WO2002084914A1 - Implement method of ternary spread spectrum sequence coding in cdma system - Google Patents

Implement method of ternary spread spectrum sequence coding in cdma system Download PDF

Info

Publication number
WO2002084914A1
WO2002084914A1 PCT/CN2001/000560 CN0100560W WO02084914A1 WO 2002084914 A1 WO2002084914 A1 WO 2002084914A1 CN 0100560 W CN0100560 W CN 0100560W WO 02084914 A1 WO02084914 A1 WO 02084914A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
correlation
length
zero
group
Prior art date
Application number
PCT/CN2001/000560
Other languages
French (fr)
Chinese (zh)
Inventor
Xiaohu Tang
Pingzhi Fan
Original Assignee
Linkair Communications, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linkair Communications, Inc. filed Critical Linkair Communications, Inc.
Priority to CN01809591.7A priority Critical patent/CN1201514C/en
Priority to PCT/CN2001/000560 priority patent/WO2002084914A1/en
Publication of WO2002084914A1 publication Critical patent/WO2002084914A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/007LAS, i.e. LA, LS and LAS codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • H04J13/14Generation of codes with a zero correlation zone

Definitions

  • All the basic pulse intervals of the spreading sequence code group are greater than or equal to the length of the zero correlation region Z cz , and the difference between the positions of any two basic pulses is different under the operation of the modulus sequence length.
  • the pulse interval is odd or even.
  • the autocorrelation function of any sequence in the spreading sequence code group has a zero correlation area on both sides of the zero shift and the zero shift. There are zero correlation areas on both sides of the zero shift. Outside the zero correlation area, the auto-correlation value and cross-correlation value are only 1, 0, and -1.
  • the correlation functions include periodic correlation, aperiodic correlation, and periodic odd correlation, and the zero correlation regions of the three correlation functions are all equal.
  • the pulse interval in the construction method 1 is strictly increasing. Generally, the sequence of the pulse intervals in increasing order cannot reach the minimum length. To this end, the method 1 can be used as a basis to further improve the algorithm, so another method is proposed.
  • the spreading sequence code group is composed of basic pulses with a normalized amplitude and width of 1 and polarity, and includes at least the following steps. : a. Given the basic pulse number of the LA sequence and the length of the zero correlation region, generate a base sequence s of length N;
  • the second construction method includes the following steps:
  • FIG. 4 it is a cycle-period cross-correlation function diagram of sequence 1 and sequence 2 in FIG. Other arbitrary sequence pairs have completely similar periodic cross-correlation functions.
  • the instantaneous delay falls within (-16, 16)
  • the value of the periodic cross-correlation function is zero. Otherwise, the periodic cross-correlation value is only 1, 0, -1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

This invention publishes an implement method of ternary spread spectrum coding in CDMA system. This spread spectrum code group consists of basic pulse of normalized amplitudes and duration of 1 and polarity; first, giving the number of basic pulses and the length of zero correlation zone (ZCZ) for the LA (large Area) sequence, and generating a basic sequence s that its length is N; then generating a binary orthogonal sequence group, and extending the binary orthogonal sequence to ternary sequence; finally, multiplying the basic sequence s by each of the ternary sequence group as bit, thereby obtaining ternary spread spectrum sequence group A. It is important that basic sequence s is constructed by setting relationship between each of pulse interval δ1 and zero correlation zone to computing pulse interval of the sequence. This spread spectrum coding method apply to anisochronous CDMA communication system, reduce or rather eliminate common channel interference, and increase system's capacity and simplify the design of a CDMA system.

