WO2004066010A1 - Method for production of a facetted mirror - Google Patents

Method for production of a facetted mirror Download PDF

Info

Publication number
WO2004066010A1
WO2004066010A1 PCT/EP2004/000331 EP2004000331W WO2004066010A1 WO 2004066010 A1 WO2004066010 A1 WO 2004066010A1 EP 2004000331 W EP2004000331 W EP 2004000331W WO 2004066010 A1 WO2004066010 A1 WO 2004066010A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
facet
facets
mirror facets
receiving bores
Prior art date
Application number
PCT/EP2004/000331
Other languages
German (de)
French (fr)
Inventor
Markus Weiss
Andreas Seifert
Andreas Heisler
Stefan Dornheim
Original Assignee
Carl Zeiss Smt Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss Smt Ag filed Critical Carl Zeiss Smt Ag
Publication of WO2004066010A1 publication Critical patent/WO2004066010A1/en
Priority to US10/936,317 priority Critical patent/US7246909B2/en
Priority to US11/695,626 priority patent/US20070206301A1/en
Priority to US12/338,049 priority patent/US7802891B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1822Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors comprising means for aligning the optical axis
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1822Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors comprising means for aligning the optical axis
    • G02B7/1824Manual alignment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70141Illumination system adjustment, e.g. adjustments during exposure or alignment during assembly of illumination system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • G03F7/70166Capillary or channel elements, e.g. nested extreme ultraviolet [EUV] mirrors or shells, optical fibers or light guides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70233Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70825Mounting of individual elements, e.g. mounts, holders or supports

Definitions

  • the invention relates to a method for producing a facet mirror with a plurality of mirror facets, in particular for an illumination device in a projection exposure system for microlithography, and here in particular for use with illumination in the area of extreme ultraviolet.
  • the invention also relates to a method for machining receiving bores and a facet mirror with a plurality of mirror facets.
  • Faceted mirrors comprise several mirror facets and are already known from the prior art.
  • the mirror facets have a spherical body, a mirror surface being arranged in a recess in the spherical body and the side of the spherical body facing away from the mirror surface being mounted in a bearing device.
  • a lever element is arranged on each of the mirror facets on the side of the spherical body facing away from the mirror surface. Adjustment means act on the lever element in a region facing away from the spherical body, by means of which movement of the spherical body around its center can be achieved.
  • mirror facets are known from the older DE 102 04 249.7, the mirror surfaces of which are arranged on a carrier element.
  • the carrier element has adjusting means with which the angular position of the mirror surface in a plane can be adjusted at least approximately perpendicular to the optical axis of the mirror surface in at least one spatial direction.
  • Faceted mirrors have to withstand high thermal loads due to the absorbed radiation, which is to be arranged in the extreme ultraviolet range, this arrangement probably only meeting the high requirements with regard to the thermal loads to a small extent.
  • the object is achieved according to the invention in that a) the mirror facets are manufactured in a first method step, after which b) in a second method step the angular deviation of the optical axis of the mirror surface of each of the mirror surfaces facets compared to the normal of the mirror facet is determined, according to which c) in a third method step, with knowledge of the measured values determined in the second method step, a receiving bore is made in a carrier plate for each of the mirror facets, and the receiving bore is already about the second position with regard to the angular position to be achieved
  • the measured value measured in the method step is corrected, after which d) the mirror facets are inserted into the mounting hole provided for the respective mirror facet, after which e) the alignment of the mirror surface is measured again for each of the mirror surfaces, and f) finally, the mirror surface of the mirror facet is reworked Achieve the final required angular accuracy.
  • the object is achieved with respect to the method for machining the receiving bores by the characterizing features of claim 6.
  • the manufacturing process is carried out step by step.
  • the individual facets are manufactured to the best possible angular error of approx. 200 ".
  • This deviation is then determined with an angle measuring device, preferably with an autocollimation telescope with a positioning table.
  • the mounting holes for the mirror facets are now made with the best possible manufacturing accuracy, which in this case is, for example, 50 ", has been introduced into the carrier plate. It has already been determined which of the mirror facets with which of the previously measured angle errors is to be inserted into which of the mounting holes.
  • the mounting holes can therefore already be corrected in accordance with the measured angle errors of the mirror facets.
  • the residual error after inserting the mirror facets into the respective mounting holes is again determined using an angle measuring device, which is due to the manufacturing accuracy to be achieved in a range that allows the residual error to be corrected using a surface precision processing method.
  • the mirror facets are then firmly connected to the carrier plate, so that stable alignment is ensured even over a long period of time.
  • the direct contact of the mirror facet with the carrier plate achieves a structure which ideally dissipates the heat absorbed by the mirror facets. This enables a simple, inexpensive, very stable, shock-resistant, material-reducing, adhesive-free and thermally unproblematic construction of a facet mirror in the ultra-high vacuum range, in particular for use in EUV lithography.
  • the method for producing facet mirrors not only has advantages in terms of less assembly and adjustment effort and more cost-effective production, but this method also makes it possible to produce much smaller facet mirrors and in multiple versions in a facet mirror to be arranged, with a diameter range of the mirror facets of 3 mm to 50 mm being realizable without difficulty.
  • the processing of the mirror facet takes place via ion bea figuring (IBF).
  • IBF ion bea figuring
  • the processing of the mirror facet takes place via the vapor deposition of preferably wedge-shaped metal intermediate layers.
  • This processing step represents an alternative to IBF processing.
  • the receiving bores are manufactured with a manufacturing accuracy of 30 ", after which in a second process step the receiving bores are machined on defined guide surfaces and support surfaces in order to achieve the required accuracy via IBF.
  • machining the locating holes via IBF is much more precise than other fine machining methods.
  • FIG. 1 shows a structure of an EUV lighting system with a light source, a lighting system and a projection lens
  • Figure 2 shows a longitudinal section of a cylindrical mirror facet, the mirror facet being mounted in a carrier plate;
  • Figure 3 shows a longitudinal section of a conical mirror facet, the mirror facet being mounted in a carrier plate
  • FIG. 4 shows a plan view of a facet mirror, which contains both embodiments of the mirror facets shown in FIG. 2 and FIG. 3.
  • FIG. 1 shows an overview of an EUV projection exposure system with a complete EUV illumination system with a light source 1 and a projection lens 2 that is only shown in principle. Furthermore, in the lighting system there is a plane mirror 3, a first optical element 4 with a large number of facet mirrors, a subsequently arranged second optical element 5 with a plurality of raster elements in the form of facet mirrors and two imaging mirrors 6a and ⁇ b.
  • the imaging mirrors 6a and 6b serve to image the facet mirrors of the second optical element 5 in an entrance pupil of the projection objective 2.
  • a reticle 7 can be moved in the y direction as a scanning system.
  • a reticle level 8 also simultaneously represents the object level.
  • a wafer 11 is located on a carrier unit 9 as the object to be exposed.
  • FIG. 2 shows a mirror facet 12, which is formed from a cylindrical head 13 and a cylindrical base 14.
  • the cylindrical head 13 has, for example, a diameter of 20 mm and the cylindrical base 14 has a diameter of approximately 8 mm.
  • the mirror facet 12 has a length of 60 mm, for example. Silicon is selected as the material of the mirror facet 12, for reasons of processing and thermal stress.
  • the mirror facet 12 can also be made of a stainless steel alloy or other materials that meet the requirements for polishability, mechanical, thermal and temporal stability and ultra-high vacuum compatibility (UHV compatibility).
  • the front side of the mirror facet head 13 has a spherical, concave mirror surface 15 with a radius of approximately 2,000 mm.
  • the mirror surfaces 15 can also be flat, spherical, aspherical, convex and concave.
  • a marking 23 (see FIG. 4) for correct azimuthal orientation of the mirror facet 12 is attached to the mirror surface 15. The marking 23 must be aligned with a corresponding marking on the flat carrier plate 16.
  • the carrier plate 16 can also be aspherical, so that, if desired, the mirror facets 12, 12 'are not arranged in one plane.
  • the carrier plate 16 is made of steel with a thickness of approximately 50 mm.
  • the carrier plate 16 can also be made of silicon, since thermal conductivity again has advantages here. Other materials are also possible.
  • the cylindrical base 14 is provided with a thread 17 in order to hold the mirror facet 12 in position with a defined force, for example realized by a threaded nut 18 and a spring 19.
  • the spring 19 can be formed as a cylindrical spring or as a disc spring made of stainless steel. This is particularly important if materials with different coefficients of thermal expansion are used for the carrier plate 16 and for the mirror facet 12, as in the present exemplary embodiment.
  • the mirror facets 12 must be arranged at different tilt angles on the carrier plate 16 so that the incident rays are reflected in a predetermined direction.
  • the normal 20 of the mirror facet 12 must therefore lie in a certain desired direction. For this reason the mirror surface 15 are well oriented so that the precisely manufactured mirror surface 15 can be aligned precisely on the body axis or on the desired direction.
  • the relationship between the mirror surface 15 and the rear mirror surface 15 ' is measured.
  • the relationship between the lateral surface 21 and the mirror surface 15 can also advantageously be measured so that an error to be corrected can be determined immediately. This means that a target angular direction and an actual angular direction are determined, the difference is formed therefrom and this difference must be eliminated.
  • the first step is aimed at the receiving bore 22. Since the mirror surface 15 can only be manufactured with an accuracy of approximately 200 ′′ relative to the support plate 16, the receiving bore 22 is machined accordingly at the position of the position-defining lateral surfaces 21 of the mirror facet 12 until the reference surfaces 21 are tilted by the previously measured angle correction (in most cases 200 "). Thereafter, the finely machined lateral surface 21 with a measured error can additionally achieve the required accuracy of approximately 10 "by vapor deposition of a wedge-shaped intermediate metal layer.
  • the mirror surface can be reworked with ion beam figuring
  • the necessary accuracy can also be achieved only with ion beam figuring, in which the surface to be treated is removed by ions in the final processing.
  • the removal of typically 1 to 2 ⁇ m required for IBF processing can be carried out in this processing step without Deterioration of surface roughness ability to be carried out.
  • a final accuracy of approx. 1 can thus be achieved.
  • the mirror rear surface 15 ′ (angle-defining guide surface) of the mirror facet 12 corresponding to the receiving bore 22 can also be machined with IBF, or a wedge-shaped metal intermediate layer can be applied in the region of the mirror surface 15, or the mirror rear surface 15 ′ of the mirror facet 12 corresponding to the receiving bore 22 wedge-shaped metal intermediate layer.
  • a mirror facet 12 is used on a trial basis and the reflectivity is measured.
  • the metal to be evaporated can be gold because it is soft and also adapts to the shapes.
  • any form of metal can be used, for example precious metals, gallium, platinum, silver or indium. However, it is important to use a metal that is easy to separate and therefore also makes good thermal contact.
  • Another alternative besides the vapor deposition of metal intermediate layers for IBF processing is to rotate the tilted mirror facets 12 and 12 'about their axes. By turning, it can be achieved that the correction is only carried out in one direction, thus simplifying the further process steps. If high accuracy can only be achieved in one direction, but not in the other direction, rotating the mirror facets 12 and 12 'means that the accuracy is the same in all directions. After that, either by IBF or vapor deposition of metal intermediate layers the required accuracy can be achieved.
  • the receiving bore 22 should be made very precisely in the area of the rear mirror surface 15 ', since the exact position of the mirror is defined here.
  • the other areas of the holes are space-creating holes and do not have to meet high accuracy.
  • the receiving bore 22 has a cylindrical shape in this embodiment.
  • the small surface corresponding to the facet mirror rear surface 15 'thus defines the angle and the lateral surfaces 21' define the position. The exact position determination is particularly important if there are curved surfaces.
  • FIG. 3 shows a mirror facet 12 'with a conical mirror facet head 13' and a cylindrical mirror facet base 14. Accordingly, the receiving bore 22 'is also conical. The machining steps of the receiving bore 22 'are carried out in the same steps as when there is a cylindrical mirror facet head. However, it should be noted that the lateral surfaces 21 'must have a very high level of accuracy, since the mirror facet head 13' lies directly on the lateral surfaces 21 '. The evaporation of the wedge-shaped intermediate metal layer can take place in the region of the mirror surface 15 and in the conical receiving bore 22 ', as can the IBF processing.
  • the conical guide has a major advantage. It is not self-locking but self-centering. Very steep angles of the receiving bore 22 as well as of the conical see mirror facet head 13 'preferred to obtain a very good position definition.
  • the conical mirror facet head 13 ' has a radius of approximately 2,000 mm and a diameter of approximately 20 mm, measured in each case on the mirror surface 15.
  • FIG. 4 shows a plan view of a facet mirror 24.
  • the facet mirror 24 is each provided with a cylindrical mirror facet 12 and a conical mirror facet 12 '.
  • the marking 23 for azimuthal alignment can be seen in the lower region of the mirror facets 12 and 12 '.
  • a setting hole 25 or reference surfaces 26 on the facet mirror 24 define the reference to a measuring system. There may also be a plurality of pegging holes 25.
  • a facet mirror 24 contains approximately 200 mirror facets, e.g. only with cylindrical mirror facets 12 or only with conical mirror facets 12 '. However, it would also be possible to mix cylindrical and conical mirror facets 12 and 12 '.
  • V-shaped grooves can possibly be introduced in the area of the receiving bores 22 in order to vent the surfaces 21.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Mathematical Physics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

The invention relates to a method for production of a facetted mirror (24), comprising several mirror facets (12, 12'), in particular for an illumination device in a projection illumination device for microlithography and in particular for use with illumination in the region of the extreme ultra-violet, whereby the mirror facets (12,12') are produced in a first method step. In a second method step, the angular difference of the optical axis for the mirror surfaces of each of the mirror facets relative to the normal (20) of the mirror facets (12,12') is determined. In a third method step, a mounting drilling (22) for each mirror facet (12, 12') is introduced into a support plate (16), knowing the measured values from the second method step. The mounting drilling (22) is corrected for the measured values as determined in the second step, with regard to the angular position to be achieved. The mirror facets (12,12') are then introduced into the mounting drilling (22), provided for the relevant mirror facet (12,12'), whereupon a renewed measurement of the alignment of the mirror surface (15) for each mirror facet (12,12') is carried out. Finally a post-adjustment of the mirror surfaces (15) of the mirror facets (12,12') is carried out to achieve the final necessary angular accuracy.

Description

Verfahren zur Herstellung eines Facettenspieqels Process for the production of a facet mirror
Die Erfindung betrifft ein Verfahren zur Herstellung eines Facettenspiegels mit mehreren Spiegelfacetten, insbesondere für eine Beleuchtungseinrichtung in einer Projektionsbelich- tungsanlage für die Mikrolithographie, und hier insbesondere für die Verwendung mit einer Beleuchtung im Bereich des extremen Ultravioletts. Die Erfindung betrifft auch ein Verfahren zur Bearbeitung von Aufnahmebohrungen und einen Facettenspiegel mit mehreren Spiegelfacetten.The invention relates to a method for producing a facet mirror with a plurality of mirror facets, in particular for an illumination device in a projection exposure system for microlithography, and here in particular for use with illumination in the area of extreme ultraviolet. The invention also relates to a method for machining receiving bores and a facet mirror with a plurality of mirror facets.
Facettenspiegel umfassen mehrere Spiegelfacetten und sind bereits aus dem Stand der Technik bekannt.Faceted mirrors comprise several mirror facets and are already known from the prior art.
In der älteren DE 102 05 425.8 wird von Manipulatoren ausgegangen, die eine Einjustage der Spiegelfacetten erlauben. So ist es beispielsweise bekannt, dass die Spiegelfacetten einen Kugelkörper aufweisen, wobei eine Spiegeloberfläche in einer Ausnehmung des Kugelkörpers angeordnet ist und wobei die der Spiegeloberfläche abgewandte Seite des Kugelkörpers in einer Lagereinrichtung gelagert ist. An jeder der Spiegelfacetten ist auf der der Spiegeloberfläche abgewandten Seite des Kugelkörpers ein Hebelelement angeordnet. An dem Hebelelement in einem dem Kugelkörper abgewandten Bereich greifen Stellmittel an, durch welche eine Bewegung des Kugelkörpers um seinen Mittelpunkt erzielbar ist.In the older DE 102 05 425.8 manipulators are assumed which allow the mirror facets to be adjusted. For example, it is known that the mirror facets have a spherical body, a mirror surface being arranged in a recess in the spherical body and the side of the spherical body facing away from the mirror surface being mounted in a bearing device. A lever element is arranged on each of the mirror facets on the side of the spherical body facing away from the mirror surface. Adjustment means act on the lever element in a region facing away from the spherical body, by means of which movement of the spherical body around its center can be achieved.
Bei einem derartigen Aufbau lassen sich die erforderlichen Genauigkeiten für kleinere Spiegelfacetten bei Einsatz unter Strahlung im Bereich des extremen Ultravioletts nicht ohne weiteres realisieren. Des weiteren sind Spiegelfacetten aus der älteren DE 102 04 249.7 bekannt, deren Spiegeloberflächen auf einem Trägerelement angeordnet sind. Das Trägerelement weist Stellmittel auf, mit denen die Winkellage der Spiegeloberfläche in einer Ebene wenigstens annähernd senkrecht zur optischen Achse der Spiegeloberfläche in wenigstens einer Raumrichtung einstellbar ist.With such a structure, the required accuracies for smaller mirror facets when used under radiation in the extreme ultraviolet range cannot be easily achieved. Furthermore, mirror facets are known from the older DE 102 04 249.7, the mirror surfaces of which are arranged on a carrier element. The carrier element has adjusting means with which the angular position of the mirror surface in a plane can be adjusted at least approximately perpendicular to the optical axis of the mirror surface in at least one spatial direction.
Der Aufbau dieser Spiegelfacetten ist relativ aufwendig, so dass derartige Facettenspiegelanordnungen einen erhöhten Jus- tageaufwand bedeuten und relativ teuer sind.The construction of these mirror facets is relatively complex, so that such facet mirror arrangements mean an increased adjustment effort and are relatively expensive.
Facettenspiegel müssen hohe thermische Belastungen durch die absorbierte Strahlung, welche im Bereich des extremen Ultravioletts anzuordnen ist, standhalten, wobei diese Anordnung wohl nur in geringem Maße die hohe Anforderung hinsichtlich der thermischen Belastungen erfüllen.Faceted mirrors have to withstand high thermal loads due to the absorbed radiation, which is to be arranged in the extreme ultraviolet range, this arrangement probably only meeting the high requirements with regard to the thermal loads to a small extent.
Demgemäß ist es Aufgabe der Erfindung, einen Facettenspiegel für derartige Einsatzzwecke, insbesondere für Ultrahochvakuumanforderungen, zu optimieren und einen Aufbau zu schaffen, welcher mit möglichst wenig Teilen auskommt, einen sicheren, über einen langen Zeitraum stabilen und einfachen Aufbau gewährleistet.Accordingly, it is an object of the invention to optimize a facet mirror for such purposes, in particular for ultra-high vacuum requirements, and to create a structure that requires as few parts as possible, ensuring a safe, stable and simple structure over a long period of time.
Die Aufgabe wird erfindungsgemäß dadurch gelöst, dass a) in einem ersten Verfahrensschritt die Spiegelfacetten gefertigt werden, wonach b) in einem zweiten Verfahrensschritt die Winkelabweichung der optischen Achse der Spiegelfläche jeder der Spiegel- facetten gegenüber der Normalen der Spiegelfacette ermittelt wird, wonach c) in einem dritten Verfahrensschritt in Kenntnis der im zweiten Verfahrensschritt ermittelten Messwerte für jede der Spiegelfacetten eine Aufnahmebohrung in einer Trägerplatte eingebracht wird, und wobei die Aufnahmebohrung hinsichtlich der zu erzielenden Winkelstellung bereits um den im zweiten Verfahrensschritt gemessenen Messwert korrigiert wird, wonach anschließend d) die Spiegelfacetten in die für die jeweilige Spiegelfacette vorgesehene Aufnahmebohrung eingesetzt werden, wonach e) eine erneute Messung der Ausrichtung der Spiegelober läche für jede der Spiegeloberflächen erfolgt und f) abschließend eine Nachbearbeitung der Spiegeloberfläche der Spiegelfacette zum Erzielen der endgültig geforderten Winkelgenauigkeit erfolgt.The object is achieved according to the invention in that a) the mirror facets are manufactured in a first method step, after which b) in a second method step the angular deviation of the optical axis of the mirror surface of each of the mirror surfaces facets compared to the normal of the mirror facet is determined, according to which c) in a third method step, with knowledge of the measured values determined in the second method step, a receiving bore is made in a carrier plate for each of the mirror facets, and the receiving bore is already about the second position with regard to the angular position to be achieved The measured value measured in the method step is corrected, after which d) the mirror facets are inserted into the mounting hole provided for the respective mirror facet, after which e) the alignment of the mirror surface is measured again for each of the mirror surfaces, and f) finally, the mirror surface of the mirror facet is reworked Achieve the final required angular accuracy.
Die Aufgabe wird bezüglich des Verfahrens zur Bearbeitung der Aufnahmebohrungen durch die kennzeichnenden Merkmale von Anspruch 6 gelöst.The object is achieved with respect to the method for machining the receiving bores by the characterizing features of claim 6.
Die Aufgabe wird bezüglich des Facettenspiegel durch die kennzeichnenden Merkmale von Anspruch 10 gelöst.The object is achieved with respect to the facet mirror by the characterizing features of claim 10.
Um die erforderliche Genauigkeit zu erreichen, wird bei der Fertigung schrittweise vorgegangen. Zunächst werden die Einzelfacetten auf den bestmöglichen Winkelfehler von ca. 200" gefertigt. Diese Abweichung wird danach mit einem Winkelmessgerät, vorzugsweise mit einem Autokollimationsfernrohr mit Positioniertisch, ermittelt. Die Aufnahmebohrungen für die Spiegelfacetten werden nun mit bestmöglichster Fertigungsge- nauigkeit, welche hier z.B. 50" beträgt, in die Trägerplatte eingebracht. Dabei ist bereits festgelegt worden, welche der Spiegelfacetten mit welchem der zuvor gemessenen Winkelfehler in welche der Aufnahmebohrungen eingesetzt wird. Die Aufnahmebohrungen können daher entsprechend dem gemessenen Winkelfehler der Spiegelfacetten bereits korrigiert werden. Der Restfehler nach dem Einsetzen der Spiegelfacetten in die jeweiligen Aufnahmebohrungen wird wiederum über ein Winkelmessgerät bestimmt. Dieser Fehler liegt aufgrund der zu erzielenden Fertigungsgenauigkeiten in einem Bereich, welcher es zu- lässt, den Restfehler über ein Oberflächenpräzisionsbearbei- tungsverfahren zu korrigieren.In order to achieve the required accuracy, the manufacturing process is carried out step by step. First, the individual facets are manufactured to the best possible angular error of approx. 200 ". This deviation is then determined with an angle measuring device, preferably with an autocollimation telescope with a positioning table. The mounting holes for the mirror facets are now made with the best possible manufacturing accuracy, which in this case is, for example, 50 ", has been introduced into the carrier plate. It has already been determined which of the mirror facets with which of the previously measured angle errors is to be inserted into which of the mounting holes. The mounting holes can therefore already be corrected in accordance with the measured angle errors of the mirror facets. The residual error after inserting the mirror facets into the respective mounting holes is again determined using an angle measuring device, which is due to the manufacturing accuracy to be achieved in a range that allows the residual error to be corrected using a surface precision processing method.
So lässt sich die erforderliche Qualität hinsichtlich der Ausrichtung der einzelnen Spiegelfacetten erzielen. Die Spiegelfacetten sind dann fest mit der Trägerplatte verbunden, so dass eine auch über einen langen Zeitraum stabile Ausrichtung gewährleistet ist. Außerdem wird durch den direkten Kontakt der Spiegelfacette mit der Trägerplatte ein Aufbau erreicht, welcher die von den Spiegelfacetten absorbierte Wärme ideal ableitet. Damit ist ein einfacher, kostengünstiger, sehr stabiler, schockunempfindlicher, materialreduzierender, kleb- stoffreier und thermisch unproblematischer Aufbau eines Facettenspiegels im Ultrahochvakuumbereich, insbesondere für den Einsatz in der EUV-Lithographie, möglich.This enables the required quality with regard to the alignment of the individual mirror facets to be achieved. The mirror facets are then firmly connected to the carrier plate, so that stable alignment is ensured even over a long period of time. In addition, the direct contact of the mirror facet with the carrier plate achieves a structure which ideally dissipates the heat absorbed by the mirror facets. This enables a simple, inexpensive, very stable, shock-resistant, material-reducing, adhesive-free and thermally unproblematic construction of a facet mirror in the ultra-high vacuum range, in particular for use in EUV lithography.
Das Verfahren zur Herstellung von Facettenspiegeln besitzt gegenüber Lösungen mit Einzelmanipulatoren nicht nur Vorteile hinsichtlich einem geringeren Montage- und Justageaufwand und einer kostengünstigeren Herstellung, sondern dieses Verfahren erlaubt es auch, wesentlich kleinere Facettenspiegel herzustellen und in vielfacher Ausführung in einem Facettenspiegel anzuordnen, wobei ein Durchmesserbereich der Spiegelfacetten von 3 mm bis 50 mm ohne Schwierigkeiten realisierbar ist.Compared to solutions with individual manipulators, the method for producing facet mirrors not only has advantages in terms of less assembly and adjustment effort and more cost-effective production, but this method also makes it possible to produce much smaller facet mirrors and in multiple versions in a facet mirror to be arranged, with a diameter range of the mirror facets of 3 mm to 50 mm being realizable without difficulty.
In vorteilhafter Weise kann vorgesehen sein, dass die Bearbeitung der Spiegelfacette über Ion Bea Figuring (IBF) erfolgt. Der dafür notwendige Abtrag von typischerweise 1 μm bis 2 μm, wobei bis maximal 5 μm ohne Einbußen hinsichtlich der Oberflächenrauhigkeit der bearbeiteten Fläche möglich sind, kann dabei in einem Bearbeitungsschritt durchgeführt werden.It can advantageously be provided that the processing of the mirror facet takes place via ion bea figuring (IBF). The necessary removal of typically 1 μm to 2 μm, with a maximum of 5 μm being possible without sacrificing the surface roughness of the machined surface, can be carried out in one machining step.
In erfindungsgemäßer Weiterbildung kann ferner vorgesehen sein, dass die Bearbeitung der Spiegelfacette über das Aufdampfen von vorzugsweise keiligen Metallzwischenschichten erfolgt. Dieser Bearbeitungsschritt stellt eine Alternative zur IBF-Bearbeitung dar.In a further development according to the invention it can further be provided that the processing of the mirror facet takes place via the vapor deposition of preferably wedge-shaped metal intermediate layers. This processing step represents an alternative to IBF processing.
In erfindungsgemäßer Ausgestaltung kann vorgesehen sein, dass in einem ersten Verfahrensschritt die Aufnahmebohrungen mit einer Fertigungsgenauigkeit von 30" gefertigt werden, wonach in einem zweiten Verfahrensschritt die Aufnahmebohrungen an definierten Führungsflächen und Auflageflächen zur Erzielung der geforderten Genauigkeit über IBF bearbeitet werden.In an embodiment according to the invention it can be provided that in a first process step the receiving bores are manufactured with a manufacturing accuracy of 30 ", after which in a second process step the receiving bores are machined on defined guide surfaces and support surfaces in order to achieve the required accuracy via IBF.
Vorteilhafterweise ist die Bearbeitung der Aufnahmebohrungen über IBF wesentlich genauer als andere Feinbearbeitungsmethoden.Advantageously, machining the locating holes via IBF is much more precise than other fine machining methods.
Weitere vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und aus den nachfolgend anhand der Zeichnung prinzipmäßig beschriebenen Ausführungsbeispielen. Es zeigt :Further advantageous refinements and developments of the invention result from the subclaims and from the exemplary embodiments described in principle below with reference to the drawing. It shows :
Figur 1 einen Aufbau eines EUV-Beleuchtungssystems mit einer Lichtquelle, einem Beleuchtungssystem und einem Proj ektionso j ektiv;FIG. 1 shows a structure of an EUV lighting system with a light source, a lighting system and a projection lens;
Figur 2 Längsschnitt einer zylindrisch ausgeführten Spiegelfacette, wobei die Spiegelfacette in einer Trägerplatte gelagert ist;Figure 2 shows a longitudinal section of a cylindrical mirror facet, the mirror facet being mounted in a carrier plate;
Figur 3 Längsschnitt einer konisch ausgeführten Spiegelfacette, wobei die Spiegelfacette in einer Trägerplatte gelagert ist; undFigure 3 shows a longitudinal section of a conical mirror facet, the mirror facet being mounted in a carrier plate; and
Figur 4 eine Draufsicht auf einen Facettenspiegel, welcher beide Ausführungsformen der in Figur 2 und Figur 3 dargestellten Spiegelfacetten enthält.FIG. 4 shows a plan view of a facet mirror, which contains both embodiments of the mirror facets shown in FIG. 2 and FIG. 3.
Die Figur 1 zeigt in einer Übersichtsdarstellung eine EUV- Projektionsbelichtungsanlage mit einem kompletten EUV- Beleuchtungssystem mit einer Lichtquelle 1 und einem nur prinzipmäßig dargestellten Projektionsobjektiv 2. Des weiteren ist in dem Beleuchtungssystem ein Planspiegel 3, ein erstes optisches Element 4 mit einer Vielzahl von Facettenspiegeln, ein nachfolgend angeordnetes zweites optisches Element 5 mit einer Vielzahl von Rasterelementen in Form von Facettenspiegeln und zwei Abbildungsspiegel 6a und βb angeordnet. Die Abbildungsspiegel 6a und 6b dienen dazu, die Facettenspiegel des zweiten optischen Elements 5 in eine Eintrittspupille des Projektionsobjektives 2 abzubilden. Ein Reticle 7 kann als Scanning-System in y-Richtung verfahrbar sein. Eine Reticleebene 8 stellt auch gleichzeitig die Objektebene dar.FIG. 1 shows an overview of an EUV projection exposure system with a complete EUV illumination system with a light source 1 and a projection lens 2 that is only shown in principle. Furthermore, in the lighting system there is a plane mirror 3, a first optical element 4 with a large number of facet mirrors, a subsequently arranged second optical element 5 with a plurality of raster elements in the form of facet mirrors and two imaging mirrors 6a and βb. The imaging mirrors 6a and 6b serve to image the facet mirrors of the second optical element 5 in an entrance pupil of the projection objective 2. A reticle 7 can be moved in the y direction as a scanning system. A reticle level 8 also simultaneously represents the object level.
Um unterschiedliche Lichtkanäle zur Setting-Einstellung in den Strahlengang des Beleuchtungssystems zu verbringen, ist beispielsweise eine größere Anzahl M an Spiegelfacetten des zweiten optischen Elements 5 vorhanden als es der Anzahl N der Spiegelfacetten des ersten optischen Elementes 4 entspricht. In der Figur 1 sind die Spiegelfacetten aus Übersichtlichkeitsgründen nicht dargestellt. Als zu belichtendes Objekt befindet sich auf einer Trägereinheit 9 ein Wafer 11.In order to spend different light channels for setting the setting in the beam path of the lighting system, there is, for example, a larger number M of mirror facets of the second optical element 5 than corresponds to the number N of mirror facets of the first optical element 4. For reasons of clarity, the mirror facets are not shown in FIG. 1. A wafer 11 is located on a carrier unit 9 as the object to be exposed.
Figur 2 zeigt eine Spiegelfacette 12, welche aus einem zylindrischen Kopf 13 und einem zylindrischen Fuß 14 gebildet ist. In dem Ausführungsbeispiel hat der zylindrische Kopf 13 z.B. einen Durchmesser von 20 mm und der zylindrische Fuß 14 einen Durchmesser von ca. 8 mm. Insgesamt besitzt die Spiegelfacette 12 z.B. eine Länge von 60 mm. Als Material der Spiegelfacette 12 wird Silizium gewählt, aus Gründen der Bearbeitung und der thermischen Belastung. Selbstverständlich kann die Spiegelfacette 12 auch aus einer Edelstahllegierung hergestellt sein oder anderen Materialien, die die Anforderungen an Polierbarkeit, mechanischer, thermischer und zeitlicher Stabilität und die Ultrahochvakuumtauglichkeit (UHV- Tauglichkeit) erfüllen. Wichtig bei der Auswahl der Materialien für die Spiegelfacetten 12 ist besonders, dass die verwendeten Materialien eine hohe Wärmeleitfähigkeit besitzen, da die auftreffende Leistung auf die Spiegeloberfläche 15 in den Körper hineinfließen kann, und somit der Spiegel nicht an Präzision verliert. Der Spiegelfacettenkopf 13 besitzt als Frontfläche eine sphärische, konkave Spiegelfläche 15 mit einem Radius von ca. 2.000 mm. Natürlich können die Spiegelflächen 15 auch plan, sphärisch, asphärisch, konvex und konkav ausgebildet sein. Zusätzlich ist eine Markierung 23 (siehe Figur 4) zur richtigen azimutalen Orientierung der Spiegelfacette 12 an der Spiegeloberfläche 15 angebracht. Die Markierung 23 muss auf einer entsprechenden Markierung auf der planen Trägerplatte 16 ausgerichtet sein. Selbstverständlich kann die Trägerplatte 16 auch asphärisch ausgebildet sein, damit, wenn gewünscht, die Spiegelfacetten 12, 12' nicht in einer Ebene angeordnet sind. Die Trägerplatte 16 ist aus Stahl mit ca. 50 mm Dicke gebildet. Natürlich kann die Trägerplatte 16 auch aus Silizium hergestellt werden, da hier wieder die thermale Leitfähigkeit Vorteile bringt. Auch andere Materialen sind möglich.FIG. 2 shows a mirror facet 12, which is formed from a cylindrical head 13 and a cylindrical base 14. In the exemplary embodiment, the cylindrical head 13 has, for example, a diameter of 20 mm and the cylindrical base 14 has a diameter of approximately 8 mm. Overall, the mirror facet 12 has a length of 60 mm, for example. Silicon is selected as the material of the mirror facet 12, for reasons of processing and thermal stress. Of course, the mirror facet 12 can also be made of a stainless steel alloy or other materials that meet the requirements for polishability, mechanical, thermal and temporal stability and ultra-high vacuum compatibility (UHV compatibility). It is particularly important in the selection of the materials for the mirror facets 12 that the materials used have a high thermal conductivity, since the incident power can flow into the body on the mirror surface 15 and thus the mirror does not lose its precision. The front side of the mirror facet head 13 has a spherical, concave mirror surface 15 with a radius of approximately 2,000 mm. Of course, the mirror surfaces 15 can also be flat, spherical, aspherical, convex and concave. In addition, a marking 23 (see FIG. 4) for correct azimuthal orientation of the mirror facet 12 is attached to the mirror surface 15. The marking 23 must be aligned with a corresponding marking on the flat carrier plate 16. Of course, the carrier plate 16 can also be aspherical, so that, if desired, the mirror facets 12, 12 'are not arranged in one plane. The carrier plate 16 is made of steel with a thickness of approximately 50 mm. Of course, the carrier plate 16 can also be made of silicon, since thermal conductivity again has advantages here. Other materials are also possible.
Der zylindrische Fuß 14 ist mit einem Gewinde 17 versehen, um die Spiegelfacette 12 in ihrer Position mit einer definierten Kraft, beispielsweise durch eine Gewindemutter 18 und eine Feder 19 realisiert, zu halten. Die Feder 19 kann als Zylinderfeder oder als Scheibenfeder aus Edelstahl gebildet sein. Dies ist besonders wichtig, wenn Materialien mit unterschiedlichen thermischen Ausdehnungskoeffizienten für die Trägerplatte 16 und für die Spiegelfacette 12, wie im vorliegenden Ausführungsbeispiel, Verwendung finden.The cylindrical base 14 is provided with a thread 17 in order to hold the mirror facet 12 in position with a defined force, for example realized by a threaded nut 18 and a spring 19. The spring 19 can be formed as a cylindrical spring or as a disc spring made of stainless steel. This is particularly important if materials with different coefficients of thermal expansion are used for the carrier plate 16 and for the mirror facet 12, as in the present exemplary embodiment.
Die Spiegelfacetten 12 müssen unter verschiedenen Kippwinkeln auf der Trägerplatte 16 angeordnet sein, damit die auftreffenden Strahlen in eine vorbestimmte Richtung reflektiert werden. Die Normale 20 der Spiegelfacette 12 muss somit in einer bestimmten Sollrichtung liegen. Aus diesem Grunde muss die Spiegeloberfläche 15 gut orientiert werden, damit die genau gefertigte Spiegeloberfläche 15 genau auf die Körperachse bzw. auf die Sollrichtung ausrichtbar ist.The mirror facets 12 must be arranged at different tilt angles on the carrier plate 16 so that the incident rays are reflected in a predetermined direction. The normal 20 of the mirror facet 12 must therefore lie in a certain desired direction. For this reason the mirror surface 15 are well oriented so that the precisely manufactured mirror surface 15 can be aligned precisely on the body axis or on the desired direction.
Nach Fertigung des Facettenspiegels 12 wird der Bezug zwischen Spiegeloberfläche 15 und Spiegelrückfläche 15' gemessen. Es kann aber auch vorteilhafterweise der Bezug zwischen der Mantelfläche 21 und der Spiegeloberfläche 15 gemessen werden, damit sofort ein zu korrigierender Fehler ermittelt werden kann. Das bedeutet, dass eine Soll-Winkelrichtung und eine Ist-Winkelrichtung ermittelt, daraus die Differenz gebildet wird und diese Differenz beseitigt werden muss.After the facet mirror 12 has been produced, the relationship between the mirror surface 15 and the rear mirror surface 15 'is measured. However, the relationship between the lateral surface 21 and the mirror surface 15 can also advantageously be measured so that an error to be corrected can be determined immediately. This means that a target angular direction and an actual angular direction are determined, the difference is formed therefrom and this difference must be eliminated.
Dies kann in mehreren Schritten erfolgen. Der erste Schritt zielt auf die Aufnahmebohrung 22. Da die Spiegeloberfläche 15 nur auf ca. 200" genau zur Trägerplatte 16 gefertigt werden kann, wird die Aufnahmebohrung 22 an der Stelle der positionsbestimmenden Mantelflächen 21 der Spiegelfacette 12 so lange dementsprechend bearbeitet, bis die Bezugsflächen 21 um die vorher gemessene Winkelkorrektur (in den meisten Fällen 200") verkippt sind. Danach kann die feinbearbeitete Mantelfläche 21 mit einem gemessenen Fehler zusätzlich durch Aufdampfen einer keilförmigen Metallzwischenschicht die geforderte Genauigkeit von ca. 10" erreichen. Außerdem wäre es möglich, sofern die nötige Genauigkeit noch nicht erreicht worden ist, dass die Spiegeloberfläche mit Ion Beam Figuring nachbearbeitet werden kann. Des weiteren kann die notwendige Genauigkeit auch nur mit Ion Beam Figuring, wobei in der Endbearbeitung durch Ionen eine Abtragung der zu behandelnden Fläche erfolgt, erzielt werden. Der zur IBF-Bearbeitung notwendige Abtrag von typischerweise 1 bis 2 μm kann in diesem Bearbeitungsschritt ohne Verschlechterung der Oberflächenrau- higkeit durchgeführt werden. Somit kann eine Endgenauigkeit von ca. 1" erzielt werden.This can be done in several steps. The first step is aimed at the receiving bore 22. Since the mirror surface 15 can only be manufactured with an accuracy of approximately 200 ″ relative to the support plate 16, the receiving bore 22 is machined accordingly at the position of the position-defining lateral surfaces 21 of the mirror facet 12 until the reference surfaces 21 are tilted by the previously measured angle correction (in most cases 200 "). Thereafter, the finely machined lateral surface 21 with a measured error can additionally achieve the required accuracy of approximately 10 "by vapor deposition of a wedge-shaped intermediate metal layer. In addition, if the necessary accuracy has not yet been achieved, the mirror surface can be reworked with ion beam figuring Furthermore, the necessary accuracy can also be achieved only with ion beam figuring, in which the surface to be treated is removed by ions in the final processing. The removal of typically 1 to 2 μm required for IBF processing can be carried out in this processing step without Deterioration of surface roughness ability to be carried out. A final accuracy of approx. 1 "can thus be achieved.
Alternativ kann auch die mit der Aufnahmebohrung 22 korrespondierende Spiegelrückfläche 15' (winkeldefinierende Führungsfläche) der Spiegelfacette 12 mit IBF bearbeitet werden oder das Aufbringen einer keilförmigen Metallzwischenschicht im Bereich der Spiegeloberfläche 15 vorgenommen oder die mit der Aufnahmebohrung 22 korrespondierende Spiegelrückfläche 15' der Spiegelfacette 12 mit der keilförmigen Metallzwischenschicht versehen werden. Um den genauen Ort der Aufnah- mebohrung 22 zum Aufdampfen der Metallzwischenschicht ermitteln zu können, wird probeweise eine Spiegelfacette 12 eingesetzt und die Reflektivität gemessen. Das zu aufdampfende Metall kann Gold sein, da dies weich ist und sich auch den Formen anpasst. Natürlich kann jede Form von Metall verwendet werden, beispielsweise Edelmetalle, • Gallium, Platin, Silber oder Indium. Es ist aber wichtig, ein Metall zu nehmen, welches sich leicht abscheiden lässt und dementsprechend auch noch einen guten Wärmekontakt herstellt.Alternatively, the mirror rear surface 15 ′ (angle-defining guide surface) of the mirror facet 12 corresponding to the receiving bore 22 can also be machined with IBF, or a wedge-shaped metal intermediate layer can be applied in the region of the mirror surface 15, or the mirror rear surface 15 ′ of the mirror facet 12 corresponding to the receiving bore 22 wedge-shaped metal intermediate layer. In order to be able to determine the exact location of the receiving bore 22 for evaporating the intermediate metal layer, a mirror facet 12 is used on a trial basis and the reflectivity is measured. The metal to be evaporated can be gold because it is soft and also adapts to the shapes. Of course, any form of metal can be used, for example precious metals, gallium, platinum, silver or indium. However, it is important to use a metal that is easy to separate and therefore also makes good thermal contact.
Eine weitere Alternative neben dem Aufdampfen von Metallzwischenschichten zur IBF-Bearbeitung ist das Drehen der verkippten Spiegelfacetten 12 und 12' um ihre Achsen. Durch Drehen kann erreicht werden, dass die Korrektur nur noch in einer Richtung erfolgt und somit eine Vereinfachung der weiteren Prozessschritte möglich ist. Wenn nur in der einen Richtung eine hohe Genauigkeit erreicht werden kann, aber in der anderen Richtung nicht, so kann durch Drehen der Spiegelfacetten 12 und 12 ' erreicht werden, dass die Genauigkeit in allen Richtungen gleich hoch ist. Danach kann entweder durch IBF oder Aufdampfen von Metallzwischenschichten die geforderte Genauigkeit erzielt werden.Another alternative besides the vapor deposition of metal intermediate layers for IBF processing is to rotate the tilted mirror facets 12 and 12 'about their axes. By turning, it can be achieved that the correction is only carried out in one direction, thus simplifying the further process steps. If high accuracy can only be achieved in one direction, but not in the other direction, rotating the mirror facets 12 and 12 'means that the accuracy is the same in all directions. After that, either by IBF or vapor deposition of metal intermediate layers the required accuracy can be achieved.
Die Aufnahmebohrung 22 sollte im Bereich der Spiegelrückfläche 15' sehr genau gefertigt werden, da hier die exakte Lage des Spiegels definiert wird. Die weiteren Flächen der Bohrungen sind platzschaffende Bohrungen und müssen keine hohe Genauigkeit erfüllen.The receiving bore 22 should be made very precisely in the area of the rear mirror surface 15 ', since the exact position of the mirror is defined here. The other areas of the holes are space-creating holes and do not have to meet high accuracy.
Die Aufnahmebohrung 22 besitzt in diesem Ausführungsbeispiel eine zylindrische Form. Damit definiert die zur Facettenspie- gelrückfläche 15' korrespondierende kleine Fläche den Winkel und die Mantelflächen 21' die Position. Die genaue Positionsbestimmung ist besonders wichtig, wenn gekrümmte Oberflächen vorliegen.The receiving bore 22 has a cylindrical shape in this embodiment. The small surface corresponding to the facet mirror rear surface 15 'thus defines the angle and the lateral surfaces 21' define the position. The exact position determination is particularly important if there are curved surfaces.
Figur 3 zeigt eine Spiegelfacette 12 ' mit einem konischen Spiegelfacettenkopf 13 ' und einem zylindrischen Spiegelfacettenfuß 14. Die Aufnahmebohrung 22' ist dementsprechend auch konisch ausgeführt. Die Bearbeitungsschritte der Aufnahmeboh- rung 22' werden in denselben Schritten durchgeführt, wie wenn ein zylindrischer Spiegelfacettenkopf vorliegt. Beachtet werden sollte aber, dass die Mantelflächen 21' eine sehr hohe Genauigkeit besitzen müssen, da der Spiegelfacettenkopf 13' an den Mantelflächen 21' direkt anliegt. Das Aufdampfen der keiligen Metallzwischenschicht kann im Bereich der Spiegeloberfläche 15 und in der konischen Aufnahmebohrung 22 ' ebenso wie die IBF-Bearbeitung stattfinden.FIG. 3 shows a mirror facet 12 'with a conical mirror facet head 13' and a cylindrical mirror facet base 14. Accordingly, the receiving bore 22 'is also conical. The machining steps of the receiving bore 22 'are carried out in the same steps as when there is a cylindrical mirror facet head. However, it should be noted that the lateral surfaces 21 'must have a very high level of accuracy, since the mirror facet head 13' lies directly on the lateral surfaces 21 '. The evaporation of the wedge-shaped intermediate metal layer can take place in the region of the mirror surface 15 and in the conical receiving bore 22 ', as can the IBF processing.
Die konische Führung besitzt einen wesentlichen Vorteil. Sie ist nicht selbstklemmend aber selbstzentrierend. Es werden sehr steile Winkel der Aufnahmebohrung 22 wie auch des koni- sehen Spiegelfacettenkopfes 13' bevorzugt, um eine sehr gute Positionsdefinition zu erhalten. Der konische Spiegelfacettenkopf 13' besitzt einen Radius von ca. 2.000 mm und einen Durchmesser von ca. 20 mm jeweils gemessen an der Spiegeloberfläche 15.The conical guide has a major advantage. It is not self-locking but self-centering. Very steep angles of the receiving bore 22 as well as of the conical see mirror facet head 13 'preferred to obtain a very good position definition. The conical mirror facet head 13 'has a radius of approximately 2,000 mm and a diameter of approximately 20 mm, measured in each case on the mirror surface 15.
Da grundsätzlich der Aufbau der Spiegelfacette und die Aufnahmebohrung dem Ausführungsbeispiel nach der Figur 2 entspricht, werden für gleiche Teile auch die gleichen Bezugszeichen verwendet.Since the structure of the mirror facet and the receiving bore basically correspond to the exemplary embodiment according to FIG. 2, the same reference symbols are also used for the same parts.
Figur 4 zeigt eine Draufsicht auf einen Facettenspiegel 24. Der Facettenspiegel 24 ist jeweils mit einer zylindrischen Spiegelfacette 12 und einer konischen Spiegelfacette 12 ' versehen. Die Markierung 23 zur azimutalen Ausrichtung ist jeweils im unteren Bereich der Spiegelfacetten 12 und 12 ' erkennbar. Ein Absteckloch 25 oder Referenzflächen 26 an dem Facettenspiegel 24 definieren den Bezug zu einem Meßsystem. Es können auch mehrere Abstecklöcher 25 vorhanden sein.FIG. 4 shows a plan view of a facet mirror 24. The facet mirror 24 is each provided with a cylindrical mirror facet 12 and a conical mirror facet 12 '. The marking 23 for azimuthal alignment can be seen in the lower region of the mirror facets 12 and 12 '. A setting hole 25 or reference surfaces 26 on the facet mirror 24 define the reference to a measuring system. There may also be a plurality of pegging holes 25.
Ein Facettenspiegel 24 enthält ca. 200 Spiegelfacetten, z.B. nur mit zylindrischen Spiegelfacetten 12 oder nur mit konischen Spiegelfacetten 12'. Es wäre aber auch möglich eine Mischung aus zylindrischen und konischen Spiegelfacetten 12 und 12' vorzunehmen.A facet mirror 24 contains approximately 200 mirror facets, e.g. only with cylindrical mirror facets 12 or only with conical mirror facets 12 '. However, it would also be possible to mix cylindrical and conical mirror facets 12 and 12 '.
Da das Gesamtsystem im Vakuum betrieben wird, dürfen keine Sackbereiche, also keine Bereiche, die fast vollständig geschlossen sind, im Bereich der Aufnahmebohrung 22 vorliegen. Eventuell können V-förmige Nuten im Bereich der Aufnahmebohrungen 22 eingebracht werden, um die Flächen 21 zu entlüften. Since the entire system is operated in a vacuum, there must be no sack areas, that is to say no areas that are almost completely closed, in the area of the receiving bore 22. V-shaped grooves can possibly be introduced in the area of the receiving bores 22 in order to vent the surfaces 21.

Claims

Patentansprüche : Claims:
1. Verfahren zur Herstellung eines Facettenspiegels mit mehreren Spiegelfacetten, insbesondere für eine Beleuchtungseinrichtung in einer Projektionsbelichtungsanlage für die Mikrolithographie und hier insbesondere für die Verwendung mit einer Beleuchtung im Bereich des extremen Ultravioletts, wobei a) in einem ersten Verfahrensschritt die Spiegelfacetten (12, 12') gefertigt werden, wonach b) in einem zweiten Verfahrensschritt die Winkelabweichung der optischen Achse der Spiegelfläche jeder der Spiegelfacetten (12,12') gegenüber der Normalen (20) der Spiegelfacette (12,12') ermittelt wird, wonach c) in einem dritten Verfahrensschritt in Kenntnis der im zweiten Verfahrensschritt ermittelten Messwerte für jede der Spiegelfacetten (12,12') eine Aufnahmeboh- rung (22) in eine Trägerplatte (16) eingebracht wird, wobei die Aufnahmebohrung (22) hinsichtlich der zu erzielenden Winkelstellung bereits um den im zweiten Verfahrensschritt gemessenen Messwert korrigiert wird, wonach anschließend d) die Spiegelfacetten (12,12') in die für die jeweilige Spiegelfacette (12,12') vorgesehene Aufnahmebohrung (22) eingesetzt werden, wonach e) eine erneute Messung der Ausrichtung der Spiegeloberfläche (15) jeder der Spiegelfacetten (12,12') erfolgt und f) abschließend eine Nachbearbeitung der Spiegeloberfläche (15) der Spiegelfacette (12,12') zum Erzielen der endgültigen geforderten Winkelgenauigkeit erfolgt. 1. Method for producing a facet mirror with a plurality of mirror facets, in particular for an illumination device in a projection exposure system for microlithography and here in particular for use with illumination in the extreme ultraviolet range, with a) the mirror facets (12, 12 ') in a first process step. ) are produced, after which b) in a second method step the angular deviation of the optical axis of the mirror surface of each of the mirror facets (12, 12 ') compared to the normal (20) of the mirror facet (12, 12') is determined, after which c) in a third Method step with knowledge of the measured values determined in the second method step for each of the mirror facets (12, 12 '), a receiving bore (22) is made in a carrier plate (16), the receiving bore (22) with respect to the angular position to be achieved already being adjusted by measured value is corrected in the second method step, after which end d) the mirror facets (12, 12 ') are inserted into the receiving bore (22) provided for the respective mirror facet (12, 12'), after which e) a new measurement of the alignment of the mirror surface (15) of each of the mirror facets (12, 12 ') and f) finally, the mirror surface (15) of the mirror facet (12, 12') is reworked to achieve the final required angular accuracy.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Nachbearbeitung der Spiegelfacette (12,12') im Bereich der Spiegeloberfläche (15) erfolgt.2. The method according to claim 1, characterized in that the finishing of the mirror facet (12, 12 ') takes place in the region of the mirror surface (15).
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Nachbearbeitung der Spiegelfacette (12,12') im Bereich der Rückfläche (15'), welche der korrespondierenden Aufnahmebohrungen (22) zugewandt ist, erfolgt.3. The method according to claim 1, characterized in that the finishing of the mirror facet (12, 12 ') takes place in the region of the rear surface (15') which faces the corresponding receiving bores (22).
4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass die Bearbeitung der Spiegelfacette (12,12') ü- ber Ion Beam Figuring erfolgt.4. The method according to claim 1, 2 or 3, characterized in that the processing of the mirror facet (12, 12 ') takes place via ion beam figuring.
5. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass die Bearbeitung der Spiegelfacette (12,12') ü- ber das Aufdampfen von Metallzwischenschichten erfolgt.5. The method according to claim 1, 2 or 3, characterized in that the processing of the mirror facet (12, 12 ') takes place via the vapor deposition of metal intermediate layers.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Metallzwischenschichten keilig ausgebildet werden.6. The method according to claim 5, characterized in that the metal intermediate layers are wedge-shaped.
7. Verfahren zur Bearbeitung von Aufnahmebohrungen, in welche Facettenspiegel eingesetzt werden, insbesondere für eine Beleuchtungseinrichtung einer Projektionsbelich- tungsanlage für die Mikrolithographie, und hier insbesondere für die Verwendung mit einer Beleuchtung im Bereich des extremen Ultravioletts, wobei in einem ersten Verfahrensschritt die Aufnahmebohrungen (22) mit einer Fertigungsgenauigkeit von 30" gefertigt werden, wonach in einem zweiten Verfahrensschritt die Aufnahmebohrungen (22) an definierten Führungsflächen und Auflageflächen (21) zur Erzielung der geforderten Genauigkeit über Ion Beam Figuring bearbeitet werden.7. Method for machining receiving bores in which facet mirrors are inserted, in particular for an illumination device of a projection exposure system for microlithography, and here in particular for use with illumination in the extreme ultraviolet range, the receiving bores (22 ) with a manufacturing accuracy of 30 ", after which the receiving bores (22) on defined guide surfaces and bearing surfaces (21) be processed via ion beam figuring to achieve the required accuracy.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Aufnahmebohrungen (22) jeweils korrespondierende zylindrische Formen zu den Spiegelfacetten (12) aufweisen.8. The method according to claim 7, characterized in that the receiving bores (22) each have corresponding cylindrical shapes to the mirror facets (12).
9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Aufnahmebohrungen (22) jeweils korrespondierende konische Formen zu den Spiegelfacetten (12') aufweisen.9. The method according to claim 7, characterized in that the receiving bores (22) each have corresponding conical shapes to the mirror facets (12 ').
10. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Bearbeitung der Aufnahmebohrungen (22) über das Aufdampfen von Metallzwischenschichten, insbesondere von Goldschichten, erfolgt.10. The method according to claim 7, characterized in that the machining of the receiving bores (22) takes place via the vapor deposition of metal intermediate layers, in particular gold layers.
11. Facettenspiegel mit mehreren Spiegelfacetten, insbesondere für den Einsatz in einer Beleuchtungseinrichtung in einer Projektionsbelichtungsanlage für die Mikrolithogra- phie, insbesondere bei einem Wellenlängenbereich des extremen Ultravioletts, wobei jede der Spiegelfacetten11. Facet mirror with several mirror facets, in particular for use in an illumination device in a projection exposure system for microlithography, in particular in a wavelength range of the extreme ultraviolet, each of the mirror facets
(12,12') eine Spiegeloberfläche (15) aufweist, mit einer Trägerplatte (16) , welche Aufnahmebohrungen (22) für die Spiegelfacetten (12,12') aufweist und mit in die Aufnah- mebohrungen (22) eingebrachten und auf der jeweiligen der Spiegeloberfläche (15) abgewandten Seite der Trägerplatte(12, 12 ') has a mirror surface (15), with a carrier plate (16), which has receiving bores (22) for the mirror facets (12, 12') and has been made in the receiving bores (22) and on the respective one the side of the support plate facing away from the mirror surface (15)
(16) verbundenen Spiegelfacetten.(16) connected mirror facets.
12. Facettenspiegel nach Anspruch 11, dadurch gekennzeichnet, dass die Spiegelfacetten (12) zylindrische Formen aufweisen. 12. facet mirror according to claim 11, characterized in that the mirror facets (12) have cylindrical shapes.
13. Facettenspiegel nach Anspruch 11, dadurch gekennzeichnet, dass die Spiegelfacetten (12') konische Formen aufweisen.13. facet mirror according to claim 11, characterized in that the mirror facets (12 ') have conical shapes.
14. Facettenspiegel nach Anspruch 11, dadurch gekennzeichnet, dass die Spiegelfacetten (12,12') aus Silizium gebildet sind.14. Facet mirror according to claim 11, characterized in that the mirror facets (12, 12 ') are formed from silicon.
15. Facettenspiegel nach Anspruch 11, dadurch gekennzeichnet, dass die Spiegelfacetten (12,12') aus einer Edelstahllegierung gebildet sind.15. facet mirror according to claim 11, characterized in that the mirror facets (12, 12 ') are formed from a stainless steel alloy.
16. Facettenspiegel nach Anspruch 11, dadurch gekennzeichnet, dass die Spiegelfacetten (12,12') aus einem Spiegelfacettenkopf (13) und einem Spiegelfacettenfuß (14) gebildet sind.16. Facet mirror according to claim 11, characterized in that the mirror facets (12, 12 ') are formed from a mirror facet head (13) and a mirror facet foot (14).
17. Facettenspiegel nach Anspruch 16, dadurch gekennzeichnet, dass am Kopfteil (13) zur azimutalen Orientierung eine Markierung (23) vorgesehen ist.17. facet mirror according to claim 16, characterized in that a mark (23) is provided on the head part (13) for azimuthal orientation.
18. Facettenspiegel nach einem der Ansprüche 11 bis 17, dadurch gekennzeichnet, dass die Verbindung der Spiegelfacette (12, 12') mit der Trägerplatte (16) über eine Kombination aus Federelement (19) und Befestigungselementen18. Facet mirror according to one of claims 11 to 17, characterized in that the connection of the mirror facet (12, 12 ') with the carrier plate (16) via a combination of spring element (19) and fastening elements
(17,18) realisiert ist.(17,18) is realized.
19. Facettenspiegel nach Anspruch 18, dadurch gekennzeichnet, dass das Federelement (19) als Zylinderfeder oder als Scheibenfeder ausgebildet ist. 19. Faceted mirror according to claim 18, characterized in that the spring element (19) is designed as a cylindrical spring or as a disc spring.
20. Facettenspiegel nach Anspruch 18, dadurch gekennzeichnet, dass als Befestigungselemente ein Gewinde (17) und eine Mutter (18) vorgesehen sind.20. Facet mirror according to claim 18, characterized in that a thread (17) and a nut (18) are provided as fastening elements.
21. Facettenspiegel nach Anspruch 11, dadurch gekennzeichnet, dass die Trägerplatte (16) aus Silizium gebildet ist. 21. Facet mirror according to claim 11, characterized in that the carrier plate (16) is formed from silicon.
PCT/EP2004/000331 2003-01-24 2004-01-17 Method for production of a facetted mirror WO2004066010A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/936,317 US7246909B2 (en) 2003-01-24 2004-09-08 Method for the production of a facetted mirror
US11/695,626 US20070206301A1 (en) 2003-01-24 2007-04-03 Faceted mirror apparatus
US12/338,049 US7802891B2 (en) 2003-01-24 2008-12-18 Faceted mirror apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003102664 DE10302664A1 (en) 2003-01-24 2003-01-24 Facetted mirror and holder and production process for a microlithographic projection unit in extreme ultraviolet determines and corrects deviations in mounting
DE10302664.9 2003-01-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/936,317 Continuation US7246909B2 (en) 2003-01-24 2004-09-08 Method for the production of a facetted mirror

Publications (1)

Publication Number Publication Date
WO2004066010A1 true WO2004066010A1 (en) 2004-08-05

Family

ID=32602907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/000331 WO2004066010A1 (en) 2003-01-24 2004-01-17 Method for production of a facetted mirror

Country Status (2)

Country Link
DE (1) DE10302664A1 (en)
WO (1) WO2004066010A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008101656A3 (en) * 2007-02-19 2009-03-12 Zeiss Carl Smt Ag Method for producing facet mirrors and projection exposure apparatus
CN114527566A (en) * 2022-01-19 2022-05-24 洛伦兹(宁波)科技有限公司 Manufacturing method of rotating mirror device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008007060B3 (en) * 2008-01-31 2009-08-06 Astrium Gmbh Mirror module for attachment to a structural element
WO2010049076A2 (en) 2008-10-20 2010-05-06 Carl Zeiss Smt Ag Optical module for guiding a radiation beam
DE102013220473A1 (en) * 2013-10-10 2015-05-07 Carl Zeiss Smt Gmbh FACET ELEMENT WITH ADJUST MARKINGS
DE102014219770A1 (en) 2014-09-30 2016-03-31 Carl Zeiss Smt Gmbh Mirror arrangement, in particular for a microlithographic projection exposure apparatus, and method for deriving a heat flow from the region of a mirror arrangement
DE102015215214A1 (en) 2015-08-10 2016-09-08 Carl Zeiss Smt Gmbh Method for accomplishing a metallic component connection, and using the same manufactured mirror mount for a microlithographic projection exposure apparatus
DE102015223793A1 (en) * 2015-11-30 2016-10-27 Carl Zeiss Smt Gmbh Projection exposure apparatus for semiconductor lithography with reduced thermal deformation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0145243A2 (en) * 1983-11-03 1985-06-19 Unisys Corporation Method and apparatus for producing folded optical path devices
DE10030495A1 (en) * 2000-06-21 2002-01-03 Zeiss Carl Method for connecting a plurality of optical elements to a base body
DE10205425A1 (en) * 2001-11-09 2003-05-22 Zeiss Carl Smt Ag Facet mirror with several mirror facets has facets with spherical bodies with mirror surfaces in body openings, sides of spherical bodies remote from mirror surfaces mounted in bearer
WO2003050586A2 (en) * 2001-12-12 2003-06-19 Carl Zeiss Smt Ag Mirror facet and facetted mirror
WO2003067304A1 (en) * 2002-02-09 2003-08-14 Carl Zeiss Smt Ag Multi-faceted mirror

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0145243A2 (en) * 1983-11-03 1985-06-19 Unisys Corporation Method and apparatus for producing folded optical path devices
DE10030495A1 (en) * 2000-06-21 2002-01-03 Zeiss Carl Method for connecting a plurality of optical elements to a base body
DE10205425A1 (en) * 2001-11-09 2003-05-22 Zeiss Carl Smt Ag Facet mirror with several mirror facets has facets with spherical bodies with mirror surfaces in body openings, sides of spherical bodies remote from mirror surfaces mounted in bearer
WO2003050586A2 (en) * 2001-12-12 2003-06-19 Carl Zeiss Smt Ag Mirror facet and facetted mirror
WO2003067304A1 (en) * 2002-02-09 2003-08-14 Carl Zeiss Smt Ag Multi-faceted mirror

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHINDLER ET AL.: "Ion Beam and Plasma Jet Etching for Optical Component Fabrication", PROCEEDINGS OF THE SPIE, vol. 4440, November 2001 (2001-11-01), Bellingham, US, pages 217 - 227, XP002281181 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008101656A3 (en) * 2007-02-19 2009-03-12 Zeiss Carl Smt Ag Method for producing facet mirrors and projection exposure apparatus
JP2010519725A (en) * 2007-02-19 2010-06-03 カール・ツァイス・エスエムティー・アーゲー Manufacturing method of facet mirror and projection exposure apparatus
CN114527566A (en) * 2022-01-19 2022-05-24 洛伦兹(宁波)科技有限公司 Manufacturing method of rotating mirror device

Also Published As

Publication number Publication date
DE10302664A1 (en) 2004-07-29

Similar Documents

Publication Publication Date Title
EP1472562B1 (en) Multi-faceted mirror
DE10205425A1 (en) Facet mirror with several mirror facets has facets with spherical bodies with mirror surfaces in body openings, sides of spherical bodies remote from mirror surfaces mounted in bearer
DE102014201779B4 (en) Beam propagation camera and method for light beam analysis
DE112014004124B4 (en) laser scanning device
DE69918592T2 (en) Lens mount and projector with alignment arrangement
WO2004066010A1 (en) Method for production of a facetted mirror
DE102008044365A1 (en) Projection exposure system for manufacturing semiconductor component i.e. computer chip, has changing unit for changing optical assembly that is exchangeably formed, and bearing unit reducing deformations of optical element caused by holder
DE10359576A1 (en) Method for producing an optical unit
WO2003050586A2 (en) Mirror facet and facetted mirror
DE102012206153A1 (en) Optical system of a microlithographic projection exposure apparatus
WO2005111687A1 (en) Holder for optical elements and method for producing an optical system with such a holder
DE102022209868A1 (en) OPTICAL ASSEMBLY, OPTICAL SYSTEM AND PROJECTION EXPOSURE SYSTEM
DE102022205815A1 (en) Component for a projection exposure system for semiconductor lithography and projection exposure system
DE102022207312A1 (en) OPTICAL SYSTEM AND PROJECTION EXPOSURE SYSTEM
WO2003067288A1 (en) Mirror facet for a segmented mirror
DE102022200400A1 (en) CONNECTION OF COMPONENTS OF AN OPTICAL DEVICE
DE102020210886A1 (en) Measuring arrangement and measuring method for determining the position and / or the orientation of an optical element and projection exposure system
WO2003087944A2 (en) Device for the low-deformation mounting of a rotationally asymmetric optical element
DE102010041689A1 (en) Socket for attachment on surface of plate-shaped support for laser scanning microscope, has connector displaced or fixed in plane perpendicular to propagation direction of light beam emerging from or into connector by radial adjusting unit
DE102018200524A1 (en) Projection exposure apparatus for semiconductor lithography with improved component adjustment and adjustment method
DE102023201860A1 (en) Assembly and method of connecting two components
DE102015213619A1 (en) Mirror facets arrangement
DE102016116541B4 (en) X-ray lens assembly
WO2022078754A1 (en) Optical component and method for adjusting the optical component, and projection exposure system
DE102022203393A1 (en) Device and method for aligning two components

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 10936317

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006189464

Country of ref document: US

Ref document number: 10550417

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10550417

Country of ref document: US