WO2004068093A1 - Method for detecting wavelength and circuit for detecting wavelength and apparatus employing them - Google Patents
Method for detecting wavelength and circuit for detecting wavelength and apparatus employing them Download PDFInfo
- Publication number
- WO2004068093A1 WO2004068093A1 PCT/JP2003/000921 JP0300921W WO2004068093A1 WO 2004068093 A1 WO2004068093 A1 WO 2004068093A1 JP 0300921 W JP0300921 W JP 0300921W WO 2004068093 A1 WO2004068093 A1 WO 2004068093A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wavelength
- unit
- signal
- optical
- supplied
- Prior art date
Links
- 238000000034 method Methods 0.000 title description 3
- 230000003287 optical effect Effects 0.000 claims abstract description 96
- 238000001514 detection method Methods 0.000 claims description 77
- 230000005540 biological transmission Effects 0.000 claims description 17
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 238000012937 correction Methods 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 15
- 238000012545 processing Methods 0.000 description 12
- 238000004891 communication Methods 0.000 description 4
- 230000000644 propagated effect Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/03—WDM arrangements
- H04J14/0307—Multiplexers; Demultiplexers
Definitions
- the present invention relates to a wavelength detection method, a wavelength detection circuit, and an apparatus using the same, and more particularly, to a wavelength detection method, a wavelength detection circuit, and an apparatus using the same for detecting a wavelength component propagating in a WDM optical communication system.
- Optical communication systems are evolving into systems in which the optical processing domain called the photonic network is expanded to the conventional electrical domain, and one of the technologies supporting this is wavelength division multiplexing (WDM) optical communication.
- WDM wavelength division multiplexing
- a WDM optical communication system it is necessary to arrange and maintain a high density of optical signals to be propagated.
- the wavelength is detected using an optical spectrum analyzer, and the system is controlled.
- An optical spectrum analyzer monitors an electric power level by scanning an optical filter, and has a problem that an optical component such as a prism is required, so that a mounting area is increased and a cost is increased. . Disclosure of the invention
- the present invention can detect a plurality of wavelengths included in an optical signal to be detected collectively, can omit optical components such as a prism, and can reduce the size and cost. And a wavelength detection circuit and a device using the same.
- the wavelength detection method of the present invention converts an optical signal obtained by modulating a periodically changing reference light with predetermined pattern data to an optical signal to be detected, and then converts it into an electric signal. Detecting an error rate of the electrical signal with respect to the predetermined pattern data, and determining an error rate from the wavelength of the reference light at a timing when the error rate exceeds a predetermined value. It is configured to detect a wavelength component included in the detected optical signal.
- a plurality of wavelengths included in the optical signal to be detected can be detected at a time, optical components such as a prism can be omitted, and miniaturization and cost reduction can be achieved. It becomes.
- FIG. 1 is a block diagram of a first embodiment of an optical receiver using the wavelength detection circuit of the present invention.
- FIG. 2 is a block diagram showing the wavelength detection circuit of FIG. 1 in more detail.
- FIG. 3 is a signal waveform diagram for explaining the present invention.
- FIG. 4 is a block diagram showing a circuit configuration for stabilizing the center wavelength.
- FIG. 5 is a signal waveform diagram for explaining the present invention.
- FIG. 6 is a block diagram of a second embodiment of the optical receiver using the wavelength detection circuit of the present invention.
- FIG. 7 is a block diagram of a first embodiment of an optical transmission device using the wavelength detection circuit of the present invention.
- FIG. 8 is a block diagram of a second embodiment of the optical transmission device using the wavelength detection circuit of the present invention.
- FIG. 9 is a block diagram of a third embodiment of an optical transmission device using the wavelength detection circuit of the present invention.
- FIG. 1 is a block diagram of a first embodiment of an optical receiver using the wavelength detection circuit of the present invention.
- FIG. 2 is a block diagram showing the wavelength detection circuit 16 of FIG. 1 in further detail.
- the WDM signal propagated through the path is supplied to a branching unit 10 composed of an optical power plug or the like, where it is branched into two.
- One WDM signal output from the branching unit 10 is separated into each wavelength (for example, wavelength; I1 to I5) by an optical separation unit (optical DEMUX), and the optical signal of each wavelength is received by the reception unit 14. And is converted into an electric signal and output.
- the other WDM signal output from the branch unit 10 is supplied to the mixing unit 22 in the wavelength detection circuit 16.
- the processing section 24 in the wavelength detection circuit 16 supplies the digital V control signal to the DZA section 26, and performs digital / analog conversion in the DZA section 26, thereby obtaining the sawtooth shown in FIG.
- a control signal having a wave shape is generated and supplied to the reference light source 28.
- the reference light source 28 outputs the reference light whose center wavelength ⁇ 0 changes (scans) at a constant period as shown by the solid line Ia in FIG. I do.
- the processing unit 24 reads out the random data for error detection stored in the memory 32 and supplies it to the modulation unit 30.
- the modulation unit 30 modulates the reference light with the random data. Then, a scanning modulated light is generated and supplied to the mixing unit 22. In the mixing unit 22, the WDM signal and the scan modulation light are combined and supplied to the photoelectric conversion unit 34, and the converted electric signal is supplied to the processing unit 24.
- the processing unit 24 monitors the error rate by comparing the electric signal supplied from the photoelectric conversion unit 34 with random data supplied from the memory 32 to the modulation unit 30.
- the processing unit 24 performs error detection as shown in FIG. 3 (C).
- the wavelength included in the WDM signal can be detected from the error detection timing. It is possible to collectively detect the wavelength components of the WDM signal propagating on the main line.
- the processing unit 24 supplies the detected wavelength information to the control unit 18.
- the control unit 18 turns on only the photoelectric conversion unit corresponding to the detected wavelength among the photoelectric conversion units ( ⁇ / ⁇ ) 15 1 to 15 ⁇ of each wavelength constituting the reception unit 14, and The control is performed to turn off the other photoelectric conversion units for which is not detected.
- the control unit 18 may control the center wavelength of the optical filter corresponding to the detected wavelength among the optical filters 13 1 to 13 ⁇ constituting the light separating unit 12. In this way, detection of a plurality of wavelengths of a WDM signal can be performed collectively, and no optical components are required for wavelength detection, so that downsizing and cost reduction can be achieved.
- the center wavelength ⁇ 0 changes as the environmental temperature changes over time. Therefore, it is necessary to stabilize in some way because it may cause an error in the detection result.
- the center wavelength ⁇ 0 can be stabilized by using a Peltier element to stabilize the laser element temperature, or by passing a part of the reference light source through an optical filter for wavelength detection and using a photodiode (PD).
- PD photodiode
- the processing unit 24 supplies the digital control signal (initial value) read from the memory 32 to the DZA unit 26 at every jf fixed time, for example, and the control signal output from the D / A unit 26
- control is performed so that the center wavelength of the reference light is fixed to, for example, the wavelength; La for at least a fixed time (monitoring period).
- a part (wavelength; La) of the reference light passing through the optical filter 36 is photoelectrically converted by a photodiode (PD) 38 and analog / digital converted by an A / D unit 40.
- PD photodiode
- the processing unit 24 compares the output level of the photodiode 38 shown in FIG. 5A with the level at the time of setting of the memory 32 during the monitoring period, and outputs the digital control signal so as to maintain the level at the time of setting.
- the correction is performed and the correction data is stored in the memory 32. Thereafter, the digital control signal for generating the control signal having the sawtooth waveform is corrected using this correction data.
- FIG. 6 is a block diagram of a second embodiment of the optical receiver using the wavelength detection circuit of the present invention.
- the same parts as those in FIG. 1 are denoted by the same reference numerals.
- the WDM signal propagated through the main line is separated into each wavelength (for example, wavelengths 1 to L5) by an optical demultiplexer (optical D EMUX).
- the signal is supplied to the receiving section 14 through 4 2 _ 5, converted into an electric signal, and output.
- the branch / detection units 42-1-42-5 have the same configuration, of which the branch-detection unit 42-5 is illustrated in detail.
- Branch ⁇ Detection part 4 2-5 light of wavelength 5
- the signal component is supplied to a branching unit 10 composed of an optical power blur or the like, where it is branched into two.
- One optical signal output from the branching unit 10 is supplied to the receiving unit 14, and the other optical signal is supplied to the mixing unit 22 in the wavelength detection circuit 16.
- the wavelength detection circuit 16 periodically changes the central wavelength of the reference light; L0, and is supplied from the branching unit 42 based on the error rate caused by beat noise.
- Five wavelength components are detected from the optical signal, and the detection result is supplied to the control unit 18. The same operation is performed for the other branch / detection sections 42-1 to 42-4.
- the control unit 18 controls the center wavelength of each of the wavelengths I 1 to L 5 in the receiving unit 14 using the detection result.
- FIG. 7 is a block diagram of a first embodiment of an optical transmission device using the wavelength detection circuit of the present invention.
- a transmission unit 50 is supplied with a plurality of series of electric signals, converts each signal into an optical signal of a different wavelength (for example, wavelength; L1 to L5), and then uses an optical filter for each wavelength.
- the wavelength is controlled and supplied to the optical multiplexing unit (optical MUX) 52.
- the optical multiplexing unit 52 supplies a WDM signal obtained by multiplexing these wavelengths to the branching unit 54.
- a branching unit 54 composed of an optical power blur or the like splits the WDM signal into two, sends one to the main line, and supplies the other to the wavelength detection circuit 56.
- the wavelength detection circuit 56 has the same configuration as the wavelength detection circuit 16 shown in FIG. 2, and as described above, the center wavelength of the reference light; 10 is periodically changed to cause the beat noise.
- the wavelength included in the WDM signal is detected from the error rate to be detected, and the detection result is supplied to the control unit 58.
- the control unit 58 controls the center wavelength of each of the wavelengths I 1 to ⁇ 5 in the transmission unit 50 using the detection result.
- FIG. 8 is a block diagram of a second embodiment of the optical transmission device using the wavelength detection circuit of the present invention.
- a transmission unit 50 is supplied with a plurality of series of electric signals, converts each signal into an optical signal having a different wavelength (for example, wavelength ⁇ to 15), and then performs wavelength control for each wavelength to output.
- the optical signal of each wavelength is supplied to an optical multiplexing unit (optical MUX) 62 through a branching / detecting unit 60-1 to 60_5.
- optical MUX optical multiplexing unit
- the optical multiplexing unit 62 multiplexes the optical signal of each wavelength supplied from the transmission unit 50 into a WDM signal supplied from the outside, and sends out the obtained WDM signal to the main line.
- the branch 'detectors 60-1 to 60-5 have the same configuration, and the branch' detector 60-1 is illustrated in detail.
- the signal component is supplied to a branching unit 54 composed of an optical power blur or the like, where it is branched into two.
- One optical signal output from the branching unit 54 is supplied to the optical multiplexing unit 62, and the other optical signal is supplied to the wavelength detection circuit 56.
- the wavelength detection circuit 56 has the same configuration as the wavelength detection circuit 16 shown in FIG.
- the wavelength ⁇ 1 component is detected from the optical signal supplied from the branching unit 54 based on the rate, and the detection result is supplied to the control unit 58. The same operation is performed for the other branch detection units 60-0 to 60-5.
- the control section 58 controls the center wavelength of each of the wavelengths L1 to I5 in the transmission section 50 using the above detection result.
- FIG. 9 is a block diagram of a third embodiment of the optical transmitter using the wavelength detection circuit of the present invention.
- a transmission unit 50 is supplied with a plurality of series of electric signals, converts each signal into an optical signal of a different wavelength (for example, wavelength ⁇ 1 to 5), and then performs wavelength control with an optical filter for each wavelength. And supplies it to the optical multiplexing unit (optical MUX) 62.
- the optical multiplexing unit 62 multiplexes the optical signal of each wavelength supplied from the transmitting unit 50 into the WDM signal supplied from the branching unit 64, and sends out the obtained WDM signal to the main line.
- the WDM signal supplied from the outside is supplied to a branching unit 64 composed of an optical power bra and the like, where it is branched into two.
- One WDM signal output from the branching unit 64 is supplied to the optical multiplexing unit 62 described above, and the other optical signal is supplied to the wavelength detection circuit 56.
- the wavelength detection circuit 56 has the same configuration as the wavelength detection circuit 16 shown in FIG. 2, and as described above, the center wavelength of the reference light; L 0 is periodically changed to cause the beat noise.
- the wavelength included in the WDM signal supplied from the branch unit 64 is detected based on the error rate to be detected, and the detection result is supplied to the control unit 58.
- the control unit 58 controls the center wavelength using the detection result.
- the processing section 24, the D / A section 26, the reference light source 28, and the modulation section 30 correspond to the scanning modulated light generating means described in the claims, and the mixing section 22 and the photoelectric conversion section 34 correspond to the mixed conversion.
- the processing unit 24 corresponds to the detecting means, the optical filter 36 and the photodiode 38 correspond to the level detecting means, the processing unit 24 corresponds to the correcting means, and the memory 34 corresponds to the detecting means. Corresponds to the storage method.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
Abstract
An apparatus arranged to multiplex an optical signal obtained by modulating a reference light having a periodically varying wavelength with specified pattern data and an optical signal being detected before converting them into an electrical signal, to detect the error rate of the electrical signal with respect to the specified pattern data, and to detect the wavelength components included in the optical signal being detected from the wavelength of the reference light at such a timing as the error rate exceeds a specified value. With such an arrangement, a plurality of wavelengths included in the optical signal being detected can be detected collectively and optical components including prisms can be omitted while reducing the size and the cost.
Description
明細書 波長検出方法及び波長検出回路及びそれを用いた装置 技術分野 Description: Wavelength detection method, wavelength detection circuit, and apparatus using the same
本発明は、波長検出方法及び波長検出回路及びそれを用いた装置に関し、特に、 波長多重光通信システムで伝播している波長成分を検出する波長検出方法及び波 長検出回路及びそれを用いた装置に関する。 背景技術 The present invention relates to a wavelength detection method, a wavelength detection circuit, and an apparatus using the same, and more particularly, to a wavelength detection method, a wavelength detection circuit, and an apparatus using the same for detecting a wavelength component propagating in a WDM optical communication system. About. Background art
光通信システムは、 フォトニックネットワークと呼ばれる光処理領域を従来の 電気領域にまで拡大させたシステムへと進化しつつあり、 それを支えるテクノ口 ジの一つが波長多重 (WDM) 光通信である。 Optical communication systems are evolving into systems in which the optical processing domain called the photonic network is expanded to the conventional electrical domain, and one of the technologies supporting this is wavelength division multiplexing (WDM) optical communication.
WD M光通信システムにおいては、 伝播させる光信号を高密度に配置及び維持 する必要がある。 従来は、 これを実現するために光スぺクトルアナライザを用い て波長を検出し、 システムの制御が行なわれている。 In a WDM optical communication system, it is necessary to arrange and maintain a high density of optical signals to be propagated. Conventionally, to realize this, the wavelength is detected using an optical spectrum analyzer, and the system is controlled.
光スぺクトルアナライザは、 光のフィルタを走査して電力レベルをモニタする ものであり、プリズム等の光学部品を必要とするために、実装面積が大きくなり、 コストも高くなるという問題があった。 発明の開示 An optical spectrum analyzer monitors an electric power level by scanning an optical filter, and has a problem that an optical component such as a prism is required, so that a mounting area is increased and a cost is increased. . Disclosure of the invention
本発明は、被検出光信号に含まれる複数の波長を一括して検出することができ、 プリズム等の光学部品を省略することができ、 小型化及ぴ低コスト化が可能な波 長検出方法及び波長検出回路及びそれを用いた装置を提供することを総括的な目 的とする。 The present invention can detect a plurality of wavelengths included in an optical signal to be detected collectively, can omit optical components such as a prism, and can reduce the size and cost. And a wavelength detection circuit and a device using the same.
この目的を達成するため、 本発明の波長検出方法は、 周期的に波長が変化する 基準光を所定パタ一ンデータで変調した光信号を被検出光信号に合波したのち電 気信号に変換し、 前記所定パタ一ンデータに対する前記電気信号の誤り率を検知 し、.前記誤り率が所定値を超えたタイミングにおける前記基準光の波長から ϋίΙΒ
被検出光信号に含まれる波長成分を検出するよう構成される。 In order to achieve this object, the wavelength detection method of the present invention converts an optical signal obtained by modulating a periodically changing reference light with predetermined pattern data to an optical signal to be detected, and then converts it into an electric signal. Detecting an error rate of the electrical signal with respect to the predetermined pattern data, and determining an error rate from the wavelength of the reference light at a timing when the error rate exceeds a predetermined value. It is configured to detect a wavelength component included in the detected optical signal.
このような波長検出方法によれば、 被検出光信号に含まれる複数の波長を一括 して検出することができ、 プリズム等の光学部品を省略することができ、 小型化 及び低コスト化が可能となる。 図面の簡単な説明 According to such a wavelength detection method, a plurality of wavelengths included in the optical signal to be detected can be detected at a time, optical components such as a prism can be omitted, and miniaturization and cost reduction can be achieved. It becomes. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の波長検出回路を用いた光受信装置の第 1実施例のプロック図 である。 FIG. 1 is a block diagram of a first embodiment of an optical receiver using the wavelength detection circuit of the present invention.
図 2は図 1の波長検出回路を更に詳細に示すプロック図である。 FIG. 2 is a block diagram showing the wavelength detection circuit of FIG. 1 in more detail.
図 3は、 本発明を説明するため信号波形図である。 FIG. 3 is a signal waveform diagram for explaining the present invention.
図 4は、 中心波長の安定化を行う回路構成を示すプロック図である。 FIG. 4 is a block diagram showing a circuit configuration for stabilizing the center wavelength.
図 5は、 本発明を説明するため信号波形図である。 FIG. 5 is a signal waveform diagram for explaining the present invention.
図 6は、 本発明の波長検出回路を用いた光受信装置の第 2実施例のプロック図 である。 FIG. 6 is a block diagram of a second embodiment of the optical receiver using the wavelength detection circuit of the present invention.
図 7は、 本発明の波長検出回路を用いた光送信装置の第 1実施例のプロック図 である。 FIG. 7 is a block diagram of a first embodiment of an optical transmission device using the wavelength detection circuit of the present invention.
図 8は、 本発明の波長検出回路を用いた光送信装置の第 2実施例のプロック図 である。 FIG. 8 is a block diagram of a second embodiment of the optical transmission device using the wavelength detection circuit of the present invention.
図 9は、 本努明の波長検出回路を用いた光送信装置の第 3実施例のプロック図 である。 発明を実施するための最良の形態 FIG. 9 is a block diagram of a third embodiment of an optical transmission device using the wavelength detection circuit of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本 明の実施例を図面に基づ!/ヽて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は、 本発明の波長検出回路を用いた光受信装置の第 1実施例のプロック図 を示す。 図 2は、 図 1の波長検出回路 1 6を更に詳細に示すプロック図である。 図 1及ぴ図 2にお ヽて、 镍路を伝播した WDM信号は光力プラ等で構成した 分岐部 1 0に供給され、 ここで 2分岐される。 分岐部 1 0の出力する一方の WD M信号は光分離部 (光 D EMUX) で各波長 (例えば波長; I 1〜; I 5 ) に分離さ れ、 各波長の光信号は受信部 1 4に供給され電気信号に変換されて出力される。
また、 分岐部 1 0の出力する他方の WDM信号は波長検出回路 1 6内の混合部 2 2に供給される。 FIG. 1 is a block diagram of a first embodiment of an optical receiver using the wavelength detection circuit of the present invention. FIG. 2 is a block diagram showing the wavelength detection circuit 16 of FIG. 1 in further detail. In FIG. 1 and FIG. 2, the WDM signal propagated through the path is supplied to a branching unit 10 composed of an optical power plug or the like, where it is branched into two. One WDM signal output from the branching unit 10 is separated into each wavelength (for example, wavelength; I1 to I5) by an optical separation unit (optical DEMUX), and the optical signal of each wavelength is received by the reception unit 14. And is converted into an electric signal and output. The other WDM signal output from the branch unit 10 is supplied to the mixing unit 22 in the wavelength detection circuit 16.
一方、 波長検出回路 1 6内の処理部 2 4は、 DZA部 2 6にデジタノ V ^御信号 を供給し、 DZA部 2 6でデジタノレ/アナログ変換することによって、図 3 (A) に示す鋸歯状波形の制御信号を生成し基準光源 2 8に供給する。 これによつて、 基準光源 2 8は、 図 3 (B ) に実線 I aで示すように中心波長 λ 0が一定の周期 で変化 (走査) する基準光を出力して変調部 3 0に供給する。 On the other hand, the processing section 24 in the wavelength detection circuit 16 supplies the digital V control signal to the DZA section 26, and performs digital / analog conversion in the DZA section 26, thereby obtaining the sawtooth shown in FIG. A control signal having a wave shape is generated and supplied to the reference light source 28. As a result, the reference light source 28 outputs the reference light whose center wavelength λ 0 changes (scans) at a constant period as shown by the solid line Ia in FIG. I do.
また、 処理部 2 4は、 メモリ 3 2に格納されているエラー検出用のランダムデ ータを読み出して変調部 3 0に供給しており、 変調部 3 0はこのランダムデータ で基準光を変調して走査変調光を生成し、 混合部 2 2に供給する。 混合部 2 2で は WDM信号と走査変調光と合波して光電変換部 3 4に供給し、 ここで変換され た電気信号は処理部 2 4に供給される。 Further, the processing unit 24 reads out the random data for error detection stored in the memory 32 and supplies it to the modulation unit 30. The modulation unit 30 modulates the reference light with the random data. Then, a scanning modulated light is generated and supplied to the mixing unit 22. In the mixing unit 22, the WDM signal and the scan modulation light are combined and supplied to the photoelectric conversion unit 34, and the converted electric signal is supplied to the processing unit 24.
処理部 2 4は、 光電変換部 3 4から供給される電気信号をメモリ 3 2から変調 部 3 0に供給したランダムデータと比較して誤り率をモニタする。 このとき、 基 準光源 2 8の出力する中心波長; I 0は周期的に変化しているため、 WDM信号に 図 3 (Β) に示すように波長成分; L X ( λ χ = λ 1 , λ 2 , λ 3 , λ 4 ) が含ま れる場合、 中心波長; I 0が波長成分; L Xと重なるタイミングでは光信号の混合に よるビート雑音が発生して誤り率が急激に増加する。 処理部 2 4は誤り率が閾値 を超えると図 3 (C) に示すように誤り検出を行う。 The processing unit 24 monitors the error rate by comparing the electric signal supplied from the photoelectric conversion unit 34 with random data supplied from the memory 32 to the modulation unit 30. At this time, the center wavelength output from the reference light source 28; since I0 changes periodically, the WDM signal has a wavelength component as shown in FIG. 3 (Β); LX (λχ = λ1, λ 2, λ 3, λ 4), the center wavelength; I 0 is a wavelength component; at the timing overlapping with LX, beat noise due to the mixing of optical signals occurs, and the error rate sharply increases. When the error rate exceeds the threshold, the processing unit 24 performs error detection as shown in FIG. 3 (C).
従って、 デジタル制御信号に対応する基準光源 2 8の出力する中心波長え 0を E E P R OMなどで構成されるメモリ 3 2に格納しておくことにより、 誤り検出 タイミングから WDM信号に含まれる波長を検知することができ、 主線路を伝播 している WDM信号の波長成分を一括して検出できる。 Therefore, by storing the center wavelength 0 output from the reference light source 28 corresponding to the digital control signal in the memory 32 composed of an EEPROM, etc., the wavelength included in the WDM signal can be detected from the error detection timing. It is possible to collectively detect the wavelength components of the WDM signal propagating on the main line.
処理部 2 4は検出した波長情報を制御部 1 8に供給する。 制御部 1 8では、 受 信部 1 4を構成する各波長の光電変換部 (Ο/Ε) 1 5 1〜1 5 ηのうち検出し た波長に対応する光電変換部のみをオンし、 波長が検出されなかった他の光電変 換部をオフする制御を行う。 なお、 制御部 1 8は光分離部 1 2を構成する光フィ ルタ 1 3 1〜1 3 ηのうち検出した波長に対応する光フィルタの中心波長の制御 を行うものであっても良い。
このようにして、 WDM信号の複数波長の検出を一括して行うことができ、 波 長検出に光学部品を必要としないので小型化及び低コスト化が可能となる。 The processing unit 24 supplies the detected wavelength information to the control unit 18. The control unit 18 turns on only the photoelectric conversion unit corresponding to the detected wavelength among the photoelectric conversion units (Ο / Ε) 15 1 to 15 η of each wavelength constituting the reception unit 14, and The control is performed to turn off the other photoelectric conversion units for which is not detected. The control unit 18 may control the center wavelength of the optical filter corresponding to the detected wavelength among the optical filters 13 1 to 13 η constituting the light separating unit 12. In this way, detection of a plurality of wavelengths of a WDM signal can be performed collectively, and no optical components are required for wavelength detection, so that downsizing and cost reduction can be achieved.
ところで、 中心波長 λ 0の ®ΐ制御が可能な V C S E Lレーザ (面発光型レー ザ) などを基準光源 2 8に使用した場合、 中心波長 λ 0が環境温度の変ィヒゃ時間 経過と共に変ィヒし、 検出結果に誤差をもたらすおそれがあるため、 何らかの方法 で安定化を行う必要がある。 By the way, when a VCSEL laser (surface emitting laser) capable of controlling the center wavelength λ 0 is used as the reference light source 28, the center wavelength λ 0 changes as the environmental temperature changes over time. Therefore, it is necessary to stabilize in some way because it may cause an error in the detection result.
中心波長 λ 0の安定化方法については、 ペルチェ素子を使用してレーザ素子温 度を安定化する方法や、基準光源の一部を波長検出用の光学フィルタを通過させ、 フォトダイオード ( P D) で電気に変換したレべノレを一定に保つ方法があるが、 本発明では図 4に示す構成で実現する。 The center wavelength λ0 can be stabilized by using a Peltier element to stabilize the laser element temperature, or by passing a part of the reference light source through an optical filter for wavelength detection and using a photodiode (PD). Although there is a method of keeping the level converted to electricity constant, in the present invention, it is realized by the configuration shown in FIG.
図 4において、 処理部 2 4は、 例えは下 jf定時間毎に DZA部 2 6にメモリ 3 2 から読み出したデジタル制御信号 (初期値) を与え、 D/A部 2 6から出力する 制御信号が図 5 (A) に示すように少なくとも一定時間(監視期間)、基準光の中 心波長が例えば波長; L aに固定するように制御する。 In FIG. 4, for example, the processing unit 24 supplies the digital control signal (initial value) read from the memory 32 to the DZA unit 26 at every jf fixed time, for example, and the control signal output from the D / A unit 26 However, as shown in FIG. 5A, control is performed so that the center wavelength of the reference light is fixed to, for example, the wavelength; La for at least a fixed time (monitoring period).
そして、 光学フィルタ 3 6を通過する基準光の一部 (波長; L a ) をフォトダイ オード (P D) 3 8で光電変換し、 A/D部 4 0でアナログ/デジタル変換して 処理部 2 4に供給する。 Then, a part (wavelength; La) of the reference light passing through the optical filter 36 is photoelectrically converted by a photodiode (PD) 38 and analog / digital converted by an A / D unit 40. Supply 4
処理部 2 4は、 監視期間で図 5 (A) に示すフォトダイオード 3 8の出力レべ ルをメモリ 3 2の設定時レベルと比較し、 設定時レベルを保持するようにデジタ ル制御信号の補正を行うと共に、補正データをメモリ 3 2に保持する。それ以降、 鋸歯状波形の制御信号を生成する際のデジタル制御信号は、 この補正データを用 いて補正する。 The processing unit 24 compares the output level of the photodiode 38 shown in FIG. 5A with the level at the time of setting of the memory 32 during the monitoring period, and outputs the digital control signal so as to maintain the level at the time of setting. The correction is performed and the correction data is stored in the memory 32. Thereafter, the digital control signal for generating the control signal having the sawtooth waveform is corrected using this correction data.
図 6は、 本発明の波長検出回路を用いた光受信装置の第 2実施例のプロック図 を示す。 同図中、 図 1と同一部分には同一符号を付す。 図 6において、 主線路を 伝播した WDM信号は光分離部 (光 D EMUX) で各波長 (例えば波長 1〜 L 5 ) に分離され、 各波長の光信号は分岐 ·検出部 4 2— 1〜4 2 _ 5を通して受 信部 1 4に供給され電気信号に変換されて出力される。 FIG. 6 is a block diagram of a second embodiment of the optical receiver using the wavelength detection circuit of the present invention. In the figure, the same parts as those in FIG. 1 are denoted by the same reference numerals. In Fig. 6, the WDM signal propagated through the main line is separated into each wavelength (for example, wavelengths 1 to L5) by an optical demultiplexer (optical D EMUX). The signal is supplied to the receiving section 14 through 4 2 _ 5, converted into an electric signal, and output.
分岐 ·検出部 4 2 - 1 - 4 2 - 5は同一構成であり、 このうち、 分岐'検出部 4 2—5を詳細に図示している。 分岐 ·検出部 4 2— 5において、 波長 5の光
信号成分は光力ブラ等で構成した分岐部 1 0に供給され、 ここで 2分岐される。 分岐部 1 0の出力する一方の光信号は受信部 1 4に供給され、 他方の光信号は波 長検出回路 1 6内の混合部 2 2に供給される。 波長検出回路 1 6は、 図 2と共に 説明したように、 基準光の中心波長; L 0を周期的に変化させて、 ビート雑音に起 因する誤り率に基づいて分岐部 4 2より供給される光信号から波長 5成分を検 出し、 検出結果を制御部 1 8に供給する。 他の分岐 ·検出部 4 2— 1〜 4 2— 4 についても同様の動作を行う。 制御部 1 8では、 上記検出結果を用いて受信部 1 4における波長; I 1〜 L 5それぞれの中心波長の制御を行う。 The branch / detection units 42-1-42-5 have the same configuration, of which the branch-detection unit 42-5 is illustrated in detail. Branch ・ Detection part 4 2-5, light of wavelength 5 The signal component is supplied to a branching unit 10 composed of an optical power blur or the like, where it is branched into two. One optical signal output from the branching unit 10 is supplied to the receiving unit 14, and the other optical signal is supplied to the mixing unit 22 in the wavelength detection circuit 16. As described with reference to FIG. 2, the wavelength detection circuit 16 periodically changes the central wavelength of the reference light; L0, and is supplied from the branching unit 42 based on the error rate caused by beat noise. Five wavelength components are detected from the optical signal, and the detection result is supplied to the control unit 18. The same operation is performed for the other branch / detection sections 42-1 to 42-4. The control unit 18 controls the center wavelength of each of the wavelengths I 1 to L 5 in the receiving unit 14 using the detection result.
図 7は、 本発明の波長検出回路を用いた光送信装置の第 1実施例のプロック図 を示す。 同図中、 送信部 5 0は複数系列の電気信号を供給され、 各信号をそれぞ れ異なる波長の (例えば波長; L 1〜 L 5 ) 光信号に変換したのち波長毎に光ブイ ルタで波長制御を行つて光多重部 (光 MUX) 5 2に供給する。 光多重部 5 2は これらの波長を多重ィ匕した WDM信号を分岐部 5 4に供給する。 光力ブラ等で構 成した分岐部 5 4は WDM信号を 2分岐し、 一方を主線路に送出し、 他方を波長 検出回路 5 6に供給する。 FIG. 7 is a block diagram of a first embodiment of an optical transmission device using the wavelength detection circuit of the present invention. In the figure, a transmission unit 50 is supplied with a plurality of series of electric signals, converts each signal into an optical signal of a different wavelength (for example, wavelength; L1 to L5), and then uses an optical filter for each wavelength. The wavelength is controlled and supplied to the optical multiplexing unit (optical MUX) 52. The optical multiplexing unit 52 supplies a WDM signal obtained by multiplexing these wavelengths to the branching unit 54. A branching unit 54 composed of an optical power blur or the like splits the WDM signal into two, sends one to the main line, and supplies the other to the wavelength detection circuit 56.
波長検出回路 5 6は、 図 2に示す波長検出回路 1 6と同一構成であり、 先に説 明したように、 基準光の中心波長; 1 0を周期的に変化させて、 ビート雑音に起因 する誤り率から WDM信号に含まれる波長を検出し、 その検出結果を制御部 5 8 に供給する。 制御部 5 8では、 検出結果を用いて送信部 5 0における波長; I 1〜 λ 5それぞれの中心波長の制御を行う。 The wavelength detection circuit 56 has the same configuration as the wavelength detection circuit 16 shown in FIG. 2, and as described above, the center wavelength of the reference light; 10 is periodically changed to cause the beat noise. The wavelength included in the WDM signal is detected from the error rate to be detected, and the detection result is supplied to the control unit 58. The control unit 58 controls the center wavelength of each of the wavelengths I 1 to λ 5 in the transmission unit 50 using the detection result.
図 8は、 本発明の波長検出回路を用いた光送信装置の第 2実施例のプロック図 を示す。 同図中、 図 7と同一部分には同一符号を付す。 図 8において、 送信部 5 0は複数系列の電気信号を供給され、 各信号をそれぞれ異なる波長の (例えば波 長 λ ΐ〜 1 5 ) 光信号に変換したのち波長毎に波長制御を行って出力し、 各波長 の光信号は分岐 ·検出部 6 0— 1〜6 0 _ 5を通して光多重部 (光 MU X) 6 2 に供給される。 光多重部 6 2は送信部 5 0より供給される各波長の光信号を外部 より供給される WDM信号に多重ィ匕し、得られた WDM信号を主線路に送出する。 分岐'検出部 6 0— 1〜6 0— 5は同一構成であり、 このうち、 分岐'検出部 6 0—1を詳細に図示している。 分岐'検出部 6 0—1において、 波長; L 1の光
信号成分は光力ブラ等で構成した分岐部 5 4に供給され、 ここで 2分岐される。 分岐部 5 4の出力する一方の光信号は光多重部 6 2に供給され、 他方の光信号は 波長検出回路 5 6に供給される。 波長検出回路 5 6は、 図 2に示す波長検出回路 1 6と同一構成であり、 先に説明したように、 基準光の中心波長 λ 0を周期的に 変化させて、 ビート雑音に起因する誤り率に基づいて分岐部 5 4より供給される 光信号から波長 λ 1成分を検出し、検出結果を制御部 5 8に供給する。他の分岐 . 検出部 6 0— 2〜 6 0— 5についても同様の動作を行う。 制御部 5 8では、 上記' 検出結果を用いて送信部 5 0における波長; L 1〜 I 5それぞれの中心波長の制御 を行う。 FIG. 8 is a block diagram of a second embodiment of the optical transmission device using the wavelength detection circuit of the present invention. In the figure, the same parts as those in FIG. 7 are denoted by the same reference numerals. In FIG. 8, a transmission unit 50 is supplied with a plurality of series of electric signals, converts each signal into an optical signal having a different wavelength (for example, wavelength λΐ to 15), and then performs wavelength control for each wavelength to output. The optical signal of each wavelength is supplied to an optical multiplexing unit (optical MUX) 62 through a branching / detecting unit 60-1 to 60_5. The optical multiplexing unit 62 multiplexes the optical signal of each wavelength supplied from the transmission unit 50 into a WDM signal supplied from the outside, and sends out the obtained WDM signal to the main line. The branch 'detectors 60-1 to 60-5 have the same configuration, and the branch' detector 60-1 is illustrated in detail. At the branching detector 60-1, light of wavelength; L1 The signal component is supplied to a branching unit 54 composed of an optical power blur or the like, where it is branched into two. One optical signal output from the branching unit 54 is supplied to the optical multiplexing unit 62, and the other optical signal is supplied to the wavelength detection circuit 56. The wavelength detection circuit 56 has the same configuration as the wavelength detection circuit 16 shown in FIG. 2, and as described above, periodically changes the center wavelength λ 0 of the reference light, thereby causing an error caused by beat noise. The wavelength λ1 component is detected from the optical signal supplied from the branching unit 54 based on the rate, and the detection result is supplied to the control unit 58. The same operation is performed for the other branch detection units 60-0 to 60-5. The control section 58 controls the center wavelength of each of the wavelengths L1 to I5 in the transmission section 50 using the above detection result.
図 9は、 本発明の波長検出回路を用いた光送信装置の第 3実施例のブロック図 を示す。同図中、図 7または図 8と同一部分には同一符号を付す。図 9において、 送信部 5 0は複数系列の電気信号を供給され、各信号をそれぞれ異なる波長の (例 えば波長 λ 1〜え 5 ) 光信号に変換したのち波長毎に光フィルタで波長制御を行 つて光多重部 (光 MUX) 6 2に供給する。 光多重部 6 2は送信部 5 0より供給 される各波長の光信号を分岐部 6 4より供給される WDM信号に多重ィ匕し、 得ら れた WDM信号を主線路に送出する。 FIG. 9 is a block diagram of a third embodiment of the optical transmitter using the wavelength detection circuit of the present invention. In the figure, the same parts as those in FIG. 7 or FIG. In FIG. 9, a transmission unit 50 is supplied with a plurality of series of electric signals, converts each signal into an optical signal of a different wavelength (for example, wavelength λ 1 to 5), and then performs wavelength control with an optical filter for each wavelength. And supplies it to the optical multiplexing unit (optical MUX) 62. The optical multiplexing unit 62 multiplexes the optical signal of each wavelength supplied from the transmitting unit 50 into the WDM signal supplied from the branching unit 64, and sends out the obtained WDM signal to the main line.
また、 外部より供給される WDM信号は光力ブラ等で構成した分岐部 6 4に供 給され、 ここで 2分岐される。 分岐部 6 4の出力する一方の WDM信号は前述の 光多重部 6 2に供給され、 他方の光信号は波長検出回路 5 6に供給される。 The WDM signal supplied from the outside is supplied to a branching unit 64 composed of an optical power bra and the like, where it is branched into two. One WDM signal output from the branching unit 64 is supplied to the optical multiplexing unit 62 described above, and the other optical signal is supplied to the wavelength detection circuit 56.
波長検出回路 5 6は、 図 2に示す波長検出回路 1 6と同一構成であり、 先に説 明したように、 基準光の中心波長; L 0を周期的に変化させて、 ビート雑音に起因 する誤り率に基づいて分岐部 6 4より供給される WDM信号に含まれる波長を検 出し、 検出結果を制御部 5 8に供給する。 制御部 5 8では、 検出結果を用いて中 心波長の制御を行う。 The wavelength detection circuit 56 has the same configuration as the wavelength detection circuit 16 shown in FIG. 2, and as described above, the center wavelength of the reference light; L 0 is periodically changed to cause the beat noise. The wavelength included in the WDM signal supplied from the branch unit 64 is detected based on the error rate to be detected, and the detection result is supplied to the control unit 58. The control unit 58 controls the center wavelength using the detection result.
なお、 処理部 2 4, D/A部 2 6, 基準光源 2 8, 変調部 3 0が請求項記載の 走査変調光生成手段に対応し、 混合部 2 2, 光電変換部 3 4が混合変換手段に対 応し、 処理部 2 4が検出手段に対応し、 光学フィルタ 3 6, フォトダイオード 3 8がレベル検出手段に対応し、 処理部 2 4が捕正手段に対応し、 メモリ 3 4が格 納手段に対応する。
The processing section 24, the D / A section 26, the reference light source 28, and the modulation section 30 correspond to the scanning modulated light generating means described in the claims, and the mixing section 22 and the photoelectric conversion section 34 correspond to the mixed conversion. The processing unit 24 corresponds to the detecting means, the optical filter 36 and the photodiode 38 correspond to the level detecting means, the processing unit 24 corresponds to the correcting means, and the memory 34 corresponds to the detecting means. Corresponds to the storage method.
Claims
1 . 周期的に波長が変化する基準光を所定パターンデータで変調した光信号 を被検出光信号に合波したのち電気信号に変換し、 1. An optical signal obtained by modulating a reference light whose wavelength periodically changes with predetermined pattern data is multiplexed with an optical signal to be detected, and then converted into an electric signal.
前記所定パターンデータに対する前記電気信号の誤り率を検知し、 前記誤り率 が所定値を超えたタイミングにおける前記基準光の波長から前記被検出光信号に 含まれる波長成分を検出する波長検出方法。 A wavelength detection method for detecting an error rate of the electrical signal with respect to the predetermined pattern data, and detecting a wavelength component included in the detected light signal from a wavelength of the reference light at a timing when the error rate exceeds a predetermined value.
2 . 周期的に波長が変化する基準光 所定パターンデータで変調した走査変 調光を生成する走査変調光生成手段と、 2. Reference light whose wavelength changes periodically Scanning modulated light generating means for generating scanning modulated light modulated with predetermined pattern data;
前記走査変調光を被検出光信号に合波したのち電気信号に変換する混合変換手 段と、 A mixing conversion means for multiplexing the scanning modulated light with the optical signal to be detected and then converting it into an electric signal;
前記所定パターンデータに対する前記電気信号の誤り率を検知し、 前記誤り率 が所定値を超えたタイミングにおける前記基準光の波長から前記被検出光信号に 含まれる波長成分を検出する検出手段を有する波長検出回路。 A wavelength detecting means for detecting an error rate of the electric signal with respect to the predetermined pattern data, and detecting a wavelength component included in the detected light signal from a wavelength of the reference light at a timing when the error rate exceeds a predetermined value. Detection circuit.
3 . 光分離部に供給される複数の波長を多重した WDM信号の一部を分岐す る分岐部と、 3. A splitting unit that splits a part of the WDM signal multiplexing multiple wavelengths supplied to the optical demultiplexing unit,
前記分岐部から供給される WDM佶号を被検出光倌号として供給される請求項 2記載の波長検出回路と、 3. The wavelength detection circuit according to claim 2, wherein the WDM signal supplied from the branch unit is supplied as a detected light signal.
前記波長検出回路の出力する検出結果に応じて、 前記光分離部で分離された各 波長を受信する受信部を制御する制御部を有する光受信装置。 An optical receiving device comprising: a control unit that controls a receiving unit that receives each wavelength separated by the optical splitting unit according to a detection result output by the wavelength detection circuit.
4. 複数の波長を多重した WDM信号を光分離部で分離した光信号の一部を 分岐する分岐部と、 4. a branching unit that branches a part of the optical signal obtained by separating the WDM signal obtained by multiplexing a plurality of wavelengths by the optical separation unit;
ΙίίΙΒ分岐部から供給される波長の光信号を被検出光信号として供給される請求 項 2記載の波長検出回路と、 The wavelength detection circuit according to claim 2, wherein the optical signal having the wavelength supplied from the branch unit is supplied as the detected optical signal.
tfif己波長検出回路の出力する検出結果に応じて、 前記光分離部で分離された各 波長を受信する受信部を制御する制御部を有する光受信装置。
An optical receiving device having a control unit that controls a receiving unit that receives each wavelength demultiplexed by the optical demultiplexing unit according to a detection result output from the tfif self-wavelength detection circuit.
5 . 送信部から供給される複数の波長を光多重部で多重した WDM信号の一 部を分岐する分岐部と、 5. A splitter for splitting a part of the WDM signal obtained by multiplexing a plurality of wavelengths supplied from the transmitter by the optical multiplexing unit,
前記分岐部から供給される WDM信号を被検出光信号として供給される請求項 2記載の波長検出回路と、 3. The wavelength detection circuit according to claim 2, wherein the WDM signal supplied from the branch unit is supplied as a detected optical signal.
前記波長検出回路の出力する検出結果に応じて、 前記送信部を波長毎に制御す る制御部を有する光送信装置。 An optical transmission device having a control unit for controlling the transmission unit for each wavelength according to a detection result output from the wavelength detection circuit.
6. 送信部から供給される波長の光信号の一部を分岐する分岐部と、 前記分岐部から供給される波長の光信号を被検出光信号として供給される請求 項 2記載の波長検出回路と、 6. The wavelength detecting circuit according to claim 2, wherein the branching unit branches a part of the optical signal having the wavelength supplied from the transmitting unit, and the optical signal having the wavelength supplied from the branching unit is supplied as the detected optical signal. When,
前記波長検出回路の出力する検出結果に応じて、 前記送信部を波長毎に制御す る制御部を有する光送信装置。 An optical transmission device having a control unit for controlling the transmission unit for each wavelength according to a detection result output from the wavelength detection circuit.
7. 複数の波長を多重した WDM信号の一部を分岐する分岐部と、 前記分岐部から供給される WDM信号を被検出光信号として供給される請求項 2記載の波長検出回路と、 . 7.The wavelength detecting circuit according to claim 2, wherein the branching unit branches a part of the WDM signal obtained by multiplexing a plurality of wavelengths, and the WDM signal supplied from the branching unit is supplied as a detected optical signal.
前記波長検出回路の出力する検出結果に応じて、 前記 WDM信号に多重する複 数の波長を出力する送信部を制御する制御部を有する光送信装置。 An optical transmission device having a control unit that controls a transmission unit that outputs a plurality of wavelengths to be multiplexed on the WDM signal in accordance with a detection result output from the wavelength detection circuit.
8. 請求項 2記載の波長検出回路において、 8. In the wavelength detection circuit according to claim 2,
前記走査変調光生成手段は、 周期的に値が変化する制御信号を用いて前記基準 光の波長を変化させる波長検出回路。 A wavelength detection circuit for changing the wavelength of the reference light using a control signal whose value periodically changes.
9 . 請求項 8記載の波長検出回路において、 9. The wavelength detection circuit according to claim 8,
前記制御信号を一定値とした時点で前記基準光のレベルを検出するレベル検出 手段と、 Level detection means for detecting the level of the reference light at the time when the control signal is a constant value,
前記基準光の検出レベルが所定値となるよう前記制御信号を補正する補正手段 を有する波長検出回路。
A wavelength detection circuit comprising: a correction unit configured to correct the control signal so that a detection level of the reference light becomes a predetermined value.
1 0. 請求項 9記載の波長検出回路において、 10. The wavelength detection circuit according to claim 9,
前記制御信号を一定値とするための初期データと、 前記制御信号を捕正する捕 正データを格納する格納手段を有する波長検出回路。
A wavelength detection circuit comprising: initial data for setting the control signal to a constant value; and storage means for storing correction data for correcting the control signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2003/000921 WO2004068093A1 (en) | 2003-01-30 | 2003-01-30 | Method for detecting wavelength and circuit for detecting wavelength and apparatus employing them |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2003/000921 WO2004068093A1 (en) | 2003-01-30 | 2003-01-30 | Method for detecting wavelength and circuit for detecting wavelength and apparatus employing them |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004068093A1 true WO2004068093A1 (en) | 2004-08-12 |
Family
ID=32800828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2003/000921 WO2004068093A1 (en) | 2003-01-30 | 2003-01-30 | Method for detecting wavelength and circuit for detecting wavelength and apparatus employing them |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2004068093A1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6418284A (en) * | 1987-07-13 | 1989-01-23 | Nec Corp | Method and equipment for stabilizing oscillation frequency intervals of plural laser devices |
JPH03115939A (en) * | 1989-09-29 | 1991-05-16 | Anritsu Corp | Method and apparatus for analyzing light spectrum |
JPH0755579A (en) * | 1993-08-09 | 1995-03-03 | Nippon Telegr & Teleph Corp <Ntt> | Optical spectral analyzer |
JPH1065649A (en) * | 1996-08-26 | 1998-03-06 | Nec Corp | Wavelength multiplex optical transmission device |
JPH1114463A (en) * | 1997-06-25 | 1999-01-22 | Tokyo Electric Power Co Inc:The | Light wavelength measuring instrument |
JPH11196068A (en) * | 1998-01-05 | 1999-07-21 | Nec Corp | Wavelength division multiplex transmitting device |
JP2000115132A (en) * | 1998-09-30 | 2000-04-21 | Nec Corp | Light wavelength multiplex transmitter and transmission method, light wavelength multiplex receiver and reception method and light wavelength multiplex transmitter |
JP2001077754A (en) * | 1999-09-01 | 2001-03-23 | Fujitsu Ltd | Optical demultiplexing device and optical demultiplexing and multiplexing device |
JP2002232075A (en) * | 2001-01-31 | 2002-08-16 | Ando Electric Co Ltd | Tunable light source |
-
2003
- 2003-01-30 WO PCT/JP2003/000921 patent/WO2004068093A1/en not_active Application Discontinuation
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6418284A (en) * | 1987-07-13 | 1989-01-23 | Nec Corp | Method and equipment for stabilizing oscillation frequency intervals of plural laser devices |
JPH03115939A (en) * | 1989-09-29 | 1991-05-16 | Anritsu Corp | Method and apparatus for analyzing light spectrum |
JPH0755579A (en) * | 1993-08-09 | 1995-03-03 | Nippon Telegr & Teleph Corp <Ntt> | Optical spectral analyzer |
JPH1065649A (en) * | 1996-08-26 | 1998-03-06 | Nec Corp | Wavelength multiplex optical transmission device |
JPH1114463A (en) * | 1997-06-25 | 1999-01-22 | Tokyo Electric Power Co Inc:The | Light wavelength measuring instrument |
JPH11196068A (en) * | 1998-01-05 | 1999-07-21 | Nec Corp | Wavelength division multiplex transmitting device |
JP2000115132A (en) * | 1998-09-30 | 2000-04-21 | Nec Corp | Light wavelength multiplex transmitter and transmission method, light wavelength multiplex receiver and reception method and light wavelength multiplex transmitter |
JP2001077754A (en) * | 1999-09-01 | 2001-03-23 | Fujitsu Ltd | Optical demultiplexing device and optical demultiplexing and multiplexing device |
JP2002232075A (en) * | 2001-01-31 | 2002-08-16 | Ando Electric Co Ltd | Tunable light source |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5907429A (en) | Optical amplifier | |
US6172782B1 (en) | Output port switching device in N-WDM system | |
JP3132638B2 (en) | Optical WDM transmission system | |
JP5678199B2 (en) | Passive wavelength division multiplexing apparatus and system for automatic wavelength locking | |
US20060147211A1 (en) | Wavelength-division-multiplexed passive optical network | |
KR100635547B1 (en) | Optical back-up receiver system with wdm channel monitoring system and the related method | |
JPH09289503A (en) | Optical amplification device and wavelength multiplex optical transmission device using same | |
KR100516655B1 (en) | Optical channel path supervisory and correction apparatus and method for transparent optical cross-connect | |
JP7566989B2 (en) | Optical module and optical communication system | |
US7050719B2 (en) | Wavelength division multiplexing receiver for wavelength tracking | |
WO2004068093A1 (en) | Method for detecting wavelength and circuit for detecting wavelength and apparatus employing them | |
US20020057476A1 (en) | Collective detection method and detection system for wavelength fluctuations in wavelength division multiplexing optical communication system, and wavelength division multiplexing optical transmission apparatus equipped with this detection system | |
US20100166437A1 (en) | Optical detecting circuit, optical transmitting apparatus, and optical detecting method | |
JP4150193B2 (en) | Wavelength control apparatus and wavelength control method | |
JP7147961B2 (en) | Optical transmission system, optical transmitter and optical communication method | |
JP3754194B2 (en) | Optical communication system | |
JP5139137B2 (en) | Wavelength error detection circuit, wavelength error detection method, and multiplexed optical communication system | |
KR100634735B1 (en) | Optical receiver monitorable light wavelength | |
JP5336624B2 (en) | Wavelength error detector and wavelength error detection method | |
JP2001111168A (en) | Optical frequency stabilizer | |
JP2003273835A (en) | Wavelength multiplex optical transmitter | |
JP2003273806A (en) | Optical transmission system | |
JP3385260B2 (en) | Tunable filter device | |
JPH09214428A (en) | Wavelength monitor method and optical amplifier using the same | |
JP4690658B2 (en) | Laser modulation wave adjustment device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): DE JP US |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |