WO2004069754A1 - Method of decomposing hardly decomposable organic compound and apparatus therefor - Google Patents
Method of decomposing hardly decomposable organic compound and apparatus therefor Download PDFInfo
- Publication number
- WO2004069754A1 WO2004069754A1 PCT/JP2004/001382 JP2004001382W WO2004069754A1 WO 2004069754 A1 WO2004069754 A1 WO 2004069754A1 JP 2004001382 W JP2004001382 W JP 2004001382W WO 2004069754 A1 WO2004069754 A1 WO 2004069754A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hardly decomposable
- decomposable organic
- organic compound
- ozone
- tourmaline powder
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/78—Treatment of water, waste water, or sewage by oxidation with ozone
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09C—RECLAMATION OF CONTAMINATED SOIL
- B09C1/00—Reclamation of contaminated soil
- B09C1/02—Extraction using liquids, e.g. washing, leaching, flotation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09C—RECLAMATION OF CONTAMINATED SOIL
- B09C1/00—Reclamation of contaminated soil
- B09C1/08—Reclamation of contaminated soil chemically
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/725—Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/32—Hydrocarbons, e.g. oil
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/32—Hydrocarbons, e.g. oil
- C02F2101/327—Polyaromatic Hydrocarbons [PAH's]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/36—Organic compounds containing halogen
Definitions
- the present invention relates to a method and an apparatus for decomposing a hardly decomposable organic compound, and in particular, to a technology for decomposing a hardly decomposable organic compound using an ozone activating action of tourmaline powder such as dolapite.
- Persistent organic compounds such as dioxins and polychlorinated biphenyls (PCB) are discharged into the natural world from waste incinerators, incinerators for industrial waste, various equipment, etc. It is a major social problem because it may be discharged at the same time.
- PCB polychlorinated biphenyls
- PCDD polychlorinated dibenzoparadioxins
- PCDF polychlorinated dibenzofurans
- cobraner PCB cobraner polychlorinated biphenyls
- ozone water obtained by dissolving ozone gas in water is particularly effective in sterilizing, deodorizing, bleaching, etc. due to the strong oxidizing power of ozone.
- ozone gas is self-decomposing into harmless oxygen over time and has no residual properties.
- Japanese Patent Application Laid-Open No. 2002-186.850 discloses a method in which a liquid such as wastewater is used.
- a technology has been proposed that effectively decomposes dioxins contained by using ozone and ultraviolet light in combination. According to this, when ultraviolet rays are irradiated into wastewater containing ozone, extremely reactive hydroxy radicals are formed, so that decomposition of dioxins and the like can be promoted.
- the structure is such that ultraviolet light is irradiated into the wastewater, so that it is effective for decomposing dioxins and the like in the liquid, but is present in the soil.
- the effect is reduced because ultraviolet rays cannot be sufficiently irradiated.
- the present invention has been made to solve such a problem, and is based on the premise that the present invention is adapted to the decomposition of hardly decomposable organic compounds present not only in a liquid but also in a soil, and to activate ozone.
- a method for decomposing hard-to-decompose organic compounds that can rapidly decompose hard-to-decompose organic compounds present at low concentrations in liquids and soil, It is intended to provide such a device. Disclosure of the invention
- the feature of the method for decomposing a hardly decomposable organic compound according to the present invention is that a system such as a liquid in which a hardly decomposable organic compound is present or a system in which a liquid is contained in soil in which a hardly decomposable organic compound is present is used.
- Ozone injecting step injecting tourmaline powder into the processing system, and separating the tourmaline powder mixed in the tourmaline powder mixing step on the crystal.
- an electric stone powder charge separation step to add an action.
- the tourmaline powder it is preferable to use a tourmaline ceramic ground powder obtained by firing natural tourmaline to make it ceramic.
- the ceramicization increases the ozone activating effect at the interface of tourmaline powder, increases the amount of active oxygen species in the liquid, and reduces the difficulty of decomposing organic compounds on the surface of tourmaline powder. It is thought that the efficiency of the decomposition reaction of activated ozone is improved by the adsorption action of activated ozone, which further promotes the decomposition of the hardly decomposable organic compound.
- a dorapite ceramic powder obtained by firing natural doravit According to this, an inexpensive ozone activating material can be stably obtained, and the facility can be operated with a simple system configuration.
- the tourmaline powder may be subjected to charge separation on the crystal by applying a voltage to the treatment system.
- a strong polarization charge is easily generated at the crystal axis end of tourmaline powder by applying a voltage, thereby activating ozone, and at the same time, adsorbing action of a hardly decomposable organic compound on the surface of tourmaline powder.
- the decomposition reaction efficiency can be improved.
- the feature of the apparatus for decomposing a hardly decomposable organic compound according to the present invention is that a decomposition reaction tank in which a step of decomposing the hardly decomposable organic compound is performed, And an ozone injection means for injecting ozone into the decomposable organic compound decomposer, comprising: a tourmaline powder mixing means for mixing tourmaline powder into the decomposition reaction tank; The point is that charge separation means for separating charges on the crystal is provided.
- Ozone is activated by mixing a predetermined amount of tourmaline powder by means of a tourmaline powder mixing means according to the conditions of soil and soil, etc., and separating the charge on the crystal by the charge separation means.
- the decomposition treatment of the hardly decomposable organic compound is promoted by improving the efficiency of the ozone decomposition reaction by the adsorption of the hardly decomposable organic compound on the surface of tourmaline powder.
- FIG. 1 is a schematic view showing one example of an embodiment of a device for decomposing hardly decomposable organic compounds according to the present invention.
- FIG. 2 is an explanatory diagram showing 2,6-dichloro_4_heterophenol which is decomposed in Example 1.
- FIG. 3 is a graph showing the experimental results of Comparative Example 1, and is a graph showing the relationship between the wavelength and the absorbance over time after the decomposition treatment.
- FIG. 4 is a graph showing the experimental results of Example 1, and is a graph showing the relationship between the wavelength and the absorbance over time after the decomposition treatment.
- FIG. 5 is a graph showing experimental results of Example 1 and Comparative Example 1, and is a graph showing a change in relative absorbance with respect to time.
- FIG. 6 is a graph showing the experimental results of Comparative Example 2, and is a graph showing the relationship between the wavelength and the absorbance over time after the decomposition treatment.
- FIG. 7 is a graph showing the experimental results of Example 2, and is a graph showing the relationship between the wavelength and the absorbance over time after the decomposition treatment.
- the present inventors have found that when ozone is injected into a liquid containing a hardly decomposable organic compound to perform a decomposition treatment, a highly piezoelectric tourmaline powder such as drapite powder is mixed. It has been found that the decomposition processing speed can be remarkably accelerated, especially for the decomposition of low-concentration hard-to-decompose organic compounds.
- the method for decomposing a hardly decomposable organic compound according to the present embodiment mainly uses ozone or ozone water for a treatment system made of a liquid in which a hardly decomposable organic compound such as dioxins is present or a treatment system in which a liquid is contained in soil.
- the hardly decomposable organic compound is not particularly limited and includes, for example, dioxins, bisphenols, phenol phenols, halogenated phenols, phthalates, estradiol, benzophenone, and trichloroethylene. No. These hardly decomposable organic compounds may be present in liquids such as factory effluents, but often in soils. In the present embodiment, when the hardly decomposable organic compound is present in the soil, the soil is mixed with a liquid, for example, ozone water, or conversely, an appropriate amount of ozone water is mixed with the soil to form a liquid. It is preferable to configure a similar reaction system.
- Tourmaline is mainly dorapite (dra Vite), squall (s chor 1), ⁇ paite (uvite), and Erbite (e1baite).
- squall s chor 1
- uvite ⁇ paite
- Erbite e1baite
- Telnete powder can be obtained by pulverizing natural rock, it is more preferable to use a powder obtained by calcining and pulverizing the pulverized material once and then pulverizing it again.
- the ceramic is used in this way, an excellent ozone activating effect can be exhibited at the surface, and the powder can be easily ground into a powder.
- the firing temperature for turning the drabite into a ceramic must be set to a temperature other than 900 to 100 ° C. If fired in this temperature range, the piezoelectricity of the graphite will be lost.
- a material obtained by baking the drapite at 1200 ° C. is used.
- Means for imparting an electric charge separation effect to the tourmaline powder on the crystal include, for example, applying a predetermined voltage, applying a strong pressure by an impact such as ultrasonic waves, applying microwaves, heating, or the like. May be considered.
- the voltage is suitable for implementation because it can be realized with a simple configuration. It is also possible to apply the voltage directly to the soil.
- FIG. 1 is a schematic view showing one embodiment of an apparatus for performing a method for decomposing a hardly decomposable organic compound according to the present invention.
- This hard-to-decompose organic compound decomposer 1 is composed of a decomposition reaction tank 2, an ozone injector 3, a tourmaline powder mixer 4, a stirrer 5, and a charge separator 6.
- Decomposition reactor 2 is the body processes degrade hardly decomposable organic compound is carried out, c contaminated wastewater and soil is provided with inlet 2 a to be inputted also to the ozone injector 3
- the ozone water generated in advance may be stored in a storage tank and injected as appropriate, or a known ozone generator may be provided to generate and inject ozone gas.
- the tourmaline powder mixer 4 mixes a predetermined amount of tourmaline powder into the decomposition reaction tank 2 in accordance with the type and amount of wastewater or soil to be decomposed.
- a stirrer 5 is provided in the decomposition reaction tank 2, and the stirrer 5 stirs and mixes the mixed ozone water and tourmaline powder with the wastewater and soil containing the hardly decomposable organic compound. ing.
- the charge separator 6 separates electric charge from the tourmaline powder on the crystal.
- a positive electrode 6a and a negative electrode 6b are arranged in the decomposition reaction tank 2 to apply a predetermined voltage.
- an ultrasonic generator may be provided, and an impact pressure by ultrasonic waves may be applied to the tourmaline powder to separate electric charges.
- a micro-loop generator is arranged to irradiate tourmaline powder to separate charges on the crystal.
- a heat generating device may be provided to heat the crystals of tourmaline powder to have electric charges on the surface. It is also possible to effectively treat a plurality of means for causing charge separation on the crystals of tourmaline powder as described above.
- the ozone is activated by the strong polarization charge generated at the crystal axis end. Increases decomposition processing ability. Further, since the hardly decomposable organic compound is adsorbed on the surface of the tourmaline powder where the ozone is activated, a decomposition reaction by the activated ozone occurs at a high probability, and the action of the hardly decomposable organic compound is caused by these actions. Decomposition is promoted.
- Example 1 a decomposition experiment of 2,6-dichloro-14-nitrophenol (hereinafter sometimes abbreviated as DCNP in the drawings) was performed. As shown in Fig. 2, 2,6-dichloro-1,4-trophenol is a model substance for the dioxin decomposition intermediate. This 2, 6—dichro mouth _ 4 12 Trofe It has been confirmed that there is a correlation between the degradation of knol and the degradation of dioxin.
- DCNP 2,6-dichloro-14-nitrophenol
- Example 1 The experimental conditions of Example 1 will be described.
- FIGS. 3 and 4 are graphs showing changes in absorbance with the passage of reaction time.
- the horizontal axis indicates light wavelength (nm), and the vertical axis indicates absorbance.
- FIG. 5 is a graph in which the horizontal axis indicates elapsed time, and the vertical axis indicates relative absorbance to the initial concentration.
- the graph of Comparative Example 1 is indicated by white circles, and the graph of Example 1 is indicated by black circles.
- the graph showing decomposition by ozone alone has an exponential decreasing curve, and the contact reaction (collision reaction) between ozone and 2,6-dichloro-14-nitrophenol is shown in FIG. It shows that it has occurred, and it matches theoretically.
- the activated ozone decomposes 2,6-dichloro-412-trophenol efficiently on the surface.
- ozone is activated to generate reactive oxygen species such as atomic oxygen and ⁇ H radicals, which are present in the solution.
- Example 1 Although a voltage of 30 V was applied in both experiments of Example 1 and Comparative Example 1, the current value was 0 A in the processing system of Comparative Example 1, whereas the drive value was 0 in Example 1. When mixed, the current value shows 0.18 A, and it is recognized that polarized charges are generated in the drive powder.
- Example 2 an experiment for decomposing dibenzoparadioxin was performed.
- the experimental conditions in Example 2 were almost the same as in Example 1, but dibenzoparadioxin had low solubility in water, and was dissolved in water containing 30% ethanol to prepare a 10 ppm solution.
- a decomposition treatment without a devolatilizer was performed as Comparative Example 2.
- the results of Comparative Example 2 are shown in Table 3 and FIG. 6, and the results of Example 2 are shown in Table 4 and FIG.
- Tables 3 and 4 show the change in the concentration of dibenzoparadioxin over time with the numerical value, and also show the relative concentration ratio to the initial concentration.
- Fig. 6 and Fig. 7 are graphs showing the change in absorbance with the passage of reaction time. The horizontal axis indicates light wavelength (nm), and the vertical axis indicates absorbance.
- Example 2 In Tables 3 and 4, the initial concentration was 10.0 in Comparative Example 2. In contrast to 0 ppm, in Example 2, it is different from 15.06 ppm. This is because the concentration of dibenzoparadioxin before the reaction was adjusted to 10 ppm with respect to the total weight of drabite and a 30% aqueous ethanol solution in Example 2 in which drabite was added, and this was used as the absorbance. The concentration of dibenzoparadioxin in the solution was higher than 10 ppm because of removal of the drabite by filtration for measurement. This result also indicates that dibenzoparadioxin is hardly adsorbed on the drug in the case of an aqueous solution containing ethanol.
- ozone is activated by the strong polarization charge generated at the crystal axis end by separating charge on the crystal and the pyroelectric having remarkable pyroelectricity.
- the decomposition reaction of activated ozone is efficiently performed on the surface of doravite by the adsorption action of the hardly decomposable organic compound.
- the method for decomposing a hardly decomposable organic compound according to the present embodiment does not require ultraviolet rays, and it is only necessary to use an inexpensive and easily controllable material, which is a mixture of drabite powder. Can be carried out by the soil There are many merits when applied to purification facilities.
- ozone can be effectively activated to accelerate the decomposition treatment of a hardly decomposable organic compound, and the hardly decomposable organic compound existing at a low concentration can be quickly removed. It has the effect that it can be decomposed.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Water Supply & Treatment (AREA)
- Hydrology & Water Resources (AREA)
- Organic Chemistry (AREA)
- Soil Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Fire-Extinguishing Compositions (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Processing Of Solid Wastes (AREA)
- Physical Water Treatments (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
A method of decomposing hardly decomposable organic compounds, in which the decomposition of hardly decomposable organic compounds being present in not only liquids but also soils is accelerated through activation of ozone and accordingly, hardly decomposable organic compounds being present in liquids and soils at low concentrations can be rapidly decomposed; and an apparatus therefor. In particular, ozone is injected in treatment systems, such as liquids and soils, wherein hardly decomposable organic compounds are present, and tourmaline powder is mixed thereinto. An action to cause this tourmaline powder to undergo charge separation on crystals is applied, thereby activating ozone. Thus, the treatment of hardly decomposable organic compounds is accelerated.
Description
明 細 書 難分解性有機化合物の分解方法およびその装置 技術分野 Description Method and apparatus for decomposing hard-to-decompose organic compounds
本発明は、 難分解性有機化合物の分解方法およびその装置に係り、 特 に、 ドラパイ ト等の電気石粉末によるオゾン活性化作用を利用した難分 解性有機化合物の分解技術に関するものである。 背景技術 The present invention relates to a method and an apparatus for decomposing a hardly decomposable organic compound, and in particular, to a technology for decomposing a hardly decomposable organic compound using an ozone activating action of tourmaline powder such as dolapite. Background art
ダイォキシン類やポリ塩化ビフ 二ル (P CB) 等の難分解性有機化 合物は、 ごみ焼却炉や産業廃棄物の焼却設備、 各種機器類等から自然界 に排出されたり、 化学物質の製造工程において排出されたりするおそれ があり大きな社会問題となっている。 Persistent organic compounds such as dioxins and polychlorinated biphenyls (PCB) are discharged into the natural world from waste incinerators, incinerators for industrial waste, various equipment, etc. It is a major social problem because it may be discharged at the same time.
一般に、 ポリ塩化ジベンゾパラジオキシン (P CDD) とポリ塩化ジ ベンゾフラン (PCDF) 、 およびコブラナーポリ塩化ビフエニル (コ ブラナー P CB) をダイォキシン類と称しており、 これらは極めて強い 毒性を有し、 外因性内分泌攪乱物質であることが知られている。 Generally, polychlorinated dibenzoparadioxins (PCDD), polychlorinated dibenzofurans (PCDF), and cobraner polychlorinated biphenyls (cobraner PCB) are called dioxins, which are extremely toxic and have exogenous endocrine secretions. It is known to be a disruptor.
このようなダイォキシン類を分解処理する技術が各種提案されている が、 なかでもオゾンガスを水に溶解して得られるォゾン水は、 オゾンの 持つ強い酸化力により殺菌、 脱臭、 漂白等に優れた効果を発揮し、 しか もオゾンガスは時間とともに無害な酸素に自己分解して残留性がないこ とから、 環境にやさしい分解処理剤として注目されている。 Various techniques for decomposing such dioxins have been proposed, but ozone water obtained by dissolving ozone gas in water is particularly effective in sterilizing, deodorizing, bleaching, etc. due to the strong oxidizing power of ozone. However, ozone gas is self-decomposing into harmless oxygen over time and has no residual properties.
例えば、 2, 3, 7 , 8—テトラクロ口ジベンゾパラジオキシンを水 と四塩化炭素に懸濁させてオゾンを注入する方法により、 5 0時間後に 9 7%のダイォキシンが分解されたとの研究報告があるが、 処理時間が
かかり過ぎるという問題点が指摘されている。 For example, a study reported that 97% of dioxin was degraded 50 hours after injection of ozone by suspending 2,3,7,8-tetraclomouth dibenzoparadioxin in water and carbon tetrachloride. There is, but processing time It has been pointed out that it takes too much time.
このような問題に対してオゾンによる分解処理を促進させる技術が各 種提案されており、 例えば、 特開 2 0 0 2— 1 8. 6 8 5 0号公報には、 排水等の液体中に含まれるダイォキシン類等に対し、 オゾンと紫外線を 併用することにより効果的に分解する技術が提案されている。 これによ ればオゾンを含む排水中に紫外線を照射すると、 極めて反応性の高いヒ ドロキシラジカルが形成されるため、 ダイォキシン類等の分解を促進さ せられるとされる。 Various technologies have been proposed to promote the decomposition treatment with ozone in order to solve such problems. For example, Japanese Patent Application Laid-Open No. 2002-186.850 discloses a method in which a liquid such as wastewater is used. A technology has been proposed that effectively decomposes dioxins contained by using ozone and ultraviolet light in combination. According to this, when ultraviolet rays are irradiated into wastewater containing ozone, extremely reactive hydroxy radicals are formed, so that decomposition of dioxins and the like can be promoted.
しかしながら、 上記特許文献に記載された発明においては、 排水中に 紫外線を照射する構成とされているため、 液体中のダイォキシン類等を 分解するのには効果的であるが、 土壌中に存在するダイォキシン類等を 分解する場合、 紫外線が充分に照射できないため、 効果が低くなつてし まうという問題がある。 However, in the invention described in the above-mentioned patent document, the structure is such that ultraviolet light is irradiated into the wastewater, so that it is effective for decomposing dioxins and the like in the liquid, but is present in the soil. In the case of decomposing dioxins and the like, there is a problem that the effect is reduced because ultraviolet rays cannot be sufficiently irradiated.
本発明は、 このような問題点を解決するためになされたものであって、 液体中だけでなく土壌中に存在する難分解性有機化合物の分解に適応さ せることを前提とし、 オゾンを活性化させて難分解性有機化合物の分解 処理を促進するとともに、 液体中や土壌中に低濃度で存在する難分解性 有機化合物を迅速に分解することができる難分解性有機化合物の分解方 法およびその装置を提供することを目的としている。 発明の開示 The present invention has been made to solve such a problem, and is based on the premise that the present invention is adapted to the decomposition of hardly decomposable organic compounds present not only in a liquid but also in a soil, and to activate ozone. A method for decomposing hard-to-decompose organic compounds that can rapidly decompose hard-to-decompose organic compounds present at low concentrations in liquids and soil, It is intended to provide such a device. Disclosure of the invention
本発明に係る難分解性有機化合物の分解方法の特徴は、 難分解性有機 化合物が存在する液体等の系あるいは難分解性有機化合物が存在する土 壌に液体を含ませた系に対してオゾンを注入するオゾン注入ステップと、 前記処理系に電気石粉末を混入する電気石粉末混入ステップと、 この電 気石粉末混入ステップで混入した電気石粉末を結晶上で電荷分離させる
作用を加える電気石粉末電荷分離ステツプとを有する点にある。 The feature of the method for decomposing a hardly decomposable organic compound according to the present invention is that a system such as a liquid in which a hardly decomposable organic compound is present or a system in which a liquid is contained in soil in which a hardly decomposable organic compound is present is used. Ozone injecting step, injecting tourmaline powder into the processing system, and separating the tourmaline powder mixed in the tourmaline powder mixing step on the crystal. And an electric stone powder charge separation step to add an action.
そして、 このような方法を採用したことにより、 電気石粉末を結晶上 で電荷分離させ、 その結晶軸端に発生する強レ、分極電荷によってオゾン を活性化させるとともに、 さらに、 電気石粉末の表面では難分解性有機 化合物を吸着して活性化オゾンによる分解反応を高い確率で生じるさせ るため分解効率が高まり、 これらの両分解作用によって難分解性有機化 合物の分解を促進する。 By adopting such a method, charge separation of tourmaline powder on the crystal activates ozone by strong and polarized charges generated at the crystal axis ends, and furthermore, the surface of the tourmaline powder In this method, a decomposition reaction by activated ozone is caused with high probability by adsorbing a hardly decomposable organic compound, thereby increasing the decomposition efficiency, and promoting decomposition of the hardly decomposable organic compound by both of these decomposition actions.
また、 本発明において、 電気石粉末は、 天然の電気石を焼成してセラ ミック化させた電気石セラミックの粉碎粉末を使用することが好ましい。 このようにー且、 セラミック化することにより、 電気石粉末の界面にお けるオゾン活性効果が高まって液体中の活性酸素種が増大するし、 かつ、 電気石粉末の表面における難分解性有機化合物の吸着作用により、 活性 化オゾンの分解反応効率が向上すると考えられ、 難分解性有機化合物の 分解を一層促進する。 Further, in the present invention, as the tourmaline powder, it is preferable to use a tourmaline ceramic ground powder obtained by firing natural tourmaline to make it ceramic. As described above, the ceramicization increases the ozone activating effect at the interface of tourmaline powder, increases the amount of active oxygen species in the liquid, and reduces the difficulty of decomposing organic compounds on the surface of tourmaline powder. It is thought that the efficiency of the decomposition reaction of activated ozone is improved by the adsorption action of activated ozone, which further promotes the decomposition of the hardly decomposable organic compound.
さらに、 本発明では、 電気石粉末として、 天然のドラバイ トを焼成し たドラパイ トセラミック粉末を使用することが望ましい。 これによれば、 安価なオゾン活性化材料を安定的に入手でき、 しかも簡単なシステム構 成によって施設を運用できる。 Further, in the present invention, it is desirable to use, as tourmaline powder, a dorapite ceramic powder obtained by firing natural doravit. According to this, an inexpensive ozone activating material can be stably obtained, and the facility can be operated with a simple system configuration.
また、 本発明における電気石粉末電荷分離ステップでは、 処理系に電 圧を加えることにより、 電気石粉末を結晶上で電荷分離させてもよい。 これによれば、 電圧を加えることで容易に電気石粉末の結晶軸端に強い 分極電荷を生じさせられてオゾンを活性化させるとともに、 電気石粉末 の表面上における難分解性有機化合物の吸着作用によつて分解反応効率 を向上させられる。 Further, in the tourmaline powder charge separation step in the present invention, the tourmaline powder may be subjected to charge separation on the crystal by applying a voltage to the treatment system. According to this, a strong polarization charge is easily generated at the crystal axis end of tourmaline powder by applying a voltage, thereby activating ozone, and at the same time, adsorbing action of a hardly decomposable organic compound on the surface of tourmaline powder. As a result, the decomposition reaction efficiency can be improved.
さらに、 本発明に係る難分解性有機化合物分解装置の特徴は、 難分解 性有機化合物を分解する工程が行われる分解反応槽と、 この分解反応槽
にオゾンを注入するォゾン注入手段とを有する難分解性有機化合物分解 装置であって、 前記分解反応槽に電気石粉末を混入させる電気石粉末混 入手段を設けるとともに、 この混入した電気石粉末を結晶上で電荷分離 させるための電荷分離手段を設けた点にある。 そして、 このような構成 を採用したことにより、 難分解性の有機化合物を含有した液体や土壌を 分解反応槽に投入し、 オゾン注入手段によってオゾンを注入するととも に、 前記分解反応槽内の液体や土壌等の条件に合わせて電気石粉末混入 手段によつて所定量の電気石粉末を混入し、 電荷分離手段によって電気 石粉末を結晶上で電荷分離させることにより、 オゾンを活性化させ、 か つ、 電気石粉末の表面上における難分解性有機化合物の吸着作用による ォゾン分解反応効率の向上によつて難分解性有機化合物の分解処理を促 進する。 図面の簡単な説明 Further, the feature of the apparatus for decomposing a hardly decomposable organic compound according to the present invention is that a decomposition reaction tank in which a step of decomposing the hardly decomposable organic compound is performed, And an ozone injection means for injecting ozone into the decomposable organic compound decomposer, comprising: a tourmaline powder mixing means for mixing tourmaline powder into the decomposition reaction tank; The point is that charge separation means for separating charges on the crystal is provided. By adopting such a configuration, a liquid or soil containing a hardly decomposable organic compound is charged into the decomposition reaction tank, and ozone is injected by the ozone injection means, and the liquid in the decomposition reaction tank is injected. Ozone is activated by mixing a predetermined amount of tourmaline powder by means of a tourmaline powder mixing means according to the conditions of soil and soil, etc., and separating the charge on the crystal by the charge separation means. First, the decomposition treatment of the hardly decomposable organic compound is promoted by improving the efficiency of the ozone decomposition reaction by the adsorption of the hardly decomposable organic compound on the surface of tourmaline powder. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明に係る難分解性有機化合物分解装置の実施形態の一 例を示す模式図である。 FIG. 1 is a schematic view showing one example of an embodiment of a device for decomposing hardly decomposable organic compounds according to the present invention.
第 2図は、 本実施例 1において分解処理する 2, 6—ジクロロ _ 4 _ ェトロフエノールを示す説明図である。 FIG. 2 is an explanatory diagram showing 2,6-dichloro_4_heterophenol which is decomposed in Example 1.
第 3図は、 比較例 1の実験結果を示すグラフであって、 分解処理後の 時間経過に応じた波長と吸光度との関係を示すグラフである。 FIG. 3 is a graph showing the experimental results of Comparative Example 1, and is a graph showing the relationship between the wavelength and the absorbance over time after the decomposition treatment.
第 4図は、 実施例 1の実験結果を示すグラフであって、 分解処理後の 時間経過に応じた波長と吸光度との関係を示すグラフである。 FIG. 4 is a graph showing the experimental results of Example 1, and is a graph showing the relationship between the wavelength and the absorbance over time after the decomposition treatment.
第 5図は、 実施例 1および比較例 1の実験結果を示すグラフであって、 時間に対する相対吸光度の変化を示すグラフである。 FIG. 5 is a graph showing experimental results of Example 1 and Comparative Example 1, and is a graph showing a change in relative absorbance with respect to time.
第 6図は、 比較例 2の実験結果を示すグラフであって、 分解処理後の 時間経過に応じた波長と吸光度との関係を示すグラフである。
第 7図は、 実施例 2の実験結果を示すグラフであって、 分解処理後の 時間経過に応じた波長と吸光度との関係を示すグラフである。 発明を実施するための最良の形態 FIG. 6 is a graph showing the experimental results of Comparative Example 2, and is a graph showing the relationship between the wavelength and the absorbance over time after the decomposition treatment. FIG. 7 is a graph showing the experimental results of Example 2, and is a graph showing the relationship between the wavelength and the absorbance over time after the decomposition treatment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に係る難分解性有機化合物の分解方法およびこの方法を 実施する装置の実施形態の一例を図面を用いて説明する。 Hereinafter, an example of an embodiment of a method for decomposing a hardly decomposable organic compound and an apparatus for performing the method according to the present invention will be described with reference to the drawings.
本件発明者らは、 鋭意研究の結果、 難分解性有機化合物を含む液体中 にオゾンを注入して分解処理する場合に、 ドラパイ ト粉末等の圧電性の 高い電気石粉末を混入させることにより、 分解処理速度を著しく促進さ せられることを見いだし、 特に、 低濃度の難分解性有機化合物の分解に As a result of intensive studies, the present inventors have found that when ozone is injected into a liquid containing a hardly decomposable organic compound to perform a decomposition treatment, a highly piezoelectric tourmaline powder such as drapite powder is mixed. It has been found that the decomposition processing speed can be remarkably accelerated, especially for the decomposition of low-concentration hard-to-decompose organic compounds.
¾)果を発揮する成果を得た ¾) Achieved fruitful results
本実施形態の難分解性有機化合物の分解方法は、 ダイォキシン類等の 難分解性有機化合物が存在する液体からなる処理系あるいは土壌に液体 を含有させた処理系に対し、 主として、 オゾン若しくはォゾン水を注入 するステップと、 電気石粉末を混入するステップと、 この電気石粉末を 結晶上で電荷分離させる作用を加えステップとを実行する。 The method for decomposing a hardly decomposable organic compound according to the present embodiment mainly uses ozone or ozone water for a treatment system made of a liquid in which a hardly decomposable organic compound such as dioxins is present or a treatment system in which a liquid is contained in soil. , A step of mixing tourmaline powder, and a step of adding an action of separating charges from the tourmaline powder on a crystal.
難分解性有機化合物としては、 特に限定されず、 例えば、 ダイォキシ ン類、 ビスフエノール類、 ァノレキルフエノール類、 ハロゲン化フエノー ル類、 フタル酸エステル類、 エストラジオール、 ベンゾフヱノン、 トリ クロ口エチレン等が挙げられる。 これらの難分解性有機化合物は、 工場 排水等の液体中に存在する場合もあるが、 土壌中に存在している場合も 多い。 本実施形態では、 難分解性有機化合物が土壌中に存在する場合に は、 土壌を液体、 例えばオゾン水に混入させたり、 逆に土壌に対して適 量のオゾン水を混入することにより、 液体類似の反応系を構成すること が好ましい。 The hardly decomposable organic compound is not particularly limited and includes, for example, dioxins, bisphenols, phenol phenols, halogenated phenols, phthalates, estradiol, benzophenone, and trichloroethylene. No. These hardly decomposable organic compounds may be present in liquids such as factory effluents, but often in soils. In the present embodiment, when the hardly decomposable organic compound is present in the soil, the soil is mixed with a liquid, for example, ozone water, or conversely, an appropriate amount of ozone water is mixed with the soil to form a liquid. It is preferable to configure a similar reaction system.
電気石としては、 主にドラパイ ト ( d r a V i t e ) 、 スコール ( s
c h o r 1 ) 、 ゥパイ ト (u v i t e ) 、 エルバイ ト ( e 1 b a i t e ) が挙げられる。 特にドラバイ トは安価で入手しやすくシステム化さ せるのに都合がよい。 電気石粉末は、 天然岩石を粉砕しても得られるが、 粉碎物を一旦焼成してセラミック化した後に再度粉砕して得られる粉末 を用いるのがより好ましい。 このようにセラミック化すると、 優れた界 面におけるオゾン活性効果を発揮し、 また、 容易に镞粉末に粉砕するこ とが可能となる。 この場合、 ドラバイトをセラミック化する際の焼成温 度は、 9 0 0〜 1 0 0 0 °C以外にしなければならない。 この温度範囲で 焼成すると、 ドラバイ トの圧電性が失われるからである。 本実施形態で はドラパイ トを 1 2 0 0 °Cで焼成しだものを使用する。 Tourmaline is mainly dorapite (dra Vite), squall (s chor 1), ゥ paite (uvite), and Erbite (e1baite). In particular, Dubai is inexpensive, easy to obtain, and convenient for systematization. Although tourmaline powder can be obtained by pulverizing natural rock, it is more preferable to use a powder obtained by calcining and pulverizing the pulverized material once and then pulverizing it again. When the ceramic is used in this way, an excellent ozone activating effect can be exhibited at the surface, and the powder can be easily ground into a powder. In this case, the firing temperature for turning the drabite into a ceramic must be set to a temperature other than 900 to 100 ° C. If fired in this temperature range, the piezoelectricity of the graphite will be lost. In the present embodiment, a material obtained by baking the drapite at 1200 ° C. is used.
また、 電気石粉末を結晶上で電荷分離させる作用を与える手段として は、 例えば、 所定の電圧を加えたり、 超音波のような衝撃による強い圧 '力を加えたり、 マイクロウェーブをかけたり、 加熱すること等が考えら れる。 このうち電圧は簡単な構成によって実現可能であるため実施には 好適である。 また、 土壌中に直接印加することも可能である。 Means for imparting an electric charge separation effect to the tourmaline powder on the crystal include, for example, applying a predetermined voltage, applying a strong pressure by an impact such as ultrasonic waves, applying microwaves, heating, or the like. May be considered. Of these, the voltage is suitable for implementation because it can be realized with a simple configuration. It is also possible to apply the voltage directly to the soil.
第 1図は、 本発明に係る難分解性有機化合物の分解方法を実施する装 置の一形態を示す模式図である。 この難分解性有機化合物分解装置 1は、 分解反応槽 2、 オゾン注入器 3、 電気石粉末混入器 4、 撹拌機 5、 およ ぴ電荷分離器 6から構成される。 FIG. 1 is a schematic view showing one embodiment of an apparatus for performing a method for decomposing a hardly decomposable organic compound according to the present invention. This hard-to-decompose organic compound decomposer 1 is composed of a decomposition reaction tank 2, an ozone injector 3, a tourmaline powder mixer 4, a stirrer 5, and a charge separator 6.
分解反応槽 2は、 難分解性の有機化合物を分解する処理が行われる本 体であり、 汚染された排水や土壌が投入される投入口 2 aを備えている c また、 オゾン注入器 3には、 予め生成されたオゾン水を貯留タンクに貯 留しておいて適宜注入するようにしてもよいし、 公知のオゾン発生器を 備えてオゾンガスを生成して注入するようにしてもよい。 また、 電気石 粉末混入器 4は、 分解処理する排水や土壌の種類および処理量に応じて 所定量の電気石粉末を分解反応槽 2に混入するようになっている。 また、
分解反応槽 2内には撹拌機 5が備えられており、 この撹拌機 5によって 難分解性有機化合物を含む排水や土壌と、 混入されたォゾン水ゃ電気石 粉末を撹拌し混合するようになっている。 Decomposition reactor 2 is the body processes degrade hardly decomposable organic compound is carried out, c contaminated wastewater and soil is provided with inlet 2 a to be inputted also to the ozone injector 3 The ozone water generated in advance may be stored in a storage tank and injected as appropriate, or a known ozone generator may be provided to generate and inject ozone gas. The tourmaline powder mixer 4 mixes a predetermined amount of tourmaline powder into the decomposition reaction tank 2 in accordance with the type and amount of wastewater or soil to be decomposed. Also, A stirrer 5 is provided in the decomposition reaction tank 2, and the stirrer 5 stirs and mixes the mixed ozone water and tourmaline powder with the wastewater and soil containing the hardly decomposable organic compound. ing.
電荷分離器 6は、 電気石粉末を結晶上で電荷分離させるものであり、 例えば分解反応槽 2内にプヲス電極 6 aとマイナス電極 6 bを配置して 所定の電圧をかけるようになつている。 また、 別の手段として、 超音波 発生器を配置し、 電気石粉末に超音波による衝撃圧力を付与して電荷分 離させるようにしてもよい。 さらに、 マイクロウヱープ発生器を配置し て電気石粉末に照射することで結晶上の電荷分離をさせることも考えら れる。 また、 電気石粉末の結晶を熱して表面に電荷を持たせるような発 熱装置を設けるようにしてもよい。 以上のような電気石粉末の結晶上に おける電荷分離を生じさせる各手段を複数組み合わせて効果的に処理す るようにしてもよレ、。 The charge separator 6 separates electric charge from the tourmaline powder on the crystal.For example, a positive electrode 6a and a negative electrode 6b are arranged in the decomposition reaction tank 2 to apply a predetermined voltage. . As another means, an ultrasonic generator may be provided, and an impact pressure by ultrasonic waves may be applied to the tourmaline powder to separate electric charges. In addition, it is conceivable that a micro-loop generator is arranged to irradiate tourmaline powder to separate charges on the crystal. Further, a heat generating device may be provided to heat the crystals of tourmaline powder to have electric charges on the surface. It is also possible to effectively treat a plurality of means for causing charge separation on the crystals of tourmaline powder as described above.
このように電荷分離器 6の作用によつて分解反応槽 2内に混入された 電気石粉末を結晶上で電荷分離させると、 その結晶軸端に発生する強い 分極電荷によってオゾンを活性化させて分解処理能を高める。 さらに電 気石粉末の表面上ではオゾンが活性化されたところへ難分解性有機化合 物が吸着されるため、 活性化オゾンによる分解反応が高い確率で生じ、 これらの作用により難分解性有機化合物の分解が促進される。 As described above, when the electric stone powder mixed into the decomposition reaction tank 2 is separated on the crystal by the action of the charge separator 6, the ozone is activated by the strong polarization charge generated at the crystal axis end. Increases decomposition processing ability. Further, since the hardly decomposable organic compound is adsorbed on the surface of the tourmaline powder where the ozone is activated, a decomposition reaction by the activated ozone occurs at a high probability, and the action of the hardly decomposable organic compound is caused by these actions. Decomposition is promoted.
次に、 前述した本実施形態における難分解性有機化合物の分解方法の 作用 ·効果を実施例により説明する。 Next, the operation and effect of the method for decomposing a hardly decomposable organic compound according to the present embodiment will be described with reference to examples.
[実施例 1 ] [Example 1]
実施例 1では、 2 , 6—ジクロロ一 4 _ニトロフエノール (以下、 図 面では D C N Pと略す場合がある) の分解実験を行った。 2, 6—ジク ロロ一 4一二トロフエノールは、 第 2図に示すように、 ダイォキシン分 解中間体のモデル物質である。 この 2 , 6—ジクロ口 _ 4一二トロフエ
ノールの分解とダイォキシン分解との間には相関性が存在することが確 認されている。 In Example 1, a decomposition experiment of 2,6-dichloro-14-nitrophenol (hereinafter sometimes abbreviated as DCNP in the drawings) was performed. As shown in Fig. 2, 2,6-dichloro-1,4-trophenol is a model substance for the dioxin decomposition intermediate. This 2, 6—dichro mouth _ 4 12 Trofe It has been confirmed that there is a correlation between the degradation of knol and the degradation of dioxin.
本実施例 1の実験条件を説明する。 本実施例 1では、 純水に 2, 6— ジクロロ一 4 _ニトロフエノールを溶解させた 1 0 p p m水溶液を 8 1 The experimental conditions of Example 1 will be described. In Example 1, a 10 ppm aqueous solution in which 2,6-dichloro-14-nitrophenol was dissolved in pure water was used as an aqueous solution.
(リットル) 準備して容器に入れ、 この水溶液にオゾンガスを 1 00m g/hで注入し、 スクリューにより撹拌するようにした。 このような実 験処理系に対して 2000メッシュのドラバイ ト粉末を 30 % v/ Vと なるように 2. 4 1加え、 白金で構成されたプラス電極およびマイナス 電極に 30Vの直流電圧をかけた。 このような条件下で分解処理した水 溶液を所定時間経過毎に抽出し、 吸光光度分析により溶液濃度を測定し た。 また、 比較例 1としてオゾンのみによる分解実験も行った。 まず、 比較例 1の結果を表 1および第 3図に示し、 本実施例 1の結果を表 2お よび第 4図に示す。 (Liter) Prepared and placed in a container. Ozone gas was injected into this aqueous solution at 100 mg / h, and the mixture was stirred with a screw. To this experimental treatment system, 2,000 mesh of dry powder was added in a concentration of 30% v / V to 2.41 and a DC voltage of 30 V was applied to the plus and minus electrodes composed of platinum. . The aqueous solution decomposed under such conditions was extracted every predetermined time, and the solution concentration was measured by spectrophotometry. Also, as Comparative Example 1, a decomposition experiment using only ozone was performed. First, the results of Comparative Example 1 are shown in Tables 1 and 3, and the results of Example 1 are shown in Tables 2 and 4.
[表 1] [table 1]
ドラバイ トなし、 30V DC、 オゾン No dry, 30V DC, ozone
ドラバイ トあり、 30V DC、 オゾン With drive, 30V DC, ozone
表 1および表 2は、 反応時間経過に伴う 2, 6—ジクロロー 4一二ト
口フエノールの濃度変化を数値で示しているとともに、 併せて最初の濃 度に対する相対的な濃度比率を下段に示す。 また、 第 3図および第 4図 は、 反応時間経過に伴う吸光度の変化を示したグラフであり、 横軸は光 の波長 (nm) を示し、 縦軸は吸光度を示している。 Tables 1 and 2 show that 2,6-dichloro-4 The change in the concentration of oral phenol is shown numerically, and the relative concentration ratio to the initial concentration is also shown in the lower row. FIGS. 3 and 4 are graphs showing changes in absorbance with the passage of reaction time. The horizontal axis indicates light wavelength (nm), and the vertical axis indicates absorbance.
まず、 表 1および表 2を比較してわかるように、 表 1のオゾンのみに よる比較例 1の結果では、 反応時間経過に伴って 2, 6—ジクロロー 4 一二トロフエノールの濃度は減少するが、 6時間経過しても濃度は 1. 04 p pmであって、 初期濃度に対する相対的な濃度比は 1 0. 4%で あった。 これに対し、 表 2のドラバイ トを加えた本実施例 1の結果では、 反応時間経過に伴って 2, 6—ジクロロー 4一二トロフエノールの濃度 が急速に減少し、 低濃度域に至ってもその分解処理は迅速に進行する。 そして、 4時間経過後には 0. 0 1 p p m以下にまで濃度が低下し、 相 対的な濃度比も 0. 1 %以下になった。 First, as can be seen by comparing Tables 1 and 2, in the results of Comparative Example 1 using only ozone in Table 1, the concentration of 2,6-dichloro-4-122-trophenol decreases with the reaction time. However, the concentration was still 1.04 ppm even after 6 hours, and the relative concentration ratio to the initial concentration was 10.4%. In contrast, in the results of Example 1 with the addition of the drabites in Table 2, the concentration of 2,6-dichloro-412-trophenol decreased rapidly with the lapse of reaction time, and even when the concentration reached a low concentration range. The decomposition process proceeds quickly. After a lapse of 4 hours, the concentration decreased to 0.01 ppm or less, and the relative concentration ratio also decreased to 0.1% or less.
表 1およぴ表 2の結果を第 3図および第 4図でみると、 より明らかで あり、 第 3図のオゾンのみによる比較例 1では、 吸光度が小さくなる程、 つまり 2, 6—ジクロロー 4一二トロフエノールの濃度が低くなる程、 減少幅が小さくなり、 30◦ nm〜400 nm付近の吸光度は 0. 0 5 以下になると実質的反応速度が遅くなる傾向を示している。 これに対し、 第 4図のドラバイ トを加えた本実施例 1の結果では、 吸光度が小さい領 域、 つまり濃度が低い領域に至っても濃度減少の勢いは衰えず、 実質的 反応速度を維持したまま 4時間経過後に吸光度がほぼ 0. 0に到達した なお、 本実施例 1の結果中、 2, 6—ジクロロー 4—ニトロフエノー ルの初期濃度がすでに 7. 28 p pmを示している。 これは、 2, 6 - ジクロロ _ 4一二ト口フエノール 1 0 p p m水溶液にドラバイ ト粉末を 3 0 % (vZv) 加えたため、 吸光度測定のためにろ過した後の水溶液 濃度がドラバイ トに吸着された分だけ低くなつたものである。 4時間経
過後では 2 , 6—ジクロ口一 4一二トロフヱノールのドラバイ ト吸着量 もほぼ 0になった。 The results in Tables 1 and 2 are more evident in FIGS. 3 and 4, and in Comparative Example 1 in which only ozone in FIG. 3 was used, the smaller the absorbance, that is, the amount of 2,6-dichloro- 4 The lower the concentration of 12-trophenol, the smaller the decrease, and the absorbance around 30 ° nm to 400 nm tends to decrease the substantial reaction rate when the absorbance is less than 0.05. On the other hand, in the results of Example 1 with the addition of the drive shown in FIG. 4, even in the region where the absorbance is small, that is, even in the region where the concentration is low, the momentum of the concentration decrease does not decline and the substantial reaction rate is maintained. Absorbance reached almost 0.0 after 4 hours as it was. In the results of Example 1, the initial concentration of 2,6-dichloro-4-nitrophenol already showed 7.28 ppm. This is because 30% (vZv) of drabite powder was added to a 10 ppm aqueous solution of 2,6-dichloro_42-to-mouth phenol, and the concentration of the aqueous solution after filtration for absorbance measurement was adsorbed on the drabite. It's just lower. 4 hours After that, the adsorbed amount of drabite of 2,6-dichloro-1-412 phenol was almost zero.
さらに、 上記実施例 1および比較例 1の結果をもとに、 ドラバイ ト粉 末による分解機構を探るため、 第 5図に示すようなグラフを作成した。 第 5図は、 横軸に経過時間をとり、 縦軸には初期濃度に対する相対的な 吸光度をとつたグラフである。 比較例 1のグラフは白丸〇で示しており、 本実施例 1のグラフは黒丸きで示している。 白丸〇のグラフが示すよう に、 オゾンのみによる分解を示すグラフは、 指数関数的減少曲線になつ ており、 オゾンと 2, 6—ジクロロ一 4 _ニトロフエノールとの接触反 応 (衝突反応) が生じていることを示しており、 理論的にも合致する。 Further, based on the results of Example 1 and Comparative Example 1, a graph as shown in FIG. 5 was prepared in order to investigate the decomposition mechanism by the powder of the powder. FIG. 5 is a graph in which the horizontal axis indicates elapsed time, and the vertical axis indicates relative absorbance to the initial concentration. The graph of Comparative Example 1 is indicated by white circles, and the graph of Example 1 is indicated by black circles. As indicated by the open circle graph, the graph showing decomposition by ozone alone has an exponential decreasing curve, and the contact reaction (collision reaction) between ozone and 2,6-dichloro-14-nitrophenol is shown in FIG. It shows that it has occurred, and it matches theoretically.
しかし、 ドラバイ トを用いた場合、 黒丸秦のグラフに示すように、 2 , 6—ジクロ口一 4一二トロフヱノールの減少は時間に対して指数関数的 減少の要素と直線的減少の要素との双方を含むことが認められる。 この 直線的減少は、 表面触媒反応に典型的に見られる時間依存性を示すもの である (0次反応) 。 この現象は、 オゾンと 2, 6—ジクロ口 _ 4一二 トロフヱノールとの接触反応に加えて、 更なる反応が発生していること を示すものである。 おそらく ドラバイ ト粉末の表面上では、 2 , 6—ジ クロロー 4一二トロフエノールを吸着する作用と、 結晶軸端上の強い分 極電荷によるオゾンの活性化作用とが生じており、 ドラバイ ト粉末表面 において活性化オゾンによる 2, 6—ジクロロー 4一二トロフエノール の分解反応が効率的に行われていると考えられる。 言葉を変えて説明す れば、 ドラバイ トを混入すると、 オゾンが活性化して原子状酸素、 〇H ラジカル等の活性酸素種が生じ、 この活性酸素種が溶液中に存在する 2, However, in the case of using drabite, as shown in the graph of Hatoma Kuromaru, the decrease of 2,6-dichloro-1-412 tropanol is dependent on the exponential decrease and the linear decrease with time. It is allowed to include both. This linear decrease is indicative of the time dependence typical of surface catalysis (zero-order reaction). This phenomenon indicates that in addition to the contact reaction between ozone and 2,6-dichroic _412 tropanol, further reactions are occurring. Probably, on the surface of the drabite powder, the action of adsorbing 2,6-dichloro-412-trophenol and the action of activating ozone due to the strong polarization charge on the crystal axis end occurred. It is considered that the activated ozone decomposes 2,6-dichloro-412-trophenol efficiently on the surface. In other words, when drabite is mixed in, ozone is activated to generate reactive oxygen species such as atomic oxygen and 〇H radicals, which are present in the solution.
6—ジクロロー 4—ニトロフヱノールと衝突してこれを分解する。 もち ろん、 その衝突確率は 1 0 0 %ではなく、 2 , 6—ジクロロー 4一二ト ロフエノールの濃度が減少すれば衝突量は減少し、 本来であれば実質的
反応速度は低下する。 ところが、 ドラバイ トの表面では、 2 , 6—ジク ロロ _ 4一二トロフエノールを吸着する作用が生じ、 かつ、 その表面で 逐次、 活性酸素種を発生させているため、 この活性酸素種と、 2 , 6— ジクロ口一 4一二トロフ: ノールとの衝突量は減少せず、 分解反応は低 濃度でも効率的に進められるのである。 このように第 5図に示すグラフ は、 ドラバイ トがオゾン活性化トリガーとして機能するとともに、 ドラ バイ ト粉末表面が吸着作用を持つことから分解反応の反応の場として機 能することを示唆しているものである。 Collides with 6-dichloro-4-nitrophenol to decompose it. Of course, the collision probability is not 100%, but the amount of collision decreases as the concentration of 2,6-dichloro-412-trophenol decreases. The reaction rate decreases. However, the action of adsorbing 2,6-dichloro_412-trotropenol occurs on the surface of doravite, and the active oxygen species are successively generated on the surface. 2,6-dichloro-1,412-trophy: The amount of collision with phenol does not decrease, and the decomposition reaction can proceed efficiently even at low concentrations. Thus, the graph shown in Fig. 5 suggests that the drabite functions as an ozone activation trigger and also functions as a reaction site for the decomposition reaction due to the adsorption of the drabite powder surface. Is what it is.
なお、 実施例 1および比較例 1のいずれの実験でも 3 0 Vの電圧をか けているが、 比較例 1の処理系では電流値が 0 Aであるのに対し、 実施 例 1ではドラバイ トを混入すると電流値が 0 . 1 8 Aを示し、 ドラバイ ト粉末に分極電荷が生じていることが認められる。 Although a voltage of 30 V was applied in both experiments of Example 1 and Comparative Example 1, the current value was 0 A in the processing system of Comparative Example 1, whereas the drive value was 0 in Example 1. When mixed, the current value shows 0.18 A, and it is recognized that polarized charges are generated in the drive powder.
[実施例 2 ] [Example 2]
次に、 実施例 2では、 ジベンゾパラジオキシンの分解実験を行った。 実施例 2の実験条件は、 実施例 1とほぼ同じであるが、 ジベンゾパラジ ォキシンは水に対する溶解度が低いため、 3 0 %エタノールを含む水に 溶解して 1 0 p p m溶液を作成した。 また、 実施例 2 との比較のために、 ドラバイ トなしの分解処理を比較例 2として行った。 まず、 比較例 2の 結果を表 3および第 6図に示し、 本実施例 2の結果を表 4および第 7図 に示す。 Next, in Example 2, an experiment for decomposing dibenzoparadioxin was performed. The experimental conditions in Example 2 were almost the same as in Example 1, but dibenzoparadioxin had low solubility in water, and was dissolved in water containing 30% ethanol to prepare a 10 ppm solution. For comparison with Example 2, a decomposition treatment without a devolatilizer was performed as Comparative Example 2. First, the results of Comparative Example 2 are shown in Table 3 and FIG. 6, and the results of Example 2 are shown in Table 4 and FIG.
[表 3 ] [Table 3]
ドラバイ トなし、 30V DC、 オゾン No dry, 30V DC, ozone
ドラバイ トあり、 30V DC、 オゾン With drive, 30V DC, ozone
表 3および表 4は、 反応時間経過に伴うジベンゾパラジオキシンの濃 度変化を数値で示すとともに、 初期濃度に対する相対的な濃度比率を併 せて示している。 また、 第 6図おょぴ第 7図は、 反応時間経過に伴う吸 光度の変化を示したグラフであり、 横軸は光の波長 (nm) を示し、 縦 軸は吸光度を示している。 Tables 3 and 4 show the change in the concentration of dibenzoparadioxin over time with the numerical value, and also show the relative concentration ratio to the initial concentration. Fig. 6 and Fig. 7 are graphs showing the change in absorbance with the passage of reaction time. The horizontal axis indicates light wavelength (nm), and the vertical axis indicates absorbance.
表 3および表 4を比較すると、 表 3のオゾンのみによる比較例 2の結 果では、 反応時間経過に伴ってジベンゾパラジオキシン濃度は低下する 力 7時間経過しても 5. 5 1 p p mであって、 初期濃度に対する相対 的な濃度比は 5 5. 1 %にとどまり、 1 8. 5時間経過しても 3 9. 3 %であった。 これに対して、 表 4のドラバイ トを加えた本実施例 2の 結果では、 反応時間経過に伴ってジベンゾパラジオキシン濃度が急速に 低下し、 低濃度になっても低下傾向は続き、 3時間経過後には初期濃度 に対して半分以下の 4 9. 6 %の濃度にまで低下し、 1 3時間後には 1 7. 2 %にまで低下した。 比較例 2では、 濃度が 3 9. 3 %にまで低下 するのに 1 8. 5時間を要したのに対し、 本実施例 2では、 5時間で 3 7. 7%にまで低下している。 つまり、 ドラバイ トを混入することで濃 度を 40%以下に低下させるまでに約 4倍の時間短縮できることになる c さらにこの分解処理の速度差は、 より低濃度でも顕著な格差が生じるこ と力 Sわ力 る。 Comparing Tables 3 and 4, the results of Comparative Example 2 using only ozone in Table 3 show that the dibenzoparadioxin concentration decreases with the lapse of reaction time. Thus, the relative concentration ratio to the initial concentration remained at 55.1%, and was 39.3% even after 18.5 hours. On the other hand, in the results of Example 2 with the addition of the drabite in Table 4, the dibenzoparadioxin concentration rapidly decreased with the passage of reaction time, and continued to decrease even when the concentration became lower, and for 3 hours After the elapse, the concentration decreased to less than half of the initial concentration of 49.6%, and after 13 hours, decreased to 17.2%. In Comparative Example 2, it took 18.5 hours for the concentration to decrease to 39.3%, whereas in Example 2, the concentration decreased to 37.7% in 5 hours. . In other words, the speed difference of c further the degradation process would be reduced by about 4 times the time to reduce the concentration by mixing Dorabai preparative 40% or less, and this of significant differences occur at lower concentrations Power S
なお、 表 3および表 4中、 初期濃度について、 比較例 2では 1 0. 0
0 p p mであるのに対し、 本実施例 2では 1 5 . 0 6 p p mと異なって いる。 これは、 ドラバイ トを加えた実施例 2では、 反応前のジベンゾパ ラジオキシン濃度をドラバイ トおよび 3 0 %エタノール水溶液の総重量 に対して 1 0 p p mとなるように調整したためであり、 これを吸光度測 定のためにドラバイ トをろ過して除去したので、 溶液中のジベンゾパラ ジォキシン濃度が l O p p mより高くなったものである。 この結果は、 エタノールを含む水溶液の場合、 ジベンゾパラジオキシンはほとんどド ラパイ トに吸着していないことを示すものでもある。 In Tables 3 and 4, the initial concentration was 10.0 in Comparative Example 2. In contrast to 0 ppm, in Example 2, it is different from 15.06 ppm. This is because the concentration of dibenzoparadioxin before the reaction was adjusted to 10 ppm with respect to the total weight of drabite and a 30% aqueous ethanol solution in Example 2 in which drabite was added, and this was used as the absorbance. The concentration of dibenzoparadioxin in the solution was higher than 10 ppm because of removal of the drabite by filtration for measurement. This result also indicates that dibenzoparadioxin is hardly adsorbed on the drug in the case of an aqueous solution containing ethanol.
一方、 第 6図および第 7図を参照すると、 前述したように、 実施例 2 と比較例 2とでは初期濃度が異なるため、 吸光度の数値自体を比較して もわかりにくいが、 吸光度の減少幅は明らかに本実施例 2が大きい。 ま た、 グラフが収束する位置を比較すると、 比較例 2では吸光度が 0 . 0 のラインよりもやや上方位置で収束する傾向にあるが、 本実施例 2では 吸光度 0 . 0のラインに収束しており、 低濃度域における実質的反応速 度が維持されていることがわかる。 On the other hand, referring to FIGS. 6 and 7, as described above, since the initial concentration is different between Example 2 and Comparative Example 2, it is difficult to understand even if the absorbance values themselves are compared. Is clearly larger in the second embodiment. Also, when comparing the positions where the graphs converge, in Comparative Example 2, the absorbance tends to converge slightly above the 0.0 line, but in Example 2, it converges to the absorbance 0.0 line. This indicates that the substantial reaction speed in the low concentration range is maintained.
以上のように、 本実施形態によれば、 圧電性および焦電性の著しいド ラバイ トを結晶上で電荷分離させることにより、 その結晶軸端に発生す る強い分極電荷によってオゾンを活性化させて分解処理を促進させるこ とができる。 また、 ドラバイ トの表面上では、 難分解性有機化合物の吸 着作用により活性化オゾンの分解反応が効率的に行われていると考えら れる。 これらの作用により 2, 6—ジクロ口一 4— -トロフエノールや ジベンゾパラジオキシン等の難分解性有機化合物を迅速に分解し、 低濃 度域に至ってもその実質的反応速度を維持することができる。 As described above, according to the present embodiment, ozone is activated by the strong polarization charge generated at the crystal axis end by separating charge on the crystal and the pyroelectric having remarkable pyroelectricity. To accelerate the decomposition process. In addition, it is considered that the decomposition reaction of activated ozone is efficiently performed on the surface of doravite by the adsorption action of the hardly decomposable organic compound. By these actions, it is possible to rapidly decompose hardly decomposable organic compounds such as 2,6-dichloro-1--4-phenol and dibenzoparadioxin, and to maintain the substantial reaction rate even in a low concentration range. it can.
また、 本実施形態の難分解性有機化合物の分解方法では、 紫外線を必 要とせず、 ドラバイ ト粉末を混入するという、 安価であって制御しやす い材料を使えばよいため、 単純なシステム構成によって実施でき、 土壌
の浄化施設への応用にあたりメリットが多い。 In addition, the method for decomposing a hardly decomposable organic compound according to the present embodiment does not require ultraviolet rays, and it is only necessary to use an inexpensive and easily controllable material, which is a mixture of drabite powder. Can be carried out by the soil There are many merits when applied to purification facilities.
なお、 本発明の本実施形態の各構成は前述したものに限るものではな く、 適宜変更することができる。 産業上の利用可能性 The configurations of the present embodiment of the present invention are not limited to those described above, and can be appropriately changed. Industrial applicability
以上説明したように本発明によれば、 オゾンを効果的に活性化させて 難分解性有機化合物の分解処理を促進させることができるとともに、 低 濃度で存在する難分解性の有機化合物も迅速に分解することができる等 の効果を奏する。
As described above, according to the present invention, ozone can be effectively activated to accelerate the decomposition treatment of a hardly decomposable organic compound, and the hardly decomposable organic compound existing at a low concentration can be quickly removed. It has the effect that it can be decomposed.
Claims
1 . 難分解性有機化合物が存在する処理系に対してオゾンを注入し、 前記難分解性有機化合物をオゾンと接触させることにより分解する難分 解性有機化合物の分解方法であって、 1. A method for decomposing a hardly decomposable organic compound, which comprises injecting ozone into a treatment system in which the hardly decomposable organic compound is present, and decomposing the hardly decomposable organic compound by bringing the hardly decomposable organic compound into contact with ozone;
難分解性有機化合物が存在する液体等の系あるいは難分解性有機化合 物が存在する土壌に液体を含ませた系に対してオゾンを注入するオゾン 注入ステップと、 An ozone injecting step of injecting ozone into a system such as a liquid in which a hardly decomposable organic compound is present or a system in which a liquid is contained in soil in which a hardly decomposable organic compound is present;
前記処理系に電気石粉末を混入する電気石粉末混入ステツプと、 この電気石粉末混入ステップで混入した電気石粉末を結晶上で電荷分 離させる作用を加える電気石粉末電荷分離ステツプと、 A tourmaline powder mixing step of mixing tourmaline powder into the treatment system; and a tourmaline powder charge separation step for effecting charge separation on the crystal of the tourmaline powder mixed in the tourmaline powder mixing step;
からなることを特徴とする難分解性有機化合物の分解方法。 A method for decomposing a hardly decomposable organic compound, comprising:
2 . 請求の範囲第 1項において、 前記電気石粉末は、 天然の電気石を 焼成してセラミック化させた電気石セラミックの粉砕粉末を使用するこ とを特徴とする難分解性有機化合物の分解方法。 2. The method for decomposing a hardly decomposable organic compound according to claim 1, wherein the tourmaline powder is a ground tourmaline ceramic powder obtained by firing natural tourmaline to ceramic. Method.
3 . 請求の範囲第 2項において、 前記電気石粉末は、 天然のドラバイ トを焼成したドラバイ トセラミック粉末を使用することを特徴とする難 分解性有機化合物の分解方法。 3. The method for decomposing a hardly decomposable organic compound according to claim 2, wherein the tourmaline powder is a drabite ceramic powder obtained by sintering natural drabite.
4 . 請求の範囲第 1項から請求の範囲第 3項のいずれかにおいて、 電 気石粉末電荷分離ステップでは、 前記処理系に電圧を加えることにより、 前記電気石粉末を結晶上で電荷分離させることを特徴とする難分解性有 機化合物の分解方法。 4. The tourmaline powder charge separation step according to any one of claims 1 to 3, wherein a voltage is applied to the treatment system to cause the tourmaline powder to perform charge separation on a crystal. A method for decomposing hardly decomposable organic compounds.
5 . 難分解性有機化合物を分解する工程が行われる分解反応槽と、 こ の分解反応槽にオゾンを注入するオゾン注入手段とを有する難分解性有 機化合物分解装置であって、 前記分解反応槽に電気石粉末を混入する電 気石粉末混入手段と、 この混入した電気石粉末を結晶上で電荷分離させ
る作用を加える電荷分離手段とを設けたことを特徴とする難分解性有機 化合物分解装置。
5. An apparatus for decomposing hard-to-decompose organic compounds, comprising: a decomposition reaction tank in which a step of decomposing a hardly decomposable organic compound is performed; and an ozone injection means for injecting ozone into the decomposition reaction tank. Means for mixing tourmaline powder into the tank, and charge separation of the tourmaline powder mixed on the crystal A device for decomposing hardly decomposable organic compounds, the device comprising: a charge separation means for adding a function to the organic compound.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003-032172 | 2003-02-10 | ||
JP2003032172A JP3990993B2 (en) | 2003-02-10 | 2003-02-10 | Method and apparatus for decomposing persistent organic compounds |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004069754A1 true WO2004069754A1 (en) | 2004-08-19 |
Family
ID=32844332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2004/001382 WO2004069754A1 (en) | 2003-02-10 | 2004-02-10 | Method of decomposing hardly decomposable organic compound and apparatus therefor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3990993B2 (en) |
WO (1) | WO2004069754A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102180557A (en) * | 2011-05-12 | 2011-09-14 | 浙江东洋环境工程有限公司 | Composite organic waste water advanced oxidation device |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100795389B1 (en) | 2006-03-14 | 2008-01-22 | 주식회사엔지오스 | Ionized Water Generator for NAPL-contaminated Soil utilizing Tourmaline Stone |
US20120111800A1 (en) * | 2008-06-30 | 2012-05-10 | Carol Ann Collins | Method and system for harvesting water, energy and biofuel |
JP5249474B1 (en) * | 2013-01-18 | 2013-07-31 | 株式会社カイジョー | Ultrasonic cleaning apparatus and ultrasonic cleaning method |
CN106219729A (en) * | 2016-09-19 | 2016-12-14 | 常州吉恩药业有限公司 | A kind of processing method of tert-butyl alcohol waste water |
CN106670228B (en) * | 2016-12-15 | 2020-03-06 | 南开大学 | Method for repairing polybrominated diphenyl ether contaminated soil by surfactant-enhanced tourmaline Fenton combined microorganism |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993025481A1 (en) * | 1992-06-04 | 1993-12-23 | Eco Purification Systems B.V. | Process and apparatus for purifying streams |
JP2002018443A (en) * | 2000-07-10 | 2002-01-22 | Sumitomo Heavy Ind Ltd | Method and apparatus for water treatment |
-
2003
- 2003-02-10 JP JP2003032172A patent/JP3990993B2/en not_active Expired - Fee Related
-
2004
- 2004-02-10 WO PCT/JP2004/001382 patent/WO2004069754A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993025481A1 (en) * | 1992-06-04 | 1993-12-23 | Eco Purification Systems B.V. | Process and apparatus for purifying streams |
JP2002018443A (en) * | 2000-07-10 | 2002-01-22 | Sumitomo Heavy Ind Ltd | Method and apparatus for water treatment |
Non-Patent Citations (1)
Title |
---|
MISHRA S, RAO A V K, RAO K V: "Dielectric properties of tourmaline under different conditions", PHYSCA STATUS SOLIDI (A), vol. 114, no. 1, July 1989 (1989-07-01), pages K115 - K118, XP002976458 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102180557A (en) * | 2011-05-12 | 2011-09-14 | 浙江东洋环境工程有限公司 | Composite organic waste water advanced oxidation device |
Also Published As
Publication number | Publication date |
---|---|
JP3990993B2 (en) | 2007-10-17 |
JP2004261638A (en) | 2004-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1903008A1 (en) | Method for treatment of water containing hardly-degradable substance | |
Emire et al. | Solubility and degradation of paracetamol in subcritical water | |
JP2001058179A (en) | Method and apparatus for water treatment | |
WO2004069754A1 (en) | Method of decomposing hardly decomposable organic compound and apparatus therefor | |
JP4167052B2 (en) | Purification method for organic compound contamination | |
JP3969114B2 (en) | Organic halogen compound decomposition method and decomposition apparatus. | |
Yang et al. | Mechanism of amoxicillin degradation in water treated by atmospheric-pressure air microplasma | |
JP2006296608A (en) | Method and apparatus for removing halogenated organic compound by ionic liquid | |
JPH11300334A (en) | Decomposing and removing method of organic chlorine compound such as dioxins in soil | |
JP3766298B2 (en) | Wastewater treatment method and apparatus | |
US5976384A (en) | Process for treating waste water | |
JP3784654B2 (en) | Purification method for chemical contaminants | |
JP4522302B2 (en) | Detoxification method of organic arsenic | |
JP3466083B2 (en) | Decomposition method of organic chlorine compounds such as dioxins in landfill leachate | |
JP2002136961A (en) | Decontamination method for soil or underground water | |
JP2003211143A (en) | Device for cleaning soil | |
JP2003103271A (en) | Treatment method for dioxins in wastewater | |
JP3573322B2 (en) | Method and apparatus for treating dioxin-containing wastewater | |
JP2004167426A (en) | Cleaning method of contamination due to chemical substance and cleaning system therefor | |
JP3495904B2 (en) | Supercritical water oxidation treatment of TMAH waste liquid | |
JP2004105870A (en) | Method and apparatus for purification of soil and groundwater | |
JP2001054798A (en) | Method and apparatus for treating harmful material in sewage | |
JP2001149767A5 (en) | ||
JP2016221436A (en) | Water treatment device and water treatment method | |
JP2006122796A (en) | Method of decomposing hardly decomposable organic compound with soil mineral-iron complex, and apparatus therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |