer 28 for green light emission arranged in parallel to the cathode 14 and in a direction substantially perpendicular to the positive electrode 14,
  • a negative electrode 22 having the same shape as these is provided on the organic thin film layer 24 for emitting red light, the organic thin film layer 26 for emitting blue light, and the organic thin film layer 28 for emitting green light.
  • a positive electrode line 30 composed of a plurality of positive electrodes 14 and a negative electrode line 32 composed of a plurality of negative electrodes 22 intersect each other in a substantially perpendicular direction.
  • a circuit is formed.
  • Each of the organic thin-film layers 24, 26, and 28 for red, blue, and green light located at each intersection functions as a pixel, and there are a plurality of organic EL elements 34 corresponding to each pixel. are doing.
  • a current is applied to one of the positive electrodes 14 on the positive electrode line 30 and one of the negative electrodes 22 on the negative electrode line 32 by the constant current source 36, at that time, an intersection is generated.
  • a current is applied to the organic EL thin film layer located at the position, and the organic EL thin film layer at the position emits light. By controlling the light emission of each pixel, a full-color image can be easily formed.
  • the active matrix panel has, for example, scanning lines, data lines, and current supply lines formed on a glass substrate 12 in a grid pattern as shown in FIG.
  • a positive electrode 14 for example, an ITO electrode
  • a strip-shaped organic thin-film layer 24 for red light emission for example, an organic thin-film layer 26 for blue light emission, and an organic thin-film layer 28 for green-red light emission arranged in parallel with each other in order.
  • a negative electrode 22 is disposed on the organic thin film layer 24 for blue light emission, the organic thin film layer 26 for blue light emission, and the organic thin film layer 28 for green light emission so as to cover them all.
  • the organic thin film layer 24 for emitting red light, the organic thin film layer 26 for emitting blue light, and the organic thin film layer 28 for emitting green light have a hole transport layer 16, a light emitting layer 18, and an electron transport layer 20, respectively. .
  • scanning lines 46 provided in a plurality of parallel lines and data lines 42 and a current supply line 44 provided in a plurality of parallel lines cross each other at right angles.
  • a switching TFT 48 and a driving TFT 50 are connected to form a circuit.
  • the switching TFT 48 and the driving TFT 50 can be driven for each grid.
  • the organic thin-film elements 24, 26, and 28 for blue light emission, green light emission, and red light emission function as pixels, and the scanning lines arranged in the horizontal direction in the active matrix panel.
  • the switching TFT 48 located at the intersection is driven, and the driving TFT 48 is accordingly driven.
  • the TFT 50 is driven, and the organic EL element 52 at that position emits light. By controlling the light emission of each pixel, a full-color image can be easily formed.
  • the organic EL display of the present invention includes, for example, a computer, a vehicle display, an outdoor display, a household device, a business device, a household appliance, a traffic display, a clock display, a calendar display, and a luminaire. It can be suitably used in various fields such as netting screens and audio equipment.
  • a computer a vehicle display, an outdoor display, a household device, a business device, a household appliance, a traffic display, a clock display, a calendar display, and a luminaire. It can be suitably used in various fields such as netting screens and audio equipment.
  • [Cu I (quin) 2 ] 2 was synthesized using Cu I and quinoline as raw materials according to the method described in J. Chem. Soc. . That is, as shown in the following reaction formula, 5 ml of a saturated aqueous solution of potassium iodide was added to a suspension obtained by adding 0.76 g of Cu I to 5 Om 1 of acetone while stirring. When 1.03 g of quinoline was added thereto, a bright yellow precipitate was formed. This mixture The mixture was refluxed for 24 hours, and allowed to cool at room temperature for about 3 days, whereby yellow crystals (the organometallic dinuclear complex) were precipitated, and the desired [Cul (quin) 2 ] 2 was synthesized.
  • [Cu I (quin)] 4 was synthesized from Cu I and quinoline as raw materials according to the method described in J. Chem. Soc. Dalton Trans. 1986, 2303-230. That is, as shown in the following reaction formula, 15 ml of a saturated aqueous solution of potassium iodide was added to a suspension obtained by adding 1.52 g of Cu1 to 100 ml of acetone while stirring. Thereto, 0.52 g of quinoline was added. The mixture was refluxed for 24 hours, and the temperature of the solution was kept at 55 ° C. to precipitate the organometallic dinuclear complex, thereby synthesizing the desired [Cul (qin)] 4 .
  • a polymer-dispersed organic EL device was produced as follows. In other words, forming an ITO electrode as the positive electrode The glass substrate thus obtained was subjected to ultrasonic cleaning with water, acetone and isopropyl alcohol, and subjected to UV ozone treatment. Then, on the ITO electrode, polyvinyl carbazole (PVC z) was applied to the organometallic dinuclear complex of Example 1 ([ A hole transport layer / light-emitting layer doped with 5% by mass of Cu I (qu in) 2 ] 2 ) was coated to a thickness of 50 nm by spin coating.
  • PVC z polyvinyl carbazole
  • an organic EL device was manufactured.
  • the polymer-dispersed organic EL device of Example 4 was produced in the same manner as in Example 1 except that the organometallic dinuclear complex (Cu l (qu in)) 4 ) synthesized in Example 2 was used as a light emitting material. did.
  • the organic EL elements When a voltage was applied to the ITO electrode (positive electrode) and the A1-Li alloy (negative electrode) in the fabricated organic EL elements of Examples 3 and 4, the organic EL elements emitted red light at a voltage of 5 V or more. Was observed.
  • the emission luminance (cd / m 2 ) at an applied voltage of 10 V and the effective half life of the organic EL element were measured by constant current measurement with the initial luminance set to 100 cd Zm 2 .
  • Table 1 shows the results.
  • the conventional problems can be solved, and And a suitable organic metal dinuclear complex, an organic EL device using the organic metal dinuclear complex, having excellent thermal and electrical stability, and having excellent lifetime and luminous efficiency, and using the organic EL device A high-performance, long-life organic EL display can be provided.

Abstract

The invention provides organic EL devices which are made by using polynuclear organometallic complexes as the luminescent material and are excellent in lifetime, luminous efficiency, and so on, specifically an organic EL device comprising a positive electrode, a negative electrode, and an organic thin film placed between the electrodes, wherein the organic thin film contains a polynuclear organometallic complex which is composed of Group IB metal atoms, ligands each having at least one π-conjugated moiety and coordinating to the metal atoms, and halogen atoms connecting the metal atoms by bridging. It is preferable that the polynuclear organometallic complex be one represented by the structural formula (1).

Description

明 細 書 有機金属複核錯体、 有機 E L素子及び有機 E Lディスプレイ 技術分野 本発明は、 有機 E L素子における発光材料として好適な有機金属複核錯体、該有機 金属複核錯体を用いた有機 E L素子、及び該有機 E L素子を用いた有機 E Lディスプ レイに関する。 背景技術 有機 E L素子は、 自発光、 高速応答などの特長を持ち、 フラットパネルディスプレ ィへの適用が期待されており、 特に、 正孔輸送性の有機薄膜 (正孔輸送層) と電子輸 送性の有機薄膜 (電子輸送層) とを積層した 2層型 (積層型) のものが報告されて以 来 (例えば、 非特許文献 1参照) 、 1 O V以下の低電圧で発光する大面積発光素子と して関心を集めている。 積層型の有機 E L素子は、 正極/正孔輸送層/発光層/電子 輸送層ノ負極、 を基本構成とし、 このうち発光層は、 前記 2層型の場合のように前記 正孔輸送層又は前記電子輸送層にその機能を兼ねさせてもよい。  TECHNICAL FIELD The present invention relates to an organometallic dinuclear complex suitable as a light emitting material in an organic EL device, an organic EL device using the organometallic dinuclear complex, and the organic EL device. The present invention relates to an organic EL display using an EL element. BACKGROUND ART Organic EL devices have features such as self-emission and high-speed response, and are expected to be applied to flat panel displays. In particular, organic thin films (hole transport layers) with hole transport properties and electron transport Since the two-layer type (laminated type) in which an organic thin film (electron transport layer) is laminated (for example, see Non-Patent Document 1), large-area light emission that emits light at a low voltage of 1 OV or less has been reported. It is gaining interest as an element. The stacked organic EL device has a basic structure of a positive electrode / a hole transport layer / a light emitting layer / an electron transport layer / a negative electrode, wherein the light emitting layer is the same as the hole transport layer or the two-layer type. The electron transport layer may have the same function.
前記有機 E L素子における発光原理は、 両電極間に電圧が印加されると、負極側か ら電子が注入され、 正極側から正孔 (ホール) が注入されて、 発光層で、 電子が正孔 と再結合し、発光層の発光材料が励起状態から基底状態に失活する際に光を放出する 現象である。  The principle of light emission in the organic EL element is that when a voltage is applied between both electrodes, electrons are injected from the negative electrode side, holes are injected from the positive electrode side, and electrons are injected into the light emitting layer. This is a phenomenon in which light is emitted when the light emitting material of the light emitting layer is deactivated from the excited state to the ground state.
有機 E L素子は、 近時、 フルカラーディスプレイへの応用が期待されている。 該フ ルカラーディスプレイにおいては、 青 (B ) 、 緑 (G ) 、 赤 (R) の 3原色の発光を 示す画素をパネル上に配列する必要があり、その方式として、 ( a )青(B )、緑(G)、 赤 (R) の各発光を示す 3種類の有機 E L素子を配列する方法、 (b ) 白色発光 (青 (B ) 、 緑 (G) 、 赤 (R) の光の混色) を示す有機 E L素子からの発光をカラーフ ィルターで 3原色に分離する方法、 ( c )青色発光を示す有機 E L素子からの発光を、 蛍光発光を利用する色変換層で緑 (G) 、 赤 (R) の発光に変換する方法、 などが提 案されている。 Organic EL devices are recently expected to be applied to full-color displays. In the full-color display, it is necessary to arrange pixels that emit light of three primary colors of blue (B), green (G), and red (R) on a panel. ), Green (G), and red (R) light emission methods. (B) White light emission (blue (B), green (G), and red (R) light (C) Separating the light emission from the organic EL device that emits blue light into the three primary colors using a color filter. A method has been proposed in which a color conversion layer using fluorescent light emission converts the light into green (G) and red (R) light.
一方、高発光効率の有機 E L素子を得る観点から、主材料であるホスト材料に対し、 蛍光発光性の高い色素分子をゲスト材料として少量ドープさせて、高い発光効率を示 す発光層を形成することが提案されている (例えば、 非特許文献 2参照) 。  On the other hand, from the viewpoint of obtaining an organic EL device with high luminous efficiency, a host material, which is a main material, is doped with a small amount of a dye molecule having high fluorescent luminescence as a guest material to form a luminescent layer exhibiting high luminous efficiency. (For example, see Non-Patent Document 2).
安定性、寿命等は有機 E L素子にとって重要な性能であるにも拘らず、従来におい ては発光効率等の性能に比し、 十分に検討されてきているとは言えない。 前記有機 E L素子は、 様々な要因、 例えば、 熱的要因、 電気化学的要因、 界面の現象に起因する 要因などによって劣化することが、 近時、 次第に明らかになつてきており、 その解決 策も提案されつつある。 しかしながら、 従来における有機 E L素子では、 発光効率、 寿命 ·安定性等を同時にかつ高度に満足するものは提供されていないのが現状である。  Although stability and lifetime are important performances for organic EL devices, they have not been sufficiently studied in comparison with performances such as luminous efficiency. Recently, it has been gradually revealed that the organic EL element is degraded by various factors, for example, thermal factors, electrochemical factors, factors due to interface phenomena, and the like. It is being proposed. However, at present, there is no conventional organic EL device that simultaneously and highly satisfies the luminous efficiency, the life and the stability.
非特許文献 1  Non-patent document 1
C. W. Tang and S. A. VanSlyke, Applied Physics Letters vol. 51, 913 (198 C. W. Tang and S. A. Van Slyke, Applied Physics Letters vol. 51, 913 (198
7) 7)
非特許文献 2  Non-patent document 2
C. W. Tang, S. A. VanSlyke, and C. H. Chen, Journal of Applied Physics vol. 65, 3610 (1989) 本発明は、 従来における問題を解決し、 以下の目的を達成することを課題とする。 即ち、 本発明は、'有機 E L素子における発光材料として好適な有機金属複核錯体、 該 有機金属複核錯体を用い、 熱的,電気的な安定性に優れ、 寿命 ·発光効率等に優れた 有機 E L素子、及ぴ、該有機 E L素子を用いた高性能で長寿命な有機 E Lディスプレ ィを提供することを目的とする。 発明の開示 本発明の有機金属複核錯体は、 π共役部分を少なくとも 1つ有する配位子が配位結 合した 1 Β族金属元素の少なくとも 2つが、 ハロゲン原子によって架橋されてなり、 有機 E L素子に用いられることを特徴とする。該有機金属複核錯体においては、前記 配位子、前記 1 B族金属元素及び前記ハロゲン原子の数や種類などを適宜変更するこ とにより、 発光波長を変化 ·調整することができ、 所望の赤色発光、 緑色発光、 青色 発光等が得られる。 また、 該有機金属複核錯体は、 前記配位子を配位していることか ら、 全体の熱的 ·電気的な安定性に優れる。 該有機金属複核錯体を有機 E L素子にお ける発光材料として用いると、 寿命 ·発光効率等に優れた発光が得られる。 本発明の有機 E L素子は、正極及び負極の間に有機薄膜層を有してなり、該有機薄 膜層が、 π共役部分を少なくとも 1つ有する配位子が配位結合した 1 Β族金属元素の 少なくとも 2つが、 ハロゲン原子によって架橋されてなる有機金属複核錯体を、発光 材料として含有する。 該有機 E L素子に *5いては、本発明の有機金属複核錯体を発光 材料として含有するため、熱的 ·電気的な安定性に優れ、寿命'発光効率等に優れる。 本発明の有機 E Lディスプレイは、本発明の前記有機 E L素子を用いたことを特徴 とする。該有機 E Lディスプレイは、本発明の有機 E L素子を用いているので、熱的 · 電気的な安定性に優れ、 寿命 ·発光効率等に優れる。 図面の簡単な説明 図 1は、本発明の有機 E L素子における層構成の一例を説明するための概略説明図 である。 CW Tang, SA VanSlyke, and CH Chen, Journal of Applied Physics vol. 65, 3610 (1989) An object of the present invention is to solve the conventional problems and achieve the following objects. That is, the present invention provides an organometallic dinuclear complex suitable as a light-emitting material in an organic EL device, and an organic EL using the organometallic dinuclear complex, which has excellent thermal and electrical stability, and is excellent in lifetime, luminous efficiency, and the like. It is an object of the present invention to provide a device and an organic EL display having a high performance and a long life using the organic EL device. DISCLOSURE OF THE INVENTION The organometallic dinuclear complex of the present invention is obtained by crosslinking at least two Group 1 metal elements in which a ligand having at least one π-conjugated moiety is coordinated and bonded with a halogen atom. It is characterized by being used for. In the organometallic dinuclear complex, The emission wavelength can be changed and adjusted by appropriately changing the number and type of the ligand, the group 1B metal element and the halogen atom, and the desired red emission, green emission, blue emission, and the like can be obtained. can get. Further, since the organometallic dinuclear complex coordinates the ligand, it has excellent overall thermal and electrical stability. When the organometallic dinuclear complex is used as a light-emitting material in an organic EL device, light emission with excellent lifetime, luminous efficiency, and the like can be obtained. The organic EL device of the present invention has an organic thin film layer between a positive electrode and a negative electrode, and the organic thin film layer is a group 1 metal having a ligand coordinated with at least one π-conjugated moiety. It contains, as a light-emitting material, an organometallic dinuclear complex in which at least two of the elements are crosslinked by a halogen atom. Since the organic EL device * 5 contains the organometallic dinuclear complex of the present invention as a light emitting material, it has excellent thermal and electrical stability, and has excellent lifetime and luminous efficiency. An organic EL display of the present invention is characterized by using the organic EL element of the present invention. Since the organic EL display uses the organic EL element of the present invention, the organic EL display is excellent in thermal and electrical stability, and is excellent in lifetime, luminous efficiency, and the like. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic explanatory view for explaining an example of a layer configuration in an organic EL device of the present invention.
図 2は、パッシブマトリクス方式の有機 E Lディスプレイ (パッシブマトリクスパ ネル) の一構造例を説明するための概略説明図である。  FIG. 2 is a schematic explanatory view for explaining a structural example of a passive matrix organic EL display (passive matrix panel).
図 3は、 図 2に示すパッシブマトリクス方式の有機 E Lディスプレイ (パッシブマ トリクスパネル) における回路を説明するための概略説明図である。  FIG. 3 is a schematic diagram for explaining a circuit in the passive matrix organic EL display (passive matrix panel) shown in FIG.
図 4は、 アクティブマトリクス方式の有機 E Lディスプレイ (アクティブマトリク スパネル) の一構造例を説明するための概略説明図である。  FIG. 4 is a schematic explanatory diagram for explaining an example of the structure of an active matrix type organic EL display (active matrix panel).
図 5は、 図 4に示すアクティブマトリクス方式の有機 E Lディスプレイ (ァクティ ブマトリタスパネル) における回路を説明するための概略説明図である。 発明を実施するための最良の形態 FIG. 5 is a schematic diagram for explaining a circuit in the active matrix organic EL display (active matrix panel) shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
(有機金属複核錯体) (Organometallic dinuclear complex)
本発明の有機金属複核錯体は、 π共役部分を少なくとも 1つ有する配位子が配位結 合した 1 Β族金属元素の少なくとも 2つが、ハロゲン原子によって架橋されてなる構 造を有し、 有機 E L素子に用いられる。  The organometallic dinuclear complex of the present invention has a structure in which at least two of Group 1 metal elements in which a ligand having at least one π-conjugated moiety is coordinated and bonded are cross-linked by a halogen atom. Used for EL elements.
前記有機金属複核錯体としては、 前記構造を有するものであれば特に制限はなく、 目的に応じて選択することができるが、 例えば、 下記構造式 (1 ) で表されるものが 好ましい。 し Π  The organometallic dinuclear complex is not particularly limited as long as it has the above structure, and can be selected according to the purpose. For example, a complex represented by the following structural formula (1) is preferable. Π
構造式 ( 1 )
Figure imgf000006_0001
前記構造式(1 ) 中、 Mは、 1 B族金属元素を表す。前記 1 B族金属元素は、酸素、 水、酸、アル力リに対して非常に安定な重金属であり、貴金属元素と呼ばれ、例えば、 C u、 A g、 A uなどが挙げられる。 前記 I B族金属元素 Mは、 有機金属複核錯体中 に少なくとも 2個含まれる。
Structural formula (1)
Figure imgf000006_0001
In the structural formula (1), M represents a Group 1B metal element. The group 1B metal element is a heavy metal that is extremely stable to oxygen, water, acid, and alkali metal, and is called a noble metal element, and examples thereof include Cu, Ag, and Au. At least two group IB metal elements M are contained in the organometallic dinuclear complex.
Xは、 ハロゲン原子を表す。 該ハロゲン原子としては、 フッ素原子、 塩素原子、 臭 素原子、 ヨウ素原子など挙げられる。  X represents a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
Lは、該 1 B族金属元素 Mの安定配位数を満たすように該 1 B族金属元素 Mに配位 結合する配位子であって、 少なくとも一つの π共役部分を有する配位子を表す。 前記 1 Β族金属元素 Μの安定配位数は 4であるので、前記配位子 Lは、安定配位数が 4に なるように選択されるが、 この配位子の安定配位数には前記 1 Β族金属元素を架橋し ているハロゲン原子の数も含まれる。 ηは、 配位子 Lの数を表し、 1〜2の整数を表 す。 前記配位子 Lの数や種類を変化させることにより、 前記有機金属複核錯体の発光 波長を所望に変化させることができる。 前記配位子 Lとしては、 特に制限はなく、 目的に応じて適宜選定することができる 力 例えば、前記 1 B族金属元素に単座又は 2座以上で配位結合可能な原子を芳香族 環の一部に含んでなるものが好適に挙げられる。 前記原子としては、 例えば、 窒素原 子、 酸素原子、 カルコゲン (硫黄原子、 セレン原子、 テルル原子、 ポロニウム原子) 及びリン原子から選択されるのが好ましい。 L is a ligand coordinated and bonded to the group 1B metal element M so as to satisfy the stable coordination number of the group 1B metal element M, and is a ligand having at least one π-conjugated moiety. Represent. Since the stable coordination number of the group 1 metal element is 4, the ligand L is selected such that the stable coordination number is 4, but the stable coordination number of this ligand is Also includes the number of halogen atoms bridging the Group 1 metal element. η represents the number of ligands L, and represents an integer of 1 to 2. By changing the number and type of the ligands L, the emission wavelength of the organometallic dinuclear complex can be changed as desired. The ligand L is not particularly limited and may be appropriately selected depending on the intended purpose.For example, an atom capable of monodentate or bidentate or more coordination bond with the group 1B metal element may be selected from an aromatic ring. Preferred examples include those partially contained. The atom is preferably selected from, for example, a nitrogen atom, an oxygen atom, a chalcogen (sulfur atom, selenium atom, tellurium atom, polonium atom) and a phosphorus atom.
前記配位子 Lの中でも、窒素原子を含む 1〜 6員の脂肪環又は芳香族環を有する環 状化合物が好ましく、 具体的には例えば、 キノリン (qu i n o l i n e) 、 ピリジ ン(p y r i d i n e) 、 2, 2, 一ビビリジン、 これらの誘導体、などが好ましく、 これらの中でも、 下記構造式で表されるものがより好ましい。  Among the ligands L, a cyclic compound having a 1- to 6-membered aliphatic or aromatic ring containing a nitrogen atom is preferable. Specifically, for example, quinoline, pyridine, 2 , 2, 1-biviridine, derivatives thereof, and the like are preferable, and among these, those represented by the following structural formula are more preferable.
Figure imgf000007_0001
Figure imgf000007_0001
ピリジン キノリン 2,2'—ビビリジン 前記各構造式中、 R1は、 環状構造の任意の位置に結合されたそれぞれ 1個又は複 数個の置換基を表し、 例えば、 水素原子、 ハロゲン原子、 アルコキシ基、 アミノ基、 アルキル基、 シクロアルキル基、 窒素原子や硫黄原子を含んでいてもよいァリール基 又はァリールォキシ基を表し、 これらは置換基により更に置換されていてもよレ、。該 R1が 2個以上である場合、該 R1は、互いに同一であってもよいし、異なっているも よく、 任意の隣接する置換位置で互い結合して、 窒素原子、 硫黄原子又は酸素原子を 含んでいてもよい芳香族環を形成してもよく、 これらは置換基で更に置換されていて もよい。 pは、 0〜5の整数を表す。 Pyridine quinoline 2,2'-biviridine In each of the above structural formulas, R 1 represents one or more substituents each bonded to an arbitrary position of the cyclic structure, for example, a hydrogen atom, a halogen atom, an alkoxyl A group, an amino group, an alkyl group, a cycloalkyl group, an aryl group or an aryloxy group which may contain a nitrogen atom or a sulfur atom, which may be further substituted by a substituent. When the number of R 1 is 2 or more, the R 1 may be the same or different from each other, and are bonded to each other at any adjacent substitution position to form a nitrogen atom, a sulfur atom, or an oxygen. It may form an aromatic ring which may contain atoms, and these may be further substituted with a substituent. p represents an integer of 0 to 5.
前記構造式 (1) において、 mは、 1以上の整数を表し、 1〜200が好ましく、 1〜50がより好ましい。 前記 mが 1である場合、 前記有機金属複核錯体は下記構造 式 (2) で表される。 Ln In the structural formula (1), m represents an integer of 1 or more, preferably 1 to 200, and more preferably 1 to 50. When m is 1, the organometallic dinuclear complex is represented by the following structural formula (2). Ln
X M  X M
構造式 (2)  Structural formula (2)
M iiiiiiiiiimiii X M iiiiiiiiiimiii X
Ln ただし、 前記構造式 (2) 中、 M、 X、 L及び nは、 前記構造式 (1) におけるの と同様である。  Ln In the structural formula (2), M, X, L and n are the same as those in the structural formula (1).
前記構造式 (2) で表される有機金属複核錯体の中でも、 下記構造式で表されるも のが好ましい。  Among the organometallic dinuclear complexes represented by the structural formula (2), those represented by the following structural formula are preferable.
Figure imgf000008_0001
Figure imgf000008_0001
Figure imgf000009_0001
Figure imgf000009_0002
Figure imgf000009_0001
Figure imgf000009_0002
\ \  \ \
Cu Cu  Cu Cu
Figure imgf000009_0003
Figure imgf000009_0004
また、 前記構造式 (1 ) において、 前記 mが 2以上である場合には、 前記 nは 1又 2であるのが好ましく、 具体的には、 下記構造式で表されるものが好ましい。
Figure imgf000009_0003
Figure imgf000009_0004
Further, in the structural formula (1), when the m is 2 or more, the n is preferably 1 or 2, and specifically, the one represented by the following structural formula is preferable.
Figure imgf000010_0001
Figure imgf000010_0001
Figure imgf000010_0002
Figure imgf000010_0002
ZL£lOO/£OOZd£/∑Jd 008690請 OAV
Figure imgf000011_0001
ZL £ lOO / £ OOZd £ / ∑Jd 008690 Contract OAV
Figure imgf000011_0001
Figure imgf000012_0001
Figure imgf000012_0001
Figure imgf000012_0002
なお、 本発明における前記有機金属複核錯体には、 該有機金属複核錯体の各種の誘 導体も含まれる。
Figure imgf000012_0002
The organometallic dinuclear complex in the present invention also includes various derivatives of the organometallic dinuclear complex.
本発明の有機金属複核錯体の製造方法としては、 特に制限はなく、 目的に応じて公 知の方法の中から適宜選択することができるが、 例えば、 J. Ch em. S o c. D a l t o n Tr a n s. 1986, 2303— 2310に記載の方法などが好適に 挙げられる。 具体的には、 例えば、 Cu、 Ag、 A uなどの前記 1 B族金属元素のハ ロゲン化物 (例えば Cu l、 CuC lなど) と、 ョゥ化カリゥム飽和水溶液とを、 溶 媒 (例えばアセトンなど) を添加して混合し、 撹拌する。 ここに、 前記 1 B族金属元 素と配位結合可能な化合物 (例えば、 キノリン、 ピリジンなど) を該 1 B族金属元素 のハロゲン化物に対して X等量添加する。 この混合溶液を一定時間還流し、 その後、 放冷すると前記有機金属複核錯体の粉末が析出する。 この場合、前記有機金属複核錯 体の分子構造は、混合した前記 1 B族金属元素と配位結合可能な化合物の量や還流後 の結晶析出の条件により適宜調整することができる。  The method for producing the organometallic dinuclear complex of the present invention is not particularly limited, and can be appropriately selected from known methods according to the purpose. For example, J. Chem. Soc. Dalton The method described in Trans. 1986, 2303-2310 and the like are preferably exemplified. Specifically, for example, a halide (eg, CuI, CuCl, etc.) of the Group 1B metal element such as Cu, Ag, or Au, and a saturated aqueous solution of potassium iodide are mixed with a solvent (eg, acetone). ), Mix and stir. Here, a compound capable of coordinating with the group 1B metal element (for example, quinoline, pyridine, etc.) is added in an amount of X equivalent to the halide of the group 1B metal element. This mixed solution is refluxed for a certain period of time and then allowed to cool, whereby the organometallic dinuclear complex powder is precipitated. In this case, the molecular structure of the organometallic dinuclear complex can be appropriately adjusted depending on the amount of the compound capable of coordinating with the mixed group 1B metal element and the conditions for crystal precipitation after reflux.
本発明の有機金属複核錯体は、 各種分野において好適に使用することができるが、 有機 EL素子における発光材料等として好適に使用することができ、以下の本発明の 有機 E L素子に特に好適に使用することができる。 なお、本発明の有機金属複核錯体 を本発明の有機 EL素子において発光材料として使用すると、 赤色発光が得られる。 (有機 E L素子) The organometallic dinuclear complex of the present invention can be suitably used in various fields, but can be suitably used as a light emitting material in an organic EL device, and is particularly preferably used in the following organic EL device of the present invention. can do. When the organometallic dinuclear complex of the present invention is used as a light emitting material in the organic EL device of the present invention, red light emission is obtained. (Organic EL device)
本発明の有機 E L素子は、正極及び負極の間に有機薄膜層を有してなり、 該有機薄 膜層が、 前記本発明の有機金属複核錯体を発光材料として含有する。  The organic EL device of the present invention has an organic thin film layer between a positive electrode and a negative electrode, and the organic thin film layer contains the organometallic dinuclear complex of the present invention as a light emitting material.
本発明において、前記有機金属複核錯体は、発光材料として前記有機薄膜層に含有 されるが、該有機薄膜層における発光層に含有されていてもよいし、発光層兼電子輸 送層、発光層兼正孔輸送層等に含有されていてもよい。 前記有機金属複核錯体が前記 発光層に含有される場合、該発光層は、該有機金属複核錯体単独で製膜して形成して もよいし、 該有機金属複核錯体以外に他の材料を含んで形成してもよい。  In the present invention, the organometallic dinuclear complex is contained in the organic thin-film layer as a light-emitting material, but may be contained in the light-emitting layer of the organic thin-film layer, or as a light-emitting layer also serving as an electron transport layer and a light-emitting layer. It may be contained in a hole-transporting layer or the like. When the organometallic dinuclear complex is contained in the light-emitting layer, the light-emitting layer may be formed by forming a film using the organometallic dinuclear complex alone, or may contain other materials in addition to the organometallic dinuclear complex. May be formed.
本発明においては、 前記有機薄膜層における発光層、 発光層兼電子輸送層、 発光層 兼正孔輸送層等が、 ゲスト材料として本発明の前記有機金属複核錯体を含有し、該ゲ スト材料のほかに、更に発光波長が該ゲスト材料の光吸収波長付近にあるホスト材料 を含有するのが好ましい。 なお、前記ホスト材料は前記発光層に含有されているのが 好ましいが、 正孔輸送層、 電子輸送層などに含有されていてもよい。  In the present invention, the light-emitting layer, the light-emitting layer and the electron transport layer, the light-emitting layer and the hole transport layer, and the like in the organic thin film layer contain the organometallic dinuclear complex of the present invention as a guest material. Further, it is preferable to further contain a host material having an emission wavelength near the light absorption wavelength of the guest material. The host material is preferably contained in the light emitting layer, but may be contained in a hole transport layer, an electron transport layer, or the like.
前記ゲスト材料と前記ホスト材料とを併用する場合、 有機 E L発光が生ずる際、 ま ず、 前記ホスト材料が励起される。 そして、 該ホスト材料の発光波長と、 前記ゲスト 材料 (有機金属複核錯体) の吸収波長とが重なり合うので、 該ホスト材料から該ゲス ト材料へと励起エネルギーが効率的に移動し、該ホスト材料は発光することなく基底 状態に戻り、励起状態となった該ゲスト材料のみが励起エネルギーを光として放出す るため、 発光効率 ·色純度等に優れる。  When the guest material and the host material are used in combination, when the organic EL emission occurs, the host material is first excited. Then, since the emission wavelength of the host material and the absorption wavelength of the guest material (organometallic dinuclear complex) overlap, the excitation energy is efficiently transferred from the host material to the guest material, and the host material is Since only the guest material that has returned to the ground state without emitting light and is in the excited state emits excitation energy as light, it is excellent in luminous efficiency, color purity, and the like.
また、 一般に薄膜中に発光分子が単独又は高濃度で存在する場合には、 発光分子ど うしが接近することにより発光分子間で相互作用が生じ、 「濃度消光」 と呼ばれる発 光効率低下現象が起こるが、前記ゲスト材料と前記ホスト材料とを併用する場合、前 記ゲスト化合物である前記有機金属複核錯体が、前記ホスト化合物中に比較的低濃度 で分散されているので、 前記 「濃度消光」 が効果的に抑制され、 発光効率に優れる点 で有利である。 更に、 前記ゲスト材料と前記ホスト材料とを前記発光層において併用 する場合には、前記ホスト材料が一般に製膜性に優れるので、発光特性を維持しつつ 製膜性に優れる点で有利である。  In general, when light-emitting molecules are present alone or in a high concentration in a thin film, the light-emitting molecules approach each other, causing an interaction between the light-emitting molecules. However, when the guest material and the host material are used in combination, since the organometallic dinuclear complex as the guest compound is dispersed in the host compound at a relatively low concentration, the “concentration quenching” is performed. Is effectively suppressed and the luminous efficiency is excellent. Furthermore, when the guest material and the host material are used together in the light emitting layer, the host material is generally excellent in film-forming properties, and thus is advantageous in that the light-emitting properties are maintained and the film forming properties are excellent.
前記ホスト材料としては、 特に制限はなく、 目的に応じて適宜選択することができ る力 発光波長が該ゲスト材料の光吸収波長付近にあるものが好ましく、 例えば、 低 分子系ホスト材料、 高分子系ホスト材料などが挙げられる。 The host material is not particularly limited and can be appropriately selected according to the purpose. The host material preferably has a light emission wavelength near the light absorption wavelength of the guest material. Examples include a molecular host material and a polymer host material.
前記低分子系ホスト材料としては、特に制限はなく目的に応じて適宜選択すること ができるが、 例えば、 4, 4, 一ビス (2, 2, 一ジフエ二ルビニル) _1, 1, 一 ビフエ二ノレ (DP VB i ) 、 p—セシキフエ二ノレ (p - S P) 、 1, 3, 6, 8—テ トラフエ二ルビレン (t p p y) 、 N, N, 一ジナフチル一 N, N, ージフエニル一 [1, 1, 一ビフエニル] 一 4, 4, ージァミン (NPD) 、 ォキシン錯体及ぴカル パゾール誘導体から選択されるのが好ましく、 下記構造式 (3) で表される芳香族ァ ミン誘導体、 下記構造式 (5) で表される力ルバゾール誘導体、 下記構造式 (7) で 表されるォキシン錯体、 下記構造式 (9) で表される 1, 3, 6, 8—テトラフヱ二 ルビレン化合物、 下記構造式 (11) で表される 4, 4, 一ビス (2, 2 ' —ジフエ 二ルビ-ル) —1, 1 ' ービフエニル (DPVB i ) (主発光波長 =470 nm) 、 下記構造式 (12) で表される p—セシキフエニル (主発光波長 =400 nm) 、 下 記構造式 (13) で表される 9, 9, 一ビアントリル (主発光波長 =460 nm) 、 などがより好ましい。  The low-molecular host material is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 4,4,1-bis (2,2,1-diphenylvinyl) _1,1,1-biphenyl. Nore (DP VB i), p-Seshikifenerinore (p-SP), 1, 3, 6, 8—Tetrafuerubirene (tppy), N, N, one dinaphthyl N, N, diphenyl 1 [1, [1,1-biphenyl] -14,4, diamine (NPD), oxine complex and carbazole derivative are preferred, and aromatic amine derivative represented by the following structural formula (3), 5) a carbazole derivative represented by the following formula, a oxine complex represented by the following structural formula (7), a 1,3,6,8-tetrafluorovinylene compound represented by the following structural formula (9), 11,4,1-bis (2,2'-diphenylvinyl) represented by 11) '-Biphenyl (DPVB i) (main emission wavelength = 470 nm), p-sesquiphenyl (main emission wavelength = 400 nm) represented by the following structural formula (12), and represented by the following structural formula (13) 9, one-bianthryl (main emission wavelength = 460 nm), and the like are more preferable.
RR
A N 構造式 (3) A N Structural formula (3)
R n  R n
前記構造式 (3) 中、 nは、 2又は 3の整数を表す。 Arは、 2価若しくは 3価の 芳香族基又は複素環式芳香族基を表す。 R2及ぴ R3 は、互いに同一であってもよい し、 異なっていてもよく、 1価の芳香族基又は複素環式芳香族基を表す。 前記 1価の 芳香族基又は複素環式芳香族基としては、特に制限はなく目的に応じて適宜選択する ことができる。 In the structural formula (3), n represents an integer of 2 or 3. Ar represents a divalent or trivalent aromatic group or a heterocyclic aromatic group. R 2 and R 3 may be the same or different, and represent a monovalent aromatic group or a heterocyclic aromatic group. The monovalent aromatic group or heterocyclic aromatic group is not particularly limited and can be appropriately selected depending on the purpose.
前記構造式 (3) で表される芳香族ァミン誘導体の中でも、 下記構造式 (4) で表 される N, N, ージナフチルー N, N, ージフエ二ルー [1, 1, ービフエニル] 一 4, 4' ージァミン (NPD) (主発光波長 =430 nm) 及ぴその誘導体が好まし い。 Among the aromatic amine derivatives represented by the structural formula (3), N, N, dinaphthyl N, N, diphenyl [1,1, -biphenyl] 1-4,4 represented by the following structural formula (4) '' Jiamin (NPD) (main emission wavelength = 430 nm) and its derivatives are preferred No.
構造式 (4)
Figure imgf000015_0001
Structural formula (4)
Figure imgf000015_0001
構造式 (5)
Figure imgf000015_0002
前記構造式 (5)中、 Arは、以下に示す、芳香族環を含む2価若しくは 3価の基、 又は、 複素環式芳香族環を含む 2価若しくは 3価の基を表す。
Structural formula (5)
Figure imgf000015_0002
Wherein in the structural formula (5), Ar, below, divalent or trivalent group containing an aromatic ring, or a divalent or trivalent group containing a heterocyclic aromatic ring.
Figure imgf000015_0003
これらは、 非共役性の基で置換されていてもよく、 また、 Rは、 連結基を表し、 例 えば以下のものが好適に挙げられる。 C CFゥ O
Figure imgf000015_0003
These may be substituted with a non-conjugated group, and R represents a linking group, for example, preferably the following. C CF ゥ O
c- C s- c- C s-
C C O 前記構造式 (5) 中、 R4及び R5 は、それぞれ独立に、水素原子、ハロゲン原子、 アルキル基、 ァラルキル基、 アルケニル基、 ァリール基、 シァノ基、 アミノ基、 ァシ ル基、 アルコキシカルボニル基、 力ルポキシル基、 アルコキシ基、 アルキルスルホ二 ル基、 水酸基、 アミド基、 ァリールォキシ基、 芳香族炭化水素環基、 又は芳香族複素 環基を表し、 これらは置換基で更に置換されていてもよレ、。 CCO In the structural formula (5), R 4 and R 5 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aralkyl group, an alkenyl group, an aryl group, a cyano group, an amino group, an acyl group, or an alkoxy group. Represents a carbonyl group, a carbonyl group, an alkoxy group, an alkylsulfonyl group, a hydroxyl group, an amide group, an aryloxy group, an aromatic hydrocarbon ring group, or an aromatic heterocyclic group, which are further substituted with a substituent. I'm sorry.
前記構造式 (5) 中、 nは、 整数を表し、 2又は 3が好適に挙げられる。  In the structural formula (5), n represents an integer, preferably 2 or 3.
前記構造式 (5) で表される芳香族ァミン誘導体の中でも、 Arが、 ベンゼン環が 単結合を介して 2つ連結された芳香族基であり、 R4及び R5 が水素原子であり、 n =2であるもの、 即ち、 下記構造式 (6) で表される 4, 4, 一ビス (9_カルバゾ リル) ービフヱニル (CBP) (主発光波長 = 380 n m) 及びその誘導体から選択 されるものが、 発光効率等に特に優れる点で好ましい。 Among the aromatic amine derivatives represented by the structural formula (5), Ar is an aromatic group in which two benzene rings are connected via a single bond, R 4 and R 5 are hydrogen atoms, n = 2, that is, selected from 4,4,1-bis (9_carbazolyl) -biphenyl (CBP) (main emission wavelength = 380 nm) represented by the following structural formula (6) and derivatives thereof Are preferred because they are particularly excellent in luminous efficiency and the like.
構造式 (6)
Figure imgf000016_0001
構造式 (7)
Figure imgf000017_0001
ただし、 前記構造式 (7) 中、 R6は、 水素原子又は一価炭化水素基を表す。
Structural formula (6)
Figure imgf000016_0001
Structural formula (7)
Figure imgf000017_0001
Here, in the structural formula (7), R 6 represents a hydrogen atom or a monovalent hydrocarbon group.
前記構造式 (7) で表されるォキシン錯体の中でも、 下記構造式 (8) で表される アルミニウムキノリン錯体 (A 1 q) (主発光波長 = 530 nm) が好ましい。  Among the oxine complexes represented by the structural formula (7), an aluminum quinoline complex (A1q) (main emission wavelength = 530 nm) represented by the following structural formula (8) is preferable.
構造式 (8)
Figure imgf000017_0002
Structural formula (8)
Figure imgf000017_0002
Alq  Alq
構造式 (9)
Figure imgf000017_0003
ただし、 前記構造式 (9) 中、 R7 R1 。 は、 互いに同一であってもよいし異な つていてもよく、 水素原子又は置換基を表す。 該置換基としては、 例えば、 アルキル 基、 シク口アルキル基又はァリール基が好適に挙げられ、 これらは更に ¾換基で置換 されていてもよい。
Structural formula (9)
Figure imgf000017_0003
However, in the structural formula (9), R 7 R 1 . May be the same or different, and represent a hydrogen atom or a substituent. Preferred examples of the substituent include an alkyl group, a cycloalkyl group and an aryl group, and these may be further substituted with a substituent.
前記構造式 (9) で表される 1, 3, 6, 8—テトラフヱ二ルビレンの中でも、 R 71 ° が水素原子である、 即ち、 下記構造式 (10) で表される 1, 3, 6, 8 ーテトラフエ-ルビレン (主発光波長 =440 nm) 力 発光効率等に特に優れる点 で好ましい。 Among the 1,3,6,8-tetrafluorovinylenes represented by the structural formula (9), R 7 to 1 ° is a hydrogen atom, that is, 1,3,6,8-tetraphenylene (main emission wavelength = 440 nm) represented by the following structural formula (10). .
構造式 (10) Structural formula (10)
Figure imgf000018_0001
Figure imgf000018_0001
3, 6, 8—テトラフエニルピレン  3, 6, 8-tetraphenylpyrene
構造式 (11) Structural formula (11)
DPVB
Figure imgf000019_0001
DPVB
Figure imgf000019_0001
構造式 (12)  Structural formula (12)
P—セキシフエニル  P-sexifenyl
9, 9 ' —ビアン卜リル 構造式 (13)9, 9'-Biantril structural formula (13)
Figure imgf000019_0002
前記高分子系ホスト材料としては、 特に制限はなく、 目的に応じて適宜選択するこ とができるが、 例えば、 下記構造式で表される、 ポリパラフエ二レンビュレン (PP V) 、 ポリチォフェン (PAT) 、 ポリパラフエ二レン (PPP) 、 ポリビニノレ力ノレ バゾール (PVC z) 、 ポリフルオレン (PF) 、 ポリアセチレン (PA) 及ぴこれ らの誘導体から選択されるのが好ましい。
Figure imgf000019_0002
The polymer host material is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include polyparaphenylene bulene (PPV), polythiophene (PAT), It is preferred to be selected from polyparaphenylene (PPP), polyvinylinole phenol (PVCz), polyfluorene (PF), polyacetylene (PA) and derivatives thereof.
Figure imgf000020_0001
Figure imgf000020_0001
PPV derivatives PAT derivatives PPP derivatives  PPV derivatives PAT derivatives PPP derivatives
Figure imgf000020_0002
Figure imgf000020_0002
PVCz derivatives 前記構造式中、 Rは、 水素原子、 ハロゲン原子、 アルコキシ基、 アミノ基、 アルキ ル基、 シクロアルキル基、 窒素原子や硫黄原子を含んでいてもよいァリール基、 ァリ 一ルォキシ基を表し、これらは置換基で更に置換されていてもよい。 Xは整数を表す。 前記高分子系ホスト材料の中でも、励起エネルギーの移動が効率よく行われる点で 下記構造式 (14) で表されるポリビニルカルバゾール (PVC z) が好ましい。  PVCz derivatives In the above structural formula, R represents a hydrogen atom, a halogen atom, an alkoxy group, an amino group, an alkyl group, a cycloalkyl group, an aryl group which may contain a nitrogen atom or a sulfur atom, and an aryloxy group. And these may be further substituted with a substituent. X represents an integer. Among the polymer host materials, polyvinyl carbazole (PVC z) represented by the following structural formula (14) is preferable in terms of efficient transfer of excitation energy.
構造式 (14)
Figure imgf000020_0003
前記構造式 (14) 中、 R11及び R12は、 環状構造の任意の位置に付与されたそ れぞれ複数の置換基を表し、それぞれ独立に水素原子ノ、ロゲン原子、アルコキシ基、 アミノ基、 アルキル基、 シクロアルキル基、 窒素原子や硫黄原子を含んでいてもよい ァリール基、了リ一ルォキシ基を表し、これらは置換基で更に置換されていてもよレ、。 該 R 1 1及び R 1 2は、 任意の隣接する置換位置がお互い結合して、 窒素原子、 硫黄原 子、 酸素原子を含んでいてもよい芳香族環を形成してもよく、 これらは置換基で更に 置換されていてもよい。 Xは、 整数を表す。
Structural formula (14)
Figure imgf000020_0003
In the structural formula (14), R 11 and R 12 each represent a plurality of substituents provided at arbitrary positions of the cyclic structure, and each independently represents a hydrogen atom, a logen atom, an alkoxy group, an amino group, Group, an alkyl group, a cycloalkyl group, an aryl group which may contain a nitrogen atom or a sulfur atom, and an aryloxy group, which may be further substituted with a substituent. In R 11 and R 12 , any adjacent substitution positions may be bonded to each other to form an aromatic ring which may contain a nitrogen atom, a sulfur atom, and an oxygen atom. May be further substituted with a group. X represents an integer.
前記有機金属複核錯体の該有機金属複核錯体を含有する層における含有量として は、 0 . 1〜5 0質量%であるのが好ましく、 0 . 5〜2 0質量%であるのがより好 ましい。  The content of the organometallic dinuclear complex in the layer containing the organometallic dinuclear complex is preferably from 0.1 to 50% by mass, and more preferably from 0.5 to 20% by mass. No.
前記含有量が、 0 . 1質量%未満であると、 寿命'発光効率等が十分でないことが あり、 5 0質量。 /0を超えると、 色純度が低下することがあり、 一方、 前記より好まし い範囲であると、 寿命 ·発光効率等に優れる点で好ましい。 If the content is less than 0.1% by mass, the lifetime and the luminous efficiency may not be sufficient, and the content is 50% by mass. When the ratio exceeds / 0 , the color purity may be reduced. On the other hand, when the ratio is more preferable than the above range, it is preferable in that the life and the luminous efficiency are excellent.
本発明の有機 E L素子における前記発光層は、電界印加時に前記正極、正孔注入層、 前記正孔輸送層等から正孔を注入することができ、 前記負極、 電子注入層、 前記電子 輸送層等から電子を注入することができ、更に該正孔と該電子との再結合の場を提供 し、 該再結合の際に生ずる再結合エネルギーにより、発光を示す前記有機金属複核錯 体 (発光材料、 発光分子) を発光させる機能を有していればよく、 該有機金属複核錯 体以外に、 該発光を害しない範囲内において他の発光材料を含有していてもよい。 前記発光層は、 公知の方法に従って形成することができるが、 例えば、 蒸着法、 湿 式製膜法、 MB E (分子線エピタキシー) 法、 クラスターイオンビーム法、 分子積層 法、 L B法、 印刷法、 転写法、 などにより好適に形成することができる。  The light emitting layer in the organic EL device of the present invention can inject holes from the positive electrode, the hole injection layer, the hole transport layer, and the like when an electric field is applied, and the negative electrode, the electron injection layer, and the electron transport layer And the like, and further provides a field of recombination between the holes and the electrons, and the recombination energy generated at the time of the recombination causes the organometallic dinuclear complex (light emission) to emit light. A material or a light-emitting molecule), and may contain other light-emitting materials other than the organometallic dinuclear complex within a range that does not impair the light emission. The light emitting layer can be formed according to a known method. Examples of the light emitting layer include a vapor deposition method, a wet film forming method, an MBE (molecular beam epitaxy) method, a cluster ion beam method, a molecular lamination method, an LB method, and a printing method. It can be preferably formed by a transfer method or the like.
これらの中でも、 有機溶媒を用いず廃液処理の問題がなく、低コストで簡便かつ効 率的に製造することができる点で蒸着法が好ましいが、前記発光層を単層構造に設計 する場合には、例えば、 該発光層を正孔輸送層兼発光層兼電子輸送層等として形成す る場合には湿式製膜法も好ましい。  Among them, the vapor deposition method is preferable because it can be easily and efficiently manufactured at low cost without using a waste liquid without using an organic solvent.However, when the light emitting layer is designed to have a single layer structure, For example, when the light emitting layer is formed as a hole transporting layer, a light emitting layer and an electron transporting layer, a wet film forming method is also preferable.
前記蒸着法としては、 特に制限はなく、 目的に応じて公知のものの中から適宜選択 することができるが、例えば、真空蒸着法、抵抗加熱蒸着、化学蒸着法、物理蒸着法、 などが挙げられ、 該化学蒸着法としては、 例えば、 プラズマ C VD法、 レーザー C V D法、 熱 C VD法、 ガスソース C VD法などが挙げられる。 前記蒸着法による前記発 光層の形成は、 例えば、 前記有機金属複核錯体を真空蒸着することにより、 該発光層 が前記有機金属複核錯体以外に前記ホスト材料を含有する場合には該有機金属複核 錯体及び該ホスト材料を真空蒸着による同時蒸着することにより、好適に行うことが できる。 前者の場合は、 共蒸着の必要がない点で製造が容易である。 The evaporation method is not particularly limited and can be appropriately selected from known methods depending on the purpose.Examples include a vacuum evaporation method, a resistance heating evaporation method, a chemical evaporation method, a physical evaporation method, and the like. Examples of the chemical vapor deposition method include a plasma CVD method, a laser CVD method, a thermal CVD method, and a gas source CVD method. The formation of the light emitting layer by the vapor deposition method may be performed, for example, by vacuum-depositing the organometallic dinuclear complex, when the light emitting layer contains the host material in addition to the organometallic dinuclear complex, The co-evaporation of the complex and the host material by vacuum evaporation can be suitably performed. it can. The former case is easy to manufacture because no co-evaporation is required.
前記湿式製膜法としては、 特に制限はなく、 目的に応じて公知のものの中から適宜 選択することができるが、 例えば、 インクジェット法、 スピンコート法、 ニーダーコ ート法、 バーコート法、 プレードコート法、 キャスト法、 ディップ法、 カーテンコー ト法などが挙げられる。  The wet film forming method is not particularly limited and may be appropriately selected from known ones according to the purpose. Examples thereof include an inkjet method, a spin coating method, a kneading method, a bar coating method, and a coating method. Method, casting method, dip method, curtain coating method and the like.
前記湿式製膜法の場合、前記発光層の材料を樹脂成分と共に溶解乃至分散させた溶 液を用いる (塗布等する) ことができ、 該樹脂成分としては、 例えば、 ポリビュル力 ルバゾール、 ポリカーボネート、 ポリ塩化ビニル、 ポリスチレン、 ポリメチルメタク リレート、ポリエステル、ポリスルホン、ポリフエ二レンォキシド、ポリブタジエン、 炭化水素樹脂、 ケトン樹脂、 フエノキシ樹脂、 ポリアミド、 ェチルセルロース、 酢酸 ビュル、 A B S樹脂、 ポリウレタン、 メラミン樹脂、 不飽和ポリエステル樹脂、 アル キド樹脂、 エポキシ樹脂、 シリコーン樹脂、 などが挙げられる。  In the case of the wet film forming method, a solution in which the material of the light emitting layer is dissolved or dispersed together with a resin component can be used (applied or the like). As the resin component, for example, polybutyl rubazole, polycarbonate, or poly Vinyl chloride, polystyrene, polymethyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, hydrocarbon resin, ketone resin, phenoxy resin, polyamide, ethyl cellulose, cellulose acetate, ABS resin, polyurethane, melamine resin, unsaturated polyester resin, Alkyd resins, epoxy resins, silicone resins, and the like.
前記湿式製膜法による前記発光層の形成は、 例えば、 前記有機金属複核錯体及び必 要に応じて用いる前記樹脂材料を溶剤に溶液 (塗布液) を用いる (塗布し乾燥する) ことにより、該発光層が前記有機金属複核錯体以外に前記ホスト材料を含有する場合 には該有機金属複核錯体、該ホスト材料及び必要に応じて用いる前記樹脂材料を溶剤 に溶解した溶剤に溶液 (塗布液) を用いる (塗布し乾燥する) ことにより、 好適に行 うことができる。  The formation of the light emitting layer by the wet film forming method is performed, for example, by using a solution (coating solution) of the organometallic dinuclear complex and the resin material to be used as necessary as a solvent (coating and drying). When the light-emitting layer contains the host material in addition to the organometallic dinuclear complex, a solution (coating solution) is prepared by dissolving the organometallic dinuclear complex, the host material, and the resin material used as required in a solvent. The use (application and drying) can be suitably performed.
前記発光層の厚みとしては、 l〜5 0 n mが好ましく、 3〜2 0 n mがより好まし レ、。  The thickness of the light emitting layer is preferably from 1 to 50 nm, more preferably from 3 to 20 nm.
前記発光層の厚みが、前記好ましい数値範囲であると、 該有機 E L素子により発光 される光の発光効率 ·発光輝度 ·色純度が十分であり、 前記より好ましい数値範囲で あるとそれが顕著である点で有利である。  When the thickness of the light emitting layer is within the preferred numerical range, luminous efficiency, light emission luminance, and color purity of light emitted by the organic EL device are sufficient, and when the thickness is within the more preferred numerical range, the effect is conspicuous. It is advantageous in certain respects.
本発明の有機 E L素子は、正極及び負極の間に、発光層を含む有機薄膜層を有して なり、 目的に応じて保護層等のその他の層を有していてもよい。  The organic EL device of the present invention has an organic thin film layer including a light emitting layer between a positive electrode and a negative electrode, and may have another layer such as a protective layer depending on the purpose.
前記有機薄膜層は、少なくとも前記発光層を有し、更に必要に応じて、正孔注入層、 正孔輸送層、 正孔ブロッキング層、 電子輸送層、 電子注入層、 などを有していてもよ レ、。  The organic thin film layer has at least the light emitting layer, and further has a hole injection layer, a hole transport layer, a hole blocking layer, an electron transport layer, an electron injection layer, and the like, if necessary. Yeah.
—正極 _ 前記正極としては、 特に制限はなく、 目的に応じて適宜選択することができるが、 前記有機薄膜層に、具体的には該有機薄膜層が前記発光層のみを有する場合には該発 光層に、該有機薄膜層が更に前記正孔輸送層を有する場合には該正孔輸送層に、該有 機薄膜層が更に前記正孔注入層を有する場合には該正孔注入層に、 正孔 (キャリア) を供給することができるものが好ましい。 —Positive electrode _ The positive electrode is not particularly limited and may be appropriately selected depending on the intended purpose. The organic thin film layer, specifically, when the organic thin film layer has only the light emitting layer, the light emitting layer When the organic thin film layer further has the hole transport layer, the hole transport layer is provided. When the organic thin film layer further has the hole injection layer, the hole transport layer is provided. Those capable of supplying holes (carriers) are preferred.
前記正極の材料としては、特に制限はなく、 目的に応じて適宜選択することができ るが、 例えば、 金属、 合金、 金属酸化物、 電気伝導性化合物、 これらの混合物などが 挙げられ、 これらの中でも仕事関数が 4 e V以上の材料が好ましい。  The material of the positive electrode is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof. Among them, a material having a work function of 4 eV or more is preferable.
前記正極の材料の具体例としては、 酸化スズ、 酸化亜鉛、 酸化インジウム、 酸化ィ ンジゥムスズ(I T O)等の導電性金属酸化物、金、銀、 クロム、ニッケル等の金属、 これらの金属と導電性金属酸化物との混合物又は積層物、 ヨウ化銅、硫化銅等の無機 導電性物質、 ポリア二リン、 ポリチォフェン、 ポリピロール等の有機導電性材料、 こ れらと I T Oとの積層物、 などが挙げられる。 これらは、 1種単独で使用してもよい し、 2種以上を併用してもよい。 これらの中でも、 導電性金属酸ィ匕物が好ましく、 生 産性、 高伝導性、 透明性などの観点からは I T Oが特に好ましい。  Specific examples of the material of the positive electrode include conductive metal oxides such as tin oxide, zinc oxide, indium oxide, and indium tin oxide (ITO); metals such as gold, silver, chromium, and nickel; Mixtures or laminates with metal oxides; inorganic conductive substances such as copper iodide and copper sulfide; organic conductive materials such as polyaniline, polythiophene and polypyrrole; and laminates of these with ITO, etc. Can be These may be used alone or in combination of two or more. Among these, conductive metal oxides are preferred, and ITO is particularly preferred from the viewpoints of productivity, high conductivity, transparency and the like.
前記正極の厚みとしては、 特に制限はなく、 材料等により適宜選択可能であるが、 1〜5 0 0 0 n mが好ましく、 2 0〜2 0 0 n mがより好ましい。  The thickness of the positive electrode is not particularly limited and may be appropriately selected depending on the material and the like, but is preferably 1 to 500 nm, more preferably 20 to 200 nm.
前記正極は、 通常、 ソーダライムガラス、 無アルカリガラス等のガラス、 透明樹脂 等の基板上に形成される。  The positive electrode is usually formed on a substrate made of glass such as soda lime glass or non-alkali glass, or a transparent resin.
前記基板として前記ガラスを用いる場合、該ガラスからの溶出イオンを少なくする 観点からは、前記無アルカリガラス、 シリカなどのバリアコートを施した前記ソーダ ライムガラスが好ましい。  When the glass is used as the substrate, the alkali-free glass or the soda-lime glass coated with a barrier coat such as silica is preferred from the viewpoint of reducing the ions eluted from the glass.
前記基板の厚みとしては、機械的強度を保つのに充分な厚みであれば特に制限はな いが、 該基材としてガラスを用いる場合には、 通常 0 . 2 mm以上であり、 0 . 7 m m以上が好ましい。  The thickness of the substrate is not particularly limited as long as the thickness is sufficient to maintain the mechanical strength. However, when glass is used as the substrate, the thickness is usually 0.2 mm or more, and 0.7 or more. mm or more is preferable.
前記正極は、 例えば、 蒸着法、 湿式製膜法、 電子ビーム法、 スパッタリング法、 反 応性スパッタリング法、 M B E (分子線ェピタキシー) 法、 クラスタ一^ fオンビーム 法、ィオンプレーティング法、プラズマ重合法(高周波励起ィオンプレーティング法)、 分子積層法、 L B法、 印刷法、 転写法、 化学反応法 (ゾルーゲル法など) により該 I T Oの分散物を塗布する方法、などの上述した方法により好適に形成することができ る。 The positive electrode may be formed, for example, by a vapor deposition method, a wet film formation method, an electron beam method, a sputtering method, a reactive sputtering method, an MBE (molecular beam epitaxy) method, a cluster-on-beam method, an ion plating method, a plasma polymerization method ( High-frequency excitation ion plating method), molecular lamination method, LB method, printing method, transfer method, chemical reaction method (sol-gel method, etc.) It can be suitably formed by the above-mentioned method such as a method of applying a dispersion of TO.
前記正極は、 洗浄、 その他の処理を行うことにより、 該有機 E L素子の駆動電圧を 低下させたり、発光効率を高めることも可能である。 前記その他の処理としては、 例 えば、 前記正極の素材が I T Oである場合には、 UV—オゾン処理、 プラズマ処理な どが好適に挙げられる。  The positive electrode can be subjected to washing or other treatment to lower the driving voltage of the organic EL element or increase the luminous efficiency. As the other treatment, for example, when the material of the positive electrode is ITO, a UV-ozone treatment, a plasma treatment and the like are preferably exemplified.
一負極一 One negative electrode
前記負極としては、 特に制限はなく、 目的に応じて適宜選択することができるが、 前記有機薄膜層に、具体的には該有機薄膜層が前記発光層のみを有する場合には該発 光層に、該有機薄膜層が更に前記電子輸送層を有する場合には該電子輸送層に、該有 機薄膜層及び該負極間に電子注入層を有する場合には該電子注入層に、電子を供給す ることができるものが好ましい。  The negative electrode is not particularly limited and may be appropriately selected depending on the intended purpose. The organic thin film layer, specifically, when the organic thin film layer has only the light emitting layer, the light emitting layer In addition, when the organic thin film layer further has the electron transport layer, electrons are supplied to the electron transport layer, and when the organic thin film layer has an electron injection layer between the organic thin film layer and the negative electrode, electrons are supplied to the electron injection layer. Are preferred.
前記負極の材料としては、 特に制限はなく、 前記電子輸送層、 前記発光層などの該 負極と隣接する層乃至分子との密着性、 イオン化ポテンシャル、安定性等に応じて適 宜選択することができ、 例えば、 金属、 合金、 金属酸化物、 電気伝導性化合物、 これ らの混合物などが挙げられる。  The material of the negative electrode is not particularly limited, and may be appropriately selected according to the adhesion between the layer or molecules adjacent to the negative electrode such as the electron transport layer and the light emitting layer, ionization potential, stability, and the like. Examples thereof include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof.
前記負極の材料の具体例としては、 アル力リ金属 (例えば L i、 N a、 K、 C sな ど) 、 アルカリ土類金属 (例えば M g、 C aなど) 、 金、 銀、 鉛、 アルミニウム、 ナ トリウム一カリゥム合金又はそれらの混合金属、 リチウム一アルミニウム合金又はそ れらの混合金属、.マグネシウム一銀合金又はそれらの混合金属、 インジウム、 イツテ ルビゥム等の希土類金属、 これらの合金、 などが挙げられる。  Specific examples of the material of the negative electrode include Al metal (for example, Li, Na, K, Cs, etc.), alkaline earth metal (for example, Mg, Ca, etc.), gold, silver, lead, Aluminum, sodium-alloy alloys or their mixed metals, lithium-aluminum alloys or their mixed metals, magnesium-silver alloys or their mixed metals, rare earth metals such as indium and iturium, and their alloys, etc. Is mentioned.
これらは 1種単独で使用してもよいし、 2種以上を併用してもよい。 これらの中で も、 仕事関数が 4 e V以下の材料が好ましく、 アルミニウム、 リチウム一アルミニゥ ム合金又はそれらの混合金属、 マグネシゥムー銀合金又はそれらの混合金属、 などが より好ましい。  These may be used alone or in combination of two or more. Among these, a material having a work function of 4 eV or less is preferable, and aluminum, a lithium-aluminum alloy or a mixed metal thereof, a magnesium silver alloy or a mixed metal thereof is more preferable.
前記負極の厚みとしては、 特に制限はなく、該負極の材料等に応じて適宜選択する ことができるが、 1〜1 0 0 0 0 n mが好ましく、 2 0〜2 0 0 n mがより好ましい。 前記負極は、 例えば、 蒸着法、 湿式製膜法、 電子ビーム法、 スパッタリング法、 反 応性スパッタリング法、 M B E (分子線ェピタキシー) 法、 クラスターイオンビーム 法、ィオンプレーティング法、ブラズマ重合法(高周波励起ィオンプレーティング法)、 分子積層法、 L B法、 印刷法、 転写法、 などの上述した方法により好適に形成するこ とができる。 The thickness of the negative electrode is not particularly limited and may be appropriately selected depending on the material of the negative electrode, but is preferably 1 to 100 nm, more preferably 20 to 200 nm. The negative electrode may be formed, for example, by a vapor deposition method, a wet film formation method, an electron beam method, a sputtering method, a reactive sputtering method, an MBE (molecular beam epitaxy) method, or a cluster ion beam. It can be suitably formed by the above-mentioned methods such as a method, an ion plating method, a plasma polymerization method (high-frequency excitation ion plating method), a molecular lamination method, an LB method, a printing method, and a transfer method.
前記負極の材料として 2種以上を併用する場合には、該 2種以上の材料を同時に蒸 着し、合金電極等を形成してもよいし、 予め調製した合金を蒸着させて合金電極等を 形成してもよい。  When two or more materials are used in combination as the material of the negative electrode, the two or more materials may be simultaneously evaporated to form an alloy electrode or the like, or an alloy electrode or the like may be formed by depositing a previously prepared alloy. It may be formed.
前記正極及び前記負極の抵抗値としては、 低い方が好ましく、数百 Ω /口以下であ るのが好ましい。  The resistance values of the positive electrode and the negative electrode are preferably low, and are preferably several hundreds Ω / port or less.
一正孔注入層一 One hole injection layer
前記正孔注入層としては、 特に制限はなく、 目的に応じて適宜選択することができ るが、 例えば、 電界印加時に前記正極から正孔を注入する機能を有しているものであ るのが好ましい。  The hole injection layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the hole injection layer has a function of injecting holes from the positive electrode when an electric field is applied. Is preferred.
前記正孔注入層の材料としては、 特に制限はなく、 目的に応じて適宜選択すること ができるが、 例えば、 下記式で表されるスターバーストァミン (4, 4, ,4, , -tris [3 -methylphenyl (phenyl) amino] triphenylamine : m— MT D AT Aノ 、 銅フタロン ァニン、 ポリア二リン、 などが好適に挙げられる。  The material for the hole injection layer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples of the material include starburstamine represented by the following formula (4, 4,, 4,, -tris [3-Methylphenyl (phenyl) amino] triphenylamine: m—MTD AT A, copper phthalone anine, polyaniline and the like are preferred.
Figure imgf000025_0001
前記正孔注入層の厚みとしては、特に制限はなく、 目的に応じて適宜選択すること ができるが、例えば、 1〜1 0 0 n m程度が好ましく、 5〜5 0 n mがより好ましい。 前記正孔注入層は、 例えば、 蒸着法、 湿式製膜法、 電子ビーム法、 スパッタリング 法、 反応性スパッタリング法、 MB E (分子線エピタキシー) 法、 クラスターイオン ビーム法、 イオンプレーティング法、 プラズマ重合法 (高周波励起イオンプレーティ ング法) 、 分子積層法、 L B法、 印刷法、 転写法、 などの上述した方法により好適に 形成することができる。
Figure imgf000025_0001
The thickness of the hole injection layer is not particularly limited and may be appropriately selected depending on the purpose. For example, the thickness is preferably about 1 to 100 nm, and more preferably 5 to 50 nm. The hole injection layer may be formed, for example, by a vapor deposition method, a wet film formation method, an electron beam method, a sputtering method, a reactive sputtering method, a MBE (molecular beam epitaxy) method, a cluster ion beam method, an ion plating method, or a plasma deposition method. It can be suitably formed by the above-mentioned methods such as a synthesizing method (high-frequency excitation ion plating method), a molecular lamination method, an LB method, a printing method, and a transfer method.
—正孔輸送層— —Hole transport layer—
前記正孔輸送層としては、 特に制限はなく、 目的に応じて適宜選択することができ るが、 例えば、電界印加時に前記正極からの正孔を輸送する機能を有しているものが 好ましい。  The hole transport layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a layer having a function of transporting holes from the positive electrode when an electric field is applied is preferable.
前記正孔輸送層の材料としては、 特に制限はなく、 目的に応じて適宜選択すること ができ、例えば、芳香族ァミン化合物、カルパゾール、ィミダゾール、 トリァゾール、 ォキサゾール、ォキサジァゾール、ポリアリ一ルアルカン、 ピラゾリン、 ビラゾロン、 フエ二レンジァミン、ァリールァミン、ァミノ置換カルコン、スチリルアントラセン、 フルォレノン、 ヒ ドラゾン、 スチルベン、 シラザン、 スチリルァミン、 芳香族ジメチ リディン化合物、 ポルフィリン系化合物、 ポリシラン系化合物、 ポリ (N—ビニルカ ルパゾール) 、 ァニリン系共重合体、 チォフェンオリゴマー及びポリマー、 ポリチォ フェン等の導電性高分子オリゴマー及ぴポリマー、 カーボン膜、 などが挙げられる。 なお、 これらの正孔輸送層の材料を前記発光層の材料と混合して製膜すると正孔輸送 層兼発光層を形成することができる。  The material of the hole transport layer is not particularly limited and may be appropriately selected depending on the purpose.Examples include an aromatic amine compound, carpazole, imidazole, triazole, oxazole, oxaziazole, polyarylalkane, pyrazoline, and virazolone. , Phenylenediamine, arylamine, amino-substituted chalcone, styrylanthracene, fluorenone, hydrazone, stilbene, silazane, styrylamine, aromatic dimethylidin compound, porphyrin compound, polysilane compound, poly (N-vinylcalpazole), aniline Examples include polymers, thiophene oligomers and polymers, conductive high molecular oligomers such as polythiophene and polymers, carbon films, and the like. When a material for the hole transport layer is mixed with the material for the light emitting layer to form a film, a hole transport layer and a light emitting layer can be formed.
これらは、 1種単独で使用してもよいし、 2種以上を併用してもよく、 これらの中 でも、 芳香族ァミン化合物が好ましく、 具体的には、 下記式で表される T P D (N, N ' 一ジフヱ二ルー N, N ' —ビス(3—メチルフエ-ル)一 [ 1 , 1, ービフエニル] 一 4, 4, ージァミン)、下記式で表される N P D (N, N, ージナフチノレー N, N, ージフエ二ルー [ 1, 1,一ビフエ二ル]一 4, 4,ージァミン)などがより好ましい。 These may be used alone or in combination of two or more. Among them, aromatic amine compounds are preferable. Specifically, TPD (N , N'-diphenyl N, N'-bis (3-methylphenyl)-[1,1, -biphenyl] -1,4, diamine; NPD (N, N, dinaphthinole N) represented by the following formula , N, jiphenyiru [1,1,1biphenyl] -1,4,4, jiamin) and the like are more preferable.
Figure imgf000027_0001
Figure imgf000027_0001
Figure imgf000027_0002
Figure imgf000027_0002
前記正孔輸送層の厚みとしては、 特に制限はなく、 目的に応じて適宜選択すること ができるが、 通常 1〜5 0 O n mであり、 1 0〜1 0 O n mが好ましい。 The thickness of the hole transport layer is not particularly limited and may be appropriately selected depending on the intended purpose. The thickness is usually 1 to 50 Onm, and preferably 10 to 10 Onm.
前記正孔輸送層は、 例えば、 蒸着法、 湿式製膜法、 電子ビーム法、 スパッタリング 法、 反応性スパッタリング法、 MB E (分子線エピタキシー). 法、 クラスターイオン ビーム法、 イオンプレーティング法、 プラズマ重合法 (高周波励起イオンプレーティ ング法) 、 分子積層法、 L B法、 印刷法、 転写法、 などの上述した方法により好適に 形成することができる。  The hole transport layer can be formed, for example, by a vapor deposition method, a wet film formation method, an electron beam method, a sputtering method, a reactive sputtering method, a MBE (molecular beam epitaxy) method, a cluster ion beam method, an ion plating method, or plasma. It can be suitably formed by the above-mentioned methods such as a polymerization method (high-frequency excitation ion plating method), a molecular lamination method, an LB method, a printing method, and a transfer method.
一正孔ブロッキング層一 One hole blocking layer
前記正孔ブロッキング層としては、 特に制限はなく、 目的に応じて適宜選択するこ とができるが、例えば、前記正極から注入された正孔を障壁する機能を有しているも のが好ましい。  The hole blocking layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a layer having a function of blocking holes injected from the positive electrode is preferable.
前記正孔ブロッキング層の材料としては、 特に制限はなく、 目的に応じて適宜選択 することができる。 前記有機 E L素子が前記正孔ブロッキング層を有していると、正極側から輸送され てきた正孔が該正孔ブロッキング層でブロックされ、負極から輸送されてきた電子は 該正孔プロッキング層を通過して前記発光層に到達することにより、該発光層で効率 よく電子と正孔との再結合が生じるため、該発光層以外の有機薄膜層での前記正孔と 前記電子との再結合を防ぐことができ、 目的とする発光材料である前記有機金属複核 錯体からの発光が効率的に得られ、 色純度等の点で有利である。 The material of the hole blocking layer is not particularly limited, and can be appropriately selected depending on the purpose. When the organic EL device has the hole blocking layer, the holes transported from the positive electrode side are blocked by the hole blocking layer, and the electrons transported from the negative electrode pass through the hole blocking layer. To the light-emitting layer, the electrons efficiently recombine with the holes in the light-emitting layer. Therefore, the recombination of the holes and the electrons in the organic thin-film layers other than the light-emitting layer occurs. Bonding can be prevented, and light emission from the organometallic dinuclear complex, which is the target light emitting material, can be efficiently obtained, which is advantageous in terms of color purity and the like.
前記正孔ブロッキング層は、前記発光層と前記電子輸送層との間に配置されるのが 好ましい。  The hole blocking layer is preferably disposed between the light emitting layer and the electron transport layer.
前記正孔ブロッキング層の厚みとしては、 特に制限はなく、 目的に応じて適宜選択 することができ、 例えば、 通常 1 ~ 5 0 0 n m程度であり、 1 0〜5 0 n mが好まし い。  The thickness of the hole blocking layer is not particularly limited and may be appropriately selected depending on the purpose. For example, the thickness is usually about 1 to 500 nm, preferably 10 to 50 nm.
前記正孔ブロッキング層は、単層構造であってもよいし、積層構造であつてもよレ、。 前記正孔ブロッキング層は、 例えば、 蒸着法、 湿式製膜法、 電子ビーム法、 スパッ タリング法、 反応性スパッタリング法、 MB E (分子線エピタキシー) 法、 クラスタ 一イオンビーム法、 イオンプレーティング法、 プラズマ重合法 (高周波励起イオンプ レーティング法) 、 分子積層法、 L B法、 印刷法、 転写法、 などの上述した方法によ り好適に形成することができる。 前記電子輸送層としては、 特に制限はなく、 目的に応じて適宜選択することができ るが、 例えば、 前記負極からの電子を輸送する機能、 前記正極から注入された正孔を 障壁する機能のいずれかを有しているものが好ましい。  The hole blocking layer may have a single-layer structure or a laminated structure. The hole blocking layer may be formed, for example, by a vapor deposition method, a wet film formation method, an electron beam method, a sputtering method, a reactive sputtering method, an MBE (molecular beam epitaxy) method, a cluster ion beam method, an ion plating method, It can be suitably formed by the above-mentioned methods such as a plasma polymerization method (high frequency excitation ion plating method), a molecular lamination method, an LB method, a printing method, and a transfer method. The electron transport layer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples of the electron transport layer include a function of transporting electrons from the negative electrode and a function of blocking holes injected from the positive electrode. Those having any of them are preferable.
前記電子輸送層の材料としては、 特に制限はなく、 目的に応じて適宜選択すること ができ、 例えば、 前記アルミニゥムキノリン錯体 (A 1 q ) 等のキノリン誘導体、 ォ キサジァゾール誘導体、 トリァゾーノレ誘導体、 フエナントロリン誘導体、 ペリレン誘 導体、 ピリジン誘導体、 ピリミジン誘導体、 キノキサリン誘導体、 ジフエ二ルキノン 誘導体、 ニトロ置換フルオレン誘導体など、 などが挙げられる。 なお、 これらの電子 輸送層の材料を前記発光層の材料と混合して製膜すると電子輸送層兼発光層を形成 することができ、更に前記正孔輸送層の材料も混合させて製膜すると電子輸送層兼正 孔輸送層兼発光層を形成することができ、 この際、 ポリビニルカルバゾール、 ポリ力 ーポネート等のポリマーを使用することができる。 The material of the electron transport layer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a quinoline derivative such as the aluminum quinoline complex (A1q), an oxaziazole derivative, a triazonole derivative, and the like. Phenanthroline derivatives, perylene derivatives, pyridine derivatives, pyrimidine derivatives, quinoxaline derivatives, diphenylquinone derivatives, nitro-substituted fluorene derivatives, and the like. When the material for the electron transport layer is mixed with the material for the light emitting layer to form a film, an electron transport layer and a light emitting layer can be formed. When the material for the hole transport layer is further mixed, the film is formed. An electron-transport layer and a hole-transport layer and a light-emitting layer can be formed. Polymers such as -ponates can be used.
前記電子輸送層の厚みとしては、特に制限はなく、 目的に応じて適宜選択すること ができ、 例えば、 通常 1〜5 0 0 n m程度であり、 1 0〜 5 0 n mが好ましい。 前記電子輸送層は、 単層構造であってもよいし、 積層構造であってもよい。  The thickness of the electron transport layer is not particularly limited and may be appropriately selected depending on the purpose. For example, the thickness is usually about 1 to 500 nm, and preferably 10 to 50 nm. The electron transport layer may have a single-layer structure or a multilayer structure.
この場合、前記発光層に隣接する該電子輸送層に用いる電子輸送材料としては、前 記有機金属複核錯体よりも光吸収端が短波長である電子輸送材料を用いることが、有 機 E L素子中の発光領域を前記発光層に限定し、前記電子輸送層からの余計な発光を 防ぐ観点からは好ましい。前記有機金属複核錯体よりも光吸収端が短波長である電子 輸送材料としては、 例えば、 フエナント口リン誘導体、 ォキサジァゾール誘導体、 ト リアゾール誘導体などが挙げられ、 下記構造式 ( 1 5 ) で表される 2, 9ージメチル 一 4 , 7—ジフエニル _ 1, 1 0—フエナント口リン (B C P ) や、 以下に示す化合 物などが好適に挙げられる。  In this case, as the electron transporting material used in the electron transporting layer adjacent to the light emitting layer, an electron transporting material having a shorter light absorption edge than the above-mentioned organometallic dinuclear complex may be used. This is preferable from the viewpoint of limiting the light emitting region to the light emitting layer and preventing unnecessary light emission from the electron transport layer. Examples of the electron transporting material having a shorter light absorption edge than the organometallic dinuclear complex include a phenanthone-containing phosphorus derivative, an oxaziazole derivative, and a triazole derivative, and are represented by the following structural formula (15). Preferable examples include 2,9-dimethyl-14,7-diphenyl_1,10-phenanthroline (BCP) and the following compounds.
構造式 (15)
Figure imgf000029_0001
Structural formula (15)
Figure imgf000029_0001
Figure imgf000029_0002
Figure imgf000029_0002
2- (4- tert-ブチルフェニル)—5- (4-ビフエ二ルイル) 2- (4-tert-butylphenyl) -5- (4-biphenylyl)
-1 , 3, 4-ォキサジァゾール -1,3,4-oxaziazole
Figure imgf000030_0001
Figure imgf000030_0001
3-フエニル -4- (1-ナフチル)  3-phenyl-4- (1-naphthyl)
- 5-フェニル -1 , 2, 4 -卜リアゾール  -5-Phenyl-1,2,4-triazole
Figure imgf000030_0002
Figure imgf000030_0002
3- (4-tert-ブチルフエニル) -4-フェニル  3- (4-tert-butylphenyl) -4-phenyl
-5 - (4' -ビフエ二ルイル) -1 , 2, 4 -卜リアゾ一ル  -5-(4'-biphenyl) -1,2,4 -triazolyl
前記電子輸送層は、 例えば、 蒸着法、 湿式製膜法、 電子ビーム法、 スパッタリング 法、 反応性スパッタリング法、 M B E (分子線ェピタキシー) 法、 クラスタ一^ fオン ビーム法、 イオンプレーティング法、 プラズマ重合法 (高周波励起イオンプレーティ ング法) 、 分子積層法、 L B法、 印刷法、 転写法、 などの上述した方法により好適に 形成することができる。 The electron transport layer may be formed, for example, by a vapor deposition method, a wet film formation method, an electron beam method, a sputtering method, a reactive sputtering method, an MBE (molecular beam epitaxy) method, a cluster-on-beam method, an ion plating method, or a plasma. It can be suitably formed by the above-mentioned methods such as a polymerization method (high-frequency excitation ion plating method), a molecular lamination method, an LB method, a printing method, and a transfer method.
一電子注入層— One electron injection layer—
前記電子注入層としては、 特に制限はなく、 目的に応じて適宜選択することができ るが、 例えば、 前記負極からの電子を注入し、 電子輸送層へ送る機能、 を有している ものが好ましい。  The electron injection layer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a layer having a function of injecting electrons from the negative electrode and sending the electrons to the electron transport layer. preferable.
前記電子注入層の材料としては、特に制限はなく、 目的に応じて適宜選択すること ができ、 例えば、 フッ化リチウム等のアルカリ金属フッ化物、 フッ化ストロンチウム 等のアル力リ土類金属フッ化物、 などが挙げられる。 The material for the electron injection layer is not particularly limited and can be appropriately selected depending on the intended purpose. For example, alkali metal fluorides such as lithium fluoride and strontium fluoride And other earth metal fluorides.
前記電子注入層の厚みとしては、 特に制限はなく、 目的に応じて適宜選択すること ができ、 例えば、 通常 0. l〜10nm程度であり、 0. 5〜2nmが好ましい。 前記電子注入層は、 例えば、 蒸着法、 湿式製膜法、 電子ビーム法、 スパッタリング 法、 反応性スパッタリング法、 M B E (分子線ェピタキシー) 法、 クラスターイオン ビーム法、 イオンプレーティング法、 プラズマ重合法 (高周波励起イオンプレーティ ング法) 、 分子積層法、 LB法、 印刷法、 転写法、 などの上述した方法により好適に 形成することができる。  The thickness of the electron injection layer is not particularly limited and can be appropriately selected depending on the purpose. For example, the thickness is usually about 0.1 to 10 nm, and preferably 0.5 to 2 nm. The electron injection layer may be formed, for example, by a vapor deposition method, a wet film formation method, an electron beam method, a sputtering method, a reactive sputtering method, an MBE (molecular beam epitaxy) method, a cluster ion beam method, an ion plating method, a plasma polymerization method ( A high-frequency excitation ion plating method), a molecular lamination method, an LB method, a printing method, a transfer method, and the like can be suitably formed.
—その他の層一 —Other layers
本 明の有機 EL素子は、 目的に応じて適宜選択したその他の層を有していてもよ く、 該その他の層としては、 例えば、 保護層、 などが好適に挙げられる。  The organic EL device of the present invention may have other layers appropriately selected according to the purpose. Examples of the other layers include a protective layer and the like.
前記保護層としては、特に制限はなく、目的に応じて適宜選択することができる力 s、 例えば、水分や酸素等の有機 E L素子を劣化促進させる分子乃至物質が有機 E L素子 内に侵入することを抑止可能であるものが好ましい。 As the protective layer is not particularly limited, the force s that can be appropriately selected depending on the purpose, for example, the molecules or substances which promote deterioration of the organic EL elements such as moisture and oxygen from entering the organic EL device Are preferred.
前記保護層の材料としては、例えば、 I n、 Sn、 Pb、 Au、 Cu、 Ag、 Aし T i、 N i等の金属、 MgO、 S i O、 S i 02、 A 12 03 、 GeO、 N i O、 C a 0、 B a 0、 F e 2 03 、 Y2 03 、 T i 02 等の金属酸化物、 S i N、 S i Nx Oy等の窒化物、 MgF2 、 L i F、 Al F3 、 Ca F2 等の金属フッ化物、 ポリエ チレン、 ポリプロピレン、 ポリメチルメタクリレート、 ポリイミ ド、 ポリウレア、 ポ リテトラフノレォロエチレン、 ポリクロ口トリフノレオ口エチレン、 ポリジクロロジフノレ ォロエチレン、 クロ口トリフノレオ口エチレンとジクロロジフノレオ口エチレンとの共重 合体、テトラフルォロエチレンと少なくとも 1種のコモノマーとを含むモノマー混合 物を共重合させて得られる共重合体、共重合主鎖に環状構造を有する含フッ素共重合 体、 吸水率 1 %以上の吸水性物質、 吸水率 0. 1 %以下の防湿性物質などが挙げられ る。 The material of the protective layer, for example, I n, Sn, Pb, Au, Cu, Ag, A and T i, metals such as N i, MgO, S i O , S i 0 2, A 1 2 0 3 , GeO, N i O, C a 0, B a 0, F e 2 0 3, Y 2 0 3, T i 0 metal oxides such as 2, S i N, nitrides such as S i N x O y , MgF 2, L i F, Al F 3, Ca F 2 metal fluorides such as, polyethylene having, polypropylene, polymethylmethacrylate, polyimide, polyurea, Po retainer trough Honoré O b ethylene, polyclonal port Torifunoreo port ethylene, poly Copolymer obtained by copolymerizing dichlorodifluoroethylene, a copolymer of ethylene with trichloroethylene and ethylene with dichlorodiphthalone, and a monomer mixture containing tetrafluoroethylene and at least one comonomer , A fluorine-containing copolymer having a cyclic structure in the copolymer main chain, water absorption of 1% or more Water-absorbing substances with a water absorption of 0.1% or less.
前記保護層は、 例えば、 蒸着法、 湿式製膜法、 スパッタリング法、 反応性スパッタ リング法、 MBE (分子線エピタキシー) 法、 クラスターイオンビーム法、 イオンプ レーティング法、 プラズマ重合法 (高周波励起イオンプレーティング法) 、 印刷法、 転写法、 などの上述した方法により好適に形成することができる。 本発明の有機 EL素子の構造としては、 特に制限はなく、 目的に応じて適宜選択す ることができるが、その層構成としては、例えば、以下の (1)〜(13) の層構成、 即ち、 (1) 正極/正孔注入層 正孔輸送層/発光層 Z電子輸送層 Z電子注入層/負 極、 (2) 正極 Z正孔注入層 Z正孔輸送層 Z発光層/電子輸送層/負極、 (3) 正極 /正孔輸送層 Z発光層/電子輸送層/電子注入層 負極、 (4) 正極/正孔輸送層/ 発光層/電子輸送層 負極、 (5) 正極/正孔注入層/正孔輸送層/発光層兼電子輸 送層/電子注入層/負極、 (6) 正極/正孔注入層/正孔輸送層/発光層兼電子輸送 層/負極、 (7)正極 Z正孔輸送層ノ発光層兼電子輸送層/電子注入層/負極、 (8) 正極/正孔輸送層/発光層兼電子輸送層/負極、 (9) 正極ノ正孔注入層/正孔輸送 層兼発光層/電子輸送層/電子注入層/負極、 (10) 正極/正孔注入層/正孔輸送 層兼発光層 Z電子輸送層/負極、 (11) 正極/正孔輸送層兼発光層/電子輸送層/ 電子注入層/負極、 (12)正極/正孔輸送層兼発光層/電子輸送層/負極、 (13) 正極/正孔輸送層兼発光層兼電子輸送層/負極、 などが好適に挙げられる。 The protective layer may be formed, for example, by a vapor deposition method, a wet film formation method, a sputtering method, a reactive sputtering method, an MBE (molecular beam epitaxy) method, a cluster ion beam method, an ion plating method, or a plasma polymerization method (high frequency excitation ion plating). Method), a printing method, a transfer method, and the like. The structure of the organic EL device of the present invention is not particularly limited and may be appropriately selected depending on the purpose. Examples of the layer structure include the following layer structures (1) to (13), (1) positive electrode / hole injection layer hole transport layer / light emitting layer Z electron transport layer Z electron injection layer / negative electrode; (2) positive electrode Z hole injection layer Z hole transport layer Z light emitting layer / electron transport Layer / negative electrode, (3) positive electrode / hole transport layer Z light emitting layer / electron transport layer / electron injection layer negative electrode, (4) positive electrode / hole transport layer / light emitting layer / electron transport layer negative electrode, (5) positive electrode / positive (6) Positive electrode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / negative electrode, (7) Positive hole / hole transport layer / electron transport layer / electron injecting layer / negative electrode (8) Positive electrode / Hole transport layer / Electron transport layer / Electron transport layer / Negative electrode; (9) Positive electrode / Hole injection layer / Positive electrode Hole transport layer and light emitting layer / Electron transport layer / Electron injection layer / Anode (10) Positive electrode / hole injection layer / hole transport layer / light emitting layer Z electron transport layer / negative electrode, (11) Positive electrode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / negative electrode, (12) Positive electrode / hole transport layer / light emitting layer / electron transport layer / negative electrode; (13) Positive electrode / hole transport layer / light emitting layer / electron transport layer / negative electrode;
なお、 前記有機 EL素子が前記正孔ブロッキング層を有する場合には、 前記 (1) 〜 (13) において、 前記発光層と前記電子輸送層との間に該正孔ブロッキング層が 配置される層構成が好適に挙げられる。  In the case where the organic EL element has the hole blocking layer, in any of the above (1) to (13), a layer in which the hole blocking layer is disposed between the light emitting layer and the electron transport layer. The configuration is preferably exemplified.
これらの層構成の内、 前記 (4) 正極ノ正孔輸送層 発光層 Z電子輸送層 負極の 態様を図示すると、 図 1の通りであり、 有機 EL素子 10は、 ガラス基板 12上に形 成された正極 14 (例えば I TO電極) と、 正孔輸送層 16と、 発光層 18と、 電子 輸送層 20と、 負極 22 (例えば A1— L i電極) とをこの順に積層してなる層構成 を有する。 なお、正極 14 (例えば I TO電極) と負極 22 (例えば A 1 -L i電極) とは電源を介して互いに接続されている。正孔輸送層 16と発光層 18と電子輸送層 20とで赤色発光用の有機薄膜層 24が形成されている。  Among these layer configurations, FIG. 1 shows an embodiment of the above (4) positive electrode hole transport layer, light emitting layer, Z electron transport layer, and negative electrode. The organic EL element 10 is formed on a glass substrate 12. A positive electrode 14 (for example, an ITO electrode), a hole transport layer 16, a light-emitting layer 18, an electron transport layer 20, and a negative electrode 22 (for example, an A1-Li electrode). Having. The positive electrode 14 (for example, an ITO electrode) and the negative electrode 22 (for example, an A 1 -Li electrode) are connected to each other via a power supply. An organic thin film layer 24 for emitting red light is formed by the hole transport layer 16, the light emitting layer 18, and the electron transport layer 20.
本発明の有機 EL素子の発光ピーク波長としては、 600〜650 nmが好ましい。 本発明の有機 EL素子の発光効率としては、電圧 10V以下で赤色発光することが 望まれ、 7 V以下で赤色発光するのが好ましく、 5 V以下で赤色発光するのがより好 ましい。  The emission peak wavelength of the organic EL device of the present invention is preferably from 600 to 650 nm. Regarding the luminous efficiency of the organic EL device of the present invention, it is desired that the organic EL device emits red light at a voltage of 10 V or less, preferably emits red light at a voltage of 7 V or less, and more preferably emits red light at a voltage of 5 V or less.
本発明の有機 EL素子の発光輝度としては、 印加電圧 10 Vにおいて、 100 c d /m2 以上であるのが好ましく、 S O O c dZm2 以上であるのがより好ましく、 1 0 0 0 c d /m2以上であるのが特に好ましい。 The emission luminance of the organic EL device of the present invention at an applied voltage of 10 V is preferably 100 cd / m 2 or more, more preferably SOO cdZm 2 or more. It is particularly preferred that it is at least 0.000 cd / m 2 .
本発明の有機 E L素子は、 例えば、 コンピュータ、 車載用表示器、 野外表示器、 家 庭用機器、業務用機器、家電用機器、交通関係表示器、時計表示器、力レンダ表示器、 ルミネッセントスクリーン、音響機器等をはじめとする各種分野において好適に使用 することができるが、以下の本発明の有機 E Lディスプレイに特に好適に使用するこ とができる。  The organic EL device of the present invention includes, for example, a computer, an in-vehicle display, an outdoor display, a home appliance, a commercial appliance, a home appliance, a traffic display, a clock display, a power render display, and a luminescent display. Although it can be suitably used in various fields such as a cent screen, an acoustic device and the like, it can be particularly preferably used in the following organic EL display of the present invention.
(有機] (Organic)
本発明の有櫟 E Lディスプレイは、前記本発明の有機 E L素子を用いたこと以外は、 特に制限はなく、 公知の構成を適宜採用することができる。  The present invention EL display is not particularly limited except that the organic EL element of the present invention is used, and a known configuration can be appropriately adopted.
前記有機 E Lディスプレイは、 単色発光のものであってもよいし、 多色発光のもの であってもよいし、 フルカラータイプのものであってもよい。  The organic EL display may be of a single-color emission type, of a multi-color emission type, or of a full-color type.
前記有機 E Lディスプレイをフルカラータイプのものとする方法としては、例えば 「月刊ディスプレイ」 、 2 0 0 0年 9月号、 3 3〜3 7ページに記載されているよう に、 色の 3原色 (青色 (B ) 、 緑色 (G) 、 赤色 (R) ) に対応する光をそれぞれ発 光する有機 E L素子を基板上に配置する 3色発光法、 白色発光用の有機 E L素子によ る白色発光をカラーフィルターを通して 3原色に分ける白色法、青色発光用の有機 E L素子による青色発光を蛍光色素層を通して赤色 (R) 及ぴ緑色 (G) に変換する色 変換法、 などが知られているが、 本発明においては、 用いる前記本発明の有機 E L素 子が赤色発光用であるので.、 3色発光法、色変換法などを好適に採用することができ、 3色発光法を特に好適に採用することができる。  As a method of making the organic EL display a full-color type, for example, as described in “Monthly Display”, September 2000, pages 33 to 37, three primary colors (blue) are used. (B), green (G), and red (R)) OLEDs that emit light corresponding to each other are arranged on the substrate. There are known a white method that divides the light into three primary colors through a color filter, and a color conversion method that converts blue light emitted by an organic EL element for blue light emission into red (R) and green (G) through a fluorescent dye layer. In the present invention, the organic EL element of the present invention used is for red light emission.Thus, a three-color light-emitting method, a color conversion method, and the like can be preferably used, and a three-color light-emitting method is particularly preferably used. can do.
前記 3色発光法によりフルカラータイプの有機 E Lディスプレイを製造する場合 には、赤色発光用として前記本発明の有機 E L素子を用い、 そのほかに緑色発光用の 有機 E L素子及ぴ青色発光用の有機 E L素子が必要になる。  When a full-color organic EL display is manufactured by the three-color emission method, the organic EL element of the present invention is used for emitting red light, and in addition, an organic EL element for emitting green light and an organic EL for emitting blue light are used. Elements are required.
前記青色発光用の有機 E L素子としては、 特に制限はなく、公知のものの中から適 宜選択することができるが、 例えば層構成が、 I T O (正極) /前記 N P DZA 1— L i (負極) 、 であるものなどが好適に挙げられる。  The organic EL device for emitting blue light is not particularly limited and can be appropriately selected from known devices. For example, the layer configuration is ITO (positive electrode) / NP DZA 1—Li (negative electrode) And the like are preferably mentioned.
前記緑色発光用の有機 E L素子としては、 特に制限はなく、公知のものの中から適 宜選択することができるが、 例えば層構成が、 I T O (正極) Z前記 N P DZ前記 A 1 q /A l— L i (負極) 、 であるものなどが好適に挙げられる。 The organic EL device for emitting green light is not particularly limited and may be appropriately selected from known devices. For example, the layer configuration is ITO (positive electrode) Z or NP DZ or A. 1q / A1—Li (negative electrode), and the like are preferably mentioned.
前記有機 E Lディスプレイの態様としては、 特に制限はなく、 目的に応じて適宜選 択することができるが、 例えば、 「日経エレクトロニクス」 、 N o . 7 6 5, 2 0 0 0年 3月 1 3日号、 5 5〜6 2ページに記載されているような、 パッシブマトリタス パネル、 アクティブマトリクスパネルなどが好適に挙げられる。  The mode of the organic EL display is not particularly limited and can be appropriately selected depending on the purpose. For example, “Nikkei Electronics”, No. 765, March 13, 2003 A passive matrix panel, an active matrix panel, and the like, as described in the Japanese Journal, pages 55-62, are preferred.
前記パッシブマトリクスパネルは、 例えば、 図 2に示すように、 ガラス基板 1 2上 に、 互いに平行に配置された帯状の正極 1 4 (例えば I T O電極) を有し、 正極 1 4 上に、互いに順番に平行にかつ正極 1 4と略直交方向に配置された帯状の赤色発光用 の有機薄膜層 2 4、青色発光用の有機薄膜層 2 6及び緑色発光用の有機薄膜層 2 8を 有し、赤色発光用の有機薄膜層 2 4、 青色発光用の有機薄膜層 2 6及び緑色発光用の 有機薄膜層 2 8上に、 これらと同形状の負極 2 2を有してなる。  For example, as shown in FIG. 2, the passive matrix panel has strip-shaped positive electrodes 14 (for example, ITO electrodes) arranged on a glass substrate 12 in parallel with each other. A strip-shaped organic thin-film layer 24 for red light emission, an organic thin-film layer 26 for blue light emission, and an organic thin-film layer 28 for green light emission arranged in parallel to the cathode 14 and in a direction substantially perpendicular to the positive electrode 14, A negative electrode 22 having the same shape as these is provided on the organic thin film layer 24 for emitting red light, the organic thin film layer 26 for emitting blue light, and the organic thin film layer 28 for emitting green light.
前記パッシブマトリクスパネルにおいては、 例えば、 図 3に示すように、 複数の正 極 1 4からなる正極ライン 3 0と、複数の負極 2 2からなる負極ライン 3 2とが互い に略直行方向に交差して回路が形成されている。 各交差点に位置する、 赤色発光用、 青色発光用及び緑色発光用の各有機薄膜層 2 4、 2 6及び 2 8が画素として機能し、 各画素に対応して有機 E L素子 3 4が複数存在している。該パッシブマトリクスパネ ルにおいて、正極ライン 3 0における正極 1 4の 1つと、負極ライン 3 2における負 極 2 2の 1つとに対し、 定電流源 3 6により電流を印加すると、 その際、 その交差点 に位置する有機 E L薄膜層に電流が印加され、 該位置の有機 E L薄膜層が発光する。 この画素単位の発光を制御することにより、容易にフルカラーの画像を形成すること ができる。  In the passive matrix panel, for example, as shown in FIG. 3, a positive electrode line 30 composed of a plurality of positive electrodes 14 and a negative electrode line 32 composed of a plurality of negative electrodes 22 intersect each other in a substantially perpendicular direction. Thus, a circuit is formed. Each of the organic thin-film layers 24, 26, and 28 for red, blue, and green light located at each intersection functions as a pixel, and there are a plurality of organic EL elements 34 corresponding to each pixel. are doing. In the passive matrix panel, when a current is applied to one of the positive electrodes 14 on the positive electrode line 30 and one of the negative electrodes 22 on the negative electrode line 32 by the constant current source 36, at that time, an intersection is generated. A current is applied to the organic EL thin film layer located at the position, and the organic EL thin film layer at the position emits light. By controlling the light emission of each pixel, a full-color image can be easily formed.
前記アクティブマトリクスパネルは、 例えば、 図 4に示すように、 ガラス基板 1 2 上に、 走査線、 データライン及び電流供給ラインが碁盤目状に形成されており、 碁盤 目状を形成する走査線等に接続され、 各碁盤目に配置された T F T回路 4 0と、 T F T回路 4 0により駆動可能であり、各碁盤目中に配置された正極 1 4 (例えば I T O 電極) とを有し、 正極 1 4上に、 互いに順番に平行に配置された帯状の赤色発光用の 有機薄膜層 2 4、青色発光用の有機薄膜層 2 6及び緑赤色発光用の有機薄膜層 2 8を 有し、赤色発光用の有機薄膜層 2 4、 青色発光用の有機薄膜層 2 6及ぴ緑色発光用の 有機薄膜層 2 8上に、これらを全部覆うようにして配置された負極 2 2を有してなる。 赤色発光用の有機薄膜層 24、青色発光用の有機薄膜層 26及び緑色発光用の有機薄 膜層 28は、 それぞれ、 正孔輸送層 16、発光層 18及び電子輸送層 20を有してい る。 The active matrix panel has, for example, scanning lines, data lines, and current supply lines formed on a glass substrate 12 in a grid pattern as shown in FIG. And a positive electrode 14 (for example, an ITO electrode), which can be driven by the TFT circuit 40 and is disposed in each grid, and is connected to the 4, a strip-shaped organic thin-film layer 24 for red light emission, an organic thin-film layer 26 for blue light emission, and an organic thin-film layer 28 for green-red light emission arranged in parallel with each other in order. A negative electrode 22 is disposed on the organic thin film layer 24 for blue light emission, the organic thin film layer 26 for blue light emission, and the organic thin film layer 28 for green light emission so as to cover them all. The organic thin film layer 24 for emitting red light, the organic thin film layer 26 for emitting blue light, and the organic thin film layer 28 for emitting green light have a hole transport layer 16, a light emitting layer 18, and an electron transport layer 20, respectively. .
前記アクティブマトリクスパネルにおいては、 例えば、 図 5に示すように、 複数平 行に設けられた走査線 46と、複数平行に設けられたデータライン 42及び電流供給 ライン 44とが互いに直交して碁盤目を形成しており、各碁盤目には、 スイッチング 用 TFT48と、 駆動用 T FT 50とが接続されて回路が形成されている。 駆動回路 38から電流を印加すると、碁盤目毎にスィツチング用 TFT48と駆動用 TFT 5 0とが駆動可能となっている。 そして、 各碁盤目は、 青色発光用、 緑色発光用及び赤 色発光用の各有機薄膜素子 24、 26及ぴ 28が画素として機能し、該アクティブマ トリタスパネルにおいて、横方向に配置された走査線 46の 1つと、縦方向に配置さ れた電流供給ライン 44とに対し、 駆動回路 38から電流を印加すると、 その際、 そ の交差点に位置するスイッチング用 TFT 48が駆動し、それに伴い駆動用 TFT 5 0が駆動し、該位置の有機 EL素子 52が発光する。 この画素単位の発光を制御する ことにより、 容易にフルカラ一の画像を形成することができる。  In the active matrix panel, for example, as shown in FIG. 5, scanning lines 46 provided in a plurality of parallel lines and data lines 42 and a current supply line 44 provided in a plurality of parallel lines cross each other at right angles. In each grid, a switching TFT 48 and a driving TFT 50 are connected to form a circuit. When a current is applied from the driving circuit 38, the switching TFT 48 and the driving TFT 50 can be driven for each grid. In each of the grids, the organic thin-film elements 24, 26, and 28 for blue light emission, green light emission, and red light emission function as pixels, and the scanning lines arranged in the horizontal direction in the active matrix panel. When current is applied from one of the drive circuits 38 to one of the current supply lines 46 and the current supply line 44 arranged in the vertical direction, the switching TFT 48 located at the intersection is driven, and the driving TFT 48 is accordingly driven. The TFT 50 is driven, and the organic EL element 52 at that position emits light. By controlling the light emission of each pixel, a full-color image can be easily formed.
本発明の有機 ELディスプレイは、 例えば、 コンピュータ、 車载用表示器、 野外表 示器、 家庭用機器、 業務用機器、 家電用機器、 交通関係表示器、 時計表示器、 カレン ダ表示器、ルミネッセントスクリーン、音響機器等をはじめとする各種分野において 好適に使用することができる。 以下、本発明の実施例を説明するが、本発明はこれらの実施例に何ら限定されるも のではない。  The organic EL display of the present invention includes, for example, a computer, a vehicle display, an outdoor display, a household device, a business device, a household appliance, a traffic display, a clock display, a calendar display, and a luminaire. It can be suitably used in various fields such as netting screens and audio equipment. Hereinafter, examples of the present invention will be described, but the present invention is not limited to these examples.
(実施例 1 )  (Example 1)
一 [Cu I ( q u i n) 2]2の合成一 Synthesis of [Cu I (quin) 2 ] 2
J . C h e m. S o c. D a 1 t o n Tr a n s. 1986, 2303— 231 0に記載の方法に従って、 Cu Iとキノリンとを原料として [Cu I (q u i n) 2] 2を合成した。 即ち、 以下の反応式に示す通り、 アセトン 5 Om 1に Cu I 0. 76 gを添カ卩した懸濁液に 5 m 1のョゥ化カリゥム飽和水溶液を攪拌しながら添加した。 そこに、 キノリンを 1. 03 g添加すると明るい黄色の沈殿が生成した。 この混合液 を 24時間還流し、 室温で約 3日間放冷することにより、 黄色の結晶 (前記有機金属 複核錯体) が析出し、 目的とする [Cu l (q u i n) 2]2を合成した。 [Cu I (quin) 2 ] 2 was synthesized using Cu I and quinoline as raw materials according to the method described in J. Chem. Soc. . That is, as shown in the following reaction formula, 5 ml of a saturated aqueous solution of potassium iodide was added to a suspension obtained by adding 0.76 g of Cu I to 5 Om 1 of acetone while stirring. When 1.03 g of quinoline was added thereto, a bright yellow precipitate was formed. This mixture The mixture was refluxed for 24 hours, and allowed to cool at room temperature for about 3 days, whereby yellow crystals (the organometallic dinuclear complex) were precipitated, and the desired [Cul (quin) 2 ] 2 was synthesized.
Cul in acetone Cul in acetone
Kl in Η20 reflux 24h,cool to r.t. Kl in Η 20 reflux 24h, cool to rt
quinoline
Figure imgf000036_0001
quinoline
Figure imgf000036_0001
(実施例 2) (Example 2)
一 [Cu I (q u i n) ]4の合成一 Synthesis of [Cu I (quin)] 4
J . C h e m. S o c. Da l t o n T r a n s. 1986, 2303— 231 0に記載の方法に従って、 Cu Iとキノリンとを原料として [Cu I (q u i n) ]4 を合成した。 即ち、 以下の反応式に示す通り、 アセトン 100m lに Cu l 1. 5 2 gを添加した懸濁液に 1 5m lのヨウ化カリゥム飽和水溶液を攪拌しながら添加 した。 そこに、 キノリンを 0. 52 g添加した。 この混合液を 24時間還流し、 溶液 の温度を 55 °Cに保つことにより前記有機金属複核錯体を析出させて、 目的とする [Cu l (q i n) ]4を合成した。 [Cu I (quin)] 4 was synthesized from Cu I and quinoline as raw materials according to the method described in J. Chem. Soc. Dalton Trans. 1986, 2303-230. That is, as shown in the following reaction formula, 15 ml of a saturated aqueous solution of potassium iodide was added to a suspension obtained by adding 1.52 g of Cu1 to 100 ml of acetone while stirring. Thereto, 0.52 g of quinoline was added. The mixture was refluxed for 24 hours, and the temperature of the solution was kept at 55 ° C. to precipitate the organometallic dinuclear complex, thereby synthesizing the desired [Cul (qin)] 4 .
Cul in acetone Cul in acetone
Kl in H20 reflux 24h, 55°c Kl in H 2 0 reflux 24h, 55 ° c
quinoline
Figure imgf000036_0002
quinoline
Figure imgf000036_0002
(実施例 3) (Example 3)
一有機 EL素子の作製— Fabrication of one organic EL device
実施例 1で合成した前記有機金属複核錯体を発光材料として用いて高分子分散型 の有機 EL素子を以下のようにして作製した。 即ち、正極としての I TO電極を形成 したガラス基板を、 水、 アセトン及ぴイソプロピルアルコールにて超音波洗浄し、 U Vオゾン処理した後、 この I TO電極上にポリビニルカルバゾール (PVC z) に実 施例 1の前記有機金属複核錯体 ([Cu I (qu i n) 2]2) を 5質量%ドープした正 孔輸送層兼発光層をスピンコートにより 50 nmの厚みに被覆した。 次に、 この正孔 輸送層兼発光層上に、 真空蒸着装置 (真空度 = 1 X 10-6To r r (1. 3 X 1 0— 4P a) 、 基板温度 ==室温) を用いて、 電子輸送層としてのアルミニウムキノリン錯 体 (A l q) を厚みが 2 Onmとなるように蒸着した。 該電子輸送層上に負極として の A 1— L i合金 (L i含有量 =0. 5質量%) を厚みが 50 n mとなるように蒸着 した。 以上により、 有機 EL素子を作製した。 Using the organometallic dinuclear complex synthesized in Example 1 as a light-emitting material, a polymer-dispersed organic EL device was produced as follows. In other words, forming an ITO electrode as the positive electrode The glass substrate thus obtained was subjected to ultrasonic cleaning with water, acetone and isopropyl alcohol, and subjected to UV ozone treatment. Then, on the ITO electrode, polyvinyl carbazole (PVC z) was applied to the organometallic dinuclear complex of Example 1 ([ A hole transport layer / light-emitting layer doped with 5% by mass of Cu I (qu in) 2 ] 2 ) was coated to a thickness of 50 nm by spin coating. Next, the hole transport layer and luminescent layer, vacuum deposition device (degree of vacuum = 1 X 10- 6 To rr ( 1. 3 X 1 0- 4 P a), the substrate temperature == room temperature) using a Then, an aluminum quinoline complex (Alq) as an electron transport layer was deposited so as to have a thickness of 2 Onm. An A 1 -Li alloy (Li content = 0.5% by mass) as a negative electrode was deposited on the electron transport layer so as to have a thickness of 50 nm. Thus, an organic EL device was manufactured.
(実施例 4)  (Example 4)
一有機 EL素子の作製一 (1) Preparation of organic EL device (1)
実施例 2で合成した前記有機金属複核錯体 (Cu l (qu i n) ) 4) を発光材料 として用いた以外は実施例 1と同様にして実施例 4の高分子分散型の有機 E L素子 を作製した。 The polymer-dispersed organic EL device of Example 4 was produced in the same manner as in Example 1 except that the organometallic dinuclear complex (Cu l (qu in)) 4 ) synthesized in Example 2 was used as a light emitting material. did.
作製した実施例 3及び 4の有機 EL素子における I TO電極 (正極) 及び A 1一 L i合金 (負極) に電圧を印加すると、 該有機 EL素子においては、 いずれも電圧 5 V 以上で赤色発光が観測された。  When a voltage was applied to the ITO electrode (positive electrode) and the A1-Li alloy (negative electrode) in the fabricated organic EL elements of Examples 3 and 4, the organic EL elements emitted red light at a voltage of 5 V or more. Was observed.
また、 印加電圧 10Vにおける発光輝度 (c d/m2) と、 初期輝度を 100 c d Zm2として定電流測定により有機 E L素子の有効半減寿命とを測定した。 結果を表 1に示す。 The emission luminance (cd / m 2 ) at an applied voltage of 10 V and the effective half life of the organic EL element were measured by constant current measurement with the initial luminance set to 100 cd Zm 2 . Table 1 shows the results.
<表 1 >  <Table 1>
Figure imgf000037_0001
産業上の利用可能性 本発明によると、従来における問題を解決し、 有機 EL素子における発光材料とし て好適な有機金属複核錯体、 該有機金属複核錯体を用い、 熱的 ·電気的な安定性に優 れ、 寿命 ·発光効率等に優れた有機 E L素子、 及ぴ、 該有機 E L素子を用いた高性能 で長寿命な有機 E Lディスプレイを提供することができる。
Figure imgf000037_0001
INDUSTRIAL APPLICABILITY According to the present invention, the conventional problems can be solved, and And a suitable organic metal dinuclear complex, an organic EL device using the organic metal dinuclear complex, having excellent thermal and electrical stability, and having excellent lifetime and luminous efficiency, and using the organic EL device A high-performance, long-life organic EL display can be provided.

Claims

請 求 の 範 囲 The scope of the claims
1. 正極及び負極の間に有機薄膜層を有してなり、 該有機薄膜層が、 π共役部 分を少なくとも 1つ有する配位子が配位結合した 1 Β族金属元素の少なくとも 2つ が、ハロゲン原子によって架橋されてなる有機金属複核錯体を含有することを特徴と する有機 EL素子。 1. An organic thin film layer is provided between a positive electrode and a negative electrode, and the organic thin film layer has at least two group I metal elements coordinated by a ligand having at least one π-conjugated moiety. An organic EL device comprising an organometallic dinuclear complex crosslinked by a halogen atom.
2. 有機金属複核錯体が、 下記構造式 (1) で表される請求の範囲第 1項に記 載の有機 EL素子。 し Π  2. The organic EL device according to claim 1, wherein the organometallic dinuclear complex is represented by the following structural formula (1). Π
構造式 ( 1 ) ιιιιιιι
Figure imgf000039_0001
ただし、 前記構造式 (1) 中、 Mは、 1B族金属元素を表す。 Lは、 該金属元素 M の安定配位数を満たすように配位結合し、かつ少なくとも一つの π共役部分を有する 配位子を表す。 Xは、 ハロゲン原子を表す。 ηは、 1〜2の整数を表す。 mは、 1以 上の整数を表す。
Structural formula (1) ιιιιιιι
Figure imgf000039_0001
Here, in the structural formula (1), M represents a Group 1B metal element. L represents a ligand coordinated to satisfy the stable coordination number of the metal element M and having at least one π-conjugated moiety. X represents a halogen atom. η represents an integer of 1 to 2. m represents an integer of 1 or more.
3. 有機金属複核錯体が、 下記構造式 (2) で表される請求の範囲第 1項から 第 2項のいずれかに記載の有機 EL素子。 し Π  3. The organic EL device according to any one of claims 1 to 2, wherein the organometallic dinuclear complex is represented by the following structural formula (2). Π
X M  X M
構造式 (2)  Structural formula (2)
M X M X
Ln ただし、 前記構造式 (2) 中、 Mは、 1 B族金属元素を表す。 Lは、 該金属元素 M の安定配位数を満たすように配位結合し、かつ少なくとも一つの π共役部分を有する 配位子を表す。 は、 ハロゲン原子を表す。 ηは、 1〜2の整数を表す。 Ln In the structural formula (2), M represents a Group 1B metal element. L is the metal element M Represents a ligand coordinated so as to satisfy the stable coordination number and having at least one π-conjugated moiety. Represents a halogen atom. η represents an integer of 1 to 2.
4 . 配位子が、 1 Β族金属元素に単座又は 2座以上で配位結合可能な原子を芳 香族環の一部に含んでなり、 該原子が窒素原子、 酸素原子、 硫黄原子、 セレン原子、 テルル原子、ポロニウム原子及びリン原子から選択される請求の範囲第 1項から第 3 項のいずれかに記載の有機 E L素子。  4. The ligand comprises, as a part of an aromatic ring, an atom capable of monodentate or bidentate coordination bond with a Group 1 metal element, and the atom includes a nitrogen atom, an oxygen atom, a sulfur atom, The organic EL device according to any one of claims 1 to 3, wherein the organic EL device is selected from a selenium atom, a tellurium atom, a polonium atom, and a phosphorus atom.
5 . 配位子が、 下記構造式のいずれかで表される請求の範囲第 1項から第 4項 のいずれかに記載の有機 E L素子。  5. The organic EL device according to any one of claims 1 to 4, wherein the ligand is represented by any of the following structural formulas.
Figure imgf000040_0001
Figure imgf000040_0001
ピリジン キノリン 2, 2 '—ビビリジン ただし、 前記各構造式中、 R 1は、 ハロゲン原子、 アルコキシ基、 アミノ基、 アル キル基、 シクロアルキル基、 ァリール基又はァリールォキシ基を表し、 これらは置換 基により更に置換されていてもよい。 ρは、 0〜5の整数を表す Pyridine quinoline 2, 2'-biviridine In the above formulas, R 1 represents a halogen atom, an alkoxy group, an amino group, an alkyl group, a cycloalkyl group, an aryl group or an aryloxy group. It may be further substituted. ρ represents an integer from 0 to 5
6 . 1 B族金属元素が、 C u、 A g及ぴ A uから選択される請求の範囲第 1項 から第 5項のレ、ずれかに記載の有機 E L素子。  6.1 The organic EL device according to any one of claims 1 to 5, wherein the group B metal element is selected from Cu, Ag, and Au.
7 . 1 B族金属元素の数が、 2及び 4のいずれかである請求の範囲第 1項から 第 6項のいずれかに記載の有機 E L素子。  7. The organic EL device according to claim 1, wherein the number of group B metal elements is any one of two and four.
8 . 有機金属複核錯体が、 下記構造式のいずれかで表される請求の範囲第 1項 から第 7項のいずれかに記載の有機 E L素子。 8. The organic EL device according to any one of claims 1 to 7, wherein the organometallic dinuclear complex is represented by any of the following structural formulas.
Figure imgf000041_0001
Figure imgf000041_0001
Figure imgf000041_0002
Figure imgf000041_0002
Figure imgf000041_0003
Figure imgf000041_0003
9 . 有機薄膜層が、 正孔輸送層兼発光層を有してなり、.該正孔輸送層兼発光層 が、正極及び負極の間に有機薄膜層を有してなり、 該有機薄膜層が、 π共役部分を少 なくとも 1つ有する配位子が配位結合した 1 Β族金属元素の少なくとも 2つがハロ ゲン原子によって架橋されてなる有機金属複核錯体を含有する請求の範囲第 1項か ら第 8項のいずれかに記載の有機 E L素子。 9. The organic thin film layer has a hole transport layer and a light emitting layer, and the hole transport layer and light emitting layer has an organic thin film layer between a positive electrode and a negative electrode. Contains an organometallic dinuclear complex in which at least two of the Group 1 metal elements coordinated by a ligand having at least one π-conjugated moiety are cross-linked by a halogen atom. 9. The organic EL device according to any one of items 1 to 8.
1 0 . 有機薄膜層が正孔輸送層と電子輸送層とに挾まれた発光層を有してなり、 該発光層が有機金属複核錯体を発光材料として含有する請求の範囲第 1項から第 8 項のいずれかに記載の有機 E L素子。  10. The organic thin film layer has a light emitting layer sandwiched between a hole transport layer and an electron transport layer, and the light emitting layer contains an organometallic dinuclear complex as a light emitting material. Item 9. The organic EL device according to any one of items 8.
1 1 . 発光層が、 有機金属複核錯体をゲスト化合物とする低分子系ホスト材料を 含有してなる請求の範囲第 1 0項に記載の有機 E L素子。 11. The organic EL device according to claim 10, wherein the light-emitting layer contains a low-molecular host material having an organometallic dinuclear complex as a guest compound.
12. 低分子系ホスト材料が、 4, 4, 一ビス (2, 25 一ジフヱ二ルビニル) 一 1, 1, 一ビフエ-ル (DP VB i )、 p—セシキフエニル (p— SP)、 1, 3, 6, 8—テトラフエニルピレン (t p p y) 、 N, N, ージナフチルー N, N, 一ジ フエニル一 [1, 1, 一ビフエニル] 一 4, 4, ージァミン (NPD) 、 ォキシン錯 体及び力ルバゾール誘導体から選択される請求の範囲第 11項に記載の有機 EL素 子。 12. Low-molecular host material, 4, 4, One-bis (2, 2 5 one Jifuwe two Rubiniru) one 1, 1, One Bifue - Le (DP VB i), p-Seshikifueniru (p-SP), 1 , 3,6,8-tetraphenylpyrene (tppy), N, N, dinaphthyl-N, N, diphenyl-1- [1,1,1-biphenyl] -14,4, diamine (NPD), oxine complex and 12. The organic EL device according to claim 11, which is selected from sorbazole derivatives.
13. 発光層が、 下記構造式 (5) で表される力ルバゾール誘導体を含有する請 求の範囲第 10項から第 12項のいずれかに記載の有機 EL素子。  13. The organic EL device according to any one of claims 10 to 12, wherein the light-emitting layer contains a carbazole derivative represented by the following structural formula (5).
構造式 (5) Structural formula (5)
Figure imgf000042_0001
ただし、 前記構造式 (5) 中、 Arは、 芳香族環を含む 2価若しくは 3価の基、 又 は、複素環式芳香族環を含む 2価若しくは 3価の基を表す。 R4及び R5は、 それぞれ 独立に、 水素原子、 ハロゲン原子、 アルキル基、 ァラルキル基、 アルケニル基、 ァリ ール基、シァノ基、アミノ基、ァシル基、アルコキシカルボニル基、カルボキシル基、 アルコキシ基、 アルキルスルホニル基、 水酸基、 アミド基、 ァリールォキシ基、 芳香 族炭化水素環基又は芳香族複素環基を表し、 これらは置換基で更に置換されていても よい。
Figure imgf000042_0001
Here, in the structural formula (5), Ar represents a divalent or trivalent group containing an aromatic ring, or a divalent or trivalent group containing a heterocyclic aromatic ring. R 4 and R 5 are each independently a hydrogen atom, a halogen atom, an alkyl group, an aralkyl group, an alkenyl group, an aryl group, a cyano group, an amino group, an acyl group, an alkoxycarbonyl group, a carboxyl group, an alkoxy group An alkylsulfonyl group, a hydroxyl group, an amide group, an aryloxy group, an aromatic hydrocarbon ring group or an aromatic heterocyclic group, which may be further substituted with a substituent.
14. 力ルバゾール誘導体が、下記構造式 (13) で表される 4, 4,一ビス (9 一力ルパゾリル) ービフヱ-ル (CBP) 及びその誘導体から選択される請求の範囲 第 13項に記載の有機 EL素子。 構造式 (13)
Figure imgf000043_0001
14. A claim according to claim 13, wherein the sorbazole derivative is selected from 4,4,1-bis (9-potassium lupazolyl) -biphenyl (CBP) represented by the following structural formula (13) and derivatives thereof. Organic EL device. Structural formula (13)
Figure imgf000043_0001
15. 発光層が、 有機金属複核錯体をゲスト化合物とする高分子系ホスト材料を 含有する請求の範囲第 10項から第 14項のいずれかに記載の有機 EL素子。 15. The organic EL device according to any one of claims 10 to 14, wherein the light-emitting layer contains a high-molecular host material having an organometallic dinuclear complex as a guest compound.
16. 高分子系ホスト材料が、 ポリパラフエ二レンビニレン (PPV) 、 ポリチ ォフェン (PAT) 、 ポリパラフエ二レン (PPP) 、 ポリビニルカルバゾーノレ (P VC z) 、 ポリフルオレン (PF) 、 ポリアセチレン (P A) 及ぴこれらの誘導体か ら選択される請求の範囲第 15項に記載の有機 EL素子。  16. Polymer host materials include polyparaphenylenevinylene (PPV), polythiophene (PAT), polyparaphenylene (PPP), polyvinylcarbazonole (PVCz), polyfluorene (PF), and polyacetylene (PA). 16. The organic EL device according to claim 15, wherein the organic EL device is selected from these derivatives.
17. 高分子系ホスト材料が、 下記構造式 (14) で表されるポリビュル力ル バゾール (PVC z) 誘導体であり、 有機金属複核錯体の発光層における含有量が、 該ポリビュルカルパゾール (PVC z) 誘導体に対し、 0. 01〜50質量%でぁる 請求の範囲第 15項から第 16項のいずれかに記載の有機 EL素子。  17. The polymer-based host material is a polybutylcarbazole (PVCz) derivative represented by the following structural formula (14), and the content of the organometallic dinuclear complex in the light-emitting layer is determined by the polybulcarbazole (PVC). z) The organic EL device according to any one of claims 15 to 16, wherein the amount is 0.01 to 50% by mass relative to the derivative.
構造式 (14)
Figure imgf000043_0002
ただし、 前記構造式 (14) 中、 R11及び R12は、 環状構造の任意の位置に付与 されたそれぞれ複数の置換基を表し、 それぞれ独立に水素原子、 ハロゲン原子、 アル コキシ基、 アミノ基、 アルキル基、 シクロアルキル基、 窒素原子や硫黄原子を含んで いてもよいァリール基、 ァリールォキシ基を表し、 これらは置換基で更に置換されて いてもよい。 該 R11及ぴ R12は、 任意の隣接する置換位置で互い結合して、 窒素原 子、 硫黄原子、 又は酸素原子を含んでいてもよい芳香族環を形成してもよく、 これら は置換基で更に置換されていてもよい。 Xは、 整数を表す。
Structural formula (14)
Figure imgf000043_0002
However, in the structural formula (14), R 11 and R 12 each represent a plurality of substituents provided at any position of the cyclic structure, and each independently represents a hydrogen atom, a halogen atom, an alkoxy group, an amino group Including alkyl, cycloalkyl, nitrogen and sulfur atoms Represents an aryl group or an aryloxy group, which may be further substituted with a substituent. R 11 and R 12 may be bonded to each other at any adjacent substitution position to form an aromatic ring which may contain a nitrogen atom, a sulfur atom, or an oxygen atom; May be further substituted with a group. X represents an integer.
18. 電子輸送層に含まれる電子輸送材料が、下記構造式(15)で表される 2, 9—ジメチルー 4, 7—ジフエ二ルー 1, 10—フエナント口リン (B CP) である 請求の範囲第 10項から第 17項のいずれかに記載の有機 EL素子。  18. The electron transport material contained in the electron transport layer is 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) represented by the following structural formula (15). Item 18. The organic EL device according to any one of Items 10 to 17.
構造式 (15)
Figure imgf000044_0001
Structural formula (15)
Figure imgf000044_0001
19. 赤色発色用である請求の範囲第 1項から第 18項のいずれかに記載の有機 EL素子。 19. The organic EL device according to any one of claims 1 to 18, which is for red coloring.
20. π共役部分を少なくとも 1つ有する配位子が配位結合した 1 Β族金属元素 の少なくとも 2つが、 ハロゲン原子によって架橋されてなり、 有機 EL素子に用いら れることを特徴とする有機金属複核錯体。 20. An organic metal which is used in an organic EL device, wherein at least two of the Group 1 metal elements coordinated by a ligand having at least one π- conjugated moiety are crosslinked by a halogen atom. Binuclear complex.
21. 下記構造式 ( 1 ) で表される請求の範囲第 20項に記載の有機金属複核錯 体。 し Π  21. The organometallic dinuclear complex according to claim 20, represented by the following structural formula (1). Π
構造式 ( 1 ) Structural formula (1)
ΙΙΙΙΙΙΙΙΙΙΙΙ ΙΙ Μ ιιιιιιπιι出 III X III ΙΙ Μ ιιιιιιπιι out III X
Figure imgf000044_0002
Figure imgf000044_0002
Ln ただし、 前記構造式 (1) 中、 Mは、 1B族金属元素を表す。 Lは、 該金属元素 M の安定配位数を満たすように該 Mに配位結合し、かつ少なくとも 1つの π共役部分を 有する配位子を表す。 Xは、ハロゲン原子を表す。 ηは、 1〜2の整数を表す。 mは、 1以上の整数を表す。 Ln In the structural formula (1), M represents a Group 1B metal element. L is the metal element M Represents a ligand coordinated to M so as to satisfy the stable coordination number of and having at least one π-conjugated moiety. X represents a halogen atom. η represents an integer of 1 to 2. m represents an integer of 1 or more.
2 2 . 有機金属複核錯体が、 下記構造式 ( 2 ) で表される請求の範囲第 2 1項に 記載の有機金属複核錯体。 し Π  22. The organometallic dinuclear complex according to claim 21, wherein the organometallic dinuclear complex is represented by the following structural formula (2). Π
X 川 in M X river in M
匪 賺 構造式 (2 )  Marauder NOTE Structural formula (2)
M X M X
し Π ただし、 前記構造式 (1 ) 中、 Mは、 1 B族金属元素を表す。 Lは、 該金属元素 M の安定配位数を満たすように該 Mに配位結合し、かつ少なくとも 1つの π共役部分を 有する配位子を表す。 Xは、 ハロゲン原子を表す。 ηは、 1〜2の整数を表す。  However, in the structural formula (1), M represents a Group 1B metal element. L represents a ligand coordinated to the metal element M so as to satisfy the stable coordination number of the metal element M and having at least one π-conjugated moiety. X represents a halogen atom. η represents an integer of 1 to 2.
2 3 . 配位子が、 1 Β族金属元素に単座又は 2座以上で配位結合可能な原子を芳 香族環の一部に含んでなり、 該原子が窒素原子、 酸素原子、 硫黄原子、 セレン、 テル ル、ポロニウム及ぴリン原子から選択される請求の範囲第 2 0項から第 2 2項のいず れかに記載の有機金属複核錯体。 23. The ligand comprises, as a part of the aromatic ring, an atom capable of coordinating monodentate or bidentate bond to the Group 1 metal element, and the atom is a nitrogen atom, an oxygen atom, or a sulfur atom. 23. The organometallic dinuclear complex according to any one of claims 20 to 22 selected from selenium, tellurium, polonium and phosphorus atoms.
2 4 . 配位子が、 下記構造式のいずれかで表される請求の範囲第 2 3項に記載の 有機金属複核錯体。 24. The organometallic dinuclear complex according to claim 23, wherein the ligand is represented by any of the following structural formulas.
Figure imgf000046_0001
ピリジン キノリン 2, 2'—ビビリジン ただし、 各構造式中、 R1は、 ハロゲン原子、 アルコキシ基、 アミノ基、 アルキル 基、 シクロアルキル基、 ァリール基又はァリールォキシ基を表し、 これらは置換基に より更に置換されていてもよい。 Pは、 0〜 5の整数を表す。
Figure imgf000046_0001
Pyridine quinoline 2, 2'-bibiridine wherein R 1 represents a halogen atom, an alkoxy group, an amino group, an alkyl group, a cycloalkyl group, an aryl group or an aryloxy group. It may be substituted. P represents an integer of 0 to 5.
25. 1B族金属元素が、 Cu、 A g及ぴ A uから選択される請求の範囲第 20 項から第 24項のいずれかに記載の有機金属複核錯体。  25. The organometallic dinuclear complex according to any one of claims 20 to 24, wherein the Group 1B metal element is selected from Cu, Ag and Au.
26. 1 B族金属元素の数が、 2及ぴ 4のいずれかである請求の範囲第 20項か ら第 25項のいずれかに記載の有機金属複核錯体。  26. The organometallic dinuclear complex according to any one of claims 20 to 25, wherein the number of group 1 B metal elements is any of 2 to 4.
27. 有機 EL素子における発光材料として用いられる請求の範囲第 20項から 第 26項のいずれかに記載の有機金属複核錯体。  27. The organometallic dinuclear complex according to any one of claims 20 to 26, which is used as a light emitting material in an organic EL device.
28. 請求の範囲第 1項から第 19項のいずれかに記載の有機 EL素子を用いた ことを特徴とする有機 ELディスプレイ。  28. An organic EL display using the organic EL device according to any one of claims 1 to 19.
29. パッシブマトリクスパネル及びァタティブマトリクスパネルのいずれかで ある請求の範囲第 28項に記載の有機 ELディスプレイ。  29. The organic EL display according to claim 28, which is one of a passive matrix panel and an active matrix panel.
PCT/JP2003/001372 2003-02-10 2003-02-10 Polynuclear organometallic complexes, organic el devices and organic el displays WO2004069800A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003207201A AU2003207201A1 (en) 2003-02-10 2003-02-10 Polynuclear organometallic complexes, organic el devices and organic el displays
PCT/JP2003/001372 WO2004069800A1 (en) 2003-02-10 2003-02-10 Polynuclear organometallic complexes, organic el devices and organic el displays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/001372 WO2004069800A1 (en) 2003-02-10 2003-02-10 Polynuclear organometallic complexes, organic el devices and organic el displays

Publications (1)

Publication Number Publication Date
WO2004069800A1 true WO2004069800A1 (en) 2004-08-19

Family

ID=32843990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001372 WO2004069800A1 (en) 2003-02-10 2003-02-10 Polynuclear organometallic complexes, organic el devices and organic el displays

Country Status (2)

Country Link
AU (1) AU2003207201A1 (en)
WO (1) WO2004069800A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899029A (en) * 2012-09-04 2013-01-30 中国计量学院 Luminescent material of cuprous iodide complex and preparation method thereof
CN103855309A (en) * 2012-11-30 2014-06-11 海洋王照明科技股份有限公司 Organic electroluminescence device and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000229957A (en) * 1999-02-08 2000-08-22 Fuji Photo Film Co Ltd Azole derivative and its use
JP2000229966A (en) * 1999-02-09 2000-08-22 Fuji Photo Film Co Ltd Azole derivative and its use
JP2000229941A (en) * 1999-02-12 2000-08-22 Fuji Photo Film Co Ltd Azole derivative and its use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000229957A (en) * 1999-02-08 2000-08-22 Fuji Photo Film Co Ltd Azole derivative and its use
JP2000229966A (en) * 1999-02-09 2000-08-22 Fuji Photo Film Co Ltd Azole derivative and its use
JP2000229941A (en) * 1999-02-12 2000-08-22 Fuji Photo Film Co Ltd Azole derivative and its use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RATH N.P., HOLT E.M.: "Fluorescent copper(I) complexes: Correlation of structural and emission characteristics of ((CuI(quin)2)2) and (Cu4I4(quin)4)(quin=Quinoline)", J. CHEM. SOC. DALTON TRANS., 1986, pages 2303 - 2310, XP002967767 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899029A (en) * 2012-09-04 2013-01-30 中国计量学院 Luminescent material of cuprous iodide complex and preparation method thereof
CN103855309A (en) * 2012-11-30 2014-06-11 海洋王照明科技股份有限公司 Organic electroluminescence device and preparation method thereof

Also Published As

Publication number Publication date
AU2003207201A1 (en) 2004-08-30

Similar Documents

Publication Publication Date Title
JP4313308B2 (en) Organic metal complex, organic EL element, and organic EL display
EP1753839B1 (en) Polymer light-emitting material and organic light emitting element
JP3841695B2 (en) Organic EL element and organic EL display
JP3855675B2 (en) Organic electroluminescence device
JP5384789B2 (en) Organic light-emitting devices using binuclear metal compounds as light-emitting materials
JP4786917B2 (en) Organometallic complex, luminescent solid, organic EL device and organic EL display
US20040053069A1 (en) 1,3,6,8-Tetrasubstituted pyrene compound, organic EL element using the same, and organic EL display using the same
JP5243684B2 (en) Organometallic complex, luminescent solid, organic EL device and organic EL display
KR20130073023A (en) Depositing premixed materials
WO2004096945A1 (en) 1,3,6,8-tetrasubstituted pyrene compounds, organic el device and organic el display
US7018723B2 (en) Materials and structures for enhancing the performance of organic light emitting devices
JP2002255934A (en) New compound, its polymer, light emission element material using these substances and the light emission element
JP2009533873A (en) Organic electronic devices using phthalimide compounds
JP4880450B2 (en) Organometallic complex, luminescent solid, organic EL device and organic EL display
KR20030074081A (en) Organic EL Element and Organic EL Display
US20040096570A1 (en) Structure and method of fabricating organic devices
EP1902076A1 (en) Light emitting polymer material, organic electroluminescence device and display device comprising light emitting polymer material
JP5461793B2 (en) Phosphorescent polymer compound and organic electroluminescence device using the same
JP2006104132A (en) Organic metal complex, and luminous material, and luminous element
TWI400988B (en) Organic electroluminescent elements
JP2004107441A (en) Organic luminescent material, organic light-emitting element and display using the same
JP2007023269A (en) Light-emitting polymeric material, and organic electroluminescent device and display device each using the same
WO2004068912A1 (en) Material for hole injection layer, organic el element and organic el display
JP2006069936A (en) Metal complex, luminescent solid, organic el device and organic el display
WO2004069800A1 (en) Polynuclear organometallic complexes, organic el devices and organic el displays

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP