WO2004068907A1 - Dispositif de chauffage par rayonnement micro-ondes et procede de mise en oeuvre - Google Patents

Dispositif de chauffage par rayonnement micro-ondes et procede de mise en oeuvre Download PDF

Info

Publication number
WO2004068907A1
WO2004068907A1 PCT/FR2004/000134 FR2004000134W WO2004068907A1 WO 2004068907 A1 WO2004068907 A1 WO 2004068907A1 FR 2004000134 W FR2004000134 W FR 2004000134W WO 2004068907 A1 WO2004068907 A1 WO 2004068907A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrule
granules
stirring
microwave
heating
Prior art date
Application number
PCT/FR2004/000134
Other languages
English (en)
Inventor
Frédéric Vandenbussche
Pierre MAESTRACCI
Fabrice Giroudiere
Original Assignee
Entema
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Entema filed Critical Entema
Publication of WO2004068907A1 publication Critical patent/WO2004068907A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/18Machines or apparatus for drying solid materials or objects with movement which is non-progressive on or in moving dishes, trays, pans, or other mainly-open receptacles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/04Heat treatment
    • C04B20/06Expanding clay, perlite, vermiculite or like granular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/02Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles
    • F26B11/026Arrangements for charging or discharging the materials to be dried, e.g. discharging by reversing drum rotation, using spiral-type inserts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/32Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action
    • F26B3/34Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action by using electrical effects
    • F26B3/347Electromagnetic heating, e.g. induction heating or heating using microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a device and a method for heating and manufacturing granules having an excellent compromise between cost - lightness - mechanical resistance.
  • the invention applies more particularly to the production of expanded clay granules.
  • Document WO 02/79113 is also known, which describes an apparatus for the thermal treatment of expandable material coupling rotary thermal ovens and microwave ovens whose action aims to achieve the maximum expansion of the treated material.
  • the device and the method according to the invention allow, in an alternative way, the heat treatment by the sole action of microwave radiation.
  • the present invention relates to a device for microwave heating of a material introduced in the form of particles or paste, the device comprising a fixed external envelope and delimiting an internal cavity closed in communication with at least:
  • the capture means disposed on the inlet and outlet means can be constituted by tubes whose diameter and length can be calculated at least in part as a function of the wavelength of the radiation used.
  • the rotation means can consist of a support axis on which the stirring means are fixed, and means external to the casing can drive said axis and the axis can include a microwave seal.
  • the device may further comprise a support allowing an inclination of 20 ° to 60 ° of the axis of the stirring means relative to the vertical.
  • the unloading means may include means cooperating and linked with the stirring means to allow the evacuation of the products.
  • the stirring means may comprise a ferrule and a removable tray constituting a bottom
  • the unloading means may comprise means of displacement along the support axis of said stirring means in the cavity, and stopper candles of said ferrule placed so as to allow separation of the shell and the plate during said movement.
  • the stirring means can comprise a ferrule, a plate and a spiral disposed on the internal wall of said ferrule, and the unloading means can comprise means for reversing the direction of rotation of said spiral.
  • the stirring means can comprise a ferrule and a plate, and the evacuation means can comprise orifices with controlled opening in said plate.
  • the ferrule may be made up of at least one material which is transparent or which reflects in the microwave.
  • the tray may include a material transparent to microwaves and a metal support.
  • the invention also relates to a method for manufacturing granules comprising the following steps: a) shaping by granulation of a pasty material, b) heating the aggregates formed during step a) by microwave radiation up to '' at a temperature between 400 and 2000 ° C, c) cooling the granules from step b), d) recovery of said granules, and wherein said step a) is carried out continuously and in that step b ) heating is carried out in at least one heating device according to the invention. At least two heating devices can be arranged in parallel to implement step b), each of said ovens being successively supplied with aggregates from step a) discontinuously.
  • Method 1 may include a drying step before and / or after step a) of shaping.
  • the drying step can be carried out using and recovering the heat energy produced by said cooling of the expanded granules during step c).
  • the device and / or method according to the invention can be applied for the production of expanded clay granules.
  • the invention has many advantages over heating devices of the prior art, and methods including, for example, the use of rotary ovens: • - increased flexibility of the installation operating according to the principles of the present method , making it possible to absorb significant variations in the production of the final product or the flow of initial material
  • FIG. 1A and 1B show a diagram of an installation for treating an initial pasty material according to the present method and including the implementation of the device according to the invention
  • FIG. 1C and 1D schematically show exemplary embodiments respectively drying and cooling devices particularly suitable for implementing a method according to the invention
  • FIG. 2 illustrates an embodiment of a microwave oven device according to the invention.
  • Reference 1 relates to a hopper for receiving the basic materials.
  • motorized lump breakers 2 which regulate and control the material flow transported by the conveyor 3 to the mixing installation 4.
  • the mixing carried out by several mixing means makes it possible to homogenize the material and to prepare the material for the production of pellets which takes place in the mixer-granulator 5.
  • This device comprises an inlet 6 for additive products stored in a silo 7 and brought in by metering means 8, for example an Archimedes screw.
  • the material formed into pellets is sent to a drying installation 9, optionally itself comprising means for forming into balls, pellets, granules, etc. (not shown in FIG. 1A).
  • the drying energy is provided for all or part by a hot gas mainly coming from the downstream of the process by a conduit 10.
  • the dried granules fall into a hopper 11 forming a buffer storage before pneumatic (or other) transport 12, to the later stages of the manufacturing process.
  • the basic materials used in the process can be:
  • the material at the inlet of the hopper 1 must have a quality and a water content suitable for its further processing.
  • the solid additives that can be used and stored in silo 7 can be additives specific to the nature of the base materials to achieve and optimize the following functions:
  • Liquid additives can also be used and incorporated into the base material, for example in the mixer 4 and / or in the granulator 5.
  • the material capable of being treated in accordance with the present invention can for example be a clay mud coming from an aggregate quarry. whose density is 1.8 g / l and the water content of about 20% by mass, the clay present being predominantly, that is to say at least 50% mass, preferably d '' at least 10% mass in the form of Kaolinite, mite or Chlorite.
  • composition of the clay in its various constituents can typically come in the following proportions, by mass:
  • the temperature corresponds to a maximum expansion for such compositions is then between 1100 ° C and 1400 ° C and generally close to 1250 ° C.
  • the density of the finished product is generally between approximately 0.1 and approximately 0.9 g / l and its compressive strength between approximately 6 and approximately 15 MPa.
  • Figure 1B describes the final stages of the process.
  • the hopper 14 receives the dried granules by the pneumatic conveying line 13. It feeds a weighing hopper 15 equipped with a control valve 16.
  • the granules are distributed to the various microwave ovens 18a, 18b, 18c, 18d by distribution means 17 comprising conduits 19a, 19b, 19c, 19d supplying the ovens.
  • the granules, subjected to suitable microwave radiation, for a determined period, are expanded and are directed to a cooling device 20 by injection of air, preferably against the current.
  • the device 20 makes it possible to recover at the outlet of the installation a substantially continuous flow of expanded granules.
  • An exemplary embodiment of such a device 20 is described below, in relation to FIG.
  • the flow capacity is obtained by the succession of heating stages in the ovens arranged in parallel. In the nonlimiting example illustrated by FIG. 1A, it is described to have four ovens according to the invention in parallel.
  • the present method can be implemented by at least two ovens but the number of ovens arranged in parallel according to the invention is not limited and can be determined inter alia according to the nominal capacity of an oven relative to the overall capacity sought of the installation.
  • the total flow of the installation can for example vary between 100 kg / h and 10 tonnes / h.
  • the device 20 has a function of recovering the heat energy produced by the microwave ovens 18 a, b, c, d, thanks to a fan 21 which sends the hot gases to the drying installation 9 via a pipe 22.
  • a fan 21 which sends the hot gases to the drying installation 9 via a pipe 22.
  • An exemplary embodiment of an installation 9 suitable for receiving said gases is described in the remainder of this description, in relation to FIG. 1d.
  • the flow of hot gases is controlled by the control of the fan 21 and the valve means 23, also comprising auxiliary heating means 24, for example electric, making it possible to regulate the drying temperature.
  • the expanded beads are transported to storage means by a conveyor 25. •
  • the expanded granules generally have a density between 0.1 and 0.9 tonnes / m and a size or diameter between 0.1 and 50 mm.
  • the present process also makes it possible to have aggregates of size or of calibrated diameter, for example between 0.1 and 1 mm, between 1 and 20 mm or between 20 and 50 mm.
  • FIG. 1C illustrates a nonlimiting example of an embodiment of a cooling installation 20 particularly suitable for the implementation of the present method.
  • the expanded granules are introduced alternately by unloading the microwave ovens and by a pipe 101 into the device 20.
  • the device 20 comprises an enclosure 100 delimiting at the outlet of the pipe 101 a so-called buffer zone 102 which advantageously makes it possible to dampen the installation flow variations.
  • the dimensions of this zone 20 are for example calculated in such a way that the level of granules, in operation, fluctuates between a lower limit and an upper limit comprised in said zone 102.
  • Zone 102 is delimited in its lower part by a neck of narrowing 103 which leads to a cavity 104 completely filled with granules and in which said granules are cooled by a heat transfer fluid, for example air.
  • heat transfer fluid it is understood within the meaning of the present description any fluid known to exchange heat (by heating or cooling) with the medium in which it is introduced.
  • a first means for introducing fluid 106 is disposed near the lower end of the enclosure 100 in a space 111 for introducing and distributing the fluid, delimited for example and as shown in FIG. 1C by a conical grid .107.
  • a second means • for introducing fluid is placed at the level of the neck 103, in the free space of granules 108 under the neck 103.
  • the granules periodically discharged from the microwave ovens are discharged into the cavity 102 in a discontinuous manner, and form, after crossing the neck 103, a moving bed descending from granules into the cavity 104.
  • This bed is traversed by the heat transfer fluid introduced by the means 106 and the granules are thus cooled to the set temperature.
  • This temperature could, for example, be adjusted by the quantity and the temperature of the injected fluid or by controlling the speed of progression of said bed, which itself, for example, is controlled by means of drawing off 110 of the cooled granules placed at the bottom of the installation.
  • the hot fluid is evacuated from the enclosure by an outlet pipe 109.
  • a variable part of the heat transfer fluid - for example between 10 and 30 mol%, can be introduced by means 105.
  • This distribution has certain advantages: - better control of the outlet temperature of the heat transfer fluid,
  • FIG. 1D illustrates a nonlimiting example of an embodiment of a drying installation particularly suitable for implementing the method according to the invention.
  • the pellets enter the drying installation 9 through a pipe 201 delimited by a cylindrical envelope 202, and are distributed inside said enclosure in a homogeneous manner by any internal suitable for this function, for example by a distribution plate 203
  • the envelope 202 comprises an internal chimney 204, the internal cavity of which allows the drying fluid to be evacuated.
  • the chimney 204 is pierced in its lower part with orifices 208 allowing the circulation of the fluid in the installation.
  • Said fluid for example hot air from device 20, enters installation 9 by introduction means 205.
  • introduction means are arranged in such a way that at the end of said introduction, the distribution of said fluid is circularly uniform around the cylindrical cavity delimited by the envelope 202. It is possible for this purpose to envisage increasing the points of introduction of the fluid around the cylindrical envelope 202, or more advantageously and as described in FIG. 1D, using interns delimiting on the periphery of the envelope an internal ring 206 for distributing the fluid. These internals have openings 207, arranged substantially at the orifices 208. These orifices can be constituted by holes, grooves, grids, etc. For example, Johnson grid interns can be used.
  • the pellets introduced by the means 201 are distributed homogeneously by the means 203 in the space delimited on the one hand by the cylindrical envelope 202 in the upper part of the installation or by the internal crown 206 in the lower part of the installation and on the other hand by the chimney 204. Said pellets thus form a descending moving bed 211 whose speed of progression is, for example, controlled by a withdrawal means 209 arranged at the bottom of the installation.
  • the fluid introduced by the means 205 is distributed homogeneously in the internal crown 206.
  • the fluid via the openings 207 and 208, then passes through the mobile bed of pellets 211 distributed at this location in a thin layer, dries them and is finally discharged through the chimney 204 and the opening 210.
  • the at least partially dried pellets finally leave the installation 9 under the action of the withdrawal means 209.
  • the installation only comprises fixed internal walls, and therefore poses no mechanical problem of fouling or sticking, unlike conventional drying systems comprising rolling belt systems,
  • FIG. 2 schematically describes an embodiment of a microwave oven according to the invention for heating solids in the form of beads at high temperature, that is to say between 400 ° C and 2000 ° C, especially between 800 and 1300 ° C.
  • the characteristics of this oven advantageously make it possible to combine the following functions:
  • the oven comprises an enclosure constituted by an external envelope 30 and an internal cavity 31.
  • a chimney 50 can also pass through the envelope 30 to evacuate the gases generated by the heating of the material.
  • the microwave field has a frequency between 300 and 6000 MHz.
  • the waveguide system 33 brings the microwaves generated by a magnetron to the orifice 32.
  • the dimensions of the enclosure are between 500 mm and 2500 mm for its width (for example of cylindrical section), and 500 mm to 2500 mm for its height.
  • the enclosure can be thermally insulated by a refractory lining 34, consisting for example of silico-aluminous bricks which can line the inside of the envelope 30.
  • the material is introduced in the form of granules, or sludge, through the pipe 35 , of diameter between 10 mm and 130 mm and of a width chosen as a function of said diameter, the dimensions being chosen as a function of the length of the microwave radiation so as to avoid leaks outside the enclosure, according to a well-known technique of the skilled person.
  • the material falls into the drum 36 consisting of a ferrule 37, for example made of concrete, and a plate 38, also made of concrete with a metal support 39.
  • This plate 38 can receive air or gas circulation orifices, passing through its support axis 40 with a diameter between 10 and 100 mm. The tree is thus cooled and the gas injected can promote oxidation reactions, for example from carbon monoxide to carbon dioxide.
  • the ferrule has a diameter between 500 mm and 2450 mm.
  • the thicknesses of the plate and the ferrule are between 5 and 200 mm. .
  • a seal 42 makes it possible to avoid microwave leaks around the rotary shaft.
  • Heating then begins with the activation of the microwave generator.
  • a jack 43 triggers the descent of the entire drum 36 along the axis of rotation, the rotation of the cavity then being stopped.
  • the ferrule 37 comes into abutment on jack stands 44, the plate becomes detached from the ferrule by continuing its movement, and lets the granules escape through the opening formed between the ferrule and the plate. The products are channeled towards the evacuation duct 45.
  • This duct is, like the intake duct 35 for the products, consisting of one or more cylinders with a diameter of between 10 and 130 mm making it possible to avoid microwave leaks. It is the same for the opening of the chimney 50.
  • the whole of the enclosure is fixed on a " support 46 allowing an inclination of the axis of rotation of the drum contained in the enclosure between 20 ° and 60 ° with the vertical.
  • the drum can include other means of evacuation of the finished product, for example a spiral arranged on the internal wall of the shell, the reversal of the direction of rotation making it possible to switch from a brewing mode to an unloading mode.
  • the tray may include orifices with controlled opening.
  • This type of oven is particularly suitable for the temperature setting of granular or non-clay-based products, clayey muds for washing quarry aggregates, industrial waste sludge, and in general any solid product (granules or in the form so-called "fine” or muddy particles, interested in a high temperature transformation with a view, for example, to expansion, inerting, vitrification, calcination.
  • the materials treated can be of mineral or organic origin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

L'invention concerne un dispositif pour le chauffage par micro-ondes d'un matériau introduit sous forme de particules ou de pâte, le dispositif comprenant une enveloppe externe (30) fixe et délimitant une cavité interne (31) fermée en communication avec au moins: des moyens d'admission (35) du matériau, un orifice (32) d'introduction d'un champ de micro-ondes -des moyens de brassage (36) du matériau, des moyens de mise en rotation (41) des moyens de brassage (36), des moyens d'évacuation (45) des produits issus du matériau chauffé, des moyens de déchargement des produits hors des moyens de brassage (36) pour les évacuer par les moyens d'évacuation, des moyens de capture des micro-ondes dimensionnés sur les différentes ouvertures de l'enveloppe (30) pour confiner les micro-ondes dans l'enveloppe lors des différentes phases de fonctionnement dudit four. L'invention concerne également un procédé de mise en oeuvre du dispositif.

Description

DISPOSITIF DE CHAUFFAGE PAR RAYONNEMENT MICRO-ONDES ET PROCEDE DE MISE EN ŒUVRE
La présente invention concerne un dispositif et un procédé pour le chauffage et la fabrication de granules présentant un excellent compromis coût - légèreté - résistance mécanique.
Les utilisations de ces produits, notamment à base d'argile, sont multiples et largement répandues dans le domaine de la construction.
Bien qu'elle n'y soit pas limitée, l'invention s'applique plus particulièrement à la production de granules d'argile expansés.
Actuellement la fabrication de granules expansés, le plus souvent sous forme de billes, est mise en œuvre dans des lignes de production comprenant des fours radiatifs rotatifs. L'utilisation de tels fours pose cependant de nombreux problèmes, par exemple décrits dans le document WO 01/34533 antérieurement déposé par le demandeur.
La demande WO 01/34533 décrit le principe d'un procédé 'de fabrication de granules d'argile expansés. Ce document ne décrit pas le dispositif objet de la présente invention, ni les moyens optimisés permettant de mettre en œuvre un tel dispositif.
On connaît aussi le document WO 02/79113 qui décrit un appareil pour le traitement thermique de matériau expansible couplant des fours thermiques tournants et des fours micro-ondes dont l'action vise à atteindre l'expansion maximale du matériau traité. Par la mise en œuvre de moyens spécifiques, le dispositif et le procédé selon l'invention permettent d'une .manière alternative le traitement thermique par la seule action d'un rayonnement micro-onde. Ainsi, la présente invention concerne un dispositif pour le chauffage par microondes d'un matériau introduit sous forme de particules ou de pâte, le dispositif comprenant une enveloppe externe fixe et délimitant une cavité interne fermée en communication avec au moins:
-des moyens d'admission du matériau, -un orifice d'introduction d'un champ de micro-ondes
-des moyens de brassage du matériau,
-des moyens de mise en rotation des moyens de brassage,
-des moyens d'évacuation des produits issus du matériau chauffé,
-des moyens de déchargement des produits hors des moyens de brassage pour les évacuer par lesdits moyens d'évacuation,
-des moyens de capture des micro-ondes dimensionnés sur les différentes ouvertures de l'enveloppe pour confiner les micro-ondes dans ladite enveloppe lors des différentes phases de fonctionnement dudit four.
Les moyens de capture disposés sur les moyens d'admission et d'évacuation peuvent être constitués par des tubes dont le diamètre et la longueur peuvent être calculés au moins en partie en fonction de la longueur d'onde du rayonnement utilisé. Les moyens de rotation peuvent être constitués d'un axe support sur lequel sont fixés les moyens de brassage, et des moyens externes à l'enveloppe peuvent entraîner ledit axe et l'axe peut comprendre un joint d'étanchéité aux micro-ondes.
Le dispositif peut comprendre en outre un support permettant une inclinaison de 20° à 60° de l'axe des moyens de brassage par rapport à la verticale.
Les moyens de déchargement peuvent comprendre des moyens coopérant et liés avec les moyens de brassage pour permettre l'évacuation des produits.
Les moyens de brassage peuvent comprendre une virole et un plateau amovible constituant un fond, et les moyens de déchargement peuvent comprendre des moyens de déplacement le long de l'axe support desdits moyens de brassage dans la cavité, et des chandelles de butée de ladite virole placées de manière à permettre la séparation de la virole et du plateau lors dudit déplacement.
Les moyens de brassage peuvent comprendre une virole, un plateau et une spirale disposée sur la paroi interne de ladite virole, et les moyens de déchargement peuvent comprendre des moyens d'inversion du sens de rotation de ladite spirale.
Les moyens de brassage peuvent comprendre une virole et un plateau, et les moyens d'évacuation peuvent comprendre des orifices à ouverture commandée dans ledit plateau.
La virole peut être constituée par au moins un matériau transparent ou réfléchissant aux micro-ondes.
Le plateau peut comprendre un matériau transparent aux micro-ondes et un support métallique. L'invention concerne également un procédé de fabrication de granules comprenant les étapes suivantes: a) mise en forme par granulation d'un matériau pâteux, b) chauffage des granulats formés au cours de l'étape a) par un rayonnement micro- ondes jusqu'à une température comprise entre 400 et 2000°C, c) refroidissement des granules issus de l'étape b), d) récupération desdits granules, et dans lequel ladite étape a) est effectuée en continu et en ce que l'étape b) de chauffage est effectuée dans au moins un dispositif de chauffage selon l'invention. Au moins deux dispositifs de chauffage peuvent être disposés en parallèle pour mettre en œuvre l'étape b), chacun desdits fours étant successivement alimenté en granulats issus de l'étape a) de manière discontinue.
Le procédé1 peut comprendre une étape de séchage avant et/ou après l'étape a) de mise en forme. L'étape de séchage peut être effectuée en utilisant et en récupérant l'énergie calorifique produite par ledit refroidissement des granules expansés lors de l'étape c).
Le dispositif et/ou le procédé selon l'invention peuvent être appliqués pour la production de granules d'argile expansés.
Ils peuvent également être appliqués pour le traitement de produits granulaires ou pâteux à base d'argiles, de boues argileuses de lavage de granulats de carrière, de boues residuaires industrielles, de tout produit solide divisé ou boueux, intéressé par une transformation haute température en vue d'une expansion, d'un inertage, d'une vitrification, d'une calcination. L' invention présente par rapport aux dispositifs de chauffage de l'art antérieur, et aux procédés incluant par exemple la mise en œuvre de fours tournants, de nombreux avantages : - une flexibilité accrue de l'installation fonctionnant selon les principes du présent procédé, permettant d'absorber des variations importantes de la production du produit final ou du débit de matériau initial,
- une flexibilité dans la formulation du matériau initial pouvant être traité par le dispositif selon l'invention ainsi que dans les propriétés (taux d'expansion, taille des granules, résistance mécanique, etc ..) du matériau finalement obtenu en sortie dudit dispositif,
- la légèreté des infrastructures requises pour mettre en œuvre l'invention, autorisant l'installation d'unités selon l'invention ou fonctionnant selon le présent procédé directement sur le site de production du matériau initial, par exemple sur une carrière d'exploitation, - la flexibilité et la modularité de telles unités, qui peuvent notamment être arrêtées puis redémarrées sans dépense substantielle d'énergie ou sans inertie thermique, du fait combiné de leur compacité et de L'utilisation de micro-ondes,
- l'absence de risque d'encrassement et de grippage des différentes parties mécaniques en rotation et de collage du matériau chaud aux parois du dispositif, ce qui conduit à allonger le temps d'utilisation de telles unités et en simplifie le fonctionnement,
- une diminution importante du coût énergétique de fonctionnement de l'installation incluant le présent dispositif, l'énergie étant directement transmise au matériau à traiter sans vecteur de chaleur intermédiaire, - une forte, réduction des polluants émis par le procédé du fait de l'absence de fumées issues d'un combustible de chauffage,
- un contrôle plus rigoureux des étapes de transformation du matériau, permettant d'obtenir un produit final à haute valeur ajoutée répondant à des spécifications très précises, généralement impossibles à obtenir par un procédé classique dans un four tournant,
- la possibilité de fabriquer en petite quantité lesdits produits à haute valeur ajoutée,
et cela sur une durée très courte.
La présente invention sera mieux comprise et ses avantages apparaîtront plus clairement à la lecture de la description des exemples de réalisation, nullement limitatifs, illustrés par les figures ci-après annexées, parmi lesquelles:
- les figures 1A et 1B représentent un schéma d'une installation de traitement d'un matériau initial pâteux selon le présent procédé et incluant la mise en œuvre du dispositif selon l'invention, - les figures 1C et 1D schématisent des exemples de réalisation respectivement des dispositifs de séchage et de refroidissement particulièrement adaptés à la mise en œuvre d'un procédé selon l'invention,
- la figure 2 illustre une réalisation d'un dispositif de four niicro-onde selon l'invention.
Sur la figure 1A sont décrites les premières phases du procédé. La référence 1 concerne une trémie de réception des matériaux de base. A la partie inférieure de la trémie, se trouvent des moyens motorisés émotteurs 2 qui régulent et contrôlent le débit de matière transportée par le convoyeur 3 vers l'installation de malaxage 4. Le malaxage effectué par plusieurs moyens de mélangeage permet d'homogénéiser la matière et de préparer la matière à la fabrication de pastilles qui a lieu dans le malaxeur-granulateur 5. Ce dispositif comporte une entrée 6 de produits additifs stockés dans un silo 7 et amenés par des moyens de dosage 8, par exemple une vis d'Archimède. Le matériau formé en pastilles est envoyé dans une installation de séchage 9, comprenant éventuellement elle même des moyens de formage en billes, pastilles, granulés... (non représentés sur la figuré 1A). Selon un mode préféré de mise en œuvre, l'énergie de séchage est apportée pour tout ou partie par un gaz chaud provenant principalement de l'aval du procédé par un conduit 10. Les granules séchés tombent dans une trémie 11 formant un stockage tampon avant transport pneumatique (ou autre) 12, vers les phases ultérieures du procédé de fabrication. Les matériaux de base utilisés dans le procédé peuvent être:
- des boues argileuses provenant du lavage de granulats de carrière,
- des boues résultants de traitements de rejets: eaux industrielles, forage, station d'épuration ou des résidus issus de traitements d'incinération
- du verre recyclé concassé,
- des terres polluées, des minéraux naturels tels que des kaolins...
La matière à l'entrée de la trémie 1 doit avoir une qualité et une teneur en eau adaptée à sa transformation ultérieure. Les additifs solides pouvant être utilisés et stockés dans le silo 7 peuvent être des additifs spécifiques à la nature des matériaux de base pour réaliser et optimiser les fonctions suivantes:
- formage et séchage des billes, - coloration,
- anti collage des billes,
- expansion maximale sous l'effet de micro-ondes,
- propriétés mécaniques de la bille expansée: résistance à la rupture, à l'abrasion,
- accélérateur de chauffe des micro-ondes,
- modulation de la densité, de la perméabilité.
Des additifs liquides peuvent aussi être utilisés et incorporés à la matière de base, par exemple dans le malaxeur 4 et/ou dans le granulateur 5.
Le matériau susceptible d'être traité conformément à la présente invention peut par exemple être une boue argileuse provenant d'une carrière de granulat,. dont la masse volumique est de 1,8 g/1 et la teneur en eau d'environ 20% en masse, l'argile présent l'étant majoritairement, c'est à dire d'au moins 50 % masse, de préférence d'au moins 10 % masse sous forme de Kaolinite, d' mite ou de Chlorite.
De manière non limitative, la composition de l'argile en ses différents constituants peut typiquement entrer dans les proportions suivantes, en masse :
- SiO2 50 à70 %
- Al2O3 10 à 20 % - C 0 à 5 %
- Fe2O3 l à 10 %
- CaO/CaCO3 5 à 40 %
- MgO, 2O,... 5 à 10 % La température correspond à une expansion maximale pour de telles compositions est alors comprise entre 1100°C et 1400°C et généralement proche de 1250°C. La masse volumique du produit fini est généralement comprise entre environ 0,1 et environ 0,9 g/1 et sa résistance à la compression comprise entre environ 6 et environ 15 MPa. La figure 1B décrit les phases ultimes du procédé. La trémie 14 reçoit les granules séchés par la conduite de transport pneumatique 13. Elle alimente une trémie de pesage 15 équipée d'une vanne de régulation 16. Les granules sont distribués vers les différents fours à micro-ondes 18a, 18b, 18c, 18d par des moyens de distribution 17 comprenant des conduits 19a, 19b, 19c, 19d d'alimentation des fours. Les granules, soumis à un rayonnement micro-ondes adapté, pendant une durée déterminée, sont expansés et sont dirigés vers un dispositif de refroidissement 20 par injection d'air, de préférence à contre- courant. Le dispositif 20 permet de récupérer en sortie de l'installation un débit sensiblement continu de granulés expansés. Un exemple de réalisation d'un tel dispositif 20 est décrit par la suite, en relation avec la figure le. La capacité de débit est obtenue par la succession d'étapes de chauffe dans les fours disposés en parallèle. Dans l'exemple non limitatif illustré par la figure 1A, il est décrit de disposer quatre fours selon l'invention en parallèle. Le présent procédé peut être mis en œuvre par au moins deux fours mais le nombre de fours disposés en parallèle selon l'invention n'est pas limité et pourra être déterminé entre autre en fonction de la capacité nominale d'un four par rapport à la capacité globale recherchée de l'installation. Le débit total de l'installation peut par exemple varier entre 100 kg/h et 10 tonnes/h.
Le dispositif 20 a une fonction de récupération de l'énergie calorifique produite par les fours micro-ondes 18 a, b, c, d, grâce à un ventilateur 21 qui envoie les gaz chauds vers l'installation de séchage 9 par une conduite 22. Un exemple de réalisation d'une installation 9 adaptée pour la réception desdits gaz est décrit dans la suite de la présente description, en relation avec la figure ld. Le débit des gaz chauds est contrôlé par la commande du ventilateur 21 et des moyens de vannage 23, comprenant aussi des moyens auxiliaires de chauffage 24, par exemple électrique, permettant de réguler la température de séchage. Après, refroidissement, les billes expansées sont transportées vers des moyens de stockage par un convoyeur 25. •
Les granulés expansés ont généralement une masse volumique comprise entre 0,1 et 0,9 tonne/m et une taille ou un diamètre compris entre 0,1 et 50 mm. En fonction de l'application désirée, le présent procédé permet en outre de disposer de granulats de taille ou de diamètre calibré, par exemple compris entre 0,1 et 1 mm, entre 1 et 20 mm ou entre 20 à 50 mm.
La figure 1C illustre un exemple non limitatif d'un mode de réalisation d'une installation de refroidissement 20 particulièrement adaptée à la mise en œuvre du présent procédé.
Les granules expansés sont introduits alternativement par déchargement des fours micro-ondes et par une conduite 101 dans le dispositif 20. Le dispositif 20 comprend une enceinte 100 délimitant à la sortie de la conduite 101 une zone dite tampon 102 qui permet avantageusement d'amortir les variations de débit de l'installation. Les dimensions de cette zone 20 sont par exemple calculées de telle façon que le niveau de granules, en fonctionnement, fluctue entre une limite inférieure et une limite supérieure comprises dans ladite zone 102. La zone 102 est délimitée dans sa partie inférieure par un goulot de rétrécissement 103 qui débouche sur une cavité 104 entièrement remplie de granules et dans laquelle lesdits granules sont refroidis par un fluide caloporteur, par exemple de l'air. Par fluide caloporteur, il est entendu au sens de la présente description tout fluide connu pour échanger de la chaleur (par chauffage ou refroidissement) avec le milieu dans lequel il est introduit. Selon un mode avantageux de réalisation, et tel que représenté sur la figure 1C, un premier moyen d'introduction en fluide 106 est disposé à proximité de l'extrémité inférieur de l'enceinte 100 dans un espace 111 d'introduction et de répartition du fluide, délimité par exemple et tel que représenté sur la figure 1C par une grille de forme conique .107. Selon un mode avantageux de réalisation du dispositif, un second moyen d'introduction en fluide est disposé à hauteur du goulot 103, dans l'espace libre de granules 108 sous le goulot 103.
En fonctionnement, les granules périodiquement déchargés des fours micro-ondes sont déversés dans la cavité 102 de manière discontinue, et forment après traversée du goulot 103 un lit mobile descendant de granules dans la cavité 104. Ce lit est traversé par le fluide caloporteur introduit par le moyen 106 et les granules sont ainsi refroidis à la température de consigne. Cette température pourra par exemple être ajustée par la quantité et la température du fluide injecté ou par le contrôle de la vitesse de progression dudit lit, elle même par exemple contrôlée par un moyen de soutirage 110 des granules refroidis disposé au bas de l'installation. Après traversée du lit, le fluide chaud est évacué hors de l'enceinte par une conduite de sortie 109.
Selon un mode de mise en œuvre possible, une partie variable du fluide caloporteur,- par exemple entre 10 et 30% molaire, peut être introduite par le moyen 105. Cette répartition présente certains avantages : - un meilleur contrôle de la température de sortie du fluide caloporteur,
- le refroidissement du matériau constituant le goulot 103 par échange radiatif avec le fluide froid introduit par le moyen 105, ledit matériau pouvant être soumis à de très fortes contraintes thermiques, en l'absence d'un tel système de refroidissement.
La figure 1D illustre un exemple non limitatif d'un mode de réalisation d'une installation de séchage particulièrement adaptée à la mise en œuvre du procédé selon l'invention. Les pastilles entrent dans l'installation de séchage 9 par une conduite 201 délimitée par une enveloppe cylindrique 202, et sont réparties à l'intérieur de ladite enceinte de façon homogène par tout interne adapté à cette fonction, par exemple par une plaque de distribution 203. L'enveloppe 202 comprend une cheminée interne 204 dont la cavité interne permet l'évacuation du fluide de séchage. La cheminée 204 est percée dans sa partie inférieure d'orifices 208 permettant la circulation du fluide dans l'installation. Ledit fluide, par exemple de l'air chaud issu du dispositif 20, entre dans l'installation 9 par des moyens d'introduction 205. Ces moyens d'introduction sont arrangés de telle façon qu'à l'issue de ladite introduction, la répartition dudit fluide soit circulairement uniforme autour de la cavité cylindrique délimitée par l'enveloppe 202. H est possible d'envisager dans ce but de multiplier les points d'introduction du fluide autour de l'enveloppe cylindrique 202, ou plus avantageusement et comme décrit dans la figure 1D, d'utiliser des internes délimitant en périphérie de l'enveloppe une couronne interne 206 de distribution du fluide. Ces internes présentent des ouvertures 207, disposées sensiblement au niveau des orifices 208. Ces orifices peuvent être constitués par des trous, des rainurages, des grilles, etc. Par exemple, des internes de type grille Johnson peuvent être utilisées. Lors du fonctionnement de l'installation, les pastilles introduites par les moyens 201 sont réparties de façon homogène grâce aux moyens 203 dans l'espace délimité d'une part par l'enveloppe cylindrique 202 dans la partie supérieure de l'installation ou par la couronne interne 206 dans la partie inférieure de l'installation et d'autre part par la cheminée 204. Lesdites pastilles forment ainsi un lit mobile descendant 211 dont la vitesse de progression est, par exemple, contrôlée par un moyen de soutirage 209 disposé au bas de l'installation. Le fluide introduit par les moyens 205 .est réparti de manière homogène dans la couronne interne 206. Le fluide, via les ouvertures 207 et 208, traverse ensuite le lit mobile de pastilles 211 réparties à cet endroit en une couche mince, assèche celles-ci et est finalement évacué par la cheminée 204 et l'ouverture 210. Les pastilles séchées au moins partiellement sortent finalement de l'installation 9 sous l'action des moyens de soutirage 209.
Ce mode de réalisation présente de nombreux avantages :
- l'installation comprend uniquement des parois internes fixes, et ne pose donc aucun problème mécanique d'encrassement ou de collage, au contraire des systèmes classiques de séchage comprenant des systèmes à bandes roulantes,
- la traversée par le fluide chaud d'une couche mince d'un lit mobile de pastilles uniformément réparties assure d'une part une forte efficacité du séchage et limite les pertes de charges dues à ladite traversée, ce qui conduit à rendre facultative l'utilisation d'un ventilateur ou d'un extracteur d'air en sortie de l'installation.
La figure 2 décrit schématiquement un mode de réalisation d'un four micro-ondes selon l'invention pour chauffer des solides sous forme de billes à haute température, c'est à dire entre 400°C et 2000°C, notamment entre 800 et 1300°C. Les caractéristiques de ce four permettent avantageusement de combiner les fonctions suivantes:
- brassage des granulés (ou billes) pour obtenir un produit de cuisson homogène,
- chargement et vidange sans système de porte de façon à minimiser, voire à supprimer, toute fuite de micro-ondes,
- cavité interne rotative haute température dans une enceinte micro-ondes,
- chauffe directe sans fluide caloporteur, donc un meilleur rendement,
- chauffage micro-ondes qui permet une chauffe de l'intérieur vers l'extérieur du produit, ce type de chauffe étant plus homogène et permettant d'améliorer les caractéristiques du produit,
- régulation précise permettant l'obtention de produits de spécifications plus difficiles à atteindre par un procédé classique,
- temps de cycle très réduit par rapport au procédé conventionnel (3 à 20 fois plus rapide), - rejets gazeux très réduits puisqu'ils ne proviennent que de la combustion (s'il y a lieu) du matériau chauffé.
- faible inertie thermique et disponibilité immédiate de l'énergie des micro-ondes,
- flexibilité sur l'obtention des propriétés du produit final.
Le four comprend une enceinte constituée d'une enveloppe externe 30 et d'une cavité interne 31.
L'enveloppe 30, généralement métallique (en acier inox, de préférence), est hermétiquement fermée, mis à part les orifices d'entrée du matériau initial et de sortie du produit final et l'arrivée d'un guide d'onde 33. Une cheminée 50 peut également traverser l'enveloppe 30 pour évacuer les gaz générés par le chauffage du matériau. Le champ de micro-ondes a une fréquence comprises entre 300 et 6000 MHz. Le système de guide d'onde 33 amène les micro-ondes générées par un magnétron à l'orifice 32. Les dimensions de l'enceinte sont comprises entre 500 mm et 2500 mm pour sa largeur (par exemple de section cylindrique), et 500 mm à 2500 mm pour sa hauteur.
L'enceinte peut être isolée thermiquement par un revêtement réfractaire 34, constitué par exemple de briques silico-alumineuses qui peuvent tapisser l'intérieur de l'enveloppe 30. Le matériau est introduit sous forme de granulés, ou de boues, par la conduite 35, de diamètre compris entre 10 mm et 130 mm et d'une largeur choisie en fonction dudit diamètre, les dimensions étant choisies en fonction de la longueur du rayonnement microondes de façon à éviter les fuites hors de l'enceinte, selon une technique bien connue de l'homme du métier. Le matériau tombe dans le tambour 36 constitué d'une virole 37, par exemple en béton, et d'un plateau 38, également en béton avec un support métallique 39.
Ce plateau 38 peut recevoir des orifices de circulation d'air ou de gaz, passant par son axe support 40 de diamètre compris entre 10 et 100 mm. L'arbre est ainsi refroidi et le gaz injecté peut favoriser les réactions d'oxydation par exemple de monoxyde en dioxyde de carbone.
La virole a un diamètre compris entre 500 mm et 2450 mm. Les épaisseurs du plateau et de la virole sont comprises entre 5 et 200 mm. . Une fois le remplissage du tambour terminé, il est entraîné en rotation par l'intermédiaire d'un moteur 41 pour permettre le brassage du matériau introduit. La vitesse linéaire en périphérie de la virole peut être comprise entre 5 et 100 cm/s.
Un joint d'étanchéité 42 permet d'éviter les fuites micro-ondes autour de l'arbre rotatif.
La chauffe commence alors par l'activation du générateur de micro-ondes. Lorsque l'étape de chauffe est terminée, un vérin 43 déclenche la descente de l'ensemble du tambour 36 selon l'axe de rotation, la rotation de la cavité étant alors stoppée. Lorsque la virole 37 arrive en butée sur des chandelles 44, le plateau se désolidarise de la virole en continuant son déplacement, et laisse s'échapper les granulés par l'ouverture ménagée entre la virole et le plateau. Les produits sont canalisés vers le conduit d'évacuation 45.
Ce conduit est, ainsi que le conduit d'admission 35 des produits, constitué d'un ou de plusieurs cylindres de diamètre compris entre 10 et 130 mm permettant d'éviter les fuites de micro-ondes. Il en est de même pour l'ouverture de la cheminée 50.
L'ensemble de l'enceinte est fixée sur un "support 46 permettant une inclinaison de l'axe de rotation du tambour contenu dans l'enceinte comprise entre 20° et 60° avec la verticale. Le tambour peut comprendre d'autres moyens d'évacuation du produit fini, par exemple une spirale disposée sur la paroi interne de la virole, l'inversion du sens de rotation permettant de passer d'un mode . de brassage à un mode de déchargement. Egalement, le plateau peut comprendre des orifices à ouverture commandée. Ce type de four est particulièrement adapté à la mise en température des produits granulaires ou non à base d'argiles, de boues argileuses de lavage de granulats de carrière, de boues residuaires industrielles, et en général de tout produit solide (granulés ou sous forme de particules dites "fines") ou boueux, intéressés par une transformation haute température en vue par exemple d'une expansion, d'un inertage, d'une vitrification, d'une calcination.
Les matériaux traités peuvent être d'origine minérale ou organique.

Claims

REVENDICATIONS
1. Dispositif pour le chauffage par micro-ondes d'un matériau introduit sous forme de particules ou de pâte, ledit dispositif comprenant une enveloppe externe (30) fixe et délimitant une cavité interne (31) fermée en communication avec au moins:
-des moyens d'admission (35) dudit matériau,
-un orifice (32) d'introduction d'un champ dé micro-ondes
-des moyens de brassage (36) dudit matériau, -des moyens de mise en rotation (41) desdits moyens de brassage (36),
-des moyens d'évacuation (45) des produits issus du matériau chauffé,
-des moyens de déchargement desdits produits hors des moyens de brassage (36) pour les évacuer par lesdits moyens d'évacuation,
-des moyens de capture des micro-ondes dimensionnés sur les différentes ouvertures de l'enveloppe (30) pour confiner les micro-ondes dans ladite enveloppe lors des différentes phases de fonctionnement dudit four.
2. Dispositif selon la revendication 1 dans lequel lesdits moyens de capture disposés sur les moyens d'admission (35) et d'évacuation (45) sont constitués par des tubes dont le diamètre et la longueur sont calculés au moins en partie en fonction de la longueur d'onde du rayonnement utilisé.
3. Dispositif selon la revendication 1 ou 2 dans lequel les moyens de rotation sont constitués d'un axe support (40) sur lequel sont fixés les moyens de brassage (36), dans lequel des moyens externes (41) à l'enveloppe entraînent ledit axe (40) et dans lequel l'axe (40) comprend un joint d'étanchéité (42) aux micro-ondes.
4. Dispositif selon l'une des revendications précédentes comprenant en outre un support (46) permettant une inclinaison de 20° à 60° de l'axe des moyens de brassage (36) par rapport à la verticale.
5. Dispositif selon l'une des revendications précédentes dans lequel les moyens de déchargement comprennent des moyens coopérant et liés avec les moyens de brassage pour permettre l'évacuation des produits.
6. Dispositif selon la revendication 5 dans lequel les moyens de brassage (36) comprennent une virole (37) et un plateau (38) amovible constituant un fond, et dans lequel les moyens de déchargement comprennent des moyens de déplacement (43) le long de l'axe support (40) desdits moyens de brassage (36) dans la cavité (31), et des chandelles de butée de ladite virole (37) placées de manière à permettre la séparation de la virole (37) et du plateau (38) lors dudit déplacement.
7. Dispositif selon la revendication 5 dans lequel les moyens de brassage comprennent une virole, un plateau et une spirale disposée sur la paroi interne de ladite virole et dans lequel les moyens de déchargement comprennent des moyens d'inversion du sens de rotation de ladite spirale.
8. Dispositif selon la revendication 5 dans lequel les moyens de brassage comprennent une >5 virole et un plateau, et dans lequel les moyens d'évacuation comprennent des orifices à ouverture commandée dans ledit plateau.
9. Dispositif selon l'une des revendications 6 à 8 dans lequel ladite virole est constituée par au moins un matériau transparent ou réfléchissant aux micro-ondes. 0
10. Dispositif selon l'une des revendications 6 à 9 dans lequel ledit plateau comprend un matériau transparent aux micro-ondes et un support métallique.
11. Procédé de fabrication de granules comprenant les étapes suivantes: 5 a) mise en forme par granulation d'μn matériau pâteux, b) chauffage des granulats formés au cours de l'étape a) par un rayonnement microondes jusqu'à une température comprise entre 400 et 2000°C,, c) refroidissement des granules issus de l'étape b), d) récupération desdits granules, 0 et dans lequel ladite étape a) est effectuée en continu et en ce que l'étape b) de chauffage est effectuée dans au moins un dispositif de chauffage selon l'une des revendications 1 à 10.
12. Procédé selon la revendication 11 dans lequel au moins deux dispositifs de chauffage sont disposés en parallèle pour mettre en œuvre l'étape b), chacun desdits fours étant successivement alimenté en granulats issus de l'étape a) de manière discontinue.
13. Procédé selon la revendication 11 ou 12 comprenant en outre. une étape de séchage avant et/ou après l'étape a) de mise en forme.
14. Procédé selon l'une des revendications 11 à 13, dans lequel ladite étape de séchage est effectuée en utilisant et en récupérant l'énergie calorifique produite par ledit refroidissement des granules expansés lors de l'étape c).
15. Application du dispositif selon l'une des revendications 1 à 10 ou du procédé selon l'une des revendications 11 à 14 pour la production de granules d'argile expansés2.
16. Application du dispositif selon l'une des revendications 1 à 10 ou du procédé selon l'une des revendications 11 à 14 pour le traitement de produits granulaires ou pâteux à base d'argiles, de boues argileuses de lavage de granulats de carrière, de boues residuaires industrielles, de tout produit solide divisé ou boueux, intéressé par une transformation haute température en vue d'une expansion, d'un inertage, d'une vitrification, d'une calcination.
PCT/FR2004/000134 2003-01-24 2004-01-21 Dispositif de chauffage par rayonnement micro-ondes et procede de mise en oeuvre WO2004068907A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0301020A FR2850520B1 (fr) 2003-01-24 2003-01-24 Dispositif de chauffage par rayonnement micro-ondes et procede de mise en oeuvre
FR03/01020 2003-01-24

Publications (1)

Publication Number Publication Date
WO2004068907A1 true WO2004068907A1 (fr) 2004-08-12

Family

ID=32669326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/000134 WO2004068907A1 (fr) 2003-01-24 2004-01-21 Dispositif de chauffage par rayonnement micro-ondes et procede de mise en oeuvre

Country Status (2)

Country Link
FR (1) FR2850520B1 (fr)
WO (1) WO2004068907A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012045923A1 (fr) 2010-10-08 2012-04-12 Innovation & Development Company (Idco) Dispositif de traitement thermique en continu, en particulier de matériaux divisés, par rayonnement micro-ondes.
EP2530059A1 (fr) 2011-05-31 2012-12-05 Idco Dispositif de traitement thermique, en particulier de matériaux divisés, au moins par rayonnement micro-ondes
CN102839250A (zh) * 2012-09-28 2012-12-26 昆明理工大学 一种在微波加热生产还原铁粉过程中同时收集优质煤气的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1401134B1 (it) * 2010-07-19 2013-07-12 Geolog Spa Sistema e metodo per il condizionamento termico di un fluido in particolare un fango di perforazione
FR3139188A1 (fr) 2022-08-29 2024-03-01 Innovation & Development Company four de calcination par micro-ondes pour matériaux solides divisés en fines particules

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1469871A (fr) * 1965-03-24 1967-02-17 Miag Muehlenbau & Ind Gmbh Procédé et dispositif pour fabriquer de l'argile gonflée
FR2519224A1 (fr) * 1981-12-30 1983-07-01 Lambda Technics Int Applicateur rotatif pour le traitement thermique ou thermochimique par micro-ondes d'elements granulaires en matiere polaire
DE3907248A1 (de) * 1989-03-07 1990-09-13 Kirchhoff Gmbh F Muldentrockner fuer schuettgut, insbesondere asphaltgranulat
FR2647292A1 (fr) * 1989-05-19 1990-11-23 Moritz Sa Procede et installation de chauffage par micro-ondes d'un produit pulverulent, pateux ou granuleux soumis a agitation
US5902510A (en) * 1996-06-14 1999-05-11 Ontario Hydro Rotary microwave oven for continuous heating of materials
US6104015A (en) * 1999-01-08 2000-08-15 Jayan; Ponnarassery Sukumaran Continuous microwave rotary furnace for processing sintered ceramics
GB2373842A (en) * 2001-03-29 2002-10-02 Ffestiniog Expanded Slate Comp Heat treatment of expansible materials to form lightweight aggregate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1469871A (fr) * 1965-03-24 1967-02-17 Miag Muehlenbau & Ind Gmbh Procédé et dispositif pour fabriquer de l'argile gonflée
FR2519224A1 (fr) * 1981-12-30 1983-07-01 Lambda Technics Int Applicateur rotatif pour le traitement thermique ou thermochimique par micro-ondes d'elements granulaires en matiere polaire
DE3907248A1 (de) * 1989-03-07 1990-09-13 Kirchhoff Gmbh F Muldentrockner fuer schuettgut, insbesondere asphaltgranulat
FR2647292A1 (fr) * 1989-05-19 1990-11-23 Moritz Sa Procede et installation de chauffage par micro-ondes d'un produit pulverulent, pateux ou granuleux soumis a agitation
US5902510A (en) * 1996-06-14 1999-05-11 Ontario Hydro Rotary microwave oven for continuous heating of materials
US6104015A (en) * 1999-01-08 2000-08-15 Jayan; Ponnarassery Sukumaran Continuous microwave rotary furnace for processing sintered ceramics
GB2373842A (en) * 2001-03-29 2002-10-02 Ffestiniog Expanded Slate Comp Heat treatment of expansible materials to form lightweight aggregate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012045923A1 (fr) 2010-10-08 2012-04-12 Innovation & Development Company (Idco) Dispositif de traitement thermique en continu, en particulier de matériaux divisés, par rayonnement micro-ondes.
EP2530059A1 (fr) 2011-05-31 2012-12-05 Idco Dispositif de traitement thermique, en particulier de matériaux divisés, au moins par rayonnement micro-ondes
FR2976061A1 (fr) * 2011-05-31 2012-12-07 Idco Dispositif de traitement thermique, en particulier de materiaux divises, au moins par rayonnement micro-ondes
CN102839250A (zh) * 2012-09-28 2012-12-26 昆明理工大学 一种在微波加热生产还原铁粉过程中同时收集优质煤气的方法

Also Published As

Publication number Publication date
FR2850520A1 (fr) 2004-07-30
FR2850520B1 (fr) 2006-09-15

Similar Documents

Publication Publication Date Title
EP0707558B1 (fr) Procede de traitement de residus de combustion et installation de mise en oeuvre dudit procede
EP0033285B1 (fr) Dispositif de mélange avec turbulence de fluides gazeux et de particules solides
EP1485329A1 (fr) Dispositif de sechage et/ou cuisson de gypse
EP2252559B1 (fr) Procede de fabrication d'un clinker sulfo-alumineux ou sulfo-alumineux-belitique
EP0284464B1 (fr) Four pour déshydrater pulvérulents sable et granulats
CA2458935A1 (fr) Four et procede d'expansion de la perlite et de la vermiculite
WO2016193462A1 (fr) Procédé et dispositif de carbonisation hydrothermale à mélange optimisé de boue et vapeur
WO2004068907A1 (fr) Dispositif de chauffage par rayonnement micro-ondes et procede de mise en oeuvre
WO1998033608A1 (fr) Equipement de dechloration pour dechets en plastique
WO2004068906A1 (fr) Procede et installation pour le chauffage de granules par un rayonnement micro-ondes
FR2931162A1 (fr) Procede et dispositif de carbonisation
EP1847791B1 (fr) Procédé de séchage des boues et dispositif permettant la mise en oeuvre du procédé
FR2764367A1 (fr) Installation de traitement thermique de matieres pulverulentes en suspension, et application pour la calcination flash de matieres minerales notamment argileuses
RU2422478C1 (ru) Способ переработки органических отходов и устройство для переработки органических отходов
FR2668774A1 (fr) Procede et dispositif de production d'un combustible solide a partir de dechets combustibles.
RU2452719C2 (ru) Устройство для получения пористой гранулированной аммиачной селитры и способ получения пористой гранулированной аммиачной селитры
FR2976062A1 (fr) Procede de traitement thermique flash, par rayonnement micro-ondes et dispositif associe
EP0426926A1 (fr) Procédé, four et installation pour la destruction de déchets industriels
FR2800733A1 (fr) Procede de fabrication de granules d'argile expansee et les granules obetnus par la mise en oeuvre de ce procede
EP1362007B1 (fr) Procede et installation de traitement de deshydroxylation de silicate d'aluminium
KR100954756B1 (ko) 슬러지의 건조장치 및 건조방법
FR2810312A1 (fr) Procede et dispositif de valorisation thermique des boues issues du traitement des eaux usees
WO2017103523A1 (fr) Procédé et installation de traitement de déchets
JP2009208990A (ja) 水分を含む粉体の輸送方法および輸送システム
EP1947066A1 (fr) Procede de valorisation de boues de dragage et industrielles

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase