WO2004067590A1 - Cyclized rubber and process for producing the same - Google Patents

Cyclized rubber and process for producing the same Download PDF

Info

Publication number
WO2004067590A1
WO2004067590A1 PCT/JP2004/000421 JP2004000421W WO2004067590A1 WO 2004067590 A1 WO2004067590 A1 WO 2004067590A1 JP 2004000421 W JP2004000421 W JP 2004000421W WO 2004067590 A1 WO2004067590 A1 WO 2004067590A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
molecular weight
conjugated
cyclized
polymerization
Prior art date
Application number
PCT/JP2004/000421
Other languages
French (fr)
Japanese (ja)
Inventor
Shizuo Kitahara
Yasushi Tanaka
Atsushi Hayashi
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003023702A external-priority patent/JP4207587B2/en
Priority claimed from JP2003023689A external-priority patent/JP4207586B2/en
Application filed by Zeon Corporation filed Critical Zeon Corporation
Publication of WO2004067590A1 publication Critical patent/WO2004067590A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/10Isomerisation; Cyclisation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers

Definitions

  • the present invention relates to a cyclized rubber and a method for producing the same, and more particularly, to a multimodal molecular weight distribution capable of remarkably improving the adhesion between a molded article made of a nonpolar polymer such as polypropylene and polyethylene and a coating composition.
  • the present invention relates to a cyclized rubber having a curve and a method for producing the same.
  • polyolefins such as polyethylene and polypropylene are often used with their surfaces painted with paints in order to improve aesthetics and durability.
  • polyolefin has a low polarity and, as it is, is inferior in adhesion to the paint, so that there is a problem that the coating film is easily peeled off.
  • the present invention has been made in view of the above circumstances, and provides a cyclized rubber capable of significantly improving the adhesion between a molded article made of a nonpolar polymer such as polypropylene and polyethylene and a paint, and a method for producing the same.
  • the purpose is to:
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, after starting the polymerization of the conjugated gen monomer using the organic active metal catalyst, the organic active metal The polymerization is continued by adding a polymerization terminator in an amount that inactivates a part of the active metal in the catalyst, and the polymerization is continued to cyclize the obtained conjugated diene polymer having a multimodal molecular weight distribution curve. It has been found that the above object can be achieved by using a cyclized rubber having a modal molecular weight distribution curve and a weight average molecular weight in a specific range, and based on this finding, the present invention has been completed.
  • Cyclic rubber that is 1,000,000.
  • the cyclized rubber having a cyclization ratio of 10% or more.
  • the cyclized rubber having a gel amount of 10% by weight or less.
  • Said cyclized rubber having a maximum peak top molecular weight (Pmw-L) of 1,000,000 or less.
  • the derivative of the cyclized conjugated polymer is a derivative obtained by introducing a polar group into the cyclized conjugated polymer by a modification reaction using a polar group-containing compound.
  • the polar group is at least one group selected from the group consisting of an acid anhydride group, a carboxyl group, a hydroxyl group, a thiol group, an ester group, an epoxy group, an amino group, an amide group, a cyano group, a silyl group, and a halogen.
  • the cyclized rubber as described above.
  • the polymerization is completed after starting the polymerization of the conjugated gen monomer or the conjugated gen monomer and a monomer copolymerizable with the conjugated gen monomer using an organic active metal catalyst. Before the polymerization, the polymerization is continued by adding a polymerization terminator in an amount that inactivates a part of the active metal in the organic active metal catalyst, and the polymerization is continued to form a conjugated gen-polymer having a multimodal molecular weight distribution curve. Forming,
  • conjugated diene monomer or a monomer that can be copolymerized with the conjugated diene monomer and the conjugated diene monomer is polymerized using an organic active metal catalyst to form an active metal at the polymer chain end.
  • the active conjugated polymer is reacted with an amount of a polyfunctional coupling agent that reacts with a part of the active metal in the active conjugated polymer to form a conjugated polymer having a multimodal molecular weight distribution curve.
  • the above coating agent which is a primer for a polymer molding material.
  • the above powder particles having an average particle diameter of 1 to 200 ⁇ m.
  • the above powder particles further containing a colorant.
  • a cyclized rubber having a multimodal molecular weight distribution curve and a method for producing the same, which can remarkably improve the adhesion between a paint made of a nonpolar polymer such as polypropylene and polyethylene and a paint. Is done. BEST MODE FOR CARRYING OUT THE INVENTION
  • the cyclized rubber of the present invention is a cyclized conjugated polymer or a derivative thereof, the molecular weight distribution curve of which is multimodal having a plurality of peaks, and the weight average molecular weight of which is 1,000 to 1,000, 0 0 0, 0 0 0.
  • a multi-modal molecular weight distribution curve having a plurality of peaks means that there are a plurality of maximum peaks in a molecular weight distribution curve obtained by gel 'permeation' chromatography (GPC) measurement. means. It is sufficient that there are two or more peaks. Usually, when the peak has more than 20, it is difficult to identify the peak as a maximum peak in the molecular weight distribution curve. Among them, the preferred number of peaks is in the range of 2-5.
  • the cyclized rubber of the present invention has the smallest (minimum peak top molecular weight (Pmw-) among the molecular weights (peak top molecular weights) in terms of standard polystyrene corresponding to the observed peak tops in the molecular weight distribution curve. S)) and the largest one (the maximum peak top molecular weight (Pmw-L)) (Pmw-LZPmw-S) is 1.5 or more, preferably 2.0 or more, more preferably 2.5 or more. Preferably, there is. If this ratio is too small, the desired physical properties may not be obtained. The maximum value of this ratio is usually about 20 and preferably 10 or less.
  • the minimum peak top molecular weight (Pmw-S) of the cyclized rubber of the present invention is preferably 10,000 or more, more preferably 30,000 or more, and particularly preferably 50,000 or more. If the molecular weight is too low, the adhesion tends to decrease.
  • the maximum peak top molecular weight (Pmw-L) of the cyclized rubber of the present invention is preferably 1,000,000 or less, more preferably 500,000 or less, and particularly preferably 300,000 or less. If the molecular weight is too high, the adhesion tends to decrease.
  • the cyclized rubber of the present invention has a molecular weight distribution curve of a pi-modal (having two peaks) (hereinafter sometimes abbreviated as a bimodal cyclized rubber), the cyclized rubber on the low molecular weight side
  • the weight ratio of the component to the component on the high molecular weight side is preferably 95/5 to 1090, preferably 85Zl 5 to 30/70, and more preferably 80/20 to 50/50. When the ratio is in the above range, the adhesion is further improved.
  • the weight average molecular weight of the cyclized rubber of the present invention is from 1,000 to 1,000,000, preferably from 10,000 to 500,000, more preferably from 30,000 to 300,000, particularly preferably from 50,000 to 50,000. 300,000.
  • This weight average molecular weight is a standard polystyrene equivalent value measured by GPC.
  • the cyclization rate of the cyclized rubber of the present invention is not particularly limited, but is usually 10% or more, preferably 40 to 95%, more preferably 60 to 90%, and particularly preferably 70 to 85%. If the cyclization rate is too low, the adhesion of the paint will be poor, and conversely, a cyclized rubber with a high cyclization rate In addition to the difficulty in producing the cyclized rubber solution, gelation is likely to proceed, which may cause a problem in the step of applying the cyclized rubber solution.
  • the cyclization rate was as follows: — NMR analysis was performed to measure the peak areas of the protons derived from the double bond before and after the cyclization reaction of the conjugated gen polymer used as the raw material, and the value was set to 100 before the cyclization reaction The ratio of the double bond remaining in the cyclized product after the cyclization reaction is determined, and is a value (%) represented by a calculation formula (100—the ratio of the double bond remaining in the cyclized product).
  • the glass transition temperature of the cyclized rubber of the present invention is not particularly limited and can be appropriately selected depending on the application, but is usually 150 to 200 ° C, preferably 0 to 100 ° C, more preferably The temperature is 20 to 90 ° C, particularly preferably 30 to 70 ° C.
  • Gel quantity of cyclized rubber is usually 1 0 weight 0/0 or less, preferably but 5 wt 0/0 or less, and particularly preferably those having substantially no gel. If the amount of gel is large, problems may occur in the application process in a solution state.
  • the method for producing the cyclized rubber of the present invention includes the following five methods.
  • the polymerization is continued by adding an amount of a polymerization terminator that inactivates a part of the active metal in the organic active metal catalyst, and the polymerization is continued.
  • conjugated diene monomer examples include 1,3-butadiene, isoprene, 2,3-dimethinolene 1,3-butadiene, 2-pheninolene 1,3-butadiene, 1,3-pentadiene, 1,3-pentagenene, and 2-methylenol, 3-pentagen, 1,3-hexadiene, 4,5-getinolene 1,3-octadiene, 3 butyl-1,3-octadiene And the like.
  • 1,3-butadiene and isoprene are preferred, and isoprene can be more preferably used.
  • These monomers may be used alone or in combination of two or more.
  • the amount of the conjugated gen monomer used is not particularly limited, the content of the conjugated gen monomer unit in the conjugated gen polymer is usually at least 40 mol%, preferably at least 60 mol%, more preferably The amount is 80 mol% or more. If this content is small, it is difficult to increase the cyclization rate, and the intended effect of improving physical properties tends to be hardly obtained.
  • Monomers copolymerizable with the conjugated diene monomer include, for example, styrene, ⁇ -methinolestyrene, ⁇ -isopropinolestyrene, ⁇ -pheno-nostyrene, ⁇ -methoxystyrene, ⁇ -methoxymethylstyrene.
  • Aromatic vinyl monomers such as p-tert-butoxystyrene, chloromethinolestyrene, 2-fluorostyrene, 3-phenylenostyrene, pentaphenylenostyrene, vinyltonolene, vinylinolephthalene, and vinylinoleanthracene; ethylene, And olefin monomers such as propylene and isobutylene; Of these, aromatic vinyl monomers are preferred, and styrene and ⁇ -methylstyrene can be more preferably used.
  • the organic active metal catalyst is not particularly limited as long as it is a catalyst capable of polymerizing the above monomer in a living manner.
  • Specific examples include, for example, organic alkali metal compounds, organic alkaline earth metal compounds, and the like. Among them, organic alkali metal compounds can be preferably used.
  • organic alkali metal compound examples include organic monolithium compounds such as ⁇ -butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium, and stilbenelithium; dilithiomethane, 1,4- Organic polyvalent lithium compounds such as dilithobutane, 1,4-dilithio-2-ethylcyclohexane, and 1,3,5-trilithiobenzene; and sodium naphthalene and potassium naphthalene.
  • organic monolithium compounds such as ⁇ -butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium, and stilbenelithium
  • dilithiomethane 1,4- Organic polyvalent lithium compounds such as dilithobutane, 1,4-dilithio-2-ethylcyclohexane, and 1,3,5-trilithiobenzene
  • the organic metal compound can also be used as an organic metal compound obtained by reacting a secondary amine with the organic metal compound.
  • Secondary amines include, for example, dimethylamine, methylethylamine, methyl Propylamine, Methylbutylamine, Methylamylamine, Amylhexylamine, Jethylamine, Ethylpropylamine, Ethynolebutynoleamine, Ethylhexylamine, Dipropylamine, Diisopropylamine, Propylbutylamine, Dibutylamine, Aliphatic secondary amines such as diamylamine, dihexylamine, diheptylamine, dioctylamine, methylcyclopentylamine, ethylethylpentinoleamine, methylcyclohexylamine, dicyclopentinoleamine, dicyclohexinoleamine, etc .; diphenylamine, N-methylaniline Aromatic secondary amines such as N-ethylaniline, dibenzylamine, N-methylbenzylamine, N-
  • the amount of the secondary amine used is usually 0.5 to 2 equivalents, preferably 0.8 to 1.5 equivalents, and more preferably 1 to 1.2 equivalents, based on the metal in the organic alkali metal compound. .
  • organic alkaline earth metal compound examples include, for example, JP-A-51-115590, JP-A-52-9090, JP-A-52-17591, JP-A-52-30543.
  • Compounds having a metal such as are exemplified.
  • n-butylmagnesium bromide n-hexyl / lemagnesium bromide, ethoxycanolesum, t-butoxystrontium, ethoxybarium, isopropoxybarium, ethyl mercapto-norium, t-butoxybarium, phenoxyvalium, getylaminovalium, ethylparium, and the like.
  • the above-mentioned organic active metal catalysts can be used alone or in combination of two or more.
  • the amount used depends on the type of the above catalyst or the required weight of the produced polymer. Although it is appropriately selected depending on the average molecular weight, it is usually 0.01 to 100 mmol, preferably 0.05 to 20 mmol, more preferably 0.1 to 10 mmol per 100 g of the monomer. In the millimolar range.
  • the polymerization using the above catalyst is usually performed in a polymerization solvent.
  • the polymerization solvent is not particularly limited as long as it does not inhibit the polymerization.
  • polymerization solvent examples include aliphatic saturated hydrocarbons such as n-butane, n-pentane, iso-pentane, n- hexane, n -heptane, iso-octane; cyclopentane, cyclohexane, methylcyclopentane, etc. Alicyclic saturated hydrocarbons; aromatic hydrocarbons such as benzene and toluene; and the like. Among them, n-hexane, cyclohexane, toluene and the like are preferable.
  • unsaturated hydrocarbons having extremely low polymerizability such as 1-butene, cis-1-butene, and 2-hexene, can be used in combination.
  • These polymerization solvents can be used alone or in combination of two or more.
  • the amount of the polymerization solvent to be used is not particularly limited, but is such that the concentration of the monomer used in the polymerization is usually in the range of 1 to 50% by weight, preferably 10 to 40% by weight.
  • a polar compound can be used to adjust the bonding structure of the conjugated gen monomer unit.
  • the polar compound is not particularly limited as long as it is one used in normal ion polymerization using an organic active metal catalyst.
  • polar compound examples include ether compounds such as dibutyl ether, ethylene dalicol dibutyl ether, and tetrahydrofuran; tertiary amines such as tetramethylethylene diamine, trimethylamine, triethylamine, pyridine, and quinutalizine; alkali metal alkoxides such as t-butyloxide; phosphine derivatives such as triphenylphosphine; and the like. Of these, tertiary amines and ether compounds are preferred, tertiary amines are more preferred, and tetramethylethylenediamine can be used particularly preferably. These polar compounds can be used alone or in combination of two or more.
  • the amount of the polar compound to be used is generally 200 mol or less, preferably 0.1 to 100 mol, more preferably ⁇ 0.5 mol, per mol of the organic active metal catalyst. 550 mol, particularly preferably 0.8-20 mol.
  • an amount of a polymerization terminator that inactivates a part of the active metal in the organic active metal catalyst is added.
  • the polymerization terminator is not particularly limited as long as it can inactivate the active metal in the organic active metal catalyst.
  • examples thereof include alcohols such as methanol, ethanol, isopropanol, n-butanol and t-butanol; Phenoenoles, such as methylphenol and 2,6-tert-ptinolehidroxytonolene; water.
  • alcohols such as methanol, ethanol, isopropanol, n-butanol and t-butanol
  • Phenoenoles such as methylphenol and 2,6-tert-ptinolehidroxytonolene
  • water water.
  • methanol, t-butanol, and 2,6-tert-butyl-hydroxytoluene can be preferably used.
  • the amount of the polymerization terminator to be used is usually 0.1 to 0.95 equivalent, preferably 0.3 to 0.9 equivalent, and more preferably 0.1 to 0.95 equivalent to the active metal in the organic active metal catalyst used for the polymerization. Or in the range of 0.5 to 0.9 equivalents.
  • the amount of the conjugated gen polymer whose polymerization has been stopped at the time of adding the polymerization terminator can be adjusted.
  • the timing of addition of the polymerization terminator added before the completion of the polymerization is not particularly limited, but is usually 5 to 95% by weight, preferably 20 to 100% by weight in terms of the polymerization conversion rate based on the total amount of the monomers used for the polymerization. 9 0 weight 0/0, more preferably 4 0-9 0% by weight.
  • the polymerization terminator in the above range may be added in portions, and the timing of the addition may be appropriately selected within the above range.
  • the number of divisions By adjusting the number of divisions, the number of peaks in the molecular weight distribution curve can be adjusted.
  • the amount of each addition By adjusting the amount of each addition, the polymerization was stopped when the polymerization terminator was added. The proportion of the amount of coalescence can be adjusted.
  • the polymerization reaction is usually carried out in a polymerization mode such as a batch system or a continuous system in the range of ⁇ 78 to 150 ° C.
  • the polymerization time is not particularly limited, but is preferably performed until the polymerization reaction is almost completed.
  • the polymerization reaction is stopped by adding a polymerization terminator.
  • a polymerization terminator those described above can be used.
  • the total amount of the metal in the organic active metal catalyst and the polymerization terminator added before the completion of the polymerization reaction is usually 1 to 10 equivalents, preferably 1 to 5 equivalents, more preferably 1 to 10 equivalents. The amount is in the range of ⁇ 1.5 equivalents.
  • conjugated diene polymer having a multimodal molecular weight distribution curve can be obtained.
  • the obtained conjugated diene polymer may be obtained as a solid by removing the polymerization solvent by a conventional method, or may be transferred to the next step as it is as the polymer solution.
  • cyclization catalyst As the cyclization catalyst, generally known ones can be used.
  • cyclization catalyst examples include sulfuric acid; monofluoromethanesulfonic acid, difluoromethanesulfonic acid, p-toluenesulfonic acid, xylenesulfonic acid, alkylbenzenesnolephonic acid having an anolequinole group having 2 to 16 carbon atoms, and the like.
  • Organic sulfonic acid compounds such as anhydrides or alkyl esters; boron trifluoride, boron trichloride, tin tetrachloride, titanium tetrachloride, aluminum chloride, getyl aluminum monochloride, aluminum bromide, antimony pentachloride And metal halides such as tungsten hexachloride and iron chloride; These cyclization catalysts can be used alone or in combination of two or more.
  • an organic sulfonic acid conjugate is preferable, and p-toluenesulfonic acid can be more preferably used.
  • the amount of the cyclization catalyst to be used is appropriately selected depending on the type of the cyclization catalyst and the required cyclization ratio. However, it is usually 0.05 to 10 g per 100 g of the conjugated diene polymer. Parts by weight, preferably 0.1 to 5 parts by weight, more preferably 0.3 to 2 parts by weight.
  • the cyclization reaction proceeds when the conjugated polymer is brought into contact with the cyclization catalyst, but is usually performed in an inert solvent.
  • the inert solvent is not particularly limited as long as it does not inhibit the cyclization reaction.
  • the inert solvent those described above as the polymerization solvent can be used. Among them, those having a boiling point of 70 ° C. or more can be preferably used.
  • step (1 _ 1) conjugate obtained in Jen concentration of the polymer is preferably 5-6 0 weight 0/0, more preferably 2 0-4 0 fold It is the amount that becomes the amount%.
  • the reaction temperature in the L2 cyclization reaction is usually 50 to 150 ° C, preferably 80 to 110 ° C, and the reaction time is generally 0.5 to 10 hours, preferably 2 to 10 hours. 5 hours. As described above, a cyclized conjugated diene polymer having a multimodal molecular weight distribution curve can be obtained.
  • the obtained cyclized rubber is generally obtained as a solid by removing the cyclization catalyst residue and the inert solvent after inactivating the cyclization catalyst by a conventional method.
  • a conjugated diene monomer or a monomer copolymerizable with a conjugated diene monomer and a conjugated diene monomer is used for polymerization when polymerizing using an organic active metal catalyst.
  • the remaining part of the organic active metal catalyst is added to continue the polymerization, and the conjugated agent having a multimodal molecular weight distribution curve is obtained.
  • the amount of the organic active metal catalyst used for initiating the polymerization is usually 5 to 90 mol%, preferably 10 to 70 mol 0 , based on the total amount of the organic active metal catalyst used for the polymerization. / 0, more preferably in an amount in the range of 1 0-5 0 mol 0/0. If the amount is too small or too large, the intended effect of improving physical properties may not be obtained. By adjusting this amount, the content of the conjugated gen polymer on the high molecular weight side can be adjusted.
  • the remaining organic active metal catalyst is added to carry out the polymerization.
  • the time of addition is not particularly limited, but is usually 5 to 90% by weight, preferably 10 to 70% by weight, more preferably 10 to 100% by weight based on the total amount of the monomers used for the polymerization. ⁇ 50% by weight.
  • the remaining organic active metal catalyst added after the start of the polymerization will complete the polymerization. Can be added in portions before the addition, and the timing of their addition can be appropriately selected within the above range. By adjusting the number of divisions, the number of peaks in the molecular weight distribution curve can be adjusted. By adjusting the amount of each addition, the peak is formed by the organic active metal catalyst added after the start of polymerization. The proportion of each conjugated polymer can be adjusted.
  • the polymerization method and conditions in the step (2-1) are as described above.
  • the conditions are the same as those in the step (11-1), except that the polymerization is continued by adding the agent.
  • the polymerization reaction is stopped by adding a polymerization terminator.
  • a polymerization terminator those described above can be used.
  • the amount of the polymerization terminator used is usually in the range of 1 to 10 equivalents, preferably 1 to 5 equivalents, more preferably 1 to 1.5 equivalents, based on the metal in the organic active metal catalyst used for the polymerization. It is the amount that becomes.
  • conjugated diene polymer having a multimodal molecular weight distribution curve can be obtained.
  • the obtained conjugated gen polymer may be obtained as a solid by removing the polymerization solvent by a conventional method, or may be transferred to the next step as it is as the polymer solution.
  • the conjugated diene polymer obtained in the step (2-1) is cyclized using a cyclization catalyst to form a cyclized conjugated diene polymer having a multimodal molecular weight distribution curve.
  • the conditions of the method in this step are the same as those in step (1-2).
  • a conjugated diene monomer or a monomer copolymerizable with a conjugated diene monomer and a conjugated diene monomer is polymerized using an organic active metal catalyst to obtain a polymer.
  • (3-1) forming an active conjugated polymer having an active metal at the chain end; and reacting the active conjugated gen polymer with a part of the active metal in the active conjugated gen polymer. Reacting the multifunctional coupling agent to form a conjugated diene polymer having a multimodal molecular weight distribution curve (3-2);
  • step (3-1) The polymerization method and the conditions in the step (3-1) are the same as described above, except for the following three points in the steps (1-1) and (2-11).
  • the polymerization is continued by adding a polymerization terminator in an amount that inactivates a part of the active metal in the organic active metal catalyst.
  • the active conjugated polymer obtained in the step (3-1) is reacted with a multifunctional coupling agent in an amount that reacts with a part of the active metal in the active conjugated polymer to obtain a multimodal molecular weight distribution.
  • a conjugated gen polymer having a curve is formed.
  • the polyfunctional coupling agent is a compound having two or more sites that react with the active metal at the polymer terminal of the active conjugated polymer and bond to the polymer molecule.
  • trifunctional cappuri agents examples include: trifunctional silanes such as trichloroethane and trichlorobutane; trifunctional halogenated silanes such as methyltrichlorosilane and ethyltrichlorosilane; Trifunctional alcohols such as methyltrimethoxysilane, phenyltrimethoxysilane, and phenoltriethoxysilane Coxysilane; and the like.
  • tetrafunctional coupling agent examples include tetrafunctional halogenated alkanes such as carbon tetrachloride, carbon tetrabromide, and tetrachloroethane; tetrafunctional silanes such as tetrachlorosilane and tetrabromosilane; tetramethoxysilane and tetraethoxysilane Tetrafunctional alkoxysilanes such as silane; tetrafunctional tin halides such as tetrachlorotin and tetrabutyl motin; and the like.
  • tetrafunctional halogenated alkanes such as carbon tetrachloride, carbon tetrabromide, and tetrachloroethane
  • silanes such as tetrachlorosilane and tetrabromosilane
  • Examples of the coupling agent having five or more functionalities include 1,1,1,2,2-pentanochloroethane, cyclopentane, pentachlorobenzene, / chlorobenzene, octabromodipheninoleether, deca Bromodieninoleetanore and the like.
  • n-functional coupling agent (where n is an integer of 3 or more)
  • the number of branched polymer chains is n for a straight-chain polymer chain.
  • a coupling type conjugated gen polymer can be formed.
  • the amount of the polyfunctional coupling agent used was such that the active conjugated polymer remained after the reaction of the active conjugated polymer and the polyfunctional coupling agent, and was used in the polymerization.
  • the amount of the functional group in the polyfunctional coupling agent is usually 0.1 to 0.9 equivalent, preferably 0.1 to 0.7 equivalent, relative to the total amount of the active metal in the organic active metal catalyst. More preferably, the amount is in the range of 0.1 to 0.5 equivalent. If the amount is too small or too large, the intended effect of improving physical properties may not be obtained.
  • the reaction temperature of the active conjugated diene polymer and the polyfunctional coupling agent is usually room temperature to 120 ° C., preferably 40 to 100 ° C., and the reaction time is usually 1 to 100 ° C. Minutes to several hours, preferably 10 minutes to 2 hours. Within this range, the reaction proceeds sufficiently, and problems such as gelation due to side reactions hardly occur.
  • a polymerization terminator is added to stop the polymerization reaction.
  • the polymerization terminator those described above can be used, and the amount used is based on the metal in the organic active metal catalyst used in the polymerization. The range is usually 0.1 to 10 equivalents, preferably 0.2 to 5 equivalents, and more preferably 0.5 to 1.5 equivalents.
  • conjugated diene polymer having a multimodal molecular weight distribution curve can be obtained.
  • the obtained conjugated gen polymer may be obtained as a solid by removing the polymerization solvent by a conventional method, or may be transferred to the next step as it is as the polymer solution.
  • the conjugated diene polymer obtained in the step (3-2) is cyclized using a cyclization catalyst to form a cyclized conjugated diene polymer having a multimodal molecular weight distribution curve.
  • the method and conditions in this step are the same as those in step (1-2).
  • a mixture of two or more conjugated diene polymers having different peak top molecular weights in the molecular weight distribution curve is cyclized using a cyclization catalyst to form a multi-modal molecular weight distribution curve.
  • This is a method of forming a cyclized product of a conjugated gen polymer having the same.
  • conjugated gen polymers having different peak top molecular weights in the molecular weight distribution curve are separately prepared.
  • conjugated diene polymers can be prepared by a conventional method.
  • conjugated diene polymers are mixed in a desired ratio and cyclized using a cyclization catalyst to form a conjugated diene polymer cyclized product.
  • a cyclized conjugated diene polymer having a multimodal molecular weight distribution curve can be obtained.
  • the fifth production method is a method of mixing two or more cyclized conjugated diene polymers having different peak top molecular weights in the molecular weight distribution curve.
  • conjugated gen polymer cyclized compounds having different peak top molecular weights in the molecular weight distribution curve are prepared.
  • Each of these cyclized conjugated polymer can be prepared by a conventional method.
  • cyclized conjugated polymers are mixed in a desired ratio to form a multimodal A cyclized product of a conjugated diene polymer having a suitable molecular weight distribution curve is obtained.
  • the mixing method include a method in which the solution is removed after kneading or mixing in a solution state. As described above, a cyclized conjugated diene polymer having a multimodal molecular weight distribution curve can be obtained.
  • the first to third production methods are preferred in terms of production efficiency, and further, the minimum peak top molecular weight (Pmw-S) and the maximum peak top molecular weight (Pmw-L)
  • the first and second production methods are more preferable in that the ratio (Pmw-LZPmw-S) can be arbitrarily adjusted.
  • the cyclized conjugated polymer having a multimodal molecular weight distribution curve can be subjected to a modification reaction with a polar group-containing compound, if necessary.
  • the polar group-containing compound used in the modification reaction is not particularly limited as long as the compound can introduce a polar group into the cyclized conjugated polymer, and examples thereof include an acid anhydride group, a carboxyl group, a hydroxyl group, Examples include ethylenically unsaturated compounds having a polar group such as a thiol group, an ester group, an epoxy group, an amino group, an amide group, a cyano group, a silyl group, and a halogen.
  • the polar group is preferably an acid anhydride group, a carboxyl group, a hydroxyl group, an ester group, an epoxy group, or an amino group, and more preferably an acid anhydride group, a carboxyl group, or a hydroxyl group, from the viewpoint of excellent effect of improving the adhesiveness.
  • Examples of the compound having an acid anhydride group or a carboxyl group include, for example, ethylenically unsaturated compounds such as maleic anhydride, itaconic anhydride, aconitic anhydride, norponenedicarboxylic anhydride, acrylic acid, methacrylic acid, and maleic acid. Compounds are mentioned, and among them, maleic anhydride is awarded for its reactivity and economy.
  • Examples of the ethylenically unsaturated compound having a hydroxyl group include, for example, hydroxyalkyl esters of unsaturated acids such as 2-hydroxyhexyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate; —Methylol (meth) acrylamide, N— (2-Hydroxitytyl) (meth) Unsaturated acid amides having a hydroxyl group such as acrylamide; polyethylene glycol mono (meth) attearliest-K polypropylene glycol mono (Meta) atalilate, poly (ethylene glycol) Poly (propylene glycol)) polyalkylene glycol monoesters of unsaturated acids such as mono (meth) acrylate; polyhydric alcohol monoesters of unsaturated acids such as glycerone mono (meth) atalylate; Of these, hydroxyalkyl esters of unsaturated acids are preferred, and 2-hydroxyethyl acrylate and 2-hydroxyethyl
  • Examples of other ethylenically unsaturated compounds containing a polar group include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, glycidyl (meth) acrylate, dimethylaminoethyl ( Examples thereof include (meth) acrylate, dimethylaminopropyl (meth) acrylate, (meth) acrylamide, and (meth) acrylonitrile.
  • the method for introducing the polar group-containing compound into the cyclized conjugated polymer is not particularly limited.However, when an ethylenically unsaturated compound is added, a known reaction generally called an ene addition reaction or a graft polymerization reaction is used. It is good to follow.
  • This addition reaction is carried out by reacting the cyclized conjugated polymer and the polar group-containing compound in the presence of a radical generator as required.
  • a radical generator include peroxides such as di-t-butyl peroxide, dicumyl peroxide, benzoyl peroxide, t-butyl peroxide benzoate, methylethyl ketone peroxide; Bisisoptyronitrile and the like; kunitrile; and the like.
  • the addition reaction may be performed in a solid state or in a solution state, but is preferably performed in a solution state because the reaction can be easily controlled.
  • the solvent to be used for example, the same as the above-mentioned hydrocarbon-based solvent in the cyclization reaction can be mentioned.
  • the amount of the polar group-containing compound used is appropriately selected, but the ratio of the introduced polar group is usually 0.1 to 200 mmol, preferably 1 to 100 g per 100 g of the modified cyclized rubber. 1100 mmol, more preferably 5-50 mmol.
  • the reaction for introducing a polar group can be carried out under any of pressurized, depressurized and atmospheric pressures.However, it is desirable to carry out the reaction under atmospheric pressure in terms of simplicity of operation.
  • the reaction temperature and the reaction time may be in accordance with a conventional method, and the reaction temperature is usually 30 to 250 ° C, preferably 60 to 200 ° C, and the reaction time is usually 0. 5 to 5 hours, preferably 1 to 3 hours.
  • the cyclized rubber of the present invention is used by adding a coloring agent such as a pigment and a dye; and a compounding agent such as an antioxidant, a filler, a softener, and a wax, if necessary.
  • a coloring agent such as a pigment and a dye
  • a compounding agent such as an antioxidant, a filler, a softener, and a wax
  • the compounding agent may be any commonly used one.
  • antioxidants examples include 2,6-di-t-butylphenol, 2,2′-methylenebis (4-methyl-t-butylphenol), tetrakis [methylene-3- (3 ′, 5′-g-t) —Phthyl-14'-hydroxyphenyl) propionone]
  • Phenol anti-aging agents such as methane; phenyl- ⁇ -naphthylamine, diphenyl- ⁇ -phenylenediamine, ⁇ -1,3-dimethylbutyl-1- ⁇ —Aphenyl-based anti-aging agents such as phenyl- ⁇ -phenylenediamine; phosphorus-based anti-aging agents such as tris (nonylphenyl) phosphite.
  • filler examples include calcium carbonate, calcium oxide, magnesium oxide, calcium hydroxide, magnesium hydroxide, aluminum hydroxide, magnesium carbonate, calcium silicate, barium sulfate, myriki, silica, carbon black, tanolek, clay , Titanium dioxide, zinc oxide, glass fiber, carbon fiber and the like.
  • the amount of the compounding agent can be appropriately selected depending on the purpose of the compounding and the type of the compounding agent.
  • the shape of the cyclized rubber can be appropriately selected depending on the application, but is usually in the form of a pellet or powder.
  • the solid cyclized rubber, together with the above-mentioned compounding agents, which are added as necessary, is cooled and crushed using a crusher such as a bantam mill, jet mill, disk mill, ball mill, or colloid mill. You only need to grind it.
  • the average particle diameter of the powder particles thus obtained is usually 1! 2200 ⁇ , preferably 3 ⁇ m :: L 00 m, more preferably 5 ⁇ m to 50 ⁇ m.
  • the average particle diameter is a particle diameter corresponding to a 50% number-based integrated value in a number-based integral curve with respect to the particle diameter, which is measured by a laser diffraction / scattering method.
  • the content of cyclized rubber in the powder particles typically 5 weight 0/0 or more, preferably 1 0 % By weight, more preferably at least 20% by weight, particularly preferably at least 30% by weight.
  • the cyclized rubber of the present invention obtained in this manner does not generate a gel even during long-term storage, and is useful in many applications utilizing the properties of the cyclized rubber.
  • the above-mentioned powder particles can be used as a powder coating by making use of excellent adhesion to a resin or a metal.
  • a coloring agent is blended, and if necessary, an antioxidant, a filler, a softener, a wax and the like are appropriately blended according to a conventional method.
  • the content of the cyclized rubber in the powder particles is usually at least 5% by weight, preferably at least 10% by weight, more preferably at least 20% by weight, particularly preferably at least 30% by weight.
  • the shape of the powder particles is not particularly limited, and examples thereof include a spherical shape and an irregular shape.
  • benzidine, azo, and isodoline pigments are used for yellow coloring
  • azo lake, rhodamine lake, quinacridone, naphthol, and diketopyrrolopyrrole pigments are used for magenta coloring.
  • phthalocyanine pigments and indanthrene pigments are preferably used for cyan coloring.
  • black coloring carbon black is usually used. Examples of the carbon black include thermal black, acetylene black, channel black, furnace black, lamp black and the like.
  • yellow-colored azo, nitro-, quinoline-, quinophthalone-, and methine-based dyes magenta-colored anthraquinone-, azo-, and xanthene-based dyes and cyan-colored Anthraquinone type, phthalocyanine type and indooriline type dyes are preferably used.
  • the amount of the colorant to be used may be appropriately selected depending on the desired hue, density, and the like.
  • the powder coating can be usually obtained by mixing a cyclized rubber, a colorant and, if necessary, an additive contained therein, pulverizing the mixture, and classifying the mixture.
  • the mixing method is not particularly limited, and for example, there is a method of melt-mixing using a kneader such as a Banbury mixer, a kneader, a mixer roll, a single-screw or twin-screw extruder.
  • a kneader such as a Banbury mixer, a kneader, a mixer roll, a single-screw or twin-screw extruder.
  • the above-mentioned method may be used as the pulverizing method.
  • classification method examples include methods such as air classification, centrifugal classification, and sieve classification.
  • the cyclized rubber of the present invention is used as a modifier for a polymer molding material, and is blended with various polymer molding materials including a thermoplastic resin, a thermosetting resin, an elastomer, etc. It is suitable for improving the adhesiveness of the resin.
  • the dispersibility of different polymers constituting the polymer molding material is used as a modifier for the polymer molding material to improve the dispersibility of compounding agents such as fillers and pigments in the polymer molding material. Is also useful.
  • Examples of the polymer used for the polymer molding material to be modified include the following.
  • Hydrocarbon resin such as fats, polycarbonate resins, polyvinyl butylate resins, polyarylate resins, and fluorine resins.
  • Thermosetting resins such as phenolic resin, tarezol resin, urea resin, melamine resin, alkyd resin, furan resin, unsaturated polyester resin, epoxy resin and urethane resin.
  • Natural rubber such as butadiene rubber, styrene-butadiene rubber, acrylonitrile-vulcanized rubber such as butadiene rubber; olefin-based thermoplastic elastomer, styrene-based thermoplastic elastomer, polyester-based thermoplastic elastomer, polyamide-based thermoplastic elastomer Elastomers such as one.
  • a hydrocarbon thermoplastic resin such as a chain-like olefin resin; an addition copolymer of ethylene and norpolenenes, a ring-opened polymer of norbornene, or a cyclic olefin resin; Great reforming effect.
  • the above polymers can be used alone or in combination of two or more. Also, if necessary, coloring agents such as pigments and dyes; antioxidants, fillers, softeners, waxes, antistatic agents, stabilizers, lubricants, crosslinkers, antiblocking agents, light blocking agents, ultraviolet light absorbers A compounding agent such as an agent can also be appropriately compounded.
  • the cyclized rubber is at least 2% by weight, preferably at least 5% by weight, more preferably at least 10% by weight, based on the total solids in the coating agent such as a primer or paint. / 0 or more is preferable.
  • the cyclized rubber When used as a coating agent, the cyclized rubber may be blended with other adhesive components and various additives as necessary.
  • Examples of other adhesive components include acrylic resin, urethane resin, polyester resin, epoxy resin, melamine resin, alkyd resin, chlorinated olefin resin, and silicone rubber.
  • the ratio when other adhesive components are blended is appropriately selected according to the type and purpose of blending, but is usually 100: 0 to 5: 5 by weight ratio of cyclized rubber to other adhesive components. 95, preferably 80: 20 to 30: 70, more preferably 70: 30 to 50: 50.
  • the coating agent containing the cyclized rubber is usually obtained by dissolving or dispersing the cyclized rubber or a mixture of the cyclized rubber and other components in a solvent.
  • the solvent to be used may be appropriately selected, for example, an aliphatic hydrocarbon solvent, an alicyclic hydrocarbon solvent, an aromatic hydrocarbon solvent, a ketone solvent, an alcohol solvent, an ether solvent, a halogen solvent. Solvents, aqueous solvents and the like can be mentioned.
  • the amount of the solvent used is such that the solid content of the coating agent is usually 5 to 95% by weight, preferably 15 to 60% by weight.
  • the coating agent containing the cyclized rubber of the present invention can also be used as a surface treatment agent for a dispersed material such as various fillers and pigments.
  • Surface treatment of the dispersing material with the coating agent improves the dispersibility of the dispersing material in various polymers.
  • the filler and pigment to be subjected to the surface treatment those described above can be used.
  • the amount of the cyclized rubber to be used is appropriately selected according to the type of the dispersing material and the type of the polymer in which the cyclized rubber is dispersed, but usually 0.1 to 100 parts by weight per 100 parts by weight of the dispersing material. It is preferably used in a proportion of 5 to 20 parts by weight.
  • the cyclized rubber of the present invention can also be used as an adhesive for firmly bonding different materials to each other.
  • examples of the combination of different materials include OPP (extended polypropylene), ZC PP (crystalline polypropylene), polypropylene / polyethylene terephthalate, polypropylene / ethylene-vinyl acetate copolymer, and polypropylene Z aluminum.
  • the shape is not particularly limited, but a film shape or a sheet shape is preferable.
  • the bonding method include, for example, a method in which a cyclized rubber preliminarily formed into a film is sandwiched between different kinds of materials and then heated and bonded, or a coating agent containing the cyclized rubber is applied to one surface of the material. After that, a method of bonding with the other material surface can be adopted.
  • the evaluation was performed as follows.
  • HLC-8220 manufactured by Tosoh Corporation
  • the glass transition temperature of the polymer is measured by a differential scanning calorimeter (Seiko Electronics Co., Ltd .:
  • the measurement was performed using a SSC 5200) under the conditions of a starting temperature of 100 ° C and a heating rate of 10 ° C / min.
  • the proton NMR analysis measures the peak areas of the protons derived from the double bond before and after the cyclization reaction of the conjugated gen polymer, and the ratio of the double bond remaining in the cyclized product when the value before the cyclization reaction is set to 100. I asked. Then, the cyclization rate (%) was determined by the following formula: (100—the proportion of the double bond remaining in the cyclized product).
  • the acid value of the modified polymer was measured according to the method described in "Standard Oil and Fat Analysis Test Method" (Japan Oil Chemicals Association) 2, 4, 1-83, and converted to the amount of carboxyl groups in the polymer. .
  • a pressure-resistant reactor equipped with a stirrer was charged with 1400 g of dehydrated toluene and 11.4 mmol of n-butyllithium (1.56 mol / liter: hexane solution), and the internal temperature was maintained at 60 ° C. 487 g of isoprene was continuously added to the reactor for 15 minutes, and the internal temperature was controlled so as not to exceed 75 ° C. Thereafter, the reaction was carried out at 70 ° C for 1 hour, and it was confirmed that the polymerization conversion was almost 100%.
  • the temperature was raised to 80 ° C, and 4.24 g of p-toluenesulfonic acid was added. Then, while maintaining the temperature at 80 ° C, a cyclization reaction was performed for 3 hours. Thereafter, an aqueous solution in which 1.70 g of sodium carbonate was dissolved in 5.1 g of water was added to stop the cyclization reaction. After stirring at 80 ° C for 30 minutes, the catalyst residue was removed using a glass fiber filter having a pore size of 1 ⁇ .
  • Toluene was distilled off from the obtained reaction solution at 160 ° C, and when the solid content concentration became 80 to 85%, 15 g of maleic anhydride was added to the solid solution. Next, after reacting at 160 ° C for 1 hour, unreacted maleic anhydride and toluene were distilled off. After adding 0.6 g of 1010 (manufactured by Chipa Specialty Chemicals), the mixture was poured into a metal pad covered with tetrafluoroethylene resin. It was dried under reduced pressure at 75 ° C. to obtain a modified cyclized rubber A. The modified cyclized rubber A was analyzed, and the results are shown in Table 1.
  • a pressure-resistant reactor equipped with a stirrer was charged with 6100 g of toluene and 45.2 mmol of n-butyllithium (a hexane solution having a concentration of 1.56 mol / liter), and the internal temperature was raised to 60 ° C. Then, while controlling the internal temperature not to exceed 75 ° C, 260 g of isoprene in 60 minutes! : Continuously added to the reactor. After the addition of isoprene was completed, the mixture was further reacted at 70 ° C. for 1 hour, and it was confirmed that the polymerization conversion reached 100%. The weight average molecular weight of the polymer produced at this time was 92,000.
  • the temperature was raised to 80 ° C, 31.2 g of p-toluenesulfonic acid was added, and the cyclization reaction was performed for 3 hours while maintaining the internal temperature at 80 ° C. Thereafter, the reaction was stopped by adding a 25% aqueous solution of sodium carbonate containing 11.9 g of sodium carbonate, and the mixture was stirred at 80 ° C for 30 minutes, and then reacted using a glass fiber filter having a pore size of 1 im. The solution was filtered to remove the catalyst residue.
  • a pressure-resistant reactor equipped with a stirrer was charged with 6100 g of toluene and 56.3 mmol of n-butyllithium (hexane solution having a concentration of 1.56 mol Z liter), and the internal temperature was raised to 60 ° C. Thereafter, 2600 g of isoprene was continuously added to the reactor for 60 minutes while controlling the internal temperature not to exceed 75 ° C. After the addition of isoprene was completed, the reaction was carried out at 70 ° C. for 1 hour, and it was confirmed that the polymerization conversion reached 100%. The weight average molecular weight of the polymer produced at this point was 73,000.
  • the conjugated diene polymer d consisted of 30% of a four-branched polymer having a weight average molecular weight of 241,000 and a linear polymer having a weight average molecular weight of 73,000 as 70%.
  • the mixture was heated to 80 ° C., 31.2 g of p-toluenesulfonic acid was added, and the cyclization reaction was performed for 3 hours while maintaining the internal temperature at 80 ° C. Thereafter, the reaction was stopped by adding a 25% aqueous solution of sodium carbonate containing 11.9 g of sodium carbonate, and the mixture was stirred at 80 ° C for 30 minutes, and then the reaction solution was filtered using a glass fiber filter having a pore size of 1 / m. The residue was removed by filtration.
  • Toluene was distilled off from the filtered reaction solution at 160 ° C, and when the solid content concentration reached 80 to 85% by weight, 65 g of maleic anhydride was added and reacted at 160 ° C for 1 hour. Was. Thereafter, unreacted maleic anhydride and toluene were distilled off, 0.6 g of Irganox 1010 (Chipa Specialty Chemicals) was added, and the mixture was covered with ethylene tetrafluoride resin. Poured into metal bat. This was dried under reduced pressure at 75 ° C. to obtain a modified cyclized rubber D. The modified cyclized rubber D was analyzed, and the results are shown in Table 1.
  • Polymer e cut into 1 O mm squares consisting of 73% of cis-1,4-monomeric isoprene units, 22% of 1,4-trans-isoprene units, and 5% of 3,4-isoprene units, 100 parts of polyisoprene having a weight-average molecular weight of 159,000 and a molecular weight distribution of 1.15, and 157 parts of toluene were charged. After the atmosphere in the flask was replaced with nitrogen, the temperature was raised to 80 ° C., and the polyisoprene was dissolved in toluene. Thereafter, 2.5 parts of maleic anhydride was added, and the addition reaction of maleic anhydride was performed at 180 ° C for 1 hour. The obtained reaction solution was poured into 30000 parts of 2,6-di-tert-butylphenol 1% acetone solution to collect a precipitate, which was dried under reduced pressure, and polyisoprene modified with maleic anhydride. Got.
  • the above-mentioned fluidity means the flow time at 20 ° C according to the Ford Cup No. 4 method specified in JIS K 5400.
  • molded plates X to Z 5 OmmX 80 mmX 3 mm) were prepared by injection molding the resin materials shown in Table 2.
  • Y was prepared by mixing the respective components with a Hensile mixer, then melt-kneading with a twin-screw extruder and pelletizing. Table 2
  • a primer was prepared in the same manner as in Example 5, except that the modified cyclized rubber A, B, C, D or E was used instead of the modified cyclized rubber A, respectively, to obtain a coated test piece.
  • the peel strength of these coatings was measured, and the results are shown in Table 3.
  • a coated test piece was obtained in the same manner as in Example 5, except that no primer was applied.
  • the peel strength of the coating film was measured, and the results are shown in Table 3.
  • Table 3 shows the following.
  • the modified cyclized rubbers A, B, C, and D of the present invention whose molecular weight distribution curves have a plurality of maximum peaks, are used for the adhesive property of the primer. When used as a fraction, the adhesion of the painted film is significantly improved.
  • a molded plate was prepared in the same manner as in Example 9, except that the modified cyclized rubber B, C or D was used instead of the modified cyclized rubber A, and a coated test piece was prepared using the molded plate. The peel strength of this coating film was measured, and the results are shown in Table 4.
  • the molded article made of the polypropylene resin blended with the modified cyclized rubber of the present invention has remarkably improved adhesion to a coating film.
  • the conjugated diene polymer f was composed of 30% of a 4-branched polymer having a weight average molecular weight of 241,000, and 70% of a linear polymer having a weight average molecular weight of 73,000.
  • the toluene was distilled off at 160 ° C, when the solid concentration became 80-8 5 wt 0/0, Iruganokkusu 1010 (manufactured by Ciba Su Bae rice tea 'Chemicals) 0 After adding 6 g, the mixture was poured into a metal pad covered with tetrafluoroethylene resin. This was dried under reduced pressure at 75 ° C. to obtain a cyclized rubber F.
  • the obtained cyclized rubber F did not contain any components insoluble in toluene.
  • 100 parts of the cyclized rubber F and 5 parts of a copper phthalocyanine cyan pigment (Helogen Blue S7004: manufactured by BASF) were melt-kneaded with a plast mill, and then the solidified product was pulverized at 25 ° C. using a jet mill. .
  • the pulverized material was subjected to air classification to obtain a cyan powder coating material having an average particle diameter of 30 / m.
  • the obtained powder coating was applied on a zinc phosphate-treated steel sheet so as to have a thickness of 50 to 60 ⁇ , and was baked by heating in an oven at 200 ° C for 20 minutes.
  • the obtained coating film was uniform, and the adhesion of the coating film was 100/100 as measured by a grid test, indicating that the adhesion was excellent.
  • the powder coating using the cyclized rubber of the present invention formed a uniform coating film having excellent adhesion to a substrate.
  • the cyclized rubber of the present invention can be used as a modifier for improving adhesion between a polymer molding material and a coating material, a primer vehicle component added to a coating material such as a primer for a polymer molding material or a coating material, or a binder for a coating material.
  • a primer vehicle component added to a coating material such as a primer for a polymer molding material or a coating material
  • a binder for a coating material a coating material
  • an adhesive component such as a component Applicable. It is particularly useful in that the adhesiveness between the non-polar polymer molding material and the paint can be significantly improved.

Abstract

A cyclized rubber which contains polar groups and can significantly improve adhesion between a molding of a nonpolar polymer, such as polypropylene or polyethylene, and a coating material; and a process for producing the rubber. The cyclized rubber is either a product of the cyclization of a conjugated diene polymer or a derivative thereof, gives a multi-modal molecular-weight distribution curve with two or more peaks, and has a weight-average molecular weight of 1,000 to 1,000,000. The cyclized rubber is incorporated into polypropylene as a feed material or is used as an adhesive ingredient for a primer for polypropylene moldings. Thus, the desired adhesion improvement is attained.

Description

明 細 書 環化ゴムおよぴその製造方法 技術分野  Description Cyclic rubber and its manufacturing method
本発明は、 環化ゴムおよびその製造方法に関し、 さらに詳しくは、 ポリプロピ レン、 ポリエチレンなどの非極性の重合体からなる成形体と塗科との密着性を著 しく向上できる、 マルチモーダルな分子量分布曲線を有する環化ゴムおよびその 製造方法に関する。 背景技術  The present invention relates to a cyclized rubber and a method for producing the same, and more particularly, to a multimodal molecular weight distribution capable of remarkably improving the adhesion between a molded article made of a nonpolar polymer such as polypropylene and polyethylene and a coating composition. The present invention relates to a cyclized rubber having a curve and a method for producing the same. Background art
ポリエチレン、 ポリプロピレンなどのポリオレフインからなる成形体は、 美粧 性およぴ耐久性などを向上させるために、 その表面を塗料で塗装して使用される ことが多い。 しかしながら、 ポリオレフインは極性が低く、 そのままでは塗料と の密着性に劣るため、 塗膜が剥離しやすいという問題がある。  Molded articles made of polyolefins such as polyethylene and polypropylene are often used with their surfaces painted with paints in order to improve aesthetics and durability. However, polyolefin has a low polarity and, as it is, is inferior in adhesion to the paint, so that there is a problem that the coating film is easily peeled off.
ポリイソプレンなどの共役ジェン重合体の環化物を含有する塗料がポリオレフ インによく密着することは知られており (特開昭 5 1— 1 2 8 2 7号公報) 、 さ らに密着性を改良するために、 シス一 1 , 4結合量 7 0 %以上の低分子量の共役 ジェン重合体に無水マレイン酸を付加させた後、 環化反応を行って得られる変性 共役ジェン重合体環化物を用いることが提案されている (特開昭 5 7— 1 4 5 1 0 3号公報) 。  It is known that a coating containing a cyclized product of a conjugated diene polymer such as polyisoprene adheres well to polyolefin (Japanese Patent Application Laid-Open (JP-A) No. 51-128287). In order to improve the conjugated conjugated polymer obtained by adding maleic anhydride to a low molecular weight conjugated polymer having a cis-1,4 bond amount of 70% or more and then performing a cyclization reaction, Its use has been proposed (Japanese Unexamined Patent Publication No. 57-145103).
しかしながら、 上記のような共役ジェン重合体環化物を使用することで、 ポリ ォレフィン成形体への密着性をある程度改良した塗料が得られるものの、 その改 良度合いは不十分であつた。 発明の開示  However, although the use of the cyclized conjugated diene polymer as described above provides a coating material having improved adhesion to a polyolefin molded product to some extent, the degree of improvement was insufficient. Disclosure of the invention
本発明は、 上記実情に鑑みてなされたものであり、 ポリプロピレン、 ポリェチ レンなどの非極性の重合体からなる成形体と塗料との密着性を著しく向上できる 環化ゴムおよびその製造方法を提供することを目的とする。 本発明者等は、 上記課題を解決すべく鋭意研究を重ねた結果、 有機活性金属触 媒を用いて、 共役ジェン単量体の重合を開始した後、 重合が完結する前に、 有機 活性金属触媒中の活性金属の一部を不活性化する量の重合停止剤を添カ卩して重合 を継続して、 得られるマルチモーダルな分子量分布曲線を有する共役ジェン重合 体を環化した、 マルチモーダルな分子量分布曲線を有する、 重量平均分子量が特 定範囲にある環化ゴムを用いると、 上記の目的を達成できることを見いだし、 こ の知見に基づき、 本発明を完成させるに至った。 The present invention has been made in view of the above circumstances, and provides a cyclized rubber capable of significantly improving the adhesion between a molded article made of a nonpolar polymer such as polypropylene and polyethylene and a paint, and a method for producing the same. The purpose is to: The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, after starting the polymerization of the conjugated gen monomer using the organic active metal catalyst, the organic active metal The polymerization is continued by adding a polymerization terminator in an amount that inactivates a part of the active metal in the catalyst, and the polymerization is continued to cyclize the obtained conjugated diene polymer having a multimodal molecular weight distribution curve. It has been found that the above object can be achieved by using a cyclized rubber having a modal molecular weight distribution curve and a weight average molecular weight in a specific range, and based on this finding, the present invention has been completed.
力べして本発明によれば、 以下の発明 1〜26が提供される。  According to the present invention, the following inventions 1 to 26 are provided.
I. 共役ジェン重合体環化物またはその誘導体であって、 その分子量分布曲線 が複数のピークを有するマルチモーダルであり、 重量平均分子量が 1 , 000〜 I. A cyclized conjugated polymer or a derivative thereof, wherein the molecular weight distribution curve is multimodal having a plurality of peaks, and the weight average molecular weight is from 1,000 to
1, 000, 000である環化ゴム。 Cyclic rubber that is 1,000,000.
2. 環化率が 10 %以上である前記の環化ゴム。  2. The cyclized rubber having a cyclization ratio of 10% or more.
3. ゲル量が 10重量%以下である前記の環化ゴム。  3. The cyclized rubber having a gel amount of 10% by weight or less.
4. 最小ピークトップ分子量 (Pmw— S) と最大ピークトップ分子量 (Pm w_L) との比(Pmw— L/Pmw_S)が 1. 5以上である前記の環化ゴム。  4. The above-mentioned cyclized rubber wherein the ratio (Pmw-L / Pmw_S) of the minimum peak top molecular weight (Pmw-S) to the maximum peak top molecular weight (Pmw_L) is 1.5 or more.
5. 最小ピークトップ分子量 (Pmw_S) が 10, 000以上である前記の 環化ゴム。 '  5. The above-mentioned cyclized rubber having a minimum peak top molecular weight (Pmw_S) of 10,000 or more. '
6. 最大ピークトップ分子量 (Pmw— L) が 1, 000, 000以下である 前記の環化ゴム。  6. Said cyclized rubber having a maximum peak top molecular weight (Pmw-L) of 1,000,000 or less.
7. その分子量分布曲線がパイモーダルである前記の環化ゴム。  7. Said cyclized rubber whose molecular weight distribution curve is pi-modal.
8. その低分子量側成分と高分子量側成分との重量比が、 95Z5〜: 10Z9 0である前記の環化ゴム。  8. The cyclized rubber as described above, wherein the weight ratio of the low molecular weight component to the high molecular weight component is 95Z5 to 10Z90.
9. 前記共役ジェン重合体環化物の誘導体が、 極性基含有化合物を用いる変性 反応で、 共役ジェン重合体環化物に極性基が導入されたものである前記の環化ゴ ム。  9. The above cyclized rubber, wherein the derivative of the cyclized conjugated polymer is a derivative obtained by introducing a polar group into the cyclized conjugated polymer by a modification reaction using a polar group-containing compound.
10. 極性基が、 酸無水物基、 カルボキシル基、 水酸基、 チオール基、 エステ ル基、 エポキシ基、 アミノ基、 アミド基、 シァノ基、 シリル基およびハロゲンか らなる群から選ばれる少なくとも 1つの基である前記の環化ゴム。  10. The polar group is at least one group selected from the group consisting of an acid anhydride group, a carboxyl group, a hydroxyl group, a thiol group, an ester group, an epoxy group, an amino group, an amide group, a cyano group, a silyl group, and a halogen. The cyclized rubber as described above.
I I. 極性基が、 酸無水物基、 カルボキシル基および水酸基からなる群から選 ばれる少なくとも 1つの基である前記の環化ゴム。 I I. The polar group is selected from the group consisting of acid anhydride group, carboxyl group and hydroxyl group. The above-mentioned cyclized rubber, which is at least one group that is removed.
1 2 . 共役ジェン単量体、 または共役ジェン単量体及ぴ共役ジェン単量体と共 重合可能な単量体を、 有機活性金属触媒を用いて、 重合を開始した後、 重合が完 結する前に、 有機活性金属触媒中の活性金属の一部を不活性化する量の重合停止 剤を添カ卩して重合を継続し、 マルチモーダルな分子量分布曲線を有する共役ジェ ン重合体を形成する工程と、  12. The polymerization is completed after starting the polymerization of the conjugated gen monomer or the conjugated gen monomer and a monomer copolymerizable with the conjugated gen monomer using an organic active metal catalyst. Before the polymerization, the polymerization is continued by adding a polymerization terminator in an amount that inactivates a part of the active metal in the organic active metal catalyst, and the polymerization is continued to form a conjugated gen-polymer having a multimodal molecular weight distribution curve. Forming,
前記共役ジェン重合体を、 環化触媒を用いて環化させて、 マルチモーダルな分 子量分布曲線を有する共役ジェン重合体環化物を形成する工程と、  Cyclizing the conjugated polymer using a cyclization catalyst to form a cyclized conjugated polymer having a multimodal molecular weight distribution curve;
を有するマルチモーダルな分子量分布曲線を有する環化ゴムの製造方法。 A method for producing a cyclized rubber having a multimodal molecular weight distribution curve having
1 3 . 共役ジェン単量体、 または共役ジェン単量体及び共役ジェン単量体と共 重合可能な単量体を、 有機活性金属触媒を用いて重合するに際し、 重合に使用す る有機活性金属触媒の一部を用いて重合を開始した後、 重合が完結する前に、 該 有機活性金属触媒の残部を添加して重合を継続し、 マルチモーダルな分子量分布 曲線を有する共役ジェン重合体を形成する工程と、  13. When polymerizing a conjugated diene monomer or a monomer that can be copolymerized with a conjugated diene monomer and a conjugated diene monomer using an organic active metal catalyst, an organic active metal used for the polymerization is used. After the polymerization is started using a part of the catalyst and before the polymerization is completed, the remaining part of the organic active metal catalyst is added to continue the polymerization to form a conjugated polymer having a multimodal molecular weight distribution curve. The process of
前記共役ジェン重合体を、 環化触媒を用いて環化させて、 マルチモーダルな分 子量分布曲線を有する共役ジェン重合体環化物を形成する工程と、  Cyclizing the conjugated polymer using a cyclization catalyst to form a cyclized conjugated polymer having a multimodal molecular weight distribution curve;
を有するマルチモーダルな分子量分布曲線を有する環化ゴムの製造方法。 A method for producing a cyclized rubber having a multimodal molecular weight distribution curve having
1 4 . 共役ジェン単量体、 または共役ジェン単量体及び共役ジェン単量体と共 重合可能な単量体を、 有機活性金属触媒を用いて重合して、 重合体鎖末端に活性 金属を有する活性共役ジェン重合体を形成する工程と、  14. The conjugated diene monomer or a monomer that can be copolymerized with the conjugated diene monomer and the conjugated diene monomer is polymerized using an organic active metal catalyst to form an active metal at the polymer chain end. Forming an active conjugated polymer having
前記活性共役ジェン重合体に、 前記活性共役ジェン重合体中の活性金属の一部 と反応する量の多官能性カツプリング剤を反応させて、 マルチモーダルな分子量 分布曲線を有する共役ジェン重合体を形成する工程と、  The active conjugated polymer is reacted with an amount of a polyfunctional coupling agent that reacts with a part of the active metal in the active conjugated polymer to form a conjugated polymer having a multimodal molecular weight distribution curve. The process of
前記共役ジェン重合体を、 環化触媒を用いて環化させて、 マルチモーダルな分 子量分布曲線を有する共役ジェン重合体環化物を形成する工程と、  Cyclizing the conjugated polymer using a cyclization catalyst to form a cyclized conjugated polymer having a multimodal molecular weight distribution curve;
を有するマルチモーダルな分子量分布曲線を有する環化ゴムの製造方法。 A method for producing a cyclized rubber having a multimodal molecular weight distribution curve having
1 5 . マルチモーダルな分子量分布曲線を有する共役ジェン重合体環化物を形 成した後、 前記共役ジェン重合体環化物に極性基含有化合物を反応させて、 極性 基を導入する工程を設ける前記の製造方法。 1 6 . 前記の環化ゴムを有効成分とするポリマー成形材料用改質剤。 15. After forming a cyclized conjugated polymer having a multimodal molecular weight distribution curve, a step of introducing a polar group by reacting a compound containing a polar group with the cyclized conjugated polymer is provided. Production method. 16. A modifier for a polymer molding material containing the above-mentioned cyclized rubber as an active ingredient.
1 7 . ポリマー成形材料に前記のポリマー成形材料用改質剤を配合してなるポ リマー組成物。  17. A polymer composition obtained by blending the above-mentioned modifier for a polymer molding material with the polymer molding material.
1 8 . ポリマー成形材料が非極性のものである前記のポリマー組成物。  18. The polymer composition as described above, wherein the polymer molding composition is non-polar.
1 9 . ポリマ一成形材料用改質剤の含有量が、 ポリマー 1 0 0重量部当たり、 0 . 1〜 5 0重量部である前記のポリマー組成物。  19. The above polymer composition, wherein the content of the polymer-forming material modifier is 0.1 to 50 parts by weight per 100 parts by weight of the polymer.
2 0 . 前記の環化ゴムを含有してなるコーティング剤。  20. A coating agent containing the above cyclized rubber.
2 1 . 非極性のポリマー成形材料用である前記のコーティング剤。  2 1. The above-mentioned coating agent for non-polar polymer molding materials.
2 2 . ポリマー成形材料用プライマーである前記のコーティング剤。  22. The above coating agent which is a primer for a polymer molding material.
2 3 . 前記の環化ゴムを含有してなる粉末粒子。  23. Powder particles containing the above cyclized rubber.
2 4 . 平均粒子径が 1〜 2 0 0 μ mである前記の粉末粒子。  24. The above powder particles having an average particle diameter of 1 to 200 µm.
2 5 . さらに着色剤を含有する前記の粉末粒子。  25. The above powder particles further containing a colorant.
2 6 . 着色剤の使用量が、 環化ゴム 1 0 0重量部に対して、 0 . 1〜 5 0重量 部である前記の粉末粒子。  26. The powder particles as described above, wherein the amount of the colorant used is 0.1 to 50 parts by weight based on 100 parts by weight of the cyclized rubber.
本発明によれば、 ポリプロピレン、 ポリエチレンなどの非極性の重合体からな る成形体と塗料との密着性を著しく向上できる、 マルチモーダルな分子量分布曲 線を有する環化ゴムおよびその製造方法が提供される。 発明を実施するための最良の形態  According to the present invention, there is provided a cyclized rubber having a multimodal molecular weight distribution curve and a method for producing the same, which can remarkably improve the adhesion between a paint made of a nonpolar polymer such as polypropylene and polyethylene and a paint. Is done. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明について詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明の環化ゴムは、 共役ジェン重合体環化物またはその誘導体であって、 そ の分子量分布曲線が複数のピークを有するマルチモーダルであり、 重量平均分子 量が 1 , 0 0 0〜 1, 0 0 0 , 0 0 0のものである。  The cyclized rubber of the present invention is a cyclized conjugated polymer or a derivative thereof, the molecular weight distribution curve of which is multimodal having a plurality of peaks, and the weight average molecular weight of which is 1,000 to 1,000, 0 0 0, 0 0 0.
本発明において、 分子量分布曲線が複数のピークを有するマルチモーダルであ るとは、 ゲル'パーミエーシヨン 'クロマトグラフィー (G P C ) 測定により得 られる分子量分布曲線において、 極大のピークが複数存在することを意味する。 このピークは 2以上存在すればよく、 通常、 2 0を超えるピークを有する場合 には、 分子量分布曲線において極大ピークとして確認することが困難になる。 な かでも、 好ましいピークの数は 2〜 5の範囲である。 本発明の環化ゴムは、 その分子量分布曲線において、 観察される各ピークのピ ークトップに相当する標準ポリスチレン換算の分子量 (ピークトップ分子量) の うちで、 最も小さいもの (最小ピークトップ分子量 (Pmw— S) ) と最も大き いもの (最大ピークトップ分子量 (Pmw— L) ) との比 (Pmw— LZPmw 一 S) が 1. 5以上、 好ましくは 2. 0以上、 より好ましくは 2. 5以上である ことが好ましい。 この比が小さすぎると、 所期の物性が得られない場合がある。 なお、 この比の最大値は、 通常、 20程度であり、 10以下であることが好まし い。 In the present invention, a multi-modal molecular weight distribution curve having a plurality of peaks means that there are a plurality of maximum peaks in a molecular weight distribution curve obtained by gel 'permeation' chromatography (GPC) measurement. means. It is sufficient that there are two or more peaks. Usually, when the peak has more than 20, it is difficult to identify the peak as a maximum peak in the molecular weight distribution curve. Among them, the preferred number of peaks is in the range of 2-5. The cyclized rubber of the present invention has the smallest (minimum peak top molecular weight (Pmw-) among the molecular weights (peak top molecular weights) in terms of standard polystyrene corresponding to the observed peak tops in the molecular weight distribution curve. S)) and the largest one (the maximum peak top molecular weight (Pmw-L)) (Pmw-LZPmw-S) is 1.5 or more, preferably 2.0 or more, more preferably 2.5 or more. Preferably, there is. If this ratio is too small, the desired physical properties may not be obtained. The maximum value of this ratio is usually about 20 and preferably 10 or less.
本発明の環化ゴムの最小ピークトップ分子量 (Pmw— S) は、 10, 000 以上、 より好ましくは 30, 000以上、 特に好ましくは 50, 000以上であ ることが好ましい。 この分子量が低すぎると、 密着性が低下する傾向にある。 本発明の環化ゴムの最大ピークトップ分子量 (Pmw— L) は、 1, 000, 000以下、 より好ましくは 500, 000以下、 特に好ましくは 300, 00 0以下であることが好ましい。 この分子量が高すぎると、 密着性が低下する傾向 にある。  The minimum peak top molecular weight (Pmw-S) of the cyclized rubber of the present invention is preferably 10,000 or more, more preferably 30,000 or more, and particularly preferably 50,000 or more. If the molecular weight is too low, the adhesion tends to decrease. The maximum peak top molecular weight (Pmw-L) of the cyclized rubber of the present invention is preferably 1,000,000 or less, more preferably 500,000 or less, and particularly preferably 300,000 or less. If the molecular weight is too high, the adhesion tends to decrease.
本発明の環化ゴムが、 その分子量分布曲線がパイモーダル (2つのピークを有 する) のもの (以下、 バイモーダル環化ゴムと略称する場合がある。 ) である場 合、低分子量側の成分と高分子量側の成分との重量比が、 95/5〜 10 90、 好ましくは 85Zl 5〜30/70、 より好ましくは 80/20〜 50/50で あることが好ましい。 この比が上記範囲にあると、 密着性がより改善される。 本発明の環化ゴムの重量平均分子量は 1, 000〜1, 000, 000、 好ま しくは 10, 000〜 500, 000、 より好ましくは 30, 000〜 300, 000、 特に好ましくは 50, 000〜300, 000である。 この分子量が低 いと塗料の密着性に劣り、 逆に高いと環化ゴムの製造時や使用時に取り扱い難く なる。 この重量平均分子量は、 GPCによって測定される標準ポリスチレン換算 値である。  When the cyclized rubber of the present invention has a molecular weight distribution curve of a pi-modal (having two peaks) (hereinafter sometimes abbreviated as a bimodal cyclized rubber), the cyclized rubber on the low molecular weight side The weight ratio of the component to the component on the high molecular weight side is preferably 95/5 to 1090, preferably 85Zl 5 to 30/70, and more preferably 80/20 to 50/50. When the ratio is in the above range, the adhesion is further improved. The weight average molecular weight of the cyclized rubber of the present invention is from 1,000 to 1,000,000, preferably from 10,000 to 500,000, more preferably from 30,000 to 300,000, particularly preferably from 50,000 to 50,000. 300,000. If the molecular weight is low, the adhesiveness of the paint is poor, and if it is high, it is difficult to handle the cyclized rubber during production and use. This weight average molecular weight is a standard polystyrene equivalent value measured by GPC.
本発明の環化ゴムの環化率は、 特に限定されないが、 通常、 10%以上、 好ま しくは 40〜 95 %、より好ましくは 60〜 90 %、特に好ましくは 70〜 85 % である。 環化率が低すぎると塗料の密着性に劣り、 逆に、 環化率が高い環化ゴム を製造することは困難になると共に、 ゲル化が進行しやすく、 環化ゴム溶液の塗 布工程で不具合を生じる場合がある。 The cyclization rate of the cyclized rubber of the present invention is not particularly limited, but is usually 10% or more, preferably 40 to 95%, more preferably 60 to 90%, and particularly preferably 70 to 85%. If the cyclization rate is too low, the adhesion of the paint will be poor, and conversely, a cyclized rubber with a high cyclization rate In addition to the difficulty in producing the cyclized rubber solution, gelation is likely to proceed, which may cause a problem in the step of applying the cyclized rubber solution.
なお、 環化率は、 — NMR分析により、 原料として用いた共役ジェン重合 体の環化反応前後における二重結合由来のプロトンのピーク面積をそれぞれ測定 し、 環化反応前を 1 0 0としたときの環化反応後の環化物に残存する二重結合の 割合を求め、 計算式 (1 0 0—環化物中に残存する二重結合の割合) により表 される値 (%) である。  The cyclization rate was as follows: — NMR analysis was performed to measure the peak areas of the protons derived from the double bond before and after the cyclization reaction of the conjugated gen polymer used as the raw material, and the value was set to 100 before the cyclization reaction The ratio of the double bond remaining in the cyclized product after the cyclization reaction is determined, and is a value (%) represented by a calculation formula (100—the ratio of the double bond remaining in the cyclized product).
本発明の環化ゴムのガラス転移温度は特に限定されず、 用途に応じて適宜選択 できるが、 通常、 一 5 0〜2 0 0 °C、 好ましくは 0〜1 0 0 °C、 より好ましくは 2 0〜9 0 °C、 特に好ましくは 3 0〜 7 0 °Cである。  The glass transition temperature of the cyclized rubber of the present invention is not particularly limited and can be appropriately selected depending on the application, but is usually 150 to 200 ° C, preferably 0 to 100 ° C, more preferably The temperature is 20 to 90 ° C, particularly preferably 30 to 70 ° C.
また、 環化ゴムの環化度 (n ) 、 すなわち環のつながりは、 通常、 n = l〜3 の範囲である。環化ゴムのゲル量は、通常、 1 0重量0 /0以下、好ましくは 5重量0 /0 以下であるが、 実質的にゲルを有しないものであることが特に好ましい。 ゲル量 が多いと、 溶液状態での塗布工程に問題が生じる可能性がある。 The degree of cyclization (n) of the cyclized rubber, that is, the connection of the rings, is usually in the range of n = 1 to 3. Gel quantity of cyclized rubber is usually 1 0 weight 0/0 or less, preferably but 5 wt 0/0 or less, and particularly preferably those having substantially no gel. If the amount of gel is large, problems may occur in the application process in a solution state.
本発明の環化ゴムの製造方法は、 以下の 5つの方法が挙げられる。  The method for producing the cyclized rubber of the present invention includes the following five methods.
(第一の製造方法)  (First manufacturing method)
第一の製造方法は、 共役ジェン単量体、 または共役ジェン単量体及ぴ共役ジェ ン単量体と共重合可能な単量体を、 有機活性金属触媒を用いて、 重合を開始した 後、 重合が完結する前に、 有機活性金属触媒中の活性金属の一部を不活性化する 量の重合停止剤を添加して重合を継続し、 マルチモーダルな分子量分布曲線を有 する共役ジェン重合体を形成する工程 (1一 1 ) と、  In the first production method, after starting the polymerization of a conjugated gen monomer, or a conjugated gen monomer and a monomer copolymerizable with the conjugated gen monomer using an organic active metal catalyst, Before the polymerization is completed, the polymerization is continued by adding an amount of a polymerization terminator that inactivates a part of the active metal in the organic active metal catalyst, and the polymerization is continued. A step of forming a unity (111);
前記共役ジェン重合体を、 環化触媒を用いて環化させて、 マルチモーダルな分 子量分布曲線を有する共役ジェン重合体環化物を形成する工程 (1— 2 ) と、 を有する。  A step of cyclizing the conjugated polymer using a cyclization catalyst to form a cyclized conjugated polymer having a multimodal molecular weight distribution curve (1-2).
[工程 (1一 1 ) ]  [Process (1-1)]
共役ジェン単量体としては、 例えば、 1 , 3—ブタジエン、 イソプレン、 2 , 3—ジメチノレー 1, 3—ブタジエン、 2—フエニノレー 1 , 3一ブタジエン、 1, 3一ペンタジェン、 2—メチノレ _ 1, 3—ペンタジェン、 1, 3—へキサジェン、 4 , 5—ジェチノレー 1, 3—ォクタジェン、 3 _ブチル _ 1, 3—ォクタジェン などが挙げられる。なかでも、 1, 3 _ブタジエンおよびイソプレンが好ましく、 イソプレンがより好ましく使用できる。 これらの単量体は、 単独で用いても 2種 以上を併用してもよい。 Examples of the conjugated diene monomer include 1,3-butadiene, isoprene, 2,3-dimethinolene 1,3-butadiene, 2-pheninolene 1,3-butadiene, 1,3-pentadiene, 1,3-pentagenene, and 2-methylenol, 3-pentagen, 1,3-hexadiene, 4,5-getinolene 1,3-octadiene, 3 butyl-1,3-octadiene And the like. Among them, 1,3-butadiene and isoprene are preferred, and isoprene can be more preferably used. These monomers may be used alone or in combination of two or more.
共役ジェン単量体の使用量は、 特に限定されないが、 共役ジェン重合体中の共 役ジェン単量体単位含量が、通常、 4 0モル%以上、好ましくは 6 0モル%以上、 より好ましくは 8 0モル%以上になる量である。 この含有量が少ないと、 環化率 を挙げることが困難になり、 所期の物性改善効果が得にくい傾向にある。  Although the amount of the conjugated gen monomer used is not particularly limited, the content of the conjugated gen monomer unit in the conjugated gen polymer is usually at least 40 mol%, preferably at least 60 mol%, more preferably The amount is 80 mol% or more. If this content is small, it is difficult to increase the cyclization rate, and the intended effect of improving physical properties tends to be hardly obtained.
共役ジェン単量体と共重合可能な単量体としては、 例えば、 スチレン、 α—メ チノレスチレン、 ρ—イソプロピノレスチレン、 ρ—フエ-ノレスチレン、 ρ—メ トキ シスチレン、 ρ—メ トキシメチルスチレン、 p - t e r t—ブトキシスチレン、 クロロメチノレスチレン、 2—フルォロスチレン、 3—フノレオロスチレン、 ペンタ フノレオロスチレン、 ビニルトノレェン、 ビニノレナフタレン、 ビニノレアントラセンな どの芳香族ビュル単量体;エチレン、 プロピレン、 ィソブチレンなどのォレフィ ン単量体;などが挙げられる。これらの中でも、芳香族ビニル単量体が好ましく、 スチレンおよび α—メチルスチレンがより好ましく使用できる。  Monomers copolymerizable with the conjugated diene monomer include, for example, styrene, α-methinolestyrene, ρ-isopropinolestyrene, ρ-pheno-nostyrene, ρ-methoxystyrene, ρ-methoxymethylstyrene. Aromatic vinyl monomers such as p-tert-butoxystyrene, chloromethinolestyrene, 2-fluorostyrene, 3-phenylenostyrene, pentaphenylenostyrene, vinyltonolene, vinylinolephthalene, and vinylinoleanthracene; ethylene, And olefin monomers such as propylene and isobutylene; Of these, aromatic vinyl monomers are preferred, and styrene and α-methylstyrene can be more preferably used.
有機活性金属触媒としては、 前記の単量体をリビング的に重合できる触媒であ れば特に限定されない。 具体例としては、 例えば、 有機アルカリ金属化合物、 有 機アルカリ土類金属化合物などが挙げられる。 なかでも、 有機アルカリ金属化合 物が好ましく使用できる。  The organic active metal catalyst is not particularly limited as long as it is a catalyst capable of polymerizing the above monomer in a living manner. Specific examples include, for example, organic alkali metal compounds, organic alkaline earth metal compounds, and the like. Among them, organic alkali metal compounds can be preferably used.
有機アルカリ金属化合物としては、 例えば、 η—ブチルリチウム、 s e c—ブ チルリチウム、 t 一ブチルリチウム、 へキシルリチウム、 フエ二ルリチウム、 ス チルベンリチウムなどの有機モノリチウム化合物;ジリチオメタン、 1, 4ージ リチォブタン、 1, 4—ジリチォー 2—ェチルシクロへキサン、 1 , 3 , 5—ト リリチォベンゼンなどの有機多価リチウム化合物;ナトリゥムナフタレン、 カリ ゥムナフタレンなどが挙げられる。 これらの中でも、 有機リチウム化合物が好ま しく、 有機モノリチウム化合物がより好ましく使用できる。  Examples of the organic alkali metal compound include organic monolithium compounds such as η-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium, and stilbenelithium; dilithiomethane, 1,4- Organic polyvalent lithium compounds such as dilithobutane, 1,4-dilithio-2-ethylcyclohexane, and 1,3,5-trilithiobenzene; and sodium naphthalene and potassium naphthalene. Among these, an organolithium compound is preferred, and an organomonolithium compound can be more preferably used.
有機アル力リ金属化合物は、 前記の有機アル力リ金属化合物に 2級ァミンを反 応させて得られる有機アル力リ金属ァミド化合物として使用することもできる。  The organic metal compound can also be used as an organic metal compound obtained by reacting a secondary amine with the organic metal compound.
2級ァミンとしては、 例えば、 ジメチルァミン、 メチルェチルァミン、 メチル プロピルァミン、 メチルプチルァミン、 メチルアミルァミン、 ァミルへキシルァ ミン、 ジェチルァミン、 ェチルプロピルァミン、 ェチノレブチノレアミン、 ェチルへ キシルァミン、 ジプロピルァミン、 ジイソプロピルァミン、 プロピルプチルァミ ン、 ジブチルァミン、 ジァミルァミン、 ジへキシルァミン、 ジヘプチルァミン、 ジォクチルァミン、メチルシク口ペンチルァミン、ェチルシク口ペンチノレアミン、 メチルシクロへキシルァミン、 ジシクロペンチノレァミン、 ジシクロへキシノレアミ ンなどの脂肪族 2級ァミン; ジフエ-ルァミン、 N—メチルァニリン、 N—ェチ ルァニリン、 ジベンジルァミン、 N—メチルベンジルァミン、 N—ェチルフエネ チルァミンなどの芳香族 2級ァミン; アジリジン、 ァセチジン、 ピロリジン、 ピ ペリジン、 2—メチルピペリジン、 3ーメチノレビペリジン、 4—メチルピペリジ ン、 3, 5—ジメチルビペリジン、 2—ェチルビペリジン、 へキサメチレンイミ ン、 ヘプタメチレンィミン、 ドデカメチレンィミン、 コニイン、 モノレホリン、 ォ キサジン、 ピロリン、 ピロール、 ァゼピンなどの環状ィミンが挙げられる。 これ らの 2級ァミンは、 単独でまたは 2種以上を組み合わせて用いられる。 Secondary amines include, for example, dimethylamine, methylethylamine, methyl Propylamine, Methylbutylamine, Methylamylamine, Amylhexylamine, Jethylamine, Ethylpropylamine, Ethynolebutynoleamine, Ethylhexylamine, Dipropylamine, Diisopropylamine, Propylbutylamine, Dibutylamine, Aliphatic secondary amines such as diamylamine, dihexylamine, diheptylamine, dioctylamine, methylcyclopentylamine, ethylethylpentinoleamine, methylcyclohexylamine, dicyclopentinoleamine, dicyclohexinoleamine, etc .; diphenylamine, N-methylaniline Aromatic secondary amines such as N-ethylaniline, dibenzylamine, N-methylbenzylamine, N-ethylphenethylamine; aziridine, acetidine, pylori , Piperidine, 2-methylpiperidine, 3-methinoleviperidine, 4-methylpiperidine, 3,5-dimethylbiperidine, 2-ethylbiperidine, hexamethyleneimine, heptamethyleneimine, dodecamethyleneimine, Examples include cyclic imines such as coniine, monoreforin, oxazine, pyrroline, pyrrole, and azepine. These secondary amines are used alone or in combination of two or more.
2級ァミンの使用量は、有機アルカリ金属化合物中の金属に対して、通常、 0. 5〜2当量、 好ましくは 0. 8〜1. 5当量、 より好ましくは 1〜1. 2当量で あ 。  The amount of the secondary amine used is usually 0.5 to 2 equivalents, preferably 0.8 to 1.5 equivalents, and more preferably 1 to 1.2 equivalents, based on the metal in the organic alkali metal compound. .
有機アル力リ土類金属化合物としては、 例えば、 特開昭 51— 115590号 公報、 特開昭 52— 9090号公報、 特開昭 52— 1 7591号公報、 特開昭 5 2— 30543号公報、 特開昭 52— 48910号公報、 特開昭 52— 9807 7号公報、 特開昭 56— 1 12916号公報、 特開昭 57— 100146号公報 等報に開示されているバリウム、 ストロンチウム、 カルシウム等の金属を有する 化合物が例示される。 具体例としては、 例えば、 n—ブチルマグネシウムブロミ ド、 n—へキシ/レマグネシウムブロミ ド、 エトキシカノレシゥム、 tーブトキシス トロンチウム、 エトキシバリウム、 イソプロポキシバリウム、 ェチルメルカプト ノくリウム、 t—ブトキシバリウム、 フエノキシバリゥム、 ジェチルアミノバリウ ム、 ェチルパリゥムなどが挙げられる。  Examples of the organic alkaline earth metal compound include, for example, JP-A-51-115590, JP-A-52-9090, JP-A-52-17591, JP-A-52-30543. Barium, strontium, and calcium disclosed in JP-A-52-48910, JP-A-52-98077, JP-A-56-112916, and JP-A-57-100146. Compounds having a metal such as are exemplified. Specific examples include, for example, n-butylmagnesium bromide, n-hexyl / lemagnesium bromide, ethoxycanolesum, t-butoxystrontium, ethoxybarium, isopropoxybarium, ethyl mercapto-norium, t-butoxybarium, phenoxyvalium, getylaminovalium, ethylparium, and the like.
上記の有機活性金属触媒は、 単独でまたは 2種以上を組み合わせて用いること ができる。 その使用量は、 上記触媒の種類または要求される生成重合体の重量平 均分子量によって適宜選択されるが、 単量体 1 0 0 g当り、 通常、 0 . 0 1〜1 0 0ミリモル、 好ましくは 0 . 0 5〜 2 0ミリモル、 より好ましくは 0 . 1〜 1 0ミリモルの範囲である。 The above-mentioned organic active metal catalysts can be used alone or in combination of two or more. The amount used depends on the type of the above catalyst or the required weight of the produced polymer. Although it is appropriately selected depending on the average molecular weight, it is usually 0.01 to 100 mmol, preferably 0.05 to 20 mmol, more preferably 0.1 to 10 mmol per 100 g of the monomer. In the millimolar range.
上記触媒を用いた重合は、 通常、 重合溶媒中で行われる。 重合溶媒としては、 重合を阻害しないものであれば特に限定されない。  The polymerization using the above catalyst is usually performed in a polymerization solvent. The polymerization solvent is not particularly limited as long as it does not inhibit the polymerization.
重合溶媒としては、 例えば、 n—ブタン、 n—ペンタン、 i s o—ペンタン、 n—へキサン、 n—ヘプタン、 i s o—オクタンなどの脂肪族飽和炭化水素;シ クロペンタン、 シクロへキサン、 メチルシクロペンタンなどの脂環式飽和炭化水 素;ベンゼン、 トルエンなどの芳香族炭化水素;等が挙げられる。 これらの中で も、 n—へキサン、 シクロへキサン、 トルエンなどが好ましい。 また、 必要に応 じて、 1—ブテン、 シス一 2—ブテン、 2—へキセンなどの重合性が極めて低い 不飽和炭化水素を併用することもできる。 これらの重合溶媒は、 単独でまたは 2 種以上を組み合わせて用いることができる。 Examples of the polymerization solvent include aliphatic saturated hydrocarbons such as n-butane, n-pentane, iso-pentane, n- hexane, n -heptane, iso-octane; cyclopentane, cyclohexane, methylcyclopentane, etc. Alicyclic saturated hydrocarbons; aromatic hydrocarbons such as benzene and toluene; and the like. Among them, n-hexane, cyclohexane, toluene and the like are preferable. If necessary, unsaturated hydrocarbons having extremely low polymerizability, such as 1-butene, cis-1-butene, and 2-hexene, can be used in combination. These polymerization solvents can be used alone or in combination of two or more.
重合溶媒の使用量は、 特に限定されないが、 重合に使用する単量体の濃度が、 通常、 1〜5 0重量%、 好ましくは 1 0〜4 0重量%の範囲となる量である。 重合反応に際し、 共役ジェン単量体単位の結合構造を調整するために、 極性化 合物を用いることができる。 極性化合物としては、 有機活性金属触媒を用いた通 常のァ-ォン重合で使用されるものであれば、 特に限定されない。  The amount of the polymerization solvent to be used is not particularly limited, but is such that the concentration of the monomer used in the polymerization is usually in the range of 1 to 50% by weight, preferably 10 to 40% by weight. In the polymerization reaction, a polar compound can be used to adjust the bonding structure of the conjugated gen monomer unit. The polar compound is not particularly limited as long as it is one used in normal ion polymerization using an organic active metal catalyst.
極性化合物としては、 例えば、 ジブチルエーテル、 エチレンダリコールジブチ ルエーテル、 テトラヒ ドロフランなどのエーテル化合物;テトラメチルエチレン ジァミン、 トリメチルァミン、 トリェチルァミン、 ピリジン、 キヌタリジンなど の 3級ァミン;力リゥムー tーァミルォキシド、 力リゥムー t—ブチルォキシド などのアルカリ金属アルコキシド; トリフエニルホスフィンなどのホスフィン誘 導体;などが挙げられる。 これらの中でも、 3級ァミンおよびエーテル化合物が 好ましく、 3級ァミンがより好ましく、 テトラメチルエチレンジァミンが特に好 ましく使用できる。 これらの極性化合物は、 単独でまたは 2種以上を組み合わせ て用いることができる。  Examples of the polar compound include ether compounds such as dibutyl ether, ethylene dalicol dibutyl ether, and tetrahydrofuran; tertiary amines such as tetramethylethylene diamine, trimethylamine, triethylamine, pyridine, and quinutalizine; alkali metal alkoxides such as t-butyloxide; phosphine derivatives such as triphenylphosphine; and the like. Of these, tertiary amines and ether compounds are preferred, tertiary amines are more preferred, and tetramethylethylenediamine can be used particularly preferably. These polar compounds can be used alone or in combination of two or more.
極性化合物を使用する場合、その使用量は、有機活性金属触媒 1モルに対して、 通常、 2 0 0モル以下、 好ましくは 0 . 1〜 1 0 0モル、 より好ましくは◦ . 5 〜 5 0モル、 特に好ましくは 0 . 8〜2 0モルである。 When a polar compound is used, the amount of the polar compound to be used is generally 200 mol or less, preferably 0.1 to 100 mol, more preferably ◦0.5 mol, per mol of the organic active metal catalyst. 550 mol, particularly preferably 0.8-20 mol.
以上のように重合を開始した後、 重合が完結する前に、 有機活性金属触媒中の 活性金属の一部を不活性化する量の重合停止剤を添加する。  After the initiation of the polymerization as described above, before the polymerization is completed, an amount of a polymerization terminator that inactivates a part of the active metal in the organic active metal catalyst is added.
重合停止剤としては、 有機活性金属触媒中の活性金属を不活性化できるもので あれば特に限定されないが、 例えば、 メタノール、 エタノール、 イソプロパノー ル、 n—ブタノーノレ、 tーブタノールなどのアルコール類; フエノール、 メチル フエノール、 2, 6 - t e r t _プチノレーヒ ドロキシトノレェンなどのフエノーノレ 類;水が挙げられる。 なかでも、 メタノール、 tーブタノ一ノレ、 2, 6— t e r tーブチルーヒドロキシトルエンが好ましく使用できる。  The polymerization terminator is not particularly limited as long as it can inactivate the active metal in the organic active metal catalyst. Examples thereof include alcohols such as methanol, ethanol, isopropanol, n-butanol and t-butanol; Phenoenoles, such as methylphenol and 2,6-tert-ptinolehidroxytonolene; water. Of these, methanol, t-butanol, and 2,6-tert-butyl-hydroxytoluene can be preferably used.
重合停止剤の使用量は、 重合に使用した有機活性金属触媒中の活性金属に対し て、 通常、 0 . 1〜0 . 9 5当量、 好ましくは 0 . 3〜0 . 9当量、 より好まし くは 0 . 5〜0 . 9当量の範囲である。  The amount of the polymerization terminator to be used is usually 0.1 to 0.95 equivalent, preferably 0.3 to 0.9 equivalent, and more preferably 0.1 to 0.95 equivalent to the active metal in the organic active metal catalyst used for the polymerization. Or in the range of 0.5 to 0.9 equivalents.
重合が完結する前に添加する重合停止剤の使用量を調節することにより、 重合 停止剤を添カ卩した時点で重合を停止した共役ジェン重合体の量を調節できる。 重合が完結する前に添加する重合停止剤の添加時期は、 特に限定されないが、 重合に使用する単量体全量に対する重合転化率で、 通常、 5〜9 5重量%、 好ま しくは 2 0〜9 0重量0 /0、 より好ましくは 4 0〜9 0重量%である。 この添加時 期を調節することにより、 重合停止剤を添加した時点で重合を停止した共役ジェ ン重合体のピークトップ分子量を調節できる。 By adjusting the amount of the polymerization terminator added before the completion of the polymerization, the amount of the conjugated gen polymer whose polymerization has been stopped at the time of adding the polymerization terminator can be adjusted. The timing of addition of the polymerization terminator added before the completion of the polymerization is not particularly limited, but is usually 5 to 95% by weight, preferably 20 to 100% by weight in terms of the polymerization conversion rate based on the total amount of the monomers used for the polymerization. 9 0 weight 0/0, more preferably 4 0-9 0% by weight. By adjusting the time of this addition, the peak top molecular weight of the conjugated gen polymer whose polymerization has been stopped when the polymerization terminator is added can be adjusted.
また、 重合が完結する前に、 上記範囲の量の重合停止剤を分割で添加すること もでき、 それらの添加時期は、 上記の範囲で適宜選択することができる。 この分 割回数を調節することにより、 分子量分布曲線におけるピークの数を調節でき、 それぞれの添加量を調節することにより、 重合停止剤を添加した時点で重合を停 止した、 それぞれの共役ジェン重合体の量の割合を調節できる。  In addition, before the polymerization is completed, the polymerization terminator in the above range may be added in portions, and the timing of the addition may be appropriately selected within the above range. By adjusting the number of divisions, the number of peaks in the molecular weight distribution curve can be adjusted. By adjusting the amount of each addition, the polymerization was stopped when the polymerization terminator was added. The proportion of the amount of coalescence can be adjusted.
重合反応は、 通常、 _ 7 8〜1 5 0 °Cの範囲で、 回分式または連続式などの重 合様式で行われる。 重合時間は、 特に限定されないが、 重合反応がほぼ完結する まで行うことが好ましい。  The polymerization reaction is usually carried out in a polymerization mode such as a batch system or a continuous system in the range of −78 to 150 ° C. The polymerization time is not particularly limited, but is preferably performed until the polymerization reaction is almost completed.
重合反応がほぼ完結した後、 さらに重合停止剤を添加して、 重合反応を停止す る。 重合停止剤としては、 前述のものを使用でき、 その使用量は、 重合に使用し た有機活性金属触媒中の金属に対して、 重合反応が完結する前に添加した重合停 止剤との合計量が、 通常、 1〜1 0当量、 好ましくは 1〜5当量、 より好ましく は 1〜1 . 5当量の範囲になる量である。 After the polymerization reaction is almost completed, the polymerization reaction is stopped by adding a polymerization terminator. As the polymerization terminator, those described above can be used. The total amount of the metal in the organic active metal catalyst and the polymerization terminator added before the completion of the polymerization reaction is usually 1 to 10 equivalents, preferably 1 to 5 equivalents, more preferably 1 to 10 equivalents. The amount is in the range of ~ 1.5 equivalents.
以上のようにして、 マルチモーダルな分子量分布曲線を有する共役ジェン重合 体が得られる。 得られた共役ジェン重合体は、 常法により、 重合溶媒を除去して 固形状物として取得してもよいし、重合体溶液のまま、次の工程に移つてもよレ、。  As described above, a conjugated diene polymer having a multimodal molecular weight distribution curve can be obtained. The obtained conjugated diene polymer may be obtained as a solid by removing the polymerization solvent by a conventional method, or may be transferred to the next step as it is as the polymer solution.
[工程 (1 _ 2 ) ]  [Process (1 _ 2)]
環化触媒としては、 一般に公知のものが使用できる。  As the cyclization catalyst, generally known ones can be used.
環化触媒としては、 例えば、 硫酸;モノフルォロメタンスルホン酸、 ジフルォ ロメタンスルホン酸、 p—トルエンスルホン酸、 キシレンスルホン酸、 炭素数 2 〜1 6のァノレキノレ基を有するアルキルベンゼンスノレホン酸、 これらの無水物もし くはアルキルエステルなど有機スルホン酸化合物;三フッ化ホウ素、 三塩化ホウ 素、 四塩化スズ、 四塩化チタン、 塩ィヒアルミニウム、 ジェチルアルミニウムモノ クロリ ド、 臭化アルミニウム、 五塩化アンチモン、 六塩化タングステン、 塩化鉄 などの金属ハロゲン化物;などが挙げられる。 これらの環化触媒は、 単独でまた は 2種以上を組み合わせて用いることができる。  Examples of the cyclization catalyst include sulfuric acid; monofluoromethanesulfonic acid, difluoromethanesulfonic acid, p-toluenesulfonic acid, xylenesulfonic acid, alkylbenzenesnolephonic acid having an anolequinole group having 2 to 16 carbon atoms, and the like. Organic sulfonic acid compounds such as anhydrides or alkyl esters; boron trifluoride, boron trichloride, tin tetrachloride, titanium tetrachloride, aluminum chloride, getyl aluminum monochloride, aluminum bromide, antimony pentachloride And metal halides such as tungsten hexachloride and iron chloride; These cyclization catalysts can be used alone or in combination of two or more.
これらの環化触媒の中でも、 有機スルホン酸ィ匕合物が好ましく、 p—トルエン スルホン酸がより好ましく使用できる。  Among these cyclization catalysts, an organic sulfonic acid conjugate is preferable, and p-toluenesulfonic acid can be more preferably used.
環化触媒の使用量は、 環化触媒の種類や要求される環化率に応じて適宜選択さ れるが、 共役ジェン重合体 1 0 0 gに対して、 通常、 0 . 0 5〜1 0重量部、 好 ましくは 0 . 1〜5重量部、 より好ましくは 0 . 3〜2重量部である。  The amount of the cyclization catalyst to be used is appropriately selected depending on the type of the cyclization catalyst and the required cyclization ratio. However, it is usually 0.05 to 10 g per 100 g of the conjugated diene polymer. Parts by weight, preferably 0.1 to 5 parts by weight, more preferably 0.3 to 2 parts by weight.
環化反応は、前記の共役ジェン重合体と環化触媒とを接触させれば進行するが、 通常、 不活性溶媒中で行われる。 不活性溶媒としては、 環化反応を阻害しないも のであれば、 特に限定されない。  The cyclization reaction proceeds when the conjugated polymer is brought into contact with the cyclization catalyst, but is usually performed in an inert solvent. The inert solvent is not particularly limited as long as it does not inhibit the cyclization reaction.
不活性溶媒としては、 重合溶媒として前記したものが使用できる。 なかでも、 沸点が 7 0 °C以上のものが好ましく使用できる。  As the inert solvent, those described above as the polymerization solvent can be used. Among them, those having a boiling point of 70 ° C. or more can be preferably used.
不活性溶媒の使用量は、 特に限定されないが、 工程 (1 _ 1 ) で得られた共役 ジェン重合体の濃度が好ましくは 5〜 6 0重量0 /0、 より好ましくは 2 0〜 4 0重 量%となる量である。 L2 環化反応における反応温度、通常、 5 0〜1 5 0 °C、好ましくは 8 0〜1 1 0 °C であり、 反応時間は、 通常、 0 . 5〜 1 0時間、 好ましくは 2〜 5時間である。 以上のようにして、 マルチモーダルな分子量分布曲線を有する共役ジェン重合 体環化物が得られる。 The amount of inert solvent is not particularly limited, step (1 _ 1) conjugate obtained in Jen concentration of the polymer is preferably 5-6 0 weight 0/0, more preferably 2 0-4 0 fold It is the amount that becomes the amount%. The reaction temperature in the L2 cyclization reaction is usually 50 to 150 ° C, preferably 80 to 110 ° C, and the reaction time is generally 0.5 to 10 hours, preferably 2 to 10 hours. 5 hours. As described above, a cyclized conjugated diene polymer having a multimodal molecular weight distribution curve can be obtained.
得られた環化ゴムは、 通常、 常法により、 環化触媒を不活性ィヒした後、 環化触 媒残渣を除去し、 不活性溶媒を除去して、 固形物として取得する。  The obtained cyclized rubber is generally obtained as a solid by removing the cyclization catalyst residue and the inert solvent after inactivating the cyclization catalyst by a conventional method.
(第二の製造方法)  (Second manufacturing method)
第二の製造方法は、 共役ジェン単量体、 または共役ジェン単量体及び共役ジェ ン単量体と共重合可能な単量体を、 有機活性金属触媒を用いて重合するに際し、 重合に使用する有機活性金属触媒の一部を用いて重合を開始した後、 重合が完結 する前に、 該有機活性金属触媒の残部を添加して重合を継続し、 マルチモーダル な分子量分布曲線を有する共役ジェン重合体を形成する工程 ( 2— 1 ) と、 前記共役ジェン重合体を、 環化触媒を用いて環化させて、 マルチモーダルな分 子量分布曲線を有する共役ジェン重合体環化物を形成する工程 (2— 2 ) と、 を有する。  In the second production method, a conjugated diene monomer or a monomer copolymerizable with a conjugated diene monomer and a conjugated diene monomer is used for polymerization when polymerizing using an organic active metal catalyst. After the polymerization is started using a part of the organic active metal catalyst, and before the polymerization is completed, the remaining part of the organic active metal catalyst is added to continue the polymerization, and the conjugated agent having a multimodal molecular weight distribution curve is obtained. Forming a polymer (2-1); cyclizing the conjugated diene polymer using a cyclization catalyst to form a cyclized conjugated diene polymer having a multimodal molecular weight distribution curve And (2-2).
[工程 (2—1 ) ]  [Process (2-1)]
重合を開始する際に使用する有機活性金属触媒の使用量は、 重合に使用する有 機活性金属触媒の全量に対して、 通常、 5〜 9 0モル%、 好ましくは 1 0〜 7 0 モル0 /0、 より好ましくは 1 0〜 5 0モル0 /0の範囲の量である。 この使用量が少な すぎても多すぎても、 所期の物性改善効果が得られない場合がある。 この量を調 節することにより、 高分子量側の共役ジェン重合体の含有量を調節することがで さる。 The amount of the organic active metal catalyst used for initiating the polymerization is usually 5 to 90 mol%, preferably 10 to 70 mol 0 , based on the total amount of the organic active metal catalyst used for the polymerization. / 0, more preferably in an amount in the range of 1 0-5 0 mol 0/0. If the amount is too small or too large, the intended effect of improving physical properties may not be obtained. By adjusting this amount, the content of the conjugated gen polymer on the high molecular weight side can be adjusted.
重合を開始した後、 重合が完結する前に、 残部の有機活性金属触媒を添加して 重合する。 その添加時期は、 特に限定されないが、 重合に使用する単量体全量に 対する重合転化率で、 通常、 5〜 9 0重量%、 好ましくは 1 0〜 7 0重量%、 よ り好ましくは 1 0〜5 0重量%である。 この添加時期を調節することにより、 重 合を開始した後に添加する残部の有機活性金属触媒によつて形成される共役ジェ ン重合体のピークトップ分子量を調節できる。  After the initiation of the polymerization, before the polymerization is completed, the remaining organic active metal catalyst is added to carry out the polymerization. The time of addition is not particularly limited, but is usually 5 to 90% by weight, preferably 10 to 70% by weight, more preferably 10 to 100% by weight based on the total amount of the monomers used for the polymerization. ~ 50% by weight. By adjusting the timing of the addition, the peak top molecular weight of the conjugated gen polymer formed by the remaining organic active metal catalyst added after the start of the polymerization can be adjusted.
また、 重合を開始した後に添加する残部の有機活性金属触媒は、 重合が完結す る前に、 分割で添加することもでき、 それらの添加時期は、 上記の範囲で適宜選 択することができる。 この分割回数を調節することにより、 分子量分布曲線にお けるピークの数を調節でき、 それぞれの添加量を調節することにより、 重合を開 始した後に添加する有機活性金属触媒によつて形成される、 それぞれの共役ジェ ン重合体量の割合を調節できる。 Also, the remaining organic active metal catalyst added after the start of the polymerization will complete the polymerization. Can be added in portions before the addition, and the timing of their addition can be appropriately selected within the above range. By adjusting the number of divisions, the number of peaks in the molecular weight distribution curve can be adjusted. By adjusting the amount of each addition, the peak is formed by the organic active metal catalyst added after the start of polymerization. The proportion of each conjugated polymer can be adjusted.
工程 ( 2 - 1 ) における重合方法および条件は、 前記した点および重合を開始 した後、 重合が完結する前に、 有機活性金属触媒中の活性金属の一部を不活性化 する量の重合停止剤を添加して重合を継続する点を除き、 工程 (1一 1 ) におけ る条件と同様である。  The polymerization method and conditions in the step (2-1) are as described above. The conditions are the same as those in the step (11-1), except that the polymerization is continued by adding the agent.
重合反応がほぼ完結した後、 重合停止剤を添加して重合反応を停止する。 重合 停止剤としては、 前述したものが使用できる。 重合停止剤の使用量は、 重合に使 用した有機活性金属触媒中の金属に対して、 通常、 1〜1 0当量、 好ましくは 1 〜5当量、 より好ましくは 1〜1 . 5当量の範囲になる量である。  After the polymerization reaction is almost completed, the polymerization reaction is stopped by adding a polymerization terminator. As the polymerization terminator, those described above can be used. The amount of the polymerization terminator used is usually in the range of 1 to 10 equivalents, preferably 1 to 5 equivalents, more preferably 1 to 1.5 equivalents, based on the metal in the organic active metal catalyst used for the polymerization. It is the amount that becomes.
以上のようにして、 マルチモーダルな分子量分布曲線を有する共役ジェン重合 体が得られる。 得られた共役ジェン重合体は、 常法により、 重合溶媒を除去して 固形状物として取得してもよいし、重合体溶液のまま、次の工程に移ってもよい。  As described above, a conjugated diene polymer having a multimodal molecular weight distribution curve can be obtained. The obtained conjugated gen polymer may be obtained as a solid by removing the polymerization solvent by a conventional method, or may be transferred to the next step as it is as the polymer solution.
[工程 (2— 2 ) ]  [Process (2-2)]
工程( 2— 1 )で得られた共役ジェン重合体を、環化触媒を用いて環化させて、 マルチモーダルな分子量分布曲線を有する共役ジェン重合体環化物を形成する。 この工程における方法おょぴ条件は、 工程 (1— 2 ) と同様である。  The conjugated diene polymer obtained in the step (2-1) is cyclized using a cyclization catalyst to form a cyclized conjugated diene polymer having a multimodal molecular weight distribution curve. The conditions of the method in this step are the same as those in step (1-2).
(第三の製造方法) '  (Third manufacturing method) ''
第三の製造方法は、 共役ジェン単量体、 または共役ジェン単量体及ぴ共役ジェ ン単量体と共重合可能な単量体を、 有機活性金属触媒を用いて重合して、 重合体 鎖末端に活性金属を有する活性共役ジェン重合体を形成する工程 (3— 1 ) と、 前記の活性共役ジェン重合体に、 該活性共役ジェン重合体中の活性金属の一部 と反応する量の多官能性カツプリング剤を反応させて、 マルチモーダルな分子量 分布曲線を有する共役ジェン重合体を形成する工程 (3— 2 ) と、  In the third production method, a conjugated diene monomer or a monomer copolymerizable with a conjugated diene monomer and a conjugated diene monomer is polymerized using an organic active metal catalyst to obtain a polymer. (3-1) forming an active conjugated polymer having an active metal at the chain end; and reacting the active conjugated gen polymer with a part of the active metal in the active conjugated gen polymer. Reacting the multifunctional coupling agent to form a conjugated diene polymer having a multimodal molecular weight distribution curve (3-2);
前記共役ジェン重合体を、 環化触媒を用いて環化させて、 マルチモーダルな分 子量分布曲線を有する共役ジェン重合体環化物を形成する工程 (3— 3 ) と、 L4 を有する。 Cyclizing the conjugated polymer using a cyclization catalyst to form a cyclized conjugated polymer having a multimodal molecular weight distribution curve (3-3); L4.
[工程 ( 3 - 1 ) ]  [Process (3-1)]
工程(3— 1 ) における重合方法およびその条件は、工程(1— 1 ) および(2 一 1 ) における以下の 3点を除き、 前記と同様である。  The polymerization method and the conditions in the step (3-1) are the same as described above, except for the following three points in the steps (1-1) and (2-11).
( 1 ) 重合反応がほぼ完結した後に、 重合反応の停止を行う。  (1) After the polymerization reaction is almost completed, stop the polymerization reaction.
( 2 ) 重合を開始した後、 重合が完結する前に、 有機活性金属触媒中の活性金 属の一部を不活性化する量の重合停止剤を添加して重合を継続する。  (2) After the polymerization is started and before the polymerization is completed, the polymerization is continued by adding a polymerization terminator in an amount that inactivates a part of the active metal in the organic active metal catalyst.
( 3 ) 重合に使用する有機活性金属触媒の一部を用いて重合を開始した後、 重 合が完結する前に、 該有機活性金属触媒の残部を添加して重合を継続する。 以上のようにして、 重合体鎖末端に活性金属を有する活性共役ジェン重合体を 形成する。  (3) After the polymerization is started using a part of the organic active metal catalyst used for the polymerization, before the polymerization is completed, the remaining part of the organic active metal catalyst is added and the polymerization is continued. As described above, an active conjugated polymer having an active metal at a polymer chain terminal is formed.
[工程 (3 _ 2 ) ]  [Process (3_2)]
工程 (3— 1 ) で得られた活性共役ジェン重合体に、 該活性共役ジェン重合体 中の活性金属の一部と反応する量の多官能性カツプリング剤を反応させて、 マル チモーダルな分子量分布曲線を有する共役ジェン重合体を形成する。  The active conjugated polymer obtained in the step (3-1) is reacted with a multifunctional coupling agent in an amount that reacts with a part of the active metal in the active conjugated polymer to obtain a multimodal molecular weight distribution. A conjugated gen polymer having a curve is formed.
多官能性カツプリング剤は、 活性共役ジェン重合体の重合体末端の活性金属と 反応して該重合体分子と結合する部位を 2つ以上有する化合物である。  The polyfunctional coupling agent is a compound having two or more sites that react with the active metal at the polymer terminal of the active conjugated polymer and bond to the polymer molecule.
2官能性力ップリング剤としては、 例えば、 ジクロロシラン、 モノメチルジク ロロシラン、 ジメチルジクロロシランなどの 2官能性ハロゲン化シラン;ジフエ 二ルジメ トキシシラン、 ジフエ二ルジェトキシシランなどの 2官能性アルコキシ シラン;ジクロロェタン、 ジプロモェタン、 メチレンクロライド、 ジプロモメタ ンなどの 2官能性ハ口ゲン化アル力ン;ジクロロスズ、モノメチルジクロロスズ、 ジメチルジクロロスズ、 モノェチノレジクロロスズ、 ジェチノレジクロロスズ、 モノ ブチルジクロロスズ、 ジプチルジク口ロスズなどの 2官能性ハ口ゲン化スズ;安 息香酸、 C O、 2—クロ口プロペンなどが挙げられる。  Examples of the bifunctional coupling agent include difunctional silanes such as dichlorosilane, monomethyldichlorosilane, and dimethyldichlorosilane; difunctional silanes such as diphenyldimethoxysilane and diphenylethoxysilane; difunctional alkoxysilanes such as dichloroethane; Difunctional molybdenum salts such as dipromoethane, methylene chloride, and dipromomethane; dichlorotin, monomethyldichlorotin, dimethyldichlorotin, monoethynoresichlorotin, cetinoresichlorotin, monobutyldichlorotin, dibutyldichlorotin Bifunctional tin halides such as rosin; benzoic acid, CO, and 2-chloropropene.
3官能性カツプリ:/グ剤としては、 例えば、 トリクロロェタン、 トリクロロブ 口パンなどの 3官能性ハ口ゲン化アル力ン;メチルトリクロロシラン、 ェチルト リクロロシランなどの 3官能性ハロゲン化シラン;メチルトリメ トキシシラン、 フエニルトリメ トキシシラン、 フエ-ルトリエトキシシランなどの 3官能性アル コキシシラン;などが挙げられる。 Examples of trifunctional cappuri agents include: trifunctional silanes such as trichloroethane and trichlorobutane; trifunctional halogenated silanes such as methyltrichlorosilane and ethyltrichlorosilane; Trifunctional alcohols such as methyltrimethoxysilane, phenyltrimethoxysilane, and phenoltriethoxysilane Coxysilane; and the like.
4官能性カップリング剤としては、 例えば、 四塩化炭素、 四臭化炭素、 テトラ クロロェタンなどの 4官能性ハロゲン化アルカン;テトラクロロシラン、 テトラ プロモシランなどの 4官能性ハロゲン化シラン;テトラメ トキシシラン、 テトラ エトキシシランなどの 4官能性アルコキシシラン;テトラクロロスズ、 テトラブ 口モスズなどの 4官能性ハロゲン化スズ;などが挙げられる。  Examples of the tetrafunctional coupling agent include tetrafunctional halogenated alkanes such as carbon tetrachloride, carbon tetrabromide, and tetrachloroethane; tetrafunctional silanes such as tetrachlorosilane and tetrabromosilane; tetramethoxysilane and tetraethoxysilane Tetrafunctional alkoxysilanes such as silane; tetrafunctional tin halides such as tetrachlorotin and tetrabutyl motin; and the like.
5官能性以上のカップリング剤としては、 例えば、 1, 1 , 1 , 2 , 2—ペン タクロロェタン、 ノ ークロ口ェタン、 ペンタクロロベンゼン、 / 一クロ口べンセ ン、 オタタブロモジフエ二ノレエーテル、 デカブロモジフエニノレエータノレなどが挙 げられる。  Examples of the coupling agent having five or more functionalities include 1,1,1,2,2-pentanochloroethane, cyclopentane, pentachlorobenzene, / chlorobenzene, octabromodipheninoleether, deca Bromodieninoleetanore and the like.
n官能性カップリング剤(ここで、 nは 3以上の整数である。) を用いた場合、 直鎖状の重合体鎖に対して、 分岐状に結合している重合体鎖の数が n— 2である カツプリング型共役ジェン重合体が生成しうる。  When an n-functional coupling agent (where n is an integer of 3 or more) is used, the number of branched polymer chains is n for a straight-chain polymer chain. — 2 A coupling type conjugated gen polymer can be formed.
前記の活性共役ジェン重合体と n官能性力ップリング剤を反応させることによ り、 該活性共役ジェン重合体のほぼ n倍の分子量を有する力ップリング体が生成 する。  By reacting the active conjugated diene polymer with the n-functional force-pulling agent, a force-coupled product having a molecular weight approximately n times that of the active conjugated diene polymer is produced.
多官能性カツプリング剤の使用量は、 前記の活性共役ジェン重合体と多官能性 カツプリング剤を反応させた後においても、 活性共役ジェン重合体が残存するだ けの量であり、 重合に用いた有機活性金属触媒中の活性金属の全量に対して、 多 官能性カップリング剤中の官能性基量が、 通常、 0 . 1〜0 . 9当量、 好ましく は 0 . 1〜0 . 7当量、 より好ましくは 0 . 1〜0 . 5当量の範囲となる量であ る。 この使用量が少なすぎても多すぎても、 所期の物性改善効果が得られない場 合がある。  The amount of the polyfunctional coupling agent used was such that the active conjugated polymer remained after the reaction of the active conjugated polymer and the polyfunctional coupling agent, and was used in the polymerization. The amount of the functional group in the polyfunctional coupling agent is usually 0.1 to 0.9 equivalent, preferably 0.1 to 0.7 equivalent, relative to the total amount of the active metal in the organic active metal catalyst. More preferably, the amount is in the range of 0.1 to 0.5 equivalent. If the amount is too small or too large, the intended effect of improving physical properties may not be obtained.
前記の活性共役ジェン重合体と多官能性力ップリング剤との反応温度は、通常、 室温〜 1 2 0 °C、 好ましくは 4 0〜 1 0 0 °Cであり、 反応時間は、 通常、 1分間 〜数時間、 好ましくは 1 0分間〜 2時間である。 この範囲であれば、 反応が十分 進行し、 かつ、 副反応によるゲル化などの不具合も発生しにくい。  The reaction temperature of the active conjugated diene polymer and the polyfunctional coupling agent is usually room temperature to 120 ° C., preferably 40 to 100 ° C., and the reaction time is usually 1 to 100 ° C. Minutes to several hours, preferably 10 minutes to 2 hours. Within this range, the reaction proceeds sufficiently, and problems such as gelation due to side reactions hardly occur.
その後、 重合停止剤を添加して、 重合反応を停止する。 重合停止剤は、 前述の ものを使用でき、 その使用量は、 重合に使用した有機活性金属触媒中の金属に対 して、通常、 0 . 1〜1 0当量、好ましくは 0 . 2 ~ 5当量、 より好ましくは 0 . 5〜1 . 5当量の範囲である。 Thereafter, a polymerization terminator is added to stop the polymerization reaction. As the polymerization terminator, those described above can be used, and the amount used is based on the metal in the organic active metal catalyst used in the polymerization. The range is usually 0.1 to 10 equivalents, preferably 0.2 to 5 equivalents, and more preferably 0.5 to 1.5 equivalents.
以上のようにして、 マルチモーダルな分子量分布曲線を有する共役ジェン重合 体が得られる。 得られた共役ジェン重合体は、 常法により、 重合溶媒を除去して 固形状物として取得してもよいし、重合体溶液のまま、次の工程に移ってもよい。  As described above, a conjugated diene polymer having a multimodal molecular weight distribution curve can be obtained. The obtained conjugated gen polymer may be obtained as a solid by removing the polymerization solvent by a conventional method, or may be transferred to the next step as it is as the polymer solution.
[工程 (3— 3 ) ]  [Process (3-3)]
工程(3— 2 )で得られた共役ジェン重合体を、環化触媒を用いて環化させて、 マルチモーダルな分子量分布曲線を有する共役ジェン重合体環化物を形成する。 この工程における方法および条件は、 工程 (1一 2 ) と同様である。  The conjugated diene polymer obtained in the step (3-2) is cyclized using a cyclization catalyst to form a cyclized conjugated diene polymer having a multimodal molecular weight distribution curve. The method and conditions in this step are the same as those in step (1-2).
(第四の製造方法)  (Fourth manufacturing method)
第四の製造方法は、 その分子量分布曲線のピークトップ分子量が異なる 2種以 上の共役ジェン重合体を混合したものを、 環化触媒を用いて環化させて、 マルチ モーダルな分子量分布曲線を有する共役ジェン重合体環化物を形成する方法であ る。  In the fourth production method, a mixture of two or more conjugated diene polymers having different peak top molecular weights in the molecular weight distribution curve is cyclized using a cyclization catalyst to form a multi-modal molecular weight distribution curve. This is a method of forming a cyclized product of a conjugated gen polymer having the same.
予め、 その分子量分布曲線のピークトップ分子量が異なる共役ジェン重合体を 2種類以上別々に調製する。 それらの共役ジェン重合体は、 それぞれ、 常法によ り調製できる。  In advance, two or more conjugated gen polymers having different peak top molecular weights in the molecular weight distribution curve are separately prepared. Each of these conjugated diene polymers can be prepared by a conventional method.
これらの共役ジェン重合体を、 所望の割合で混合し、 環化触媒を用いて環化さ せて、 共役ジェン重合体環化物を形成する。  These conjugated diene polymers are mixed in a desired ratio and cyclized using a cyclization catalyst to form a conjugated diene polymer cyclized product.
環化反応の方法および条件は、 工程 (1一 2 ) と同様である。  The method and conditions for the cyclization reaction are the same as those in the step (1-2).
以上のようにして、 マルチモーダルな分子量分布曲線を有する共役ジェン重合 体環化物が得られる。  As described above, a cyclized conjugated diene polymer having a multimodal molecular weight distribution curve can be obtained.
(第五の製造方法)  (Fifth manufacturing method)
第五の製造方法は、 その分子量分布曲線のピークトップ分子量が異なる 2種以 上の共役ジェン重合体環化物を混合する方法である。  The fifth production method is a method of mixing two or more cyclized conjugated diene polymers having different peak top molecular weights in the molecular weight distribution curve.
予め、 その分子量分布曲線のピークトップ分子量が異なる共役ジェン重合体環 化物を 2種類以上調製する。 それらの共役ジェン重合体環化物は、 それぞれ、 常 法により調製できる。  In advance, two or more kinds of conjugated gen polymer cyclized compounds having different peak top molecular weights in the molecular weight distribution curve are prepared. Each of these cyclized conjugated polymer can be prepared by a conventional method.
これらの共役ジェン重合体環化物を、 所望の割合で混合して、 マルチモーダル な分子量分布曲線を有する共役ジェン重合体環化物が得られる。 混合の方法とし てはは、 混練や溶液状態で混合した後、 該溶液を除去する方法が挙げられる。 以上のようにして、 マルチモーダルな分子量分布曲線を有する共役ジェン重合 体環化物が得られる。 These cyclized conjugated polymers are mixed in a desired ratio to form a multimodal A cyclized product of a conjugated diene polymer having a suitable molecular weight distribution curve is obtained. Examples of the mixing method include a method in which the solution is removed after kneading or mixing in a solution state. As described above, a cyclized conjugated diene polymer having a multimodal molecular weight distribution curve can be obtained.
上記の製造方法の中でも、 製造効率の点から、 第一〜第三の製造方法が好まし く、 さらに、 最小ピークトップ分子量 (P mw— S ) と最大ピークトップ分子量 ( P mw - L) との比 (P mw— LZ P mw— S ) を任意に調節できる点で、 第 一および第二の製造方法がより好ましい。  Among the above production methods, the first to third production methods are preferred in terms of production efficiency, and further, the minimum peak top molecular weight (Pmw-S) and the maximum peak top molecular weight (Pmw-L) The first and second production methods are more preferable in that the ratio (Pmw-LZPmw-S) can be arbitrarily adjusted.
本発明においては、 マルチモーダルな分子量分布曲線を有する共役ジェン重合 体環化物を、 必要に応じて極性基含有化合物による変性反応に供することができ る。  In the present invention, the cyclized conjugated polymer having a multimodal molecular weight distribution curve can be subjected to a modification reaction with a polar group-containing compound, if necessary.
変性反応に使用する極性基含有化合物は、 共役ジェン重合体環化物に極性基を 導入することができる化合物であれば特に限定されるものではなく、 例えば、 酸 無水物基、 カルボキシル基、 水酸基、 チオール基、 エステル基、 エポキシ基、 ァ ミノ基、 アミ ド基、 シァノ基、 シリル基、 ハロゲンなどの極性基を有するェチレ ン性不飽和化合物が挙げられる。  The polar group-containing compound used in the modification reaction is not particularly limited as long as the compound can introduce a polar group into the cyclized conjugated polymer, and examples thereof include an acid anhydride group, a carboxyl group, a hydroxyl group, Examples include ethylenically unsaturated compounds having a polar group such as a thiol group, an ester group, an epoxy group, an amino group, an amide group, a cyano group, a silyl group, and a halogen.
極性基としては、 接着性の改良効果に優れる点で、 酸無水物基、 カルボキシル 基、 水酸基、 エステル基、 エポキシ基、 ァミノ基が好ましく、 酸無水物基、 カル ポキシル基、 水酸基がより好ましい。  The polar group is preferably an acid anhydride group, a carboxyl group, a hydroxyl group, an ester group, an epoxy group, or an amino group, and more preferably an acid anhydride group, a carboxyl group, or a hydroxyl group, from the viewpoint of excellent effect of improving the adhesiveness.
酸無水物基またはカルボキシル基を有する化合物としては、 例えば、 無水マレ イン酸、無水ィタコン酸、無水アコニット酸、ノルポルネンジカルボン酸無水物、 アクリル酸、 メタクリル酸、 マレイン酸などのエチレン性不飽和化合物が挙げら れ、 なかでも、 無水マレイン酸が反応性、 経済性の点で賞用される。  Examples of the compound having an acid anhydride group or a carboxyl group include, for example, ethylenically unsaturated compounds such as maleic anhydride, itaconic anhydride, aconitic anhydride, norponenedicarboxylic anhydride, acrylic acid, methacrylic acid, and maleic acid. Compounds are mentioned, and among them, maleic anhydride is awarded for its reactivity and economy.
水酸基を含有するエチレン性不飽和化合物としては、 例えば、 (メタ) ァクリ ル酸 2—ヒ ドロキシェチル、 (メタ) アクリル酸 2—ヒ ドロキシプロピルなどの 不飽和酸のヒ ドロキシアルキルエステル類; N—メチロール (メタ) アクリルァ ミ ド、 N— ( 2—ヒ ドロキシェチル) (メタ) アクリルアミ ドなどのヒ ドロキシ ル基を有する不飽和酸アミ ド類;ポリエチレングリコールモノ (メタ) アタリレ 一 K ポリプロピレングリコールモノ (メタ) アタリレート、 ポリ (エチレング リコール一プロピレンダリコール) モノ (メタ) クリレートなどの不飽和酸のポ リアルキレングリコールモノエステル類;グリセローノレモノ (メタ) アタリレー トなどの不飽和酸の多価アルコールモノエステル類;などが挙げられ、 これらの 中でも、 不飽和酸のヒドロキシアルキルエステル類が好ましく、 特にアクリル酸 2—ヒドロキシェチル、 メタクリル酸 2—ヒドロキシェチルが好ましい。 Examples of the ethylenically unsaturated compound having a hydroxyl group include, for example, hydroxyalkyl esters of unsaturated acids such as 2-hydroxyhexyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate; —Methylol (meth) acrylamide, N— (2-Hydroxitytyl) (meth) Unsaturated acid amides having a hydroxyl group such as acrylamide; polyethylene glycol mono (meth) attarile-K polypropylene glycol mono (Meta) atalilate, poly (ethylene glycol) Poly (propylene glycol)) polyalkylene glycol monoesters of unsaturated acids such as mono (meth) acrylate; polyhydric alcohol monoesters of unsaturated acids such as glycerone mono (meth) atalylate; Of these, hydroxyalkyl esters of unsaturated acids are preferred, and 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate are particularly preferred.
その他の極性基を含有するエチレン性不飽和化合物としては、 例えば、 メチル (メタ) アタリ レート、 ェチル (メタ) アタリ レート、 ブチル (メタ) アタリレ 一ト、 グリシジル (メタ) アタリレート、 ジメチルアミノエチル (メタ)アタリレ ート、 ジメチルァミノプロピル(メタ) ァクリレート、 (メタ) ァクリルアミ ド、 (メタ) アクリロニトリルなどが挙げられる。  Examples of other ethylenically unsaturated compounds containing a polar group include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, glycidyl (meth) acrylate, dimethylaminoethyl ( Examples thereof include (meth) acrylate, dimethylaminopropyl (meth) acrylate, (meth) acrylamide, and (meth) acrylonitrile.
極性基含有化合物を共役ジェン系重合体環化物に導入する方法は特に限定され ないが、 エチレン性不飽和化合物を付加する場合には、 一般にェン付加反応また はグラフト重合反応と呼ばれる公知の反応に従えばよい。  The method for introducing the polar group-containing compound into the cyclized conjugated polymer is not particularly limited.However, when an ethylenically unsaturated compound is added, a known reaction generally called an ene addition reaction or a graft polymerization reaction is used. It is good to follow.
この付加反応は、 共役ジェン系重合体環化物と極性基含有化合物とを、 必要に 応じてラジカル発生剤の存在下に反応させることによって行われる。 ラジカル発 生剤としては、 例えば、 ジ一 t一ブチルパーォキシド、 ジクミルパーォキシド、 ベンゾィルパーォキシド、 t _ブチルパーォキシドベンゾエート、 メチルェチル ケトンパーォキシドなどのパーォキシド類;ァゾビスィソプチロニトリルなどの 了、クニトリル類;などが挙げられる。  This addition reaction is carried out by reacting the cyclized conjugated polymer and the polar group-containing compound in the presence of a radical generator as required. Examples of the radical generator include peroxides such as di-t-butyl peroxide, dicumyl peroxide, benzoyl peroxide, t-butyl peroxide benzoate, methylethyl ketone peroxide; Bisisoptyronitrile and the like; kunitrile; and the like.
付加反応は、 固相状態で行っても、 溶液状態で行ってもよいが、 反応制御がし 易い点で、 溶液状態で行うことが好ましい。 使用される溶媒としては、 例えば、 前述したような環化反応における炭化水素系溶媒と同様のものが挙げられる。 極性基含有化合物の使用量は、適宜選択されるが、導入された極性基の比率が、 変性後の環化ゴム 1 0 0 gあたり、 通常、 0 . 1〜2 0 0ミリモル、 好ましくは 1〜1 0 0ミリモル、より好ましくは 5〜 5 0ミリモルとなるような範囲である。 極性基を導入する反応は、 加圧、 減圧または大気圧いずれの圧力下でも行うこ とができるが、 操作の簡便性の点から大気圧下で行うことが望ましく、 なかでも 乾燥気流下、 とくに乾燥窒素や乾燥アルゴンの雰囲気下で行うと水分由来の副反 応が抑えることができる。 また反応温度や反応時間は常法に従えばよく、 反応温度は、 通常、 3 0〜2 5 0 °C、 好ましくは 6 0〜2 0 0 °Cであり、 反応時間は、 通常、 0 . 5〜5時間、 好ましくは 1〜 3時間である。 The addition reaction may be performed in a solid state or in a solution state, but is preferably performed in a solution state because the reaction can be easily controlled. As the solvent to be used, for example, the same as the above-mentioned hydrocarbon-based solvent in the cyclization reaction can be mentioned. The amount of the polar group-containing compound used is appropriately selected, but the ratio of the introduced polar group is usually 0.1 to 200 mmol, preferably 1 to 100 g per 100 g of the modified cyclized rubber. 1100 mmol, more preferably 5-50 mmol. The reaction for introducing a polar group can be carried out under any of pressurized, depressurized and atmospheric pressures.However, it is desirable to carry out the reaction under atmospheric pressure in terms of simplicity of operation. When the reaction is performed in an atmosphere of dry nitrogen or dry argon, side reactions derived from moisture can be suppressed. The reaction temperature and the reaction time may be in accordance with a conventional method, and the reaction temperature is usually 30 to 250 ° C, preferably 60 to 200 ° C, and the reaction time is usually 0. 5 to 5 hours, preferably 1 to 3 hours.
本発明の環化ゴムは、 必要に応じて、 顔料、 染料などの着色剤;老化防止剤、 充填剤、 軟化剤、 ワックスなどの配合剤を添カ卩して用いられる。 配合剤は一般に 使用されているものであればよい。  The cyclized rubber of the present invention is used by adding a coloring agent such as a pigment and a dye; and a compounding agent such as an antioxidant, a filler, a softener, and a wax, if necessary. The compounding agent may be any commonly used one.
老化防止剤としては、 例えば、 2 , 6—ジ一 t一ブチルフエノール、 2, 2 ' ーメチレンビス (4ーメチルー t—ブチルフエノーノレ) 、 テトラキス [メチレン - 3 - ( 3 ' , 5 '―ジー t—プチル一 4 'ーヒドロキシフエニル) プロビオネ 一ト] メタンなどのフエノール系老化防止剤;フエ二ルー α—ナフチルァミン、 ジフエ二ルー ρ—フエ二レンジァミン、 Ν— 1, 3—ジメチルブチル一 Ν '—フ ェニルー ρ—フエ二レンジァミンなどのアミン系老化防止剤; トリス (ノニルフ ェニル) ホスフアイトなどのリン系老化防止剤などが挙げられる。  Examples of the antioxidants include 2,6-di-t-butylphenol, 2,2′-methylenebis (4-methyl-t-butylphenol), tetrakis [methylene-3- (3 ′, 5′-g-t) —Phthyl-14'-hydroxyphenyl) propionone] Phenol anti-aging agents such as methane; phenyl-α-naphthylamine, diphenyl-ρ-phenylenediamine, Ν-1,3-dimethylbutyl-1-Ν —Aphenyl-based anti-aging agents such as phenyl-ρ-phenylenediamine; phosphorus-based anti-aging agents such as tris (nonylphenyl) phosphite.
充填剤としては、 例えば、 炭酸カルシウム、 酸化カルシウム、 酸化マグネシゥ ム、 水酸化カルシウム、 水酸化マグネシウム、 水酸化アルミエゥム、 炭酸マグネ シゥム、 珪酸カルシウム、 硫酸バリゥム、 マイ力、 シリカ、 カーボンブラック、 タノレク、 クレー、 二酸化チタン、 酸化亜鉛、 ガラス繊維、 炭素繊維などが挙げら れる。  Examples of the filler include calcium carbonate, calcium oxide, magnesium oxide, calcium hydroxide, magnesium hydroxide, aluminum hydroxide, magnesium carbonate, calcium silicate, barium sulfate, myriki, silica, carbon black, tanolek, clay , Titanium dioxide, zinc oxide, glass fiber, carbon fiber and the like.
配合剤の使用量は、 配合の目的、 配合剤の種類によって適宜選択することがで きる。  The amount of the compounding agent can be appropriately selected depending on the purpose of the compounding and the type of the compounding agent.
環化ゴムの形状は、 用途に応じて適宜選択できるが、 通常はペレッ トまたは粉 末状である。 粉末状とするには、 固形状の環化ゴムを、 必要に応じて添加される 上記配合剤と共に、 冷却下にバンタムミル、 ジェットミル、 ディスクミル、 ボー ルミル、 コロイドミルなどの粉砕機を用いて粉碎すればよい。  The shape of the cyclized rubber can be appropriately selected depending on the application, but is usually in the form of a pellet or powder. In order to make it into a powder, the solid cyclized rubber, together with the above-mentioned compounding agents, which are added as necessary, is cooled and crushed using a crusher such as a bantam mill, jet mill, disk mill, ball mill, or colloid mill. You only need to grind it.
このようにして得られる粉末粒子の平均粒子径は、通常、 1 !〜 2 0 0 μ πι、 好ましくは 3 μ m〜: L 0 0 m、 さらに好ましくは 5 μ m〜 5 0 μ mである。 こ の平均粒子径は、 レーザー回折 ·散乱法によって測定される、 粒子径に対する個 数基準積分曲線における、 5 0 %個数基準積算値に対応する粒子径である。 上記粉末粒子中の環化ゴムの含有量は、 通常、 5重量0 /0以上、 好ましくは 1 0 重量%、より好ましくは 2 0重量%以上、特に好ましくは 3 0重量%以上である。 このようにして得られる本発明の環化ゴムは、 長期の保存においてもゲルの発 生がなく、 環化ゴムの特性を生かした多くの用途に有用である。 例えば、 上記粉 末粒子は、 樹脂や金属に対する優れた密着性を生かして粉体塗料として用いるこ とができる。 粉体塗料とする場合には、 着色剤を配合し、 必要に応じて老化防止 剤、 充填剤、 軟化剤、 ワックスなどが常法に従って適宜配合される。 The average particle diameter of the powder particles thus obtained is usually 1! 2200 μπι, preferably 3 μm :: L 00 m, more preferably 5 μm to 50 μm. The average particle diameter is a particle diameter corresponding to a 50% number-based integrated value in a number-based integral curve with respect to the particle diameter, which is measured by a laser diffraction / scattering method. The content of cyclized rubber in the powder particles, typically 5 weight 0/0 or more, preferably 1 0 % By weight, more preferably at least 20% by weight, particularly preferably at least 30% by weight. The cyclized rubber of the present invention obtained in this manner does not generate a gel even during long-term storage, and is useful in many applications utilizing the properties of the cyclized rubber. For example, the above-mentioned powder particles can be used as a powder coating by making use of excellent adhesion to a resin or a metal. In the case of a powder coating, a coloring agent is blended, and if necessary, an antioxidant, a filler, a softener, a wax and the like are appropriately blended according to a conventional method.
上記粉末粒子中の環化ゴムの含有量は、 通常、 5重量%以上、 好ましくは 1 0 重量%以上、 より好ましくは 2 0重量%以上、 特に好ましくは 3 0重量%以上で ある。  The content of the cyclized rubber in the powder particles is usually at least 5% by weight, preferably at least 10% by weight, more preferably at least 20% by weight, particularly preferably at least 30% by weight.
粉末粒子の形状としては、 特に限定されず、 例えば、 球状や不定形状が挙げら れる。  The shape of the powder particles is not particularly limited, and examples thereof include a spherical shape and an irregular shape.
本発明の環化ゴムからなる粉末粒子は、 例えば、 樹脂や金属に対する優れた密 着性を生かして、粉体塗料として用いることができる。粉体塗料とする場合には、 着色剤を配合し、 必要に応じて老化防止剤、 充填剤、 軟化剤、 ワックスなどが常 法に従って適宜配合される。  The powder particles made of the cyclized rubber of the present invention can be used as a powder coating, for example, by taking advantage of their excellent adhesion to resins and metals. In the case of a powder coating, a coloring agent is blended, and if necessary, an antioxidant, a filler, a softener, a wax, and the like are appropriately blended according to a conventional method.
顔料を着色剤として用いる場合、 イェロー着色にはべンジジン系、 ァゾ系、 ィ ソインドリン系顔料が、 マゼンタ着色にはァゾレーキ系、 ローダミンレーキ系、 キナクリ ドン系、 ナフトール系、 ジケトピロロピロール系顔料が、 シアン着色に はフタロシアニン系顔料、 インダンスレン系顔料が好ましく用いられる。 黒色着 色には、 カーボンブラックが通常使用される。 カーボンブラックとしては、 サー マルブラック、アセチレンブラック、チャンネルブラック、ファーネスブラック、 ランプブラック等が挙げられる。  When a pigment is used as a colorant, benzidine, azo, and isodoline pigments are used for yellow coloring, and azo lake, rhodamine lake, quinacridone, naphthol, and diketopyrrolopyrrole pigments are used for magenta coloring. However, phthalocyanine pigments and indanthrene pigments are preferably used for cyan coloring. For black coloring, carbon black is usually used. Examples of the carbon black include thermal black, acetylene black, channel black, furnace black, lamp black and the like.
染料を着色剤として用いる場合、 イェロー着色にはァゾ系、 ニトロ系、 キノリ ン系、 キノフタロン系、 メチン系染料が、 マゼンタ着色にはアントラキノン系、 ァゾ系、 キサンテン系染料が、 シアン着色にはアントラキノン系、 フタロシア二 ン系、 インドア二リン系染料が好ましく用いられる。  When dyes are used as colorants, yellow-colored azo, nitro-, quinoline-, quinophthalone-, and methine-based dyes, magenta-colored anthraquinone-, azo-, and xanthene-based dyes and cyan-colored Anthraquinone type, phthalocyanine type and indooriline type dyes are preferably used.
着色剤の使用量は、 求める色合い、 濃さなどによって適宜選択すればよく、 環 化ゴム 1 0 0重量部に対して、 好ましくは 0 . 1〜5 0重量部、 より好ましくは The amount of the colorant to be used may be appropriately selected depending on the desired hue, density, and the like.
1〜2 0重量部である。 粉体塗料は、 通常、 環化ゴム、 着色剤および必要に応じて含有される添加剤を 混合し、 それを粉碎し、 分級することによって得ることができる。 It is 1 to 20 parts by weight. The powder coating can be usually obtained by mixing a cyclized rubber, a colorant and, if necessary, an additive contained therein, pulverizing the mixture, and classifying the mixture.
混合方法は、 特に限定されず、 例えば、 バンバリ一ミキサー、 ニーダー、 ミキ シンダロール、 一軸または二軸押出機等の混練機を用いて溶融混合する方法があ る。  The mixing method is not particularly limited, and for example, there is a method of melt-mixing using a kneader such as a Banbury mixer, a kneader, a mixer roll, a single-screw or twin-screw extruder.
粉砕方法としては、 前述の方法に従えばよい。  The above-mentioned method may be used as the pulverizing method.
分級の方法としては、 例えば、 風力分級、 遠心分級、 篩分級などの方法が挙げ られる。  Examples of the classification method include methods such as air classification, centrifugal classification, and sieve classification.
また、本発明の環化ゴムは、ポリマー成形材料用改質剤としで、熱可塑性樹脂、 熱硬化性樹脂、 エラストマ一などからなる各種ポリマー成形材料に配合すること により、 ポリマー成形体と塗料との接着性を改善するのに好適である。 さらに、 ポリマー成形材料を構成する異種ポリマー同士の分散性ゃポリマー成形材料にお ける充填剤、 顔料などのごとき配合剤のポリマーへの分散性を改善するためのポ リマー成形材料用改質剤としても有用である。  Further, the cyclized rubber of the present invention is used as a modifier for a polymer molding material, and is blended with various polymer molding materials including a thermoplastic resin, a thermosetting resin, an elastomer, etc. It is suitable for improving the adhesiveness of the resin. In addition, the dispersibility of different polymers constituting the polymer molding material is used as a modifier for the polymer molding material to improve the dispersibility of compounding agents such as fillers and pigments in the polymer molding material. Is also useful.
改質の対象となるポリマー成形材料に用いるポリマーとしては、 以下のような ものが挙げられる。  Examples of the polymer used for the polymer molding material to be modified include the following.
1 . 炭化水素系樹脂、 ポリエステル系樹脂、 ポリアミド系樹脂、 ポリイミド系榭 脂、 ポリウレタン系榭脂、 ポリエーテルイミド系樹脂、 ポリサルホン系樹脂、 ポ リエーテルサルホン系榭脂、 ポリエーテルエーテルケトン系榭脂、 ポリカーボネ ート系樹脂、 ポリビニルプチラート系樹脂、 ポリアリレート系樹脂、 フッ素系榭 脂などの熱可塑性樹脂。  1. Hydrocarbon resin, polyester resin, polyamide resin, polyimide resin, polyurethane resin, polyetherimide resin, polysulfone resin, polyethersulfone resin, polyetheretherketone resin Thermoplastic resins such as fats, polycarbonate resins, polyvinyl butylate resins, polyarylate resins, and fluorine resins.
2 . フエノール樹脂、 タレゾール樹脂、 尿素樹脂、 メラミン樹脂、 アルキッ ド樹 脂、 フラン樹脂、 不飽和ポリエステル樹脂、 エポキシ樹脂、 ウレタン樹脂などの 熱硬化性樹脂。  2. Thermosetting resins such as phenolic resin, tarezol resin, urea resin, melamine resin, alkyd resin, furan resin, unsaturated polyester resin, epoxy resin and urethane resin.
3 . 天然ゴム、 ブタジエンゴム、 スチレン一ブタジエンゴム、 アクリロニトリル —ブタジエンゴムなどの加硫ゴム ;ォレフィン系熱可塑性エラストマ一、 スチレ ン系熱可塑性エラストマ一、 ポリエステル系熱可塑性エラストマ一、 ポリアミド 系熱可塑性エラストマ一などのエラストマ一。 3. Natural rubber, butadiene rubber, styrene-butadiene rubber, acrylonitrile-vulcanized rubber such as butadiene rubber; olefin-based thermoplastic elastomer, styrene-based thermoplastic elastomer, polyester-based thermoplastic elastomer, polyamide-based thermoplastic elastomer Elastomers such as one.
これらのなかでも、 ポリエチレン、 ポリプロピレン、 ポリペンテン一 1などの 鎖状ォレフィン系樹脂;ェチレンとノルポルネン類との付加共重合体、 ノルボル ネン類の開環重合体水素化物など環状ォレフィン系樹脂;などの炭化水素系熱可 塑性樹脂に配合すると、 環化ゴムによる改質効果が大きい。 Among them, polyethylene, polypropylene, polypentene-1 etc. When added to a hydrocarbon thermoplastic resin such as a chain-like olefin resin; an addition copolymer of ethylene and norpolenenes, a ring-opened polymer of norbornene, or a cyclic olefin resin; Great reforming effect.
上記のポリマーは単独で使用しても、 2種以上を組み合わせて使用することも できる。 また、 必要に応じて、 顔料、 染料などの着色剤;老化防止剤、 充填剤、 軟化剤、 ワックス、帯電防止剤、安定剤、潤滑剤、架橋剤、ブロッキング防止剤、 光線遮断剤、 紫外線吸収剤などの配合剤を適宜配合することもできる。  The above polymers can be used alone or in combination of two or more. Also, if necessary, coloring agents such as pigments and dyes; antioxidants, fillers, softeners, waxes, antistatic agents, stabilizers, lubricants, crosslinkers, antiblocking agents, light blocking agents, ultraviolet light absorbers A compounding agent such as an agent can also be appropriately compounded.
ポリマー成形材料に上記ポリマー成形材料用改質剤を配合してなるポリマー組 成物において、 上記ポリマー成形材料用改質剤の配合量は、 ポリマー成形材料の 種類や要求される性能に応じて適宜選択されるが、 ポリマー成形材料中のポリマ 一 1 0 0重量部当たり、 通常、 0 . 1〜5 0重量部、 好ましくは 0 . 5〜2 0重 量部、 より好ましくは 1〜1 0重量部、 特に好ましくは 2〜 5重量部である。 さらに、 本発明の環化ゴムは、 前述のポリマー成形材料用のプライマーや塗料 などのコーティング剤における、 プライマ一用ビヒクル成分や塗料用バインダー 成分などの接着性成分として用いることにより、 該ポリマー成形材料と塗料との 接着性を著しく改善できる。 この場合、 プライマーや塗料などのコーティング剤 中の全固形分に対して、 環化ゴムを 2重量%以上、 好ましくは 5重量%以上、 よ り好ましくは 1 0重量。 /0以上含有することが好ましい。 In the polymer composition obtained by blending the polymer molding material modifier with the polymer molding material, the amount of the polymer molding material modifier is appropriately determined according to the type of the polymer molding material and the required performance. As selected, usually 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, more preferably 1 to 10 parts by weight, per 100 parts by weight of the polymer in the polymer molding material. Parts, particularly preferably 2 to 5 parts by weight. Further, the cyclized rubber of the present invention is used as an adhesive component such as a vehicle component for a primer or a binder component for a paint in a coating agent such as a primer or a paint for the polymer molding material described above, whereby the polymer molding material is obtained. Adhesion between paint and paint can be significantly improved. In this case, the cyclized rubber is at least 2% by weight, preferably at least 5% by weight, more preferably at least 10% by weight, based on the total solids in the coating agent such as a primer or paint. / 0 or more is preferable.
コーティング剤として使用する場合には、 環化ゴムに、 必要に応じて、 他の接 着成分および各種の添加剤を配合して用いられる。  When used as a coating agent, the cyclized rubber may be blended with other adhesive components and various additives as necessary.
他の接着成分としては、 例えば、 アクリル樹脂、 ウレタン樹脂、 ポリエステル 樹脂、エポキシ樹脂、メラミン樹脂、アルキッド樹脂、塩素化ォレフイン系樹脂、 シリコーン系ゴムなどが挙げられる。  Examples of other adhesive components include acrylic resin, urethane resin, polyester resin, epoxy resin, melamine resin, alkyd resin, chlorinated olefin resin, and silicone rubber.
他の接着成分を配合する場合の比率は、 その種類や配合目的に応じて適宜選択 されるが、 環化ゴムと他の接着成分との重量比率で、 通常、 1 0 0 : 0〜5 : 9 5、 好ましくは 8 0 : 2 0〜3 0 : 7 0、 より好ましくは 7 0 : 3 0〜5 0 : 5 0である。  The ratio when other adhesive components are blended is appropriately selected according to the type and purpose of blending, but is usually 100: 0 to 5: 5 by weight ratio of cyclized rubber to other adhesive components. 95, preferably 80: 20 to 30: 70, more preferably 70: 30 to 50: 50.
添加剤としては、 改質剤の項で例示したポリマーの配合剤と同様のものが挙げ られる。 環化ゴムを含有してなるコーティング剤は、 通常、 環化ゴムまたは環化ゴムと その他の成分との混合物を、溶媒に溶解または分散させることによって得られる。 使用される溶媒は適宜選択すればよく、 例えば脂肪族炭化水素系溶媒、 脂環族炭 化水素系溶媒、 芳香族炭化水素系溶媒、 ケトン系溶媒、 アルコール系溶媒、 エー テル系溶媒、 ハロゲン系溶媒、 水系溶媒などが挙げられる。 溶媒の使用量は、 コ 一ティング剤の固形分濃度が、 通常、 5〜 9 5重量%、 好ましくは 1 5〜 6 0重 量%となるような範囲である。 Examples of the additive include the same additives as those for the polymer exemplified in the section of the modifier. The coating agent containing the cyclized rubber is usually obtained by dissolving or dispersing the cyclized rubber or a mixture of the cyclized rubber and other components in a solvent. The solvent to be used may be appropriately selected, for example, an aliphatic hydrocarbon solvent, an alicyclic hydrocarbon solvent, an aromatic hydrocarbon solvent, a ketone solvent, an alcohol solvent, an ether solvent, a halogen solvent. Solvents, aqueous solvents and the like can be mentioned. The amount of the solvent used is such that the solid content of the coating agent is usually 5 to 95% by weight, preferably 15 to 60% by weight.
本発明の環化ゴムを含有してなるコーティング剤を、 各種の充填剤や顔料など の分散材料の表面処理剤として使用することもできる。 分散材料を該コーティン グ剤で表面処理すると、各種のポリマーに対する分散材料の分散性が改良される。 表面処理の対象となる充填剤や顔料としては、 前述のものが使用できる。 環化 ゴムの使用量は、 分散材料の種類やそれを分散させるポリマーの種類に応じて適 宜選択されるが、 分散材料 1 0 0重量部当たり、 通常、 0 . 1〜1 0 0重量部、 好ましくは 5〜2 0重量部の割合で用いられる。  The coating agent containing the cyclized rubber of the present invention can also be used as a surface treatment agent for a dispersed material such as various fillers and pigments. Surface treatment of the dispersing material with the coating agent improves the dispersibility of the dispersing material in various polymers. As the filler and pigment to be subjected to the surface treatment, those described above can be used. The amount of the cyclized rubber to be used is appropriately selected according to the type of the dispersing material and the type of the polymer in which the cyclized rubber is dispersed, but usually 0.1 to 100 parts by weight per 100 parts by weight of the dispersing material. It is preferably used in a proportion of 5 to 20 parts by weight.
本発明の環化ゴムは、 異種材料同士を強固に接着させる接着剤として使用する こともできる。 この場合の異種材料の組み合わせとしては、 例えば、 O P P (延 伸ポリプロピレン) ZC P P (結晶性ポリプロピレン) 、 ポリプロピレン/ポリ エチレンテレフタレート、 ポリプロピレン/エチレン一酢酸ビニル共重合体、 ポ リプロピレン Zアルミニウムなどが挙げられ、 その形状は特に限定されないが、 フィルム状、 シート状のものが好適である。 接着方法としては、 例えば、 予めフ イルム状に成形した環化ゴムを異種材料間に挟みこんだ後、 加熱接着させる方法 や、 一方の材料表面に、 環化ゴムを含有するコーティング剤を塗布した後、 他方 の材料表面と貼り合わせる方法などが採用できる。  The cyclized rubber of the present invention can also be used as an adhesive for firmly bonding different materials to each other. In this case, examples of the combination of different materials include OPP (extended polypropylene), ZC PP (crystalline polypropylene), polypropylene / polyethylene terephthalate, polypropylene / ethylene-vinyl acetate copolymer, and polypropylene Z aluminum. The shape is not particularly limited, but a film shape or a sheet shape is preferable. Examples of the bonding method include, for example, a method in which a cyclized rubber preliminarily formed into a film is sandwiched between different kinds of materials and then heated and bonded, or a coating agent containing the cyclized rubber is applied to one surface of the material. After that, a method of bonding with the other material surface can be adopted.
なお、 上記実施形態は例示であり、 本発明の技術的思想と実質的に同一な構成 を有し、 同様な作用効果を奏するものは、 いかなるものであっても本発明の技術 的範囲に包含される。 実施例  The above embodiment is an exemplification, and any configuration having substantially the same configuration as the technical idea of the present invention and exerting the same effect is included in the technical scope of the present invention. Is done. Example
以下に実施例を示して、 本発明をさらに具体的に説明する。 なお、 以下の記載 における 「部」 および 「%」 は特に断りのない限り重量基準である。 Hereinafter, the present invention will be described more specifically with reference to examples. The following description In the above, "parts" and "%" are based on weight unless otherwise specified.
評価は以下のように行った。  The evaluation was performed as follows.
(1) 重合体のゲル ·パーミエーシヨン 'クロマトグラフィー (GPC) 分析 重合体の GPC分析は以下の条件で行った。 なお、 分子量は全て、 標準ポリス チレン換算値である。  (1) Gel permeation 'chromatography (GPC) analysis of polymer GPC analysis of polymer was performed under the following conditions. All molecular weights are standard polystyrene equivalents.
測定器 : HLC-8220 (東ソ一社製)  Measuring device: HLC-8220 (manufactured by Tosoh Corporation)
カラム :東ソ一社製の G 5000HXL、 G4000HXLおよび G 2000HXLを直列に連結したものを用いた。  Column: G5000HXL, G4000HXL and G2000HXL manufactured by Tosoh Corporation were connected in series.
検出器 :示差屈折計  Detector: Differential refractometer
溶離液 : テトラヒ ドロフラン (lm 1 Z分)  Eluent: tetrahydrofuran (lm 1 Z)
カラム温度: 40°C  Column temperature: 40 ° C
得られた分子量分布曲線から、 極大ピークの数、 各ピークのピークトップ分子 量、各ピークにおける重量平均分子量(Mw) と数平均分子量(Mn) との比(M w/Mn) 、 および各ピークのピーク面積比 (各ピークを構成する重合体成分の 重量比に相当する。 ) を求めた。  From the obtained molecular weight distribution curve, the number of the maximum peak, the peak top molecular weight of each peak, the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) in each peak (Mw / Mn), and each peak The peak area ratio (corresponding to the weight ratio of the polymer component constituting each peak) was determined.
(2) 重合体のガラス転移温度  (2) Glass transition temperature of polymer
重合体のガラス転移温度を、 示差走査熱量計 (セイコー電子工業 (株) 社製: The glass transition temperature of the polymer is measured by a differential scanning calorimeter (Seiko Electronics Co., Ltd .:
S S C 5200) を用いて、 開始温度— 100°C、 昇温速度 10°C/分の条件で 測定した。 The measurement was performed using a SSC 5200) under the conditions of a starting temperature of 100 ° C and a heating rate of 10 ° C / min.
(3) 共役ジェン重合体環化物の環化率  (3) Cyclization rate of cyclized conjugated polymer
プロトン NMR分析により、 共役ジェン重合体の環化反応前後における二重結 合由来プロトンのピーク面積をそれぞれ測定し、 環化反応前を 100としたとき の環化物中に残存する二重結合の割合を求めた。 そして、 計算式 = (100—環 化物中に残存する二重結合の割合) により環化率 (%) を求めた。  The proton NMR analysis measures the peak areas of the protons derived from the double bond before and after the cyclization reaction of the conjugated gen polymer, and the ratio of the double bond remaining in the cyclized product when the value before the cyclization reaction is set to 100. I asked. Then, the cyclization rate (%) was determined by the following formula: (100—the proportion of the double bond remaining in the cyclized product).
(4) 変性重合体中の極性基 (カルボキシル基) 量の測定  (4) Measurement of the amount of polar group (carboxyl group) in the modified polymer
変性重合体の酸価を、 "基準油脂分析試験法" (日本油化学協会) 2, 4, 1 -83に記載される方法に準じて測定し、 重合体中のカルボキシル基量に換算し た。  The acid value of the modified polymer was measured according to the method described in "Standard Oil and Fat Analysis Test Method" (Japan Oil Chemicals Association) 2, 4, 1-83, and converted to the amount of carboxyl groups in the polymer. .
(5) スプレー塗布性 プライマーを塗装し、 その塗装面の状態を観察し、 以下の基準で判断した。 〇:塗装表面が平滑であり、 きれいに塗装できている。 (5) Spray applicability The primer was painted, the condition of the painted surface was observed, and judgment was made based on the following criteria. 〇: The painting surface is smooth and the painting is fine.
X : スプレー塗装時に糸引き現象が発生し、 塗装表面の平滑性に劣る。 X: Stringing phenomenon occurs during spray coating, resulting in poor smoothness of the coated surface.
(6) 剥離強度 (6) Peel strength
塗料が塗布された成形体表面に、 カッター刃を用いて、 1 cmの幅で基材に刃 が到達するまで切れ目を入れ、 端部の塗膜を剥離させた。 その剥離した塗膜の端 部を 5 Omm/m i ηの速度で 180° の方向に引っ張り、 剥離強度 (単位: k g f /cm) を測定した。  Using a cutter blade, a cut was made on the surface of the molded body to which the paint was applied using a cutter blade until the blade reached the substrate with a width of 1 cm, and the coating film at the end was peeled off. The end of the peeled coating film was pulled in a direction of 180 ° at a speed of 5 Omm / mi η, and the peel strength (unit: kgf / cm) was measured.
(実施例 1 )  (Example 1)
攪拌機付き耐圧反応器に、脱水トルエン 1400 g、 n—プチルリチウム( 1 · 56モル/リットル:へキサン溶液) 11. 4ミリモルを仕込み、 内温を 60°C に保った。 イソプレン 487 gを、 15分間に亘り連続的に反応器に添カ卩し、 内 温が 75°Cを超えないように制御した。 その後 70°Cにて 1時間反応し、 重合転 化率がほぼ 100 %であることを確認した。  A pressure-resistant reactor equipped with a stirrer was charged with 1400 g of dehydrated toluene and 11.4 mmol of n-butyllithium (1.56 mol / liter: hexane solution), and the internal temperature was maintained at 60 ° C. 487 g of isoprene was continuously added to the reactor for 15 minutes, and the internal temperature was controlled so as not to exceed 75 ° C. Thereafter, the reaction was carried out at 70 ° C for 1 hour, and it was confirmed that the polymerization conversion was almost 100%.
次いで、メタノール (トルエン溶液) 10ミ リモルを添加した後、 70°Cにてィ ソプレン 113 gを、 15分間に亘り連続的に反応器に添加し、 さらに 70°Cに て 1時間反応し、 重合転化率がほぼ 100 %であることを確認した。  Then, after adding 10 mmol of methanol (toluene solution), 113 g of isoprene was continuously added to the reactor at 70 ° C for 15 minutes, and further reacted at 70 ° C for 1 hour. It was confirmed that the polymerization conversion was almost 100%.
その後、 重合停止剤として、 メタノールを 1 · 4ミリモル添加して、 重合反応 を停止した。  Thereafter, 1.4 mmol of methanol was added as a polymerization terminator to terminate the polymerization reaction.
少量の重合溶液を採取し、 重合体 aを得た。 重合体 aの G PC分析を行い、 結 果を表 1に示す。  A small amount of the polymerization solution was collected to obtain a polymer a. GPC analysis of polymer a was performed, and the results are shown in Table 1.
重合反応を停止した後、 80°Cに昇温し、 p—トルエンスルホン酸 4. 24 g を添加した後、 80°Cを維持した状態で、 3時間環化反応を行った。 その後、 炭 酸ナトリウム 1. 70 gを水 5. 1 gに溶解した水溶液を添加して、 環化反応を 停止した。 80°Cで 30分間攪拌後、 孔径 1 μπιのガラス繊維フィルターを用い て、 触媒残渣を除去した。  After terminating the polymerization reaction, the temperature was raised to 80 ° C, and 4.24 g of p-toluenesulfonic acid was added. Then, while maintaining the temperature at 80 ° C, a cyclization reaction was performed for 3 hours. Thereafter, an aqueous solution in which 1.70 g of sodium carbonate was dissolved in 5.1 g of water was added to stop the cyclization reaction. After stirring at 80 ° C for 30 minutes, the catalyst residue was removed using a glass fiber filter having a pore size of 1 µπι.
得られた反応溶液から、 160°Cで、 トルエンを留去し、 固形分濃度が 80〜 85% なった時点で、無水マレイン酸を 15 g添力 Pした。次いで、 160°Cで 1 時間反応させた後、未反応の無水マレイン酸とトルエンを留去し、ィルガノックス 1010 (チパ 'スぺシャリティー 'ケミカルズ社製) 0. 6 gを添加した後、 四フッ化工チレン樹脂で被覆された金属パットに流し込んだ。 それを、 75°Cに て減圧乾燥して変性環化ゴム Aを得た。変性環化ゴム Aの分析を行い、その結果を 表 1に示す。 Toluene was distilled off from the obtained reaction solution at 160 ° C, and when the solid content concentration became 80 to 85%, 15 g of maleic anhydride was added to the solid solution. Next, after reacting at 160 ° C for 1 hour, unreacted maleic anhydride and toluene were distilled off. After adding 0.6 g of 1010 (manufactured by Chipa Specialty Chemicals), the mixture was poured into a metal pad covered with tetrafluoroethylene resin. It was dried under reduced pressure at 75 ° C. to obtain a modified cyclized rubber A. The modified cyclized rubber A was analyzed, and the results are shown in Table 1.
(実施例 2)  (Example 2)
攪拌機付き耐圧反応器に、脱水トルエン 1400 g、 n—プチルリチウム(1. 56モル Zリットル:へキサン溶液) 1. 1ミリモルを仕込み、 内温を 60でに 保った。 イソプレン 77 gを、 15分間に亘り連続的に反応器に添加し、 内温が 75°Cを超えないように制御した。 その後 70°Cにて 1時間反応し、 重合転化率 がほぼ 100 %であることを確認した。  In a pressure-resistant reactor equipped with a stirrer, 1400 g of dehydrated toluene and 1.1 mmol of n-butyllithium (1.56 mol Z liter: hexane solution) were charged, and the internal temperature was maintained at 60. 77 g of isoprene was continuously added to the reactor over a period of 15 minutes, and the internal temperature was controlled so as not to exceed 75 ° C. Thereafter, the reaction was carried out at 70 ° C. for 1 hour, and it was confirmed that the polymerization conversion was almost 100%.
次いで、 n—ブチルリチウム (1. 56モル/リットル:へキサン溶液) 7. 4ミリモルを添加した後、 70°Cを維持しながら、 イソプレン 523 gを、 15 分間に亘り、 連続的に反応器に添加し、 さらに 70 °Cにて 1時間反応した。 さら に 70°Cにて 1時間反応し、 重合転化率がほぼ 100 %であることを確認した。 その後、 重合停止剤として、 メタノールを 8. 5ミリモル添加して重合反応を 停止した。  Then, after adding 7.4 mmol of n-butyllithium (1.56 mol / l: hexane solution), while maintaining 70 ° C, 523 g of isoprene was continuously added to the reactor for 15 minutes. And further reacted at 70 ° C. for 1 hour. Further, the reaction was carried out at 70 ° C. for 1 hour, and it was confirmed that the polymerization conversion was almost 100%. Thereafter, 8.5 mmol of methanol was added as a polymerization terminator to terminate the polymerization reaction.
少量の重合溶液を採取し、 重合体 bを得た。 重合体 bの G PC分析を行い、 結 果を表 1に示す。  A small amount of the polymerization solution was collected to obtain a polymer b. GPC analysis of polymer b was performed, and the results are shown in Table 1.
重合反応を停止した後、 80°Cに昇温し、 p_トルエンスルホン酸 4. 68 g を添加した後、 80°Cを維持した状態で、 3時間環化反応を行った。 その後、 炭 酸ナトリウム 1. 90 gを水 5. 76 gに溶解した水溶液を添カ卩して、 環化反応 を停止した。 80°Cで 30分間攪拌後、 孔径 1 μηιのガラス繊維フィルターを用 いて、 触媒残渣を除去した。  After terminating the polymerization reaction, the temperature was raised to 80 ° C, and 4.68 g of p_toluenesulfonic acid was added. Then, while maintaining the temperature at 80 ° C, a cyclization reaction was performed for 3 hours. Thereafter, an aqueous solution obtained by dissolving 1.90 g of sodium carbonate in 5.76 g of water was added thereto to stop the cyclization reaction. After stirring at 80 ° C for 30 minutes, a catalyst residue was removed using a glass fiber filter having a pore size of 1 μηι.
得られた反応溶液から、 160°Cで、 トルエンを留去し、 固形分濃度が 75〜 80 %になった時点で、無水マレイン酸を 18 g添カ卩した。次いで、 160でで 1 時間反応させた後、未反応の無水マレイン酸とトルエンを留去し、ィルガノックス 1010 (チパ ·スぺシャリティー 'ケミカルズ社製) 0. 6 gを添加した後、 四フッ化工チレン樹脂で被覆された金属バットに流し込んだ。 それを、 75°Cに て減圧乾燥して変性環化ゴム Bを得た。変性環化ゴム Bの分析を行い、その結果を 表 1に示す。 Toluene was distilled off from the obtained reaction solution at 160 ° C., and when the solid content concentration became 75 to 80%, 18 g of maleic anhydride was added to the mixture. Then, after reacting at 160 for 1 hour, unreacted maleic anhydride and toluene were distilled off, and 0.6 g of Irganox 1010 (Chipa Specialty Chemicals) was added. The mixture was poured into a metal vat coated with a modified titanium resin. It was dried under reduced pressure at 75 ° C. to obtain a modified cyclized rubber B. Analysis of modified cyclized rubber B See Table 1.
(実施例 3)  (Example 3)
攪拌機付き耐圧反応器に、 トルエン 6 1 00 g、 n—ブチルリチウム (1. 5 6モル/リットル濃度のへキサン溶液) 45.2ミリモルを仕込み、 内温を 6 0°C に昇温した。 その後、 内温が 7 5°Cを超えないように制御しながら、 イソプレン 2 6 00 gを、 60分間に!:り、 連続的に反応器に添加した。 イソプレンの添加 終了後、 さらに、 70°Cにて 1時間反応させて、重合転化率が 1 00%になったこ とを確認した。 この時点で生成している重合体の重量平均分子量は、 9 2, 00 0であった。  A pressure-resistant reactor equipped with a stirrer was charged with 6100 g of toluene and 45.2 mmol of n-butyllithium (a hexane solution having a concentration of 1.56 mol / liter), and the internal temperature was raised to 60 ° C. Then, while controlling the internal temperature not to exceed 75 ° C, 260 g of isoprene in 60 minutes! : Continuously added to the reactor. After the addition of isoprene was completed, the mixture was further reacted at 70 ° C. for 1 hour, and it was confirmed that the polymerization conversion reached 100%. The weight average molecular weight of the polymer produced at this time was 92,000.
次いで、 テトラメトキシシラン 3. 5ミリモルを添カ卩して、 70°Cで 1 2 0分 間反応させた。 その後、 重合停止剤としてメタノールを 3 2. 5ミリモル添加し て、 重合反応を停止して、 共役ジェン重合体 cを得た。  Next, 3.5 mmol of tetramethoxysilane was added to the mixture and reacted at 70 ° C. for 120 minutes. Thereafter, 32.5 mmol of methanol was added as a polymerization terminator to terminate the polymerization reaction, and a conjugated diene polymer c was obtained.
得られた共役ジェン重合体 cの一部をサンプリングし、 GPC分析した。 共役 ジェン重合体 cは、 3分岐重合体おょぴ 4分岐重合体を 2 5 %含有しており、 両 者全体の重量平均分子量は 30 5, 000であった。 さらに、 共役ジェン重合体 cは、 重量平均分子量が 9 2, 000である直鎖状の重合体を 75 %含有するも のであった。  A part of the obtained conjugated diene polymer c was sampled and subjected to GPC analysis. The conjugated gen polymer c contained 25% of the three-branched polymer and the four-branched polymer, and the weight average molecular weight of both of them was 305,000. Further, the conjugated diene polymer c contained 75% of a linear polymer having a weight average molecular weight of 92,000.
重合反応を停止した後、 8 0°Cに昇温し、 p—トルエンスルホン酸 3 1. 2 g を添加し、 内温を 80°Cに維持しながら、 3時間環化反応を行った。 その後、 炭 酸ナトリウム 1 1. 9 gを含む炭酸ナトリウム 25%水溶液を添加して反応を停 止し、 8 0°Cで 3 0分間攪拌後、 孔径 1 i mのガラス繊維フィルターを用いて、 反応溶液をろ過して触媒残渣を除去した。  After terminating the polymerization reaction, the temperature was raised to 80 ° C, 31.2 g of p-toluenesulfonic acid was added, and the cyclization reaction was performed for 3 hours while maintaining the internal temperature at 80 ° C. Thereafter, the reaction was stopped by adding a 25% aqueous solution of sodium carbonate containing 11.9 g of sodium carbonate, and the mixture was stirred at 80 ° C for 30 minutes, and then reacted using a glass fiber filter having a pore size of 1 im. The solution was filtered to remove the catalyst residue.
ろ過後の反応溶液から、 1 6 0°Cでトルエンを留去し、 固形分濃度が 80〜8 5重量%になった時点で、無水マレイン酸 6 5 g添加し、 1 6◦。Cで 1時間反応さ せた。その後、未反応の無水マレイン酸とトルエンを留去し、ィルガノックス 1 0 1 0 (チバ 'スぺシャリティー 'ケミカルズ社製) 0. 6 gを添加した後、 四フ ッ化エチレン樹脂で被覆した金属製バットに流し込んだ。 これを、 75°Cで減圧 乾燥して変性環化ゴム Cを得た。変性環化ゴム Cの分析を行い、その結果を表 1に 示す。 , From the filtered reaction solution, toluene was distilled off at 160 ° C., and when the solid content concentration reached 80 to 85% by weight, 65 g of maleic anhydride was added thereto, and the mixture was added at 16 °. The reaction was performed at C for 1 hour. Thereafter, unreacted maleic anhydride and toluene were distilled off, and 0.6 g of Irganox 110 (manufactured by Ciba Specialty Chemicals) was added, followed by coating with ethylene tetrafluoride resin. Poured into metal bat. This was dried under reduced pressure at 75 ° C. to obtain a modified cyclized rubber C. The modified cyclized rubber C was analyzed, and the results are shown in Table 1. ,
28  28
(実施例 4) (Example 4)
攪拌機付き耐圧反応器に、 トルエン 6100 g、 n—ブチルリチウム (1. 5 6モル Zリットル濃度のへキサン溶液) 56. 3ミリモルを仕込み、内温を 60°C に昇温した。 その後、 内温が 75°Cを超えないように制御しながら、 イソプレン 2600 gを、 60分間に亘り、 反応器に連続的に添カ卩した。 ィソプレンの添加 終了後、 70°Cにて 1時間反応させて、重合転化率が 100%になったことを確認 した。 この時点で生成している重合体の重量平均分子量は、 73, 000であつ た。  A pressure-resistant reactor equipped with a stirrer was charged with 6100 g of toluene and 56.3 mmol of n-butyllithium (hexane solution having a concentration of 1.56 mol Z liter), and the internal temperature was raised to 60 ° C. Thereafter, 2600 g of isoprene was continuously added to the reactor for 60 minutes while controlling the internal temperature not to exceed 75 ° C. After the addition of isoprene was completed, the reaction was carried out at 70 ° C. for 1 hour, and it was confirmed that the polymerization conversion reached 100%. The weight average molecular weight of the polymer produced at this point was 73,000.
次いで、 テトラクロロシラン 4. 1ミリモルを添加して、 120分間反応させ た。 反応後、 停止剤としてメタノールを 38. 2ミリモル添加して、 共役ジェン 重合体 dを得た。  Next, 4.1 mmol of tetrachlorosilane was added and reacted for 120 minutes. After the reaction, 38.2 mmol of methanol was added as a terminator to obtain a conjugated diene polymer d.
得られた重合体 dの一部をサンプリングし、 GPC分析を行った。 共役ジェン 重合体 dは、 重量平均分子量が 241, 000である 4分岐重合体 30 %および 重量平均分子量が 73, 000である直鎖状の重合体を 70 %からなるものであ つた。  A part of the obtained polymer d was sampled and subjected to GPC analysis. The conjugated diene polymer d consisted of 30% of a four-branched polymer having a weight average molecular weight of 241,000 and a linear polymer having a weight average molecular weight of 73,000 as 70%.
重合反応を停止した後、 80°〇に 温し、 p—トルエンスルホン酸 31. 2 g を添加し、 内温を 80°Cに維持しながら、 3時間環化反応を行った。 その後、 炭 酸ナトリウム 11. 9 gを含む炭酸ナトリウム 25 %水溶液を添加して反応を停 止し、 80°Cで 30分間攪拌後、 孔径 1 / mのガラス繊維フィルターを用いて、 反応溶液をろ過して触媒残渣を除去した。  After terminating the polymerization reaction, the mixture was heated to 80 ° C., 31.2 g of p-toluenesulfonic acid was added, and the cyclization reaction was performed for 3 hours while maintaining the internal temperature at 80 ° C. Thereafter, the reaction was stopped by adding a 25% aqueous solution of sodium carbonate containing 11.9 g of sodium carbonate, and the mixture was stirred at 80 ° C for 30 minutes, and then the reaction solution was filtered using a glass fiber filter having a pore size of 1 / m. The residue was removed by filtration.
ろ過後の反応溶液から、 160°Cでトルエンを留去し、 固形分濃度が 80〜8 5重量%になった時点で、無水マレイン酸 65 g添加し、 160°Cで 1時間反応さ せた。その後、未反応の無水マレイン酸とトルエンを留去し、ィルガノックス 10 10 (チパ 'スぺシャリティー 'ケミカルズ社製) 0. 6 gを添カ卩した後、 四フ ッ化エチレン樹脂で被覆した金属製バットに流し込んだ。 これを、 75°Cで減圧 乾燥して変性環化ゴム Dを得た。変性環化ゴム Dの分析を行い、その結果を表 1に 示す。  Toluene was distilled off from the filtered reaction solution at 160 ° C, and when the solid content concentration reached 80 to 85% by weight, 65 g of maleic anhydride was added and reacted at 160 ° C for 1 hour. Was. Thereafter, unreacted maleic anhydride and toluene were distilled off, 0.6 g of Irganox 1010 (Chipa Specialty Chemicals) was added, and the mixture was covered with ethylene tetrafluoride resin. Poured into metal bat. This was dried under reduced pressure at 75 ° C. to obtain a modified cyclized rubber D. The modified cyclized rubber D was analyzed, and the results are shown in Table 1.
(比較例 1 )  (Comparative Example 1)
本比較例は、 特開昭 57- 145103号公報を参考にして行った。 攪拌機、温度計、還流冷却管、及び窒素ガス導入管を備えた四つ口フラスコに、This comparative example was carried out with reference to JP-A-57-145103. In a four-necked flask equipped with a stirrer, thermometer, reflux condenser, and nitrogen gas inlet tube,
1 O mm角に裁断した重合体 e (シス一 1 , 4一構造イソプレン単位 7 3 %、 ト ランス一 1 , 4—構造イソプレン単位 2 2 %および 3 , 4—構造イソプレン単位 5 %からなり、 重量平均分子量が 1 5 9 , 0 0 0、 分子量分布が 1 . 1 5である ポリイソプレン) 1 0 0部およびトルエン 1 5 7 0部を仕込んだ。 フラスコ内を 窒素置換した後、 8 0 °Cに昇温し、 ポリイソプレンをトルエンに溶解した。 その 後、 無水マレイン酸 2 . 5部を添加し、 1 8 0 °Cで 1時間、 無水マレイン酸の付 加反応を行った。 得られた反応液を、 2 , 6—ジー t e r t一ブチルフエノール 1 %アセトン溶液 3 0 0 0部に投入して析出物を回収し、 それを減圧乾燥して、 無水マレイン酸で変性したポリイソプレンを得た。 Polymer e cut into 1 O mm squares (consisting of 73% of cis-1,4-monomeric isoprene units, 22% of 1,4-trans-isoprene units, and 5% of 3,4-isoprene units, 100 parts of polyisoprene having a weight-average molecular weight of 159,000 and a molecular weight distribution of 1.15, and 157 parts of toluene were charged. After the atmosphere in the flask was replaced with nitrogen, the temperature was raised to 80 ° C., and the polyisoprene was dissolved in toluene. Thereafter, 2.5 parts of maleic anhydride was added, and the addition reaction of maleic anhydride was performed at 180 ° C for 1 hour. The obtained reaction solution was poured into 30000 parts of 2,6-di-tert-butylphenol 1% acetone solution to collect a precipitate, which was dried under reduced pressure, and polyisoprene modified with maleic anhydride. Got.
変性したポリイソプレン 1 0 0部をトルエン 7 3 0部に溶解し、 その溶液に p 一トルエンスルホン酸 3 . 6部を添加し、 溶液温度を 8 5 °Cに維持しながら、 5 時間環化反応を行った。 室温まで、 冷却後、 イオン交換水 4 0 0部を添加して環 化反応を停止し、 3 0分間静置して分離した油層を分取した。 この油層を 4 0 0 部のイオン交換水で 3回洗浄した後、 油層を 2, 6—ジー t e r t—ブチルフエ ノール 1 %メタノール溶液 1 0 0 0部に投入して、 析出物を回収し、 それを減圧 乾燥して、変性環化ゴム Eを得た。変性環化ゴム Eの分析を行い、その結果を表 1 に示す。  Dissolve 100 parts of the modified polyisoprene in 730 parts of toluene, add 3.6 parts of p-toluenesulfonic acid to the solution, and cyclize for 5 hours while maintaining the solution temperature at 85 ° C. The reaction was performed. After cooling to room temperature, 400 parts of ion-exchanged water was added to stop the cyclization reaction, and the mixture was allowed to stand for 30 minutes to separate the separated oil layer. After washing the oil layer three times with 400 parts of ion-exchanged water, the oil layer is poured into 100 parts of a 2,6-di-tert-butylphenol 1% methanol solution, and the precipitate is collected. Was dried under reduced pressure to obtain a modified cyclized rubber E. The modified cyclized rubber E was analyzed, and the results are shown in Table 1.
なお、 得られた変性環化ゴム A〜Eは、 いずれも、 トルエンに不溶な成分を含 んでいなかった。 Note that none of the obtained modified cyclized rubbers A to E contained any components insoluble in toluene.
実お £例 比較例 Actual £ example Comparative example
1 2 3 4 1 重合体 a b c d e 極大ピーク数 2 2 2 2 1 最小ピークトップ分子量 68, 000 89, 000 92, 000 73, 000 一 最小ピークの Mw Mn 1.04 1.03 1.03 1.03 ― 最大ピーク卜ップ分子量 250, 000 251, 000 295, 000 241, 000 159, 000 最大ピークの MwZMn 1.06 1.04 1.10 1.08 1.15 最大ピークと最小ピークのピーク面積比 26/74 20/80 25/75 30/70 ― 変性環化ゴム A B C D E 環化率 (%) 68 73 74 73 76 カルボキシル基量 (ミリモルノ 10Og) 22 25 25 24 21 ガラス転移温度 (°c) 31 46 43 46 48 極大ピーク数 2 2 2 2 1 最小ピークトップ分子量 (Pmw— S) 58, 000 71, 000 73, 000 57, 000 ― 最小ピークの MwZMn 1.13 1.15 1.09 1.08 ― 最大ピークトップ分子量 (Pmw_L) 213, 000 200, 800 244, 000 192, 000 127, 000 最大ピークの MwZMn 1.18 1.19 1.16 1.15 1.31 1 2 3 4 1 Polymer abcde Maximum number of peaks 2 2 2 2 1 Minimum peak top molecular weight 68,000 89,000 92,000 73,000 One Minimum peak Mw Mn 1.04 1.03 1.03 1.03 ― Maximum peak top molecular weight 250 , 000 251, 000 295, 000 241,000 159, 000 Maximum peak MwZMn 1.06 1.04 1.10 1.08 1.15 Peak area ratio between maximum peak and minimum peak 26/74 20/80 25/75 30/70 ― Modified cyclized rubber ABCDE Cyclization ratio (%) 68 73 74 73 76 Amount of carboxyl group (millimono 10Og) 22 25 25 24 21 Glass transition temperature (° c) 31 46 43 46 48 Maximum number of peaks 2 2 2 2 1 Minimum peak top molecular weight (Pmw— S) 58,000 71,000 73,000 57,000-MwZMn of minimum peak 1.13 1.15 1.09 1.08-Maximum peak top molecular weight (Pmw_L) 213,000 200,800 244,000 192,000 127,000 MwZMn of maximum peak 1.18 1.19 1.16 1.15 1.31
(Pmw— L) (Pmw— S)比 3.67 2.83 3.34 3.37 一 最大ピークと最小ピ一クのピーク面積比 26/74 20/80 10/90 15/85 ― (Pmw—L) (Pmw—S) ratio 3.67 2.83 3.34 3.37 Peak area ratio of maximum peak to minimum peak 26/74 20/80 10/90 15/85 ―
(実施例 5) (Example 5)
変性環化ゴム A20部、 酸化チタン 1 5部およびキシレン 80部を高速攪拌機 (デイスパー) で 10分間混合した後、 流動性を流下時間で 13〜14秒になる ようにシンナーで希釈してプライマーを調製した。 なお、 上記の流動性は、 J I S K 5400に規定されたフォードカップ No. 4法に準じて、 20°Cにお ける流下時間を意味する。  After mixing 20 parts of the modified cyclized rubber A, 15 parts of titanium oxide, and 80 parts of xylene with a high-speed stirrer (Dispar) for 10 minutes, dilute the primer with thinner so that the flowability becomes 13 to 14 seconds in the flow time. Prepared. The above-mentioned fluidity means the flow time at 20 ° C according to the Ford Cup No. 4 method specified in JIS K 5400.
表 2に示す樹脂材料を射出成形して 3種類の成形板 X〜 Z (5 OmmX 80 m mX 3mm) を作成した。 なお、 Yは、 各配合成分をヘンシヱルミキサーで混合 した後、 二軸押出機によって溶融混練してペレツト化したものを使用した。 表 2  Three types of molded plates X to Z (5 OmmX 80 mmX 3 mm) were prepared by injection molding the resin materials shown in Table 2. In addition, Y was prepared by mixing the respective components with a Hensile mixer, then melt-kneading with a twin-screw extruder and pelletizing. Table 2
Figure imgf000032_0001
成形板 X〜Zを水でよく洗浄して乾燥した後、口径 1. Omm、スプレー圧 3. 5〜5. OMP aのスプレーガンを用いて、 成形板上に膜厚が 10 /imになるよ うに、 前記のプライマーをスプレー塗装した。 スプレー塗布性を確認し、 その結 果を表 3に示す。 5分間乾燥した後、 二液硬化型ウレタン系メタ'リック塗料 (日 本ビーケミカル社製、 商品名 R B— 2 1 2 (ベース塗料) および商品名 R B— 2 8 8 (タリァー塗料) ) を、 塗膜全体の膜厚が 8 0 μ ιηになるように上記と同じ スプレーガンを用いて 2コート塗装した。 1 5分間、 2 3 °Cで乾燥した後、 8 0 °C で 3 0分間、 非循環式乾燥器にて乾燥し、 3日間室温で静置して、 塗装試験片を 得た。 この塗膜の剥離強度を測定し、 その結果を表 3に示す。
Figure imgf000032_0001
After the molded plates X to Z are thoroughly washed with water and dried, the film thickness becomes 10 / im on the molded plates using a spray gun with a diameter of 1. Omm and a spray pressure of 3.5 to 5. OMPa. Thus, the primer was spray painted. The spray applicability was confirmed, and the results are shown in Table 3. After drying for 5 minutes, two-part curable urethane-based metallic paint RB-212 (trade name) and RB—288 (tary paint), manufactured by Bee Chemical Co., Ltd., the same as above so that the film thickness of the entire coating film is 80 μιη. Two coats were applied using a spray gun. After drying at 23 ° C for 15 minutes, it was dried at 80 ° C for 30 minutes in a non-circulating drier and allowed to stand at room temperature for 3 days to obtain a coated test piece. The peel strength of the coating film was measured, and the results are shown in Table 3.
(実施例 6〜 8および比較例 2 )  (Examples 6 to 8 and Comparative Example 2)
変性環化ゴム Aの代わりに、 それぞれ、 変性環化ゴム B、 C、 Dまたは Eを用 いる以外は、 実施例 5と同様に、 プライマーを調製し、 塗装試験片を得た。 これ らの塗膜の剥離強度を測定し、 その結果を表 3に示す。  A primer was prepared in the same manner as in Example 5, except that the modified cyclized rubber A, B, C, D or E was used instead of the modified cyclized rubber A, respectively, to obtain a coated test piece. The peel strength of these coatings was measured, and the results are shown in Table 3.
(比較例 3 )  (Comparative Example 3)
プライマーを塗布しないことを除き、 実施例 5と同様に、 塗装試験片を得た。 この塗膜の剥離強度を測定し、 その結果を表 3に示す。 表 3  A coated test piece was obtained in the same manner as in Example 5, except that no primer was applied. The peel strength of the coating film was measured, and the results are shown in Table 3. Table 3
Figure imgf000033_0001
表 3から、 以下のようなことがわかる。 その分子量分布曲線が複数の極大ピー クを有する本発明の変性環化ゴム A、 B、 Cおよび Dを、 プライマーの接着性成 分として用いると、 塗装された塗膜の密着性が著しく改善されている。
Figure imgf000033_0001
Table 3 shows the following. The modified cyclized rubbers A, B, C, and D of the present invention, whose molecular weight distribution curves have a plurality of maximum peaks, are used for the adhesive property of the primer. When used as a fraction, the adhesion of the painted film is significantly improved.
(実施例 9)  (Example 9)
ポリプロピレン樹脂 (J 3050HP :出光石油化学社製) 95部、 変性環化 ゴム A 5部およびィルガノックス 1010 (チバ ·スぺシャリティー ·ケミカル ズ社製) 0. 1部を、 ヘンシェルミキサーで混合後、 二軸押出機を用いて、 溶融 温度 200°Cで混練して、 樹脂組成物のペレットを得た。 このペレッ トを射出成 形して、 成形板 (厚さ 3mmX幅 5 OmmX長さ 80mm) を得た。  95 parts of polypropylene resin (J 3050HP: manufactured by Idemitsu Petrochemical Co., Ltd.), 5 parts of modified cyclized rubber A and 0.1 part of Ilganox 1010 (manufactured by Ciba Specialty Chemicals) are mixed with a Henschel mixer, and then mixed. Using a twin-screw extruder, the mixture was kneaded at a melting temperature of 200 ° C to obtain pellets of the resin composition. This pellet was injection molded to obtain a molded plate (thickness 3 mm × width 5 Omm × length 80 mm).
この成形板上に、 口径 1. Omm、 スプレー圧 3· 5〜5· OMP aのスプレ 一ガンを用いて、二液硬化型ウレタン系メタリック塗料(日本ビーケミカル社製、 商品名 R B— 212 (ベース塗料) および商品名 RB— 288 (タリァー塗料) ) を、塗膜全体の膜厚が 8 Ο μπιになるように 2コート塗装した。 15分間、 23°C で乾燥した後、 80°Cで 30分間、 非循環式乾燥器にて乾燥し、 3日間室温で静 置して、 塗装試験片を得た。 この塗膜の剥離強度を測定し、 その結果を表 4に示 す。  Using a spray gun with a diameter of 1. Omm and a spray pressure of 3.5 to 5 OMPa, a two-part curable urethane metallic paint (Nippon Bee Chemical Co., Ltd., trade name RB-212 ( Base coat) and trade name RB-288 (Tarry paint)) were coated in two coats so that the total thickness of the coating film was 8 μμπι. After drying at 23 ° C for 15 minutes, it was dried at 80 ° C for 30 minutes in a non-circulating dryer and allowed to stand at room temperature for 3 days to obtain a coated test piece. The peel strength of this coating film was measured, and the results are shown in Table 4.
(実施例 10〜 1 2 )  (Examples 10 to 12)
変性環化ゴム Aの代わりに、 変性環化ゴム B、 Cまたは Dを用いる以外は、 実 施例 9と同様に、 成形板を作製し、 それを用いて、 塗装試験片を作製した。 この 塗膜の剥離強度を測定し、 その結果を表 4に示す。  A molded plate was prepared in the same manner as in Example 9, except that the modified cyclized rubber B, C or D was used instead of the modified cyclized rubber A, and a coated test piece was prepared using the molded plate. The peel strength of this coating film was measured, and the results are shown in Table 4.
(比較例 4)  (Comparative Example 4)
変性環化ゴムを使用せず、 ポリプロピレン樹脂 (J 305 OHP :出光石油化 学社製) 100部おょぴィルガノックス 1010 (チバ ·スぺシャリティー ·ケ ミカルズ社製) 0. 1部からなる樹脂組成物を用いる以外は、実施例 9と同様に、 成形板を作製し、 それを用いて、 塗装試験片を作製した。 この塗膜の剥離強度を 測定し、 その結果を表 4に示す。 表 4 Polypropylene resin (J 305 OHP: Idemitsu Petrochemicals Co., Ltd.) without using modified cyclized rubber 100 parts Oyirganox 1010 (Ciba Specialty Chemicals) 0.1 part resin A molded plate was prepared in the same manner as in Example 9 except that the composition was used, and a coated test piece was prepared using the molded plate. The peel strength of this coating film was measured, and the results are shown in Table 4. Table 4
Figure imgf000035_0001
表 4から以下のようなことがわかる。
Figure imgf000035_0001
Table 4 shows the following.
本発明の変性環化ゴムを配合したポリプロピレン樹脂からなる成形体は、 塗膜 との密着性が著しく改善されている。  The molded article made of the polypropylene resin blended with the modified cyclized rubber of the present invention has remarkably improved adhesion to a coating film.
(実施例 13) (Example 13)
攪拌機付き耐圧反応器に、 トルエン 6100 g、 n—ブチルリチウム (1. 5 6モル リッ トル濃度のへキサン溶液) 56. 3ミ リモルを仕込み、内温を 60°C に昇温した。 その後、 内温が 75°Cを超えないように制御しながら、 イソプレン 2600 gを、 60分間に亘り、 反応器に連続的に添カ卩した。 イソプレンの添加 終了後、 70°Cにて 1時間反応させて、重合転化率が 100 %になったことを確認 した。 この時点で生成している重合体の重量平均分子量は、 73, 000であつ た。  In a pressure-resistant reactor equipped with a stirrer, 6100 g of toluene and 56.3 mmol of n-butyllithium (a hexane solution having a concentration of 1.56 mol) were charged, and the internal temperature was raised to 60 ° C. Thereafter, 2600 g of isoprene was continuously added to the reactor for 60 minutes while controlling the internal temperature not to exceed 75 ° C. After completion of the isoprene addition, the reaction was carried out at 70 ° C for 1 hour, and it was confirmed that the polymerization conversion reached 100%. The weight average molecular weight of the polymer produced at this point was 73,000.
次いで、 テトラクロロシラン 4. 1ミリモルを添加して、 120分間反応させ た。 反応後、 停止剤としてメタノールを 38. 2ミリモル添加して、 共役ジェン 重合体 f を得た。  Next, 4.1 mmol of tetrachlorosilane was added and reacted for 120 minutes. After the reaction, 38.2 mmol of methanol was added as a terminator to obtain a conjugated diene polymer f.
得られた重合体 f の一部をサンプリングし、 GPC分析を行った。 共役ジェン 重合体 f は、 重量平均分子量が 241, 000である 4分岐重合体 30 %および 重量平均分子量が 73, 000である直鎖状の重合体 70 %からなるものであつ た。  A part of the obtained polymer f was sampled and subjected to GPC analysis. The conjugated diene polymer f was composed of 30% of a 4-branched polymer having a weight average molecular weight of 241,000, and 70% of a linear polymer having a weight average molecular weight of 73,000.
重合反応を停止した後、 80°Cに昇温し、 p—トルエンスルホン酸 31. 2 g を添加し、 内温を 80°Cに維持しながら、 3時間環化反応を行った。 その後、 炭 酸ナトリウム 1 1. 9 gを含む炭酸ナトリウム 25 %水溶液を添加して反応を停 止し、 80°Cで 30分間攪拌後、 孔径 1 μπιのガラス繊維フィルターを用いて、 反応溶液をろ過して触媒残渣を除去した。 After terminating the polymerization reaction, the temperature was raised to 80 ° C, 31.2 g of p-toluenesulfonic acid was added, and the cyclization reaction was performed for 3 hours while maintaining the internal temperature at 80 ° C. Then charcoal The reaction was stopped by adding a 25% aqueous solution of sodium carbonate containing 11.9 g of sodium acid, stirred at 80 ° C for 30 minutes, and then filtered using a glass fiber filter with a pore size of 1 μπι. The catalyst residue was removed.
ろ過後の反応溶液から、 160°Cでトルエンを留去し、 固形分濃度が 80〜8 5重量0 /0になった時点で、 ィルガノックス 1010 (チバ ·スぺシャリティー ' ケミカルズ社製) 0. 6 gを添加した後、 四フッ化工チレン樹脂で被覆した金属 製パットに流し込んだ。 これを、 75 °Cで減圧乾燥して環化ゴム Fを得た。 From the reaction solution after filtration, the toluene was distilled off at 160 ° C, when the solid concentration became 80-8 5 wt 0/0, Iruganokkusu 1010 (manufactured by Ciba Su Bae rice tea 'Chemicals) 0 After adding 6 g, the mixture was poured into a metal pad covered with tetrafluoroethylene resin. This was dried under reduced pressure at 75 ° C. to obtain a cyclized rubber F.
環化ゴム Fの分析を行つたところ、 以下のような結果であった。  Analysis of cyclized rubber F gave the following results.
環化率二 73%、 ガラス転移温度 =46°C、 極大ピーク数 =2、 最小ピークト ップ分子量(Pmw— S) =57, 000、最小ピークトップの Mw/Mn = 1 · 08、 最大ピークトップ分子量 (Pmw— L) = 1 92, 000、 最大ピークト ップの Mw/Mn=l. 15、 (Pmw-L) / (Pmw-S) =3. 37、 最 大ピークと最小ピークのピーク面積比 = 15/85  Cyclization ratio 73%, glass transition temperature = 46 ° C, maximum number of peaks = 2, minimum peak top molecular weight (Pmw-S) = 57,000, minimum peak top Mw / Mn = 1 · 08, maximum peak Top molecular weight (Pmw-L) = 192,000, maximum peak top Mw / Mn = 1.15, (Pmw-L) / (Pmw-S) = 3.37, maximum and minimum peak Area ratio = 15/85
なお、 得られた環化ゴム Fは、 トルエンに不溶な成分を含んでいなかった。 環化ゴム F 100部と銅フタロシアニン系シァン顔料 (へリォゲンブルー S 7 084 : BASF社製) 5部をプラストミルで溶融混練し、 次いで、 その固化物 を、 25°Cで、 ジヱットミルを用いて粉砕した。 粉碎物を風力分級して、 平均粒 子径が 30 / mのシアン色の粉体塗料を得た。 得られた粉体塗料を、 リン酸亜鉛 処理鋼板上に膜厚が 50〜60 μπιとなるように塗装し、 200°Cのオーブン中 で、 20分間加熱して、 焼き付けた。  The obtained cyclized rubber F did not contain any components insoluble in toluene. 100 parts of the cyclized rubber F and 5 parts of a copper phthalocyanine cyan pigment (Helogen Blue S7004: manufactured by BASF) were melt-kneaded with a plast mill, and then the solidified product was pulverized at 25 ° C. using a jet mill. . The pulverized material was subjected to air classification to obtain a cyan powder coating material having an average particle diameter of 30 / m. The obtained powder coating was applied on a zinc phosphate-treated steel sheet so as to have a thickness of 50 to 60 μπι, and was baked by heating in an oven at 200 ° C for 20 minutes.
得られた塗膜は均一であり、 この塗膜の密着性を、 碁盤目試験により測定した ところ、 100/100であり、 密着性に優れていた。  The obtained coating film was uniform, and the adhesion of the coating film was 100/100 as measured by a grid test, indicating that the adhesion was excellent.
本発明の環化ゴムを用いた粉体塗料は、 基材への密着性に優れる均一な塗膜を 形成するものであった。 産業上の利用可能性  The powder coating using the cyclized rubber of the present invention formed a uniform coating film having excellent adhesion to a substrate. Industrial applicability
本発明の環化ゴムは、ポリマー成形材料と塗料との接着性を改善する改質剤や、 ポリマ一成形材料用のプライマ一や塗料などのコーティング剤に添加するプライ マービヒクル成分や塗料用パインダ一成分などの接着性成分として種々の用途に 適用できる。 特に非極性のポリマー成形材料と塗料との接着性を著しく改善でき る点で有用である。 The cyclized rubber of the present invention can be used as a modifier for improving adhesion between a polymer molding material and a coating material, a primer vehicle component added to a coating material such as a primer for a polymer molding material or a coating material, or a binder for a coating material. For various uses as an adhesive component such as a component Applicable. It is particularly useful in that the adhesiveness between the non-polar polymer molding material and the paint can be significantly improved.

Claims

請求の範囲 The scope of the claims
I. 共役ジェン重合体環化物またはその誘導体であって、 その分子量分布曲線が 複数のピークを有するマルチモーダルであり、重量平均分子量が 1 , 000〜1, 000, 000である環化ゴム。 I. A cyclized conjugated polymer or a derivative thereof, wherein the molecular weight distribution curve is multimodal having a plurality of peaks, and the weight average molecular weight is from 1,000 to 1,000,000.
2. 環化率が 10 %以上である前記請求の範囲第 1項記載の環化ゴム。  2. The cyclized rubber according to claim 1, wherein the cyclization rate is 10% or more.
3. ゲル量が 10重量%以下である前記請求の範囲第 1項または第 2項に記載の 環化ゴム。  3. The cyclized rubber according to claim 1 or 2, wherein the gel amount is 10% by weight or less.
4. 最小ピークトップ分子量 (Pmw_S) と最大ピークトップ分子量 (Pmw — L) との比 (Pmw_L/Pmw— S) が 1. 5以上である前記請求の範囲第 4. The ratio of the minimum peak top molecular weight (Pmw_S) to the maximum peak top molecular weight (Pmw—L) (Pmw_L / Pmw—S) is 1.5 or more.
1項〜第 3項のいずれかに記載の環化ゴム。 4. The cyclized rubber according to any one of items 1 to 3.
5. 最小ピークトップ分子量 (Pmw— S) が 10, 000以上である前記請求 の範囲第 4項記載の環化ゴム。  5. The cyclized rubber according to claim 4, wherein the minimum peak top molecular weight (Pmw-S) is 10,000 or more.
6. 最大ピークトップ分子量 (Pmw— L) が 1, 000, 000以下である前 記請求の範囲第 4項または第 5項に記載の環化ゴム。  6. The cyclized rubber according to claim 4 or 5, wherein the maximum peak top molecular weight (Pmw-L) is 1,000,000 or less.
7. その分子量分布曲線がバイモーダルである前記請求の範囲第 1項〜第 6項の いずれかに記載の環化ゴム。  7. The cyclized rubber according to any one of claims 1 to 6, wherein the molecular weight distribution curve is bimodal.
8 · その低分子量側成分と高分子量側成分との重量比が、 95/5〜 10/90 である前記請求の範囲第 7項記載の環化ゴム。  8. The cyclized rubber according to claim 7, wherein the weight ratio between the low molecular weight component and the high molecular weight component is 95/5 to 10/90.
9. 前記共役ジェン重合体環化物の誘導体が、 極性基含有化合物を用いる変性反 応で、 共役ジェン重合体環化物に極性基が導入されたものである前記請求の範囲 第 1項〜第 8項のいずれかに記載の環化ゴム。 9. The cyclized product of claim 1, wherein the derivative of the cyclized conjugated polymer is a derivative obtained by introducing a polar group into the cyclized conjugated polymer by a modification reaction using a polar group-containing compound. The cyclized rubber according to any one of the above items.
10. 極性基が、 酸無水物基、 カルボキシル基、 水酸基、 チオール基、 エステル 基、 エポキシ基、 アミノ基、 アミド基、 シァノ基、 シリル基およびハロゲンから なる群から選ばれる少なくとも 1つの基である前記請求の範囲第 9項記載の環化 ゴム。  10. The polar group is at least one group selected from the group consisting of an acid anhydride group, a carboxyl group, a hydroxyl group, a thiol group, an ester group, an epoxy group, an amino group, an amide group, a cyano group, a silyl group, and a halogen. 10. The cyclized rubber according to claim 9.
I I. 極性基が、 酸無水物基、 カルボキシル基おょぴ水酸基からなる群から選ば れる少なくとも 1つの基である前記請求の範囲第 9項記載の環化ゴム。  I I. The cyclized rubber according to claim 9, wherein the polar group is at least one group selected from the group consisting of an acid anhydride group, a carboxyl group and a hydroxyl group.
12. 共役ジェン単量体、 または共役ジェン単量体及ぴ共役ジェン単量体と共重 合可能な単量体を、 有機活性金属触媒を用いて、 重合を開始した後、 重合が完結 する前に、 有機活性金属触媒中の活性金属の一部を不活性化する量の重合停止剤 を添カ卩して重合を継続し、 マルチモーダルな分子量分布曲線を有する共役ジェン 重合体を形成する工程と、 12. Conjugated gen monomer or conjugated gen monomer and copolymerized with conjugated gen monomer An amount of a polymerization terminator that deactivates a part of the active metal in the organic active metal catalyst after the polymerization is started using the organic active metal catalyst and before the polymerization is completed is completed. To continue polymerization and form a conjugated gen polymer having a multimodal molecular weight distribution curve,
前記共役ジェン重合体を、 環化触媒を用いて環化させて、 マルチモーダルな分 子量分布曲線を有する共役ジェン重合体環化物を形成する工程と、  Cyclizing the conjugated polymer using a cyclization catalyst to form a cyclized conjugated polymer having a multimodal molecular weight distribution curve;
を有するマルチモーダルな分子量分布曲線を有する環化ゴムの製造方法。 A method for producing a cyclized rubber having a multimodal molecular weight distribution curve having
1 3 . 共役ジェン単量体、 または共役ジェン単量体及ぴ共役ジェン単量体と共重 合可能な単量体を、 有機活性金属触媒を用いて重合するに際し、 重合に使用する 有機活性金属触媒の一部を用いて重合を開始した後、 重合が完結する前に、 該有 機活性金属触媒の残部を添加して重合を継続し、 マルチモーダルな分子量分布曲 線を有する共役ジェン重合体を形成する工程と、  13 3. Organic activity used in the polymerization of conjugated gen monomer or conjugated gen monomer and a monomer copolymerizable with conjugated gen monomer using an organic active metal catalyst. After the polymerization is started using a part of the metal catalyst, and before the polymerization is completed, the polymerization is continued by adding the remainder of the organically active metal catalyst, and the conjugated dimer having a multimodal molecular weight distribution curve is obtained. Forming a coalescence,
前記共役ジェン重合体を、 環化触媒を用いて環化させて、 マルチモーダルな分 子量分布曲線を有する共役ジェン重合体環化物を形成する工程と、  Cyclizing the conjugated polymer using a cyclization catalyst to form a cyclized conjugated polymer having a multimodal molecular weight distribution curve;
を有するマルチモーダルな分子量分布曲線を有する環化ゴムの製造方法。 A method for producing a cyclized rubber having a multimodal molecular weight distribution curve having
1 4 . 共役ジェン単量体、 または共役ジェン単量体及び共役ジェン単量体と共重 合可能な単量体を、 有機活性金属触媒を用いて重合して、 重合体鎖末端に活性金 属を有する活性共役ジェン重合体を形成する工程と、  14. Polymerization of a conjugated diene monomer, or a conjugated diene monomer and a monomer copolymerizable with a conjugated diene monomer using an organic active metal catalyst, to form an active gold at the polymer chain end. Forming an active conjugated polymer having a genus,
前記活性共役ジェン重合体に、 前記活性共役ジェン重合体中の活性金属の一部 と反応する量の多官能性カップリング剤を反応させて、 マルチモーダルな分子量 分布曲線を有する共役ジェン重合体を形成する工程と、  The active conjugated diene polymer is reacted with an amount of a polyfunctional coupling agent that reacts with a part of the active metal in the active conjugated diene polymer to form a conjugated diene polymer having a multimodal molecular weight distribution curve. Forming,
前記共役ジェン重合体を、 環化触媒を用いて環化させて、 マルチモーダルな分 子量分布曲線を有する共役ジェン重合体環化物を形成する工程と、  Cyclizing the conjugated polymer using a cyclization catalyst to form a cyclized conjugated polymer having a multimodal molecular weight distribution curve;
を有するマルチモーダルな分子量分布曲線を有する環化ゴムの製造方法。 A method for producing a cyclized rubber having a multimodal molecular weight distribution curve having
1 5 . マルチモーダルな分子量分布曲線を有する共役ジェン重合体環化物を形成 した後、 前記共役ジェン重合体環化物に極性基含有化合物を反応させて、 極性基 を導入する工程を設ける前記請求の範囲第 1 2項〜第 1 4項までのいずれかに記 載の製造方法。 15. The method according to the above claim, wherein a step of introducing a polar group by reacting a conjugated polymer cyclized product having a multimodal molecular weight distribution curve with a polar group-containing compound to the conjugated polymer cyclized product is provided. The production method according to any one of the ranges 12 to 14.
1 6 . 前記請求の範囲第 1項〜第 1 1項までのいずれかに記載の環化ゴムを有効 成分とするポリマー成形材料用改質剤。 16. The cyclized rubber according to any one of claims 1 to 11 is effective. Modifier for polymer molding materials as a component.
1 7 . ポリマー成形材料に前記請求の範囲第 1 6項に記載のポリマー成形材料用 改質剤を配合してなるポリマ一組成物。  17. A polymer composition comprising the polymer molding material and the modifier for a polymer molding material according to claim 16 blended therein.
1 8 . ポリマー成形材料が非極性のものである前記請求の範囲第 1 7項記載のポ リマー組成物。  18. The polymer composition according to claim 17, wherein the polymer molding material is non-polar.
1 9 .ポリマー成形材料用改質剤の含有量が、ポリマー 1 0 0重量部当たり、 0 . :!〜 5 0重量部である前記請求の範囲第 1 7項または第 1 8項記載のポリマー組 成物。  19. The polymer according to claim 17 or 18, wherein the content of the modifier for a polymer molding material is from 0 :! to 50 parts by weight per 100 parts by weight of the polymer. Composition.
2 0 . 前記請求の範囲第 1項から第 1 1項までのいずれかに記載の環化ゴムを含 有してなるコーティング剤。  20. A coating agent comprising the cyclized rubber according to any one of the above-mentioned claims 1 to 11.
2 1 . 非極性のポリマー成形材料用である前記請求の範囲第 2 0項記載のコーテ ィング剤。  21. The coating agent according to claim 20, which is used for a nonpolar polymer molding material.
2 2 . ポリマー成形材料用プライマーである前記請求の範囲第 2◦項または第 2 1項記載のコーティング剤。  22. The coating agent according to claim 2 which is a primer for a polymer molding material.
2 3 . 前記請求の範囲第 1項から第 1 1項までのいずれかに記載の環化ゴムを含 有してなる粉末粒子。 23. Powder particles comprising the cyclized rubber according to any one of claims 1 to 11 above.
2 4 . 平均粒子径が 1〜 2 0 0 μ mである前記請求の範囲第 2 3項記載の粉末粒 子。  24. The powder particle according to claim 23, wherein the powder particle has an average particle diameter of 1 to 200 µm.
2 5 . さらに着色剤を含有する前記請求の範囲第 2 3項または第 2 4項記載の粉 末粒子。  25. The powder particles according to claim 23 or 24, further comprising a colorant.
2 6 . 着色剤の使用量が、 環化ゴム 1 0 0重量部に対して、 0 . 1〜 5 0重量部 である前記請求の範囲第 2 5項記載の粉末粒子。  26. The powder particles according to claim 25, wherein the amount of the colorant used is 0.1 to 50 parts by weight based on 100 parts by weight of the cyclized rubber.
PCT/JP2004/000421 2003-01-31 2004-01-20 Cyclized rubber and process for producing the same WO2004067590A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-023702 2003-01-31
JP2003023702A JP4207587B2 (en) 2003-01-31 2003-01-31 Cyclized rubber and method for producing the same
JP2003-023689 2003-01-31
JP2003023689A JP4207586B2 (en) 2003-01-31 2003-01-31 Cyclized rubber and method for producing the same

Publications (1)

Publication Number Publication Date
WO2004067590A1 true WO2004067590A1 (en) 2004-08-12

Family

ID=32828924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000421 WO2004067590A1 (en) 2003-01-31 2004-01-20 Cyclized rubber and process for producing the same

Country Status (1)

Country Link
WO (1) WO2004067590A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101146862B (en) * 2005-03-23 2011-03-09 日本瑞翁株式会社 Gas barrier resin composition having oxygen-absorbing property and gas barrier structure having oxygen-absorbing property including the same
CN109844013A (en) * 2016-09-29 2019-06-04 阿朗新科加拿大公司 Multimodal polyisoolefines composition and its method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112892A (en) * 1974-07-23 1976-01-31 Sumitomo Chemical Co Kankagomuno seizohoho
JPS60223804A (en) * 1984-04-20 1985-11-08 Japan Synthetic Rubber Co Ltd Production of cyclized conjugated diene polymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112892A (en) * 1974-07-23 1976-01-31 Sumitomo Chemical Co Kankagomuno seizohoho
JPS60223804A (en) * 1984-04-20 1985-11-08 Japan Synthetic Rubber Co Ltd Production of cyclized conjugated diene polymer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101146862B (en) * 2005-03-23 2011-03-09 日本瑞翁株式会社 Gas barrier resin composition having oxygen-absorbing property and gas barrier structure having oxygen-absorbing property including the same
CN109844013A (en) * 2016-09-29 2019-06-04 阿朗新科加拿大公司 Multimodal polyisoolefines composition and its method
CN109844013B (en) * 2016-09-29 2022-02-08 阿朗新科加拿大公司 Multimodal polyisoolefin compositions and methods

Similar Documents

Publication Publication Date Title
CN1328292C (en) Hydrogenated copolymer and composition thereof
US7642317B2 (en) Modified block copolymer
US8071676B2 (en) Modified polymer and composition containing the same
KR101153768B1 (en) Block copolymer and method for producing same
CN111148767B (en) Modified liquid diene rubber
JP5116644B2 (en) Thermoplastic polymer composition
WO2014123163A1 (en) Thermoplastic polymer composition, shoes and outer soles
JP4506670B2 (en) Polar group-containing cyclized rubber and method for producing the same
CN102781973B (en) Comprise functionalization multiarm polymers and their application of the functionalized polymeric synthesized by anionic polymerisation
JP4706478B2 (en) Cyclized rubber and method for producing the same
WO2004067590A1 (en) Cyclized rubber and process for producing the same
JP4207587B2 (en) Cyclized rubber and method for producing the same
JP4207586B2 (en) Cyclized rubber and method for producing the same
JP4849209B2 (en) Adhesive composition and adhesive tape using the same
JP2004091531A (en) Polyolefin-based resin composition and its use
JP2004091530A (en) Thermoplastic polymer composition
EP2042531B1 (en) Block copolymer, composition for resin modification, and modified resin composition
JP2005281382A (en) Block copolymer and its manufacturing process
JP4618406B2 (en) Adhesive composition
JP4973843B2 (en) Thermoplastic elastomer composition
JP4730505B2 (en) Adhesive composition
JPS649335B2 (en)
KR20210137433A (en) functionalized rubber

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase