一种空时扩频多地址码编码及应用方法 技术领域 Space-time spread-spectrum multi-address code encoding and application method
本发明涉及扩频与码分多址(CDMA )无线通信技术领域, 特别是指在 无线通信系统中的具有空时分集特性的扩频多址编码; 具体的讲是一种空 时扩频多地址码编码及应用方法。 The present invention relates to the field of spread spectrum and code division multiple access (CDMA) wireless communication technology, and in particular to a spread spectrum multiple access code with space-time diversity characteristics in a wireless communication system. Address code encoding and application method.
发明背景 随着信息化社会及个人通信时代的到来 , 人们对提高无线通信系统中 的频谱效率变得越来越迫切了, 因为频率资源是十分有限的。 所谓频谱效 率是指在给定用户传信率与系统带宽时, 在一个小区 (cel l ) 或扇区 ( sector ) 内系统可容纳的最大用户数, 其度量单位是每小区 (或扇区) 每单位带宽系统所支撑的总传信率。 显然, 频谱效率越高的系统容量越大。 BACKGROUND OF THE INVENTION With the advent of the information society and the era of personal communication, people have become more and more urgent to improve the spectral efficiency in wireless communication systems, because frequency resources are very limited. The so-called spectrum efficiency refers to the maximum number of users that can be accommodated by a system in a cell (cel l) or sector (sector) when given the user's transmission rate and system bandwidth. Its measurement unit is per cell (or sector). The total transmission rate supported by the system per unit bandwidth. Obviously, the higher the spectral efficiency, the larger the system capacity.
传统的无线多址接入技术, 如频分多址(FDMA ), 时分多址(TDMA ), 其系统容量受系统的时间带宽积所限定, 额外增加用户根本不可能。 例如: 用户的基本传信率为 1/T符号秒, 系统(含信道) 带宽为 B赫兹(Hertz ), 则其时间带宽积为 BT, BT就是系统内的最大用户数, 多一个也不可能。 Traditional wireless multiple access technologies, such as frequency division multiple access (FDMA) and time division multiple access (TDMA), have system capacity limited by the time bandwidth product of the system, and it is impossible to add additional users. For example: The basic transmission rate of a user is 1 / T symbol second, and the bandwidth of the system (including the channel) is B Hertz (Hertz), then the time bandwidth product is BT. BT is the maximum number of users in the system, and one more is impossible. .
码分多址(CDMA ) 则完全不同, 其系统容量仅决定于信扰比, 具有大 容量与软容量的特点, 增加用户只会减小信扰比, 降低通信质量, 不会被 拒绝。 即系统容量不象频分多址(FDMA )或时分多址(TDMA )那样有一个 不可愈越的界限 BT值。 Code division multiple access (CDMA) is completely different. Its system capacity is only determined by the signal-to-interference ratio. It has the characteristics of large capacity and soft capacity. Increasing users will only reduce the signal-to-interference ratio and reduce communication quality, and will not be rejected. That is, the system capacity does not have an insurmountable BT value like frequency division multiple access (FDMA) or time division multiple access (TDMA).
码分多址(CDMA ) 系统的容量取决于系统内的干扰电平, 因此, 能否 控制系统内干扰电平将成为码分多址系统成败或好坏的关键。 干扰可分为 四大部分: 一是本地及系统内部噪声电平, 对于它除了采用低噪声放大器 外, 没有其它方法; 二是码间又称符号间干扰(ISI ); 三是多址干扰(MAI ), 即来自小区内其他用户的干扰; 四是相邻小区或信道间干扰(ACI )。 对于 ISI、 MAI、 ACI是可以靠选择性能良好的地址码来减少乃至消除的。
在码分多址(CDMA ) 系统中, 各个用户都有自己特有的供相互识别的 地址码。 不仅如此, 各个用户的扩频地址码间还应相互正交, 这种正交性 的要求对任何多址系统来说都是一致的。 如果信道是一个理想的线性时间 频率不扩散系 '统, 同时系统内部又有严格的同步关系, 则保证各用户地址 码间的正交性还是能够实现的。 但是现实信道没有一个是理想的, 而严格 同步对于时间、 频率扩散信道中的信号而言, 又是不可能的。 因此, 在非 理想的时间频率扩散信道中仍然保持各地址码间的正交性是码分多址 ( CDMA ) 系统的生命所在。 The capacity of a code division multiple access (CDMA) system depends on the level of interference in the system. Therefore, whether or not the interference level in the system can be controlled will become the key to the success or failure of a code division multiple access system. Interference can be divided into four major parts: First, the local and internal noise levels, there is no other method except for using low-noise amplifiers; Second, inter-symbol also known as inter-symbol interference (ISI); Third, multiple-access interference ( MAI), that is, interference from other users in the cell; the fourth is adjacent cell or inter-channel interference (ACI). For ISI, MAI, ACI can be reduced or even eliminated by choosing a good address code. In a code division multiple access (CDMA) system, each user has its own unique address code for mutual identification. Not only this, the spreading address codes of each user should also be orthogonal to each other, and this requirement of orthogonality is consistent for any multiple-access system. If the channel is an ideal linear time-frequency non-proliferation system, and there is a strict synchronization relationship within the system, then the orthogonality between user address codes can be ensured. However, none of the actual channels is ideal, and strict synchronization is impossible for signals in time and frequency spread channels. Therefore, it is the life of a code division multiple access (CDMA) system to maintain orthogonality between address codes in a non-ideal time-frequency diffusion channel.
众所周知, 移动通信信道是典型的随机时变信道, 其中存在着随机性 的频率扩散(由多卜勒效应产生), 及随机性的时间扩散(由多径传播效应 产生)。 前者将使接收信号产生时间选择性衰落, 即接收信号电平会随时间 有不同的随机起伏变; 后者将使接收信号产生频率选择性衰落, 即接收信 号不同频谱分量会有不同的随机起伏变化。 衰落除严重恶化系统的性能以 外, 还将大幅度减小系统的容量。 特别是由多径传播造成的信道的时间扩 散, 使信号不能同时到达接收点, 而使同一用户相邻符号间的信号互相重 叠, 产生符号间的干扰(ISI )。 另外, 信道的时间扩散还会恶化多址干扰, 这是因为当不同用户信号间的相对时延为零时, 其正交性是 4艮容易保证的, 任何正交码都可以使用。 但当信号间的相对时延不为零时, 仍然保持其正 交性将变得非常困难。 As we all know, mobile communication channels are typical random time-varying channels. There are random frequency spreads (produced by the Doppler effect) and random time spreads (produced by the multipath propagation effect). The former will cause time-selective fading of the received signal, that is, the level of the received signal will have different random fluctuations with time; the latter will cause the frequency of the received signal to be faded, that is, different spectral components of the received signal will have different random fluctuations. Variety. In addition to severely degrading system performance, fading will also significantly reduce system capacity. In particular, the time spread of the channel caused by multipath propagation prevents the signals from reaching the receiving point at the same time, so that signals between adjacent symbols of the same user overlap with each other, resulting in inter-symbol interference (ISI). In addition, the time spread of the channel will also worsen the multiple access interference, because when the relative delay between different user signals is zero, its orthogonality is easily guaranteed, and any orthogonal code can be used. But when the relative delay between signals is not zero, it will become very difficult to maintain their orthogonality.
为了减小符号间干扰(ISI ), 每个用户所选用的信号波形, 也就是其 地址码的自相关函数应该是一个理想的冲激函数, 即除原点外, 应处处为 零。 为了减小多址干扰(MAI ), 各个用户所选用的信号波形, 即其地址码 间的互相关函数应对各种相对时延处处为零。 从正交性的观点来讲, 各个 扩频地址码与其自身除相对零时延处外, 对任何非零相对时延都应该相互 正交, 而扩频地址码间对任何相对时延(含零时延)都应相互正交。 In order to reduce the inter-symbol interference (ISI), the signal waveform selected by each user, that is, the autocorrelation function of its address code should be an ideal impulse function, that is, it should be zero except for the origin. In order to reduce the multiple access interference (MAI), the signal waveform selected by each user, that is, the cross-correlation function between the address codes should be zero for various relative delays. From the perspective of orthogonality, apart from the relative zero delay, each spreading address code should be orthogonal to any non-zero relative delay, and any relative delay (including (Zero delay) should be orthogonal to each other.
为形象其见, 将原点处的自相关函数值称为相关函数的主峰, 将原点
之外的自相关或互相关函数值称为相关函数的付峰。 理想多址码间的自相 关及互相关函数的付峰应全为零。 遗憾的是, 理论的 Welch界指出: 在二 元域、 有限域甚至复数域中均不存在付峰处处为零的多址码组。 特别是自 相关函数的付峰与互相关函数的付峰是一对矛盾, 当要求一个减小时, 另 一个必然增大。 另外, 美国国家宇航局 (NASA ) 亦宣布已穷举计算出各种 码, 并证明 We 1 ch界是无法突破的。 For the sake of clarity, the value of the autocorrelation function at the origin is called the main peak of the correlation function. The value of the autocorrelation or cross-correlation function outside is called the peak of the correlation function. The peaks of the auto-correlation and cross-correlation functions between ideal multiple access codes should all be zero. Unfortunately, the Welch bound of the theory states that there are no multiple access code groups with zeros everywhere in the binary, finite, and even complex domains. In particular, the peaks of the auto-correlation function and the peaks of the cross-correlation function are a contradiction. When one is required to decrease, the other is necessarily increased. In addition, NASA also announced that it has exhaustively calculated various codes and proved that the We 1 ch boundary cannot be broken.
事实上, 美国国家宇航局 (NASA ) 穷举计算的仅仅是群码, 而 Welch 界仅对复数以下域成立, 在此之外理想性质的地址码是有可能存在的。 例 如在 1971年, 美国加州洛杉矶大学(UCLA ) 的 B. P. Schwei tzer在其博 士论文 "广义互补码组,, ( General ized complementary Code Sets ) 中就 已经找到了一种可以达到理想地址码组性能的编码方法。 随后 1993年欧洲 NOKIA公司 ( NOKIA MOBILE PHONES LTD.; NOKIA TELECOMMUNICATIONS ) 的 Leppanen, pent t i等人又将其思想应用于时分 /码分 ( TDMA/CDMA )混合 系统中, 并申请了欧洲专利, 其专利公开号为 EP 0600713A2 , 申请号为 93309556. 4。 这种编码方式实际上是高维空间中的编码, 高维空间已经突 破了 Welch界成立的条件。 但是这种编码方式的频谱效率极低, 不具有实 用价值, 这正是其提出近三十年仍没有人使用的原因。 因为对于一个需要 N个地址的通信系统, 该编码方式需要使用 N2个基本码而每个码至少需 N 位, 也就是说共需 N3位来支撑 N个地址。 例如: 若地址数 N为 128 , 采用 16QAM调制方式, 则对应系
ts/Hz (比特 /赫)。 可见, 地址数越多, 这种编码方式的频谱效率越低。 但是这 种编码方式给出了一个 4艮好的启示, 即可以通过 "互补" 的方法来构造性 能良好的地址码組, 不过一定要避免 B. P. Schwei tzer 博士的所需总码 位数随地址数的三次方而增长的缺点。 In fact, NASA calculates only the group codes exhaustively, and the Welch bound is only valid for the sub-plural domains. Outside of this, ideal address codes are possible. For example, in 1971, BP Schweizzer of the University of California, Los Angeles (UCLA) in his doctoral dissertation "Generalized Complementary Complementary Code Sets," (Generalized Complementary Complementary Code Sets), has found an encoding that can achieve the performance of ideal address code sets. Then, in 1993, Leppanen, pent ti, and others of European NOKIA MOBILE PHONES LTD .; NOKIA TELECOMMUNICATIONS applied their ideas to a time division / code division (TDMA / CDMA) hybrid system and applied for a European patent. Its patent publication number is EP 0600713A2, and the application number is 93309556. 4. This encoding method is actually encoding in a high-dimensional space. The high-dimensional space has broken through the conditions for the establishment of the Welch world. However, the spectral efficiency of this encoding method is extremely high. It is low and has no practical value, which is why it was proposed that no one has used it for nearly thirty years. Because for a communication system that requires N addresses, this coding method needs to use N 2 basic codes and each code needs at least N bits, i.e. total of N 3-bit addresses supported e.g. N: If N is the number of addresses 128, a 16QAM modulation mode, then the Department ts / Hz (bit / hertz). It can be seen that the larger the number of addresses, the lower the spectral efficiency of this coding method. However, this encoding method gives a good revelation, that is, a "complementary" method can be used to construct a high-performance address code group, but the total number of code bits required by Dr. BP Schweitzer must be avoided with the number of addresses. The shortcomings of growing cubic.
另外, 如果采用双向同步技术, 则在随机时变信道中, 各个地址码内 或相互之间的相对延时, 将不会超过信道的最大时间扩散量(最大多径时
延差)加上最大定时误差。 设该量为 Δ秒, 那么, 只要在(- Δ , Δ ) 内地 址码间相关函数及互相关函数没有付峰, 就可以保证使符号间干扰(ISI ) 及多址干扰(MAI )为零。 具有这样性质的地址码, 称之谓具有 "零相关窗" 的地址码。 显然只要地址码的相关特性具有 "零相关窗" 且窗口宽度大于 信道的最大时间扩散量(最大多径时延差)加上最大定时误差, 则对应的 码分多址(C^MA ) 系统的性能就将是理想的, 同时传统码分多址 (CDMA ) 系统中致命的 "远近效应" 将随之消失。 "远近效应" 是由地址码的自相关 与互相关特性不理想所引起的, 因为一个近距离信号的付峰可能会淹没远 距离信号的主峰。 为了克服 "远近效应", 必须使各个地址用户的信号在到 达基站时强度基本相等, 这就导致必须采用精确、 复杂及快速的功率控制 算法, 从而使系统复杂化。 In addition, if the two-way synchronization technology is used, the relative delays in or between each address code in a random time-varying channel will not exceed the maximum time spread of the channel (at the maximum multipath time). Delay) plus the maximum timing error. Let this amount be Δ seconds. Then, as long as the correlation function and cross-correlation function between address codes in (-Δ, Δ) have no peaks, the inter-symbol interference (ISI) and multiple access interference (MAI) can be guaranteed to be zero. . An address code with this property is called an address code with a "zero correlation window". Obviously, as long as the correlation characteristics of the address code have a "zero correlation window" and the window width is greater than the maximum time spread of the channel (the maximum multipath delay difference) plus the maximum timing error, the corresponding code division multiple access (C ^ MA) system The performance will be ideal, and the fatal "far and near effects" in traditional code division multiple access (CDMA) systems will disappear. The "far-near effect" is caused by the unsatisfactory auto-correlation and cross-correlation characteristics of the address code, because a sub-peak of a close-range signal may drown the main peak of a long-range signal. In order to overcome the "far and near effect", the signals of the users at each address must be made substantially equal in strength when they arrive at the base station. This leads to the need to adopt accurate, complex and fast power control algorithms, thereby complicating the system.
1997 年, 李道本教授在 PCT/CN00/00028 提出了一种新型具有零相关 窗的扩频码。 假设信道的最大时间扩散量(最大多径时延差)加上最大定 时误差。 设该量为△, 这种码字保证在(-Δ , Δ )内的相关特性是理想的。 应用这种码字的系统消除了 ISI和 MAI, 大大地提高了系统的容量。 In 1997, Professor Li Daoben proposed a new type of spreading code with zero correlation window in PCT / CN00 / 00028. Assume the maximum time spread of the channel (the maximum multipath delay difference) plus the maximum timing error. Let this amount be △, this codeword guarantees the correlation characteristics within (-Δ, Δ) is ideal. The system using this codeword eliminates ISI and MAI and greatly increases the capacity of the system.
假设互补码组为 {C,.,SJ,1≤ ≤M , C部或 S部的码长为 N , 单边零相关 窗宽度为 Γ , 则根据零相关窗界: M≤2N + 2T . 所以给定码长和零窗大小, Assume that the complementary code group is {C,., SJ, 1≤ ≤M, the code length of part C or S is N, and the width of the single-sided zero correlation window is Γ, then according to the zero correlation window bound: M≤ 2N + 2T . So given the code length and zero window size,
T + 1 T + 1
可能的最大码数就已经确定了, 想要找到更多的码字是不可能了。 The maximum possible number of codes has been determined, and it is impossible to find more code words.
为了消除干扰的影响, 除了在码字设计时直接构造出零窗口码之外, 另外一种方法就是在发送端发送非零窗口码, 而在接收端采用联合检测技 术、 干扰抵消技术、 均衡技术来达到最优接收。 假设一共存在 M个码道, 采用 g元调制, 则采用最优联合检测时总的检测量为
这种检测方法 的复杂度是随着用户数 Μ以指数增长的, 当用户数 Μ增大时, 会使接收机 无能为力, 这就限制了系统容量的增加。 为了降低接收机的复杂度, 人们 釆用了一些次优的联合检测算法, 如解相关多用户检测, 干扰消除技术等 等, 但这些算法又会带来性能上的损失, 并且在用户数很大时的复杂度仍
然很大。 In order to eliminate the influence of interference, in addition to directly constructing a zero-window code when designing the codeword, another method is to send a non-zero window code at the transmitting end, and use joint detection technology, interference cancellation technology, and equalization technology at the receiving end. To achieve optimal reception. Assuming that there are M code channels in total and using g-ary modulation, the total detection amount when the optimal joint detection is used is The complexity of this detection method increases exponentially with the number of users M. When the number of users M increases, the receiver becomes powerless, which limits the increase in system capacity. In order to reduce the complexity of the receiver, some sub-optimal joint detection algorithms are used, such as decorrelated multi-user detection, interference cancellation techniques, etc., but these algorithms will bring a loss in performance, and the number of users is very high. Complexity in big time still Of course very big.
分集技术是一种有效的对抗衰落的技术, 最基本的分集技术有空间分 集、 频率分集和时间分集。 空时编码技术(Space- t ime Coding ) 的研究起 始于 1996年的贝尔实验室, 它将空间分集、 频率分集和时间分集结合在一 起, 现有的空时编码主要有两类: 网格(Trel l is ) 空时码与分层空时码。 现有的空时编码可以看作是将空间分集、 频率分集和时间分集技术与信道 编码或者是与前向纠错编码技术相结合的技术。 Diversity technology is an effective technology to combat fading. The most basic diversity technologies are space diversity, frequency diversity and time diversity. Space-time coding technology (Space-ime Coding) research started in Bell Labs in 1996. It combines space diversity, frequency diversity and time diversity. There are two main types of space-time coding: grid (Trel l is) space-time code and layered space-time code. The existing space-time coding can be regarded as a technology combining spatial diversity, frequency diversity, and time diversity technologies with channel coding, or with forward error correction coding technology.
发明内容 Summary of the Invention
本发明的目的在于提供一种空时扩频多地址码编码及应用方法, 使所 形成的空时扩频多地址码的组与組之间的相关特性具有 "零相关窗", 即在 零相关窗内各组地址码间的互相关函数没有付峰, 从而消除组与组之间的 多址干扰(MAI ), 而同组内的各个地址码间虽然存在多址干扰(MAI ), 但 是可以利用联合检测技术来达到最优接收。 本发明所提出的这种具有组间 零相关窗特性的空时扩频码编码方法, 这种新的具有组间零相关窗空时扩 频码编码既将分集技术、 零相关窗特性相结合, 又可以利用联合检测、 干 扰抵消技术、 均衡技术技术, 这就为增大系统容量提供了可能。 同时本发 明解决了传统 C應 A系统中应用联合检测的复杂度问题。 The object of the present invention is to provide a space-time spread spectrum multi-address code encoding and application method, so that the formed group of space-time spread spectrum multi-address codes has a "zero correlation window" for correlation characteristics between groups, that is, at zero The cross-correlation function between the address codes of each group in the correlation window has no peaks, thereby eliminating multiple access interference (MAI) between groups. Although there is multiple access interference (MAI) between each address code in the same group, but You can use joint detection technology to achieve optimal reception. The space-time spreading code coding method with inter-group zero correlation window characteristics proposed by the present invention. This new space-time spreading code coding with inter-group zero correlation window characteristics combines both diversity technology and zero-correlation window characteristics. In addition, joint detection, interference cancellation technology, and equalization technology can be used, which provides the possibility for increasing system capacity. At the same time, the present invention solves the complexity problem of applying joint detection in the traditional C application A system.
上述的具有组间 "零相关窗" 的空时扩频多地址码具有以下五个特点: The above-mentioned space-time spread spectrum multi-address code with "zero correlation window" between groups has the following five characteristics:
(一)各组空时扩频地址码间的互相关函数在原点附近存在一个零相 关窗口。 从正交性观点讲, 各组空时扩频地址码之间在相对时延小于该零 相关窗口的宽度时是完全正交的。 (1) The cross-correlation function between each group of space-time spread-spectrum address codes has a zero correlation window near the origin. From the perspective of orthogonality, the space-time spread-spectrum address codes are completely orthogonal when the relative delay is smaller than the width of the zero correlation window.
(二)各个空时扩频地址码的自相关函数在上述的组间零相关窗口内 除原点外, 仅在两个非零相对时延处不为零, 其他处处为零, 即其具有较 理想的特性。 (2) The autocorrelation function of each space-time spread-spectrum address code is not only zero at the two non-zero relative delays except for the origin in the above-mentioned inter-group zero correlation window, that is, it has zero Ideal characteristics.
(三) 同一组内的各个空时扩频地址码的互相关函数在上述的组间零 相关窗口内仅在两个非零相对时延处不为零, 其他处处为零。
(四)对于上述的每个空时扩频地址码分在两个发射机上发射 (3) The cross-correlation function of each space-time spread-spectrum address code in the same group is only zero at the two non-zero relative delays in the above-mentioned inter-group zero correlation window, and is zero at other places. (4) For each of the above-mentioned space-time spread-spectrum address code divisions to transmit on two transmitters
(五)对于上述的各个空时扩频地址码可以通过插入零保护间隔或时 隙, 增大组间零相关窗口的大小。 (5) For each of the space-time spread-spectrum address codes described above, the size of the zero correlation window between groups can be increased by inserting a zero guard interval or time slot.
本发明的技术方案为: The technical solution of the present invention is:
一种空时扩频多地址码编码方法, 其特征在于, 包括以下步骤: 生成或选取一对或多对各码长度均为 N零相关窗口宽度为 L的基本正 交互补码組; A space-time spread-spectrum multi-address code encoding method, comprising the following steps: generating or selecting one or more pairs of basic orthogonal complementary code groups whose code lengths are each N zero correlation window width is L;
将所生成或选取的基本正交互补码组对进行扩展, 得到具有组间零相 关窗的空时正交互补码组核; Extending the generated or selected pair of basic orthogonal complementary code groups to obtain a space-time orthogonal complementary code group kernel with a zero correlation window between the groups;
将所述的具有组间零相关窗的空时正交互补码组核进行码长及码数目 的扩展, 扩展后所得到的各组空时地址码之间的互相关函数具有零相关窗。 The code of the space-time orthogonal complementary code group core with zero correlation window between groups is extended by code length and number of codes, and the cross-correlation function between each group of space-time address codes obtained after expansion has a zero correlation window.
可以对所述的具有组间零相关窗的空时正交互补码组核进行插入零保 护间隔或时隙的处理, 使处理后形成的各组空时扩频地址码间的组间零相 关窗口的大小被增大。 Processing of inserting a zero guard interval or a time slot on the space-time orthogonal complementary code group core with an inter-group zero correlation window may be performed to make the group-to-group zero correlation between each group of space-time spread-spectrum address codes formed after processing The size of the window is increased.
所述的选取一对各码长度均为 N零相关窗口宽度为 L的基本正交互补 码组包括: 可设: (C S )、 (C,2, S,2)为所述的基本正交互补码组, 且: The selection of a pair of basic orthogonal complementary code groups where each code length is N zero correlation window width is L includes: can be set: (CS), (C, 2 , S, 2 ) as the basic orthogonal Complementary code set, and:
C22"'C2N),C 22 "'C 2N ),
S22 *"ES2N), S 22 * " E S 2N ),
其中 c码与 s码的非周期自相关与互相关函数在零相关窗口内除原点外 相反相成, 相加后的自相关函数值与互相关函数值除原点外处处为零。 The non-periodic autocorrelation and cross-correlation functions of c code and s code are oppositely formed except for the origin within the zero correlation window, and the values of the autocorrelation function and the cross-correlation function after addition are zero except for the origin.
所述的对所述的基本正交互补码组对进行扩展包括: 根据实际所需的 最大用户地址数, 根据生成树结构中将所述的正交互补码組核进行码长及 码数目的扩展, 扩展后的各组空时扩频地址码间的互相关函数在原点附近存在 一个 目关窗口, 其窗口的½ ^于或等于 2L-1; 根据正交性可得出, 各组空时 扩频地址码之间在相对时延小于该零相关窗口的宽度时是完全正交的; 扩 展后的各个空时扩频地址码的自相关函数在上述的组间零相关窗口内除原
点外, 仅在两个非零相对时延处不为零, 其他处处为零; 同一组内的各个 空时扩频地址码的互相关函数在上述的组间零相关窗口内仅在两个非零相 对时延处不为零, 其他处处为零。 The extending the pair of basic orthogonal complementary code groups includes: according to the maximum number of user addresses actually required, performing the code length and code number of the orthogonal complementary code group core in the spanning tree structure. Extended, the cross-correlation function between the extended groups of space-time spread-spectrum address codes has an objective window near the origin, and its window is less than or equal to 2L-1; according to the orthogonality, it can be obtained that The time-spreading address codes are completely orthogonal when the relative delay is less than the width of the zero correlation window; the autocorrelation function of each space-time spreading address code after expansion is divided by the original zero correlation window between the groups. Outside the point, only the two non-zero relative delays are not zero, and the rest are zero; the cross-correlation function of each space-time spread-spectrum address code in the same group is only two in the above-mentioned inter-group zero correlation window. Non-zero relative delays are not zero, and zero everywhere else.
所述的对所述的基本正交互补码组对进行扩展包括: 对选定的基本正 交互补码组对 (C , S )、(C,2, s,2)进行扩展, 其中:The expanding the basic orthogonal complementary code group pair includes: expanding the selected basic orthogonal complementary code group pair (C, S), (C, 2 , s, 2 ), where:
C22'"C2N), C 22 '"C 2N ),
S,i=(Sn S12'"S1N), S,2=(S21 S22"'S2N); S, i = (S n S 12 '"S 1N ), S, 2 = (S 21 S 22 "' S 2N );
得到的具有组间零相关窗的空时正交互补码组核为: The obtained space-time orthogonal complementary code group kernel with zero correlation window between groups is:
所述的对所述的具有组间零相关窗的空时正交互补码组核或者扩展后 的各个空时扩频地址码进行插入零保护间隔或时隙的处理包括: 可以对所 述的具有组间零相关窗的空时正交互补码组核或者扩展后的各个空时扩频 地址码通过插入零保护间隔或时隙, 增大扩展后形成的各组空时扩频地址 码间的组间零相关窗口的大小。 The processing of inserting a zero guard interval or a time slot into the group core of space-time orthogonal complementary codes with zero correlation windows between groups or the extended space-time spreading address codes includes: The space-time orthogonal complementary code core with zero correlation window between groups or the extended space-time spread-spectrum address codes are inserted into the zero guard interval or time slot to increase the space between the groups of space-time spread-spectrum address codes formed after expansion. The size of the zero correlation window between groups.
所述的空时扩频地址码在运算时, 必须保证 C码只与 C码运算(含自 身及其他码), S码只与 S码运算(含自身及其他码)。 When calculating the space-time spread-spectrum address code, it must be ensured that the C code operates only with the C code (including itself and other codes), and the S code operates with only the S code (including itself and other codes).
所述的基本正交互补码组对(Cp S, ( C2, S2 )是指: 其自相关与互 相关函数分别为 C码间的非周期自相关与互相关函数与 S码间的非周期自 相关与互相关函数之和, 其中在零相关窗口内, c码与 S码的非周期自相 关与互相关函数除原点外相反相成, 相加后的自相关函数值与互相关函数 值除原点外处处为零。 The pair of basic orthogonal complementary code groups (Cp S, (C 2 , S 2 ) refers to: their auto-correlation and cross-correlation functions are aperiodic auto-correlation between C codes and cross-correlation functions between S codes. The sum of non-periodic autocorrelation and cross-correlation functions, where within a zero correlation window, the non-periodic autocorrelation and cross-correlation functions of c code and S code are opposite to each other except the origin, and the added autocorrelation function value and cross-correlation function value It is zero everywhere except the origin.
所述的具有组间零相关窗的空时正交互补码组核是指: 扩展后形成的 空时正交互补码组核的各码长度为 2N、 组间零相关窗窗口的宽度为大于或 等于 2L-1。
所述的对组间零相关窗的空时正交互补码组核插入零保护间隔或时隙 是指: 首先由各码长度为 N、 零相关窗窗口的宽度为 L 的基本正交互补码 组对 ( C? 1 ? ) ( C,2, S,2 ), C'1= (C11 C^ ^-C^) , C,2= (C21 C22 "· 2Ν), S9^ (S13 S12〜S1N;), S'2= (S21 S22... S2N) 扩展成为如下的各码长度为 2N、 组间零相关 窗窗口的宽度为 2L- 1的空时正交互补码组核, The space-time orthogonal complementary code group kernel with inter-group zero correlation window refers to: the length of each code of the space-time orthogonal complementary code group core formed after expansion is 2N, and the width of the zero-correlation window between groups is greater than Or equal to 2L-1. The insertion of a zero guard interval or time slot into the space-time orthogonal complementary code group core of the zero-correlation window between groups refers to: firstly, the basic orthogonal complementary codes with the length N of each code and the width L of the zero-correlation window window L Group pair (C ? 1? ) (C, 2 , S, 2 ), C ' 1 = (C 11 C ^ ^ -C ^), C, 2 = (C 21 C 22 "· 2N ), S 9 ^ (S 13 S 12 ~ S 1N ;), S ' 2 = (S 21 S 22 ... S 2N ) is expanded into a space with the code length of 2N and the width of the zero correlation window between the groups of 2L-1. Time orthogonal complementary code group kernel,
- C2I C22 - C22 ' .'C2N -S2t S22 - S22...s. -C 2I C 22 -C 22 '.'C 2N -S 2t S 22 -S 22 ... s.
然后可以对上述的空时正交互补码组核插入一定数量的零保护间隔或 时隙, 由此形成的新的空时正交互补码组核的组间零相关窗口宽度大于或 等于原有的空时正交互补码组核的组间零相关窗口宽度。 Then, a certain number of zero guard intervals or time slots can be inserted into the above-mentioned space-time orthogonal complementary code group cores, and the new space-time orthogonal complementary code group cores formed therefrom have an inter-group zero correlation window width greater than or equal to the original The inter-group zero correlation window width of the space-time orthogonal complementary code group kernel.
所述的对组间零相关窗的空时正交互补码组核插入零保护间隔或时隙 是指: 每 L+1个码片 (Chip )插入 T个零, 由此形成的新的空时正交互补 码组核的组间零相关窗口宽度大于或等于 2L-1 , 由此新的空时正交互补码 组核按树形结构持续扩展, 所得到的空时正交互补码组对的组间零相关窗 口宽度大于或等于 2L-1 : The insertion of a zero guard interval or time slot into the space-time orthogonal complementary code group core of the zero correlation window between groups refers to: inserting T zeros per L + 1 chips (chips), thereby forming a new space The width of the zero-correlation window between the groups of time orthogonal complementary code group kernels is greater than or equal to 2L-1, so that the new space-time orthogonal complementary code group kernels are continuously expanded according to the tree structure, and the space-time orthogonal complementary code groups obtained are The width of the zero correlation window between pairs is greater than or equal to 2L-1:
所述的在生成树结构中将空时正交互补码组核进行码长与码数 的扩 展是指: 若(Cp t ), ( C2, S2 )是一对各码长度均为 N、 零相关窗窗口的 宽度为 L 的空时正交互补码组核, 则可按以下方式生成两对也就是四组各 码长度均为 2N的空时正交互补码组对: The expansion of the code length and code number of the space-time orthogonal complementary code group core in the spanning tree structure refers to: if (C pt ), (C 2 , S 2 ) is a pair, each code length is N , The space-time orthogonal complementary code group kernel with a width L of zero correlation window window L can generate two pairs, that is, four groups of space-time orthogonal complementary code group pairs each having a code length of 2N in the following manner:
(Cv c2, si; s2)(C v c 2 , s i; s 2 )
其中 , 扩展后上下两树枝所形成的两对空时正交互补码組对的组间互 相关函数在原点附近存在一个零相关窗口, 其窗口宽度大于或等于 L。 我 们可以把上下两树枝所形成的两对正交互补码组对当作两对各码长度均为 Among them, the cross-correlation function between two pairs of space-time orthogonal complementary code group pairs formed by the two branches above and below the expansion has a zero correlation window near the origin, and the window width is greater than or equal to L. We can treat the two orthogonal complementary code pairs formed by the two branches above and below as two pairs of code lengths
2N、 零相关窗窗口的宽度大于或等于 L的正交互补码组核, 继续进行扩展, 得到四对空时正交互补码組对, 它们的组间互相关函数在原点附近存在一 个零相关窗口, 其窗口宽度大于或等于 2N. The orthogonal complementary code group kernel whose width of the zero correlation window window is greater than or equal to L is further expanded to obtain four pairs of space-time orthogonal complementary code group pairs. There is a zero correlation between the cross-correlation functions between the groups near the origin. Window whose window width is greater than or equal to
所述的扩展可按生成树结构持续下去, 以产生出编码长度为 N2n, 组间 零相关窗口宽度大于或等于 L的 2n对空时正交互补码组对, 其中 n=0, 1, 2 , ..· , 为扩展的次数。 The expansion can be continued according to the spanning tree structure to generate 2 n pairs of space-time orthogonal complementary code group pairs with a coding length of N 2 n and a width of the zero correlation window between groups greater than or equal to L, where n = 0, 1 , 2, .. ·, is the number of expansions.
所述的对扩展后的具有组间零相关窗的各个空时扩频地址码可以通过 插入零保护间隔或时隙是指: 对于由空时正交互补码组核扩展生成的具有 组间零相关窗的各个空时扩频地址码插入一定数量的零保护间隔或时隙, 由此形成的新的空时正交互补码组的组间零相关窗口宽度大于或等于原有 的空时正交互补码组的组间零相关窗口宽度。 Said pair of extended space-time spreading address codes with inter-group zero correlation window can be inserted into the zero guard interval or time slot to refer to: For inter-group zeros generated by space-time orthogonal complementary code group core extension Each space-time spread-spectrum address code of the correlation window is inserted into a certain number of zero guard intervals or time slots, and the new space-time orthogonal complementary code group formed from this group has a zero-correlation window width greater than or equal to the original space-time positive Inter-group zero correlation window width of the complementary code group.
如果所述的扩展后的各组空时扩频地址码具有组间宽度为 2W-1的零相 关窗, 那么可以对于该扩展后的各个空时扩频地址码的每 W个码片(Chip ) 插入 T个零; 由此形成的新的空时正交互补码组的组间零相关窗口宽度大 于或等于 2 1。
所述的插入 T 个零需满足如下条件, 即: 使得形成的新的空时正交互 补码组的组间零相关窗口宽度为最大化。 If each of the extended groups of space-time spread-spectrum address codes has a zero correlation window with an inter-group width of 2W-1, then every W chips (Chip) of each of the extended space-time spread-spectrum address codes (Chip) ) Insert T zeros; the width of the inter-group zero correlation window of the new space-time orthogonal complementary code group thus formed is greater than or equal to 21. The insertion of T zeros needs to satisfy the following conditions: that the width of the zero correlation window between groups of the new space-time orthogonal complementary code group to be formed is maximized.
所述的插入 Τ个零包括: 在每 L+1个码片 (Chip ) 的尾部插入 T个零、 在每 L+1个码片 (Chip ) 的头部插入 T个零等。 本发明还提供了一种空时扩频多地址码应用方法, 其包括以下步骤: 根据所应用系统的传播条件、 系统所采用的基本扩频码速率以及系统 中的最大定时误差, 确定所需的组间零相关窗口的宽度; The inserting of the T zeros includes: inserting T zeros at the tail of each L + 1 chip (Chip), inserting T zeros at the head of each L + 1 chip (Chip), and the like. The present invention also provides a space-time spreading multiple address code application method, which includes the following steps: determining the required according to the propagation conditions of the applied system, the basic spreading code rate used by the system, and the maximum timing error in the system. The width of the zero correlation window between groups;
根据所需零的组间相关窗口的宽度, 生成或选取一对或多对基本正交 互补码组对; Generate or select one or more pairs of basically orthogonal complementary code group pairs according to the width of the correlation window between the required zero groups;
对所述的基本正交互补码组对进行扩展, 生成具有组间零相关窗的空 时正交互补码组核; Extending the basic orthogonal complementary code group pair to generate a space-time orthogonal complementary code group kernel with a zero correlation window between the groups;
根据实际用户数, 确定所需的最大用户地址数, 并将所选用的具有组 间零相关窗的空时正交互补码組核作为原点, 在生成树结构中进行码长及 码数目的扩展, 扩展后的各组空时扩频地址码间的互相关函数在原点附近 存在一个组间零相关窗口; According to the actual number of users, determine the maximum number of user addresses required, and use the selected space-time orthogonal complementary code group kernel with zero correlation window between groups as the origin, and expand the code length and number of codes in the spanning tree structure. , The cross-correlation function between the extended groups of space-time spread-spectrum address codes has a zero correlation window between the groups near the origin;
将扩展后的具有组间零相关窗口的各组空时扩频地址码分别在对应的 发射机上扩频调制发射。 The groups of space-time spread-spectrum address codes with zero correlation windows between the groups after spreading are spread-modulated and transmitted on corresponding transmitters.
所述的生成并选取基本正交互补码组对包括: 可选取各码长度为 N、 零相关窗窗口的宽度为 L 的基本正交互补码组对(d, S,)、 (C2, S2); 所述 的 ( , St )、 (C2, S2) 的自相关与互相关函数分别为 C码间的非周期自相关 与互相关函数与 S码间的非周期自相关与互相关函数之和, 其中在宽度为 L的零相关窗口内, C码与 S码的非周期自相关与互相关函数除原点外相反 相成, 相加后的自相关函数值与互相关函数值除原点外处处为零。 The generating and selecting a pair of basic orthogonal complementary code groups includes: selecting a pair of basic orthogonal complementary code groups (d, S,), (C 2 , each code length N and zero correlation window window width L) S 2 ); The auto-correlation and cross-correlation functions of (, S t ) and (C 2 , S 2 ) are aperiodic auto-correlation between C codes and aperiodic auto-correlation between cross-correlation function and S code, respectively And the cross-correlation function, where within a zero correlation window of width L, the aperiodic autocorrelation of the C code and the S code is opposite to the cross-correlation function except the origin, and the value of the added autocorrelation function and the cross-correlation function It is zero everywhere except the origin.
所述的生成并选取基本正交互补码组对包括: 所述的基本正交互补码 组对(Cp S , ( C2, S2 )可以用生成树结构生成。
所述的对所述的基本正交互补码组对进行扩展, 生成具有組间零相关 窗的空时正交互补码组核包括: 对得到的各码长度为 N、 零相关窗窗口的 宽度为 L 的基本正交互补码组对((^, Si ), ( C2, S2 ), 按如下方式扩展成 为具有组间零相关窗的空时正交互补码组核, 其中: CfCCu CfC^:), C2=(C21 The generating and selecting the basic orthogonal complementary code group pair includes: the basic orthogonal complementary code group pair (C p S, (C 2 , S 2 )) can be generated by using a spanning tree structure. The step of expanding the basic orthogonal complementary code group pair to generate a space-time orthogonal complementary code group kernel with zero correlation windows between the groups includes: obtaining each code length N and the width of the zero correlation window window. The pair of basic orthogonal complementary code groups ((^, Si), (C 2 , S 2 ) for L) is expanded into a space-time orthogonal complementary code group kernel with a zero correlation window between groups as follows, where: CfCCu CfC ^ :), C 2 = (C 21
该扩展后的空时正交互补码组核的各码长度为,2N、 组间零相关窗窗口 的宽度为大于或等于 2L- 1。 The length of each code of the extended space-time orthogonal complementary code group kernel is 2N, and the width of the zero correlation window between groups is greater than or equal to 2L-1.
根据本发明所述的方法, 对所述的空时正交互补码组核插入一定数量 的零保护间隔或时隙,
关窗口 宽度大于原有的空时正交互补码组核的组间零相关窗口宽度。 According to the method of the present invention, a certain number of zero guard intervals or time slots are inserted into the space-time orthogonal complementary code group core, The width of the close window is larger than the width of the zero correlation window between the original space-time orthogonal complementary code group kernels.
根据本发明所述的方法, 如果基本正交互补码组对( , S,)、 (C2, S2) 的各码长度为 N且零相关窗窗口的宽度为 L, 那么可以对于该扩展后的各 码长度为 2N空时正交互补码组核的每 L+1个码片 ( Chip )插入 T个零; 其中, 可在每 L+1个码片个码片 (Chip )尾部插入 T个零, 由此形成的新 的空时正交互补码组核的组间零相关窗口宽度度于或等于 2L-1 , 由此新 的空时正交互补码组核按生成树结构持续扩展, 所得到的空时正交互补码 组对的组间零相关窗口宽度大于或等于 2L-1。 According to the method of the present invention, if the length of each code of the basic orthogonal complementary code group pair (, S,) and (C 2 , S 2 ) is N and the width of the zero correlation window is L, then the extension Each subsequent code length is 2N space-time orthogonal complementary code group cores, and every L + 1 chips (Chip) is inserted with T zeros; wherein, each L + 1 chip may be inserted at the tail of each chip (Chip) T zeros, and the width of the inter-group zero correlation window of the new space-time orthogonal complementary code group core formed by this is equal to or equal to 2L-1, so that the new space-time orthogonal complementary code group core continues according to the spanning tree structure By extension, the width of the inter-group zero correlation window of the space-time orthogonal complementary code group pair obtained is greater than or equal to 2L-1.
所述的插入 T 个零需满足如下条件, 即: 使得形成的新的空时正交互 ^卜码组核的组间零相关窗口宽度为最大化。 The insertion of T zeros needs to satisfy the following conditions, that is, the new space-time positive interaction is formed so that the width of the zero correlation window between groups of the group kernel is maximized.
所述的插入 T个零包括: 在每 L+1个码片 (Chip ) 的尾部插入 T个零、 在每 L+1个码片 (Chip ) 的头部插入 T个零等。 The inserting T zeros includes: inserting T zeros at the tail of each L + 1 chip (Chip), inserting T zeros at the head of each L + 1 chip (Chip), and so on.
所述的扩展将根据所需最大用户数和所选取基本正交互补码组对的组 数共同确定所述的生成树中所需的扩展阶段数。
所述的将扩展后的具有组间零相关窗口的各组空时扩频地址码分别在 对应的发射机上扩频调制发射包括: 对所述的具有组间零相关窗口的各组 间可以对应相同的两个发射机。 The expansion will jointly determine the number of expansion stages required in the spanning tree according to the required maximum number of users and the number of selected pairs of basic orthogonal complementary code groups. The spreading and modulation of each group of space-time spread-spectrum address codes with zero-correlation windows between groups on the corresponding transmitters includes: Corresponding to each group with zero-correlation windows between groups The same two transmitters.
所述的将扩展后的具有组间零相关窗口的各组空时扩频地址码分别在 对应的发射机上扩频调制发射包括: 对所述的具有组间零相关窗口的各组 间可以分別对应不同的两个发射机。 The step of spreading the space-time spread-spectrum address codes of the extended groups with zero correlation windows between groups on the corresponding transmitters respectively includes: Corresponds to two different transmitters.
所述的将扩展后的具有组间零相关窗口的各组空时扩频地址码分别在 对应的发射机上扩频调制发射包括: 当釆用如下的两组空时正交互补码组 时: The spreading and modulation of each group of space-time spread-spectrum address codes with zero correlation windows between groups on a corresponding transmitter includes: When the following two sets of space-time orthogonal complementary codes are used:
SN S12 S12 •SIN S1N S N S 12 S 12 • SIN S 1N
" Cu C12 - C12 ... C1N - C - SN S12 - S12 ,••SIN _ S1N
"C u C 12 -C 12 ... C 1N -C-S N S 12 -S 12 , •• SIN _ S 1N
对该两组空时正交互补码组的每组码分在两个发射机上发射, 组与组 之间可以对应相同的两个发射机, 也可以分别对应不同的两组的两个发射 机; 对于同一組内的两个空时正交互补码与两个发射机的对应关系如下: 对于第一个空时正交互补码的所有的奇数码片 (Chip )对应在第一个 发射机的相应的奇数码片发射, 所有的偶数码片 (Chip )对应在第二个发 射机的相应的偶数码片发射; 对于第二个空时正交互补码的所有的奇数码 片 (Chip )对应在第二个发射机的相应的奇数码片发射, 所有的偶数码片 ( Chip )对应在第一个发射机相应的偶数码片发射; 也可以反之, 即对于 第二个空时正交互补码的所有的奇数码片 (Chip )对应在笫一个发射机的 相应的奇数码片发射, 所有的偶数码片 (Chip )对应在第二个发射机的相 应的偶数码片发射; 对于第一个空时正交互补码的所有的奇数码片 (Chip ) 对应在第二个发射机的相应的奇数码片发射, 所有的偶数码片 (Chip )对
应在第一个发射机相应的偶数码片发射。 Each code division of the two sets of space-time orthogonal complementary code groups is transmitted on two transmitters, and the same two transmitters can be corresponded between the groups and the groups, or the two transmitters of the different two groups can be respectively corresponded to. The corresponding relationship between two space-time orthogonal complementary codes and two transmitters in the same group is as follows: For all the odd digital chips (Chips) of the first space-time orthogonal complementary code, they correspond to the first transmitter Corresponding odd-numbered chip (Chip) of the second transmitter, and all odd-numbered chip (Chip) of the second space-time orthogonal complementary code. Corresponding to the corresponding odd digital chips transmitted on the second transmitter, all the even digital chips (chips) corresponding to the corresponding even digital chips on the first transmitter are transmitted; or vice versa, that is, for the second space-time orthogonal All the odd-numbered chips (Chips) of the complementary code correspond to the corresponding odd-numbered chips that are transmitted on one transmitter, and all the even-numbered chips (Chips) correspond to the corresponding even-numbered chips that are transmitted on the second transmitter. Space-time orthogonal complement All the odd digital chips (Chip) of the code correspond to the corresponding odd digital chips transmitted on the second transmitter, and all the even digital chips (Chip) It should be transmitted on the corresponding even digital chip of the first transmitter.
所述的空时正交是指: 所述的两组空时正交互补码组的每个空时扩频 地址码分在两个发射机上发射形成如下的两组共四个空时序列时, 这两组 空时序列保持组间正交并具有组间零相关窗, The space-time orthogonal refers to: when each space-time spread spectrum address code of the two sets of space-time orthogonal complementary code groups is transmitted on two transmitters to form the following two sets of four space-time sequences in total , These two sets of space-time sequences remain orthogonal between groups and have zero correlation windows between groups.
其中: among them:
t = a cos(2¾T ^ + , a2 = a2 cos(27 ct + φ2) ? a3 = 3 cos(27 ct + φζ , a4 = 4 008(2^^ + ^4) ? a1 ? 25 3 5 4 6 [03+oo)? φι ,φ2 ,φ3 7 φ4€[0»。 可对所产生的多地址码进行等效变换。 t = a cos (2¾T ^ +, a 2 = a 2 cos (27 c t + φ 2 )? a 3 = 3 cos (27 c t + φ ζ , a 4 = 4 008 (2 ^^ + ^ 4 ) ? a 1? 25 3 5 4 6 [0 3 + oo) ? φ ι , φ 2 , φ 3 7 φ 4 € [0 ». Equivalent transformation can be performed on the generated multi-address code.
所述的等效变换可包括: 交换 C与 S码的位置、 同时交换 C1与 C2及 S1 与 S2的位置、 码序取反、 各码位取反、 交错各码位的极性、 在复平面内对 各码位作旋转变化、 在生成树中进行变化等。 The equivalent transformation may include: exchanging positions of C and S codes, exchanging positions of C1 and C2 and S1 and S2 at the same time, inverting code sequence, inverting each code bit, interleaving the polarity of each code bit, Rotate and change each code position in the plane, change in the spanning tree, and so on.
所述的在复平面内对各码位作旋转变化包括: 可将基本互补码组对各码 位顺序旋转"度, 经旋转变换后各地址码的自相关函数与互相关函数的性 质不变, 但 "零相关窗口" 外的付峰与旋转角度有关; 适当选择旋转角度, 可使旋转后的码组之间正交, 即可由一组正交码产生多组正交码。 The rotation of each code position in the complex plane includes: The basic complementary code group can be sequentially rotated by "degrees", and the properties of the autocorrelation function and cross-correlation function of each address code are unchanged after the rotation transformation. However, the peaks outside the "zero-correlation window" are related to the rotation angle; by properly selecting the rotation angle, the rotated code groups can be orthogonal, and multiple orthogonal codes can be generated from a set of orthogonal codes.
所述的产生的多组正交码适用于組网要求, 切换要求, 增加容量要求 等; 特别是当码长较长时。 The generated multiple sets of orthogonal codes are suitable for networking requirements, handover requirements, capacity requirements, etc .; especially when the code length is long.
所述的正交互补码必须保证 C码只与 C码运算(含自身及其他码), S 码只与 S码运算(含自身及其他码)。
在实际应用中应对 C码与 S码采取分离措施。 The orthogonal complementary code must ensure that the C code operates only with the C code (including itself and other codes), and the S code operates only with the S code (including itself and other codes). In practical applications, C code and S code should be separated.
所述的分离措施可包括: 将 C码与 S码分别调制在相互正交的极化波 上; 或可将 c码与 S码分别放在经传输后仍互不重叠的两个时隙内。 The separation measures may include: modulating the C code and the S code on orthogonal polarized waves, respectively; or placing the c code and the S code in two time slots that do not overlap each other after transmission. .
本发明所述的方法中, 传输信道随时间有随机变化, 为保证互补性的 实现, 在传输过程中两个极化波内及两个时隙内的信道特性应该保持一致, 即: 它们的衰落应该同步; 这就要求在利用极化分离时, 必须使用能保证 正交极化波同步衰落, 无去极化的频段及相应措施, 在利用时分方式分离 时, 必须使两个时隙间的间隔远小于信道的相关时间, 在采用其它分离方 式时也必须保证它们的同步衰落。 In the method of the present invention, the transmission channel changes randomly with time. In order to ensure the realization of complementarity, the channel characteristics in the two polarized waves and the two time slots should be consistent during the transmission process, that is, their The fading should be synchronized; this requires that when using polarization separation, a frequency band that can guarantee the simultaneous polarization of orthogonal polarization waves, no depolarization, and corresponding measures must be used. When using time-division separation, the time between two time slots must be maintained. The interval is much smaller than the correlation time of the channel. When other separation methods are used, their synchronization fading must be guaranteed.
本发明所述的方法中, 由于 C码与 S码应分离传输, 同时还要利用它 们的互补性, 所以调制在它们上面的信息比特应该相同, 而对 C码与 S码 解扩与解调后的输出应该相加。 In the method of the present invention, since the C code and the S code should be transmitted separately and their complementarity should be used, the information bits modulated on them should be the same, and the C code and the S code should be despread and demodulated. The subsequent outputs should be added.
本发明的有益效果在于, 通过提供一种空时扩频多地址码编码及应用 方法, 使所形成的空时扩频多地址码的组与组之间的相关特性具有 "零相 关窗", 即在零相关窗内各组地址码间的互相关函数没有付峰, 从而消除组 与组之间的多址干扰(MAI ), 而同组内的各个地址码间虽然存在多址干扰 ( MAI ), 但是可以利用联合检测技术来达到最优接收。 本发明所提出的这 种具有组间零相关窗特性的空时扩频码编码方法, 这种新的具有组间零相 关窗空时扩频码编码既将分集技术、 零相关窗特性相结合, 又可以利用联 合检测、 干扰抵消技术、 均衡技术技术, 这就为增大系统容量提供了可能。 同时本发明解决了传统 CDMA系统中应用联合检测的复杂度问题。 上述的具 有組间 "零相关窗" 的空时扩频多地址码具有了以下五个特点: (一)各组 空时扩频地址码间的互相关函数在原点附近存在一个零相关窗口。 从正交 性观点讲, 各组空时扩频地址码之间在相对时延小于该零相关窗口的宽度 时是完全正交的。 (二)各个空时扩频地址码的自相关函数在上述的组间零 相关窗口内除原点外, 仅在两个非零相对时延处不为零, 其他处处为零,
即其具有较理想的特性。 (三) 同一组内的各个空时扩频地址码的互相关函 数在上述的组间零相关窗口内仅在两个非零相对时延处不为零, 其他处处 为零。 (四)对于上述的每个空时扩频地址码分在两个发射机上发射; (五) 对于上述的各个空时扩频地址码可以通过插入零保护间隔或时隙, 增大组 间零相关窗口的大小。 The beneficial effect of the present invention is that, by providing a space-time spread spectrum multi-address code encoding and application method, the correlation characteristics between the formed space-time spread spectrum multi-address code group and the group have a "zero correlation window", That is, the cross-correlation function between groups of address codes in the zero correlation window does not have peaks, thereby eliminating multiple access interference (MAI) between groups, while there is multiple access interference (MAI) between each address code in the same group. ), But joint detection techniques can be used to achieve optimal reception. The space-time spreading code coding method with inter-group zero correlation window characteristics proposed by the present invention. This new space-time spreading code coding with inter-group zero correlation window characteristics combines both diversity technology and zero-correlation window characteristics. In addition, joint detection, interference cancellation technology, and equalization technology can be used, which provides the possibility for increasing system capacity. At the same time, the invention solves the complexity problem of applying joint detection in the traditional CDMA system. The above-mentioned space-time spreading multiple address codes with "zero correlation windows" between groups have the following five characteristics: (1) A cross-correlation function between each group of space-time spreading address codes has a zero correlation window near the origin. From the perspective of orthogonality, the space-time spread-spectrum address codes are completely orthogonal when the relative delay is smaller than the width of the zero correlation window. (2) The autocorrelation function of each space-time spread-spectrum address code is not only zero at the two non-zero relative delays except for the origin within the above-mentioned inter-group zero correlation window, That is, it has ideal characteristics. (3) The cross-correlation function of each space-time spread-spectrum address code in the same group is only zero at the two non-zero relative delays in the above-mentioned inter-group zero correlation window, and is zero at other places. (4) For each of the above-mentioned space-time spread-spectrum spreading address codes transmitted on two transmitters; (5) For each of the above-mentioned space-time spread-spectrum spreading address codes, a zero guard interval or time slot can be inserted to increase the inter-group zero The size of the relevant window.
附图说明 BRIEF DESCRIPTION OF THE DRAWINGS
图 1为本发明具有組间 目关窗的空时正交互补^ ¾H« 之第" "^图。 Fig. 1 is the first "^^^" of the space-time orthogonal complementarity of the present invention with closed windows between groups.
图 2为本发明具有组间 目关窗的空时正交互补^ 之第二示意图。 FIG. 2 is a second schematic diagram of the space-time orthogonal complementarity with inter-group window closing in the present invention.
图 3为本发明的所 ^的 正交互补^ ¾a ^的一种^ ^^7¾图。 FIG. 3 is a kind of ^^^ of the orthogonal complementary ^ ¾a ^ of the present invention.
具体实施方式 下面通过实施例及附图对本发明进行详细阐述。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below through embodiments and drawings.
第一步, 基本正交互补码组对的生成和选取。 The first step is the generation and selection of the basic orthogonal complementary code pair.
本发明技术方案所述的各码长度为 N、 零相关窗窗口的宽度为 L 的基 本正交互补码组对(Cp Si ( C2, S2 )是指: 其自相关与互相关函数分别 为 C码间的非周期自相关与互相关函数与 S码间的非周期自相关与互相关 函数之和, 其中在宽度为 L的零相关窗口内, C码与 S码的非周期自相关 与互相关函数除原点外相反相成, 相加后的自相关函数值与互相关函数值 除原点外处处为零。 所述的基本正交互补码组对(C , Si ) ( C2, S2 )一种 生成方法可以用李道本教授在 PCT/CN00/00028中的的基本正交互补码组对 的生成方法。 The pair of basic orthogonal complementary code groups (Cp Si (C 2 , S 2 ) in which each code length is N and the width of the zero correlation window is L according to the technical solution of the present invention refer to: their autocorrelation and crosscorrelation functions are respectively Is the sum of the non-periodic autocorrelation and cross-correlation functions between the C code and the S-code, and the non-periodic autocorrelation between the C code and the S code in a zero correlation window of width L It is opposite to the cross-correlation function except for the origin, and the added value of the auto-correlation function and the cross-correlation function are zero except for the origin. The pair of basic orthogonal complementary code groups (C, Si) (C 2 , S 2 ) One kind of generating method can use the basic orthogonal complementary code group pair generating method of Professor Li Daoben in PCT / CN00 / 00028.
需要说明的是对于正交互补码, 对其作相关或匹配滤波运算时, C码 只与 C码、 S码只与 S码作运算, C码与 S码在运算时不相遇。 It should be noted that for orthogonal complementary codes, when performing correlation or matching filtering operations on them, the C code only operates on the C code, the S code only operates on the S code, and the C code and S code do not meet during the operation.
请参见图 3 所示, 这是一种基本互补码组对的生成树图。 在具体的多 地址编码过程中可以利用图 3中的基本正交互补码组对。 图中凡是 < >内 的一对码组就是基本正交互补码组对, 它们的互补自相关函数及互相关函 数完全没有付峰, 亦即呈完全理想特性。 需要说明的是, 图 3 中生成的仅
仅是一种基本互补码组对, 还有众多等效形式, 例如, 交换它们上下, 或 左右的顺序, 颠倒它们前后的顺序, 隔位取反, 在复平面内旋转等。 都可 得到等效的鉢互补码辦。 它们的自相关献与 Λ关献也 4*想的。 Please refer to FIG. 3, which is a spanning tree diagram of a basic complementary code group pair. In the specific multi-address coding process, the basic orthogonal complementary code group pair in FIG. 3 can be used. In the figure, each pair of code groups in <> is a basic orthogonal complementary code group pair, and their complementary autocorrelation functions and cross-correlation functions have no peaks at all, that is, they have completely ideal characteristics. It should be noted that only the generated in Figure 3 It is only a basic complementary code group pair, and there are many equivalent forms, for example, swapping their order up and down, or left and right, reversing their order before and after, reversing the spacing, and rotating in the complex plane. Can get the equivalent bowl complementary code. Their autocorrelation and Λguanxian are also 4 * thought.
第二步, 生成具有组间零相关窗的空时正交互补码组核 The second step is to generate a space-time orthogonal complementary code group kernel with a zero correlation window between groups.
对第一步得到的各码长度为 N、 零相关窗窗口的宽度为 L 的基本正交 '互补码组对(C S (C,2, S,2), 0Ί= (Cn C12...C1N), C,2=(C21 C22...C2N), S =(Sn S12...S1N), s,2=(s21 S22...S2N)按如下方式扩展成为具有组间零相关 窗的空时正交互补码组核: For the pair of basic orthogonal 'complementary code pairs (CS (C, 2 , S, 2 )) where each code length is N and the width of the zero correlation window window is L (CS (C, 2 , S, 2 )), 0 第一步 = (C n C 12 .. .C 1N ), C, 2 = (C 21 C 22 ... C 2N ), S = (S n S 12 ... S 1N ), s, 2 = (s 21 S 22 ... S 2N ) Expand into a space-time orthogonal complementary code group kernel with inter-group zero correlation window as follows:
该扩展后的空时正交互补码组核的各码长度为 2N、 组间零相关窗窗口 的宽度为大于或等于 2L- 1。 The length of each code of the extended space-time orthogonal complementary code group kernel is 2N, and the width of the zero correlation window between groups is greater than or equal to 2L-1.
所述的空时正交是指上述的空时正交互补码组核的每个空时扩频地址 码分在两个发射机上发射形成如下的两组共四个空时序列时, 这两组空时 序列保持正交并具有组间零相关窗 The space-time orthogonal means that each space-time spread-spectrum address code division of the above-mentioned space-time orthogonal complementary code group core is transmitted on two transmitters to form the following two sets of four space-time sequences. Group space-time sequences remain orthogonal and have zero correlation windows between groups
其 中 ax = x cos(2/ ct + φχ)7 2 = a2 cos(27 ct + φ2) 3 a3 = 3 cos(2¾Tci + φ3) 3 a4 = a cos(27 ct + φ4) , αλ,α2,α ,α e [0,+oo), cpm ≡ [0»。
我们可以对上述的空时正交互补码组核插入一定数量的零保护间隔或 时隙, 由此形成的新的空时正交互补码组核的组间零相关窗口宽度大于或 等于原有的空时正交互补码組核的组间零相关窗口宽度。 如果第一步中的 选定的基本正交互补码组对 ( C1 ? Si ), ( C2, S2 ) 的各码长度为 N且零相关 窗窗口的宽度为 L, 那么我们可以该扩展后的各码长度为 2N空时正交互补 码组核的每 L+1个码片 (Chip )插入 T个零。 按照如下的零保护间隔或时 隙插入方式: 每 L+1个码片个码片 (Chip )尾部插入 T个零, 由此形成的 新的空时正交互补码组核的组间零相关窗口宽度大于或等于 2L- 1 , 由此新 的空时正交互补码组核按第三步的树形结构持续扩展, 所得到的空时正交 互补码组对的组间零相关窗口宽度大于或等于 2L- 1。 插入这 T个零的准则 是使得由此形成的新的空时正交互补码组核的组间零相关窗口宽度为最大 化, 插入这 T个零的方法 ^艮多, 例如插在每 L+1个码片 (Chip ) 的尾部, 插在每 L+1个码片 (Chi p ) 的头部, 在此恕不——列举。 Where a x = x cos (2 / c t + φ χ ) 7 2 = a 2 cos (27 c t + φ 2 ) 3 a 3 = 3 cos (2¾T c i + φ 3 ) 3 a 4 = a cos ( 27 c t + φ 4 ), α λ , α 2 , α, α e [0, + oo), cpm ≡ [0 ». We can insert a certain number of zero guard intervals or time slots into the above-mentioned space-time orthogonal complementary code group cores. The new space-time orthogonal complementary code group cores have a width of the zero correlation window greater than or equal to the original The inter-group zero correlation window width of the space-time orthogonal complementary code group kernel. If the code length of the selected pair of basic orthogonal complementary code groups (C 1? Si), (C 2 , S 2 ) in the first step is N and the width of the zero correlation window window is L, then we can Each L + 1 chip (Chip) of the 2N space-time orthogonal complementary code group core after the extended code length is inserted with T zeros. According to the following zero guard interval or time slot insertion method: T zeros are inserted at the end of each L + 1 chip and chip, and the new space-time orthogonal complementary code group core formed by the group has zero correlation. The window width is greater than or equal to 2L-1, so that the new space-time orthogonal complementary code group kernel continues to expand according to the tree structure of the third step, and the width of the zero-correlation window between groups of the space-time orthogonal complementary code group pair is obtained. Greater than or equal to 2L-1. The criterion for inserting the T zeros is to maximize the width of the zero correlation window between the new space-time orthogonal complementary code group kernels formed by the method. There are many methods for inserting the T zeros, for example, inserting every L The tail of +1 chips (chip) is inserted at the head of every L + 1 chips (chip), and will not be listed here.
例如我们选取如下的各个码长度为 1零相关窗窗口宽度为 3的基本正 交互补码组于: For example, we select the following basic orthogonal complementary code groups whose code length is 1 and the zero correlation window window width is 3:
( C, S ) = ( ++, +- )及(C,2, S,2 ) = ( - +, ―) (C, S) = (++, +-) and (C, 2 , S, 2 ) = (-+, ―)
那么按照上述生成方法生成的具有组间零相关窗的空时正交互补码组 核为:
Then the space-time orthogonal complementary code group kernel with zero correlation window between groups generated according to the above generation method is:
_ /—— + +\ „ I一一一一 \ _ / —— + + \ „I one one one one one \
C ) S C) S
\ - + + -/ \ - + - +/ 第三步, 对第二步生成具有组间零相关窗的空时正交互补码组核进行 码长及码数目的扩展, 扩展后的各组空时扩频地址码间的互相关函数在原 点附近存在一个零相关窗口。 \-+ +-/ \-+-+ / The third step is to expand the code length and number of codes of the space-time orthogonal complementary code group core with zero correlation window between the groups in the second step. The cross-correlation function between space-time spread-spectrum address codes has a zero correlation window near the origin.
可按以下方式对空时正交互补码组核生成两对或两组也就是四个各码 长度均为 2N的空时正交互补码:
(C, C2, S, S2)
Two or two pairs of space-time orthogonal complementary code groups can be generated in the following manner, that is, four space-time orthogonal complementary codes each having a code length of 2N: (C, C 2 , S, S 2 )
(C2- , S2-St) (C 2- , S 2 -S t )
因为由一对空时正交互补码組可以得到两对或两组共四个新的空时正 交互补码, 但各码的长度加倍, 由这两对或两组共四个新的空时正交互补 码又可派生出四对或四组共八个新的空时正交互补码组, 然后, 八对或八 组共十六个空时正交互补码 , 其中对与对之间的码组的互相关函数存 在一零相关窗口, 其宽度与原始的基本互补码组有关。 这种过程可由一生 成树图关系来描述, 图 1就是这种生成树图的一种, 图 2是另一种生成树。 还有其它很多种生成树, 它们之间的关系均属等效变换, 等效变换不会改 变组间的零相关窗口的宽度, 但有时可改变零相关窗口外付峰的高度及分 布。 例如我们选取如下的各码长度为 4空时正交互补码组核: Because a pair of space-time orthogonal complementary code groups can obtain two new pairs of two space-time orthogonal complementary codes, but the length of each code is doubled. Two new pairs or two groups of four new space-free orthogonal codes can be obtained. The time-orthogonal complementary code can be derived from four pairs or four groups of eight new space-time orthogonal complementary code groups, and then, eight pairs or eight groups of sixteen space-time orthogonal complementary code groups can be generated. There is a zero correlation window in the cross-correlation function between code groups, and its width is related to the original basic complementary code group. This process can be described by a lifetime spanning tree graph relationship. Figure 1 is one such spanning tree graph, and Figure 2 is another spanning tree. There are many other types of spanning trees, and the relationship between them is equivalent transformation. The equivalent transformation does not change the width of the zero correlation window between the groups, but it can sometimes change the height and distribution of the peaks outside the zero correlation window. For example, we select the following kernels with 4 space-time orthogonal complementary code lengths:
按照上述的扩展方法进行一次扩展后我们得到两对也就是四组各码长 度均为 8的空时正交互补码组: After performing an expansion according to the above expansion method, we obtain two pairs, that is, four sets of space-time orthogonal complementary code groups each with a code length of 8:
+—— +一 +
对于上述生成的两对也就是四组各码长度均为 8 的空时正交互补码组 的 8个互补码, 现将它们重新编号排列如下: + —— + one + For the two pairs generated above, that is, the four complementary codes of the four space-time orthogonal complementary code groups each having a code length of 8, the numbers are renumbered as follows:
(CI, S1) = (+ + + + - - + +, + + ); (CI, S1) = (+ + + +--+ +, + +);
(C2, S2) = (+ - + - - + + -, + - - + - + - +); (C2, S2) = (+-+--+ +-, +--+-+-+);
(C3, S3) = (+ + + + + + - - , + +—— + + + +); (C3, S3) = (+ + + + + +--, + + —— + + + +);
(C4, S4) = (+ - + - + _一 +, +—— + +— +— ); (C4, S4) = (+-+-+ _ 一 +, + —— + + — + —);
(C5, S5) = (—— + + + + + +, + +—— ); (C5, S5) = (—— + + + + + +, + + ——);
(C6, S6) = (- + + - + - + - , 一 + - + +—— + ); (C6, S6) = (-+ +-+-+-, one +-+ + —— +);
(C7, S7) = ( - - + + , + +); (C7, S7) = (--+ +, + +);
(C8, S8) = ( - + +—一 + -+, - + - + - + + - ); (C8, S8) = (-+ + —a +-+,-+-+-+ +-);
将上述的四组各码长度均为 8的空时正交互补码组的 8个互补码分别 在四组每组两个发射机形成如下的四组共 8 个空时序列时, 这四組序列保 持正交并具有组间零相关窗: When the eight complementary codes of the four groups of space-time orthogonal complementary code groups each having a code length of 8 are respectively formed in the four groups of two transmitters each forming the following four groups of a total of 8 space-time sequences, the four groups The sequence remains orthogonal and has a zero correlation window between groups:
(C,l, S'l) = ίαλ α2 αχ α2 ~αχ ― α2 α α2 ? αχ α2 —αχ—α2 —α —α2 - χ ~α2 ); (C,2, S'2) = ( α2 ~αλ α2 -αχ —α2 αλ α2 -α{ ? α2 ~αχ -α2 αχ -α2 αλ 一 2 αλ ); (C, l, S'l) = ία λ α 2 α χ α 2 ~ α χ ― α 2 α α 2 ? Α χ α 2 —α χ —α 2 —α —α 2 - χ ~ α 2 ); (C, 2, S'2) = (α 2 ~ α λ α 2 -α χ —α 2 α λ α 2 -α { ? Α 2 ~ α χ -α 2 α χ -α 2 α λ - 2 α λ );
(C,3, S,3) = ( α3 α4 α3 α4 α3 α4 ~α3 ~ α 3 α3 β4 ~ β3 ~ U4 β3 α fl3 Ω4 ^(C, 3, S, 3) = (α 3 α 4 α 3 α 4 α 3 α 4 ~ α 3 ~ α 3 α 3 β 4 ~ β 3 ~ U 4 β 3 α fl 3 Ω 4 ^
(C'4, S34) ~ ( α4 ~α3 α4 - 3 α4 -α3 ~α4 3 , α4 -α — 4 α3 α ~α3 α4 -α3 ); (C,5, S'5) = ( - 5 — 6 α5 α6 α5 α6 α5 α6 , -α5 -α6 -α5 —α6 α5 α6 -α5 — α6 ); ( 6, S'6)= ( ~αβ α5 αβ ~α5 α6 —α5 α6 ~α5 , —α6 α5 —α6 α5 α6 -α5 —α6 α5 ); (C7, S7) = ( -αΊ —α8 αΊ α8 -αΊ— 8 ~αΊ -α% , 一 αΊ— α& —αΊ - 8 -αΊ— 8 αΊ αΒ ); (C,8, S58) = (— 8 αΊ α — αΊ -α8 αΊ —αΒ αΊ , —αζ αΊ — 8 αΊ —α% αΊ α —α, ); 其中 = α{ cos(27fct + φ.), α· e [03+οο)?^. e [072π) , 2, 3, 4, 5, 6, 7, 8。 可以險证这四组共 8 个空时正交互补序列的互相关函数对于 任意的 :^[0,+οο), e[0,2r) ( ί=1, 2, 3, 4, 5, 6, 7? 8)在原点附近都存在一个零 相关窗口, 其窗口的宽度大于或等于 5; 扩展后的各个扩频地址码的自相 关函数在上述的组间零相关窗口内除原点外和相对移位 τ为 1和- 1外, 其 他处处为零; 同一组内的两个扩频地址码的互相关函数在上述的组间零相
关窗口内仅在两个相对移位 τ为 1和- 1处不为零, 其他处处为零。 (C'4, S 3 4) ~ (α 4 ~ α 3 α 4 - 3 α 4 -α 3 ~ α 4 3, α 4 -α - 4 α 3 α ~ α 3 α 4 -α 3); ( C, 5, S'5) = ( -5 — 6 α 5 α 6 α 5 α 6 α 5 α 6 , -α 5 -α 6 -α 5 —α 6 α 5 α 6 -α 5 — α 6 ) ; (6, S'6) = (~ α β α 5 α β ~ α 5 α 6 —α 5 α 6 ~ α 5 , —α 6 α 5 —α 6 α 5 α 6 -α 5 —α 6 α 5 ); (C7, S7) = (-α Ί —α 8 α Ί α 8 -α Ί — 8 ~ α Ί -α % , one α Ί — α & —α Ί - 8 -α Ί — 8 α Ί α Β ); (C, 8, S 5 8) = (— 8 α Ί α — α Ί -α 8 α Ί —α Β α Ί , —α ζ α Ί — 8 α Ί —α % α Ί α —α ,); Where = α { cos (27f c t + φ.), Α · e [0 3 + οο) ? ^. E [0 7 2π), 2, 3, 4, 5, 6, 7, 8, 8. It can be proven that the cross-correlation functions of the four groups of 8 space-time orthogonal complementary sequences are arbitrary for any of: ^ [0, + οο), e [0, 2r) (ί = 1, 2, 3, 4, 5, 6, 7 ? 8) There is a zero correlation window near the origin, and the width of the window is greater than or equal to 5; the autocorrelation function of each spreading address code after the expansion is within the above-mentioned inter-group zero correlation window except the origin and The relative shift τ is 1 and −1, and it is zero everywhere. The cross-correlation function of two spread-spectrum address codes in the same group is zero-phased between the above groups. Only two relative shifts in the off-window are 1 and -1, which are not zero, and zero in other places.
第四步, 对扩展后的具有组间零相关窗的各个空时扩频地址码可以通 过周期性地插入一定数量的零保护间隔或时隙, 由此形成的新的空时正交 互补码组的組间零相关窗口宽度大于原有的空时正交互补码组的组间零相 关窗口宽度。 In a fourth step, a new space-time orthogonal complementary code formed by periodically inserting a certain number of zero guard intervals or time slots for each space-time spread-spectrum address code with inter-group zero correlation window can be formed. The width of the zero correlation window between groups is larger than the width of the zero correlation window between the original space-time orthogonal complementary code groups.
如果由第三步所得到的空时正交互补码组的组间零相关窗口宽度为 If the inter-group zero correlation window width of the space-time orthogonal complementary code group obtained in the third step is
2L-1,那么我们可以每 L+1个码片 (Chip)插入 T个零, 由此形成的新的空 时正交互补码组的组间零相关窗口宽度为 2L- 1。 插入这 T个零的准则是使 得由此形成的新的空时正交互补码组的组间零相关窗口宽度为最大化, 插 入这 T个零的方法 ^艮多, 例如插在每 L+1个码片 (Chip) 的尾部, 插在每 L+1个码片 (Chip) 的头部, 在此恕不——列举。 2L-1, then we can insert T zeros per L + 1 chips, and the new space-time orthogonal complementary code group formed by this group has a width of the zero correlation window of 2L-1. The criterion for inserting the T zeros is to maximize the width of the zero correlation window between the new space-time orthogonal complementary code groups thus formed. There are many methods for inserting the T zeros, for example, inserting every L + The tail of a chip is inserted at the head of every L + 1 chip. It will not be listed here.
例如对于上述第三步生成的两对也就是四组各码长度均为 8 的空时正 交互补码组的 8个互补码: For example, for the two pairs generated in the third step, that is, the eight complementary codes of the four space-time orthogonal complementary code groups each having a code length of 8:
(Cl, SI) = (+ + + + - - + +, + + ); (Cl, SI) = (+ + + +--+ +, + +);
(C2, S2) = (+ - + - - + + -, + - - + - + -+); (C2, S2) = (+-+--+ +-, +--+-+-+);
(C3, S3) = (+ + + + + +——, + +—— + + + +); (C3, S3) = (+ + + + + + ——, + + —— + + + +);
(C4, S4) = (+ - + - +—— +, +—— + + - + - ); (C4, S4) = (+-+-+ —— +, + —— + +-+-);
(C5, S5) = (—— + + + + + +, + +—— ); (C5, S5) = (—— + + + + + +, + + ——);
(C6, S6) = (- + + - + - + - , - + - + +—— + ); (C6, S6) = (-+ +-+-+-,-+-+ +-+);
(C7, S7) = ( - - + + , + +); (C7, S7) = (--+ +, + +);
(C8, S8) = (- + + - - + - + , - + - + - + + - ); (C8, S8) = (-+ +--+-+,-+-+-+ +-);
这四组各码长度 为 8空时正交互补码组的組间零相关窗口宽度为 5, 如果我们在每 4个码片 (Chip)的尾部插入 1 个零, 由此生成新的两对也 就是四组各码长度均为 10 (如果不考虑零其有效长度为 8) 的空时正交互 补码组的 8个互补码, 现将它们重新编号排列如下: The width of the zero correlation window between the four groups of code length 8 space-time orthogonal complementary code groups is 5, if we insert 1 zero at the end of every 4 chips, a new two pairs are generated. That is to say, the eight complementary codes of the four groups of space-time orthogonal complementary code groups each having a code length of 10 (the effective length is zero if zero is not considered) are now renumbered and arranged as follows:
(Cl, Sl) = (+ + + + 0 - - + + 0 , + + - - 0 0 ); (Cl, Sl) = (+ + + + 0--+ + 0, + +--0 0);
(C2, S2) = (+ - + - 0 - + + - 0 , + - - + 0 - + - + 0 ); (C2, S2) = (+-+-0-+ +-0, +--+ 0-+-+ 0);
(C3, S3) = (+ + + + 0 + + - - 0 , + + - - 0 + + + + 0 );
(C4, S4) = (+ - + - 0 +—— + 0 +—— + 0 + - + - 0 );(C3, S3) = (+ + + + 0 + +--0, + +--0 + + + + 0); (C4, S4) = (+-+-0 + —— + 0 + —— + 0 +-+-0);
(C5, S5) = (- - + + 0 + + + + 0 0 + +—— 0 ); (C5, S5) = (--+ + 0 + + + + 0 0 + +-0);
(C6, S6) = (- + + - 0 + - + - 0 - + - + 0 +—— + 0 ); (C6, S6) = (-+ +-0 +-+-0-+-+ 0 + —— + 0);
(C7, S7) = ( - - + + 0 0 0 —— + + 0 ); (C7, S7) = (--+ + 0 0 0 —— + + 0);
(C8, S8) = (- + + - 0 一 + - + 0 - + - + 0 - + + - 0 ); (C8, S8) = (-+ +-0-+-+ 0-+-+ 0-+ +-0);
这四组各码长度均为 10 (如果不考虑零其有效长度为 8) 的空时正交 互补码组的 8个互补码, 也可以先将如下的各码长度为 4 的空时正交互补 码组核: The eight complementary codes of the four groups of space-time orthogonal complementary code groups each with a code length of 10 (if no zero is considered, the effective length is 8), the space-time orthogonal of each code length of 4 can also be first Complementary code group core:
对于这对空时正交互补码组核, 我们可以每 4 个码片 (Chip)插入 1 个零, 按照如下的零保护间隔或时隙插入方式: 每 4 个码片 (Chip)尾部 插入 1 个零, 由此形成的新的空时正交互补码组核的组间零相关窗口宽度 为 7, 如下所示: For this pair of space-time orthogonal complementary code group kernels, we can insert 1 zero every 4 chips, and insert the zero guard interval or time slot as follows: Insert 1 at the end of every 4 chips The number of zeros, and the new space-time orthogonal complementary code group kernel formed by this group of zero correlation window width is 7, as shown below:
由此新的空时正交互补码组核按第三步的树形结构扩展一次, 所得到 的正交互补码组对显然与上述的四组各码长度均为 10的空时正交互补码组 的 8 个互补码完全相同。 也就是说我们既可以通过对正交互补码组核插入 各个空时扩频地址码插入零保护间隔或时隙由此形成的新的空时正交互补 码组的组间零相关窗口宽度大于原有的空时正交互补码组的組间零相关窗 口宽度。 Therefore, the new space-time orthogonal complementary code group kernel is expanded once according to the tree structure of the third step, and the obtained orthogonal complementary code group pair is obviously complementary to the above-mentioned four groups of space-time orthogonal complementary codes each having a length of 10. The 8 complementary codes of the code group are exactly the same. That is to say, we can insert the space-time spreading address code into the orthogonal complementary code group kernel and insert a zero guard interval or time slot to form a new space-time orthogonal complementary code group. Inter-group zero correlation window width of the original space-time orthogonal complementary code group.
可以验证这四组共 8 个空时正交互补码的互相关函数在原点附近存在
一个零相关窗口, 其窗口的宽度大于或等于 7 ; 扩展后的各个空时扩频地 址码的自相关函数在上述的组间零相关窗口内除原点外和相对移位 τ为 1 和- 1 夕卜, 其他处处为零; 同一组内的两个空时扩频地址码的互相关函数在 上述的组间零相关窗口内仅在两个相对移位 τ为 1和- 1处不为零, 其他处 处为零。 It can be verified that the cross-correlation functions of these four groups of 8 space-time orthogonal complementary codes exist near the origin A zero correlation window, the width of which is greater than or equal to 7; the autocorrelation function of each space-time spread spectrum address code after expansion is in the above-mentioned group of zero correlation windows except the origin and the relative shifts τ are 1 and-1 Xibu, it is zero everywhere; the cross-correlation function of two space-time spread-spectrum address codes in the same group is only zero at two relative shifts τ of 1 and -1 in the zero correlation window between the groups. It is zero everywhere.
下面描述本发明扩频地址码的生成过程: The following describes the generation process of the spread spectrum address code of the present invention:
首先, 根据所应用系统的传播条件, 系统所采用的基本扩频码速率(工 程上称之谓切普率, 以 MCPS计) 以及系统中的最大定时误差, 确定所需的 零相关窗口的宽度。 First, determine the required width of the zero correlation window based on the propagation conditions of the applied system, the basic spreading code rate used by the system (referred to as the Chirp rate in engineering, in terms of MCPS), and the maximum timing error in the system. .
第二步, 根据所需零相关窗口的宽度, 生成或选取一组或者多组基本 正交互补码组对。 In the second step, one or more basic orthogonal complementary code group pairs are generated or selected according to the width of the required zero correlation window.
本发明技术方案所述的各码长度为 Ν、 零相关窗窗口的宽度为 L 的基 本正交互补码组对(Cp Si ( C2, S2 )是指: 其自相关与互相关函数分别 为 C码间的非周期自相关与互相关函数与 S码间的非周期自相关与互相关 函数之和, 其中在宽度为 L的零相关窗口内, C码与 S码的非周期自相关 与互相关函数除原点外相反相成, 相加后的自相关函数值与互相关函数值 除原点外处处为零。 所述的基本正交互补码组对 ( C15 Si )、 ( C2, S2 )一种 生成方法可以用李道本教授在 PCT/CN00/00028中的基本正交互补码组对的 生成方法。 例如可以从图 3 中选出零相关窗口宽度大于或等于该所需宽度 的任一对或多对基本正交互补码组对作为基本正交互补码组对。 The pair of basic orthogonal complementary code groups (C p Si (C 2 , S 2 ) with each code length N and the width of the zero correlation window window L according to the technical solution of the present invention refers to: its autocorrelation and crosscorrelation functions The non-periodic autocorrelation and cross-correlation function between the C code and the S-code are the sum of the non-periodic autocorrelation and cross-correlation function between the S code, where the non-periodic autocorrelation between the C code and the S code is within a zero correlation window of width L. Correlation and cross-correlation functions are opposite to each other except the origin, and the added value of the auto-correlation function and the cross-correlation function are zero except for the origin. The pair of basic orthogonal complementary code groups (C 15 Si), (C 2 , S 2 ) A generation method can use the generation method of the basic orthogonal complementary code pair of Professor Li Daoben in PCT / CN00 / 00028. For example, the width of the zero correlation window greater than or equal to the required width can be selected from FIG. 3 Any one or more pairs of basic orthogonal complementary code group pairs are used as the basic orthogonal complementary code group pair.
第三步, 对第二步得到的各码长度为 N、 零相关窗窗口的宽度为 L 的 基本正交互补码組对(C1 ( C2, S2 ),
C22...C2N) , S1= (S S12...S1H) , S2= (S21 S22...S2N)按如下方式扩展成为具有组间零相关窗 的空时正交互补码组核: In the third step, a pair of basic orthogonal complementary code groups (C 1 (C 2 , S 2 )) having a code length of N and a zero correlation window window width of L obtained in the second step, C 22 ... C 2N ), S 1 = (SS 12 ... S 1H ), S 2 = (S 21 S 22 ... S 2N ) is expanded to space-time with zero correlation window between groups as follows Orthogonal complementary code group kernel:
Q Q
- CJJ C12 - C]2 ... CM - CIN / - S12 ...S1N
S21 S22 S22 , -CJJ C 12 -C ] 2 ... C M -C IN /-S 12 ... S 1N S 21 S 22 S 22 ,
2 •C2N **C2N -S21 S22 -S22...s 2N ■s 2N 2 • C2N ** C 2N -S 21 S 22 -S 22 ... s 2N ■ s 2N
该扩展后的空时正交互补码组核的各码长度为 2N、 组间零相关窗窗口 的宽度为大于或等于 2L- 1。 The length of each code of the extended space-time orthogonal complementary code group kernel is 2N, and the width of the zero correlation window between groups is greater than or equal to 2L-1.
我们可以对上述的空时正交互补码组核插入一定数量的零保护间隔或 时隙, 由此形成的新的空时正交互补码组核的组间零相关窗口宽度大于原 有的空时正交互补码组核的组间零相关窗口宽度。 如果第二步中的基本正 交互补码組对 (C15 Si). (C2, S2)的各码长度为 N且零相关窗窗口的宽度 为 L, 那么我们可以对于该扩展后的各码长度为 2N空时正交互补码组核的 每 L+1个码片( Chip )插入 T个零,按照如下的零保护间隔或时隙插入方式: 每 L+1个码片个码片 (Chip)尾部插入 T个零, 由此形成的新的空时正交 互补码组核的组间零相关窗口宽度大于或等于 2L- 1, 由此新的空时正交互 补码组核按图 1 所示的树形结构持续扩展, 所得到的空时正交互补码组对 的组间零相关窗口宽度大于或等于 2L- 1。 插入这 T个零的准则是使得由此 形成的新的空时正交互补码組核的组间零相关窗口宽度为最大化, 插入这 T 个零的方法很多, 例如插在每 L+1 个码片 (Chip) 的尾部, 插在每 L+1 个码片 (Chip) 的头部, 在此恕不一"^ -列举。 We can insert a certain number of zero guard intervals or time slots into the above-mentioned space-time orthogonal complementary code group cores, and the new space-time orthogonal complementary code group cores have a larger width of the zero correlation window than the original space. The inter-group zero correlation window width of the time orthogonal complementary code group kernel. If the code length of the basic orthogonal complementary code pair in the second step (C 15 Si). (C 2 , S 2 ) is N and the width of the zero correlation window is L, then we can Each code length is 2N space-time orthogonal complementary code group core. Each L + 1 chip (Chip) inserts T zeros, according to the following zero guard interval or time slot insertion method: Each L + 1 chip number The T (zero) is inserted at the end of the chip, and the new space-time orthogonal complementary code group kernel formed by the new space-time orthogonal complementary code group kernel has a width greater than or equal to 2L-1, and thus the new space-time orthogonal complementary code group kernel. As the tree structure shown in FIG. 1 continues to expand, the width of the zero correlation window between the obtained space-time orthogonal complementary code group pairs is greater than or equal to 2L-1. The criterion for inserting the T zeros is to maximize the width of the zero correlation window between the new space-time orthogonal complementary code group kernels formed by this. There are many methods for inserting the T zeros, for example, inserting every L + 1 The tail of each chip is inserted at the head of every L + 1 chip. It is not included here.
笫四步, 根据实际用户数, 确定所需的最大用户地址数, 并将所选用 的具有组间零相关窗的空时正交互补码组核作为图 1或图 1 中的原点, 在 树图中进行码长及码数目的扩展, 扩展后的各组空时扩频地址码间的互相 关函数在原点附近存在一个组间零相关窗口。 (4) According to the actual number of users, determine the maximum number of user addresses required, and use the selected space-time orthogonal complementary code group kernel with zero correlation window between groups as the origin in Figure 1 or Figure 1. In the figure, the code length and the number of codes are expanded. The cross-correlation function between the expanded groups of space-time spread-spectrum address codes has a zero correlation window between the groups near the origin.
扩展将根据所需最大用户数和所选取基本正交互补码组对的组数共同 确定图 1或图 2 中所需的扩展阶段数, 例如所需最大用户数为 120, 如果 只有一对基本正交互补码组符合系统设计要求, 由于 2fi=64> 120/2, 则所 需扩展的阶段数为 6, 而图 1或图 2中第 6阶段中的 26=64组码共 128个 地址码就可作为所选的多地址码。 此时实际最大用户地址数为 128, 它大
于所需用户数 120 , 完全可以满足要求; 如果有两对基本正交互补码组符 合系统设计要求, 可以对这两对基本正交互补码组分别作为图 1或图 2 中 的原点, 各自在树图中进行码长及码数目的扩展, 则所需扩展的阶段数为 5 , 这两对基本正交互补码组一共扩展为 64組码共 128个地址码就可作为 所选的多地址码; 如果有四对基本正交互补码组符合系统设计要求, 可以 对这四对基本正交互补码组分别作为图 1或图 1 中的原点, 各自在树图中 进行码长及码数目的扩展, 则所需扩展的阶段数为 4 , 所得 64組码共 128 个地址码即可满足系统设计要求; 如果有八对基本正交互补码組符合系统 设计要求, 可以对这八对基本正交互补码组分别作为图 1或图 2中的原点, 各自在树图中进行码长及码数目的扩展, 则所需扩展的阶段数为 3 , 所得 64 组码共 128个地址码即可满足系统设计要求; 当有 16对基本正交互补码組 符合系统设计要求, 可以对这 16对基本正交互补码组分别作为图 1或图 1 中的原点, 各自在树图中进行码长及码数目的扩展, 则所需扩展的阶段数 为 2 , 所得 64组码共 128个地址码即可满足系统设计要求; 当有 32对基 本正交互补码组符合系统设计要求, 可以对这 32对基本正交互补码组分别 作为图 1或图 2 中的原点, 各自在树图中进行码长及 数 II的扩展, 则所 需扩展的阶段数为 1 , 所得 64组码共 128个地址码即可满足系统设计要求。 其他用户数设计可以依此类推。 The expansion will jointly determine the number of expansion stages required in Figure 1 or Figure 2 according to the maximum number of users required and the number of selected pairs of basic orthogonal complementary code pairs. For example, the maximum number of users required is 120. If there is only one pair of basic The orthogonal complementary code group meets the system design requirements. Because 2 fi = 64> 120/2, the number of stages to be expanded is 6, and the total number of 26 = 64 codes in the sixth stage in FIG. 1 or FIG. 2 is 128. The address code can then be used as the selected multiple address code. At this time, the actual maximum number of user addresses is 128, which is large. With the required number of users of 120, the requirements can be fully met. If there are two pairs of basic orthogonal complementary code groups that meet the system design requirements, the two pairs of basic orthogonal complementary code groups can be used as the origins in Figure 1 or Figure 2, respectively. Expand the code length and the number of codes in the tree map. The number of stages to be expanded is 5. The two pairs of basic orthogonal complementary code groups are expanded to a total of 64 codes and 128 address codes. Address code; if there are four pairs of basic orthogonal complementary code groups that meet the system design requirements, the four pairs of basic orthogonal complementary code groups can be used as the origin in Figure 1 or Figure 1, respectively, and the code length and code can be coded in the tree diagram. If the number of stages is expanded, the number of stages required to be expanded is 4, and the resulting 64 groups of codes with a total of 128 address codes can meet the system design requirements. If there are eight pairs of basic orthogonal complementary code groups that meet the system design requirements, the eight pairs The basic orthogonal complementary code groups are respectively used as the origins in FIG. 1 or FIG. 2, and the code length and the number of codes are respectively extended in the tree diagram. The number of stages to be extended is 3, and the resulting 64 groups of codes have a total of 128 address codes. Can meet the system design Requirements; when there are 16 pairs of basic orthogonal complementary code groups that meet the system design requirements, the 16 pairs of basic orthogonal complementary code groups can be used as the origin in Figure 1 or Figure 1, respectively, and the code length and number of codes can be performed in the tree diagram. Expansion, the number of stages required for expansion is 2, and the resulting 64 groups of codes with a total of 128 address codes can meet the system design requirements; when 32 pairs of basic orthogonal complementary code groups meet the system design requirements, the 32 pairs of basic codes can be Orthogonal complementary code groups are used as the origins in Figure 1 or Figure 2, respectively, and the code length and number II are extended in the tree diagram. The number of stages to be extended is 1, and the resulting 64 group codes have a total of 128 address codes. Can meet system design requirements. Other user design can be deduced by analogy.
第五步, 将扩展后的具有组间零相关窗口的各组空时扩频地址码分别 对应在相应的两个发射机上扩频调制发射。 In a fifth step, each group of the space-time spread-spectrum spreading address codes with the zero-correlation window between the groups is correspondingly spread-modulated and transmitted on the corresponding two transmitters.
我们以以下的两组空时正交互补码组为例说明 We take the following two sets of space-time orthogonal complementary code groups as examples
Sn S12 S12 ...S1N S1N S n S 12 S 12 ... S 1N S 1N
- Su S12 - S12 .. 'S1N - SlN/
-S u S 12 -S 12: 'S 1N -S lN /
对于上述的每组码分在两个发射机上发射, 组与组之间可以对应相同 的两个发射机(例如下行链路 )也可以分別对应不同的两组的两个发射机
(例如上行链路)。 For each group of code divisions transmitted on two transmitters, the same two transmitters (such as the downlink) can be corresponding to each other between the groups, or they can correspond to the two transmitters of different two groups. (E.g. uplink).
对于同一組内的两个空时正交互补码与两个发射机的对应关系如下: 对于第一个空时正交互补码的所有的奇数码片 (Chip)对应在第一个 发射机的相应的奇数码片发射, 所有的偶数码片 (Chip)对应在第二个发 射机的相应的偶数码片发射; 对于第二个空时正交互补码的所有的奇数码 片 (Chip)对应在第二个发射机的相应的奇数码片发射, 所有的偶数码片 (Chip)对应在第一个发射机相应的偶数码片发射; 也可以反之, 即对于 第二个空时正交互补码的所有的奇数码片 (Chip)对应在第一个发射机的 相应的奇数码片发射, 所有的偶数码片 (Chip)对应在第二个发射机的相 应的偶数码片发射; 对于第一个空时正交互补码的所有的奇数码片 (Chip) 对应在第二个发射机的相应的奇数码片发射, 所有的偶数码片 (Chip)对 应在第一个发射机相应的偶数码片发射。 The corresponding relationship between two space-time orthogonal complementary codes in the same group and two transmitters is as follows: For all the odd-numbered chips (Chip) of the first space-time orthogonal complementary code correspond to the first transmitter Corresponding odd-numbered chips are transmitted, and all even-numbered chips (chips) correspond to corresponding even-numbered chips transmitted by the second transmitter; all odd-numbered chips (chips) of the second space-time orthogonal complementary code correspond to The corresponding odd digital chips on the second transmitter are transmitted, and all the even digital chips (Chip) correspond to the corresponding even digital chips on the first transmitter. The reverse can also be the opposite, that is, the second space-time orthogonal complementarity All the odd digital chips (chips) of the code correspond to the corresponding odd digital chips transmitted at the first transmitter, and all the even digital chips (chips) correspond to the corresponding even digital chips transmitted at the second transmitter; All odd-numbered chips (chips) of a space-time orthogonal complementary code correspond to the corresponding odd-numbered chips transmitted at the second transmitter, and all even-numbered chips (chips) correspond to the corresponding odd-numbered chips at the first transmitter. Digital film launch.
所述的空时正交是指上述的两组空时正交互补码组的每个空时扩频地 址码分在两个发射机上发射形成如下的两组共四个空时序列时, 这两组空 时序列保持組间正交并具有组间零相关窗 The space-time orthogonal refers to when each space-time spread-spectrum address code division of the above two sets of space-time orthogonal complementary code groups is transmitted on two transmitters to form the following two sets of four space-time sequences, Two sets of space-time sequences remain orthogonal between groups and have zero correlation windows between groups
+ φ2) ? 3 ~ 2 cos(27 ct + φ3)? 4 = a4 c s(27 ct + 4 ), lt>a2,a39a4 e [0,+oo), ^15^2?^3,^4 e [0,2π)。 + φ 2 ) ? 3 ~ 2 cos (27 c t + φ 3 )? 4 = a 4 cs (27 c t + 4 ), lt> a 2 , a 39 a 4 e [0, + oo), ^ 15 ^ 2? ^ 3 , ^ 4 e [0, 2π).
在工程实际中, 有时需要更多的地址码的变种。 这就需要对所产生的 多地址码进行等效变换, 这些变换种类繁多, 不能一^ ^列它, 现将一些最
基本的等效变换列出如下: In engineering practice, sometimes more variants of the address code are needed. This requires equivalent transformation of the generated multi-address codes. There are many types of these transformations, and they cannot be listed one by one. The basic equivalent transformations are listed below:
交换 C与 S码的位置。 Exchange the positions of the C and S codes.
同时交换 C1与 C2及 S1与 S2的位置。 Swap the positions of C1 and C2 and S1 and S2 at the same time.
码序取反。 Code sequence is reversed.
各码位取反。 Each code position is inverted.
交错各码位的极性: 例如可将(++-+, + --- ), (+++-, +-++) 交错各 码位的极性, 即其中各码的第一, 三等奇数码位的极性不变, 而二, 四等 偶数码位变极性, 得(+ --- , ++-+), (+-++, +++-), 或奇数码位极性改变, 而偶数码位极性不变。 Interleave the polarity of each code point: For example, (++-+, + ---), (+++-, +-++) can be used to interleave the polarity of each code point, that is, the first of each code, The polarity of the third-order odd digits does not change, and the second and fourth-order even digits change their polarity, so (+ ---, ++-+), (+-++, +++-), or odd The digital bit polarity changes while the even digital bit polarity does not change.
在复平面内对各码位作旋转变化: 例如, 可将基本互补码组对(++-+, +—- ), (+++-, +- ++)各码位顺序旋转"度得 Rotate each code point in the complex plane: For example, you can rotate the basic complementary code group pair (++-+, +-), (+++-, +-++) to each code point in order. Get
Vq ψαχ +«) _ Ψα J(^Cf +3α) t _ +0^ — +2") _ +3 ) Vq ψαχ + «) _ Ψα J (^ Cf + 3α) t _ +0 ^ — +2") _ +3)
t y ~ ti t y ~ ti
(c'^-i + ^j^c2 +2ff) — ·/·(^2+3α) )ψ — _/( .2+α) _/(ρ,、.2+2α) _/(^2+3α) (c '^-i + ^ j ^ c 2 + 2ff ) — · / · (^ 2 + 3α)) ψ — _ / (. 2 + α) _ / (ρ ,,. 2 + 2α) _ / ( ^ 2 + 3α)
fci ci ti fci ■ & ~~ fci ίί 这里, , 及 可为任意初始角度。 可以验证经旋转变换后各地 址码的自相关函数与互相关函数的性质不变, 但 "零相关窗口" 外的付峰 与旋转角度有关(变小或改变极性)。 fci ci ti fci ■ & ~~ fci ί Here,, and can be any initial angle. It can be verified that the properties of the auto-correlation function and cross-correlation function of each address code are unchanged after the rotation transformation, but the peaks outside the "zero correlation window" are related to the rotation angle (become smaller or change polarity).
适当选择不同的旋转角度, 可使旋转后的码组之间正交, 即可由一组 正交码产生多组正交码, 这对工程应用带来很大方便。 特别是当码长较长 时, 有时能得出奇妙的结果, 能满足各种实际工程需求, 例如说组网要求, 切换要求, 乃至增加容量要求等。 Proper selection of different rotation angles can make the rotated code groups orthogonal, and multiple sets of orthogonal codes can be generated from one set of orthogonal codes, which brings great convenience to engineering applications. Especially when the code length is long, sometimes wonderful results can be obtained, which can meet various practical engineering requirements, such as networking requirements, switching requirements, and even increased capacity requirements.
在生成树中进行变化: 例如, 图 2就是图 1 的一种等效变换, 即图 2 是将图 1 中所有上半部分的 C1及 S1移到左边, C2及 S2移到右边而成, 而将将图 1中所有下半部分的 C1及 S1移到右边, C2及 S2移到左边而成。 又如可将所生成的多地址码组中 C码与 S码的码位按一定规律交错, 或改 变极性排列。 在数学上称这种变换为等效变换, 等效变换的种类很多, 请 恕在此不可能——列出。
在工程应用中使用正交互补码必须保证 C码只与 C码运算(含自身及 其他码), S码只与 S码运算(含自身及其他码 ), C码与 S码之间是绝对不 允许见面的。 因此在实际应用中应采取特殊的分离措施。 例如, 可将 C码 与 S 码分別调制在相互正交的极化波上(水平及垂直极化波, 左旋及右旋 极化波), 又如, 可将 C码与 S码分别放在经传输后仍互不重叠的两个时隙 内。 由于传输信道随时间有随机变化, 为保证互补性的实现, 在传输过程 中两个极化波内及两个时隙内的信道特性应该保持一致。 换句工程上的描 述语言, 它们的衰落应该同步。 这就要求在利用极化分离时, 必须使用能 保证正交极化波同步衰落, 无去极化的频段及相应措施, 在利用时分方式 分离时, 必须使两个时隙间的间隔远小于信道的相关时间, 在采用其它分 离方式时也必须保证它们的同步衰落。 Make changes in the spanning tree: For example, Figure 2 is an equivalent transformation of Figure 1, that is, Figure 2 is formed by moving all the upper half of C1 and S1 in Figure 1 to the left and C2 and S2 to the right. C1 and S1 in all the lower half of FIG. 1 are moved to the right, and C2 and S2 are moved to the left. For another example, the code positions of the C code and the S code in the generated multi-address code group can be staggered according to a certain rule, or the polarity can be changed. This transformation is called an equivalent transformation in mathematics, and there are many types of equivalent transformations. Please forgive it is impossible to list here. The use of orthogonal complementary codes in engineering applications must ensure that the C code operates only with the C code (including itself and other codes), the S code operates with the S code (including itself and other codes), and the absolute difference between the C code and the S code Not allowed to meet. Therefore, special separation measures should be taken in practical applications. For example, the C code and the S code can be modulated on mutually orthogonal polarized waves (horizontal and vertical polarized waves, left-handed and right-handed polarized waves), and for another example, the C code and S code can be placed separately Within two time slots that do not overlap each other after transmission. Because the transmission channel changes randomly over time, to ensure the realization of complementarity, the channel characteristics in the two polarized waves and in the two time slots should be kept consistent during the transmission process. In other words, in engineering description languages, their decline should be synchronized. This requires that when polarized separation is used, a frequency band that can guarantee the simultaneous fading of orthogonally polarized waves without depolarization and corresponding measures must be used. When using time-division separation, the interval between two time slots must be much smaller than The correlation time of the channels must also ensure their synchronous fading when using other separation methods.
由于 C码与 S码应分离传输同时还要利用它们的互补性, 显而易见, 调制在它们上面的信息比特应该相同, 而对 C码与 S码解扩与解调后的输 出应该相力口。 Since the C code and the S code should be transmitted separately and their complementarity should be used, it is obvious that the information bits modulated on them should be the same, and the output of the C code and the S code after despreading and demodulation should be comparable.
本发明给出一种新的空时扩频多地址码的编码方法, 使所形成的空时 扩频多地址码的组与组之间的相关特性具有 "零相关窗", 即在零相关窗内 各组空时地址码间的相关函数及互相关函数没有付峰, 从而消除组与组之 间的多址干扰 ( MAI ), 而同组内的各个地址码间虽然存在多址干扰(MAI ), 但是可以利用联合检测技术来达到最优接收。 本发明所提出的这种具有组 间零相关窗特性的空时扩频码编码方法 , 这种新的具有组间零相关窗空时 扩频码编码既将分集技术、 零相关窗特性相结合, 又可以利用联合检测、 干扰抵消技术、 均衡技术技术, 这就为增大系统容量提供了可能。 同时本 发明解决了传统 CDMA系统中应用联合检测的复杂度问题。 又可以利用联合 检测、 干扰抵消技术、 均衡技术技术, 这就为增大系统容量提供了可能。 同时本发明解决了传统 CDM 系统中应用联合检测的复杂度问题。
The present invention provides a new encoding method for space-time spreading multiple address codes, so that the formed group of space-time spreading multiple address codes has a correlation characteristic between groups with a "zero correlation window", that is, zero correlation Correlation functions and cross-correlation functions between groups of space-time address codes in the window have no peaks, so as to eliminate multiple access interference (MAI) between groups, while there is multiple access interference between each address code in the same group ( MAI), but joint detection techniques can be used to achieve optimal reception. The space-time spreading code coding method with inter-group zero correlation window characteristics proposed by the present invention. This new space-time spreading code coding with inter-group zero correlation window characteristics combines both diversity technology and zero-correlation window characteristics. In addition, joint detection, interference cancellation technology, and equalization technology can be used, which provides the possibility for increasing system capacity. At the same time, the invention solves the complexity problem of applying joint detection in the traditional CDMA system. In addition, joint detection, interference cancellation technology, and equalization technology can be used, which provides the possibility of increasing system capacity. At the same time, the invention solves the complexity problem of applying joint detection in the traditional CDM system.