WO2004069446A1 - Method for the production of a high-pressure fuel tank - Google Patents
Method for the production of a high-pressure fuel tank Download PDFInfo
- Publication number
- WO2004069446A1 WO2004069446A1 PCT/DE2003/003084 DE0303084W WO2004069446A1 WO 2004069446 A1 WO2004069446 A1 WO 2004069446A1 DE 0303084 W DE0303084 W DE 0303084W WO 2004069446 A1 WO2004069446 A1 WO 2004069446A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blank
- kneading
- pressure fuel
- pressure
- section
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21K—MAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
- B21K1/00—Making machine elements
- B21K1/06—Making machine elements axles or shafts
- B21K1/10—Making machine elements axles or shafts of cylindrical form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21K—MAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
- B21K21/00—Making hollow articles not covered by a single preceding sub-group
- B21K21/16—Remodelling hollow bodies with respect to the shape of the cross-section
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21K—MAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
- B21K3/00—Making engine or like machine parts not covered by sub-groups of B21K1/00; Making propellers or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M55/00—Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
- F02M55/02—Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
- F02M55/025—Common rails
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/40—Fuel-injection apparatus with fuel accumulators, e.g. a fuel injector having an integrated fuel accumulator
Definitions
- An injection system is used to supply an internal combustion engine with fuel.
- the accumulator injection system called common rail system, pressure generation and injection are decoupled from one another in time and place.
- a separate high-pressure pump generates the injection pressure in a central high-pressure fuel reservoir.
- the start of injection and the injection quantity are determined by the actuation time and duration of electrically actuated injectors which are connected to the high-pressure fuel reservoir by fuel lines.
- extremely high pressures occur in the K-raft high-pressure accumulator, which is why very high demands are placed on its pressure resistance.
- the high-pressure fuel accumulators are forged, drawn or rolled.
- DE-A 199 36 533 relates to a high-pressure fuel accumulator for a common rail fuel injection system of an internal combustion engine with a tubular base body which has a blind bore running in the longitudinal direction and a plurality of connections.
- DE-A 199 49 962 a further high-pressure fuel reservoir for a common rail fuel injection system of an internal combustion engine is known.
- the high-pressure fuel accumulator has a hollow base body which is equipped with a plurality of connection openings.
- the interior of the base body is flat in the area of the connection openings.
- DE-A 199 45 316 also relates to a high-pressure fuel accumulator for a common-rail fuel injection system of an internal combustion engine with a tubular base body, the interior of which is connected to a plurality of connection openings.
- the interior is arranged eccentrically with respect to the longitudinal axis of the base body.
- the high-pressure strength of the high-pressure fuel reservoir is mainly limited by the intersections between the connection openings and the interior of the base body. These drilling intersections are heavily loaded by the internal pressure and represent possible failure points of the high-pressure fuel pressure accumulator. During operation, stress peaks occur there, which can cause cracks in the base body.
- An advantage of the present invention is that high-pressure fuel accumulators can be produced which have an increased pressure resistance.
- the method according to the invention enables the construction of the fuel pressure accumulator to be adapted to an optimum in terms of its pressure resistance.
- inner shapes can be produced, but also outer shapes that are ideally adapted to the stresses that occur during operation. Further advantages of the present invention are better material utilization and less expensive production than in the prior art.
- a method for producing a high-pressure fuel accumulator for a common-rail fuel injection system for Bre nkraftmaschinen the high-pressure fuel accumulator being formed by circular kneading with circular kneading tools of a blank containing a longitudinal cavity and then completed by further processing steps.
- Round kneading is a non-cutting manufacturing process for reducing the cross-section of bars, tubes and wires.
- the force is applied directly to the circumference of the workpiece by multiple tools.
- Circular kneading is an incremental forming process, which means that the forming work is not carried out in one tool stroke, but that the workpiece is processed in many small individual steps.
- the tools completely or partially enclose the cross-section to be reduced, at the same time act radially and / or move relative to the workpiece about the pass axis. Almost any metallic material can be kneaded with a circular kneading process processed, provided there is sufficient elasticity of the material.
- Sintered materials can also be kneaded round.
- Workpieces for example made of tungsten and nickel alloys, can also be machined on rotary riveting machines, and in exceptional cases the material of the machine can also be fed in when heated. In the case of solid bars, the reduction in the outer diameter leads to an extension of the workpiece at the ends. Pipes are subject to a complicated flow of materials. Increase in length,
- the decrease in inner diameter and the increase in wall thickness change and influence each other depending on the material properties and the tool geometry. Basically, the total volume remains constant when incompressible materials are processed.
- Circular kneading advantageously increases the tensile strength, depending on the decrease in cross-section and the hardening behavior of the material. Furthermore, with an increasing reduction in cross-section, the surface of the blank formed by kneading is significantly improved. Compared to machined surfaces, the surface of the kneaded workpiece has a much lower surface roughness.
- Circular kneading machines are generally known in the prior art, for example from DE-A 199 55 323 and DE-A 199 55 321.
- Various circular kneading machines from the prior art allow a with a comparatively simple machine concept Circular kneading with tools that impact radially on a tool and rotate relative to the workpiece.
- the blank containing a longitudinal cavity from which the high-pressure fuel accumulator is produced in the present invention preferably corresponds to the blanks from which welded high-pressure fuel accumulators are usually manufactured in the prior art.
- These blanks therefore consist of a material suitable for welding and forming, for example 20MnCrS5, which is tempered and peeled.
- Such a blank also contains a longitudinal cavity which has preferably been drilled cylindrically deep-hole.
- surface smoothing manufacturing steps such as. B. Lapping or mounds can be connected. This advantageously enables a further improvement in the surface quality after the round kneading to be achieved.
- the present invention furthermore relates to a high-pressure fuel reservoir for a common-rail fuel injection system, produced by the method according to the invention, the high-pressure fuel reservoir being able to be manufactured, for example, from a material such as 20 MnCrS5.
- a high-pressure fuel accumulator configured according to the invention can be produced from cold or semi-hot formable materials which have a suitable strength range (Rm ⁇ 800-1300 N / mm 2 ).
- the cold or semi-hot formable material should also be suitable for welding or soldering.
- FIG. 1 shows a blank from which a high-pressure fuel accumulator is produced by the method according to the invention
- FIG. 2 round kneading of a blank using a dome
- FIG. 3 shows an embodiment of a blank machined by kneading
- 4 shows a further embodiment of a blank machined by kneading
- FIG. 5 shows an embodiment of a high-pressure fuel reservoir according to the invention produced by the method according to the invention.
- FIG. 1 shows a blank from which a fuel high-pressure accumulator can be produced using the method according to the invention.
- the blank 1 comprises a base body 2 with a longitudinal cavity 3.
- the longitudinal cavity has a cylindrical shape and is arranged in the center of the blank 1. Due to the central arrangement of the longitudinal cavity 3, the longitudinal axis 4 represents both the axis of symmetry of the longitudinal cavity 3 and of the entire cylindrical blank 1.
- a section through the blank 1 perpendicular to the longitudinal axis 4 is shown on the right-hand side of FIG. Sowolil the blank 1, as well as the contained therein
- Longitudinal cavity 3 have a circular cross section.
- the longitudinal cavity 3 with the cavity diameter D H lies centrally in the base body 2 of the blank 1 with the
- Necessary intersections of transverse cavities with the interior of the base body 2, which are required in the finished high-pressure fuel reservoir, can advantageously be arranged in the region of the greatest wall thickness d of the base body 2 surrounding the longitudinal cavity 3, so that the high-pressure strength of the high-pressure fuel reservoir is increased becomes.
- the base body 2 is formed, for example, from a drawn starting material for producing the blank 1 shown in FIG.
- the longitudinal cavity 3 is preferably introduced into the base body 2 of the blank 1 by drilling.
- Figure 2 shows the round kneading of a blank using a dome.
- the blank 1 is machined with tools 5 during kneading.
- Two tools 5 are shown in FIG. 2, which carry out an oscillating movement.
- the method can also be operated, for example, with three, four, five or six tools 5, which are concentrically grouped around the blank 1.
- the arrows 6 indicate the movement of the tools towards the blank, through which the forming work is carried out.
- the blank 1 is moved in the axial direction 9 relative to the round kneading tools 5 during the round kneading or the round kneading tools 5 are moved relative to the blank 1 in the opposite axial direction 9.
- this method variant known as feed kneading the blank 1 is moved step by step in the axial direction 9 by the oscillating tools 5. The feed movement takes place when the tools 5 are not touching the blank 1. Since the tools 5 oscillate at a high frequency, the feed movement is apparently continuous.
- the surface of the respective tool 5 facing the workpiece during feed round kneading is beveled towards its edge.
- the bevel 10 of the tool surface in the direction of feed movement generates an enlarging chamfer on the outside 8 of the blank 1 when the tool 5 is oscillating.
- the bevel 11 of the tool surface on the side of the tool facing away from the feed movement direction serves to produce a surface that is as smooth as possible and prevents damage to the surface on the outside 8 of the blank due to the springback of the material.
- the process variant of plunge round kneading can also be selected. This enables a local reduction in cross-section (also in the middle of the workpiece). This is done by a controlled opening and closing of the tools 5 superimposed on the actual tool stroke, this movement being substantially greater than the oscillation of the tools 5.
- the blank 1 performs a rotary movement about its longitudinal axis 4 and / or during the kneading
- Circular kneading tools 5 perform a rotational movement in the opposite direction of rotation around the blank 1.
- the rotational relative movement between tool 5 and blank 1 serves among other things, to prevent the material of the blank 1 from flowing between the tool segments.
- the outside 8 of the blank 1 is formed into a desired shape during the manufacture of the high-pressure fuel accumulator by the round kneading.
- the term "round kneading" only covers part of the process variations, since non-rotationally symmetrical profiles can also be produced.
- the shape of the outside 8 of the blank 1 depends on the geometry of the tools 5 and on the process variant used. For example, elliptical or polygonal shapes can be set for the outside 8, so that a stress-oriented design of the high-pressure fuel accumulator is possible.
- the high-pressure fuel reservoir is generally designed in such a way that its geometry accommodates a simple line connection and also has strength advantages.
- the inside of the blank 1 is preferably formed into a desired shape by the round kneading.
- the inner shape (the shape of the longitudinal cavity 3) is formed in the free flow. Since the forming is subject to the law of volume constancy, the material displaced by the reduction in the outside diameter must flow away. This happens on the one hand in the axial, on the other hand in the radial direction. If the outer diameter of the blank 1 is reduced, its wall thickness d increases and it becomes longer. If specific requirements are placed on the inner surface, such as dimensional accuracy, surface quality or if a specific inner profile is to be produced, a mandrel 7 must check the material flow inwards during the forming process.
- a mandrel 7 protrudes at least into a section of the longitudinal cavity 3 of the blank 1 during the round kneading in order to produce a specific internal profile of the high-pressure fuel storage device.
- the mandrel 7 represents the negative of the Finished geometry of at least a portion of the longitudinal cavity 3 of the high-pressure fuel reservoir after the round kneading.
- the use of the dome 7 allows the production of a longitudinal cavity 3, the shape of which is subject to a close tolerance.
- the mandrel 7 can be cylindrical, conical or provided with a shoulder, for example.
- the production of more complex inner profiles is possible, such as different types of teeth, hexagon socket or swirl profiles.
- a non-cylindrical or sectionally non-cylindrical internal geometry of the high-pressure fuel accumulator can also be generated.
- the dome 7 has an elliptical cross section.
- the longitudinal cavity 3 of the blank 1 is deformed during the round kneading by a combined axial and rotary feed of the blank 1 and the oscillating tool movement such that it also has an elliptical cross section.
- the mandrel 7 also moves during the combined axial or rotary feed.
- FIG. 3 shows a preferred embodiment of a blank machined by kneading.
- the longitudinal cavity 3 in the base body 2 of the blank 1 has an elliptical cross section 12, as can be seen from the section along the line AA on the right side of the figure.
- the outer diameter D AI is smaller than the original outer diameter D A of the blank 1 which has not yet been kneaded by round kneading.
- the blank 1 shown in FIG. 3 and shaped by means of round kneading has a cylindrical outer shape. Due to the suitable choice of tools 5 and the machining method, other external shapes can also be formed, for example an elliptical or polygonal outer cross section of the machined blank 1.
- FIG. 4 shows a further preferred embodiment of a blank machined by round kneading.
- the longitudinal cavity 3 in the base body 2 has a sectionally cylindrical and sectionally non-cylindrical shape 13.
- a geometry is produced by kneading with dome 7.
- the section BB shown on the right side of FIG. 4 through the formed blank 1 is located in a section with a circular cross section of the longitudinal cavity 3.
- Section AA corresponds to the section shown in FIG.
- the Longitudinal cavity 3 has an elliptical cross section.
- the circular cross section 15 merges into the elliptical cross section 12 of the longitudinal cavity 3.
- the outer shape of the blank 1 is circular.
- the outer diameter D A _> is smaller than the original outer diameter D A and it can be equal to or different from the outer diameter D AI of the blank shown in Figure 3.
- FIG. 5 shows a preferred embodiment of a high-pressure fuel reservoir according to the invention produced by the method according to the invention.
- a blank 1 with a longitudinal cavity 3 was first formed by circular kneading, so that a base body 2 with an elliptical cross section 16, which also contains a longitudinal cavity 3 with an elliptical cross section 12, was formed.
- the main axes of the two ellipses are perpendicular to each other.
- the rail was then completed through further processing steps.
- Connection pieces 17 were welded to the outside of the base body 2, the main axis of the elliptical cross section 12 of the longitudinal cavity 3 running perpendicular to the central axis 18 of the connection pieces 17 (section CC).
- the connecting pieces 17 can also be connected to the base body 2 by other suitable joining methods.
- transverse cavities 20 were introduced into the base body 2 by means of a machining process, for example drilling.
- the central axis of the transverse cavities 20 corresponds to the central axis 18 of the connecting piece 17.
- the intersections 21 are heavily loaded by the internal pressure during operation of the fuel pressure accumulator, since stress peaks occur there.
- the ratio between the diameter of the longitudinal cavity 3 and the inner diameter of the transverse cavity 20 is comparatively larger, so that a higher compressive strength of the fuel pressure reservoir is achieved. It is therefore advantageous if at least the section of the longitudinal cavity 3 into which the transverse cavity 20 of the connecting piece 17 opens has an elliptical cross section. Due to the elliptical cross section of the base body 2, the wall thickness d of the base body 2 surrounding the longitudinal cavity 3 is also greater in the area of the connecting piece 17 than in other areas (section CC). At both ends of the fuel pressure accumulator interfaces 22 for attachments or fasteners are also attached by machining.
- Blank basic body longitudinal cavity, longitudinal axis, tools, arrows, mandrel, outside of the blank, axial direction, cutting the tool surface in the feed movement direction, chamfering the tool surface on the side facing away from the feed movement direction, elliptical cross section of the longitudinal cavity, cylindrical and non-cylindrical internal geometry, in some cases, transition area, circular cross section of the longitudinal cavity, the connecting piece of the basic connecting piece of the base connector, elliptical cross-section of the basic connecting piece of the basic connecting piece of the central connecting piece of the basic connecting piece of the basic connecting piece of the central connecting piece of the basic connecting piece of the central connecting piece of the central connecting piece of the central connecting piece of the central connecting piece of the central connecting piece of the central connecting piece of the central connecting piece of the central connecting piece of the central connecting piece of the central connecting piece of the central connecting piece of the central connecting piece of the central connecting piece of the central connecting piece of the central connecting piece of the central connecting piece of the central connecting piece of the central connecting piece of the central connecting piece of the central connecting piece
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
The invention relates to a method for producing a high-pressure fuel tank for a common rail fuel injection system used for internal combustion engines. According to said method, the high-pressure fuel tank is formed by kneading in a rotary manner a blank (1) comprising a longitudinal hollow space (3) with the aid of rotary kneading tools (5) and is then completed by means of additional processing steps.
Description
Verfahren zur Herstellung eines raftstoffhochdruc speichersProcess for the production of a high pressure raft
Technisches GebietTechnical field
Ein Einspritzsystem dient der Versorgung einer Brennkraftmaschine mit Kraftstoff. Bei dem Common-Rail-System genannten Speichereinspritzsystem sind Druckerzeugung und Einspritzung voneinander zeitlich und örtlich entkoppelt. Eine separate Hochdruckpumpe erzeugt den Einspritzdruck in einem zentralen Kraftstoffhochdruckspeicher. Der Einspritzbeginn und die Einspritzmenge werden durch Ansteuerzeitpunkt und -dauer von elektrisch betätigten Injektoren bestimmt, die über Kraftstoffleitungen mit dem K-raftstoffhochdruckspeicher verbunden sind. Im Betrieb treten in dem K-raftstoffhochdruckspeicher extrem hohe Drücke auf, weshalb an seine Druckfestigkeit sehr hohe Anforderungen gestellt werden.An injection system is used to supply an internal combustion engine with fuel. In the accumulator injection system called common rail system, pressure generation and injection are decoupled from one another in time and place. A separate high-pressure pump generates the injection pressure in a central high-pressure fuel reservoir. The start of injection and the injection quantity are determined by the actuation time and duration of electrically actuated injectors which are connected to the high-pressure fuel reservoir by fuel lines. During operation, extremely high pressures occur in the K-raft high-pressure accumulator, which is why very high demands are placed on its pressure resistance.
Stand der TechnikState of the art
Im Stand der Technik werden die Kraftstoffhochdruckspeicher geschmiedet, gezogen oder gewalzt.In the prior art, the high-pressure fuel accumulators are forged, drawn or rolled.
DE-A 199 36 533 betrifft einen Kraftstoffhochdruckspeicher für ein Common-Rail- Kraftstoffeinspritzsystem einer Brennkraftmaschine mit einem rohrformigen Grundkörper, der eine in Längsrichtung verlaufende Sacklochbohrung und mehrere Anschlüsse aufweist.DE-A 199 36 533 relates to a high-pressure fuel accumulator for a common rail fuel injection system of an internal combustion engine with a tubular base body which has a blind bore running in the longitudinal direction and a plurality of connections.
Aus DE-A 199 49 962 ist ein weiterer Kraftstoffhochdruckspeicher für ein Common-Rail- Kraftstoffemspritzsystem einer Brennkraftmaschine bekannt. Der Kraftstoffhochdruckspeicher besitzt einen hohlen Grundkörper, der mit mehreren Anschlußöffiαungen ausgestattet ist. Der Innenraum des Grundkörpers ist dabei im Bereich der Anschlußöffnungen eben ausgebildet.
DE-A 199 45 316 bezieht sich ebenfalls auf einen Kraftstoffhochdruckspeicher für ein Common-Rail Kraftstoffeinspritzsystem einer Brennkraftmaschine mit einem rohrformigen Grundkörper, dessen Innenraum mit mehreren Anschlußöffhungen in Verbindung steht. Um die Hochdruckfestigkeit zu erhöhen, ist der Innenraum, bezogen auf die Längsachse des Grundkörpers, exzentrisch angeordnet.From DE-A 199 49 962 a further high-pressure fuel reservoir for a common rail fuel injection system of an internal combustion engine is known. The high-pressure fuel accumulator has a hollow base body which is equipped with a plurality of connection openings. The interior of the base body is flat in the area of the connection openings. DE-A 199 45 316 also relates to a high-pressure fuel accumulator for a common-rail fuel injection system of an internal combustion engine with a tubular base body, the interior of which is connected to a plurality of connection openings. In order to increase the high-pressure strength, the interior is arranged eccentrically with respect to the longitudinal axis of the base body.
Die Hochdruckfestigkeit des Kraftstoffhochdruckspeichers wird hauptsächlich durch die Verschneidungen zwischen den Anschlußöffnungen und dem Innenraum des Grundkörpers beschränl t. Diese Bohrungsverschneidungen werden durch den Innendruck stark belastet und stellen mögliche Versagensstellen des I raftstoffhochdruckspeichers dar. Im Betrieb treten dort Spannungsspitzen auf, durch die sich Risse in dem Grundkörper bilden können.The high-pressure strength of the high-pressure fuel reservoir is mainly limited by the intersections between the connection openings and the interior of the base body. These drilling intersections are heavily loaded by the internal pressure and represent possible failure points of the high-pressure fuel pressure accumulator. During operation, stress peaks occur there, which can cause cracks in the base body.
Darstellung der ErfindungPresentation of the invention
Ein Vorteil der vorliegenden Erfindung ist, daß Kraftstoffhochdruckspeicher hergestellt werden können, die eine erhöhte Druckfestigkeit aufweisen. Das erfmdungsgemäße Verfahren ermöglicht eine Anpassung der Konstruktion des Kraftstoffliochdruckspeichers an ein Optimum hinsichtlich seiner Druckfestigkeit. Dabei können vor allem Innenformen, aber auch Außenformen hergestellt werden, die ideal an die im Betrieb auftretenden Spannungen angepaßt sind. Weitere Vorteile der vorliegenden Erfindung sind eine bessere Werkstoffausnutzung und eine kostengünstigere Fertigung als im Stande der Technik.An advantage of the present invention is that high-pressure fuel accumulators can be produced which have an increased pressure resistance. The method according to the invention enables the construction of the fuel pressure accumulator to be adapted to an optimum in terms of its pressure resistance. Above all, inner shapes can be produced, but also outer shapes that are ideally adapted to the stresses that occur during operation. Further advantages of the present invention are better material utilization and less expensive production than in the prior art.
Diese Vorteile werden erfindungsgemäß durch ein Verfahren zur Herstellung eines Kraftstoffhochdruckspeichers für ein Common-Rail Kraftstoffeinspritzsystem für Bre nkraftmaschinen erreicht, wobei der Kraftstoffhochdruckspeicher durch Rundkneten mit Rundknetwerkzeugen eines einen Längshohlraum enthaltenden Rohlings geformt und anschließend durch weitere Verarbeitungsschritte fertiggestellt wird.These advantages are achieved according to the invention by a method for producing a high-pressure fuel accumulator for a common-rail fuel injection system for Bre nkraftmaschinen, the high-pressure fuel accumulator being formed by circular kneading with circular kneading tools of a blank containing a longitudinal cavity and then completed by further processing steps.
Das Rundkneten (Rundhämmern) ist ein spanloses Fertigungsverfahren zum Reduzieren des Querschnittes von Stäben, Rohren und Drähten. Die Kraft wird beim Rundkneten von mehreren Werkzeugen unmittelbar auf den Werkstückumfang aufgebracht. Es handelt sich beim Rundkneten um ein inkrementelles Umformverfahren, was bedeutet, daß die Umformarbeiten nicht in einem Werkzeughub aufgebracht wird, sondern daß das Werkstück in vielen kleinen Einzelschritten bearbeitet wird. Die Werkzeuge umschließen beim Rundkneten oszillierend den zu vermindernden Querschnitt ganz oder teilweise, wirken gleichzeitig radial und/oder bewegen sich relativ zum Werkstück um die Durchlaufachse. Nahezu jeder metallische Werkstoff kann mit Rundknetverfahren
bearbeitet werden, sofern eine ausreichende Dehnbarkeit des Materials vorhanden ist. Auch gesinterte Werkstoffe können rundgeknetet werden. Werkstücke, beispielsweise aus Wolfram und Nickellegierungen, können ebenfalls auf Rundlαietmaschinen bearbeitet werden, wobei in Ausnahmefällen das Material der Maschine auch in erwärmtem Zustand zugef hrt werden kann. Bei massiven Stäben fuhrt die Verringerung des Außendurchmessers zu einer Verlängerung des Werkstücks an den Enden. Rohre unterliegen einem komplizierten Werkstofffluß. Längenzunahme,Round kneading (round hammering) is a non-cutting manufacturing process for reducing the cross-section of bars, tubes and wires. The force is applied directly to the circumference of the workpiece by multiple tools. Circular kneading is an incremental forming process, which means that the forming work is not carried out in one tool stroke, but that the workpiece is processed in many small individual steps. During circular kneading, the tools completely or partially enclose the cross-section to be reduced, at the same time act radially and / or move relative to the workpiece about the pass axis. Almost any metallic material can be kneaded with a circular kneading process processed, provided there is sufficient elasticity of the material. Sintered materials can also be kneaded round. Workpieces, for example made of tungsten and nickel alloys, can also be machined on rotary riveting machines, and in exceptional cases the material of the machine can also be fed in when heated. In the case of solid bars, the reduction in the outer diameter leads to an extension of the workpiece at the ends. Pipes are subject to a complicated flow of materials. Increase in length,
Innendurchmesserabnahme und Wanddickenzunahme verändern und beinflussen sich wechselseitig in Abhängigkeit von den Werkstoffeigenschaften und der Werkzeuggeometrie. Grundsätzlich bleibt das Gesamtvolumen konstant, wenn inkompressible Werkstoffe bearbeitet werden.The decrease in inner diameter and the increase in wall thickness change and influence each other depending on the material properties and the tool geometry. Basically, the total volume remains constant when incompressible materials are processed.
Durch das Rundkneten wird in vorteilhafter Weise je nach Querschnittsabnahme und Verfestigungsverhalten des Werkstoffes eine Steigerung der Zugfestigkeit erreicht. Ferner stellt sich bei zunehmender Quersclinittsverringerung eine deutliche Verbesserung der Oberfläche des durch Rundkneten umgeformten Rohlings ein. Im Vergleich zu spanend hergestellten Oberflächen weist die Oberfläche des rundgekneteten Werkstücks eine wesentlich geringere Rauhtiefe auf.Circular kneading advantageously increases the tensile strength, depending on the decrease in cross-section and the hardening behavior of the material. Furthermore, with an increasing reduction in cross-section, the surface of the blank formed by kneading is significantly improved. Compared to machined surfaces, the surface of the kneaded workpiece has a much lower surface roughness.
Das Rundkneten als Teil des Herstellungsverfahrens für Kraftstoffhochdruckspeicher (Rails) erlaubt folglichCircular kneading as part of the manufacturing process for high-pressure fuel accumulators (rails) therefore allows
1. eine beanspruchungsorientierte Formgebung des Rails,1. a stress-oriented shape of the rail,
2. das Erzeugen von Druckeigenspannungen in dem Rail, die der Hochdruckbelastung entgegenwirken,2. the generation of residual compressive stresses in the rail, which counteract the high pressure load,
3. das Erzielen einer Festigkeitssteigerung des Rails und3. achieving an increase in strength of the rail and
4. das Erreichen einer hohen Oberflächen -g0ü- te.4. the achievement of a high surface area -g 0 ute.
Alle diese Vorteile des Rundknetens tragen zu einer hohen Druckfestigkeit eines nach dem erfindungsgemäßen Verfahren hergestellten Kraftstoffhochdruckspeichers bei.All of these advantages of rotary kneading contribute to the high pressure resistance of a high-pressure fuel reservoir produced by the method according to the invention.
Rundknetmaschinen sind im Stand der Technik allgemein bekannt, zum Beispiel aus der DE-A 199 55 323 und der DE-A 199 55 321. Diverse Rundknetmaschinen aus dem Stand der Technik erlauben bei einem vergleichsweise einfachen Maschinenkonzept ein
Rundkneten mit radial auf ein Werkzeug einschlagenden und relativ zum Werkstück umlaufenden Werkzeugen.Circular kneading machines are generally known in the prior art, for example from DE-A 199 55 323 and DE-A 199 55 321. Various circular kneading machines from the prior art allow a with a comparatively simple machine concept Circular kneading with tools that impact radially on a tool and rotate relative to the workpiece.
Der einen Längshohlraum enthaltende Rohling, aus dem bei der vorliegenden Erfindung der Kraftstoffhochdruckspeicher hergestellt wird, entspricht vorzugsweise den Rohlingen, aus denen üblicherweise im Stand der Technik geschweißte Kraftstoffhochdruckspeicher gefertigt werden. Diese Rohlinge bestehen folglich aus einem schweiß- und umformgeeigneten Werkstoff, zum Beispiel aus 20MnCrS5, der vergütet und geschält wird. Ferner enthält ein solcher Rohling einen Längshohlraum, der vorzugsweise zylindrisch tieflochgebohrt wurde. Alternativ können nach dem Tieflochboliningsarbeitsschri t noch oberflächenglättende Fertigungsschritte wie z. B. Läppen oder Höhnen nachgeschaltet werden. Damit lässt sich in vorteilhafterweise eine weitere Verbesserung der Oberflächengüte nach dem Rundkneten erzielen.The blank containing a longitudinal cavity from which the high-pressure fuel accumulator is produced in the present invention preferably corresponds to the blanks from which welded high-pressure fuel accumulators are usually manufactured in the prior art. These blanks therefore consist of a material suitable for welding and forming, for example 20MnCrS5, which is tempered and peeled. Such a blank also contains a longitudinal cavity which has preferably been drilled cylindrically deep-hole. Alternatively, after the deep hole boring work step, surface smoothing manufacturing steps such as. B. Lapping or mounds can be connected. This advantageously enables a further improvement in the surface quality after the round kneading to be achieved.
Gegenstand der vorliegenden Erfindung ist weiterhin ein Kraftstoffhochdruckspeicher für ein Common-Rail Kraftstoffeinspritzsystem, hergestellt nach dem erfϊndungsgemäßen Verfahren, wobei der Kraftstoffhochdruckspeicher beispielsweise aus einem Werkstoff wie 20 MnCrS5 gefertigt werden kann. Generell lässt sich ein erfindungsgemäß konfigurierter Kraftstoffhochdruckspeicher aus kalt oder halbwarm umformbaren Werkstoffen, die einen geeigneten Festigkeitsbereich (Rm ~ 800 - 1300 N/mm2) aufweisen, herstellen. Um weitergehende Montageschritte wie z. B. das Aufsch weisen von Anschlussstutzen am Hochdruckspeicher zu ermöglichen, sollte das kalt oder halbwarm umformbare Material zudem schweiß- oder lötgeeignet sein.The present invention furthermore relates to a high-pressure fuel reservoir for a common-rail fuel injection system, produced by the method according to the invention, the high-pressure fuel reservoir being able to be manufactured, for example, from a material such as 20 MnCrS5. In general, a high-pressure fuel accumulator configured according to the invention can be produced from cold or semi-hot formable materials which have a suitable strength range (Rm ~ 800-1300 N / mm 2 ). To further assembly steps such. B. to allow the connection to the high-pressure accumulator, the cold or semi-hot formable material should also be suitable for welding or soldering.
Zeichnungdrawing
Anhand der Zeichnung wird die Erfindung nachstehend näher erläutert.The invention is explained in more detail below with the aid of the drawing.
Figur 1 einen Rohling, aus dem nach dem erfindungsgemäßen Verfahren ein Kraftstoffhochdruckspeicher hergestellt wird,FIG. 1 shows a blank from which a high-pressure fuel accumulator is produced by the method according to the invention,
Figur 2 das Rundkneten eines Rohlings unter Verwendung eines Doms,FIG. 2 round kneading of a blank using a dome,
Figur 3 eine Ausführungsform eines durch Rundkneten bearbeiteten Rohlings,
Figur 4 eine weitere Ausfüforungsform eines durch Rundkneten bearbeiteten Rohlings undFIG. 3 shows an embodiment of a blank machined by kneading, 4 shows a further embodiment of a blank machined by kneading and
Figur 5 eine Ausfülirungsform eines nach dem erfindungsgemäßen Verfahren hergestellten erfindungsgemäßen Kraftstoffhochdruckspeichers.FIG. 5 shows an embodiment of a high-pressure fuel reservoir according to the invention produced by the method according to the invention.
Ausführun tgusvariantenExecution variants
Figur 1 zeigt einen Rohling, aus dem nach dem erfindungsgemäßen Verfahren ein Kraftstoffl ochdruckspeicher hergestellt werden kann.FIG. 1 shows a blank from which a fuel high-pressure accumulator can be produced using the method according to the invention.
Der Rohling 1 umfaßt einen Grundkörper 2 mit einem Längshohlraum 3. Der Längshohlraum hat eine zylindrische Form und ist mittig in dem Rohling 1 angeordnet. Durch die mittige Anordnung des Längshohlraumes 3 stellt die Längsachse 4 sowohl die Symmetrieachse des Längshohlraumes 3 als auch des gesamten zylindrischen Rohlings 1 dar.The blank 1 comprises a base body 2 with a longitudinal cavity 3. The longitudinal cavity has a cylindrical shape and is arranged in the center of the blank 1. Due to the central arrangement of the longitudinal cavity 3, the longitudinal axis 4 represents both the axis of symmetry of the longitudinal cavity 3 and of the entire cylindrical blank 1.
Auf der rechten Seite der Figur 1 ist ein Schnitt durch den Rohling 1 senkrecht zu der Längsachse 4 abgebildet. Sowolil der Rohling 1, als auch der darin enthalteneA section through the blank 1 perpendicular to the longitudinal axis 4 is shown on the right-hand side of FIG. Sowolil the blank 1, as well as the contained therein
Längshohlraum 3, weisen einen kreisförmigen Querschnitt auf. Der Längshohlraum 3 mit dem Hohlraumdurchmesser DH liegt mittig in dem Grundkörper 2 des Rohlings 1 mit demLongitudinal cavity 3 have a circular cross section. The longitudinal cavity 3 with the cavity diameter D H lies centrally in the base body 2 of the blank 1 with the
Außendurchmesser DA- Denkbar ist aber auch eine (bezogen auf die Längsachse 4) exzentrische Anordnung des Längshohlraumes 3 in dem Grundkörper 2. Dadurch ergibt sich eine sich ändernde Wanddicke d des den Längshohlraum 3 umgebenden GrundkörpersOutside diameter D A - it is also conceivable (in relation to the longitudinal axis 4) for the longitudinal cavity 3 to be arranged eccentrically in the base body 2. This results in a changing wall thickness d of the base body surrounding the longitudinal cavity 3
2. Dabei können notwendige Verschneidungen von Querhohlräumen mit dem Innenraum des Grundkörpers 2, die in dem fertigen K aftstoffhochdruckspeicher benötigt werden, in vorteilhafter Weise im Bereich der größten Wanddicke d des den Längshohlraum 3 umgebenden Grundkörpers 2 angeordnet werden, so daß die Hochdruckfestigkeit des Rraftstoffhochdruckspeichers gesteigert wird.2. Necessary intersections of transverse cavities with the interior of the base body 2, which are required in the finished high-pressure fuel reservoir, can advantageously be arranged in the region of the greatest wall thickness d of the base body 2 surrounding the longitudinal cavity 3, so that the high-pressure strength of the high-pressure fuel reservoir is increased becomes.
Der Grundkörper 2 wird zur Herstellung des in Figur 1 gezeigten Rohlings 1 beispielsweise aus einem gezogenen Ausgangsmaterial gebildet. Der Längshohlraum 3 wird vorzugsweise durch Bohren in den Grundkörper 2 des Rohlings 1 eingebracht.The base body 2 is formed, for example, from a drawn starting material for producing the blank 1 shown in FIG. The longitudinal cavity 3 is preferably introduced into the base body 2 of the blank 1 by drilling.
Figur 2 zeigt das Rundkneten eines Rohlings unter Verwendung eines Doms.
Der Rohling 1 wird beim Rundkneten mit Werkzeugen 5 bearbeitet. In der Figur 2 sind zwei Werkzeuge 5 abgebildet, die eine Oszillationsbewegung durchführen. Statt der dargestellten zwei Segmente kann das Verfahren beispielsweise auch mit drei, vier, fünf oder sechs Werkzeugen 5 betrieben, die sich konzentrisch um den Rohling 1 gruppieren. Die Pfeile 6 deuten die Bewegung der Werkzeuge auf den Rohling zu an, durch die die Umformarbeit verrichtet wird.Figure 2 shows the round kneading of a blank using a dome. The blank 1 is machined with tools 5 during kneading. Two tools 5 are shown in FIG. 2, which carry out an oscillating movement. Instead of the two segments shown, the method can also be operated, for example, with three, four, five or six tools 5, which are concentrically grouped around the blank 1. The arrows 6 indicate the movement of the tools towards the blank, through which the forming work is carried out.
Bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird der Rohling 1 beim Rundkneten in axialer Richtung 9 relativ zu den Rundknetwerkzeugen 5 bewegt bzw. die Rundknetwerkzeuge 5 werden in der entgegengesetzten axialen Richtung 9 relativ zu den Rohling 1 bewegt. Bei dieser als Vorschubrundkneten bekannten Verfahrensvariante wird der Rohling 1 schrittweise in axialer Richtung 9 durch die oszillierenden Werkzeuge 5 bewegt. Die Vorschubbewegung findet jeweils dann statt, wenn die Werkzeuge 5 den Rohling 1 gerade nicht berühren. Da die Oszillation der Werkzeuge 5 mit einer hohen Frequenz erfolgt, ist die Vorschubbewegung scheinbar kontinuierlich.In a preferred embodiment of the method according to the invention, the blank 1 is moved in the axial direction 9 relative to the round kneading tools 5 during the round kneading or the round kneading tools 5 are moved relative to the blank 1 in the opposite axial direction 9. In this method variant known as feed kneading, the blank 1 is moved step by step in the axial direction 9 by the oscillating tools 5. The feed movement takes place when the tools 5 are not touching the blank 1. Since the tools 5 oscillate at a high frequency, the feed movement is apparently continuous.
Die beim Vorschubrundkneten dem Werkstück zugewandte Oberfläche des jeweiligen Werkzeugs 5 ist zu ihrem Rand hin abgeschrägt. Die Abschrägung 10 der Werkzeugoberfläche in Vorschubbewegungsrichtung erzeugt bei oszillierendem Werkzeug 5 auf der Außenseite 8 des Rohlings 1 eine sich vergrößernde Fase. Die Abschrägung 11 der Werkzeugoberfläche auf der der Vorschubbewegungsrichtung abgewandten Seite des Werkzeugs dient der Erzeugung einer möglichst glatten Oberfläche und verhindert eine Schädigung der Oberfläche auf der Außenseite 8 des Rohlings aufgrund der Rückfederung des Werkstoffs.The surface of the respective tool 5 facing the workpiece during feed round kneading is beveled towards its edge. The bevel 10 of the tool surface in the direction of feed movement generates an enlarging chamfer on the outside 8 of the blank 1 when the tool 5 is oscillating. The bevel 11 of the tool surface on the side of the tool facing away from the feed movement direction serves to produce a surface that is as smooth as possible and prevents damage to the surface on the outside 8 of the blank due to the springback of the material.
Alternativ zum Vorschubrundkneten kann je nach darzustellender Geometrie auch die Verfahrensvariante des Einstechrundknetens gewählt werden. Dadurch kann eine örtliche Querschnittsverminderung (auch in der Werkstückmitte) erreicht werden. Dies erfolgt durch ein gesteuertes, dem eigentlichen Werkzeughub überlagertes Öffnen und Schließen der Werkzeuge 5, wobei diese Bewegung wesentlich größer als die Oszillation der Werkzeuge 5 ist.As an alternative to feed round kneading, depending on the geometry to be displayed, the process variant of plunge round kneading can also be selected. This enables a local reduction in cross-section (also in the middle of the workpiece). This is done by a controlled opening and closing of the tools 5 superimposed on the actual tool stroke, this movement being substantially greater than the oscillation of the tools 5.
Bei einer bevorzugten Ausführungsform des erfϊndungsgemäßen Verfahrens führt der Rohling 1 beim Rundkneten eine Drehbewegung um seine Längsachse 4 aus und/oder dieIn a preferred embodiment of the method according to the invention, the blank 1 performs a rotary movement about its longitudinal axis 4 and / or during the kneading
Rundknetwerkzeuge 5 führen eine Drehbewegung in entgegengesetzter Drehrichtung um den Rohling 1 aus. Die Drehrelativbewegung zwischen Werkzeug 5 und Rohling 1 dient
unter anderem zum Verhindern eines Fließens des Werkstoffes des Rohlings 1 zwischen die Werkzeugsegmente.Circular kneading tools 5 perform a rotational movement in the opposite direction of rotation around the blank 1. The rotational relative movement between tool 5 and blank 1 serves among other things, to prevent the material of the blank 1 from flowing between the tool segments.
Bei einer bevorzugten Ausführungsform der vorliegenden Erfindung wird bei der Herstellung des Kraftstoffhochdruckspeichers durch das Rundkneten die Außenseite 8 des Rohlings 1 in eine gewünschte Form umgeformt. Die Bezeichnung "Rundkneten" wird nur einem Teil der Verfahrensvariationen gerecht, da auch nicht-rotationssymmetrische Profile herstellbar sind. Die Form der Außenseite 8 des Rohlings 1 stellt sich in Abhängigkeit von der Geometrie der Werkzeuge 5 und von der verwendeten Verfahrensvariante ein. So sind zum Beispiel elliptische oder polygonale Formen für die Außenseite 8 einstellbar, so daß eine beanspruchungsorientierte Gestaltung des Kraftstoflhochdruckspeichers möglich ist. Der Kraftstoffhochdruckspeicher wird hinsichtlich der Platzierung seiner Hochdruckleitungsanschlüsse sowohl in Bezug auf die zu den Kraftstoffinjektoren abführenden Hochdruckleitungen als auch für den Anschluss des Hochdruckförderaggregates generell so ausgelegt, dass seine Geometrie einem einfachen Leitungsanschluss entgegenkommt und zudem festigkeitsmäßige Vorteile aufweist.In a preferred embodiment of the present invention, the outside 8 of the blank 1 is formed into a desired shape during the manufacture of the high-pressure fuel accumulator by the round kneading. The term "round kneading" only covers part of the process variations, since non-rotationally symmetrical profiles can also be produced. The shape of the outside 8 of the blank 1 depends on the geometry of the tools 5 and on the process variant used. For example, elliptical or polygonal shapes can be set for the outside 8, so that a stress-oriented design of the high-pressure fuel accumulator is possible. With regard to the placement of its high-pressure line connections, both in relation to the high-pressure lines leading to the fuel injectors and for the connection of the high-pressure delivery unit, the high-pressure fuel reservoir is generally designed in such a way that its geometry accommodates a simple line connection and also has strength advantages.
Es werden möglichst ebene Außenflächen angestrebt sowie größere Querbohrungslängen, damit ldeinere Lasten an den Verschneidungsstellen der Querbohrung mit der Mittelbohrung des Kraftstoffhochdruckspeichers auftreten. Dies kann z. B. durch Vorgabe einer Ovalität erreicht werden.Outside surfaces that are as flat as possible are aimed for, as well as larger cross-bore lengths, so that your loads occur at the intersections of the cross-bore with the center bore of the high-pressure fuel accumulator. This can e.g. B. can be achieved by specifying an ovality.
Vorzugsweise wird bei der erfindungsgemäßen Herstellung des Kraftstoffhochdruckspeichers durch das Rundkneten die Innenseite des Rohlings 1 in eine gewünschte Form umgeformt. Wenn ohne einen Dorn umgeformt wird, bildet sich die innere Form (die Form des Längshohlraumes 3) im freien Fluß aus. Da die Umformung der Gesetzmäßigkeit der Volumenkonstanz unterliegt, muß der durch die Reduzierung des Außendurchmessers verdrängte Werkstoff abfließen. Dies geschieht zum einen in axialer, zum anderen in radialer Richtung. Wird also der Außendurchmesser des Rohlings 1 reduziert, so vergrößert sich dessen Wandstärke d und er wird länger. Stellt man an die Innenoberfläche bestimmte Anforderungen, wie Maßgenauigkeit, Oberflächengüte oder soll ein bestimmtes Innenprofil erzeugt werden, so muß ein Dorn 7 während des Umformvorgangs den Werkstofffluß nach innen kontrollieren.In the production of the high-pressure fuel accumulator according to the invention, the inside of the blank 1 is preferably formed into a desired shape by the round kneading. When forming without a mandrel, the inner shape (the shape of the longitudinal cavity 3) is formed in the free flow. Since the forming is subject to the law of volume constancy, the material displaced by the reduction in the outside diameter must flow away. This happens on the one hand in the axial, on the other hand in the radial direction. If the outer diameter of the blank 1 is reduced, its wall thickness d increases and it becomes longer. If specific requirements are placed on the inner surface, such as dimensional accuracy, surface quality or if a specific inner profile is to be produced, a mandrel 7 must check the material flow inwards during the forming process.
Bei der in Figur 2 gezeigten bevorzugten Ausführungsform der vorliegenden Erfindung ragt während des Rundknetens zur Erzeugung eines bestimmten Innenprofils des Kraftstoffhochdrackspeichers ein Dorn 7 zumindest in einen Abschnitt des Längshohlraumes 3 des Rohlings 1 hinein. Der Dorn 7 stellt dabei das Negativ der
Fertiggeometrie zumindest eines Abschnittes des Längshohlraumes 3 des Kraftstoffhochdruckspeichers nach dem Rundkneten dar. Die Verwendung des Doms 7 erlaubt die Herstellung eines Längshohlraumes 3, dessen Form einer engen Toleranz unterliegt. Der Dorn 7 kann zum Beispiel zylindrisch, kegelig oder mit einem Absatz versehen sein. Ferner ist die Herstellung komplexerer Innenprofile möglich, wie verschiedene Verzahnungsformen, Innensechskante oder Drallprofile. Es kann neben einer zylindrischen auch eine nicht-zylindrische oder abschnittsweise nicht-zylindrische Innengeometrie des Kraftstofϊhochd ckspeichers erzeugt werden.In the preferred embodiment of the present invention shown in FIG. 2, a mandrel 7 protrudes at least into a section of the longitudinal cavity 3 of the blank 1 during the round kneading in order to produce a specific internal profile of the high-pressure fuel storage device. The mandrel 7 represents the negative of the Finished geometry of at least a portion of the longitudinal cavity 3 of the high-pressure fuel reservoir after the round kneading. The use of the dome 7 allows the production of a longitudinal cavity 3, the shape of which is subject to a close tolerance. The mandrel 7 can be cylindrical, conical or provided with a shoulder, for example. Furthermore, the production of more complex inner profiles is possible, such as different types of teeth, hexagon socket or swirl profiles. In addition to a cylindrical, a non-cylindrical or sectionally non-cylindrical internal geometry of the high-pressure fuel accumulator can also be generated.
Bei einer bevorzugten Ausführungsform der vorliegenden Erfindung weist der Dom 7 einen elliptischen Querschnitt auf. Dadurch wird der Längshohlraum 3 des Rohlings 1 beim Rundkneten durch einen kombinierten Axial- und Drehvorschub des Rohlings 1 und die oszillierende Werkzeugbewegung so umgeformt, daß er ebenfalls einen elliptischen Querschnitt aufweist. Während des kombinierten Axial- bzw. Drehvorschubes bewegt sich der Dorn 7 mit.In a preferred embodiment of the present invention, the dome 7 has an elliptical cross section. As a result, the longitudinal cavity 3 of the blank 1 is deformed during the round kneading by a combined axial and rotary feed of the blank 1 and the oscillating tool movement such that it also has an elliptical cross section. The mandrel 7 also moves during the combined axial or rotary feed.
Figur 3 zeigt eine bevorzugte Ausführungsfoπn eines durch Rundkneten bearbeiteten Rohlings.FIG. 3 shows a preferred embodiment of a blank machined by kneading.
Der Längshohlraum 3 in dem Grundkörper 2 des Rohlings 1 besitzt einen elliptischen Querschnitt 12. wie anhand des Schnittes entlang der Linie A-A auf der rechten Seite der Figur erkennbar ist. Der Außendurchmesser DAI ist dabei kleiner als der ursprüngliche Außendurchmesser DA des noch nicht durch Rundkneten bearbeiteten Rohlings 1. Der in Figur 3 gezeigte, mittels Rundkneten umgeformte Rohling 1 weist eine zylindrische Außenform auf. Durch die geeignete Wahl der Werkzeuge 5 und der Bearbeitungsmethode sind auch andere Außenformen formbar, zum Beispiel ein elliptischer oder polygonaler äußerer Querschnitt des bearbeiteten Rohlings 1.The longitudinal cavity 3 in the base body 2 of the blank 1 has an elliptical cross section 12, as can be seen from the section along the line AA on the right side of the figure. The outer diameter D AI is smaller than the original outer diameter D A of the blank 1 which has not yet been kneaded by round kneading. The blank 1 shown in FIG. 3 and shaped by means of round kneading has a cylindrical outer shape. Due to the suitable choice of tools 5 and the machining method, other external shapes can also be formed, for example an elliptical or polygonal outer cross section of the machined blank 1.
Figur 4 zeigt eine weitere bevorzugte Ausführungsform eines durch Rundkneten bearbeiteten Rohlings.FIG. 4 shows a further preferred embodiment of a blank machined by round kneading.
Bei dieser bevorzugten Ausfiihmngsform des erfindungsgemäßen Verfahrens weist der Längshohlraum 3 in dem Grundkörper 2 eine abschnittsweise zylindrische und abschnittsweise nicht-zylindrische Form 13 auf. Eine solche Geometrie wird erfindungsgemäß durch Rundkneten mit Dom 7 hergestellt. Der auf der rechten Seite von Figur 4 gezeigte Schnitt B-B durch den umgeformten Rohling 1 befindet sich in einem Abschnitt mit kreisförmigem Querschnitt des Längshohlraumes 3. Der Schnitt A-A entspricht dem in Figur 3 gezeigten Schnitt. In diesem Abschnitt besitzt der
Längshohlraum 3 einen elliptischen Querschnitt. In dem Übergangsbereich 14 geht der kreisförmige Querschnitt 15 in den elliptischen Querschnitt 12 des Längshohlraumes 3 über. Die äußere Form des Rohlings 1 ist kreisförmig. Der Außendurchmesser DA_> ist dabei kleiner als der ursprüngliche Außendurchmesser DA und er kann gleich oder ungleich dem Außendurchmesser DAI des in Figur 3 gezeigten Rohlings sein.In this preferred embodiment of the method according to the invention, the longitudinal cavity 3 in the base body 2 has a sectionally cylindrical and sectionally non-cylindrical shape 13. According to the invention, such a geometry is produced by kneading with dome 7. The section BB shown on the right side of FIG. 4 through the formed blank 1 is located in a section with a circular cross section of the longitudinal cavity 3. Section AA corresponds to the section shown in FIG. In this section, the Longitudinal cavity 3 has an elliptical cross section. In the transition region 14, the circular cross section 15 merges into the elliptical cross section 12 of the longitudinal cavity 3. The outer shape of the blank 1 is circular. The outer diameter D A _> is smaller than the original outer diameter D A and it can be equal to or different from the outer diameter D AI of the blank shown in Figure 3.
Figur 5 zeigt eine bevorzugte Ausfulrrungsform eines nach dem erfmdungsgemäßen Verfahren hergestellten erfindungsgemäßen Kraftstoffhochdruckspeichers.FIG. 5 shows a preferred embodiment of a high-pressure fuel reservoir according to the invention produced by the method according to the invention.
Dabei wurde zunächst ein Rohling 1 mit einem Längshohlraum 3 durch Rundkneten umgeformt, so daß ein Grundkörper 2 mit elliptischem Querschnitt 16, der einen Längshohlraum 3 ebenfalls mit elliptischem Querschnitt 12 enthält, entstand. Die Hauptachsen der beiden Ellipsen stehen dabei senkrecht zueinander. Anschließend wurde das Rail durch weitere Verarbeitungsschritte fertiggestellt. Es wurden Anschlußstutzen 17 an der Außenseite des Grundkörpers 2 angeschweißt, wobei die Hauptachse des elliptischen Querschnitts 12 des Längshohlraumes 3 senkrecht zur Mittelachse 18 der Anschlußstutzen 17 verläuft (Schnitt C-C). Die Anschlußstutzen 17 können außer durch Schweißen auch durch andere geeignete Fügeverfahren mit dem Grundkörper 2 verbunden werden. Zur Verbindung des Innenraumes 19 der Anschlußstutzen 17 mit dem Längshohlraum 3 wurden Querhohlräume 20 mittels eines spanenden Verfahrens, zum Beispiel Bohren, in den Grundkörper 2 eingebracht. Die Mittelachse der Querhohlräume 20 entspricht der Mittelachse 18 der Anschlußstutzen 17. Die Verschneidungen 21 werden im Betrieb des Kraftstoffl ochdruckspeichers durch den Innendruck stark belastet, da dort Spannungspitzen auftreten. Je größer das Verhältnis zwischen dem Durchmesser des Längshohlraumes 3 und dem Innendurchmesser des jeweiligen Querhohlraumes 20 ist, um so höher ist die Druckfestigkeit des Kraftstoffhochdruckspeichers. Durch die elliptische Form 12 des Längshohlraumes 3 bei der in Figur 5 dargestellten bevorzugten Ausführungsform der vorliegenden Erfindung wirkt der Durchmesser des Längshohlraumes 3 im Bereich der Verschneidung 21 größer als bei einer runden Form. Dadurch ist das Verhältnis zwischen dem Durchmesser des Längshohlraumes 3 und dem Innendurchmesser des Querhohlraumes 20 vergleichsweise größer, so daß eine höhere Druckfestigkeit des Kraftstoffliochdruckspeichers erreicht wird. Daher ist es vorteilhaft, wenn zumindest der Teilabschnitt des Längshohlraumes 3, in den der Querhohlraum 20 des Anschlußstutzens 17 mündet, einen elliptischen Querschnitt besitzt. Durch den elliptischen Querschnitt des Grundkörpers 2 ist femer die Wanddicke d des den Längshohlraum 3 umgebenden Grundkörpers 2 im Bereich des Anschlußstutzens 17 größer als in anderen Bereichen (Schnitt C-C). An beiden Enden des Kraftstoffliochdruckspeichers wurden
weiterhin durch spanende Bearbeitung Schnittstellen 22 für Anbau- oder Verschlußteile angebracht.
In this case, a blank 1 with a longitudinal cavity 3 was first formed by circular kneading, so that a base body 2 with an elliptical cross section 16, which also contains a longitudinal cavity 3 with an elliptical cross section 12, was formed. The main axes of the two ellipses are perpendicular to each other. The rail was then completed through further processing steps. Connection pieces 17 were welded to the outside of the base body 2, the main axis of the elliptical cross section 12 of the longitudinal cavity 3 running perpendicular to the central axis 18 of the connection pieces 17 (section CC). In addition to being welded, the connecting pieces 17 can also be connected to the base body 2 by other suitable joining methods. To connect the interior 19 of the connecting piece 17 with the longitudinal cavity 3, transverse cavities 20 were introduced into the base body 2 by means of a machining process, for example drilling. The central axis of the transverse cavities 20 corresponds to the central axis 18 of the connecting piece 17. The intersections 21 are heavily loaded by the internal pressure during operation of the fuel pressure accumulator, since stress peaks occur there. The greater the ratio between the diameter of the longitudinal cavity 3 and the inside diameter of the respective transverse cavity 20, the higher the pressure resistance of the high-pressure fuel accumulator. Due to the elliptical shape 12 of the longitudinal cavity 3 in the preferred embodiment of the present invention shown in FIG. 5, the diameter of the longitudinal cavity 3 appears larger in the region of the intersection 21 than in the case of a round shape. As a result, the ratio between the diameter of the longitudinal cavity 3 and the inner diameter of the transverse cavity 20 is comparatively larger, so that a higher compressive strength of the fuel pressure reservoir is achieved. It is therefore advantageous if at least the section of the longitudinal cavity 3 into which the transverse cavity 20 of the connecting piece 17 opens has an elliptical cross section. Due to the elliptical cross section of the base body 2, the wall thickness d of the base body 2 surrounding the longitudinal cavity 3 is also greater in the area of the connecting piece 17 than in other areas (section CC). At both ends of the fuel pressure accumulator interfaces 22 for attachments or fasteners are also attached by machining.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
Rohling Grundkörper Längshohlraum Längsachse Werkzeuge Pfeile Dorn Außenseite des Rohlings axiale Richtung Absclirägung der Werkzeugoberfläche in Vorschubbewegungsrichtung Abschrägung der Werkzeugoberfläche auf der der Vorschubbewegungsrichtung abgewandten Seite elliptischer Querschnitt des Längshohlraumes absclinittsweise zylindrische und nicht-zylindrische Innengeometrie Übergangsbereich kreisförmiger Querschnitt des Längshohlraumes elliptischer Querschnitt des Grundkörpers Anschlußstutzen Mittelachse der Anschlußstutzen Innenraum der Anschlußstutzen Querhohlraum Verschneidungen Schnittstellen für Anbau- oder Verschlußteile
Blank basic body, longitudinal cavity, longitudinal axis, tools, arrows, mandrel, outside of the blank, axial direction, cutting the tool surface in the feed movement direction, chamfering the tool surface on the side facing away from the feed movement direction, elliptical cross section of the longitudinal cavity, cylindrical and non-cylindrical internal geometry, in some cases, transition area, circular cross section of the longitudinal cavity, the connecting piece of the basic connecting piece of the base connector, elliptical cross-section of the basic connecting piece of the basic connecting piece of the central connecting piece of the basic connecting piece of the basic connecting piece of the central connecting piece of the basic connecting piece of the central connecting piece of the basic connecting piece of the central connecting piece of the basic connecting piece of the central connecting piece of the central connecting piece of the central connecting piece of the connecting piece of the central connecting piece of the central connecting piece of the central connecting piece of the connecting piece of the central connecting piece of the central connecting piece of the central connecting piece of the connecting piece of the central connecting piece of the basic connecting piece of the connecting piece of the central connecting piece of the basic connecting piece of the connecting piece of the basic connecting part of the basic connecting part of the basic connecting part of the connecting piece Interior of the connecting piece cross cavity intersections interfaces for attachments or closures
Claims
1. Verfahren zur Herstellung eines Kraftstoffhochdruckspeichers für ein Common-Rail Kraftstoffeinspritzsystem für Brenukraftmaschinen, dadurch gekennzeichnet, daß der Kraftstoffhochdruckspeicher durch Rundkneten mit Rundknetwerkzeugen (5) eines einen Längshohlraum (3) enthaltenden Rohlings (1) geformt und anschließend durch weitere Verarbeitungsschritte fertiggestellt wird.1. A method for producing a high-pressure fuel accumulator for a common rail fuel injection system for internal combustion engines, characterized in that the high-pressure fuel accumulator is formed by circular kneading with circular kneading tools (5) of a blank (1) containing a longitudinal cavity (3) and is then completed by further processing steps.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß bei der Herstellung des Kraftstoffhochdruckspeichers die Innen- und/oder die Außenseite des Rohlings (1) durch Rundkneten in eine gewünschte Form umgeformt wird.2. The method according to claim 1, characterized in that in the manufacture of the high-pressure fuel reservoir, the inside and / or the outside of the blank (1) is deformed into a desired shape by kneading.
3. Verfahren gemäß Ansprach 1, dadurch gekennzeichnet, daß zur Erzeugung eines bestimmten Innenprofils des Kraftstoffliochdruckspeichers ein Dom (7) während des Rundknetens zumindest in einen Abschnitt des Längshohlraumes (3) des Rohlings (1) hineinragt.3. The method according spoke 1, characterized in that for the production of a certain internal profile of the fuel pressure accumulator a dome (7) during the round kneading protrudes at least into a section of the longitudinal cavity (3) of the blank (1).
4. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß der Dorn (7) einen elliptischen Querschnitt aufweist.4. The method according to claim 3, characterized in that the mandrel (7) has an elliptical cross section.
5. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß der Dorn (7) einen kreisförmigen Querschnitt aufweist.5. The method according to claim 3, characterized in that the mandrel (7) has a circular cross section.
6. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß der Rohling (1) beim Rundkneten in axialer Richtung (9) relativ zu den Rundknetwerkzeugen (5) bewegt wird und/oder die Rundknetwerkzeuge (5) relativ zu dem Rohling (1) in axialer Richtung (9) bewegt werden.6. The method according to claim 1, characterized in that the blank (1) during circular kneading in the axial direction (9) is moved relative to the circular kneading tools (5) and / or the circular kneading tools (5) relative to the blank (1) in the axial Direction (9) can be moved.
7. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß der Rohling (1) beim Rundkneten eine Drehbewegung um seine Längsachse (4) ausführt und/oder die7. The method according to claim 1, characterized in that the blank (1) performs a rotary movement about its longitudinal axis (4) during kneading and / or
Rundknetwerkzeuge (5) eine Drehbewegung um den Rohling (1) ausführen.Rotary kneading tools (5) perform a rotary movement around the blank (1).
8. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die weiteren Verarbeitungsschritte das Anschweißen von Anschlußstutzen (17), das Bohren von Querhohlräumen (20) und das Anbringen von Schnittstellen für Anbau- oder8. The method according to claim 1, characterized in that the further processing steps, the welding of connecting pieces (17), the drilling of transverse cavities (20) and the attachment of interfaces for attachment or
Verschlußteile (22) an den Enden des Kraftstoffliochdruckspeichers umfassen. Include fastener parts (22) at the ends of the fuel pressure accumulator.
9. Kraftstoffhochdruckspeicher für ein Common-Rail Kraftstoffeinspritzsystem, hergestellt nach dem Verfahren gemäß einem der Ansprüche 1 bis 8, wobei der Kraftstoffhochdruckspeicher aus schweiß- und umformgeeignetem 20 MnCrS5 gefertigt ist.9. High-pressure fuel reservoir for a common rail fuel injection system, produced by the method according to one of claims 1 to 8, wherein the high-pressure fuel reservoir is made of 20 MnCrS5 suitable for welding and forming.
10. Kraftstoffhochdruckspeicher gemäß Anspruch 9, dadurch gekennzeichnet, daß der Kraftstoffhochdruckspeicher einen zumindest abschnittsweise elliptischen Längshohlraum (3) aufweist. 10. High-pressure fuel reservoir according to claim 9, characterized in that the high-pressure fuel reservoir has an at least partially elliptical longitudinal cavity (3).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10304961.4 | 2003-02-06 | ||
DE2003104961 DE10304961B3 (en) | 2003-02-06 | 2003-02-06 | Method for producing a high-pressure fuel accumulator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004069446A1 true WO2004069446A1 (en) | 2004-08-19 |
Family
ID=32730838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2003/003084 WO2004069446A1 (en) | 2003-02-06 | 2003-09-17 | Method for the production of a high-pressure fuel tank |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE10304961B3 (en) |
WO (1) | WO2004069446A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016159932A1 (en) * | 2015-03-27 | 2016-10-06 | Cummins Inc. | Ovalized rotary forged fuel systems accumulator |
US10746147B2 (en) | 2016-05-11 | 2020-08-18 | Peter Fuchs Technology Group Ag | High-pressure line |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012106585A1 (en) * | 2012-07-20 | 2014-01-23 | Benteler Automobiltechnik Gmbh | Method for producing a high-pressure fuel line |
DE102016123521A1 (en) * | 2016-12-06 | 2018-06-07 | Robert Bosch Gmbh | Method for producing an internal thread of a rack, rack and forming device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2267623A (en) * | 1940-02-29 | 1941-12-23 | Linde Air Prod Co | Process for producing blowpipe nozzles and product thereof |
US3564896A (en) * | 1965-09-03 | 1971-02-23 | North American Rockwell | Method of making axle beam |
EP0866221A1 (en) * | 1997-03-18 | 1998-09-23 | Poppe & Potthoff GmbH & Co. | Fuel distributor for a diesel engine |
US5903964A (en) * | 1996-05-22 | 1999-05-18 | Usui Kokusai Sangyo Kaisha Limited | Common rail and method of manufacturing same |
US6223726B1 (en) * | 1996-06-30 | 2001-05-01 | Robert Bosch Gmbh | High pressure fuel reservoir |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19936533A1 (en) * | 1999-08-03 | 2001-02-15 | Bosch Gmbh Robert | High pressure fuel accumulator |
DE19945316A1 (en) * | 1999-09-22 | 2001-04-05 | Bosch Gmbh Robert | High pressure fuel accumulator |
DE19949962A1 (en) * | 1999-10-16 | 2001-04-26 | Bosch Gmbh Robert | Fuel high pressure storage for a common-rail fuel injection system of IC engine with hollow basic body which is equipped with several connection openings |
DE19955323B4 (en) * | 1999-11-17 | 2007-11-29 | Volkswagen Ag | Rotary swaging machine with slide-mounted tool arrangement |
DE19955321B4 (en) * | 1999-11-17 | 2008-02-07 | Volkswagen Ag | Rotary swaging machine with hydraulic force compensation |
DE10044880A1 (en) * | 2000-09-12 | 2002-03-21 | Volkswagen Ag | Method for manufacturing specially shaped hollow metal bodies involves reforming workpiece using several radially acting kneading tools to produce intermediate body which is then plastically reformed through internal pressure |
DE10123234A1 (en) * | 2001-05-12 | 2002-11-28 | Bosch Gmbh Robert | High pressure fuel accumulator for a common rail fuel injection system of an internal combustion engine comprises an accumulator chamber and a base body having a cylindrical, elliptical or polygonal cross-section |
-
2003
- 2003-02-06 DE DE2003104961 patent/DE10304961B3/en not_active Expired - Fee Related
- 2003-09-17 WO PCT/DE2003/003084 patent/WO2004069446A1/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2267623A (en) * | 1940-02-29 | 1941-12-23 | Linde Air Prod Co | Process for producing blowpipe nozzles and product thereof |
US3564896A (en) * | 1965-09-03 | 1971-02-23 | North American Rockwell | Method of making axle beam |
US5903964A (en) * | 1996-05-22 | 1999-05-18 | Usui Kokusai Sangyo Kaisha Limited | Common rail and method of manufacturing same |
US6223726B1 (en) * | 1996-06-30 | 2001-05-01 | Robert Bosch Gmbh | High pressure fuel reservoir |
EP0866221A1 (en) * | 1997-03-18 | 1998-09-23 | Poppe & Potthoff GmbH & Co. | Fuel distributor for a diesel engine |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016159932A1 (en) * | 2015-03-27 | 2016-10-06 | Cummins Inc. | Ovalized rotary forged fuel systems accumulator |
US10746147B2 (en) | 2016-05-11 | 2020-08-18 | Peter Fuchs Technology Group Ag | High-pressure line |
Also Published As
Publication number | Publication date |
---|---|
DE10304961B3 (en) | 2004-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102006026992B4 (en) | Method for producing a thread in at least two steps | |
DE102015120962B4 (en) | Fuel rail and method of making a fuel rail | |
EP2250365B1 (en) | Fuel distributor assembly | |
EP3607197A1 (en) | Fuel common rail | |
DE102010025593A1 (en) | Method and apparatus for the incremental deformation of profile tubes, in particular of profile tubes with varying cross-sections over the longitudinal axis | |
EP1042086B2 (en) | Method for the production of a drilling tool for machine tools | |
WO2001029404A1 (en) | Method for producing a high pressure fuel accumulator | |
DE102010029445A1 (en) | Method for producing holes in work-piece to manufacture aircraft components, involves moving longitudinal axis of tool with respect to middle axis of holes, where distance between longitudinal and middle axes is calculated as eccentricity | |
EP0522282A1 (en) | Joint for hollow articles and method for their manufacture | |
DE10304961B3 (en) | Method for producing a high-pressure fuel accumulator | |
DE1577042B1 (en) | HEADING TOOL FOR FINISHING THE PREFORMED ATTACHMENT PIECES OF A STREAMLINED TURBINE OR COMPRESSOR SHOVEL | |
DE102019106222A1 (en) | Process for the production of a hollow valve for internal combustion engines | |
EP3085492B1 (en) | Grinding tool | |
EP0523361A1 (en) | Pipe with ribs and method for making the same | |
DE69313302T2 (en) | METHOD FOR PRODUCING CONNECTING RODS | |
DE19963389A1 (en) | Method of manufacturing a valve piece for a fuel injector | |
DE202015106569U1 (en) | Fuel distributor | |
EP1319467B1 (en) | Honing tool comprising a deburring tool | |
WO2004070193A1 (en) | High-pressure fuel accumulator | |
DE102019218990A1 (en) | Component for an injection system, in particular a fuel rail, and an injection system with such a component | |
WO2021063911A1 (en) | Component for an injection system, in particular fuel distributor strip, injection system and method for producing such a component | |
EP1870665A2 (en) | Method and kit for gauging a thread in at least two production steps | |
DE10134956A1 (en) | Glow plugs and process for their manufacture | |
EP1535686A2 (en) | Method and apparatus for electro-erosion machining conical holes. | |
DE3528464A1 (en) | Method for the production of a camshaft |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |