JP3200028B2 - Tire magnetization method and tire magnetic field detection method - Google Patents

Tire magnetization method and tire magnetic field detection method

Info

Publication number
JP3200028B2
JP3200028B2 JP16544397A JP16544397A JP3200028B2 JP 3200028 B2 JP3200028 B2 JP 3200028B2 JP 16544397 A JP16544397 A JP 16544397A JP 16544397 A JP16544397 A JP 16544397A JP 3200028 B2 JP3200028 B2 JP 3200028B2
Authority
JP
Japan
Prior art keywords
tire
magnetizing
magnetization
magnetic field
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16544397A
Other languages
Japanese (ja)
Other versions
JPH10151918A (en
Inventor
正博 川瀬
真一 田▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP16544397A priority Critical patent/JP3200028B2/en
Priority to US08/937,560 priority patent/US6104593A/en
Priority to DE69726373T priority patent/DE69726373T2/en
Priority to EP97116782A priority patent/EP0833162B1/en
Publication of JPH10151918A publication Critical patent/JPH10151918A/en
Priority to US09/599,418 priority patent/US6404182B1/en
Application granted granted Critical
Publication of JP3200028B2 publication Critical patent/JP3200028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Tires In General (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車等の車両の
速度または移動距離等を計測するためのタイヤの回転の
検知を磁気的に行なうためのタイヤの着磁方法及びタイ
ヤの磁界検出方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tire magnetizing method for magnetically detecting the rotation of a tire for measuring the speed or moving distance of a vehicle such as an automobile, and a method for detecting a tire magnetic field. Things.

【0002】[0002]

【従来の技術】車両の現在位置や道路案内等に使用され
るカーナビゲーション装置(以下カーナビと略す)は、
1990年頃に登場し、かなり普及してきた。
2. Description of the Related Art A car navigation device (hereinafter, abbreviated as car navigation) used for a current position of a vehicle, road guidance, and the like.
It appeared around 1990 and has become quite popular.

【0003】カーナビは、GPS航法により人工衛星か
らの電波により絶対位置を検出する機能を有している
が、最近ではジャイロセンサーによる角度変位と車両本
体からの車速データより車両の移動状況を示す自立航法
が組込まれたハイブリッド方式が増え、主流となってき
た。このハイブリッド方式により、マップマッチングの
精度を向上させることができる。
[0003] Car navigation systems have a function of detecting an absolute position by radio waves from artificial satellites by GPS navigation. Recently, however, a car navigation system has a self-sustained status indicating a vehicle movement condition based on angular displacement by a gyro sensor and vehicle speed data from a vehicle body. The number of hybrid systems with built-in navigation has increased and has become mainstream. With this hybrid method, the accuracy of map matching can be improved.

【0004】しかし、自立航法の機能を得る上で車速の
データを車両本体よりもらう必要があり、このために車
両本体の配線図を持った専門ディーラーに装置の接続を
行なってもらう必要があった。この接続作業は一般ユー
ザーが行なうことが安全上困難であり、接続が専門ディ
ーラーでないと行なえないことと、その費用が高いこと
が今後さらにカーナビが普及するための障害となりつつ
ある。
[0004] However, in order to obtain the function of the self-contained navigation, it is necessary to obtain vehicle speed data from the vehicle body, and for this purpose, it is necessary to have a specialized dealer having a wiring diagram of the vehicle body connect the device. . It is difficult for general users to perform this connection work in terms of safety, and the fact that the connection cannot be performed by a specialized dealer and the high cost thereof are becoming obstacles for the further spread of car navigation systems in the future.

【0005】[0005]

【発明が解決しようとする課題】そこで、車速または移
動距離の計測のためにタイヤの回転ないし回転数を検知
し、且つ簡単に車両に取り付けられるセンサーを供給で
きれば上記の問題が解決できるが、理想的な検知方法と
してはタイヤの回転ないし回転数の検知が非接触ででき
れば最適である。
The above problem can be solved by detecting the rotation or the number of rotations of the tires for measuring the vehicle speed or moving distance and supplying a sensor which can be easily attached to the vehicle. It is most suitable as a practical detection method if the rotation or the rotation speed of the tire can be detected in a non-contact manner.

【0006】そこで本発明者が着目したのは、最近のタ
イヤはスチールラジアルタイヤが主流になり、このタイ
ヤではスチールベルトを外周の内側に内包している点で
ある。そのスチールベルト自身は弱いながらも残留磁化
を持ち、タイヤの外部に磁界を放出している。
Therefore, the present inventor has paid attention to the fact that steel radial tires have become the mainstream in recent tires, and in this tire, a steel belt is included inside the outer periphery. The steel belt itself has a weak but remanent magnetization and emits a magnetic field outside the tire.

【0007】実際そのタイヤを1回転させて磁界を計測
した1例を図10に示す。計測はタイヤから15cm離
れた所で外周に沿って行なったものであるが、タイヤの
1回転に対応して明確なピークが複数存在していること
が判り、タイヤ回転の磁気的検知の可能なことが判っ
た。
FIG. 10 shows an example of actually measuring the magnetic field by rotating the tire once. The measurement was taken along the outer circumference at a distance of 15 cm from the tire, but it was found that there were multiple distinct peaks corresponding to one rotation of the tire, and magnetic detection of tire rotation was possible. It turns out.

【0008】しかし、磁界パターンでタイヤの1回転中
に複数のピークが存在することは、ピークをカウントし
てタイヤの回転数を求める際に整数分の1の補正を行う
必要があり、またタイヤ個々にピークの数が異なるため
補正値をタイヤ毎に設定する必要がある。
However, the fact that a plurality of peaks are present during one rotation of the tire in the magnetic field pattern requires that the peaks be counted and the number of rotations of the tire be corrected by a factor of an integer. Since the number of peaks differs individually, it is necessary to set a correction value for each tire.

【0009】そこで、タイヤの着磁をコントロールして
1回転に一定数、例えば1個のパルスに対応した信号が
得られれば、タイヤの回転の磁気的検知が容易になる。
Therefore, if a signal corresponding to a certain number, for example, one pulse, is obtained per rotation by controlling the magnetization of the tire, magnetic detection of the rotation of the tire becomes easy.

【0010】このため本発明の課題は、タイヤの磁気的
な回転検知に適したタイヤの着磁方法を提供することに
あり、特にタイヤの回転に伴なう磁界の変化を最大限に
得られる磁化範囲角度を明らかにすることにある。さら
に、タイヤの磁界検出方法において安定した出力波形が
得られる方法を提供することにある。
An object of the present invention is to provide a method of magnetizing a tire suitable for detecting the magnetic rotation of a tire. In particular, a change in a magnetic field accompanying the rotation of the tire can be maximized. The purpose is to clarify the magnetization range angle. Another object of the present invention is to provide a method for obtaining a stable output waveform in a method for detecting a magnetic field of a tire.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
め、本発明によれば、外周部にスチールベルトを内包し
たタイヤの前記スチールベルトの残留磁化による磁界を
外部より検出して前記タイヤの回転を検知するためのタ
イヤの着磁方法であって、着磁用磁石を前記タイヤの外
周面に当接または近接させ、該磁石の発生磁界が前記タ
イヤの周方向に沿うようにして、該磁石をタイヤの周方
向に沿って相対移動させることにより、タイヤの外周部
の全周にわたり連続して周方向に沿った一方向に着磁す
る第1の着磁工程と、該工程後に前記磁石の極性をタイ
ヤの周方向に関して反転させて、該磁石を前記タイヤの
外周面に当接または近接させてタイヤの周方向に沿って
相対移動させることにより、タイヤの外周部の360゜
より小さな所定角度の範囲を連続して前記一方向と逆方
向に再着磁する第2の着磁工程とからなるタイヤの着磁
方法を採用した。
According to the present invention, in order to solve the above-mentioned problems, according to the present invention, a magnetic field due to the remanent magnetization of the steel belt of a tire having a steel belt embedded in the outer peripheral portion is detected from the outside, and the tire is mounted on the tire. A method of magnetizing a tire for detecting rotation, wherein a magnetizing magnet is brought into contact with or close to the outer peripheral surface of the tire so that a magnetic field generated by the magnet follows a circumferential direction of the tire. A first magnetizing step in which the magnet is relatively moved along the circumferential direction of the tire to continuously magnetize in one direction along the circumferential direction over the entire circumference of the outer peripheral portion of the tire; and Is reversed in the circumferential direction of the tire, and the magnet is relatively moved along the circumferential direction of the tire by bringing the magnet into contact with or near the outer circumferential surface of the tire, thereby reducing the predetermined angle smaller than 360 ° of the outer circumferential portion of the tire. Corner He was employed magnetizing method of the tire comprising a second magnetizing step of re-magnetized in the direction opposite the direction of extent of the continuously.

【0012】この方法によれば、第1の着磁工程によ
り、当初タイヤのスチールベルトが帯びているランダム
な残留磁化をリセットした後、第2の着磁工程で所定角
度範囲の残留磁化を設定することで、安定した磁界パタ
ーンが得られる。特に、第1と第2の着磁工程により着
磁されたタイヤの外周部の前記一方向と逆方向の残留磁
化それぞれの角度範囲で小さい方の角度が30゜から1
80゜の範囲内、より好ましくは55゜から105゜の
範囲内になるようにすれば、タイヤの回転検知のための
磁気センサー出力のしきい値を設定する上での判別幅が
広く取れ、検知動作時の外部からの外乱磁界に対する磁
気センサー出力のレベル変動に対し強くできる。
According to this method, the first magnetization step resets the random remnant magnetization initially applied to the steel belt of the tire, and then sets the remnant magnetization within a predetermined angle range in the second magnetization step. By doing so, a stable magnetic field pattern can be obtained. In particular, the smaller angle in the respective angle ranges of the remanent magnetization in the direction opposite to the one direction on the outer peripheral portion of the tire magnetized in the first and second magnetization steps is 30 ° to 1 °.
If the angle is set within the range of 80 °, more preferably within the range of 55 ° to 105 °, the determination range in setting the threshold value of the magnetic sensor output for detecting the rotation of the tire can be widened, It can be made strong against the level fluctuation of the magnetic sensor output due to the external disturbance magnetic field at the time of the detection operation.

【0013】なお、上記と異なる着磁方法として、第1
の着磁工程ではタイヤの外周部の360゜より小さな所
定角度の範囲を連続して周方向に沿った一方向に着磁
し、第2の着磁工程ではタイヤの外周部で少なくとも第
1の着磁工程で着磁されていない未着磁の部分を連続し
て前記一方向と逆方向に着磁するようにしてもよい。
As a magnetizing method different from the above, there is a first method.
In the magnetizing step, the outer peripheral portion of the tire is magnetized continuously in one direction along the circumferential direction at a predetermined angle smaller than 360 °, and in the second magnetizing step, at least the first outer peripheral portion of the tire is formed in the outer peripheral portion of the tire. An unmagnetized portion that has not been magnetized in the magnetizing step may be magnetized continuously in the direction opposite to the one direction.

【0014】また、本発明によれば、前記タイヤの外周
部の全周を90°ずつの4つの範囲に分割し、それぞれ
の範囲をタイヤの周方向に沿って交互に逆方向となるよ
う着磁するタイヤの着磁方法も採用した。
Further, according to the present invention, the entire circumference of the outer peripheral portion of the tire is divided into four ranges of 90 °, and the respective ranges are alternately arranged in opposite directions along the circumferential direction of the tire. A method of magnetizing a tire to be magnetized was also adopted.

【0015】この方法の場合、具体的には、上記の第1
と第2の着磁工程を行い、第2の着磁工程で着磁する範
囲の角度を90゜とする。そして第2の着磁工程の後
に、タイヤの外周部において第2の着磁工程で着磁した
90゜の範囲に対し点対称となる90゜の範囲を第2の
着磁工程と同方法で連続して前記一方向と逆方向に再着
磁する第3の着磁工程を行う。
In the case of this method, specifically, the first method
And the second magnetization step is performed, and the angle of the range of magnetization in the second magnetization step is set to 90 °. After the second magnetizing step, a 90 ° range that is point-symmetrical to the 90 ° range magnetized in the second magnetizing step at the outer peripheral portion of the tire is formed in the same manner as the second magnetizing step. A third magnetization step of continuously re-magnetizing in the direction opposite to the one direction is performed.

【0016】この着磁方法によれば、タイヤの回転に伴
なう磁界の変化量を落とさずに1回転に2つのピークを
持った磁界パターンを形成でき、磁気センサーの出力で
タイヤ1回転につき2パルスの信号を安定して生成する
ことができる。
According to this magnetizing method, a magnetic field pattern having two peaks per rotation can be formed without reducing the amount of change in the magnetic field accompanying the rotation of the tire. A two-pulse signal can be generated stably.

【0017】また、本発明によれば、上記の各着磁方法
により着磁されたタイヤのスチールベルトの残留磁化に
よる磁界を外部より2個の磁気検出素子により差動検出
するタイヤの磁界検出方法であって、前記差動検出の際
に、前記2個の磁気検出素子の磁界検出方向が共に前記
タイヤの側面と平行であり、且つ2個の磁気検出素子が
前記タイヤの側面に対し垂直な方向に並列に並ぶように
する方法を採用した。
According to the present invention, there is provided a tire magnetic field detecting method for differentially detecting a magnetic field due to residual magnetization of a steel belt of a tire magnetized by each of the above magnetizing methods using two magnetic detecting elements from outside. In the differential detection, the magnetic field detection directions of the two magnetic detection elements are both parallel to the side surface of the tire, and the two magnetic detection elements are perpendicular to the side surface of the tire. The method of arranging in parallel in the direction was adopted.

【0018】このような磁界検出方法によれば、検出位
置が若干異なっても、タイヤからの磁界パターンに応じ
た検出出力の波形や位相があまり変化せず、最適な磁界
設定を素直に出力に反映させることができる。
According to such a magnetic field detection method, even if the detection position is slightly different, the waveform and phase of the detection output corresponding to the magnetic field pattern from the tire do not change so much, and the optimum magnetic field setting can be directly output. Can be reflected.

【0019】[0019]

【発明の実施の形態】以下、図を参照して本発明による
タイヤの着磁方法とタイヤの磁界検出方法の実施の形態
を説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a tire magnetizing method and a tire magnetic field detecting method according to the present invention.

【0020】[タイヤの着磁方法の実施形態]まずタイ
ヤの着磁方法の実施形態について述べる。本実施形態の
着磁方法では、まず第1の着磁工程として、図1に示す
外周部内側にスチールベルトを内包したタイヤ10の外
周部の全周にわたり連続して周方向に沿った一方向に着
磁する。
[Embodiment of Tire Magnetization Method] First, an embodiment of a tire magnetization method will be described. In the magnetizing method according to the present embodiment, first, as a first magnetizing step, one direction along the circumferential direction continuously over the entire circumference of the outer peripheral portion of the tire 10 including the steel belt inside the outer peripheral portion shown in FIG. Magnetized.

【0021】このために、図1に示すようにタイヤ10
の外周面に対し着磁用磁石12を当接または近接させ、
磁石12をタイヤ10の周方向に沿って1回転の360
゜以上相対移動させる。すなわち、磁石12自体をタイ
ヤ10の外周面に沿って1周以上移動させるか、或は磁
石12を移動させずにタイヤ10を1回転以上回転させ
る。ここで磁石12は、図2の拡大図に示すように、N
S極がタイヤ10の周方向、すなわち相対移動方向に前
後するように配置し、磁石12の発生磁界Hwがタイヤ
10の周方向に沿ってタイヤ外周部下のスチールベルト
に印加されるようにする。
For this purpose, as shown in FIG.
A magnetizing magnet 12 is brought into contact with or close to the outer peripheral surface of
The magnet 12 is rotated 360 times along the circumferential direction of the tire 10.
相 対 Relative movement is required. That is, the magnet 12 itself is moved one or more turns along the outer peripheral surface of the tire 10, or the tire 10 is rotated one or more turns without moving the magnet 12. Here, as shown in the enlarged view of FIG.
The S pole is arranged so as to extend in the circumferential direction of the tire 10, that is, in the direction of relative movement, so that the magnetic field Hw generated by the magnet 12 is applied to the steel belt below the tire outer peripheral portion along the circumferential direction of the tire 10.

【0022】なお、タイヤ10の外周面の全幅にわたっ
て着磁するのが好ましい。そのために、図1,2のよう
に配置した磁石12の幅がタイヤ10の外周面の幅より
小さい場合には、図2に矢印で示すように磁石12をタ
イヤ10の外周面の幅方向(タイヤ10の軸方向)に沿
って相対移動させるとともに、磁石12をタイヤ10の
周方向に沿って2回転以上相対移動させることにより、
タイヤ10の外周面の全幅にわたり着磁する。ただし、
必ずしもタイヤ外周面の全幅にわたり着磁しなくてもよ
く、タイヤ外周面において後述する磁気センサー側寄り
で例えば全幅の2/3程度の部分を着磁するものとして
もよい。
Preferably, the tire 10 is magnetized over the entire width of the outer peripheral surface. Therefore, when the width of the magnet 12 arranged as shown in FIGS. 1 and 2 is smaller than the width of the outer peripheral surface of the tire 10, the magnet 12 is moved in the width direction of the outer peripheral surface of the tire 10 as indicated by an arrow in FIG. (The axial direction of the tire 10), and the magnet 12 is moved relative to the tire 10 by at least two rotations in the circumferential direction.
The magnet is magnetized over the entire width of the outer peripheral surface of the tire 10. However,
It is not always necessary to magnetize over the entire width of the tire outer peripheral surface, and it is possible to magnetize a portion of the tire outer peripheral surface, for example, about の of the full width near the magnetic sensor described later.

【0023】また、磁石12とタイヤ10の相対移動方
向はタイヤ10の周方向に沿った一方向としてもよい
し、周方向に沿った2方向として両方向に往復移動させ
るようにしてもよい。
The relative movement direction of the magnet 12 and the tire 10 may be one direction along the circumferential direction of the tire 10 or may be reciprocated in both directions as two directions along the circumferential direction.

【0024】なお、タイヤを車両に装着したままの状態
で着磁を行う場合、対象となるタイヤをジャッキにより
浮かし、着磁用磁石をタイヤ外周面に当てタイヤを手で
回転させるか、或はジャッキアップせずにまずタイヤ外
周面の接地部以外を磁石で擦って着磁した後、少し車両
を移動させて残りの部分を擦って着磁する等により、容
易に着磁を行なうことができる。
When magnetizing the tire with the tire mounted on the vehicle, the target tire is floated by a jack, a magnet for magnetizing is applied to the tire outer peripheral surface, and the tire is rotated by hand. The magnet can be easily magnetized by first rubbing the magnet on the outer peripheral surface of the tire other than the ground contact portion with a magnet without jacking up, and then moving the vehicle a little and rubbing the remaining portion to magnetize. .

【0025】このようにして、第1の着磁工程により、
タイヤの外周部の全周にわたり連続して周方向に沿った
一方向に着磁し、タイヤが最初に持っていた残留磁化を
一方向に着磁し直し、リセットする。
As described above, by the first magnetizing step,
The tire is continuously magnetized in one direction along the circumferential direction over the entire circumference of the outer peripheral portion of the tire, and the residual magnetization originally held by the tire is re-magnetized in one direction and reset.

【0026】ここで交流減衰磁界をタイヤにかけること
により、最初の残留磁化を完全に消磁する方法もある
が、完全消磁されたスチールベルト部は着磁しやすくな
り、外部磁界によるランダムな着磁発生によるノイズが
問題となるので適さない。
Here, there is a method of completely demagnetizing the initial remanent magnetization by applying an AC attenuating magnetic field to the tire. However, the completely demagnetized steel belt portion is easily magnetized, and the magnetism is randomly magnetized by an external magnetic field. It is not suitable because noise caused by the generation is a problem.

【0027】次に、第2の着磁工程として、図3に示す
ように、着磁用磁石12の極性をタイヤ10の周方向に
関して反転させて磁石12をタイヤ10の外周面に当接
または近接させ、タイヤ10の周方向に沿って相対移動
させることにより、タイヤ10の外周部の360゜より
小さな所定角度θの範囲を連続して第1の着磁工程の着
磁方向と逆方向に再着磁する。これによりタイヤ10の
回転を磁気的に検知するための着磁ができ、磁気センサ
ーで検知しやすい磁界を発生させることができる。
Next, as a second magnetizing step, as shown in FIG. 3, the polarity of the magnetizing magnet 12 is reversed with respect to the circumferential direction of the tire 10 so that the magnet 12 abuts on the outer peripheral surface of the tire 10. By causing the tire 10 to approach and relatively move along the circumferential direction of the tire 10, a range of a predetermined angle θ smaller than 360 ° of the outer peripheral portion of the tire 10 is continuously formed in a direction opposite to the magnetization direction of the first magnetization step. Re-magnetize. Thereby, magnetization for detecting the rotation of the tire 10 can be performed magnetically, and a magnetic field which can be easily detected by the magnetic sensor can be generated.

【0028】ここで、2回目の着磁の角度θは、発生す
る磁界のパターンや大きさを左右し、最適な角度が存在
する。その最適値について検討した結果を以下に説明す
る。
Here, the angle θ of the second magnetization influences the pattern and magnitude of the generated magnetic field, and there is an optimum angle. The result of studying the optimum value will be described below.

【0029】先ず、検討では2回目の着磁の角度θを2
2.5°ずつ変え、それぞれの角度で着磁したタイヤを
回転させてタイヤ外周より20cm離れた所の周方向に
沿った磁界を測定し、そのパターンを調べた。使用した
着磁用磁石は、NS極の間隔が2mmで、磁石の着磁対
向面より10mmの所で着磁磁界Hwが200ガウス程
度のものを使用した。その結果を図4に示す。データの
横軸は時間軸であり、測定時のタイヤの回転は一定速で
ないためばらついているが、周期的なパターンより1回
転を認識できる。
First, in the study, the angle θ of the second magnetization was set to 2
The magnetic field along the circumferential direction at a distance of 20 cm from the outer periphery of the tire was measured by changing the angle by 2.5 ° and rotating the tire magnetized at each angle, and the pattern was examined. The magnets used had an NS pole spacing of 2 mm and a magnetizing magnetic field Hw of about 200 Gauss at a location 10 mm from the magnetized facing surface. FIG. 4 shows the results. The horizontal axis of the data is the time axis, and the rotation of the tire at the time of measurement varies because it is not constant, but one rotation can be recognized from a periodic pattern.

【0030】磁界パターンを見ると、角度θが90°以
下では、下に尖ったピークを持ち、θ=90°で最も磁
界変化が大きくなっている。当然のことながら、着磁の
極性を逆にすれば、上に尖ったピークとなる。さらに9
0°を超えると尖ったピークに凹みを生じ角度の増加と
ともにその凹みが深くなる。
Looking at the magnetic field pattern, when the angle θ is 90 ° or less, it has a sharp peak below, and when θ = 90 °, the change in the magnetic field is largest. As a matter of course, if the polarity of the magnetization is reversed, the peak will be sharpened upward. 9 more
When the angle exceeds 0 °, a sharp peak is dented, and the concavity becomes deeper as the angle increases.

【0031】タイヤから発生する磁界を検出し、タイヤ
の回転を検知するのには、所定のしきい値を設定する
が、外部磁界によりタイヤからの磁界パターンにレベル
変動が生ずることを考えれば、しきい値の設定範囲を広
く取れることが必要である。そのしきい値の設定に適し
た範囲である判別幅は、着磁角度θがおよそ90°以下
では、下に尖ったピークと上にある凹みの底との間L
(67.5゜の図参照)であり、着磁角度が90°を超
えて下に尖ったピークに凹みが生ずる場合は、上と下の
凹みの間L′(157.5゜の図参照)が判別幅とな
る。
To detect the magnetic field generated from the tire and to detect the rotation of the tire, a predetermined threshold value is set. However, considering that a level variation occurs in the magnetic field pattern from the tire due to the external magnetic field, It is necessary that the setting range of the threshold can be set widely. The discrimination width, which is a range suitable for setting the threshold, is such that when the magnetization angle θ is about 90 ° or less, the distance between the lower peak and the bottom of the upper dent is L.
(See the figure of 67.5 °), and when the magnetization angle exceeds 90 ° and a dent occurs in the peak that is pointed downward, L ′ (see the figure of 157.5 °) between the upper and lower dents It becomes the discrimination width.

【0032】その判別幅L,L′をグラフにすると、図
5のようになる。このグラフから、90°が最適な着磁
角度であることが判る。また、実用範囲を検討すると、
着磁の角度θが小さい領域ではタイヤから発生する磁界
が小さく、外乱磁界の影響が大きくなるため、最大判別
幅の50%を実用範囲とすれば、着磁角度θは30°か
ら180°が適している。さらに、最適な範囲を最大判
別幅の80%とすれば、55°から105°の範囲が対
応し、より安定した磁界が得られる。
FIG. 5 is a graph showing the discrimination widths L and L '. From this graph, it can be seen that 90 ° is the optimum magnetization angle. Also, considering the practical range,
In the region where the magnetization angle θ is small, the magnetic field generated from the tire is small and the influence of the disturbance magnetic field is large. Therefore, if the practical range is 50% of the maximum discrimination width, the magnetization angle θ is 30 ° to 180 °. Are suitable. Furthermore, if the optimum range is set to 80% of the maximum discrimination width, the range from 55 ° to 105 ° corresponds, and a more stable magnetic field can be obtained.

【0033】なお、ここまで角度範囲は180°までの
範囲で説明しているが、2回目の着磁角度θが180°
を超えた場合は、極性が反転するだけで対称であり、2
回目の着磁がなされなかった1回目の着磁の残留磁化の
角度360°−θについて上記と同様に考えることがで
きる。すなわち、上述した最適着磁角度の範囲は、第1
と第2の着磁工程により着磁されたタイヤの外周部の一
方向と逆方向の残留磁化のそれぞれの角度の内で小さい
方の角度を対象にして考えればよい。
Although the angle range has been described up to 180 °, the second magnetization angle θ is 180 °.
Is exceeded, it is symmetrical only by reversing the polarity.
The angle 360 ° -θ of the remanent magnetization of the first magnetization in which the second magnetization was not performed can be considered in the same manner as described above. That is, the range of the optimum magnetization angle described above is the first range.
And the smaller of the angles of the remanent magnetization in the direction opposite to the one direction and the direction of the residual magnetization in the outer peripheral portion of the tire magnetized in the second magnetizing step.

【0034】さて、ここまで説明したタイヤの着磁方法
では、タイヤの周方向に沿った磁界で着磁するものとし
て説明してきたが、実際の磁気センサーを配置する場合
には、磁界検出方向がその周方向に沿っているとは限ら
ず、磁化が円弧状であることより検出位置により磁界方
向が変化する等により、周方向の磁界による着磁の最適
条件が維持されるか懸念がある。しかし、実際検討した
結果では、周方向の磁界による着磁で見た最適条件が、
実際使用される条件でも適用できることが判った。以下
その検討内容について説明する。
In the tire magnetizing method described so far, the description has been made on the assumption that the tire is magnetized with a magnetic field along the circumferential direction of the tire. There is a concern that optimal conditions for magnetization by the circumferential magnetic field may be maintained due to the fact that the magnetization is not necessarily in the circumferential direction and the magnetic field direction changes depending on the detection position due to the arc shape of the magnetization. However, according to the results of the actual study, the optimal conditions observed in the magnetization by the circumferential magnetic field were
It has been found that it can be applied even under the conditions actually used. The details of the study will be described below.

【0035】タイヤからの磁界を磁気センサーで検出す
る場合、センサー設置に適した場所は普通乗用車の場合
では、タイヤの裏側に当たるトランクルームであると考
えられ、座標表現をすると図6(a),(b)に示すよ
うなXY平面上にセンサーを配置するのが考えられる。
When the magnetic field from the tire is detected by a magnetic sensor, it is considered that a suitable place for installing the sensor is a trunk room on the back side of the tire in the case of an ordinary passenger car. It is conceivable to arrange the sensor on the XY plane as shown in b).

【0036】検討では直径60cmのタイヤを用い、X
Y平面からタイヤトップまでの高さHを10cm、XZ
平面とタイヤ側面との距離Sを15cmにした。また、
タイヤの着磁は前述の方法で、第1と第2の着磁工程に
よるタイヤ外周部の2方向の残留磁化の内で小さい方の
磁化の角度範囲θを90°に設定した。磁界検出方向は
Z軸方向で、図のX軸上のA,B,C,D,Eで示す1
0cm間隔の各点でタイヤ回転による磁界変化の様子を
測定した。
In the study, a tire having a diameter of 60 cm was used, and X
Height H from the Y plane to the tire top is 10 cm, XZ
The distance S between the plane and the tire side was set to 15 cm. Also,
In the magnetization of the tire, the angle range θ of the smaller one of the two residual magnetizations at the outer periphery of the tire in the first and second magnetization steps was set to 90 ° by the method described above. The magnetic field detection direction is the Z-axis direction, and is indicated by A, B, C, D, and E on the X-axis in the figure.
The state of the magnetic field change due to the rotation of the tire was measured at each point at 0 cm intervals.

【0037】その結果を図7に示すが、図4で説明した
角度θ=90°のデータと比較すると、A点では位相が
90°回り微分したような波形になっているが、タイヤ
外周部に近い外側のD点に行くに従い外周方向の磁界と
波形は似てくる。これにより、測定点に最も近いタイヤ
外周部の磁化方向と磁界検出方向であるZ軸方向との角
度により位相の変化が左右されていることが判る。
The result is shown in FIG. 7, and when compared with the data of the angle θ = 90 ° described in FIG. 4, the waveform at point A is such that the phase is differentiated by 90 °. As the point approaches the outer point D, the magnetic field and the waveform in the outer peripheral direction become similar. Thus, it is understood that the phase change is influenced by the angle between the magnetization direction of the tire outer peripheral portion closest to the measurement point and the Z-axis direction which is the magnetic field detection direction.

【0038】点AからEでは確かに波形で位相の変化が
生じているが、下端のピークは1回転に1個で安定して
出ており、その上のピークとの間の判別幅Lが安定して
得られている。この事は、周方向の磁界で見た着磁の最
適条件が維持されていることを示す。
At points A to E, there is a change in phase in the waveform, but the peak at the lower end is stably output once per revolution, and the discrimination width L between the peak and the upper peak is small. Obtained stably. This indicates that the optimum condition of the magnetization viewed from the circumferential magnetic field is maintained.

【0039】したがって、タイヤの周方向に沿った磁界
で着磁する方法は、実際のセンサーの設置されるどのよ
うな位置、磁界検出方向に対しても有効である。
Therefore, the method of magnetizing with the magnetic field along the circumferential direction of the tire is effective for any position where the actual sensor is installed and the magnetic field detecting direction.

【0040】以上説明したようにして、外周部にスチー
ルベルトを内包したタイヤの回転検知に最適な磁界を発
生するタイヤの着磁方法を確立し、さらに最適な着磁の
角度範囲を設定することができた。
As described above, a method of magnetizing a tire that generates an optimal magnetic field for detecting rotation of a tire having a steel belt embedded in the outer peripheral portion is established, and an optimal angle range of magnetization is set. Was completed.

【0041】ところで、以上の実施形態の着磁方法で
は、第1の着磁工程でタイヤ外周部の全周にわたり連続
して周方向に沿った一方向に着磁し、第2の着磁工程で
タイヤ外周部の360゜より小さな所定角度の範囲を連
続して前記一方向と逆方向に再着磁するものとした。こ
れに対し、第2の着磁方法として、着磁用磁石の配置、
発生磁界の向き、相対移動、磁石の極性の反転等の仕方
は上記と同じとして、第1の着磁工程では、タイヤの外
周部の360゜より小さな所定角度の範囲を連続して周
方向に沿った一方向に着磁し、第2の着磁工程では、タ
イヤの外周部で第1の着磁工程で着磁されていない未着
磁の部分を連続して前記一方向と逆方向に着磁するよう
にしてもよい。ただし未着磁部分のみを正確に着磁する
のは容易ではないから、未着磁部分に隣接する部分をも
含めて着磁してもよい。この第2の着磁方法について
も、上述した2方向の残留磁化の小さい方の角度につい
ての30゜から180゜、特に55゜から105゜とい
う最適な角度範囲の設定は当てはまる。
In the magnetizing method according to the above embodiment, the tire is magnetized continuously in one direction along the circumferential direction in the first magnetizing step over the entire circumference of the tire outer peripheral portion. Thus, a range of a predetermined angle smaller than 360 ° at the tire outer peripheral portion is continuously re-magnetized in the direction opposite to the one direction. On the other hand, as a second magnetizing method, the arrangement of magnetizing magnets,
The direction of the generated magnetic field, the relative movement, the method of reversing the polarity of the magnet, and the like are the same as described above, and in the first magnetization step, a range of a predetermined angle smaller than 360 ° of the outer peripheral portion of the tire is continuously circumferentially set. In the second magnetizing step, the non-magnetized portion which has not been magnetized in the first magnetizing step is continuously formed in the outer peripheral portion of the tire in the direction opposite to the one direction. It may be magnetized. However, since it is not easy to accurately magnetize only the unmagnetized portion, the magnetized portion may be magnetized including the portion adjacent to the unmagnetized portion. Also in the second magnetization method, the setting of the optimum angle range of 30 ° to 180 °, particularly 55 ° to 105 ° for the smaller angle of the residual magnetization in the two directions described above applies.

【0042】ただし、この第2の着磁方法よりも先述し
た実施形態の方法のほうが着磁作業が容易で能率良く行
える。
However, the magnetizing operation is easier and more efficient with the method of the embodiment described above than with the second magnetizing method.

【0043】[タイヤの磁界検出方法の実施形態]次
に、上述した本発明に係る着磁方法により着磁されたタ
イヤの磁界を検出するタイヤの磁界検出方法の実施形態
を説明する。特にタイヤの磁界を磁気センサーにより検
出する際の磁気検出素子の最適な配置について説明す
る。
[Embodiment of Tire Magnetic Field Detecting Method] Next, an embodiment of a tire magnetic field detecting method for detecting a magnetic field of a tire magnetized by the above-described magnetizing method according to the present invention will be described. In particular, the optimum arrangement of the magnetic detection elements when detecting the magnetic field of the tire with the magnetic sensor will be described.

【0044】タイヤからの磁界を検出する素子として
は、数ミリガウス程度の実用感度を持っていれば、例え
ばフラックスゲートセンサー,磁気インピーダンス素
子,ホール素子等のどれを用いても良いが、検出手段は
外部磁界の影響、例えば隣接通行車両からの磁界、道路
周辺の鉄筋、鉄骨等の残留磁化からの磁界の影響を受け
るので、2個の磁気検出素子の差動動作によりタイヤか
らの磁界のみを出来るだけ検出できるようにする。しか
し、この差動検出では2個の磁気検出素子の配置を適切
にしないと、タイヤからの磁界検出で位相が大きく変化
し、しきい値の設定が困難になり扱いづらくなってしま
う。
As an element for detecting a magnetic field from a tire, any of a flux gate sensor, a magnetic impedance element, a Hall element and the like may be used as long as it has a practical sensitivity of about several milligauss. Because of the influence of external magnetic field, for example, the magnetic field from an adjacent passing vehicle, the magnetic field from the residual magnetization of the reinforcing steel around the road, the steel frame, etc., only the magnetic field from the tire can be generated by the differential operation of the two magnetic detecting elements. Only be able to detect. However, in this differential detection, if the two magnetic detection elements are not properly arranged, the phase will greatly change due to the detection of the magnetic field from the tire, making it difficult to set the threshold value and making it difficult to handle.

【0045】そこで本実施形態では、差動検出する際の
2個の磁気検出素子に関してタイヤの磁界を検出する際
の位置関係を規定しようとするものである。
Therefore, in the present embodiment, it is intended to define the positional relationship when detecting the magnetic field of the tire with respect to the two magnetic detecting elements upon differential detection.

【0046】素子の配置に関しての条件は、 (1)検出出力でタイヤ1回転に対し1個の正または負
の大きく鋭いピークが得られること。
The conditions regarding the arrangement of the elements are as follows: (1) One large positive or negative sharp peak is obtained for one rotation of the tire in the detection output.

【0047】(2)検出出力で先述したしきい値を設定
すべき判定幅Lが広く取れること。
(2) The judgment width L for setting the above-mentioned threshold value in the detection output can be widened.

【0048】(3)2個の磁気検出素子から構成される
磁気センサーの設置位置によって(1),(2)の条件
が大きく変動しないこと。
(3) The conditions (1) and (2) do not greatly vary depending on the installation position of the magnetic sensor composed of two magnetic detecting elements.

【0049】であり、(1),(2)はタイヤ着磁の最
適条件の維持、(3)は磁気センサーの設置位置に精度
を必要とせず設置を簡単にすることを目的とするもので
ある。
(1) and (2) are for maintaining the optimum conditions for the magnetization of the tire, and (3) is for the purpose of simplifying the installation of the magnetic sensor without requiring precision in the installation position. is there.

【0050】2個の磁気検出素子の配置に関しての最適
化は以下の検討により求められた。
The optimization of the arrangement of the two magnetic sensing elements was determined by the following study.

【0051】差動検出する2個の磁気検出素子の配置の
検討では、図6(a),(b)で説明した座標の位置関
係で、測定点A,B,C,Dに磁気センサーを置き、そ
のセンサーで使用される2個の磁気検出素子は間隔を3
cmとして、X軸方向に沿って並列に並べた配置とY軸
方向に沿って並列に並べた配置の比較を行なってみた。
検討に使用した磁気検出素子には、磁気インピーダンス
素子を使用し、Z方向、すなわちタイヤ10の側面に平
行な方向に磁界検出感度を持つよう構成した。
In examining the arrangement of the two magnetic detecting elements for differential detection, the magnetic sensors are placed at the measurement points A, B, C, and D in the positional relationship of the coordinates described with reference to FIGS. And the two magnetic sensing elements used in the sensor are separated by 3
The comparison was made between an arrangement arranged in parallel along the X-axis direction and an arrangement arranged in parallel along the Y-axis direction.
A magnetic impedance element was used as the magnetic detection element used in the study, and was configured to have a magnetic field detection sensitivity in the Z direction, that is, a direction parallel to the side surface of the tire 10.

【0052】その結果を図8に示すが、X軸方向に沿っ
て並列に並べた方はAからDの各点で検出出力波形の位
相の変化が激しく、波形が変化し、しきい値を設定すべ
き判定幅Lが一定せず、磁気センサーの設置場所に応じ
て調整が必要となり、実用的で無い。
FIG. 8 shows the results. In the case where the detection output waveforms are arranged in parallel along the X-axis direction, the phase of the detected output waveform changes drastically at each point from A to D, the waveform changes, and the threshold value is changed. The determination width L to be set is not constant and needs to be adjusted according to the installation location of the magnetic sensor, which is not practical.

【0053】それに比べY軸方向、すなわちタイヤの側
面に対し垂直な方向に沿って並列に並べた方は、各測定
点とも検出出力波形の下端のピークが安定し、位相変化
の影響はその前後に現れるピークの大きさが変化するの
みで、しきい値を設定すべき判定幅Lが安定している。
これは、周方向に沿う磁界による着磁の最適条件が維持
され、磁気センサーの設置場所によりしきい値を細かく
調整する必要が無く、極めて扱いやすいことを示すもの
である。
Compared with this, when arranged in parallel in the Y-axis direction, that is, in the direction perpendicular to the side surface of the tire, the peak at the lower end of the detected output waveform is stable at each measurement point, and the influence of the phase change is the same. Only the magnitude of the peak appearing in the threshold value changes, the determination width L for setting the threshold value is stable.
This indicates that the optimum condition of magnetization by the magnetic field along the circumferential direction is maintained, and it is not necessary to finely adjust the threshold value depending on the installation location of the magnetic sensor, and it is extremely easy to handle.

【0054】従って、図9の斜視図に示すとおり、先述
の本発明に係る着磁方法で着磁されたタイヤ10を使用
し、タイヤ10から外部に放出される磁界を磁気センサ
ー14の2個の磁気検出素子16により差動検出するの
に際し、2個の磁気検出素子16の磁界検出方向が共に
タイヤ10の側面に対し平行であり、且つ2個の磁気検
出素子16がタイヤ10の側面に対し垂直な方向に沿っ
て並列に並ぶようにすれば、磁気センサー14の設置が
容易で、且つ検出出力波形でしきい値を設定するための
判別幅を広く且つ安定して得られることが明確になっ
た。
Therefore, as shown in the perspective view of FIG. 9, using the tire 10 magnetized by the above-described magnetizing method according to the present invention, the magnetic field emitted from the tire 10 to the outside is detected by two magnetic sensors 14. When the differential detection is performed by the magnetic detection elements 16, the magnetic field detection directions of the two magnetic detection elements 16 are both parallel to the side surface of the tire 10, and the two magnetic detection elements 16 are By arranging the magnetic sensors 14 in parallel along the direction perpendicular thereto, it is clear that the magnetic sensors 14 can be easily installed, and that the discrimination width for setting the threshold value in the detected output waveform can be widened and stably obtained. Became.

【0055】[タイヤの着磁方法の他の実施形態]前述
したタイヤの着磁方法の実施形態では、タイヤの1回転
に対し1パルスの信号をカーナビ本体に供給するのを目
的としているが、タイヤ1回転でパルスを2個出力する
ようにすれば、1パルスの単位がタイヤ1回転分より1
/2回転分になるので、外乱となる外部からの磁界やタ
イヤの振動、衝撃等による出力パルスエラーによる誤差
が低減できる。例えば、直径60センチのタイヤでは、
1パルスによる移動距離の測定精度が1.88mより
0.94mに向上する。また、カーナビ本体で移動距離
を速度計算より求める場合、例えば速度計算処理を1秒
間のパルス数で求める場合では、1回転あたりのパルス
の数が少ないと誤差が大きくなり、低速走行時に誤差が
大きくなるが、この点でも精度の向上に寄与できる。
[Other Embodiments of Tire Magnetization Method] The above-described embodiment of the tire magnetization method aims at supplying one pulse signal to the car navigation body for one rotation of the tire. If two pulses are output in one rotation of the tire, the unit of one pulse is 1 from one rotation of the tire.
Since the rotation is equivalent to / 2 rotation, an error due to an output pulse error due to an external magnetic field which becomes a disturbance, a tire vibration, an impact, or the like can be reduced. For example, for a tire with a diameter of 60 cm,
The accuracy of measuring the moving distance by one pulse is improved from 1.88 m to 0.94 m. In addition, when the moving distance is obtained by speed calculation in the car navigation body, for example, when the speed calculation process is obtained by the number of pulses per second, the error increases when the number of pulses per rotation is small, and the error increases when driving at low speed. However, this point can also contribute to improvement in accuracy.

【0056】そこで、タイヤ1回転に対し2パルスの信
号を安定して生成することを可能とするタイヤの着磁方
法を考えた。その実施形態を以下に説明する。
Therefore, a method of magnetizing a tire that enables stable generation of a two-pulse signal for one rotation of the tire has been considered. The embodiment will be described below.

【0057】本実施形態の着磁方法では、まず先述した
タイヤの着磁方法の実施形態における第1と第2の着磁
工程を順次行う。ただし、第2の着磁工程で再着磁する
範囲の角度は90゜とする。また、先述のように第1の
着磁工程でタイヤの外周の全周にわたり着磁せずに未着
磁の部分を残し、第2の着磁工程で前記の未着磁部分を
着磁してもよいが、その場合、第1の着磁工程で着磁す
る範囲の角度は270゜より大きく360゜より小さな
角度とし、第2の着磁工程では、前記の未着磁部分の全
部を含む90°の範囲を着磁する。
In the magnetizing method of this embodiment, first, the first and second magnetizing steps in the embodiment of the tire magnetizing method described above are sequentially performed. However, the angle of the re-magnetization range in the second magnetization step is 90 °. Further, as described above, in the first magnetizing step, the unmagnetized portion is not magnetized over the entire outer periphery of the tire, and the unmagnetized portion is magnetized in the second magnetizing process. However, in this case, the angle of the range of magnetization in the first magnetizing step is set to an angle larger than 270 ° and smaller than 360 °, and in the second magnetizing step, all of the unmagnetized portion is Magnetize the range of 90 ° including it.

【0058】次に、第3の着磁工程を行う。この工程で
は、タイヤの外周部において第2の着磁工程で着磁した
90゜の範囲に対し、タイヤの中心に関して反対側であ
る180゜回転したところの90゜の範囲、すなわち第
2の着磁工程で着磁した90゜の範囲に対し点対称とな
る90゜の範囲を第2の着磁工程と同方法で周方向に沿
って連続して第2の着磁工程と同方向、すなわち第1の
着磁工程の着磁方向と逆方向に再着磁する。この第3の
着磁工程で着磁を終了とする。
Next, a third magnetizing step is performed. In this step, the outer circumference of the tire is rotated by 180 ° on the opposite side of the center of the tire from the 90 ° range magnetized in the second magnetization step. The 90 ° range that is point-symmetric with respect to the 90 ° range magnetized in the magnetizing step is continuously formed along the circumferential direction in the same manner as the second magnetizing step in the same direction as the second magnetizing step, that is, Re-magnetization is performed in a direction opposite to the magnetization direction of the first magnetization step. The magnetization is completed in the third magnetization step.

【0059】このような着磁方法による着磁後のタイヤ
の着磁状態を図11に示す。ここに第1〜第3の着磁工
程による残留磁化の範囲と方向を示すように、本実施形
態の着磁方法によれば、タイヤ10の外周部の全周を9
0°ずつの4つの範囲に分割し、それぞれの範囲をタイ
ヤの周方向に沿って交互に逆方向となるよう着磁した着
磁状態が形成されることになる。
FIG. 11 shows the magnetized state of the tire after magnetizing by such a magnetizing method. According to the magnetization method of the present embodiment, as shown here, the entire circumference of the outer peripheral portion of the tire 10 is set to 9 by indicating the range and direction of the residual magnetization in the first to third magnetization steps.
It is divided into four ranges of 0 °, and a magnetized state is formed in which the respective ranges are alternately magnetized in the opposite direction along the circumferential direction of the tire.

【0060】次に、上記実施形態で着磁したタイヤの外
周の周方向に沿った磁界の計測結果で、第2の着磁工程
終了後のタイヤの磁界パターンと、第3の着磁工程終了
後の磁界パターンを図12の(a)と(b)に示す。
Next, based on the measurement results of the magnetic field along the circumferential direction of the outer periphery of the tire magnetized in the above embodiment, the magnetic field pattern of the tire after the completion of the second magnetization step and the end of the third magnetization step The subsequent magnetic field patterns are shown in FIGS.

【0061】第3の着磁工程終了後の磁界パターンは、
若干ピークの高さが異なるが、タイヤ1回転に対し2個
のピークを持った波形となっている。磁界変化の大きさ
は、第2の着磁工程終了後とほとんど変わらず、良好な
着磁が可能であることがわかる。
The magnetic field pattern after the completion of the third magnetizing step is
Although the heights of the peaks are slightly different, the waveform has two peaks for one rotation of the tire. The magnitude of the change in the magnetic field is almost the same as that after the completion of the second magnetization step, and it can be seen that good magnetization is possible.

【0062】このような本実施形態の着磁方法によれ
ば、この方法で着磁したタイヤの磁気的な回転検知にお
いて、タイヤ1回転に対し2パルスの信号を安定して生
成することが可能となる。したがって、タイヤの回転検
知による車両の移動距離測定の誤差を低減でき、カーナ
ビの自立航法の精度を向上させることができる。
According to the magnetizing method of the present embodiment, in detecting the magnetic rotation of the tire magnetized by this method, it is possible to stably generate a signal of two pulses for one rotation of the tire. Becomes Therefore, it is possible to reduce the error of the measurement of the moving distance of the vehicle by detecting the rotation of the tire, and to improve the accuracy of the self-contained navigation of the car navigation.

【0063】ところで、本実施形態の方法で着磁したタ
イヤの回転検知のために磁界検出を行う場合、前述した
タイヤの磁界検出方法の実施形態における2個の磁気検
出素子の配置が最適であり、同実施形態の検出方法をそ
のまま適用できることは勿論である。
When a magnetic field is detected for detecting the rotation of a tire magnetized by the method of the present embodiment, the arrangement of the two magnetic detecting elements in the above-described embodiment of the tire magnetic field detecting method is optimal. Of course, the detection method of the embodiment can be applied as it is.

【0064】[0064]

【発明の効果】以上の説明から明らかなように、本発明
によれば、外周部にスチールベルトを内包したタイヤの
前記スチールベルトの残留磁化による磁界を外部より検
出して前記タイヤの回転を検知するためのタイヤの着磁
方法であって、着磁用磁石をタイヤの外周面に当接また
は近接させ、磁石の発生磁界がタイヤの周方向に沿うよ
うにして、磁石をタイヤの周方向に沿って相対移動させ
ることにより着磁を行ない、まず第1の着磁工程により
タイヤの外周部の全周にわたり連続して周方向に沿った
一方向に着磁した後、第2の着磁工程によりタイヤの外
周部の360゜より小さな所定角度の範囲を連続して前
記一方向と逆方向に再着磁する着磁方法、及び、まず第
1の着磁工程によりタイヤの外周部の360゜より小さ
な所定角度の範囲を連続して周方向に沿った一方向に着
磁した後、第2の着磁工程によりタイヤの外周部で少な
くとも第1の着磁工程で着磁されていない未着磁の部分
を連続して前記一方向と逆方向に着磁する着磁方法を採
用したので、タイヤの1回転に対し安定して周期的な磁
界をタイヤから発生させることができ、この方法で着磁
したタイヤの磁気的な回転検知において、タイヤ1回転
に対し1パルスの信号を安定して得ることが可能にな
り、タイヤの磁気的な回転検知に好適な着磁方法を提供
することができる。
As is apparent from the above description, according to the present invention, the rotation of the tire is detected by externally detecting the magnetic field due to the residual magnetization of the steel belt of the tire having the steel belt embedded in the outer peripheral portion. A magnetizing method for the tire, wherein the magnetizing magnet is brought into contact with or close to the outer peripheral surface of the tire so that the magnetic field generated by the magnet is along the circumferential direction of the tire, and the magnet is moved in the circumferential direction of the tire. The first magnetizing step continuously magnetizes the entire circumference of the outer peripheral portion of the tire in one direction along the circumferential direction, and then performs the second magnetizing step. The magnetizing method for re-magnetizing a range of a predetermined angle smaller than 360 ° of the outer peripheral portion of the tire continuously in the direction opposite to the one direction, and the first magnetizing step allows the outer peripheral portion of the tire to be rotated 360 °. Smaller predetermined angle range After being continuously magnetized in one direction along the circumferential direction, a non-magnetized portion not magnetized in at least the first magnetizing step is continuously formed on the outer peripheral portion of the tire by the second magnetizing step. Since the magnetizing method of magnetizing in the one direction and the opposite direction is employed, a periodic magnetic field can be generated from the tire stably for one rotation of the tire. In the rotation detection, it is possible to stably obtain a signal of one pulse for one rotation of the tire, and it is possible to provide a magnetization method suitable for detecting the magnetic rotation of the tire.

【0065】また、上記着磁方法において、特に、第1
と第2の着磁工程により着磁されたタイヤの外周部の一
方向と逆方向の残留磁化それぞれの角度範囲で小さい方
の角度が30゜から180゜の範囲内、より好ましくは
55゜から105゜の範囲内になるようにすることによ
り、タイヤの回転検知のための磁気センサー出力のしき
い値を設定する上で広いマージンが設定でき、検知動作
時の外部からの外乱磁界に対する磁気センサー出力のレ
ベル変動に対し強くすることができる。
In the above magnetizing method, in particular, the first
And the smaller angle in the respective angle ranges of the remanent magnetization in the direction opposite to the one direction of the outer peripheral portion of the tire magnetized by the second magnetizing step is in the range of 30 ° to 180 °, more preferably 55 °. By setting the angle to be within the range of 105 °, a wide margin can be set in setting the threshold value of the magnetic sensor output for detecting the rotation of the tire, and the magnetic sensor against external disturbance magnetic field during the detection operation can be set. It can be made strong against output level fluctuation.

【0066】また、本発明によれば、タイヤの着磁方法
において、タイヤの外周部の全周を90°ずつの4つの
範囲に分割し、それぞれの範囲をタイヤの周方向に沿っ
て交互に逆方向となるよう着磁する方法を採用したの
で、タイヤの回転に応じた磁界の変化において、タイヤ
1回転に対し2個のピークを有する磁界パターンを発生
させることができ、この方法で着磁したタイヤの磁気的
な回転検知において、タイヤ1回転に対し2パルスの信
号を安定して得ることが可能になり、タイヤの回転検知
による車両の移動距離の測定誤差を低減してカーナビの
自立航法の精度を向上させることができる。
According to the present invention, in the method for magnetizing a tire, the entire circumference of the outer peripheral portion of the tire is divided into four ranges of 90 ° each, and each range is alternately arranged along the circumferential direction of the tire. Since the method of magnetizing in the opposite direction is adopted, a magnetic field pattern having two peaks for one rotation of the tire can be generated in a change in the magnetic field according to the rotation of the tire. In detecting the magnetic rotation of the tire, it becomes possible to stably obtain a signal of two pulses for one rotation of the tire, thereby reducing the measurement error of the moving distance of the vehicle due to the detection of the rotation of the tire, and enabling auto navigation of the car navigation system. Accuracy can be improved.

【0067】また、本発明によれば、上記の各着磁方法
により着磁されたタイヤのスチールベルトの残留磁化に
よる磁界を外部より2個の磁気検出素子により差動検出
するタイヤの磁界検出方法であって、前記差動検出の際
に、前記2個の磁気検出素子の磁界検出方向が共に前記
タイヤの側面と平行であり、且つ2個の磁気検出素子が
前記タイヤの側面に対し垂直な方向に並列に並ぶように
する方法を採用したので、検出位置が若干異なっても、
検出出力の波形や位相があまり変化せず、上記しきい値
を設定する上でのマージンを安定してとることができ、
2個の磁気検出素子から構成される磁気センサーの設置
を容易にすることができる。
Further, according to the present invention, a tire magnetic field detecting method for differentially detecting a magnetic field due to residual magnetization of a steel belt of a tire magnetized by each of the above-described magnetizing methods using two magnetic detecting elements from outside. In the differential detection, the magnetic field detection directions of the two magnetic detection elements are both parallel to the side surface of the tire, and the two magnetic detection elements are perpendicular to the side surface of the tire. Because the method of arranging in parallel in the direction was adopted, even if the detection position is slightly different,
The waveform and phase of the detection output do not change much, and the margin for setting the above threshold can be stably obtained.
Installation of a magnetic sensor including two magnetic detection elements can be facilitated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるタイヤの着磁方法の実施形態にお
ける第1の着磁工程を説明する斜視図である。
FIG. 1 is a perspective view illustrating a first magnetization step in an embodiment of a tire magnetization method according to the present invention.

【図2】図1の要部を拡大した拡大図である。FIG. 2 is an enlarged view in which main parts of FIG. 1 are enlarged.

【図3】同実施形態における第2の着磁工程を説明する
斜視図である。
FIG. 3 is a perspective view illustrating a second magnetizing step in the embodiment.

【図4】同第2の着磁工程の着磁角度θの違いに応じた
タイヤの発生磁界パターンのそれぞれを示す波形図であ
る。
FIG. 4 is a waveform chart showing respective generated magnetic field patterns of the tire according to the difference in the magnetization angle θ in the second magnetization step.

【図5】同着磁角度θに応じた、磁界の検出出力の回転
検知用しきい値を設定するための判別幅L,L′を示す
グラフ図である。
FIG. 5 is a graph showing discrimination widths L and L ′ for setting a rotation detection threshold value of a magnetic field detection output according to the magnetization angle θ.

【図6】磁気センサーの実際の配置に対する同実施形態
の着磁方法の有効性の検討におけるタイヤに対する磁界
測定点のそれぞれの位置を示す上面図および側面図であ
る。
6A and 6B are a top view and a side view showing respective positions of magnetic field measurement points with respect to a tire in a study of the effectiveness of the magnetizing method of the embodiment with respect to the actual arrangement of the magnetic sensors.

【図7】図6の各測定点におけるタイヤ回転による磁界
変化を示す波形図である。
FIG. 7 is a waveform chart showing a magnetic field change due to tire rotation at each measurement point in FIG.

【図8】本発明によるタイヤの磁界検出方法の実施形態
を説明するもので、2個の磁気検出素子により差動検出
する場合の素子の配置と検出出力波形の関係を示す表の
波形図である。
FIG. 8 is a waveform chart of a table showing a relationship between the arrangement of elements and a detection output waveform when differential detection is performed by two magnetic detection elements, according to an embodiment of the tire magnetic field detection method according to the present invention. is there.

【図9】同実施形態で決定した2個の磁気検出素子の配
置を示す斜視図である。
FIG. 9 is a perspective view showing an arrangement of two magnetic sensing elements determined in the same embodiment.

【図10】自然に着磁されたスチールラジアルタイヤの
回転に伴なう磁界変化を計測した結果を示す波形図であ
る。
FIG. 10 is a waveform diagram showing a result of measuring a magnetic field change accompanying rotation of a naturally magnetized steel radial tire.

【図11】本発明によるタイヤの着磁方法の他の実施形
態におけるタイヤの着磁状態を示す説明図である。
FIG. 11 is an explanatory view showing a magnetized state of a tire in another embodiment of the tire magnetizing method according to the present invention.

【図12】同実施形態の第2の着磁工程終了後と第3の
着磁工程終了後のそれぞれにおけるのタイヤの磁界パタ
ーンを示す波形図である。
FIG. 12 is a waveform chart showing a magnetic field pattern of a tire after completion of a second magnetization step and after completion of a third magnetization step of the embodiment.

【符号の説明】[Explanation of symbols]

10 タイヤ 12 着磁用磁石 14 磁気センサー 16 磁気検出素子 Reference Signs List 10 tire 12 magnetizing magnet 14 magnetic sensor 16 magnetic detecting element

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B60C 19/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) B60C 19/00

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 外周部にスチールベルトを内包したタイ
ヤの前記スチールベルトの残留磁化による磁界を外部よ
り検出して前記タイヤの回転を検知するためのタイヤの
着磁方法であって、 着磁用磁石を前記タイヤの外周面に当接または近接さ
せ、該磁石の発生磁界が前記タイヤの周方向に沿うよう
にして、該磁石をタイヤの周方向に沿って相対移動させ
ることにより、タイヤの外周部の全周にわたり連続して
周方向に沿った一方向に着磁する第1の着磁工程と、 該工程後に前記磁石の極性をタイヤの周方向に関して反
転させて、該磁石を前記タイヤの外周面に当接または近
接させてタイヤの周方向に沿って相対移動させることに
より、タイヤの外周部の360゜より小さな所定角度の
範囲を連続して前記一方向と逆方向に再着磁する第2の
着磁工程とからなることを特徴とするタイヤの着磁方
法。
1. A method of magnetizing a tire for detecting rotation of the tire by externally detecting a magnetic field due to residual magnetization of the steel belt of a tire including a steel belt on an outer peripheral portion, the method comprising: The magnet is brought into contact with or close to the outer peripheral surface of the tire, and the magnetic field generated by the magnet is moved along the circumferential direction of the tire, and the magnet is relatively moved along the circumferential direction of the tire. A first magnetizing step of continuously magnetizing in one direction along the circumferential direction over the entire circumference of the portion, and after the step, reversing the polarity of the magnet in the circumferential direction of the tire, By relatively moving along the circumferential direction of the tire by contacting or approaching the outer circumferential surface, a range of a predetermined angle smaller than 360 ° of the outer circumferential portion of the tire is continuously re-magnetized in a direction opposite to the one direction. Second wear Magnetizing method of tire characterized by comprising the step.
【請求項2】 外周部にスチールベルトを内包したタイ
ヤの前記スチールベルトの残留磁化による磁界を外部よ
り検出して前記タイヤの回転を検知するためのタイヤの
着磁方法であって、 着磁用磁石を前記タイヤの外周面に当接または近接さ
せ、該磁石の発生磁界が前記タイヤの周方向に沿うよう
にして、該磁石をタイヤの周方向に沿って相対移動させ
ることにより、タイヤの外周部の360゜より小さな所
定角度の範囲を連続して周方向に沿った一方向に着磁す
る第1の着磁工程と、 該工程後に前記磁石の極性をタイヤの周方向に関して反
転させて、該磁石を前記タイヤの外周面に当接または近
接させてタイヤの周方向に沿って相対移動させることに
より、タイヤの外周部で少なくとも前記第1の着磁工程
で着磁されていない未着磁の部分を連続して前記一方向
と逆方向に着磁する第2の着磁工程とからなることを特
徴とするタイヤの着磁方法。
2. A method of magnetizing a tire for detecting rotation of the tire by externally detecting a magnetic field due to residual magnetization of the steel belt of a tire having a steel belt embedded in an outer peripheral portion, the method comprising: The magnet is brought into contact with or close to the outer peripheral surface of the tire, and the magnetic field generated by the magnet is moved along the circumferential direction of the tire, and the magnet is relatively moved along the circumferential direction of the tire. A first magnetizing step of continuously magnetizing a predetermined angle range smaller than 360 ° of the portion in one direction along the circumferential direction, and after the step, reversing the polarity of the magnet with respect to the circumferential direction of the tire, The magnet is brought into contact with or close to the outer peripheral surface of the tire and relatively moved along the circumferential direction of the tire, so that at least the first magnetizing step has not performed the non-magnetization on the outer peripheral portion of the tire. Part of Magnetizing method of the tire, characterized in that continuously and a second magnetized step of magnetizing the one direction and the opposite direction.
【請求項3】 前記第1と第2の着磁工程により着磁さ
れたタイヤの外周部の前記一方向と逆方向の残留磁化そ
れぞれの角度範囲で小さい方の角度が30゜から180
゜の範囲内になるようにすることを特徴とする請求項1
または2に記載のタイヤの着磁方法。
3. The smaller angle in the respective angle ranges of the remanent magnetization in the direction opposite to the one direction on the outer peripheral portion of the tire magnetized in the first and second magnetization steps is 30 ° to 180 °.
2. The method according to claim 1, wherein the angle is within the range of ゜.
Or the method of magnetizing a tire according to 2.
【請求項4】 前記第1と第2の着磁工程により着磁さ
れたタイヤの外周部の前記一方向と逆方向の残留磁化そ
れぞれの角度範囲で小さい方の角度が55゜から105
゜の範囲内になるようにすることを特徴とする請求項1
または2に記載のタイヤの着磁方法。
4. An outer peripheral portion of the tire magnetized in the first and second magnetizing steps, wherein the smaller angle in the respective angle ranges of the remanent magnetization in the direction opposite to the one direction is from 55 ° to 105 °.
2. The method according to claim 1, wherein the angle is within the range of ゜.
Or the method of magnetizing a tire according to 2.
【請求項5】 外周部にスチールベルトを内包したタイ
ヤの前記スチールベルトの残留磁化による磁界を外部よ
り検出して前記タイヤの回転を検知するためのタイヤの
着磁方法であって、 前記タイヤの外周部の全周を90°ずつの4つの範囲に
分割し、それぞれの範囲をタイヤの周方向に沿って交互
に逆方向となるよう着磁することを特徴とするタイヤの
着磁方法。
5. A method of magnetizing a tire for detecting rotation of the tire by externally detecting a magnetic field due to residual magnetization of the steel belt of a tire having a steel belt included in an outer peripheral portion, the method comprising: A method of magnetizing a tire, comprising dividing an entire circumference of an outer peripheral portion into four ranges of 90 °, and magnetizing the respective ranges so as to be alternately in opposite directions along a circumferential direction of the tire.
【請求項6】 着磁用磁石を前記タイヤの外周面に当接
または近接させ、該磁石の発生磁界が前記タイヤの周方
向に沿うようにして、該磁石をタイヤの周方向に沿って
相対移動させることにより、タイヤの外周部の全周にわ
たり連続して周方向に沿った一方向に着磁する第1の着
磁工程と、 該第1の着磁工程後に、前記磁石の極性をタイヤの周方
向に関して反転させて、該磁石を前記タイヤの外周面に
当接または近接させてタイヤの周方向に沿って相対移動
させることにより、タイヤの外周部の90°の範囲を連
続して前記一方向と逆方向に再着磁する第2の着磁工程
と、 該第2の着磁工程後に、タイヤの外周部において前記第
2の着磁工程で再着磁した90゜の範囲に対し点対称と
なる90゜の範囲を第2の着磁工程と同方法で連続して
前記一方向と逆方向に再着磁する第3の着磁工程とから
なることを特徴とする請求項5に記載のタイヤの着磁方
法。
6. A magnetizing magnet is brought into contact with or close to the outer peripheral surface of the tire, and the generated magnetic field of the magnet is arranged along the circumferential direction of the tire. A first magnetizing step in which the magnet is continuously moved in one direction along the circumferential direction over the entire circumference of the outer peripheral portion of the tire; and after the first magnetizing step, the polarity of the magnet is changed to the tire By inverting with respect to the circumferential direction, the magnet is brought into contact with or close to the outer circumferential surface of the tire and relatively moved along the circumferential direction of the tire, so that the 90 ° range of the outer circumferential portion of the tire is continuously A second magnetizing step of re-magnetizing in the direction opposite to the one direction, and after the second magnetizing step, the outer peripheral portion of the tire has a 90 ° range re-magnetized in the second magnetizing step. A 90 ° range that is point-symmetric is continuously formed in the same manner as in the second magnetizing step. Magnetizing method of tire according to claim 5, characterized in that it consists of a third magnetizing step of re-magnetized in one direction and the opposite direction.
【請求項7】 着磁用磁石を前記タイヤの外周面に当接
または近接させ、該磁石の発生磁界が前記タイヤの周方
向に沿うようにして、該磁石をタイヤの周方向に沿って
相対移動させることにより、タイヤの外周部の270゜
より大きく360゜より小さな角度の範囲を連続して周
方向に沿った一方向に着磁する第1の着磁工程と、 該第1の着磁工程後に、前記磁石の極性をタイヤの周方
向に関して反転させて、該磁石を前記タイヤの外周面に
当接または近接させてタイヤの周方向に沿って相対移動
させることにより、タイヤの外周部において前記第1の
着磁工程で着磁されていない未着磁部分の全部を含む9
0°の範囲を連続して前記一方向と逆方向に着磁する第
2の着磁工程と、 該第2の着磁工程後に、タイヤの外周部において前記第
2の着磁工程で着磁した90゜の範囲に対し点対称とな
る90゜の範囲を第2の着磁工程と同方法で連続して前
記一方向と逆方向に再着磁する第3の着磁工程とからな
ることを特徴とする請求項5に記載のタイヤの着磁方
法。
7. A magnetizing magnet is brought into contact with or close to the outer peripheral surface of the tire, and the generated magnetic field of the magnet is arranged along the circumferential direction of the tire. A first magnetization step of continuously magnetizing a range of an angle greater than 270 ° and smaller than 360 ° in the outer peripheral portion of the tire in one direction along the circumferential direction by moving the tire; After the step, the polarity of the magnet is reversed with respect to the circumferential direction of the tire, and the magnet is brought into contact with or close to the outer circumferential surface of the tire and relatively moved along the circumferential direction of the tire, so that in the outer circumferential portion of the tire, 9 including all non-magnetized portions not magnetized in the first magnetizing step
A second magnetization step of continuously magnetizing a range of 0 ° in the direction opposite to the one direction, and after the second magnetization step, magnetizing the outer peripheral portion of the tire in the second magnetization step. A third magnetization step of continuously re-magnetizing the 90 ° range point-symmetric to the 90 ° range in the direction opposite to the one direction by the same method as the second magnetization step. The tire magnetization method according to claim 5, characterized in that:
【請求項8】 請求項1から7までのいずれか1項に記
載のタイヤの着磁方法により着磁されたタイヤのスチー
ルベルトの残留磁化による磁界を外部より2個の磁気検
出素子により差動検出するタイヤの磁界検出方法であっ
て、 前記差動検出の際に、前記2個の磁気検出素子の磁界検
出方向が共に前記タイヤの側面と平行であり、且つ2個
の磁気検出素子が前記タイヤの側面に対し垂直な方向に
並列に並ぶようにすることを特徴とするタイヤの磁界検
出方法。
8. A magnetic field due to residual magnetization of a steel belt of a tire magnetized by the method for magnetizing a tire according to any one of claims 1 to 7, which is differentially detected by two magnetic detecting elements from outside. A method for detecting a magnetic field of a tire to be detected, wherein at the time of the differential detection, magnetic field detection directions of the two magnetic detection elements are both parallel to a side surface of the tire, and the two magnetic detection elements are A method for detecting a magnetic field of a tire, wherein the tires are arranged in parallel in a direction perpendicular to a side surface of the tire.
JP16544397A 1996-09-27 1997-06-23 Tire magnetization method and tire magnetic field detection method Expired - Fee Related JP3200028B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP16544397A JP3200028B2 (en) 1996-09-27 1997-06-23 Tire magnetization method and tire magnetic field detection method
US08/937,560 US6104593A (en) 1996-09-27 1997-09-25 Tire magnetization method, tire magnetized by the tire magnetization method, tire magnetic field detection method, tire revolution detection signal processing method, and tire revolution detection apparatus
DE69726373T DE69726373T2 (en) 1996-09-27 1997-09-26 Tire magnetization method, tire magnetized according to this method and device for determining tire revolutions
EP97116782A EP0833162B1 (en) 1996-09-27 1997-09-26 Tire magnetization method, tire magnetized by the tire magnetization method and tire revolution detection apparatus
US09/599,418 US6404182B1 (en) 1996-09-27 2000-06-22 Method for detecting the magnetic field of a tire

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25585796 1996-09-27
JP8-255857 1996-09-27
JP16544397A JP3200028B2 (en) 1996-09-27 1997-06-23 Tire magnetization method and tire magnetic field detection method

Publications (2)

Publication Number Publication Date
JPH10151918A JPH10151918A (en) 1998-06-09
JP3200028B2 true JP3200028B2 (en) 2001-08-20

Family

ID=26490179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16544397A Expired - Fee Related JP3200028B2 (en) 1996-09-27 1997-06-23 Tire magnetization method and tire magnetic field detection method

Country Status (1)

Country Link
JP (1) JP3200028B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949750B (en) * 2010-08-31 2012-05-09 杭州飞越汽车零部件有限公司 Motor steering torque measuring device and motor steering torque measuring method
KR102084642B1 (en) * 2017-12-08 2020-05-27 박영옥 Vertical type food pulverrizer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5006671B2 (en) * 2006-07-21 2012-08-22 日本電産サンキョー株式会社 Magnetic encoder
US20100301846A1 (en) * 2009-06-01 2010-12-02 Magna-Lastic Devices, Inc. Magnetic speed sensor and method of making the same
KR101396161B1 (en) * 2012-10-09 2014-05-19 한국타이어 주식회사 shaping process method of independent generating vehicle belt and the vehicle belt include tire and the tire include vehicle
CN108422817B (en) * 2018-03-29 2023-10-27 南京矽力微电子技术有限公司 State control method, tire pressure monitoring device and system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949750B (en) * 2010-08-31 2012-05-09 杭州飞越汽车零部件有限公司 Motor steering torque measuring device and motor steering torque measuring method
KR102084642B1 (en) * 2017-12-08 2020-05-27 박영옥 Vertical type food pulverrizer

Also Published As

Publication number Publication date
JPH10151918A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
EP0833162B1 (en) Tire magnetization method, tire magnetized by the tire magnetization method and tire revolution detection apparatus
JP2006170991A (en) Method and device for finding moving state of vehicle
US6246226B1 (en) Method and apparatus for detecting tire revolution using magnetic field
JP3200028B2 (en) Tire magnetization method and tire magnetic field detection method
JP2520952B2 (en) Vehicle direction detector
EP1516794B1 (en) Tire acting force measuring method, and tire acting force measuring device
JP2002286457A (en) Device for recognizing location of vehicle
US11635288B2 (en) Sensing method for wheel rotation, wheel localization method, and wheel localization system
US6265863B1 (en) Motor vehicle wheel rotating speed detector and installation method thereof, motor vehicle traveled distance detector and installation method thereof
JP3619350B2 (en) Tire rotation detection method and apparatus
JP3014659B2 (en) Tire rotation detection signal processing method and tire rotation detection device
JP2999978B2 (en) Tire rotation detection device
US8664948B2 (en) Measuring vibration in a rotating element
JP2004331038A (en) Measurement method for force applied to tire and measurement apparatus for force applied to tire
JP4243249B2 (en) Tire, tire forming method, tire external magnetic field reduction device, and vehicle equipped with tire
JP4615789B2 (en) Tire pressure drop detection method and apparatus, and air pressure drop tendency judgment program
JP2709995B2 (en) Vehicle detection device and traffic volume measurement device
JP2677390B2 (en) Vehicle azimuth correction device
KR0184814B1 (en) Location error correcting method for electromagnetic azimuth sensor
US20230041547A1 (en) Device for generating a measurement signal
JPS62255814A (en) Correcting method for vehicle azimuth error
CN209961164U (en) Non-contact type induction linear angle sensor
JPH0552717U (en) Magnetic direction detector
JPH03148010A (en) Azimuth detecting apparatus mounted in vehicle
JP2004130966A (en) Method for magnetizing steel cord and tire

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees