WO2004065142A1 - Tire, its forming method, device for reducing external magnetic field of tire, and vehicle mounted with that tire - Google Patents

Tire, its forming method, device for reducing external magnetic field of tire, and vehicle mounted with that tire Download PDF

Info

Publication number
WO2004065142A1
WO2004065142A1 PCT/JP2003/016461 JP0316461W WO2004065142A1 WO 2004065142 A1 WO2004065142 A1 WO 2004065142A1 JP 0316461 W JP0316461 W JP 0316461W WO 2004065142 A1 WO2004065142 A1 WO 2004065142A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
magnetic field
magnet
belt
shaped magnet
Prior art date
Application number
PCT/JP2003/016461
Other languages
French (fr)
Japanese (ja)
Inventor
Masami Kikuchi
Tadashi Hagiwara
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to JP2004567156A priority Critical patent/JP4243249B2/en
Priority to AU2003289480A priority patent/AU2003289480A1/en
Publication of WO2004065142A1 publication Critical patent/WO2004065142A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/2003Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords
    • B60C9/2006Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords consisting of steel cord plies only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C2019/005Magnets integrated within the tyre structure

Definitions

  • the present invention relates to a tire having a belt formed of one or more belt layers on which steel cords are arranged and having a small magnetic field formed outside, a method of forming the tire, and a tire external magnetic field reduction device used in the method of forming the tire
  • the present invention relates to a vehicle equipped with the tire. Background art
  • Tires provided with a belt comprising a belt layer in which steel cords are arranged are widely used. Then, such a tire forms a magnetic field that can be detected outside due to the magnetization remaining in the steel cord, as described in Japanese Patent Application Laid-Open No. 10-307145.
  • the magnitude of the magnetic field is large enough to detect the magnetic field, calculate the tire rotation speed from the time change of the magnetic field, and estimate the traveling distance of the vehicle.
  • a small piece magnet is attached to a predetermined portion of the tire, for example, a predetermined portion of the tread portion of the tire, and the magnetic field from the magnet changes the tread portion.
  • the present invention has been made in view of such a problem.
  • a small magnet is attached to a tire and the magnetic field formed by the magnet is measured to determine the characteristics of the tire, the influence on the magnetic field measurement is obtained. It is an object of the present invention to provide a tire that does not form a magnetic field to be applied, a method of forming the tire, a tire external magnetic field reduction device, and a vehicle equipped with the tire. Disclosure of the invention
  • the present invention has been made to achieve the above object, and its gist configuration, operation and effects are described below.
  • the present invention relates to a tire provided with a belt made up of one or more belt layers on which steel cords are arranged, wherein all points on the tire surface are 5 mm outward in the normal direction from each point.
  • the tire has a magnetic field strength of 0.15 mT or less in any direction at a point separated from the tire.
  • the belt is composed of a plurality of belt layers, and the steel cord of each belt layer is formed between two belt layers adjacently stacked with respect to the tire equatorial plane.
  • the surface magnetic force of the steel cord is localized only at both ends, and the surface magnetic force at the end of the steel cord located on the same side in the tire width direction is the same in the same belt layer.
  • Polar tires have two polarities, and two adjacent belt layers have different polarities. You.
  • the rod-shaped magnet when forming the tire according to (1) or (2), is brought into contact with or close to the tire outer peripheral surface in a posture facing the tire width direction, and the posture of the rod-shaped magnet with respect to the tire rotation axis.
  • the basic operation is to rotate the outer periphery of the tire relative to the tire more than the tire circumference while keeping the tire constant, and to move the bar-shaped magnet away from the tire rotation axis, At some point until the use of the tire is completed, this basic operation is continuously performed a plurality of times to reduce the strength of the magnetic field formed outside the tire.
  • the rotation angle when the rod-shaped magnet is relatively rotated with respect to the tire corresponds to an extension length of the steel cord along the tire circumferential direction. This is a method for forming a tire having an angle equal to or more than the angle obtained by adding 360 degrees to the rotation angle.
  • the present invention provides the method according to (3) or (4), wherein the tire is rotated by setting the tire on a tire balancer for measuring the balance of the tire by rotating the tire to perform the basic operation. It is a forming method.
  • the present invention relates to a device for reducing an external magnetic field of a sunset, which is used in the method for forming a tire according to any one of (3) to (6),
  • a tire external magnetic field reduction device comprising: a tire rotation driving means for gripping and rotating a tire; the rod-shaped magnet; and a magnet displacement driving means for separating the rod-shaped magnet stepwise outward in the tire radial direction with respect to the tire. is there.
  • the present invention is a vehicle equipped with the tire according to (1) or (2).
  • FIG. 1 is a meridional sectional view showing a tire according to an embodiment of the present invention.
  • FIG. 2 is a plan developed view of a belt showing an arrangement of steel cords.
  • FIG. 3 is a schematic diagram showing the surface magnetic force distribution in the length direction of the steel cord.
  • FIG. 4 is a perspective view showing a tire external magnetic field reduction device.
  • FIG. 5 is a perspective view showing an arrangement of magnetic poles of a magnet, which is an enlarged view of a portion "A" in FIG.
  • FIG. 6 is a trajectory diagram showing a trajectory of a magnet that moves relatively to a tire.
  • FIG. 7 is a perspective view showing the relative arrangement of a steel cord and a magnet in an experiment in which the magnetic force of a single steel cord is changed.
  • FIG. 8 is a graph showing changes in the surface magnetic force of the steel cord in the experiment shown in FIG.
  • FIG. 9 is a graph of the change following FIG.
  • FIG. 10 is a perspective view showing another embodiment of the tire external magnetic field reduction device.
  • FIG. 11 is a graph showing a magnetic field formed by a conventional tire.
  • FIG. 12 is a graph showing a magnetic field formed by the tire of the example.
  • FIG. 13 is a graph showing a magnetic field formed by a conventional tire to which a magnet sheet is attached.
  • FIG. 14 is a graph showing a magnetic field formed by the tire of the example with the magnet sheet attached.
  • BEST MODE FOR CARRYING OUT THE INVENTION hereinafter, an embodiment of the present invention will be described with reference to FIGS.
  • FIG. 1 is a cross-sectional view showing the tire 1 of this embodiment in a meridian plane
  • FIG. 2 is a developed plan view of a belt showing the arrangement of steel cords when the belt of the tire is viewed from the outside in the tire radial direction. It is.
  • C represents the tire circumferential direction.
  • the tire 1 has a belt 5 disposed on the tread portion 2, and the belt 5 has an inner belt layer 3 in which steel cords 13 are arranged and a steel cord 14 arranged.
  • the outer belt layer 4 and the outer belt layer 4 are laminated in the tire radial direction, and both the steel cords 13 and 14 are inclined at an angle with respect to the tire equatorial plane E, but the direction of each inclination is the tire equator.
  • the surfaces are arranged to be inclined in opposite directions to each other.
  • both steel cords 13 and 14 the surface magnetic force is localized only at both ends, and at one tire width direction end W 1 of belt 5, steel cords 13 of inner belt layer 3 are formed.
  • the surface magnetic force at the end portion has all N-polarity, while the surface magnetic force at the end portion of the steel cord 14 of the outer belt layer 4 has the S-polarity, and vice versa.
  • the surface magnetic force at the end of the steel cord 13 has the polarity of the S pole, while the surface at the end of the steel cord 14 has All magnetic forces have N polarity.
  • the surface magnetic force refers to the magnitude of the magnetic force detected on the outer surface of the steel cord, and refers to the density of lines of magnetic force radiated from the surface of the steel cord.
  • Fig. 3 shows the distribution of surface magnetic force along the length direction of the steel cords 13 and 14 described above, the horizontal axis shows the position in the tire width direction, and the vertical axis shows the magnitude of the surface magnetic force.
  • Fig. 3 (a) and Fig. 3 (b) show the surface magnetic force distribution of steel cord 13 and steel cord 14, respectively.
  • the left end of the vertical axis indicates the position corresponding to the end Wl in the belt width direction, and the right end indicates the position corresponding to the end W2 in the belt width direction.
  • the portion that emits the magnetic field lines to the outside is limited to both ends, and In the tire radial direction immediately adjacent to the end of the steel cord 13 (14) arranged on one belt layer, the end of the steel cord 14 (13) arranged on the other belt layer must be Since these end portions are close to each other and have surface magnetic forces of different polarities, most of the magnetic lines of force extend between these end portions, greatly suppressing the magnetic lines of leakage to the outside. Thus, the magnetic field formed outside the evening can be greatly reduced.
  • the magnetic field formed outside is small in the dinner 1 having such a configuration, a small magnet can be attached to the tire 1 and only the magnetic field from the small magnet can be detected with high sensitivity. Furthermore, since the tire 1 does not form a magnetic field outside, a large magnetic field exists inside the steel cord, and each magnetic field forms a magnetic path inside. It is possible to provide a high coercive force to an external magnetic field that is applied to the tire, for example, and to prevent the belt of the running tire from re-magnetizing the surface magnetic force due to the external magnetic field.
  • FIG. 4 is a perspective view showing a tire external magnetic field reduction device 20 used to form the tire 1.
  • FIG. 5 is an enlarged view of a portion "A" in FIG.
  • FIG. 5 is a perspective view showing a radiation mode in the same direction as FIG.
  • the tire external magnetic field reduction device 20 is also configured as a rotation drive portion of a tire balancer 25 that measures balance while rotating the tire 1, and a tire balance measurement rim 11 on which the tire 1 is mounted.
  • a motor rotation driving means 23 for rotating the rim 11 by a motor and a drive, a rod-shaped magnet 21, and a magnet displacement driving means 24 for gradually displacing the rod-shaped magnet 21 radially outward of the tire 1 are provided. Equipped. Further, although not shown, the trajectory of the rod-shaped magnet 21 when the tire 1 and the rod-shaped magnet 21 are relatively moved is controlled by cooperating the tire rotation driving means 23 and the magnet displacement driving means 24. It also has relative movement control means.
  • the rod-shaped magnet 21 is placed in a posture parallel to the rotation axis of the tire 1 and in such a position that the magnetic field lines radiated between the N pole and the S pole extend in the equatorial plane and intersect the belt 5. It is arranged to be in contact with or close to the outer peripheral surface of 1.
  • the tire external magnetic field reduction device 20 is configured to also serve as the rotation driving portion of the tire balancer 25, the cost for reducing the tire external magnetic field can be suppressed.
  • FIG. 6 is a trajectory diagram showing the trajectory of the magnet 21 relatively moving with respect to the tire 1 as viewed from the tire axial direction with the tire stationary. That is, FIG. 6 shows the trajectory of the bar-shaped magnet 21 as viewed from a point on the rotating tire 1.
  • the bar-shaped magnet 21 is disposed at a point S 1 separated from the outer peripheral surface of the tire 1 by d 1.
  • the rotation of tire 1 is started, and the rotation of tire 1 is stopped at point F 1 where tire 1 has turned an additional 1 angle from one lap, and rod-shaped magnet 21 is displaced radially outward by distance d 2.
  • the rotation of the tire 1 is restarted, and the rotation of the tire 1 is stopped at the point F2 where the tire 1 has turned an extra angle of 2 from the one lap, and the rod-shaped magnet 21 is displaced radially outward by the distance d2.
  • the rod-shaped magnet 21 is further moved in the order of F3, S4, F4, S5, and F5, and then the tire is taken out of the device 20.
  • the method of forming the tire is as follows.
  • the tire 1 starts rotating, the tire 1 stops rotating at a point where the tire 1 has turned an additional angle beyond a single rotation, and the rod-shaped magnet 21 is moved radially outward by a predetermined distance.
  • the basic operation is performed several times, and the basic operation is performed several times in the example shown in Fig. 6, and the steel cord having the surface magnetic force distribution shown in Fig. 3 by this continuous operation
  • a tire 1 having 13 and 14 can be formed.
  • FIGS. 7 to 9 are diagrams for explaining an experiment in which a magnet M is arranged near one steel cord SC and the magnet M is displaced from one end to the other end in the length direction of the steel cord SC.
  • Fig. 7 is a perspective view showing the relative arrangement of the steel cord SC and the magnet M.
  • Figs. 8 and 9 show the surface magnetic force distribution that changes depending on the position of the magnet M.
  • the horizontal axis shows the length of the steel cord SC.
  • FIG. 9 is a graph showing the magnitude of surface magnetic force in which the direction position is taken and the vertical axis represents the N pole as positive and the S pole as negative, for each position of the magnet M in order.
  • the magnet M was moved from one end A to the other end B of the steel cord SC, and the magnetic pole S was placed on the end A side. Displace while maintaining the posture where N is located on the end B side.
  • Fig. 7 (a) shows the surface magnetic force distribution of the steel cord SC in the initial state where the magnet M is kept at a point P0 far away from the steel cord SC.
  • the surface magnetic force is S pole at the end A. It is assumed that the end B has an N pole, and portions other than these ends are magnetized so that no surface magnetic force exists.
  • Fig. 7 (b), Fig. 7 (c), Fig. 8 (a), Fig. 8 (b) and Fig. 8 (c) show the magnet M at points P1, P2, P3, P4 and This shows the distribution of the surface magnetic force of the steel cord SC when the steel cord SC is moved to P5 in order.
  • the operation of moving this magnet temporarily resets the surface magnetic force remaining on the steel cord SC, and sets a new peak of the surface magnetic force to the steel cord SC. It is formed along the length direction of the SC and is sequentially moved with the movement of the magnet M. In this way, in the final state where the magnet M is withdrawn to the position P5 sufficiently separated from the steel cord SC.
  • the surface magnetic force of the N pole and the S pole can be formed only near the end A and the end B, respectively.
  • the relative movement of the bar-shaped magnet 21 along the outer peripheral surface of the tire 1 is different from the experiment of moving the magnet M along one steel cord SC as described above. 4 is formed endless, so that when the bar-shaped magnet 21 is stopped at the point F1 in FIG. 6, the steel codes 13 and 1 located opposite the bar-shaped magnet 21 at the point F1 In Fig. 4, the magnet 21 is located near the center of the cord and has a surface magnetic force distribution as shown in Fig. 8 (b), Fig. 8 (c), Fig. 9 (a), or Fig. 9 (b). Therefore, only the belt portion at the circumferential position facing the bar-shaped magnet 21 has a peak of the surface magnetic force even if it is not the end portion of the steel cord.
  • the basic operation is performed a plurality of times in order to gradually reduce the peak of the remaining surface magnetic force in this manner, and the basic operation is performed at a circumferential position facing the bar-shaped magnet 21 by the plurality of basic operations.
  • the operation of resetting the surface magnetic force once and forming a weaker surface magnetic force part at another circumferential position than before is repeated, and in the final operation, only a sufficiently small surface magnetic force peak remains Belt 5 can be formed.
  • the above is the principle of the method of forming a tire for reducing the magnetic field formed outside the tire, and the tire 1 can be formed extremely easily.
  • the angles al, ⁇ 2,... Shown in FIG. 6 are preferably rotation angles corresponding to the lengths of the steel cords 13 and 14 extending along the tire circumferential direction. This makes it possible to move the steel cords 13 and 14 around the entire circumference between both ends in the longitudinal direction, and to reset the residual surface magnetic force without fail.
  • the magnet 21 After being moved outward in the radial direction, the magnet 21 applies a magnetic field that is large enough to reset the surface magnetic force remaining on the steel cords 13 and 14 up to that point. W
  • the final separation distance of the magnet 21 from the tire 1 must be set so that the surface magnetic force of the magnet 21 remaining on the belt 5 is sufficiently small. Then, it is necessary to determine the distances d 2, d 3,... When the rod-shaped magnet 21 is displaced radially outward stepwise.
  • the length of the magnet is preferably equal to or greater than the width direction of the tire, whereby the surface magnetic force can be reliably adjusted to the end of the steel cord.
  • FIG. 10 is a perspective view showing a tire external magnetic force reduction device 30 of another embodiment.
  • the device 30 reduces the magnetic field formed by the tire 1 outside without removing the tire 1 mounted on the vehicle 15 from the vehicle 15.
  • a chuck 3 2 for gripping a rim for mounting the tire 1
  • a tire rotation driving means 33 for rotating the chuck 3 2
  • a rod-shaped magnet 31 for displacing the rod-shaped magnet 31 outward in the tire radial direction.
  • relative movement control means for controlling the trajectory of the bar-shaped magnet 21 when the tire 1 and the bar-shaped magnet 31 are relatively moved is provided.
  • the device 30 of this embodiment becomes the device 20 is, first, to form the tire 1 in which the magnetic field formed outside is suppressed while the tire 1 is mounted on the vehicle 15. Before starting the basic operation of the vehicle, it is necessary to lift the tire off the ground by jacking up the vehicle.Second, it is difficult to fix the vehicle 15 in a predetermined position. It is necessary to set the tire rotation driving means 33 and the magnet displacement driving means 34 in accordance with the arrangement of the tires 15 and the respective tires 1.Therefore, these means must be configured to be portable. It is a point.
  • the device 30 can reduce the external magnetic field generated by the tire mounted on the vehicle 15 while the tire is mounted on the vehicle 15, the processing can be easily performed even on the tire 1 that is magnetized during traveling.
  • Figs. 11 and 12 show the external magnetic field formed by the tires of the conventional example and the example for the tire circumferential direction component, the tire radial direction component, and the tire width direction component, respectively, measured over one round in the tire circumferential direction.
  • the graph shows the strength of the magnetic field represented by the magnetic flux density on the vertical axis, and the circumferential position of the tire on the horizontal axis. This measurement was performed using a Gauss meter that measures the magnetic field using a Hall element, and the magnetic field was detected at a position 5 mm away from the tire outer circumferential surface on the tire equator.
  • Angle of inclination of steel cord with respect to the equatorial plane (degree): Inner layer 24, outer layer 24 Number of steel cords to be driven (strands / 50 mm): inner layer 34, outer layer 50 Also used when forming tires of Examples
  • the magnet strength was 80 mT at the center surface, the tire rotation angle was 720 degrees in all basic operations, the number of basic operations was three times, and the distance to keep the magnet away each time was 5 mm.
  • the conventional tire generates a magnetic field component that has a maximum of 0.5 mT or more by repeating the above basic operation continuously.
  • Figures 13 and 14 show small pieces with different polarities on the inner and outer peripheral surfaces of the tire at the four points on the circumference and the equatorial plane of the tire, respectively.
  • the external magnetic field formed by these tires when the magnets were attached was measured over the entire circumference by a Gauss meter placed 5 mm radially outward from the tire's equatorial plane and from the outer peripheral surface of the tire.
  • 12 is a graph showing the strength of the magnetic field on the vertical axis and the circumferential position of the tire on the horizontal axis, similarly to FIGS.
  • the attached small piece magnet has a size of 30 mm square, and is a pound magnet formed by dispersing ferrite in a rubber composition.
  • the magnetic field formed by the small piece magnet alone is about 0.3 mT, and in the conventional tire, the maximum magnetic field component caused by the belt 5 is 0. Since it is 5 mT or more, it is difficult to distinguish the magnetic field formed by the small-piece magnet from the magnetic field caused by the steel cord when the small-piece magnet is attached to the tire of the conventional example. Since it is suppressed, only the magnetic field generated by the small piece magnet can be extracted.
  • the tire of the present invention does not form a magnetic field outside, the characteristics of the tire determined by pasting a small magnet and measuring the magnetic field formed by this magnet, It can be used for detecting the running state of a vehicle derived from characteristics.

Abstract

A tire having a steel belt arranged such that the strength of a magnetic field being formed at a point separated by 5 mm to the outside in the direction of a normal to the surface becomes 0.15 mT or less for all directions for all points on the surface of the tire, and formation of a magnetic field having an effect on the measurement of magnetic field can be prevented when the characteristics of the tire are determined by measuring a magnetic field being formed by magnet pieces pasted to the surface of the tire. A method for forming the tire, a device for reducing external magnetic field of tire being employed in the method for forming the tire, and a vehicle mounted with that tire are also provided.

Description

明 細 書 タイヤ、 タイヤの形成方法、 タイヤ外部磁界低減装置およびタイヤを装着した車 両 技術分野  Description Tire, tire forming method, tire external magnetic field reduction device, and vehicle equipped with tire
本発明は、 スチールコードが配列された一層以上のベルト層よりなるベルトを具 えしかも外部に形成する磁界の小さいタイヤ、 このタイヤの形成方法、 このタイ ャの形成方法に用いるタイヤ外部磁界低減装置、 および、 このタイヤを装着した 車両に関する。 背景技術 The present invention relates to a tire having a belt formed of one or more belt layers on which steel cords are arranged and having a small magnetic field formed outside, a method of forming the tire, and a tire external magnetic field reduction device used in the method of forming the tire The present invention relates to a vehicle equipped with the tire. Background art
スチールコードが配列されたベルト層よりなるベルトを具えたタイヤは広く用い られている。 そして、 このようなタイヤは、 特開平 1 0— 3 0 7 1 4 5号公報に 記載されているように、 スチールコードに残留する磁化に起因して、 外部に検出 可能な磁界を形成し、 その磁界の程度は、 この磁界を検出して磁界の時間変化か らタイヤ回転数を算出し車両の走行距離を推定するに十分な大きさである。 ところで近年、 タイヤに作用する力から直接、 摩擦係数を推定するため、 タイヤ の所定部分、 例えば、 タイヤのトレッド部の所定部分に小片磁石を貼り付けこの 磁石からの磁界の変ィ匕からトレツド部の変位を求め、 その変位からタイヤに作用 する力を逆算するタイヤの変位測定方法や、 タイヤの所定部分に小片磁石を貼り 付けて、 磁石からの磁界が温度によつて変化することを利用してタイヤのこの部 分の温度の異常を検出するタイヤの温度検出方法などが検討されている。 Tires provided with a belt comprising a belt layer in which steel cords are arranged are widely used. Then, such a tire forms a magnetic field that can be detected outside due to the magnetization remaining in the steel cord, as described in Japanese Patent Application Laid-Open No. 10-307145. The magnitude of the magnetic field is large enough to detect the magnetic field, calculate the tire rotation speed from the time change of the magnetic field, and estimate the traveling distance of the vehicle. By the way, in recent years, in order to estimate the friction coefficient directly from the force acting on the tire, a small piece magnet is attached to a predetermined portion of the tire, for example, a predetermined portion of the tread portion of the tire, and the magnetic field from the magnet changes the tread portion. The method of measuring the displacement of a tire by calculating the displacement of the tire and calculating the force acting on the tire from the displacement, and the method of attaching a small magnet to a predetermined part of the tire and using the magnetic field from the magnet that changes with temperature. Therefore, a method of detecting a temperature of a tire for detecting an abnormality in the temperature of the tire is being studied.
当然ながら、 これらの方法においては、 小片磁石からの磁界を高い精度で検出す ることが重要であり、 そのためには小片磁石以外からの磁界を抑制しなければな らないが、 従来のタイヤでは、 前述のように、 スチールコードの残留磁化に起因 して発生する磁界が影響して十分な磁界の検出精度を得ることができずそれらの 方法を達成するのが難しかった。 Naturally, in these methods, it is important to detect the magnetic field from the small piece magnet with high accuracy, and for that purpose, the magnetic field from other than the small piece magnet must be suppressed. As mentioned above, due to remanent magnetization of steel cord Therefore, it was difficult to achieve those methods because sufficient magnetic field detection accuracy could not be obtained due to the influence of the generated magnetic field.
本発明は、 このような問題点に鑑みてなされたものであり、 タイヤに小片磁石を 貼り付けてこの磁石が形成する磁界を測定してタイヤの特性を求める際に、 この 磁界測定に影響を与えるような磁場を形成することのないタイヤ、 このタイヤの 形成方法、 タイヤ外部磁界低減装置、 および、 このタイヤを装着した車両を提供 することを目的とするものである。 発明の開示 The present invention has been made in view of such a problem. When a small magnet is attached to a tire and the magnetic field formed by the magnet is measured to determine the characteristics of the tire, the influence on the magnetic field measurement is obtained. It is an object of the present invention to provide a tire that does not form a magnetic field to be applied, a method of forming the tire, a tire external magnetic field reduction device, and a vehicle equipped with the tire. Disclosure of the invention
上記目的を達成するため、 本発明はなされたものであり、 その要旨構成ならびに 作用効果を以下に示す。 The present invention has been made to achieve the above object, and its gist configuration, operation and effects are described below.
( 1 ) 本発明は、 スチールコードが配列された一層以上のベルト層よりなるベル トを具えたタイヤにおいて、 タイヤ表面上のすべての点に対して、 それぞれの点 から法線方向外側に 5 mmだけ離隔した点において形成する磁界の強さが、 いず れの方向に対しても、 0 . 1 5 mT以下であるタイヤである。  (1) The present invention relates to a tire provided with a belt made up of one or more belt layers on which steel cords are arranged, wherein all points on the tire surface are 5 mm outward in the normal direction from each point. The tire has a magnetic field strength of 0.15 mT or less in any direction at a point separated from the tire.
本発明のタイヤ 1によれば、 タイヤ表面上のすべての点に対して、 それぞれの点 に立てた表面法線方向外側に 5 mmだけ離隔した点において形成する磁界の強さ が、 いずれの方向に対しても、 0 . 1 5 mT以下であるので、 タイヤ 1に小片磁 石を貼り付けてこの磁石の形成する磁界を測定してタイヤの特性を求める際に、 この磁界測定に影響を与えるような磁場を形成することを防止できる。 According to the tire 1 of the present invention, with respect to all points on the tire surface, the strength of the magnetic field formed at a point separated by 5 mm on the outer side in the surface normal direction set at each point, in any direction Is less than 0.15 mT, which affects the magnetic field measurement when a small magnet is attached to the tire 1 and the magnetic field formed by the magnet is measured to determine the characteristics of the tire. Formation of such a magnetic field can be prevented.
( 2 )本発明は、 (1 ) において、 ベルトを複数のベルト層で構成し、それぞれの ベルト層のスチールコードを、 隣接して積層された二つのベル卜層同士でタイヤ 赤道面に対して逆向きに傾斜して配列するとともに、 スチールコードの表面磁力 をその両端部分だけに局在化させ、 スチールコードのタイヤ幅方向同じ側に位置 する端部分における表面磁力を、 同一ベルト層内では同じ極性のものとし、 隣接 して積層された二つのベルト層同士では異なる極性のものとしてなるタイヤであ る。 (2) In the present invention, in (1), the belt is composed of a plurality of belt layers, and the steel cord of each belt layer is formed between two belt layers adjacently stacked with respect to the tire equatorial plane. In addition to arranging it in the opposite direction, the surface magnetic force of the steel cord is localized only at both ends, and the surface magnetic force at the end of the steel cord located on the same side in the tire width direction is the same in the same belt layer. Polar tires have two polarities, and two adjacent belt layers have different polarities. You.
(3)本発明は、 (1) もしくは(2) のタイヤを形成するに際して、 棒状磁石を タイヤ幅方向に向く姿勢でタイヤ外周面に当接または近接させて、 タイヤ回転軸 に対する棒状磁石の姿勢を一定に保持しながら、 タイヤの外周部をタイヤー周以 上タイヤに対して相対回転させたあと、 棒状磁石をタイヤ回転軸から遠ざける操 作を基本操作とするとき、 タイヤを加硫したあとタイヤの使用を完了するまでの いずれかの時点で、 この基本操作を連続して複数回行って、 タイヤ外部に形成さ れる磁界の強さを減じるタイヤの形成方法である。  (3) In the present invention, when forming the tire according to (1) or (2), the rod-shaped magnet is brought into contact with or close to the tire outer peripheral surface in a posture facing the tire width direction, and the posture of the rod-shaped magnet with respect to the tire rotation axis. When the basic operation is to rotate the outer periphery of the tire relative to the tire more than the tire circumference while keeping the tire constant, and to move the bar-shaped magnet away from the tire rotation axis, At some point until the use of the tire is completed, this basic operation is continuously performed a plurality of times to reduce the strength of the magnetic field formed outside the tire.
(4)本発明は、 (3) において、 前記基本操作において、 棒状磁石をタイヤに対 して相対回転する際の回転角を、 スチールコードのタイヤ周方向に沿った延在長 さに対応する回転角に 360度を加えた角度以上とするタイヤの形成方法である。 (4) In the present invention according to (3), in the basic operation, the rotation angle when the rod-shaped magnet is relatively rotated with respect to the tire corresponds to an extension length of the steel cord along the tire circumferential direction. This is a method for forming a tire having an angle equal to or more than the angle obtained by adding 360 degrees to the rotation angle.
(5) 本発明は、 (3) もしくは(4) において、 タイヤを回転してタイヤのバラ ンスを測定するタイヤバランサにタイヤをセットすることによりタイヤを回転し て、 前記基本操作を行うタイヤの形成方法である。 (5) The present invention provides the method according to (3) or (4), wherein the tire is rotated by setting the tire on a tire balancer for measuring the balance of the tire by rotating the tire to perform the basic operation. It is a forming method.
(6) 本発明は、 (3) もしくは(4) において、 車両に装着されたタイヤを地面 から離隔したあと、 タイヤを車両に装着したままタイヤを回転して、 前記基本操 作を行うタイャの形成方法である。  (6) In the tire according to (3) or (4), after the tire mounted on the vehicle is separated from the ground, the tire is rotated while the tire is mounted on the vehicle to perform the basic operation. It is a forming method.
(7) 本発明は、 (3) 〜 (6) のいずれかのタイヤの形成方法に用いられる、 夕 ィャの外部磁界を減じる装置であって、  (7) The present invention relates to a device for reducing an external magnetic field of a sunset, which is used in the method for forming a tire according to any one of (3) to (6),
タイヤを把持して回転するタイヤ回転駆動手段と、 前記棒状磁石と、 棒状磁石を タイヤに対してタイヤ半径方向外側に段階的に離隔する磁石変位駆動手段とを具 えてなるタイャ外部磁界低減装置である。 A tire external magnetic field reduction device comprising: a tire rotation driving means for gripping and rotating a tire; the rod-shaped magnet; and a magnet displacement driving means for separating the rod-shaped magnet stepwise outward in the tire radial direction with respect to the tire. is there.
(8) 本発明は、 (1) もしくは (2) のタイヤを装着してなる車両である。 図面の簡単な説明  (8) The present invention is a vehicle equipped with the tire according to (1) or (2). BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明にかかる実施形態のタイヤを示す子午線断面図である。 図 2は、 スチールコ一ドの配列を示すベルトの平面展開図である。 FIG. 1 is a meridional sectional view showing a tire according to an embodiment of the present invention. FIG. 2 is a plan developed view of a belt showing an arrangement of steel cords.
図 3は、 スチールコードの長さ方向の表面磁力分布を示す模式図である。 FIG. 3 is a schematic diagram showing the surface magnetic force distribution in the length direction of the steel cord.
図 4は、 タイヤ外部磁界低減装置を示す斜視図である。 FIG. 4 is a perspective view showing a tire external magnetic field reduction device.
図 5は、 図 4の "A"部を拡大して表わす磁石の磁極配置を示す斜視図である。 図 6は、 タイヤに対して相対移動させる磁石の軌跡を示す軌跡図である。 FIG. 5 is a perspective view showing an arrangement of magnetic poles of a magnet, which is an enlarged view of a portion "A" in FIG. FIG. 6 is a trajectory diagram showing a trajectory of a magnet that moves relatively to a tire.
図 7は、 スチールコード単体の磁力を変化させる実験における、 スチールコ一ド と磁石との相対配置を示す斜視図である。 FIG. 7 is a perspective view showing the relative arrangement of a steel cord and a magnet in an experiment in which the magnetic force of a single steel cord is changed.
図 8は、 図 7に示す実験においてスチールコードの表面磁力分の変化を示すダラ フである。 FIG. 8 is a graph showing changes in the surface magnetic force of the steel cord in the experiment shown in FIG.
図 9は、 図 8に続く変化のグラフである。 FIG. 9 is a graph of the change following FIG.
図 1 0は、 タイヤ外部磁界低減装置の他の実施態様を示す斜視図である。 FIG. 10 is a perspective view showing another embodiment of the tire external magnetic field reduction device.
図 1 1は、 従来例のタイヤが形成する磁界を表わすグラフである。 FIG. 11 is a graph showing a magnetic field formed by a conventional tire.
図 1 2は、 実施例のタイヤが形成する磁界を表わすグラフである。 FIG. 12 is a graph showing a magnetic field formed by the tire of the example.
図 1 3は、 磁石シート貼付けた従来例のタイヤが形成する磁界を表わすグラフで ある。 FIG. 13 is a graph showing a magnetic field formed by a conventional tire to which a magnet sheet is attached.
図 1 4は、 磁石シート貼付けた実施例のタイヤが形成する磁界を表わすグラフで ある。 発明を実施するための最良の形態 以下、 本発明の実施形態について図 1ないし図 1 0に基づいて説明する。 図 1は この実施形態のタイヤ 1をその子午線面において示す断面図であり、 図 2は、 こ のタイヤのベルトをタイャ半径方向外側からみたときの、 スチールコードの配列 を示すベルトの平面展開図である。 図 2において、 Cはタイヤ周方向を表す。 タイヤ 1は、 トレッド部 2に配設されたベルト 5を具え、 このベルト 5は、 スチ 一ルコ一ド 1 3を配列した内層側のベルト層 3とスチールコード 1 4を配列した 外層側のベルト層 4とをタイヤ半径方向に積層してなり、 スチールコード 1 3お よび 1 4はともにタイヤ赤道面 Eに対して角度 ひ だけ傾斜するがそれぞれの傾 斜の向きは、 タイヤ赤道面に関し互いに逆向きに傾斜して配列される。 FIG. 14 is a graph showing a magnetic field formed by the tire of the example with the magnet sheet attached. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view showing the tire 1 of this embodiment in a meridian plane, and FIG. 2 is a developed plan view of a belt showing the arrangement of steel cords when the belt of the tire is viewed from the outside in the tire radial direction. It is. In FIG. 2, C represents the tire circumferential direction. The tire 1 has a belt 5 disposed on the tread portion 2, and the belt 5 has an inner belt layer 3 in which steel cords 13 are arranged and a steel cord 14 arranged. The outer belt layer 4 and the outer belt layer 4 are laminated in the tire radial direction, and both the steel cords 13 and 14 are inclined at an angle with respect to the tire equatorial plane E, but the direction of each inclination is the tire equator. The surfaces are arranged to be inclined in opposite directions to each other.
そして、 スチールコード 1 3および 1 4はともに、 その表面磁力が両端部分だけ に局在化し、 ベルト 5の一方のタイヤ幅方向端部 W 1においては、 内層側ベルト 層 3のスチールコード 1 3の端部分での表面磁力はすべて N極の極性を有し、 一 方、 外層側ベルト層 4のスチールコード 1 4の端部分での表面磁力はすべて S極 の極性を有し、 これとは逆に、 ベルト 5の他方のタイヤ幅方向端部 W 2において は、スチールコード 1 3の端部分での表面磁力はすべて S極の極性を有し、一方、 スチールコード 1 4の端部分での表面磁力はすべて N極の極性を有する。 In both steel cords 13 and 14, the surface magnetic force is localized only at both ends, and at one tire width direction end W 1 of belt 5, steel cords 13 of inner belt layer 3 are formed. The surface magnetic force at the end portion has all N-polarity, while the surface magnetic force at the end portion of the steel cord 14 of the outer belt layer 4 has the S-polarity, and vice versa. In addition, at the other end W2 of the belt 5 in the tire width direction, the surface magnetic force at the end of the steel cord 13 has the polarity of the S pole, while the surface at the end of the steel cord 14 has All magnetic forces have N polarity.
ここで、 表面磁力とは、 スチールコードの外表面において検出される磁力の大き さをいい、 スチールコードの表面から放射される磁力線の密度を意味する。 図 3は、 以上に説明した、 スチールコード 1 3、 1 4の長さ方向に沿った表面磁 力の分布を、 横軸にタイヤ幅方向位置をとり、 縦軸に表面磁力の大きさをとつて 表した模式図であり、 図 3 ( a ) および図 3 ( b ) はそれぞれスチールコード 1 3およびスチ一ルコ一ド 1 4の表面磁力分布を示すもので、 いずれの図において も、 横軸の左方端はベルト幅方向端 W l、 右方端はベルト幅方向端 W 2に合致す る位置を表し、 縦軸の正側は N極側を、 負側は S極側を表す。 Here, the surface magnetic force refers to the magnitude of the magnetic force detected on the outer surface of the steel cord, and refers to the density of lines of magnetic force radiated from the surface of the steel cord. Fig. 3 shows the distribution of surface magnetic force along the length direction of the steel cords 13 and 14 described above, the horizontal axis shows the position in the tire width direction, and the vertical axis shows the magnitude of the surface magnetic force. Fig. 3 (a) and Fig. 3 (b) show the surface magnetic force distribution of steel cord 13 and steel cord 14, respectively. The left end of the vertical axis indicates the position corresponding to the end Wl in the belt width direction, and the right end indicates the position corresponding to the end W2 in the belt width direction.
このように磁化されて配列されたスチールコード 1 3および 1 4は、 その両端部 分にのみ表面磁力が局在化されているので、 磁力線を外部に放射する部分は両端 部分に限定され、 しかも、 一方のベルト層に配列されたスチールコード 1 3 ( 1 4 ) の端部分のタイヤ半径方向すぐ近傍には、 他方のベルト層に配列されたスチ ールコード 1 4 ( 1 3 ) の端部分が必ず存在し、 これら互いに近接する端部分同 士は異なる極性の表面磁力をもっているので、 磁力線のほとんどは、 これらの端 部分同士間に延在するものとなり、 外部に漏洩する磁力線を大幅に抑制して、 夕 ィャ外部に形成する磁界を大きく低減することができる。 以上説明したことは、両端にそれぞれ N極と S極とを有する複数個の棒状磁石を、 N極と S極とを吸引させあって環状に繋げたとき、 外部に形成される磁界はほと んどゼロとなることと同様の原理である。 Since the surface magnetic force is localized only at both ends of the steel cords 13 and 14 arranged in such a magnetized manner, the portion that emits the magnetic field lines to the outside is limited to both ends, and In the tire radial direction immediately adjacent to the end of the steel cord 13 (14) arranged on one belt layer, the end of the steel cord 14 (13) arranged on the other belt layer must be Since these end portions are close to each other and have surface magnetic forces of different polarities, most of the magnetic lines of force extend between these end portions, greatly suppressing the magnetic lines of leakage to the outside. Thus, the magnetic field formed outside the evening can be greatly reduced. As described above, when a plurality of rod-shaped magnets having N and S poles at both ends, respectively, are connected in a ring shape by attracting the N and S poles, the magnetic field formed outside is almost the same. It is the same principle that it becomes almost zero.
そして、このような構成を有する夕ィャ 1は、外部に形成する磁界が小さいので、 このタイヤ 1に小片磁石を貼付けてこの小片磁石からの磁界だけを感度よく検知 することができる。 さらに、 このタイヤ 1は外部に磁界を形成しないだけで、 ス チールコードの内部には大きな磁ィヒが存在しそれぞれの磁ィヒが内部で磁路を形成 しているので、 タイヤが走行中に受ける外部磁場に対して高い抗磁力を具えさせ ることができ、 例えば、 走行中のタイヤのベルトが外部磁場によって表面磁力を 再着磁されるのを抑えることができる。 In addition, since the magnetic field formed outside is small in the dinner 1 having such a configuration, a small magnet can be attached to the tire 1 and only the magnetic field from the small magnet can be detected with high sensitivity. Furthermore, since the tire 1 does not form a magnetic field outside, a large magnetic field exists inside the steel cord, and each magnetic field forms a magnetic path inside. It is possible to provide a high coercive force to an external magnetic field that is applied to the tire, for example, and to prevent the belt of the running tire from re-magnetizing the surface magnetic force due to the external magnetic field.
次に、 タイヤ 1を形成する方法について説明する。 図 4は、 タイヤ 1を形成する のに用いられるタイヤ外部磁界低減装置 2 0を示す斜視図、図 5は、図 4の "A" 部分を拡大して棒状磁石 2 1の磁極配置と磁力線の放射態様とを図 4と同じ向き で示す斜視図である。 Next, a method of forming the tire 1 will be described. FIG. 4 is a perspective view showing a tire external magnetic field reduction device 20 used to form the tire 1. FIG. 5 is an enlarged view of a portion "A" in FIG. FIG. 5 is a perspective view showing a radiation mode in the same direction as FIG.
このタイヤ外部磁界低減装置 2 0は、 タイヤ 1を回転させながらバランスを測定 するタイヤバランサ 2 5の回転駆動部分を兼用して構成され、 タイヤ 1を装着す るタイヤバランス測定用リム 1 1、 このリム 1 1をモータ,駆動により回転する夕 ィャ回転駆動手段 2 3、 棒状磁石 2 1、 および、 棒状磁石 2 1を段階的にタイヤ 1の半径方向外側に変位する磁石変位駆動手段 2 4を具える。 さらに、 図示しな いが、 タイヤ回転駆動手段 2 3と磁石変位駆動手段 2 4とを協働させてタイヤ 1 と棒状磁石 2 1とを相対移動させる際の棒状磁石 2 1の軌跡を制御する相対移動 制御手段も具える。 また、 棒状磁石 2 1は、 タイヤ 1の回転軸と平行で、 かつ、 N極と S極の間に放射される磁力線が赤道面内に延在してベルト 5と交わるよう な姿勢で、 タイヤ 1の外周面に当接もしくは近接させて配置される。 なお、 この タイヤ外部磁界低減装置 2 0は、 タイヤバランサ 2 5の回転駆動部分を兼用して 構成されているので、タイヤ外部磁界低減のためのコストを抑えることができる。 図 6は、 タイヤ 1に対して相対移動する磁石 2 1の軌跡を、 タイヤを静止したも のとしてタイヤ軸方向から見て示す軌跡図である。 すなわち、 図 6は、 回転する タイヤ 1上の点から見たときの棒状磁石 2 1の軌跡を示すものである。 図 6を参 照して、この装置 2 0を用いてタイヤ 1を形成する方法について説明する。まず、 棒状磁石 2 1をタイヤ 1の外周面から d 1だけ離隔させた点 S 1に配置する。 次 いでタイヤ 1の回転を開始し、タイヤ 1が 1周より 1の角度だけ余計に回った 点 F 1でタイヤ 1の回転を停止し棒状磁石 2 1を半径方向外側に距離 d 2だけ変 位させて点 S 2に移動させる。 次いで、 タイヤ 1の回転を再開しタイヤ 1が 1周 より ひ 2の角度だけ余計に回った点 F 2でタイヤ 1の回転を停止し棒状磁石 2 1を半径方向外側に距離 d 2だけ変位させて点 S 3に移動させる。.同様にして、 棒状磁石 2 1を、 さらに F 3、 S 4、 F 4、 S 5、 F 5の順に移動し、 そのあと タイヤを装置 2 0から取り出す。 The tire external magnetic field reduction device 20 is also configured as a rotation drive portion of a tire balancer 25 that measures balance while rotating the tire 1, and a tire balance measurement rim 11 on which the tire 1 is mounted. A motor rotation driving means 23 for rotating the rim 11 by a motor and a drive, a rod-shaped magnet 21, and a magnet displacement driving means 24 for gradually displacing the rod-shaped magnet 21 radially outward of the tire 1 are provided. Equipped. Further, although not shown, the trajectory of the rod-shaped magnet 21 when the tire 1 and the rod-shaped magnet 21 are relatively moved is controlled by cooperating the tire rotation driving means 23 and the magnet displacement driving means 24. It also has relative movement control means. The rod-shaped magnet 21 is placed in a posture parallel to the rotation axis of the tire 1 and in such a position that the magnetic field lines radiated between the N pole and the S pole extend in the equatorial plane and intersect the belt 5. It is arranged to be in contact with or close to the outer peripheral surface of 1. In addition, since the tire external magnetic field reduction device 20 is configured to also serve as the rotation driving portion of the tire balancer 25, the cost for reducing the tire external magnetic field can be suppressed. FIG. 6 is a trajectory diagram showing the trajectory of the magnet 21 relatively moving with respect to the tire 1 as viewed from the tire axial direction with the tire stationary. That is, FIG. 6 shows the trajectory of the bar-shaped magnet 21 as viewed from a point on the rotating tire 1. With reference to FIG. 6, a method of forming the tire 1 using this device 20 will be described. First, the bar-shaped magnet 21 is disposed at a point S 1 separated from the outer peripheral surface of the tire 1 by d 1. Next, the rotation of tire 1 is started, and the rotation of tire 1 is stopped at point F 1 where tire 1 has turned an additional 1 angle from one lap, and rod-shaped magnet 21 is displaced radially outward by distance d 2. To move to point S2. Then, the rotation of the tire 1 is restarted, and the rotation of the tire 1 is stopped at the point F2 where the tire 1 has turned an extra angle of 2 from the one lap, and the rod-shaped magnet 21 is displaced radially outward by the distance d2. To point S3. Similarly, the rod-shaped magnet 21 is further moved in the order of F3, S4, F4, S5, and F5, and then the tire is taken out of the device 20.
このように、 このタイヤの形成方法は、 タイヤの回転を開始しタイヤ 1が 1回転 より所定角度だけ余計に回った点でタイヤの回転を停止し棒状磁石 2 1をタイヤ 半径方向外側に所定距離だけ変位させる操作を基本操作としてこの基本操作を複 数回、図 6に示す例では 5回、連続して行うことを特徴し、この連続操作により、 図 3に示す表面磁力分布をもつスチールコード 1 3、 1 4を具えたタイヤ 1を形 成することができる。 Thus, the method of forming the tire is as follows. When the tire 1 starts rotating, the tire 1 stops rotating at a point where the tire 1 has turned an additional angle beyond a single rotation, and the rod-shaped magnet 21 is moved radially outward by a predetermined distance. It is characterized in that the basic operation is performed several times, and the basic operation is performed several times in the example shown in Fig. 6, and the steel cord having the surface magnetic force distribution shown in Fig. 3 by this continuous operation A tire 1 having 13 and 14 can be formed.
次に、 このタイヤの形成方法の原理について説明する。 図 7〜図 9は、 1本のス チールコード S Cの近くに磁石 Mを配置して磁石 Mをスチールコード S Cの長さ 方向にその一端から他端まで変位させる実験を説明するための図であり、図 7は、 スチールコード S Cと磁石 Mとの相対配置を示す斜視図、 図 8および図 9は、 磁 石 Mの位置によって変化する表面磁力分布を、 横軸にスチールコード S Cの長さ 方向位置をとり縦軸に N極を正、 S極を負として表わす表面磁力の大きさをとつ て、磁石 Mの位置ごとに順に示すグラフである。この実験においては、磁石 Mを、 スチールコード S Cの一方の端 Aから他方の端 Bまで、 磁極 Sが端 Aの側に磁極 Nが端 Bの側に位置する姿勢を保って変位させる。 Next, the principle of the tire forming method will be described. FIGS. 7 to 9 are diagrams for explaining an experiment in which a magnet M is arranged near one steel cord SC and the magnet M is displaced from one end to the other end in the length direction of the steel cord SC. Fig. 7 is a perspective view showing the relative arrangement of the steel cord SC and the magnet M. Figs. 8 and 9 show the surface magnetic force distribution that changes depending on the position of the magnet M. The horizontal axis shows the length of the steel cord SC. FIG. 9 is a graph showing the magnitude of surface magnetic force in which the direction position is taken and the vertical axis represents the N pole as positive and the S pole as negative, for each position of the magnet M in order. In this experiment, the magnet M was moved from one end A to the other end B of the steel cord SC, and the magnetic pole S was placed on the end A side. Displace while maintaining the posture where N is located on the end B side.
図 7 ( a) は、 磁石 Mをスチールコード S Cから十分離隔した点 P 0に待機させ た初期状態におけるスチールコード S Cの表面磁力分布を示し、 この状態におい て、 表面磁力は端 Aで S極、 端 Bで N極となり、 これらの端以外の部分において は表面磁力が存在しないよう磁ィ匕されているものとする。 Fig. 7 (a) shows the surface magnetic force distribution of the steel cord SC in the initial state where the magnet M is kept at a point P0 far away from the steel cord SC. In this state, the surface magnetic force is S pole at the end A. It is assumed that the end B has an N pole, and portions other than these ends are magnetized so that no surface magnetic force exists.
図 7 ( b )、 図 7 ( c )、 図 8 ( a)、 図 8 ( b) および図 8 ( c ) は、 それぞれ、 磁石 Mを点 P 1、 P 2、 P 3、 P 4および点 P 5まで順に移動させたときのスチ ールコード S Cの表面磁力分布を示し、 この磁石の移動操作は、 スチールコード S Cに残留する表面磁力を一旦リセットしながら、 新たな表面磁力のピークをス チールコード S Cの長さ方向に沿って形成してこれを磁石 Mの移動と共に順次移 動させるものであり、 このことによって、 磁石 Mをスチールコード S Cから十分 離隔した位置 P 5まで退出させた最終状態において、 端 A付近と端 B付近とだけ にそれぞれ N極および S極の表面磁力を形成することができる。 Fig. 7 (b), Fig. 7 (c), Fig. 8 (a), Fig. 8 (b) and Fig. 8 (c) show the magnet M at points P1, P2, P3, P4 and This shows the distribution of the surface magnetic force of the steel cord SC when the steel cord SC is moved to P5 in order.The operation of moving this magnet temporarily resets the surface magnetic force remaining on the steel cord SC, and sets a new peak of the surface magnetic force to the steel cord SC. It is formed along the length direction of the SC and is sequentially moved with the movement of the magnet M. In this way, in the final state where the magnet M is withdrawn to the position P5 sufficiently separated from the steel cord SC. The surface magnetic force of the N pole and the S pole can be formed only near the end A and the end B, respectively.
そして、 この実験結果を参照して、 前述の図 6に示す基本操作を説明すると、 棒 状磁石 2 1をタイヤ 1の周方向一方から他方に向かって相対移動させた時、 この 操作は、 スチールコード 1 3、 スチールコード 1 4のいずれに対しても、 周方向 一方から他方に向かうコードの長さ方向に沿つて磁石 Mを移動ことを意味し、 そ の結果、 前述の実験結果に基づいて、 スチールコード 1 3、 1 4の両端部分以外 の部分の表面磁力をほぼゼロとするとともに、 コード 1 3に対しても、 コード 1 4に対しても周方向一方の側の端部分には同じ一方の極、 例えば N極の表面磁力 を形成し、 周方向の他方の側の端部分には同じ他方の極、 例えば S極の表面磁力 を形成する。 Referring to the experimental results, the basic operation shown in FIG. 6 described above is described. When the bar-shaped magnet 21 is relatively moved from one circumferential direction of the tire 1 to the other, this operation is For both the cord 13 and the steel cord 14, this means moving the magnet M along the length of the cord from one circumferential direction to the other, and as a result, based on the experimental results described above. The surface magnetic force of the parts other than both ends of the steel cords 13 and 14 is set to almost zero, and the same is applied to the one end in the circumferential direction for both the cord 13 and the cord 14. It forms the surface magnetic force of one pole, for example, the N pole, and the same other pole, for example, the surface magnetic force of the S pole, at the end on the other side in the circumferential direction.
そして、 スチールコード 1 3と 1 4とはタイヤ赤道面 Eに関し逆向きに傾斜して 配列されているので、 このことはとりもなおさず、 ベルト 5の一方のタイヤ幅方 向端部 W 1においては、 内層側ベルト層 3のスチールコード 1 3の端部分での表 面磁力はすべて N極の極性を有するが、 外層側ベルト層 4のスチールコード 1 4 の端部分での表面磁力はすべて S極の極性を有し、 これとは逆に、 ベルト 5の他 方のタイヤ幅方向端部 W 2においては、 スチールコード 1 3の端部分での表面磁 力はすべて S極の極性を有するが、 スチールコード 1 4の端部分での表面磁力は すべて N極の極性を有する、 という結果をもたらすことを意味する。 And, since the steel cords 13 and 14 are arranged so as to be inclined in the opposite direction with respect to the tire equatorial plane E, this is not remarkable, and at one end W 1 of the belt 5 in the tire width direction. Indicates that the surface magnetic force at the end of the steel cord 13 of the inner belt layer 3 has N-polarity, but the steel cord 14 of the outer belt layer 4 The surface magnetic force at the end of the belt has the polarity of the S pole. Conversely, at the other end W2 of the belt 5 in the tire width direction, the surface magnetic force at the end of the steel cord 13 is This means that all forces have S polarity, but the surface magnetic force at the end of steel cord 14 has all N polarity.
しかしながら、 タイヤ 1の外周面に沿わせて棒状磁石 2 1を相対移動させる楊合 は、 前述の 1本のスチールコ一ド S Cに沿って磁石 Mを移動させる実験とは異な り、 ベルト層 3、 4は無端状に形成されているので、 棒状磁石 2 1を図 6の点 F 1で停止させたとき、 点 F 1にある棒状磁石 2 1に対向して位置するスチールコ ード 1 3、 1 4では、 コードの中央付近に磁石 2 1が位置していて、 図 8 ( b )、 図 8 ( c )、 図 9 ( a ) あるいは図 9 ( b ) に示すような表面磁力分布を有するこ ととなり、 したがって、 棒状磁石 2 1と対向する周方向位置のベルト部分だけは それがスチールコ一ドの端部分でなくても表面磁力のピークが残ってしまう。 前記基本操作を複数回行うのは、 このようにして残留する表面磁力のピークを 徐々に減じるために行うものであり、 複数回の基本操作により、 棒状磁石 2 1と 対向する周方向位置に残った表面磁力を一旦リセットするとともに、 前よりは新 たに弱い表面磁力の部分を別の周方向位置に形成するという操作を繰り返して、 最終操作では、 十分に小さな表面磁力のピークだけが残る分布のベルト 5を形成 することができる。 以上が、 前述のタイヤの外部に形成する磁界を減ずるタイヤ の形成方法の原理であり、 極めて容易にタイヤ 1を形成することができる。 ここで、 図 6に示す角度 a l、 α 2、 · · · ·は、 スチールコード 1 3、 1 4のタイ ャ周方向に沿った延在長さに対応する回転角とするのが好ましく、 このことによ り、 全周すベてのスチールコ一ド 1 3、 1 4についてそれぞれの長さ方向の両端 間を移動させることができ、 残留する表面磁力を確実にリセットすることができ る。 However, the relative movement of the bar-shaped magnet 21 along the outer peripheral surface of the tire 1 is different from the experiment of moving the magnet M along one steel cord SC as described above. 4 is formed endless, so that when the bar-shaped magnet 21 is stopped at the point F1 in FIG. 6, the steel codes 13 and 1 located opposite the bar-shaped magnet 21 at the point F1 In Fig. 4, the magnet 21 is located near the center of the cord and has a surface magnetic force distribution as shown in Fig. 8 (b), Fig. 8 (c), Fig. 9 (a), or Fig. 9 (b). Therefore, only the belt portion at the circumferential position facing the bar-shaped magnet 21 has a peak of the surface magnetic force even if it is not the end portion of the steel cord. The basic operation is performed a plurality of times in order to gradually reduce the peak of the remaining surface magnetic force in this manner, and the basic operation is performed at a circumferential position facing the bar-shaped magnet 21 by the plurality of basic operations. The operation of resetting the surface magnetic force once and forming a weaker surface magnetic force part at another circumferential position than before is repeated, and in the final operation, only a sufficiently small surface magnetic force peak remains Belt 5 can be formed. The above is the principle of the method of forming a tire for reducing the magnetic field formed outside the tire, and the tire 1 can be formed extremely easily. Here, the angles al, α2,... Shown in FIG. 6 are preferably rotation angles corresponding to the lengths of the steel cords 13 and 14 extending along the tire circumferential direction. This makes it possible to move the steel cords 13 and 14 around the entire circumference between both ends in the longitudinal direction, and to reset the residual surface magnetic force without fail.
また、 半径方向外側に移動されたあとの磁石 2 1は、 その時点までにスチールコ —ド 1 3、 1 4に残留する表面磁力をリセットするに十分な大きさの磁界をベル W Also, after being moved outward in the radial direction, the magnet 21 applies a magnetic field that is large enough to reset the surface magnetic force remaining on the steel cords 13 and 14 up to that point. W
ト 5に形成する必要があり、 磁石 2 1のタイヤ 1からの最終離隔距離は、 磁石 2 1がベルト 5に残留させる表面磁力が十分小さくなるよう設定されなければなら ず、 これらのことを勘案して、 棒状磁石 2 1を段階的に半径方向外側に変位させ る際の距離 d 2、 d 3、 · · ·を決める必要がある。 The final separation distance of the magnet 21 from the tire 1 must be set so that the surface magnetic force of the magnet 21 remaining on the belt 5 is sufficiently small. Then, it is necessary to determine the distances d 2, d 3,... When the rod-shaped magnet 21 is displaced radially outward stepwise.
なお、 前述の方法において、 磁石 2 1をタイヤ 1から離隔変位させる際に、 一旦 タイヤ 1の回転を停止するものとしたが、 タイヤ 1を一旦停止させずに複数の基 本操作にわたって回転を連続さても同様の効果をえることができる。 また磁石の 長さは、 タイヤ幅方向と同等以上とするのが好ましく、 このことにより、 スチー ルコードの端部まで確実に表面磁力を調整することができる。  In the method described above, when the magnet 21 is displaced away from the tire 1, the rotation of the tire 1 is temporarily stopped, but the rotation is continuously performed over a plurality of basic operations without temporarily stopping the tire 1. The same effect can be obtained. Further, the length of the magnet is preferably equal to or greater than the width direction of the tire, whereby the surface magnetic force can be reliably adjusted to the end of the steel cord.
図 1 0は、 他の実施態様のタイヤ外部磁力低減装置 3 0を示す斜視図である。 この装置 3 0は、 車両 1 5に装着されたタイヤ 1を車両 1 5から取り外すことな く、 タイヤ 1が外部に形成する磁界を低減するものであり、 この装置 3 0は、 夕 ィャ 1もしくはタイヤ 1を組み付けるリムを把持するチャック 3 2、 チャック 3 2を回転するタイヤ回転駆動手段 3 3、 棒状磁石 3 1、 棒状磁石 3 1をタイヤ半 径方向外側に変位させる磁石変位駆動手段 3 4、 および、 図示しないが、 タイヤ 1と棒状磁石 3 1とを相対移動させる際の棒状磁石 2 1の軌跡を制御する相対移 動制御手段を具える。  FIG. 10 is a perspective view showing a tire external magnetic force reduction device 30 of another embodiment. The device 30 reduces the magnetic field formed by the tire 1 outside without removing the tire 1 mounted on the vehicle 15 from the vehicle 15. Or, a chuck 3 2 for gripping a rim for mounting the tire 1, a tire rotation driving means 33 for rotating the chuck 3 2, a rod-shaped magnet 31, and a magnet displacement driving means 3 4 for displacing the rod-shaped magnet 31 outward in the tire radial direction. Although not shown, relative movement control means for controlling the trajectory of the bar-shaped magnet 21 when the tire 1 and the bar-shaped magnet 31 are relatively moved is provided.
それぞれの手段の機能の詳細や、 この装置 3 0を用いてタイヤを形成する方法に ついては、 すでに、 図 4に示した装置 2 0について説明したものと同様であるの で説明を省略するが、 この態様の装置 3 0が装置 2 0となる点は、 第一に、 車両 1 5にタイヤ 1を装着したまま、 外部に形成する磁界を抑制したタイヤ 1を形成 することであり、 そのため、 前述の基本操作を開始する前に、 車両をジヤッキア ップする等してタイヤを地面から浮かせる必要がある点であり、 第二に、 車両 1 5を所定の位置に固定することは難しいので、 車両 1 5およびそれぞれのタイヤ 1の配置に合わせて、 タイヤ回転駆動手段 3 3および磁石変位駆動手段 3 4をセ ットする必要がありそのためこれらの手段は可搬に構成されていなければならな い点である。 The details of the function of each means and the method of forming a tire using this apparatus 30 are already the same as those described for the apparatus 20 shown in FIG. The point that the device 30 of this embodiment becomes the device 20 is, first, to form the tire 1 in which the magnetic field formed outside is suppressed while the tire 1 is mounted on the vehicle 15. Before starting the basic operation of the vehicle, it is necessary to lift the tire off the ground by jacking up the vehicle.Second, it is difficult to fix the vehicle 15 in a predetermined position. It is necessary to set the tire rotation driving means 33 and the magnet displacement driving means 34 in accordance with the arrangement of the tires 15 and the respective tires 1.Therefore, these means must be configured to be portable. It is a point.
この装置 3 0は車両 1 5にタイヤを装着したままそれが形成する外部磁界を減じ ることができるので、 走行中に着磁されたタイヤ 1についても簡易にその処理を 行うことができる。 実施例 Since the device 30 can reduce the external magnetic field generated by the tire mounted on the vehicle 15 while the tire is mounted on the vehicle 15, the processing can be easily performed even on the tire 1 that is magnetized during traveling. Example
従来のタイヤ (従来例) に前述の基本操作を連続させて行うことにより、 図 1に 示す本実施形態のタイヤ (実施例) を形成し、 これらのタイヤが形成する外部磁 界を測定して比較した。 図 1 1および図 1 2は、 それぞれ、 従来例および実施例 のタイヤにつき、 これらが形成する外部磁界をタイヤ周方向成分、 タイヤ半径方 向成分、 タイヤ幅方向成分についてタイヤ周方向一周にわたって測定し、 磁束密 度で表わした磁界の強さを縦軸に、 タイヤの周方向位置を横軸にとって表わすグ ラフである。 この測定は、 ホール素子を用いて磁界を計測するガウスメータを用 いて行い、 磁界の検出位置は、 タイヤ赤道面上のタイヤ外周面から 5 mmだけ離 れた位置とした。 By performing the above-mentioned basic operations continuously on a conventional tire (conventional example), tires (examples) of the present embodiment shown in FIG. 1 are formed, and the external magnetic field formed by these tires is measured. Compared. Figs. 11 and 12 show the external magnetic field formed by the tires of the conventional example and the example for the tire circumferential direction component, the tire radial direction component, and the tire width direction component, respectively, measured over one round in the tire circumferential direction. The graph shows the strength of the magnetic field represented by the magnetic flux density on the vertical axis, and the circumferential position of the tire on the horizontal axis. This measurement was performed using a Gauss meter that measures the magnetic field using a Hall element, and the magnetic field was detected at a position 5 mm away from the tire outer circumferential surface on the tire equator.
これらのタイヤの関連する主要緒元は次のとおりである。 The relevant key specifications of these tires are as follows.
タイャサイズ: 1 9 5 / 6 0 R 1 5 Tire size: 1 95/60 R 15
ベルト層数: 2 Number of belt layers: 2
ベルト層幅 (mm) :内層 1 5 2、 外層 1 4 0 Belt layer width (mm): Inner layer 1 52, Outer layer 140
スチールコードの赤道面に対する傾斜角度 (度) :内層 2 4、 外層 2 4 スチールコード打ち込み数 (本 / 5 0 mm) :内層 3 4、 外層 5 0 また、 実施例のタイヤを形成する際用いた磁石の強さは中心部表面で 8 0 mT、 基本操作においてタイヤを回転する角度はすべて 7 2 0度、 基本操作の回数は 3 回、 一回ごとに磁石を遠ざける距離は 5 mmとした。 Angle of inclination of steel cord with respect to the equatorial plane (degree): Inner layer 24, outer layer 24 Number of steel cords to be driven (strands / 50 mm): inner layer 34, outer layer 50 Also used when forming tires of Examples The magnet strength was 80 mT at the center surface, the tire rotation angle was 720 degrees in all basic operations, the number of basic operations was three times, and the distance to keep the magnet away each time was 5 mm.
図 1 1、 図 1 2から明らかなように、 従来のタイヤでは最大 0 . 5 mT以上あつ た磁界成分を、 上述のような基本操作を連続して繰り返すことにより、 外部磁界 W As is evident from Figs. 11 and 12, the conventional tire generates a magnetic field component that has a maximum of 0.5 mT or more by repeating the above basic operation continuously. W
がほぼ 0 . 1 mT以下となる実施例のタイヤを形成することができた。 Was about 0.1 mT or less.
また、 図 1 3、 図 1 4は、 それぞれ、 従来例のタイヤおよび実施例のタイヤに、 周上 4力所、 タイヤ赤道面上に位置するタイヤ内周面に表裏で極性を異ならせた 小片磁石を貼付けたとき、 これらのタイヤが形成する外部磁界を、 タイヤ赤道面 上タイヤ外周面けら半径方向外側に 5 mm離した位置に配置したガウスメータで 全周にわたって測定したものであり、図 1 1、 1 2と同様、磁界の強さを縦軸に、 タイヤの周方向位置を横軸にとって表わすグラフである。 貼付けた小片磁石は、 3 0 mm角の大きさであり、 またフェライトをゴム組成物中に分散したものを成 型したポンド磁石である。  Figures 13 and 14 show small pieces with different polarities on the inner and outer peripheral surfaces of the tire at the four points on the circumference and the equatorial plane of the tire, respectively. The external magnetic field formed by these tires when the magnets were attached was measured over the entire circumference by a Gauss meter placed 5 mm radially outward from the tire's equatorial plane and from the outer peripheral surface of the tire. 12 is a graph showing the strength of the magnetic field on the vertical axis and the circumferential position of the tire on the horizontal axis, similarly to FIGS. The attached small piece magnet has a size of 30 mm square, and is a pound magnet formed by dispersing ferrite in a rubber composition.
図 1 3、 図 1 4から明らかなように、 小片磁石単体によって形成される磁界は、 0. 3 mT程度であり、 従来例のタイヤにおいては、 ベルト 5に起因する最大磁 界成分は 0 . 5 mT以上あるので、 従来例のタイヤに小片磁石を貼付けた場合、 小片磁石によって形成された磁界とスチールコードに起因する磁界とを区別する ことが難しいが、 実施例のタイヤではベルトによる磁界を抑制したので小片磁石 による磁界だけを抽出することができる。 産業上の利用可能性  As is clear from FIGS. 13 and 14, the magnetic field formed by the small piece magnet alone is about 0.3 mT, and in the conventional tire, the maximum magnetic field component caused by the belt 5 is 0. Since it is 5 mT or more, it is difficult to distinguish the magnetic field formed by the small-piece magnet from the magnetic field caused by the steel cord when the small-piece magnet is attached to the tire of the conventional example. Since it is suppressed, only the magnetic field generated by the small piece magnet can be extracted. Industrial applicability
以上述べたところから明らかなように、 本発明のタイヤは、 外部に磁界を形成し ないので、 小片磁石を貼り付けてこの磁石の形成する磁界を測定して求められた タイヤの特性や、 その特性から導かれる車両の走行状状態を検知する用途に用い ることができる。  As is clear from the above description, since the tire of the present invention does not form a magnetic field outside, the characteristics of the tire determined by pasting a small magnet and measuring the magnetic field formed by this magnet, It can be used for detecting the running state of a vehicle derived from characteristics.

Claims

請 求 の 範 囲 The scope of the claims
1 . スチールコードが配列された一層以上のベルト層よりなるベルトを具えた夕 ィャにおいて、 タイヤ表面上のすべての点に対して、 それぞれの点から法線方向 外側に 5 mmだけ離隔した点において形成する磁界の強さが、 いずれの方向に対 しても、 0 . 1 5 mT以下であるタイヤ。 1. In a sunset with a belt consisting of one or more belt layers with steel cords arranged, all points on the tire surface shall be separated from each point by 5 mm in the direction normal to each point. A tire having a magnetic field strength of 0.15 mT or less in any direction.
2 ·ベルトを複数のベルト層で構成し、それぞれのベルト層のスチールコ一ドを、 隣接して積層された二つのベルト層同士でタイヤ赤道面に対して逆向きに傾斜し て配列するとともに、 スチールコードの表面磁力をその両端部分だけに局在化さ せ、スチールコードのタイヤ幅方向同じ側に位置する端部分における表面磁力を、 同一ベルト層内では同じ極性のものとし、 隣接して積層された二つのベルト層同 士では異なる極性のものとしてなる請求の範囲第 1項に記載のタイヤ。  2) The belt is composed of a plurality of belt layers, and the steel cords of each belt layer are arranged so that two adjacent belt layers are inclined in the opposite direction to the tire equatorial plane. The surface magnetic force of the steel cord is localized only at both ends, and the surface magnetic force at the end of the steel cord located on the same side in the tire width direction has the same polarity in the same belt layer, and is laminated adjacently 2. The tire according to claim 1, wherein the two belt layers have different polarities.
3 . 請求の範囲第項 1もしくは 2項に記載されたタイヤを形成するに際して、 棒 状磁石をタイヤ幅方向に向く姿勢でタイヤ外周面に当接または近接させて、 タイ ャ回転軸に対する棒状磁石の姿勢を一定に保持しながら、 タイヤの外周部をタイ ヤー周以上タイヤに対して相対回転させたあと、 棒状磁石をタイヤ回転軸から遠 ざける操作を基本操作とするとき、 タイヤを加硫したあとタイヤの使用を完了す るまでのいずれかの時点で、 この基本操作を連続して複数回行って、 タイヤ外部 に形成される磁界の強さを減じるタイヤの形成方法。  3. When forming the tire described in claim 1 or 2, the rod-shaped magnet is brought into contact with or close to the tire outer peripheral surface in a posture facing the tire width direction, and the rod-shaped magnet is rotated with respect to the tire rotation axis. When the basic operation consists of rotating the outer periphery of the tire relative to the tire more than the tire circumference while maintaining the tire position constant, and then moving the bar-shaped magnet away from the tire rotation axis, the tire is vulcanized. At some point after the completion of the use of the tire, the basic operation is performed a plurality of times in succession to reduce the strength of the magnetic field formed outside the tire.
4. 前記基本操作において、 棒状磁石をタイヤに対して相対回転する際の回転角 を、 スチールコードのタイヤ周方向に沿った延在長さに対応する回転角に 3 6 0 度を加えた角度以上とする請求項 3に記載のタイヤの形成方法。  4. In the above basic operation, the rotation angle when the bar-shaped magnet is rotated relative to the tire is calculated by adding 360 degrees to the rotation angle corresponding to the length of the steel cord extending along the tire circumferential direction. 4. The method for forming a tire according to claim 3, wherein the method is as described above.
5 . タイヤを回転してタイヤのバランスを測定するタイヤバランサにタイヤをセ ットすることによりタイヤを回転して、 前記基本操作を行う請求の範囲第 3もし くは 4項に記載のタイャの形成方法。  5. The tire according to claim 3 or 4, which performs the basic operation by rotating the tire by setting the tire on a tire balancer for measuring the balance of the tire by rotating the tire. Forming method.
6 . 車両に装着されたタイヤを地面から離隔したあと、 タイヤを車両に装着した ままタイヤを回転して、 前記基本操作を行う請求の範囲第 3もしくは 4項に記載 のタイヤの形成方法。 6. After the tire mounted on the vehicle was separated from the ground, the tire was mounted on the vehicle. The tire forming method according to claim 3 or 4, wherein the basic operation is performed by rotating the tire as it is.
7 . 請求の範囲第 3〜 6項のいずれかのタイヤの形成方法に用いられる、 タイヤ の外部磁界を減じる装置であつて、  7. A device for reducing an external magnetic field of a tire, which is used in the method for forming a tire according to any one of claims 3 to 6,
タイヤを把持して回転するタイヤ回転駆動手段と、 前記棒状磁石と、 棒状磁石を タイヤに対してタイャ半径方向外側に段階的に離隔する磁石変位駆動手段とを具 えてなるタイャ外部磁界低減装置。 A tire external magnetic field reduction device comprising: tire rotation driving means for gripping and rotating a tire; said rod-shaped magnet; and magnet displacement driving means for separating the rod-shaped magnet stepwise radially outward from the tire in the tire radial direction.
8 . 請求の範囲第 1もしくは 2項に記載のタイヤを装着してなる車両。  8. A vehicle equipped with the tire according to claim 1 or 2.
PCT/JP2003/016461 2003-01-17 2003-12-22 Tire, its forming method, device for reducing external magnetic field of tire, and vehicle mounted with that tire WO2004065142A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004567156A JP4243249B2 (en) 2003-01-17 2003-12-22 Tire, tire forming method, tire external magnetic field reduction device, and vehicle equipped with tire
AU2003289480A AU2003289480A1 (en) 2003-01-17 2003-12-22 Tire, its forming method, device for reducing external magnetic field of tire, and vehicle mounted with that tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003009832 2003-01-17
JP2003-9832 2003-01-17

Publications (1)

Publication Number Publication Date
WO2004065142A1 true WO2004065142A1 (en) 2004-08-05

Family

ID=32767230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016461 WO2004065142A1 (en) 2003-01-17 2003-12-22 Tire, its forming method, device for reducing external magnetic field of tire, and vehicle mounted with that tire

Country Status (3)

Country Link
JP (1) JP4243249B2 (en)
AU (1) AU2003289480A1 (en)
WO (1) WO2004065142A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082007A (en) * 2004-09-16 2006-03-30 Yokohama Rubber Co Ltd:The Demagnetization method and demagnetization device
JP2006086316A (en) * 2004-09-16 2006-03-30 Yokohama Rubber Co Ltd:The Demagnetization method and apparatus thereof
JP2006100349A (en) * 2004-09-28 2006-04-13 Yokohama Rubber Co Ltd:The Tire demagnetizing device
JP2009173108A (en) * 2008-01-23 2009-08-06 Bridgestone Corp Pneumatic tire
JP2010067629A (en) * 2008-09-08 2010-03-25 Bridgestone Corp Method of demagnetizing steel cord, and automobile tire

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0833162A2 (en) * 1996-09-27 1998-04-01 Canon Denshi Kabushiki Kaisha Tire magnetization method, tire magnetized by the tire magnetization method, tire magnetic field detection method, tire revolution detection signal processing method, and tire revolution detection apparatus
JP2000343915A (en) * 1999-06-09 2000-12-12 Mitsubishi Heavy Ind Ltd Measuring method and measuring device for cross sectional structure of tire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0833162A2 (en) * 1996-09-27 1998-04-01 Canon Denshi Kabushiki Kaisha Tire magnetization method, tire magnetized by the tire magnetization method, tire magnetic field detection method, tire revolution detection signal processing method, and tire revolution detection apparatus
JP2000343915A (en) * 1999-06-09 2000-12-12 Mitsubishi Heavy Ind Ltd Measuring method and measuring device for cross sectional structure of tire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082007A (en) * 2004-09-16 2006-03-30 Yokohama Rubber Co Ltd:The Demagnetization method and demagnetization device
JP2006086316A (en) * 2004-09-16 2006-03-30 Yokohama Rubber Co Ltd:The Demagnetization method and apparatus thereof
JP2006100349A (en) * 2004-09-28 2006-04-13 Yokohama Rubber Co Ltd:The Tire demagnetizing device
JP4525274B2 (en) * 2004-09-28 2010-08-18 横浜ゴム株式会社 Tire demagnetizer
JP2009173108A (en) * 2008-01-23 2009-08-06 Bridgestone Corp Pneumatic tire
JP2010067629A (en) * 2008-09-08 2010-03-25 Bridgestone Corp Method of demagnetizing steel cord, and automobile tire

Also Published As

Publication number Publication date
JP4243249B2 (en) 2009-03-25
JPWO2004065142A1 (en) 2006-05-18
AU2003289480A1 (en) 2004-08-13

Similar Documents

Publication Publication Date Title
JP2006317380A (en) Electric resistance measuring system for tire and its method
US20160025579A1 (en) Machine element and arrangement for measuring a force or a moment as well as a method for producing the machine element
EP2614579A1 (en) Rotary electric machine rotor
WO2004065142A1 (en) Tire, its forming method, device for reducing external magnetic field of tire, and vehicle mounted with that tire
GB2550268A (en) Methods for positioning rechargable tire pressure monitoring sensors
US7302868B2 (en) Method for measuring forces acted upon tire and apparatus for measuring forces acted upon tire
US11193839B2 (en) System and method for sensing an electromagnetic charateristic of a component having a residually magnetized region
EP1067389A1 (en) Elastomeric tire having magnetized sidewall and method of manufacturing same
JP6937128B2 (en) Magnetic encoder and its manufacturing method
US6927705B2 (en) Magnetic rubber encoder
WO2017023504A1 (en) Device and method for inspection of polymeric material with ferrous reinforcement
EP1512557A1 (en) Magnetized tire
JP3200028B2 (en) Tire magnetization method and tire magnetic field detection method
JP2017139401A (en) Magnetic marker and manufacturing method therefor
JPS6340813A (en) Rotation signal generator
JP2004177282A (en) Displacement measuring device and tire circumferential force measuring sensor
CN1324790C (en) Magnetizing method and device for permanent-magnet motor
JP2003214965A (en) Method and device for measuring force acting on tire and tire therefor
JP2019062120A (en) Magnetization device and magnetization method of magnetic encoder
JP2005257584A (en) Magnetic encoder and rotating body mounting same
WO2016157811A1 (en) Magnetic ring and rotation sensor comprising same
WO2008056756A1 (en) Diode magnetic encoder, and its manufacturing method
JP2003276408A (en) Magnetizing method for tire
JP2012143902A (en) Tire regeneration method, buffing device for tire regeneration, and pneumatic tire
JP2006138788A (en) Magnetic encoder and position detection method using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004567156

Country of ref document: JP

122 Ep: pct application non-entry in european phase