Description

码分多址系统中三进制扩频序列编码的实现方法 技术领域  Method for implementing ternary spread spectrum sequence coding in code division multiple access system
本发明涉及一种扩频及多址无线通信的编码技术, 特别是指工作于准 同步方式下的一种低干扰或无干扰码分多址通信的扩频序列码的编码方 法。  The present invention relates to a coding technique for spread spectrum and multiple-access wireless communication, and more particularly to a low-interference or non-interference code division multiple access coding method for spread-spectrum serial code working in a quasi-synchronous manner.
发明背景 Background of the invention
无线通信系统的功能不断强大, 能同时提供对话音、 数据、 图像等多 种业务的支持, 以满足用户日益增长的通信需求。 而在无线通信中, 对频 谱的利用是最为关键的, 码分多址 (CDMA )技术就是提高频谱利用率最 有效的手段。 与传统的频分多址(FDMA )、 时分多址 ( TDMA )等无线多 址技术相比, CDMA具有软性容量、 抗多径和抗干扰等等能力。  The function of the wireless communication system is constantly strong, and it can provide multiple voice, data, and image services at the same time, so as to meet users' increasing communication needs. In wireless communications, the use of the frequency spectrum is the most critical. Code division multiple access (CDMA) technology is the most effective way to improve the utilization of the frequency spectrum. Compared with traditional wireless multiple access technologies such as frequency division multiple access (FDMA) and time division multiple access (TDMA), CDMA has soft capacity, anti-multipath and anti-interference capabilities.
CDMA系统的容量取决于系统的干扰电平, 干扰越小系统容量就越高。 为了更进一步地减小码分多址通信系统中的干扰 , 人们提出了同步码分多 址通信系统, 即: 令基站和各个用户之间严格地保持同步, 如采用全球定 位系统 (GPS )技术或其它复杂的高精度同步技术等等。 目前, 同步码分 多址通信系统采用正交的沃尔什(Walsh )码或阿达其(Adachi )码作为扩 频序列码组。 对于移动通信系统, 上行链路的准确同步不太容易保证, 而 且无线信道的多径传播使系统同步变得更加困难, 沃尔什或阿达其码的码 间互相关特性只在同步时为零, 当 马间不同步时互相关值不为零, 就存在 多址干扰。 并且, 由于远近效应的存在, 将进一步降低同步码分多址通信 系统的性能, 使系统容量受到限制。 为了尽量减轻远近效应的影响, 在 IS- 95 等实用系统中, 采用了复杂的快速功率控制技术。 但是, 如此会增加系 统实现的复杂度, 同时也增加了控制资源的开销, 进而增加系统成本。 The capacity of a CDMA system depends on the interference level of the system. The smaller the interference, the higher the system capacity. In order to further reduce the interference in the CDMA communication system, a synchronous CDMA communication system has been proposed, that is, to strictly maintain synchronization between the base station and each user, such as using global positioning system (GPS) technology Or other complex high-precision synchronization technology and so on. At present, an Synchronous Code Division Multiple Access communication system uses an orthogonal Walsh code or an Adachi code as a spreading sequence code group. For mobile communication systems, accurate uplink synchronization is not easy to guarantee, and multi-path propagation of wireless channels makes system synchronization more difficult. The inter-code correlation characteristics of Walsh or Adachi codes are only zero during synchronization. When the cross-correlation value is not zero when the horses are not synchronized, there is multiple access interference. In addition, due to the near-far effect, synchronous code division multiple access communication will be further reduced. The performance of the system limits the system capacity. In order to minimize the effects of near and far effects, in practical systems such as IS-95, complex fast power control technology is used. However, this will increase the complexity of system implementation, and also increase the overhead of control resources, thereby increasing the system cost.
因此, 想进一步减小码分多址通信系统中干扰的另一种办法就是: 减 小系统对同步精度的要求。 为此, 近年来有人提 '出准同步或近似同步码分 多址通信系统, 使得系统的同步误差控制在一定范围 (如一个或几个码片 周期)之内, 并在扩频码设计上展开了研究工作。 目前已有一些相关的专 利, 如: 中国专利 PCT / CN98 / 00151 ( CN1175828A ) "采用一种具有零 相关区的三进制扩频序列码组"; 日本专利 TY99002 ( 11-023252 ) "采用一 种具有零相关区的二元扩频序列码组"; 日本专利 PCT / JP97 / 03272 ( JP271858 / 96 ) "釆用一种具有梳状频谱的扩频序列码组" 等等。 但两个 日本专利中所提出扩频序列的相关函数在零相关区外可能很大, 如果系统 同步误差超出了预计的范围, 该种扩频序列带来的干扰将是难以控制。  Therefore, another way to reduce the interference in the CDMA communication system is to reduce the system's requirements for synchronization accuracy. For this reason, in recent years, some people have proposed a quasi-synchronous or near-synchronous CDMA communication system, so that the synchronization error of the system is controlled within a certain range (such as one or several chip periods), and the design of the spreading code is Started research work. At present, there are some related patents, such as: Chinese patent PCT / CN98 / 00151 (CN1175828A) "Using a ternary spreading code group with zero correlation area"; Japanese patent TY99002 (11-023252) Kind of binary spreading sequence code group with zero correlation area "; Japanese patent PCT / JP97 / 03272 (JP271858 / 96)" Using a spreading sequence code group with comb spectrum "and so on. However, the correlation function of the spreading sequences proposed in the two Japanese patents may be very large outside the zero correlation region. If the system synchronization error exceeds the expected range, the interference caused by such spreading sequences will be difficult to control.
发明内容 Summary of the Invention
由上述分析可以看出, 本发明的目的在于提出一种应用于低干扰或无 干扰准同步码分多址通信系统中的三进制扩频序列编码的实现方法, 使其 降低甚至消除噪声之外的其它干扰, 极大地提高系统容量, 同时减小系统 对功率控制和同步的要求, 且实现筒单, 降低了系统实现的复杂度。  From the above analysis, it can be seen that the object of the present invention is to propose a method for implementing ternary spreading sequence coding in a low-interference or non-interference quasi-synchronous CDMA communication system, so as to reduce or even eliminate noise. Other disturbances greatly increase the system capacity, while reducing the system's requirements for power control and synchronization, and achieving a single package, reducing the complexity of system implementation.
一般, 在理想的情况下, CDMA通信系统中使用的扩频序列集应具有 如下相关特性:  Generally, in an ideal case, the spreading sequence set used in a CDMA communication system should have the following related characteristics:
1、 每个扩频序列的自相关函数应该是一个冲激函数, 即除零时延外, 其值应处处为零。 1. The autocorrelation function of each spreading sequence should be an impulse function, that is, in addition to zero delay, Its value should be zero everywhere.
2、 每对扩频序列的互相关函数值应该处处为零。  2. The cross-correlation function value of each pair of spreading sequences should be zero everywhere.
遗憾的是, 无论是二元、 多元、 还是复数序列, 已经证明具有这种理 想相关特性的序列集是不存在的。 对给定的序列周期与数目, 一个序列集 最大自相关函数边峰值和最大互相关函数值不可能同时为零, 它们受到一 些理论界的限制, 要求一个变小时, 另一个必然增大, 如威尔奇 (Welch ) 界, 斯德尼科夫(Sidelnikov )界等。  Unfortunately, whether it is a binary, multivariate, or complex sequence, it has been proven that a sequence set with such ideal correlation characteristics does not exist. For a given sequence period and number, the maximum autocorrelation function edge peak value and the maximum cross-correlation function value of a sequence set cannot be zero at the same time. They are limited by some theoretical circles. One of them is required to be small, and the other is necessarily increased. Welch, Sidelnikov, etc.
虽然不可能设计出具有理想自相关和互相关特性的扩频序列码組, 但 是可以针对准同步 CDMA 系统, 设计出允许的同步误差范围内具有理想相 关特性的零相关区扩频序列码组。 这方面, 中国专利 PCT / CN98 / 00151 ( CN1175828A )提供一个很好的思路, 给出了一种具有零相关区的三进制 扩频序列码組-大区域(LA, Large Area )序列。  Although it is impossible to design a spreading sequence code group with ideal auto-correlation and cross-correlation characteristics, a zero-correlation area spreading sequence code group with ideal correlation characteristics within the allowable synchronization error range can be designed for a quasi-synchronous CDMA system. In this regard, the Chinese patent PCT / CN98 / 00151 (CN1175828A) provides a good idea, and gives a ternary spreading sequence code group with a zero correlation area-a large area (LA, Large Area) sequence.
所谓 LA序列, 就是由归一化幅度与宽度均为 1 的、 具有极性的基本 脉冲组成, 基本脉冲在时间坐标轴上不等且不同, 利用这种间隔不等且不 同的脉冲位置及脉冲极性排列编码, 且该序列具有以下特征:  The so-called LA sequence is composed of basic pulses with normalized amplitude and width of 1 and polarities. The basic pulses are unequal and different on the time axis. Using such unequal and different pulse positions and pulses The polarity arrangement codes, and the sequence has the following characteristics:
1 ) 自相关函数的主峰等于基本脉冲的个数;  1) the main peak of the autocorrelation function is equal to the number of basic pulses;
2 ) 自相关及互相关函数的副峰值只有 1 , 0, -1三种情形;  2) There are only three cases of sub peaks of the auto-correlation and cross-correlation functions: 1, 0, -1;
3 ) 自相关及互相关函数在原点附近存在一个零相关区。  3) There is a zero correlation region near the origin of the auto-correlation and cross-correlation functions.
这里相关函数包括周期相关、 非周期相关和周期奇相关。 Correlation functions here include periodic correlation, aperiodic correlation, and periodic odd correlation.
由上可知, LA序列的相关函数在零相关区外非常低, 为 0、 1、 或 -1 , 即使系统同步误差超出了预计的范围, 也只会有较低的干扰。 更重要的是, LA序列除周期相关函数的零相关区外, 还具有其它序列所不具备的非周期 相关函数的零相关区, 而根据系统性能分析结果, 系统性能由周期和非周 期相关函数值共同决定。 以大区域同步码分 址(LAS-CDMA) 系统为例, 在其系统中采用 LA序列集, 可使多址干扰 (MAI)和码间干扰 (ISI)得 以大幅度抑制甚至消除, 同时使相邻小区干扰(ACI)也减到最小。 因此, 可使 LAS-CDMA系统频谱效率更高、 传输数据率更高、 移动速度更快, 理 论上可比 CDMA2000 容量大 3 倍以上, 在 1.25MHz 带宽上可提供高达 5.53Mb/s的数据传输数率, 能够适应分组交换及全 IP网的发展要求。 It can be known from the above that the correlation function of the LA sequence is very low outside the zero correlation region, which is 0, 1, or -1. Even if the system synchronization error exceeds the expected range, there will only be low interference. More importantly, in addition to the zero correlation area of the periodic correlation function, the LA sequence also has the zero correlation area of the non-periodic correlation function not available in other sequences. According to the system performance analysis results, the system performance is determined by the periodic and non-periodic The period correlation function values are jointly determined. Taking the Large Area Synchronous Code Division Addressing (LAS-CDMA) system as an example, the use of LA sequence sets in its system can greatly suppress or even eliminate multiple-access interference (MAI) and inter-symbol interference (ISI). Adjacent cell interference (ACI) is also minimized. Therefore, it can make the LAS-CDMA system have higher spectral efficiency, higher transmission data rate, and faster moving speed. Theoretically, it can be more than 3 times the capacity of CDMA2000. It can provide up to 5.53Mb / s data transmission at 1.25MHz bandwidth. Rate, can adapt to the development requirements of packet switching and all-IP networks.
但是, LA序列集相对于序列长度来说, 序列数目明显偏少, 这就是说, 在相同的序列长度下它可支持的用户少, 频谱的利用率低。 因为, 序列集 在序列长度相同的情况下, 如果具有更多的序列, 就意味着能支持更多的 用户, 频谱利用率更高。 本发明正是针对这一事实, 在保持 LA序列优良 相关特性的前提下, 大大地缩短了 LA序列长度, 即提高了频谱的利用率。 另外, 在原专利中对 LA序列基本脉冲间隔要求只能有一个为大于最小间 隔 (即零相关区) 的任意奇数, 其余均为偶数, 如此, 对脉冲间隔过多限 定, 会造成已有 LA序列较长, 使得序列性能变差。 本发明正是去除了这 种要求, 构造出更短的 LA序列。  However, compared with the sequence length, the LA sequence set has a significantly smaller number of sequences, that is, it can support fewer users under the same sequence length, and the spectrum utilization rate is low. Because the sequence set has the same sequence length, if there are more sequences, it means that more users can be supported, and the spectrum utilization rate is higher. The present invention is directed to this fact, and on the premise of maintaining the excellent correlation characteristics of the LA sequence, the length of the LA sequence is greatly shortened, that is, the utilization rate of the frequency spectrum is improved. In addition, in the original patent, the basic pulse interval of the LA sequence can only have any odd number greater than the minimum interval (that is, the zero correlation area), and the rest are even numbers. In this way, excessively restricting the pulse interval will cause an existing LA sequence. Longer makes the performance of the sequence worse. The present invention removes this requirement and constructs a shorter LA sequence.
给定 LA序列的基本脉冲数 m为偶数, 零相关区长度为 Zez, 首先生成 一个长度为 N的序列 s, 称之为 LA序列的基序列。 假设基序列 s中基本脉 冲的分布位置依次分别为 xP x2, xm, 令相邻基本脉冲的间隔分別为 δ δ2, 5m. 即: 5; = xi+1 -x;, i= 1, 2, ..·, m-l。 再设 Sm = N-xm, 这些 脉冲间隔应满足: Given that the basic pulse number m of the LA sequence is even and the length of the zero correlation region is Z ez , a sequence s of length N is first generated, which is called the base sequence of the LA sequence. Assume that the distribution positions of the basic pulses in the base sequence s are x P x 2 and x m , respectively, and let the intervals of adjacent basic pulses be δ δ 2 , 5 m . That is: 5 ; = x i + 1 -x ;, i = 1, 2, .. ,, ml. Set S m = Nx m again , these pulse intervals should meet:
1、 5; > Zcz, l<i<m; 1, 5;> Z cz , l <i <m;
2、 l<i≤j<s≤t<m;-
Figure imgf000006_0001
3、 ∑^A-≠∑¾ ' t-n<i<j <s≤m<t≤2m-2; 其中 Sk = Sk.m, 当 k〉m。 也即所有脉冲间隔 (包括 Sm)都大于等于 Zcz, 且任 意两个基本脉冲的位置之差在模 N运算下相异。 那么基序列 s的自相关性 满足 LA序列的特性 1 )、 2)、 3)。
2. l <i≤j <s≤t <m;-
Figure imgf000006_0001
3. ∑ ^ A- ≠ ∑¾ 'tn <i <j <s≤m <t≤2m-2; where S k = S k . M , when k> m. That is, all pulse intervals (including S m ) are greater than or equal to Z cz , and the difference between the positions of any two basic pulses is different under the modulo N operation. Then the autocorrelation of the base sequence s satisfies the characteristics of the LA sequence 1), 2), 3).
其次, 生成长度为 m的二元正交序列组 {b1, b2, .··, bm},其中
Figure imgf000007_0001
, b[ , …, 2, ···, M, 满足
Second, generate a set of binary orthogonal sequences {b 1 , b 2 , .. ·, b m } of length m , where
Figure imgf000007_0001
, b [,…, 2, ···, M, satisfy
Rb,tbi (0) -0, i≠j R b , tbi (0) -0, i ≠ j
当!!!三 11时, 可以采用 Walsh序列组作为正交序列组。 再对正交序列组作 如下扩充, 生成长度为 N的三进制序列 {c1, c2, .··, cm} l,2, ...,M, k=0,2,〜,N-l
Figure imgf000007_0002
when! !! !! Three 11, Walsh sequence group may be employed as the orthogonal sequence group. Then, the orthogonal sequence group is extended as follows to generate a ternary sequence {c 1 , c 2 ,..., C m } l, 2, ..., M, k = 0,2, ~ , Nl
Figure imgf000007_0002
最后, 基序列 s与三进制序列组 {c1, c2, cra }中的每个序列按位相 乘, 得到三进制序列組^ 4
Figure imgf000007_0003
…, SN., C }, 即是所谓的 LA序列。
Finally, the base sequence s is multiplied bitwise with each sequence in the ternary sequence group {c 1 , c 2 , c ra } to obtain the ternary sequence group ^ 4
Figure imgf000007_0003
…, S N. , C}, is the so-called LA sequence.
序列集 的序列间相关性由基序列 s的自相关特性完全决定。考虑到 a aj的周期相关函数, l<i, j<M, 根据脉冲间隔满足的条件 1, 当时延 τ<Ζ。ζ 时, 它们中的非零元不会相遇, 因此存在一个零相关区 Zez; 根据条件 2和 3, 对固定的时延 τ, 它们中非零元至多相遇一次, 因此副峰值只有 1, 0, - 1三种情形。 非周期相关特性与周期奇相关特性也是类似的, 副峰值也只有 1, 0, -1三种情形。 因此 是 LA序列集, 周期相关、 非周期相关和周期 奇相关函数的零相关区都等于 ZczThe inter-sequence correlation of a sequence set is completely determined by the autocorrelation characteristics of the base sequence s. Considering the periodic correlation function of aa j , l <i, j <M, according to the condition 1, which is satisfied by the pulse interval, the time delay τ <Z. At ζ , the non-zero elements in them will not meet, so there is a zero correlation zone Z ez ; according to conditions 2 and 3, for a fixed delay τ, the non-zero elements in them meet at most once, so the sub-peak is only 1, 0,-1 three cases. The non-periodic correlation characteristics are similar to the periodic odd correlation characteristics, and the sub-peaks have only three cases: 1, 0, and -1. Therefore, it is a set of LA sequences. The zero correlation areas of the periodic correlation, non-periodic correlation, and periodic odd correlation functions are all equal to Z cz .
基序列 s序列是 LA序列的基 ,而 s序列中脉冲的分布位置 Xpx2, xm, 或脉冲间隔 δΡ δ2, . . ., 3„1是3序列的核心。 也就是说: 对于基序列 S , 确定了 s的脉冲间隔, 进而也就确定了脉冲分布的位置。 在给定 LA序列的 基本脉冲数和零相关区长度后, 构造出最小或尽可能小长度的 s序列是最 为关键的。 The base sequence s-sequence is the basis of the LA sequence, and the pulse distribution position Xp x 2 in the s-sequence, x m, or a pulse interval δ Ρ δ 2,, 3 " 1 3 is the core sequence that is:.... For the basic sequence S, s pulse interval is determined, thereby also determining the position pulse distribution. Given the number of basic pulses of the LA sequence and the length of the zero correlation region, it is most critical to construct an s-sequence with the smallest or smallest possible length.
有鉴于此, 本发明的主要目的就在于构造出最小或尽可能小长度的 s 序列, 使得系统在降低干扰和降低实现复杂度的同时, 极大地提高系统容 量; 并且, 减小系统对功率控制和同步的要求。  In view of this, the main purpose of the present invention is to construct an s-sequence with the smallest or as short a length as possible, so that the system can greatly increase the system capacity while reducing interference and reducing implementation complexity; and, reducing the system's power control And synchronization requirements.
为达到上述目的, 本发明的技术方案是这样实现的:  To achieve the above object, the technical solution of the present invention is implemented as follows:
一种码分多址系统中三进制扩频序列编码的实现方法, 该扩频序列码 组由归一化幅度与宽度均为 1 且具有极性的基本脉冲組成, 其至少包括以 下的步骤:  A method for implementing ternary spreading sequence coding in a code division multiple access system. The spreading sequence code group is composed of basic pulses with a normalized amplitude and width of 1 and polarity, and includes at least the following steps. :
a. 给定 LA序列的基本脉冲数和零相关区长度, 生成一个长度为 N的 基序列 s;  a. Given the number of basic pulses of the LA sequence and the length of the zero correlation region, generate a base sequence s of length N;
b. 生成长度为 m的二元正交序列組,该正交序列组可为沃尔什序列组, 再将该二元正交序列组扩充为长度为 N的三进制序列;  b. Generate a binary orthogonal sequence group of length m, the orthogonal sequence group may be a Walsh sequence group, and then expand the binary orthogonal sequence group into a ternary sequence of length N;
c 将基序列 s 与三进制序列组的每个序列按位相乘, 得到三进制扩频 序列码组 A;  c multiply the base sequence s and each sequence of the ternary sequence group by bit to obtain the ternary spreading sequence code group A;
重要的是生成基序列 s的方法进一步包括下列步骤: It is important that the method of generating the base sequence s further includes the following steps:
d.设定每个脉冲间隔 ^与零相关区长度 Zcz的关系, 计算出基序列 s的 脉冲间隔。 d. Set the relationship between each pulse interval ^ and the length of the zero correlation zone Z cz , and calculate the pulse interval of the base sequence s.
所述扩频序列码组的所有基本脉冲间隔都大于等于零相关区长度 Zcz, 且任意两个基本脉冲的位置之差在模序列长度运算下相异。 该脉冲间隔为 奇数, 或为偶数。 所述的扩频序列码组中任一序列的自相关函数在零移位及零移位两旁 有零相关区, 该扩频序列码组中任意一对序列的互相关函数在零移位及零 移位两旁有零相关区, 在零相关区外自相关值和互相关值只有 1、 0和 -1。 其中, 相关函数包括周期相关、 非周期相关和周期奇相关, 且该三种相关 函数的零相关区都相等。 All the basic pulse intervals of the spreading sequence code group are greater than or equal to the length of the zero correlation region Z cz , and the difference between the positions of any two basic pulses is different under the operation of the modulus sequence length. The pulse interval is odd or even. The autocorrelation function of any sequence in the spreading sequence code group has a zero correlation area on both sides of the zero shift and the zero shift. There are zero correlation areas on both sides of the zero shift. Outside the zero correlation area, the auto-correlation value and cross-correlation value are only 1, 0, and -1. The correlation functions include periodic correlation, aperiodic correlation, and periodic odd correlation, and the zero correlation regions of the three correlation functions are all equal.
根据上迷方案以及脉冲间隔要满足的三个条件, 可以直接得到构造方 法一, 该方法至少包括以下的步骤:  According to the above scheme and the three conditions to be satisfied by the pulse interval, the construction method 1 can be directly obtained. The method includes at least the following steps:
步骤 1、 令 S Zcz, =ZCZ+1, 53=Zcz + 2, n = 3; Step 1. Let S Zcz, = Z CZ +1, 5 3 = Z cz + 2, n = 3;
步骤 2、 ?t- Vl<i<j<s<t<n, 是否存在  Step 2.? T- Vl <i <j <s <t <n, whether it exists
1 = + δ或 t-m<i<j<s<n<t<2m-2; 如果存在, 则5 = 5+1, 继续步骤 2; 1 = + δ or tm <i <j <s <n <t <2m-2; if it exists, then 5 = 5 + 1, continue to step 2;
步驟 3、 如果 n = m-l, 则判断是否存在  Step 3.If n = m-l, determine whether it exists
∑^≠∑^ ' t-m<i<j <s<n<t<2m-2; , 如果存在, 则5 = 5+1' 转入步骤 2; ∑ ^ ≠ ∑ ^ 't-m <i <j <s <n <t <2m-2;, if it exists, then 5 = 5 + 1' Go to step 2;
步骤 4、 令 n = n+ l, 5m = 5, δ = δ+ 1。 如果 n = m, δ δ2, 5m 即为所求, 否则转入步驟 2。 Step 4. Let n = n + 1, 5 m = 5, and δ = δ + 1. If n = m, δ δ 2 , 5 m is required, otherwise go to step 2.
但是, 构造方法一中的脉冲间隔是严格递增的, 一般来说, 递增顺序 的脉冲间隔组成的序列达不到最小长度, 为此, 可以方法一为基础, 进一 步改进算法, 因此提出另一种方案:  However, the pulse interval in the construction method 1 is strictly increasing. Generally, the sequence of the pulse intervals in increasing order cannot reach the minimum length. To this end, the method 1 can be used as a basis to further improve the algorithm, so another method is proposed. Program:
一种码分多址系统中三进制扩频序列编码的实现方法, 该扩频序列码 组由归一化幅度与宽度均为 1 且具有极性的基本脉冲組成, 其至少包括以 下的步骤: a. 给定 LA序列的基本脉冲数和零相关区长度, 生成一个长度为 N的 基序列 s; A method for implementing ternary spreading sequence coding in a code division multiple access system. The spreading sequence code group is composed of basic pulses with a normalized amplitude and width of 1 and polarity, and includes at least the following steps. : a. Given the basic pulse number of the LA sequence and the length of the zero correlation region, generate a base sequence s of length N;
b. 生成长度为 m的二元正交序列组,该正交序列组可为沃尔什序列组, 再将该二元正交序列组扩充为长度为 N的三进制序列;  b. Generate a binary orthogonal sequence group of length m, the orthogonal sequence group may be a Walsh sequence group, and then expand the binary orthogonal sequence group into a ternary sequence of length N;
c将基序列 s 与三进制序列组的每个序列按位相乘, 得到三进制扩频 序列码组 A;  c multiplies the base sequence s and each sequence of the ternary sequence group bit by bit to obtain a ternary spreading sequence code group A;
重要的是生成基序列 s的方法进一步包括下列步骤: It is important that the method of generating the base sequence s further includes the following steps:
d.设定每个脉冲间隔 5;与零相关区长度 ZC 关系, 计算出基序列 s的 脉冲间隔; d. Set each pulse interval 5; the relationship with the length Z C of the zero correlation zone, and calculate the pulse interval of the base sequence s;
e.按照步骤 b计算出的脉冲间隔, 生成零相关区长度大于等于 Zez且小 于等于 Zez +N-1的一个以上的父序列; e. According to the pulse interval calculated in step b, generating one or more parent sequences with a length of zero correlation region greater than or equal to Z ez and less than or equal to Z ez + N-1;
f. 计算出每个父序列的长度;  f. Calculate the length of each parent sequence;
g. 随机选取两个父序列, 在随机选择的一个位置将该序列截断, 交换 这两个序列对应的部分, 产生两个子序列; 重复步骤 f, 直到产生一定数量 的子序列;  g. Randomly select two parent sequences, truncate the sequence at a randomly selected position, and exchange the corresponding parts of the two sequences to generate two subsequences; repeat step f until a certain number of subsequences are generated;
h. 计算每个子序列的长度;  h. Calculate the length of each subsequence;
i. 选择长度最短的一个以上子序列作为新的父序列;  i. Select one or more child sequences with the shortest length as the new parent sequence;
j .运行完规定的时间后, 选取长度最短的序列为解。  j. After running the specified time, choose the shortest sequence as the solution.
步骤 g中一定数量的子序列以及步驟 j中的规定时间, 均由零相关区长 度和脉冲数的经验值确定。  A certain number of subsequences in step g and the specified time in step j are determined by the empirical values of the length of the zero correlation area and the number of pulses.
步骤 g 进一步包括以下步骤: 当两个新子序列的交换部分与未交换部 分的脉沖间隔有冲突时, 只保留未交换部分不冲突的脉冲间隔, 然后从冲 突脉冲间隔的下一位开始按照步骤 b 计算出的脉冲间隔重新生成新的子序 列。 其中, 脉冲间隔冲突是指交换部分与未交换部分出现相同的脉冲间隔。 所述扩频序列码组的所有基本脉冲间隔都大于等于零相关区长度 Zcz, 且任意两个基本脉冲的位置之差在模序列长度运算下相异。 该脉冲间隔为 奇数, 或为偶数。 Step g further includes the following steps: When the pulse interval of the exchanged part and the non-exchanged part of the two new subsequences conflicts, only the non-conflicted pulse interval of the non-exchanged part is retained, and then the step from the next bit of the conflicting pulse interval is followed. b Calculate the pulse interval to regenerate a new subsequence Column. Among them, the pulse interval conflict means that the same pulse interval occurs in the exchanged part and the non-exchanged part. All the basic pulse intervals of the spreading sequence code group are greater than or equal to the length of the zero correlation region Z cz , and the difference between the positions of any two basic pulses is different under the operation of the modulus sequence length. The pulse interval is odd or even.
上述的扩频序列码组中任一序列的自相关函数在零移位及零移位两旁 有零相关区, 该扩频序列码组中任意一对序列的互相关函数在零移位及零 移位两旁有零相关区, 在零相关区外自相关值和互相关值只有 1、 0和 -1。 其中, 相关函数包括周期相关、 非周期相关和周期奇相关, 且该三种相关 函数的零相关区都相等。  The autocorrelation function of any sequence in the above-mentioned spreading sequence code group has a zero correlation area on both sides of zero shift and zero shift. The cross-correlation function of any pair of sequences in the spreading sequence code group is at zero shift and zero. There are zero correlation areas on both sides of the shift. Outside the zero correlation area, the auto-correlation value and cross-correlation value are only 1, 0, and -1. The correlation functions include periodic correlation, aperiodic correlation, and periodic odd correlation, and the zero correlation regions of the three correlation functions are all equal.
• 该构造方法二具体包括下列几个步骤:  • The second construction method includes the following steps:
步骤 1、利用方法一产生零相关区长度大于等于 Zez,且小于等于 Zez +n-l 的 n个父序列; Step 1. Use method one to generate n parent sequences whose length of the zero correlation region is greater than or equal to Z ez and less than or equal to Z ez + nl;
步骤 2、 计算各父序列的长度;  Step 2. Calculate the length of each parent sequence;
― 步骤 3、 交叉。 即: 随机选取两个父序列, 在一随机选择的位置将它们 截断, 交换它们对应部分, 产生两个子序列。 注意, 这两个序列很可能后 一部分的 与前面的冲突 (即不满足脉冲间隔的条件 2和 3 ), 则只保留前 面的所有不冲突的 δ 设一共 k个这样的 δ 从 k+1位利用方法一生成新的 子序列。 重复这一操作, 直到产生一定数量的子序列;  ― Step 3. Cross. That is, two parent sequences are randomly selected, they are truncated at a randomly selected position, and their corresponding parts are exchanged to generate two child sequences. Note that these two sequences are likely to conflict with the previous part (that is, the conditions 2 and 3 of the pulse interval are not met), then only all the non-conflicting δs are retained. Use method one to generate a new subsequence. Repeat this operation until a certain number of subsequences are generated;
步骤 4、 计算各子序列的长度;  Step 4. Calculate the length of each subsequence;
步骤 5、 竟争。 选择长度最短的 n个子序列作为新的父序列;  Step 5. Compete. Select the n shortest sequence as the new parent sequence;
步骤 6、 运行完规定时间后, 选取长度最短的序列为解。  Step 6. After running for a specified time, select the shortest sequence as the solution.
其中, 步骤 3 中 "直到产生一定数量子序列" 的 "一定数量"; 步骤 5 中 "最短的 n个子序列" 的 "n个"; 步驟 6中 "运行完规定时间" 的 "规 定时间", 这三个数值均由经验值得到, 其跟零相关区长度与脉冲数都有关 系, 一般来说, 脉冲数越多, 这些值越大。 从理论上讲, 这些值越大, 得 到的 LA序列长度就越有可能最小, 即性能越佳。 以表 2、 表 3中 LA序列 为例, 表 2、 3的父序列数 n分别为 15、 30, 每次分别产生子序列 40、 80 个, 运行时间规定为 10分钟。 Among them, the "a certain number" of "until a certain number of subsequences" in step 3; the "n" of "the shortest n subsequences" in step 5; the "regulation of" run a specified time "in step 6 These three values are obtained from empirical values, which are related to the length of the zero correlation area and the number of pulses. Generally, the more the number of pulses, the larger these values. In theory, the larger these values The more likely the length of the obtained LA sequence is the smallest, that is, the better the performance. Taking the LA sequences in Tables 2 and 3 as an example, the number of parent sequences n in Tables 2 and 3 is 15, 30, and a subsequence is generated each time. 40, 80, the running time is specified as 10 minutes.
根据方法二, 可以得到比方法一长度更短的的 LA序列, 如表 2 和 3 所示。  According to the second method, a shorter LA sequence than that of the first method can be obtained, as shown in Tables 2 and 3.
附图简要说明 Brief description of the drawings
图 1是本发明的 LA序列码组实例 (以 8个基本脉冲, 零相关区长 16 为例);  FIG. 1 is an example of an LA sequence code group according to the present invention (take 8 basic pulses and a zero correlation area length of 16 as an example);
图 2是本发明的周期自相关函数图 (以图 1中序列 1为例);  FIG. 2 is a periodic autocorrelation function diagram of the present invention (taking sequence 1 in FIG. 1 as an example);
图 3是本发明的周期自相关函数图 (以图 1中序列 2为例);  FIG. 3 is a periodic autocorrelation function diagram of the present invention (taking sequence 2 in FIG. 1 as an example);
图 4是本发明的周期互相关函数图 (以图 1中序列 1与序列 2为例); 图 5是本发明的非周期自相关函数图 (以图 1中序列 1为例); 图 6是本发明的非周期自相关函数图 (以图 1中序列 2为例); 图 7是本发明的非周期互相关函数图(以图 1中序列 1与序列 2为例); 图 8是本发明的周期奇相关自相关函数图 (以图 1中序列 1为例); 图 9是本发明的周期奇相关自相关函数图 (以图 1中序列 2为例); 图 10是本发明的周期奇相关自相关函数图 (以图 1 中序列 1与序列 2 为例)。 实施本发明的方式 下面结合附图及具体实施例对本发明再作进一步详细的说明。 FIG. 4 is a periodic cross-correlation function diagram of the present invention (taking sequence 1 and sequence 2 in FIG. 1 as an example); FIG. 5 is a non-periodic autocorrelation function diagram of the present invention (taking sequence 1 in FIG. 1 as an example); FIG. 6 Is a non-periodic autocorrelation function diagram of the present invention (taking sequence 2 in FIG. 1 as an example); FIG. 7 is a non-periodic cross-correlation function diagram of the present invention (taking sequence 1 and sequence 2 in FIG. 1 as an example); FIG. 8 is The periodic odd correlation autocorrelation function diagram of the present invention (taking sequence 1 in FIG. 1 as an example); FIG. 9 is the periodic odd correlation autocorrelation function diagram of the present invention (taking sequence 2 in FIG. 1 as an example); FIG. 10 is the present invention The graph of the periodic odd correlation autocorrelation function (take sequence 1 and sequence 2 in Figure 1 as an example). Mode of Carrying Out the Invention The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
表 1、 2、 3给出了基序列 s所对应的基本脉冲间隔, 即 δ i - 1 ,2, ·.· , m的值。 它们按照 δ, , δ2, . .. , δη^ 顺序分别排列在基本脉冲间隔栏中。 给 定基本脉沖数 m和零相关区长度 Zez后, 通过查询表 1、 2或 3 可以得到基 序列 s的脉冲间隔, 从而确定序列 s。 Tables 1, 2, and 3 show the basic pulse intervals corresponding to the base sequence s, that is, the values of δ i-1, 2,,..., And m. They are arranged in the basic pulse interval column in the order of δ ,, δ 2 ,..., Δ η ^. Given the number of basic pulses m and the length of the zero correlation zone Z ez , the pulse interval of the base sequence s can be obtained by looking up tables 1, 2 or 3, thereby determining the sequence s.
给定基本脉冲数 m后, 只要零相关区长度 Zez≥m2 / 4 , 当 m = 4, 8 , 16 , 32 , 64 时就可以得到理论上最小长度的基序列 s, 它对应的基本脉冲的间 隔如表 1所示。 当零相关区长度 Zez<m2 / 4 , 利用构造方法二, 表 2和表 3 分别列出了 16基本脉冲和 32基本脉冲较小长度的基序列 s所对应脉冲间 隔, 其中, 表 2中序列几乎都达到了最小长度, 表 3中序列当 2大于等于 160时, 也达到或非常接近最小长度。 After a given number of pulses substantially m, as long as the length of zero correlation zone Z ez ≥m 2/4, when m = 4, 8, 16, 32, 64 can be obtained theoretically minimum length base sequence s, which corresponds substantially The pulse interval is shown in Table 1. When the length of a zero correlation zone Z ez <m 2/4, the use of two construction method, Tables 2 and 3 list the pulse interval of 16 basic pulses and 32 basic pulses small length s corresponding to the base sequence, wherein Table 2 sequence almost reached the minimum length, when the sequence in table 3 is greater than equal to 2 160, it is also at or very close to the minimum length.
表 1: Zcz≥m2/4时基本脉冲间隔 Table 1: Z cz basic pulse interval ≥m 2/4
基本脉冲数 Zcz≥m2/4时 The basic pulse number Zcz≥m 2/4
( m) m2/4 基本脉冲间隔 (M) m 2/4 basic pulse interval
4 4 {Zcz, Zcz +l , Zcz +3, Zcz +2} 4 4 {Z cz , Z cz + l, Z cz +3, Z cz +2}
8 16 { Zcz, Zcz +l ,Zcz+2,Zcz+4,Zcz+3,Zcz+6,Zcz+7,Zcz+5} 8 16 {Zcz, Zcz + l, Z cz + 2, Z cz + 4, Z cz + 3, Z cz + 6, Z cz + 7, Z cz +5}
16 64 {Zcz,Zcz+ Zcz+2,ZcZ+3)Zcz+4,Zcz+5,Zcz+6;Zcz+7,Zcz+8,Zcz+9,Zcz+ 16 64 (Zcz, Zcz + Z cz + 2, Zc Z +3 ) Zcz + 4, Zcz + 5, Zcz + 6 ; Zcz + 7, Z cz + 8, Zcz + 9, Zcz +
10,Zcz+14,Zcz+ 13,ZCZ+15,ZC2+11 ,ZCZ+12} 10, Zcz + 14, Z cz + 13, Z CZ + 15, Z C2 +11, Z CZ +12}
32 256 {ZCZ,ZCZ+1 ,ZCZ+2,ZCZ+3,ZCZ+4,ZCZ+5,ZCZ+6,ZCZ+7,ZCZ+8,ZCZ+9,ZCZ+ 32 256 {Z CZ , Z CZ +1, Z CZ + 2, Z CZ + 3, Z CZ + 4, Z CZ + 5, Z CZ + 6, Z CZ + 7, Z CZ +8, Z CZ +9 , Z CZ +
10,Zcz+H ,ZCZ+ 12)Zcz+13)Zcz+ 14,ZCz+ 15,ZCZ+16,ZCZ+17,ZCZ+ 18,ZCZ +] 9,ZCz+20,2cz+21 ,ZCZ+23,ZCZ+27,ZCZ+22,ZCZ+25,ZCZ+26,ZCZ+30,ZC z+24,Zcz+29,Zcz+31 ,Zcz+28} 10, Zcz + H, Z CZ + 12 ) Zcz + 13 ) Z cz + 14, Z C z + 15, Z CZ +16, Z CZ + 17, Z CZ + 18, Z CZ +] 9, Z C z + 20,2cz + 21, Z CZ + 23, Z CZ + 27, Z CZ + 22, Z CZ + 25, Z CZ + 26, Z CZ + 30, Z C z + 24, Zcz + 29, Z cz +31 , Z cz +28}
{Zcz,ZcZ+l ,Zcz+2JZcz+3,Zcz+4)Zc2+5)Zcz+6,Zcz+7,Zcz+8JZcz+9,Zcz+(Zcz, Zc Z + l, Zcz + 2 J Zcz + 3, Zcz + 4 ) Zc2 + 5 ) Zcz + 6, Zcz + 7, Z cz +8 J Zcz + 9, Zcz +
64 1024 10,ZCZ+ 1 1 ,ZCZ+ 12,ZCZ+ 13,ZCZ+ 14,ZCZ+ 15,ZCZ+ 16,ZCZ+ 17,ZCZ+ 18,ZCZ 64 1024 10, Z CZ + 1 1, Z CZ + 12, Z CZ + 13, Z CZ + 14, Z CZ + 15, Z CZ + 16, Z CZ + 17, Z CZ + 18, Z CZ
+19,Zcz+20)Zcz+21 ,ZcZ+22)Zcz+23,Zcz+241Zc2+25,Zcz+26,Zcz+27)Zc z+28)Zcz+29,ZcZ+30;ZcZ+31 ,Zcz+32,Zcz+33)Zcz+34,ZC2+35,Zcz+36,Z cz+37,Zcz+38,Zcz+39,Zcz+40,Zcz+41,Zcz+42,Zc2+43,Zcz+44,Zc2+45,+ 19, Zcz + 20 ) Zcz + 21, Zc Z +22 ) Zcz + 23, Zcz + 24 1 Zc2 + 25, Zcz + 26, Z cz +27 ) Zc z + 28 ) Zcz + 29, Zc Z +30 ; Zc Z +31, Zcz + 32, Zcz + 33 ) Z cz + 34, Z C 2 + 35, Zcz + 36, Z cz + 37, Zcz + 38, Zcz + 39, Zcz + 40, Z cz +41 , Zcz + 42, Zc2 + 43, Zcz + 44, Zc2 + 45,
Zcz+46,Zcz+48,Zcz+49,Zcz+50,Zcz+52,Zcz+56,Zcz+47,Zcz+53,Zcz+54Z cz + 46, Z cz + 48, Z cz + 49, Z cz + 50, Z cz + 52, Z cz + 56, Z cz + 47, Z cz + 53, Z cz +54
,Zcz+60,Zcz+51 ,Zcz+55,Zcz+62)Zcz+59,Zcz+57)Zcz+63,Zcz+61 } 表 2: 16基本脉冲间隔 , Z cz + 60, Z cz +51, Zcz + 55, Zcz + 62 ) Z cz + 59, Zcz + 57 ) Zcz + 63, Zcz + 61} Table 2: 16 basic pulse intervals
Figure imgf000014_0001
Figure imgf000014_0001
32基本脉冲间隔 32 basic pulse intervals
长度 基本脉冲间隔 Length Basic Pulse Interval
2473 44 45 46 47 48 32 33 34 37 35 38 36 41 40 42 52 49 56 51 97 43 55 63 126 75 142 176 58 79 66 122 565  2473 44 45 46 47 48 32 33 34 37 35 38 36 41 40 42 52 49 56 51 97 43 55 63 126 75 142 176 58 79 66 122 565
2562 47 48 49 50 51 52 53 54 55 34 35 37 36 38 40 41 44 42 80 59 45 65 61 57 39 173 70 58 91 264 60 634  2562 47 48 49 50 51 52 53 54 55 34 35 37 36 38 40 41 44 42 80 59 45 65 61 57 39 173 70 58 91 264 60 634
2588 62 63 64 65 66 67 38 39 40 41 42 43 47 44 48 46 49 50 58 52 59 45 71 51 68 97 56 188 73 57 172 627  2588 62 63 64 65 66 67 38 39 40 41 42 43 47 44 48 46 49 50 58 52 59 45 71 51 68 97 56 188 73 57 172 627
2594 52 53 54 55 56 57 40 41 42 43 44 45 46 48 50 62 59 61 49 47 68 80 69 122 51 65 147 119 58 70 93 648  2594 52 53 54 55 56 57 40 41 42 43 44 45 46 48 50 62 59 61 49 47 68 80 69 122 51 65 147 119 58 70 93 648
2644 70 71 72 73 74 75 42 43 44 45 46 47 49 48 53 50 54 51 57 107 62 63 55 59 69 65 1 11 159 167 95 168 400  2644 70 71 72 73 74 75 42 43 44 45 46 47 49 48 53 50 54 51 57 107 62 63 55 59 69 65 1 11 159 167 95 168 400
2663 72 73 44 45 46 47 48 49 50 51 52 54 53 56 55 58 62 57 66 68 61 63 59 74 105 104 77 78 203 131 158 444  2663 72 73 44 45 46 47 48 49 50 51 52 54 53 56 55 58 62 57 66 68 61 63 59 74 105 104 77 78 203 131 158 444
2713 78 46 47 48 49 50 51 52 53 54 55 56 57 59 58 60 61 64 63 66 68 67 72 65 75 77 69 89 100 136 148 620  2713 78 46 47 48 49 50 51 52 53 54 55 56 57 59 58 60 61 64 63 66 68 67 72 65 75 77 69 89 100 136 148 620
2794 56 57 58 59 60 61 62 63 64 48 49 50 51 53 52 76 67 65 68 54 70 78 71 87 55 75 92 120 96 179 84 614  2794 56 57 58 59 60 61 62 63 64 48 49 50 51 53 52 76 67 65 68 54 70 78 71 87 55 75 92 120 96 179 84 614
2864 65 66 67 68 69 52 53 54 55 57 56 58 59 60 62 63 75 64 70 72 73 71 76 74 84 96 61 80 111 86 179 628  2864 65 66 67 68 69 52 53 54 55 57 56 58 59 60 62 63 75 64 70 72 73 71 76 74 84 96 61 80 111 86 179 628
2962 70 71 72 73 74 75 54 55 56 58 57 59 61 60 62 63 64 67 65 68 66 78 77 79 83 90 80 99 128 110 87 701  2962 70 71 72 73 74 75 54 55 56 58 57 59 61 60 62 63 64 67 65 68 66 78 77 79 83 90 80 99 128 110 87 701
3018 77 78 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 74 71 76 75 84 72 81 94 90 138 85 91 142 106 639  3018 77 78 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 74 71 76 75 84 72 81 94 90 138 85 91 142 106 639
3072 71 72 73 74 75 76 77 78 58 59 60 61 62 66 63 69 64 67 68 70 80 87 98 65 91 102 100 81 101 106 88 710  3072 71 72 73 74 75 76 77 78 58 59 60 61 62 66 63 69 64 67 68 70 80 87 98 65 91 102 100 81 101 106 88 710
3131 83 84 85 86 87 60 61 62 63 64 65 67 66 68 71 72 69 75 73 78 76 90 95 79 109 94 70 105 101 98 102 673  3131 83 84 85 86 87 60 61 62 63 64 65 67 66 68 71 72 69 75 73 78 76 90 95 79 109 94 70 105 101 98 102 673
3140 78 79 80 81 82 83 84 85 62 63 64 65 67 66 69 6S 72 71 73 75 70 102 91 88 76 74 106 98 96 130 114 628  3140 78 79 80 81 82 83 84 85 62 63 64 65 67 66 69 6S 72 71 73 75 70 102 91 88 76 74 106 98 96 130 114 628
3229 94 95 96 64 65 66 67 68 69 70 71 72 73 74 75 77 76 79 78 85 80 88 81 98 84 83 97 100 99 82 176 647  3229 94 95 96 64 65 66 67 68 69 70 71 72 73 74 75 77 76 79 78 85 80 88 81 98 84 83 97 100 99 82 176 647
3303 74 75 76 77 78 79 80 81 69 66 67 70 68 71 72 84 86 85 82 90 87 73 91 83 92 89 93 104 122 99 147 693  3303 74 75 76 77 78 79 80 81 69 66 67 70 68 71 72 84 86 85 82 90 87 73 91 83 92 89 93 104 122 99 147 693
3403 80 81 82 83 84 85 86 87 88 70 68 69 71 72 73 74 75 76 77 79 78 90 89 107 92 98 129 1 10 94 111 103 742 ε! 3403 80 81 82 83 84 85 86 87 88 70 68 69 71 72 73 74 75 76 77 79 78 90 89 107 92 98 129 1 10 94 111 103 742 ε!
Figure imgf000015_0001
S00/T0N3/X3d 6t80/Z0 OAV
Figure imgf000016_0001
S00/T0N3/X3d Μ6^80/Ζ0 OAV 210 7220 219 210 211 212 213 214 216 215 217 218 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 240 239 245
Figure imgf000015_0001
S00 / T0N3 / X3d 6t80 / Z0 OAV
Figure imgf000016_0001
S00 / T0N3 / X3d Μ6 ^ 80 / Z0 OAV 210 7220 219 210 211 212 213 214 216 215 217 218 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 236 237 238 240 239 245
212 7281 234 235 236 237 238 239 240 212 213 214 215 216 217 218 219 220 221 212 7281 234 235 236 237 238 239 240 212 213 214 215 216 217 218 219 220 221
222 223 224 225 226 227 228 229 230 231 232 233 241 242 244 222 223 224 225 226 227 228 229 230 231 232 233 241 242 244
214 7349 222 223 224 225 226 227 228 229 230 231 232 233 234 216 214 217 215 214 7349 222 223 224 225 226 227 228 229 230 231 232 233 234 216 214 217 215
218 219 220 221 235 236 237 238 239 242 240 243 241 244 250 218 219 220 221 235 236 237 238 239 242 240 243 241 244 250
216 7413 224 225 226 227 228 229 230 231 232 233 234 235 236 218 216 219 217 216 7413 224 225 226 227 228 229 230 231 232 233 234 235 236 218 216 219 217
220 221 222 223 237 238 239 240 241 244 242 245 243 246 252 220 221 222 223 237 238 239 240 241 244 242 245 243 246 252
218 7473 240 241 242 243 244 245 246 218 219 220 221 222 223 224 225 226 227 218 7473 240 241 242 243 244 245 246 218 219 220 221 222 223 224 225 226 227
228 229 230 231 232 233 234 235 236 237 238 239 247 248 250 228 229 230 231 232 233 234 235 236 237 238 239 247 248 250
220 7536 243 244 245 246 247 220 221 222 223 224 225 226 227 228 230 229 231 220 7536 243 244 245 246 247 220 221 222 223 224 225 226 227 228 230 229 231
233 232 234 236 238 237 239 240 241 242 248 249 250 251 235 233 232 234 236 238 237 239 240 241 242 248 249 250 251 235
222 7601 244 245 246 247 248 249 250 222 223 224 225 226 227 228 229 230 231 222 7601 244 245 246 247 248 249 250 222 223 224 225 226 227 228 229 229 230 231
232 233 234 235 236 237 238 239 240 241 242 243 251 252 254 232 233 234 235 236 237 238 239 240 241 242 243 251 252 254
224 7664 247 248 249 250 251 224 225 226 227 228 229 230 231 232 234 233 235 224 7664 247 248 249 250 251 224 225 226 227 228 229 230 231 232 234 233 235
237 236 238 240 242 241 243 244 245 246 252 253 254 255 239 237 236 238 240 242 241 243 244 245 246 252 253 254 255 239
226 7728 249 250 251 252 253 226 227 228 229 230 231 232 233 234 236 235 237 226 7728 249 250 251 252 253 226 227 228 229 230 231 232 233 234 236 235 237
239 238 240 242 244 243 245 246 247 248 254 255 256 257 241 239 238 240 242 244 243 245 246 247 248 254 255 256 257 241
228 7792 251 252 253 254 255 228 229 230 231 232 233 234 235 236 238 237 239 228 7792 251 252 253 254 255 228 229 230 231 232 233 234 235 236 238 237 239
241 240 242 244 246 245 247 248 249 250 256 257 258 259 243 241 240 242 244 246 245 247 248 249 250 256 257 258 259 243
230 7857 252 253 254 255 256 257 258 230 231 232 233 234 235 236 237 238 239 230 7857 252 253 254 255 256 257 258 230 231 232 233 234 235 236 237 238 239
240 241 242 243 244 245 246 247 248 249 250 251 259 260 262 240 241 242 243 244 245 246 247 248 249 250 251 259 260 262
232 7920 255 256 257 258 259 232 233 234 235 236 237 238 239 240 242 241 243 232 7920 255 256 257 258 259 232 233 234 235 236 237 238 239 240 242 241 243
245 244 246 248 250 249 251 252 253 254 260 261 262 263 247 245 244 246 248 250 249 251 252 253 254 260 261 262 263 247
234 7984 257 258 259 260 261 234 235 236 237 238 239 240 241 242 244 243 245 234 7984 257 258 259 260 261 234 235 236 237 238 239 240 241 242 244 243 245
247 246 248 250 252 251 253 254 255 256 262 263 264 265 249 247 246 248 250 252 251 253 254 255 256 262 263 264 265 249
236 8049 258 259 260 261 262 263 264 236 237 238 239 240 241 242 243 244 245 236 8049 258 259 260 261 262 263 264 236 237 238 239 240 241 242 243 244 245
246 247 248 249 250 251 252 253 254 255 256 257 265 266 268 246 247 248 249 250 251 252 253 254 255 256 257 265 266 268
238 81 12 261 262 263 264 265 238 239 240 241 242 243 244 245 246 248 247 249 238 81 12 261 262 263 264 265 238 239 240 241 242 243 244 245 246 248 247 249
251 250 252 254 256 255 257 258 259 260 266 267 268 269 253 251 250 252 254 256 255 257 258 259 260 266 267 268 269 253
240 8176 263 264 265 266 267 240 241 242 243 244 245 246 247 248 250 249 251 240 8176 263 264 265 266 267 240 241 242 243 244 245 246 247 248 250 249 251
253 252 254 256 258 257 259 260 261 262 268 269 270 271 255 253 252 254 256 258 257 259 260 261 262 268 269 270 271 255
242 8240 265 266 267 268 269 242 243 244 245 246 247 248 249 250 252 251 253 242 8240 265 266 267 268 269 242 243 244 245 246 247 248 249 250 252 251 253
255 254 256 258 260 259 261 262 263 264 270 271 272 273 257 255 254 256 258 260 259 261 262 263 264 270 271 272 273 257
244 8304 267 268 269 270 271 244 245 246 247 248 249 250 251 252 254 253 255 244 8304 267 268 269 270 271 244 245 246 247 248 249 250 251 252 254 253 255
257 256 258 260 262 261 263 264 265 266 272 273 274 275 259 257 256 258 260 262 261 263 264 265 266 272 273 274 275 259
246 8368 269 270 271 272 273 246 247 248 249 250 251 252 253 254 256 255 257 246 8368 269 270 271 272 273 246 247 248 249 250 251 252 253 254 256 255 257
259 258 260 262 264 263 265 266 267 268 274 275 276 277 261 259 258 260 262 264 263 265 266 267 268 274 275 276 277 261
248 8432 271 272 273 274 275 248 249 250 251 252 253 254 255 256 258 257 259 248 8432 271 272 273 274 275 248 249 250 251 252 253 254 255 256 258 257 259
261 260 262 264 266 265 267 268 269 270 276 277 278 279 263 261 260 262 264 266 265 267 268 269 270 276 277 278 279 263
250 8496 273 274 275 276 277 250 251 252 253 254 255 256 257 258 260 259 261 250 8496 273 274 275 276 277 250 251 252 253 254 255 256 257 258 260 259 261
263 262 264 266 268 267 269 270 271 272 278 279 280 281 265 263 262 264 266 268 267 269 270 271 272 278 279 280 281 265
252 8560 275 276 277 278 279 252 253 254 255 256 257 258 259 260 262 261 263 252 8560 275 276 277 278 279 252 253 254 255 256 257 258 259 260 262 261 263
265 264 266 268 270 269 271 272 273 274 280 281 282 283 267 265 264 266 268 270 269 271 272 273 274 280 281 282 283 267
254 8624 277 278 279 280 281 254 255 256 257 258 259 260 261 262 264 263 265 254 8624 277 278 279 280 281 254 255 256 257 258 259 260 261 262 264 263 265
267 266 268 270 272 271 273 274 275 276 282 283 284 285 269 267 266 268 270 272 271 273 274 275 276 282 283 284 285 269
256 8688 279 280 281 282 283 256 257 258 259 260 261 262 263 264 266 265 267 256 8688 279 280 281 282 283 256 257 258 259 260 261 262 263 264 266 265 267
269 268 270 272 274 273 275 276 277 278 284 285 286 287 271 以表 1 中基本脉冲间隔为例, 说明如何利用给出的基本脉冲间隔构造 相应的 LA序列。 假设给定基本脉冲数 m=8, 零相关区 Zez=16, 通过查表 1 得到对应的基本脉冲间隔 {Si, i=l,—, 8 } = {16, 17, 18, 20, 19, 22, 23,269 268 270 272 274 273 275 276 277 278 284 285 286 287 271 Take the basic pulse interval in Table 1 as an example to explain how to use the given basic pulse interval to construct the corresponding LA sequence. Assume that given the number of basic pulses m = 8 and the zero correlation area Z ez = 16, the corresponding basic pulse interval {Si, i = l, —, 8} = {16, 17, 18, 20, 19 , 22, 23,
21}, 则基序列为: 21}, then the base sequence is:
5 = {1,0,... ,0,1,0, .. · ,0,1,0, . · . ,0,1,0, ...,0,1,0, ... ,0,1,0, ... ,0,1,0, . · . ,0,1,0, ... ,0} 其中, "…" 代表元素 0。  5 = {1,0, ..., 0,1,0, .. ·, 0,1,0,. ·., 0,1,0, ..., 0,1,0, ... , 0,1,0, ..., 0,1,0,. ·., 0,1,0, ..., 0} where "..." represents element 0.
得到基序列 s的 m个基本脉冲间隔或分布位置后, 再按某个长度为 m 的正交序列码组排列基本脉冲极性, 生成扩频序列码组。 这里选用 Walsh 序列组 W作为正交序列组:  After obtaining the m basic pulse intervals or distribution positions of the base sequence s, the basic pulse polarity is arranged according to an orthogonal sequence code group of length m to generate a spreading sequence code group. Here, the Walsh sequence group W is selected as the orthogonal sequence group:
{1' 1, 1, 1, 1, 1, 1, 1}  {1 '1, 1, 1, 1, 1, 1, 1}
W2 = , -1, 1, -1, 1, -1, 1, -] L} W 2 =, -1, 1, -1, 1, -1, 1,-] L}
w3 = {1, 1, -1, -1, 1, 1, - -1, -] 1} w 3 = {1, 1, -1, -1, 1, 1,--1,-] 1}
w4 = {1, -1, -1 1, 1, -1, -1, " 1} w 4 = {1, -1, -1 1, 1, -1, -1, "1}
w5 = {1' 1, 1, 1, -1, -1, - -1, -' 1} w 5 = {1 '1, 1, 1, -1, -1,--1,-' 1}
w6 = {1, -1, 1, -1, -1, 1, -1, " 1} w 6 = {1, -1, 1, -1, -1, 1, -1, "1}
w7 = {1, 1, -1, -1, -1, -1, 1, 1} w 7 = {1, 1, -1, -1, -1, -1, 1, 1}
w8- {1' -1, -1 , 1, -1, 1, 1, - 1} w 8- {1 '-1, -1, 1, -1, 1, 1,-1}
基序列 s基本脉冲的极性经序列组 W重新排列, 得到有 8个 LA序列 的集合 即: 序列 1- a1, 序列 2- a2, 序列 3-- a3, 序列 4- a4, 序列 5- a5, 序列 6— a6, 序列 7— a7, 序列 8— a8。 其零相关区 Zcz= 16, 如图 1所示。 Polar group via a sequence group W s basic pulse sequence rearranged, there is obtained a set of eight sequences i.e., LA: SEQ 1- a 1, the sequence 2- a 2, the sequence 3-- a 3, sequences 4- a 4, sequence 5- a 5, sequences 6- a 6, sequences 7- a 7, the sequence 8- a 8. Its zero correlation zone Z cz = 16, as shown in Figure 1.
参看图 2与图 3, 它们分别是图 1中序列 1与序列 2的周期自相关函数 图。 其它序列具有完全类似的周期自相关函数, 即时延落在 (-16, 16) 内 时, 其周期自相关函数值为零, 在此之外周期自相关值只有 1, 0, -1 三种 情形。 Referring to FIG. 2 and FIG. 3, they are the graphs of the periodic autocorrelation functions of sequence 1 and sequence 2 in FIG. 1, respectively. The other sequences have completely similar periodic autocorrelation functions. When the instantaneous delay falls within (-16, 16), the value of the periodic autocorrelation function is zero. Otherwise, there are only three types of periodic autocorrelation values: 1, 0, -1. Situation.
参看图 4, 它是图 1中序列 1与序列 2的周.期互相关函数图。 其它任意 序列对具有完全类似的周期互相关函数, 即时延落在(-16, 16 ) 内时, 其 周期互相关函数值为零, 在此之外周期互相关值只有 1 , 0, -1三种情形。  Referring to FIG. 4, it is a cycle-period cross-correlation function diagram of sequence 1 and sequence 2 in FIG. Other arbitrary sequence pairs have completely similar periodic cross-correlation functions. When the instantaneous delay falls within (-16, 16), the value of the periodic cross-correlation function is zero. Otherwise, the periodic cross-correlation value is only 1, 0, -1. Three scenarios.
参看图 5与图 6, 它们分别是图 1中序列 1与序列 2的非周期自相关函 数图。 其它序列具有完全类似的非周期自相关函数, 即时延落在(-16, 16 ) 内时, 其非周期自相关函数值为零, 此外, 非周期自相关值只有 1 , 0, -1 三种情形。  Referring to Fig. 5 and Fig. 6, they are aperiodic autocorrelation function diagrams of sequence 1 and sequence 2 in Fig. 1, respectively. Other sequences have completely similar non-periodic autocorrelation functions. When the instantaneous delay falls within (-16, 16), the value of the non-periodic autocorrelation function is zero. In addition, the non-periodic autocorrelation value is only 1, 0, -1. Situation.
参看图 7, 它是图 1中序列 1与序列 2的非周期互相关函数图。 其它任 意序列对具有完全类似的非周期互相关函数, 即时延落在(-16, 16 ) 内时, 其周期互相关函数值为零, 在此之外非周期互相关值只有 1 , 0, -1 三种情 形。  Referring to FIG. 7, it is a graph of the aperiodic cross-correlation function of sequence 1 and sequence 2 in FIG. 1. Any other sequence pair has a completely similar aperiodic cross-correlation function. When the instantaneous delay falls within (-16, 16), the value of the periodic cross-correlation function is zero. Otherwise, the aperiodic cross-correlation value is only 1, 0, -1 Three situations.
参看图 8与图 9, 它们分别是图 1中序列 1与序列 2的周期奇自相关函 数图。 其它序列具有完全类似的周期奇自相关函数, 即时延落在(-16, 16 ) 户时, 其周期奇自相关函数值为零, 在此之外周期奇自相关值只有 1 , 0, - 1三种情形。  Referring to Figs. 8 and 9, they are periodic odd autocorrelation functions of sequences 1 and 2 in Fig. 1, respectively. Other sequences have completely similar periodic odd autocorrelation functions. When the time delay falls on (-16, 16), the periodic odd autocorrelation function value is zero. Otherwise, the periodic odd autocorrelation value is only 1, 0,- 1 three situations.
参看图 10, 它是图 1中序列 1与序列 2的周期奇互相关函数图。 其它 任意序列对具有完全类似的周期奇互相关函数, 即时延落在(-16, 16 ) 内 时, 其周期奇互相关函数值为零, 在此之外周期奇互相关值只有 1 , 0, -1 三种情形。  Referring to FIG. 10, it is a graph of periodic odd cross-correlation functions of sequence 1 and sequence 2 in FIG. Any other sequence pair has a completely similar periodic odd cross-correlation function. When the instantaneous delay falls within (-16, 16), the value of the periodic odd cross-correlation function is zero. Otherwise, the periodic odd cross-correlation value is only 1, 0. , -1 Three situations.
以上所述, 仅为本发明的较佳实施例而已, 并非用于限制本发明的保 护范围。  The above description is only the preferred embodiments of the present invention, and is not intended to limit the protection scope of the present invention.

Claims

权利要求书 Claim
1、 一种码分多址系统中三进制扩频序列编码的实现方法, 该扩频序列 码組由归一化幅度与宽度均为 1 且具有极性的基本脉冲组成, 其至少包括 以下的步據:  1. An implementation method of ternary spreading sequence coding in a code division multiple access system. The spreading sequence code group is composed of basic pulses with normalized amplitude and width of 1 and polarities, and includes at least the following: Steps:
a. 给定 LA序列的基本脉冲数和零相关区长度, 生成一个长度为 N的 基序列 s;  a. Given the number of basic pulses of the LA sequence and the length of the zero correlation region, generate a base sequence s of length N;
b. 生成长度为 m的二元正交序列组, 再将该二元正交序列组扩充为长 度为 N的三进制序列;  b. Generate a binary orthogonal sequence group of length m, and then expand the binary orthogonal sequence group to a ternary sequence of length N;
c 将基序列 s 与三进制序列组的每个序列按位相乘, 得到三进制扩频 序列码组 A;  c multiply the base sequence s and each sequence of the ternary sequence group by bit to obtain the ternary spreading sequence code group A;
其特征在于生成基序列 s的方法进一步包括下列步骤: It is characterized in that the method for generating the base sequence s further includes the following steps:
d.设定每个脉冲间隔 与零相关区长度 ZCJ 关系, 计算出基序列 s的 脉冲间隔; d. Set the relationship between each pulse interval and the length of the zero correlation zone Z C J, and calculate the pulse interval of the base sequence s;
e. 按照步骤 b计算出的脉冲间隔, 生成零相关区长度大于等于 Zez且小 于等于 Zez +N-1的一个以上的父序列; e. Generate the pulse interval calculated according to step b to generate one or more parent sequences with a length of zero correlation region greater than or equal to Z ez and less than or equal to Z ez + N-1;
f. 计算出每个父序列的长度;  f. Calculate the length of each parent sequence;
g. 随机选取两个父序列, 在随机选择的一个位置将该序列截断, 交换 这两个序列对应的部分, 产生两个子序列; 重复步骤 f, 直到产生一定数量 的子序列;  g. Randomly select two parent sequences, truncate the sequence at a randomly selected position, and exchange the corresponding parts of the two sequences to generate two subsequences; repeat step f until a certain number of subsequences are generated;
h. 计算每个子序列的长度;  h. Calculate the length of each subsequence;
i. 选择长度最短的一个以上子序列作为新的父序列;  i. Select one or more child sequences with the shortest length as the new parent sequence;
j . 运行完规定的时间后, 选取长度最短的序列为解。  j. After running the specified time, select the shortest sequence as the solution.
2、 根据权利要求 1所述的编码方法, 其特征在于: 所迷扩频序列码组 的所有基本脉冲间隔都大于等于零相关区长度 Zez, 且任意两个基本脉冲的 位置之差在模序列长度运算下相异。 2. The coding method according to claim 1, characterized in that: the spreading sequence code group All the basic pulse intervals are equal to or greater than the zero correlation zone length Z ez , and the difference between the positions of any two basic pulses is different under the calculation of the length of the modulo sequence.
3、 据权利要求 1或 2所述的编码方法, 其特征在于: 所述的脉冲间 隔为奇数, 或为偶数。  3. The encoding method according to claim 1 or 2, characterized in that: the pulse interval is an odd number or an even number.
4、 据权利要求 1所述的编码方法, 其特征在于: 所述的扩频序列码 组中任一序列的自相关函数在零移位及零移位两旁有零相关区, 该扩频序 列码组中任意一对序列的互相关函数在零移位及零移位两旁有零相关区, 在零相关区外自相关值和互相关值只有 1、 0和 -1。  4. The encoding method according to claim 1, characterized in that: the autocorrelation function of any sequence in the spreading sequence code group has a zero correlation area on both sides of zero shift and zero shift, and the spreading sequence The cross-correlation function of any pair of sequences in the code group has a zero correlation area on both sides of the zero shift and zero shift, and the auto-correlation value and cross-correlation value outside the zero correlation area are only 1, 0 and -1.
5、 根据权利要求 4所迷的编码方法, 其特征在于: 所述的相关函数包 括周期相关、 非周期相关和周期奇相关, 且该三种相关函数的零相关区都 相等。  5. The encoding method according to claim 4, wherein: said correlation functions include periodic correlation, aperiodic correlation and periodic odd correlation, and the zero correlation regions of the three correlation functions are all equal.
6、 根据权利要求 1所迷的编码方法, 其特征在于: 步骤 g中一定数量 的子序列由零相关区长度和脉冲数的经验值确定。  6. The encoding method according to claim 1, characterized in that: a certain number of subsequences in step g are determined by the empirical values of the length of the zero correlation region and the number of pulses.
7、 才 据权利要求 1所迷的编码方法, 其特征在于步骤 g进一步包括以 下步骤: 当两个新子序列的交换部分与未交换部分的脉冲间隔有沖突时, 只保留未交换部分不冲突的脉冲间隔, 然后从冲突脉冲间隔的下一位开始 按照步骤 b计算出的脉冲间隔重新生成新的子序列。  7. The encoding method according to claim 1, characterized in that step g further comprises the following steps: when the pulse interval between the exchanged part and the unexchanged part of the two new subsequences conflicts, only the unexchanged part is retained without conflict And then starting from the next bit of the conflicting pulse interval to regenerate a new subsequence according to the pulse interval calculated in step b.
8、 才艮据权利要求 7所述的编码方法, 其特征在于: 所述的脉冲间隔冲 突是指交换部分与未交换部分出现相同的脉冲间隔。  8. The encoding method according to claim 7, wherein: the pulse interval conflict means that the same pulse interval occurs between the exchanged part and the non-exchanged part.
9、 据权利要求 1所述的编码方法, 其特征在于: 步骤 j 中的规定时 间由零相关区长度和脉冲数的经验值确定。  9. The encoding method according to claim 1, wherein: the specified time in step j is determined by an empirical value of the length of the zero correlation region and the number of pulses.
10、 根据权利要求 1 所述的编码方法, 其特征在于: 步驟 b 中所述的 正交序列组为沃尔什序列組。 10. The encoding method according to claim 1, wherein: the orthogonal sequence group in step b is a Walsh sequence group.
11、 一种码分多址系统中三进制扩频序列编码的实现方法, 该扩频序 列码组由归一化幅度与宽度均为 1 且具有极性的基本脉冲组成, 其至少包 括以下的步驟: 11. A method for implementing ternary spreading sequence coding in a code division multiple access system. The spreading sequence code group is composed of basic pulses with normalized amplitude and width of 1 and polarities, and includes at least the following: A step of:
a. 给定 LA序列的基本脉冲数和零相关区长度, 生成一个长度为 N的 基序列 s;  a. Given the number of basic pulses of the LA sequence and the length of the zero correlation region, generate a base sequence s of length N;
b. 生成长度为 m的二元正交序列组, 再将该二元正交序列组扩充为长 度为 N的三进制序列;  b. Generate a binary orthogonal sequence group of length m, and then expand the binary orthogonal sequence group to a ternary sequence of length N;
c将基序列 s 与三进制序列组的每个序列按位相乘, 得到三进制扩频 序列码组 A;  c multiplies the base sequence s and each sequence of the ternary sequence group bit by bit to obtain a ternary spreading sequence code group A;
其特征在于生成基序列 s的方法进一步包括下列步骤: It is characterized in that the method for generating the base sequence s further includes the following steps:
d.设定每个脉冲间隔 δ;与零相关区长度 ZC 关系, 计算出基序列 s的 脉冲间隔。 d. Set each pulse interval δ ; the relationship with the length Z C of the zero correlation region, and calculate the pulse interval of the base sequence s.
12、 根据权利要求 1 所述的编码方法, 其特征在于: 所述扩频序列码 组的所有基本脉冲间隔都大于等于零相关区长度 Zez, 且任意两个基本脉冲 的位置之差在模序列长度运算下相异。 12. The encoding method according to claim 1, characterized in that: all basic pulse intervals of the spreading sequence code group are greater than or equal to zero correlation zone length Z ez , and the difference between the positions of any two basic pulses is in the mode sequence Different in length calculation.
13、 根据权利要求 11 或 12所述的编码方法, 其特征在于: 所述的脉 冲间隔为奇数, 或为偶数。  13. The encoding method according to claim 11 or 12, wherein the pulse interval is an odd number or an even number.
14、 根据权利要求 11 所述的编码方法, 其特征在于: 所述的扩频序列 码组中任一序列的自相关函数在零移位及零移位两旁有零相关区, 该扩频 序列码组中任意一对序列的互相关函数在零移位及零移位两旁有零相关 区, 在零相关区外自相关值和互相关值只有 1、 0和 -1。  14. The encoding method according to claim 11, wherein: the autocorrelation function of any sequence in the spreading sequence code group has a zero correlation area on both sides of zero shift and zero shift, and the spreading sequence The cross-correlation function of any pair of sequences in the code group has a zero correlation area on both sides of the zero shift and zero shift, and the auto-correlation value and cross-correlation value outside the zero correlation area are only 1, 0 and -1.
15、 根据权利要求. 14所述的编码方法, 其特征在于: 所述的相关函数 包括周期相关、 非周期相关和周期奇相关, 且该三种相关函数的零相关区 都相等。 15. The encoding method according to claim 14, wherein the correlation function comprises periodic correlation, aperiodic correlation, and periodic odd correlation, and zero correlation regions of the three correlation functions Are all equal.
16、 根据权利要求 11所述的编码方法, 其特征在于: 步骤 b中所述的 正交序列组为沃尔什序列组。  16. The encoding method according to claim 11, wherein: the orthogonal sequence group in step b is a Walsh sequence group.
PCT/CN2001/000560 2001-04-18 2001-04-18 Implement method of ternary spread spectrum sequence coding in cdma system WO2002084914A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN01809591.7A CN1201514C (en) 2001-04-18 2001-04-18 Implement method of ternary spread spectrum sequence coding in CDMA system
PCT/CN2001/000560 WO2002084914A1 (en) 2001-04-18 2001-04-18 Implement method of ternary spread spectrum sequence coding in cdma system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2001/000560 WO2002084914A1 (en) 2001-04-18 2001-04-18 Implement method of ternary spread spectrum sequence coding in cdma system

Publications (1)

Publication Number Publication Date
WO2002084914A1 true WO2002084914A1 (en) 2002-10-24

Family

ID=4574787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2001/000560 WO2002084914A1 (en) 2001-04-18 2001-04-18 Implement method of ternary spread spectrum sequence coding in cdma system

Country Status (2)

Country Link
CN (1) CN1201514C (en)
WO (1) WO2002084914A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008116413A1 (en) * 2007-03-27 2008-10-02 Huawei Technologies Co., Ltd. Method and device to generate zero correlation zone code, transmitting spreading code and receiving spreading code
WO2012037638A1 (en) * 2010-09-21 2012-03-29 Jazzar, Samer Omar A tri-phase code generator in a cdma wireless communication system
CN109039523A (en) * 2018-07-31 2018-12-18 深圳大学 A kind of building method and system of big zero correlation block two dimension unipolar code

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100367740C (en) * 2003-12-31 2008-02-06 清华大学 Complementary coding key control and modulating method in radio communication
CN108092691A (en) * 2016-11-09 2018-05-29 宜春市等比科技有限公司 A kind of method with double pseudo-random code spread-spectrums
JP7062763B2 (en) 2017-11-10 2022-05-06 中興通訊股▲ふん▼有限公司 Grouping and use of short sequence signals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0869632A1 (en) * 1996-09-20 1998-10-07 Toyo Communication Equipment Co. Ltd. Two-phase/four-phase modulated comb-shaped spread spectrum communication system
EP1006687A1 (en) * 1997-08-12 2000-06-07 Daoben Li Spread spectrum address coding
WO2000045530A1 (en) * 1999-01-29 2000-08-03 Toyo Communication Equipment Co., Ltd. Adaptive interference-free spread-spectrum system employing binary code sequence sets with zero correlation zone properties

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0869632A1 (en) * 1996-09-20 1998-10-07 Toyo Communication Equipment Co. Ltd. Two-phase/four-phase modulated comb-shaped spread spectrum communication system
EP1006687A1 (en) * 1997-08-12 2000-06-07 Daoben Li Spread spectrum address coding
WO2000045530A1 (en) * 1999-01-29 2000-08-03 Toyo Communication Equipment Co., Ltd. Adaptive interference-free spread-spectrum system employing binary code sequence sets with zero correlation zone properties

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008116413A1 (en) * 2007-03-27 2008-10-02 Huawei Technologies Co., Ltd. Method and device to generate zero correlation zone code, transmitting spreading code and receiving spreading code
CN101277125B (en) * 2007-03-27 2013-04-24 华为技术有限公司 Method and apparatus for generating zero correlation section code, transmitting and receiving spread-spectrum code
WO2012037638A1 (en) * 2010-09-21 2012-03-29 Jazzar, Samer Omar A tri-phase code generator in a cdma wireless communication system
GB2497219A (en) * 2010-09-21 2013-06-05 Samer Omar Jazzar A Tri-Phase code generator in a CDMA wireless communication system
CN109039523A (en) * 2018-07-31 2018-12-18 深圳大学 A kind of building method and system of big zero correlation block two dimension unipolar code
CN109039523B (en) * 2018-07-31 2020-03-20 深圳大学 Construction method and system of large zero correlation zone two-dimensional unipolar code

Also Published As

Publication number Publication date
CN1201514C (en) 2005-05-11
CN1429440A (en) 2003-07-09

Similar Documents

Publication Publication Date Title
JP3840112B2 (en) Apparatus and method for assigning a common packet channel in a code division multiple access communication system
JP2002536870A (en) Interference-free adaptive spread spectrum communication system using binary code sequence with uncorrelated region
JP4361682B2 (en) Apparatus for incorporating multiple data rates in an orthogonal direct sequence code division multiple access (ODS-CDMA) communication system
KR101011555B1 (en) A method and apparatus for spreading sequence hopping in code-multiplexed control channels
JP4365030B2 (en) Four-phase spreading code in code division multiple access communication.
JP2011010307A (en) Code-division multiple command on code-division multiple channel
AU7690400A (en) Apparatus and method for gating data on a control channel in a cdma communication system
US6331997B1 (en) Scheme for spread spectrum multiple access coding
JP2009268115A (en) Code channel assignment in wireless communication system
WO2001061902A1 (en) A method for spread spectrum multiple access coding with zero correlation window
WO2002084914A1 (en) Implement method of ternary spread spectrum sequence coding in cdma system
WO2002001759A1 (en) A method of constructing quadrature spread spectrum code blocks
CA2301312C (en) A scheme for spread spectrum multiple access coding
WO2004068761A1 (en) A method for coding and applying void time spread spectrum multiple access codes
Ono et al. Multirate Optical CDMA Systems Combining Generalized Modified Prime Sequence Code and Bi-orthogonal Code
WO2004068760A1 (en) A method for coding and applying spread spectrum multiple access codes with intergroup zero correlation windows
Xie et al. Complex Hadamard Transform-Based Quaternary Quasi-Orthogonal Sequences and Allocation for DS-CDMA Systems
Tsai Coherent M-ary spreading-code-phase-shift-keying modulation for direct-sequence spread spectrum systems
Kedia et al. Evaluation of Spreading Codes for CDMA Wireless Mobile Communication
Sharma et al. Investigation of handover in WCDMA
WO2004068762A1 (en) A method to form orthogonal spread spectrum code groups having inter-group zero correlation window characteristic
IL148917A (en) Apparatus and method for gating data on a control channel in a cdma communication system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 018095917

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: EXCEPT/SAUF CN)

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP