WO2004063755A1 - Automatic analyzer with sample container and cleaning method of sample container - Google Patents

Automatic analyzer with sample container and cleaning method of sample container Download PDF

Info

Publication number
WO2004063755A1
WO2004063755A1 PCT/JP2003/000062 JP0300062W WO2004063755A1 WO 2004063755 A1 WO2004063755 A1 WO 2004063755A1 JP 0300062 W JP0300062 W JP 0300062W WO 2004063755 A1 WO2004063755 A1 WO 2004063755A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
container
nucleic acid
sample container
sample
Prior art date
Application number
PCT/JP2003/000062
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiyuki Shoji
Toshiaki Yokobayashi
Original Assignee
Hitachi High-Technologies Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High-Technologies Corporation filed Critical Hitachi High-Technologies Corporation
Priority to JP2004566252A priority Critical patent/JP4154390B2/en
Priority to PCT/JP2003/000062 priority patent/WO2004063755A1/en
Publication of WO2004063755A1 publication Critical patent/WO2004063755A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1004Cleaning sample transfer devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L13/00Cleaning or rinsing apparatus
    • B01L13/02Cleaning or rinsing apparatus for receptacle or instruments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0275Interchangeable or disposable dispensing tips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5082Test tubes per se
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/103General features of the devices using disposable tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1048General features of the devices using the transfer device for another function
    • G01N2035/1053General features of the devices using the transfer device for another function for separating part of the liquid, e.g. filters, extraction phase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/028Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having reaction cells in the form of microtitration plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1081Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices characterised by the means for relatively moving the transfer device and the containers in an horizontal plane
    • G01N35/109Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices characterised by the means for relatively moving the transfer device and the containers in an horizontal plane with two horizontal degrees of freedom

Definitions

  • the present invention relates to an automatic analyzer provided with a sample container, and a method for cleaning a sample container.
  • the present invention relates to a nucleic acid extracting device provided with a nucleic acid capturing chip having a built-in nucleic acid capturing solid phase, and a method for cleaning a nucleic acid capturing chip.
  • Japanese Patent Application Laid-Open No. H11-1266664 describes a method for automating nucleic acid extraction using a nucleic acid capturing chip containing a silica-containing solid phase. Then, the solid phase to which the nucleic acid is bound and the inside of the chip are washed, and the waste liquid is discharged. At this time, the cleaning liquid adheres to the outer wall of the chip.
  • the amount of the elution reagent used in the elution step performed after the washing is very small. For this reason, if the washing solution remains on the chip and mixes with the elution reagent, the concentration of the eluent changes, disturbing the nucleic acid recovery rate.
  • the cleaning liquid adhering to the outer wall of the chip collects at the tip of the chip with the passage of time to form a liquid droplet.
  • the liquid droplets scatter when the nucleic acid capturing chip is moved, causing contamination.
  • An object of the present invention is to prevent generation of contamination and to efficiently wash a sample container.
  • the present invention provides an automated analysis system that cleans sample containers in at least two steps.
  • This is a method for cleaning the device and the sample container.
  • the surface of this vessel includes the surface of the sample container, but does not include the opening.
  • a cleaning solution is injected into the container, a predetermined amount of the cleaning solution is stored, and a part of the sample container (a portion not including the opening) is washed.
  • Next, a predetermined gap is formed between the sample container and the cleaning container while a predetermined amount of the cleaning liquid is accumulated in the vessel. The accumulated cleaning liquid flows out of the gap, cleans the opening, and is discharged into the discharge hole of the cleaning container.
  • portions other than the opening are cleaned first, and then the vicinity of the opening is cleaned. For this reason, the sample contamination near the opening does not diffuse to the entire sample container via the cleaning liquid. Also, by defining the volume of the cleaning liquid and the shape of the gap, the flow of the cleaning liquid flowing out of the gap can be adjusted. By controlling this flow, the cleaning liquid always reaches the specific location even if the opening has a structure that is difficult to wash, such as irregularities. Therefore, even a sample container having a structure that is difficult to wash can be reliably washed every time.
  • the present invention is an automatic analyzer and a cleaning method for discharging a sample to a discharge hole isolated from the outside, and thereafter cleaning the sample container and the discharge hole.
  • the opening of the thought container is placed in the discharge hole isolated from the container.
  • the sample in the sample container is discharged to the discharge hole, and the cleaning liquid is injected into the container.
  • the order of sample discharge and washing liquid injection is not specified.
  • a gap is formed between the sample container and the washing container, and the accumulated washing liquid flows into the discharge hole. The cleaning liquid flowing out of the gap cleans the opening and the discharge hole.
  • the sample is discharged to the discharge hole, which is a region isolated from the outside.
  • This isolated area is cleaned while maintaining the isolated state with the cleaning liquid. Since the droplets of the sample generated by the discharge are present only inside the isolated area and do not diffuse outside, the danger of contamination due to the scattering of the sample droplets can be avoided. For this reason, for example, even when fluid resistance such as a solid phase is present in the sample container and the discharge of the sample is obstructed, the sample can be forcibly discharged by high pressure.
  • FIG. 1 is a schematic diagram of a cleaning unit in one embodiment.
  • FIG. 2 is an explanatory diagram of cleaning unit operations a to f in the cleaning step of one embodiment.
  • FIG. 3 is a schematic view of a liquid dispensing channel in one embodiment.
  • FIG. 4 is an explanatory diagram of an operation of removing a chip from a nozzle in one embodiment.
  • FIG. 5 is a schematic view of a chip for capturing nucleic acids according to one embodiment.
  • FIG. 6 is a plan view of an apparatus for purifying nucleic acid according to one embodiment.
  • FIG. 7 is a schematic external view of an apparatus for purifying nucleic acid in one embodiment.
  • FIG. 8 is a block diagram showing a configuration of an electric system in one embodiment.
  • FIG. 9 is a flowchart of a cleaning step in one embodiment.
  • FIG. 6 is a plan view of the nucleic acid purification device
  • FIG. 7 is a schematic external view of the nucleic acid purification device.
  • the nucleic acid purification apparatus 100 includes two arms 16 and 33 that can move in the horizontal direction (X direction).
  • One arm 16 holds a nozzle holder 17 for holding a dispensing nozzle 36 (not shown), It is provided so that it can move in the horizontal direction (Y direction) along the length direction.
  • the other arm 33 has a nozzle holder 34 holding a reagent discharge nozzle 39 (not shown) so as to be movable in the horizontal direction (Y direction) along the length of the arm 33.
  • the reagent discharge nozzle 39 is provided with a plurality of nozzles, a nozzle capable of mounting a disposable tip and a dispenser nozzle capable of directly discharging a reagent without using a disposable tip.
  • the nozzle holders 17 and 34 can operate in the vertical direction (Z direction) with respect to the corresponding arms 16 and 33.
  • tip racks 14a and 14b on which a large number of unused dispensing tips 15 are placed are set in a predetermined area. As shown in FIG. 3, these tip racks 14a and 14b have holes into which each dispensing tip 15 can be inserted, and the tip of the dispensing tip is a work surface. 5 or a box with a height that does not touch the bottom of the chip black. Each chip black 14a can hold up to 96 dispensing tips 15, and 14b can hold up to 48 dispensing tips 15.
  • a chip rack 30 on which a large number of unused nucleic acid capturing chips 31 are placed is set in a predetermined area.
  • the shape of the tip rack 30 is the same as that of the tip rack 14 described above. In this example, a maximum of 96 nucleic acid capturing chips 31 can be held on the chip rack 30.
  • the sample rack 12 is set in a predetermined area.
  • the sample rack 12 can contain a sample to be processed, that is, a sample containing nucleic acids.
  • each sample rack 12 can hold a maximum of 48 sample containers 13.
  • container racks 23a and 23b holding many unused processing containers 24a and 24b are set in a predetermined area.
  • Container rack Each of 23 a and 23 b can hold a maximum of 64 processing containers 24.
  • the container racks 23a and 23b have a temperature control function, and can heat and cool the processing containers 2424b. By heating, nucleic acids can be efficiently eluted from the nucleic acid capturing carrier. In addition, the cooling prevents the solution containing the eluted nucleic acid from evaporating, and can be stored for a certain period of time.
  • a container storage rack 25 holding many unused purified product containers 26 is set in a predetermined area.
  • the purified product container 26 collects the purified nucleic acid-containing liquid for each sample.
  • the container rack 25 has a maximum of eight large-sized refined product containers 26a, 96 small-sized product containers 26b, and 96 holes in one rack. Holds up to two containers 26 c.
  • the work surface 5 is provided with a chip remover 27a shown in FIG.
  • the chip remover 27a removes the dispensing tip 15 and the nucleic acid capturing tip 31 connected to the dispensing nozzle 36 from the nozzle. Also, it is the home position of dispensing nozzle 36.
  • the washing unit 18 also has a function of discharging unnecessary liquid from the nucleic acid capturing chip 31.
  • FIG. 1 shows the details of the cleaning section 18.
  • the washing section 18 is composed of a washing water inlet 101, a water storage tank 102, a washing tank 103, a waste liquid hole 104, and a bypass flow passage 105.
  • the washing water inlet 101 is a flow path for injecting the washing liquid into the main washing section, and is connected to a washing liquid supply pump (not shown).
  • the water reservoir 102 is a portion for temporarily storing a cleaning liquid in order to remove liquid droplets attached to the tip of the nucleic acid capturing chip.
  • a flow path for discharging the cleaning liquid is provided at the lower part of the water storage tank 102. From this flow path, the cleaning liquid is supplied to the cleaning tank 103. Supply. This flow path does not require an on-off valve, and the cross-sectional area of this flow path and the amount of reagent supplied from the cleaning liquid inlet 101 balance each other so that the liquid level in the water storage tank 102 is determined. It has become.
  • the washing tank 103 is a vessel for washing the outside of the nucleic acid capturing chip 31 and treating the drainage.
  • the inner side surface of the washing tank 103 has a substantially rectangular parallelepiped shape, and its cross-sectional area is larger than the outer diameter of the nucleic acid capturing chip 31.
  • the bottom of the cleaning tank 103 has a tapered shape tapered downward, and has a discharge hole 104 at the tip.
  • the washing tank 103 can be inserted without contacting the nucleic acid capturing chip 31 with the inner side surface thereof.
  • the tapered portion of the nucleic acid capturing chip 31 comes into contact with the tape-like bottom surface of the washing tank 103, it is possible to prevent the washing solution from being discharged to the waste liquid hole 104.
  • the cleaning liquid can be stored in the cleaning layer 103.
  • the distal end portion 48 of the nucleic acid capturing chip 31 is in a state of entering the discharge hole 104.
  • the waste liquid hole 104 is a discharge hole through which the waste liquid can be discharged to the outside of the cleaning unit, and has a cylindrical shape having a cross-sectional area larger than a tip end 48.
  • the bypass flow path 105 is a flow path having one end connected to the inside of the washing tank 103 and the other end connected to the waste liquid hole 104. Excess cleaning reagent in the cleaning tank 103 is discharged to the waste liquid hole 104 through this channel.
  • the amount of the cleaning reagent stored in the cleaning tank 103 can be regulated.
  • there is a high possibility that the sample is contaminated in the vicinity of the tip end 48 where the sample is sucked and discharged.
  • the level of the cleaning liquid when full is higher than the expected contamination site, the contamination of the chip can be surely cleaned.
  • the stand 100 has a washing solution potter 19, an eluent potter 20, and dilution 3 000062
  • the washing solution potter 19 contains a washing solution for washing the solid phase in the nucleic acid capturing chip 31.
  • the eluent bottle 20 contains an eluent for eluting the nucleic acid bound to the solid phase.
  • the diluent pottor 21 contains a diluent
  • the binding promoter bottle 22 contains a solution of a binding promoting substance that promotes binding of nucleic acid to a solid phase.
  • the peripheral structure of the dispensing nozzle 36 will be described with reference to FIG.
  • the dispensing nozzle 36 is connected to a pump for suction, discharge, stirring, reagent discharge, and air discharge.
  • the syringe pump 10 is a pump for performing suction / discharge and stirring in the dispensing tip 15 and the nucleic acid capturing tip 31.
  • the syringe pump 80 is a pump that discharges the solid phase washing reagent to the nucleic acid capturing chip 31 and is connected in plurality.
  • a pump having a liquid sending function such as a bellows pump and a peristaltic pump can be used.
  • the discharge pump 87 is a pump for discharging the remaining liquid in the solid phase of the nucleic acid capturing chip 31 to the outside of the chip.
  • a flow path connecting the discharge pump 87 and the chip is connected to a valve 82 for opening to the atmosphere and a filter 86 for preventing intrusion of substances from the outside.
  • the tip is mounted by lowering the nozzle and fitting the tip to the tip of the nozzle on the tip racks 14a, 14b, 30.
  • a chip remover 27a is used for chip removal.
  • the chip remover 27a has a plate-like member at a predetermined height position.
  • a slit 55 having a width smaller than the outer diameter of the tip heads 52 and 54 and larger than the outer diameter of the dispensing nozzle 36 is formed on this plate-shaped member. Chip removal should be done in slit 55 With the heads 52, 54 of each chip lower than the height at which they are located, the nozzle 36 is moved horizontally so as to enter the slit. Next, the nozzle holder 117 is raised to bring the heads 52, 54 into contact with the lower surface of the plate-shaped member.
  • the tips 15 and 31 fall out of the dispensing nozzle 36 due to the further rise of the nozzle holder.
  • the dropped chips fall into a chip disposal port 50 (not shown) and are collected in a collection box (not shown).
  • Disposal of tips for dispensing reagents is performed in the same manner using a tip remover 27b.
  • the configuration of the electrical system of the nucleic acid purification device will be described with reference to FIG.
  • the personal computer (PC) 60 as an operation control unit has a keyboard 61 as an operation panel for inputting operation conditions and specimen information, and a CRT as a display device for displaying input information and warning information. 62, a mechanism control section 65 for controlling each mechanism section of the apparatus, and the like.
  • the mechanism control section 65 controls four stepping motors 71 to 74, two AC servomotors 75 and 76, a bellows pump 80, and two solenoid valves 81 and 82.
  • the stepping motor 71 drives the syringe 10 of the syringe pump to perform a suction / discharge operation.
  • the stepping motor 72 drives the syringe 32 of the syringe pump 80 to perform a suction / discharge operation.
  • the nozzle holder 17 is moved horizontally and vertically.
  • the stepping motor 74 moves the nozzle holder 34 horizontally and upward and downward.
  • the AC supporter 7 '5 moves the arm 16 horizontally, and the AC supporter 7 6 moves the arm 33 horizontally.
  • Each mechanism of the nucleic acid purification apparatus operates according to a predetermined program.
  • the configuration of the nucleic acid capturing chip 31 will be described with reference to FIG.
  • the nucleic acid capturing chip 31 has an inner diameter such that the head 54 is airtightly fitted to the tip of the dispensing nozzle 36. In the lower part, the inside diameter gradually increases toward the tip 48. An opening for sucking and discharging the sample exists at the tip of the tip portion 48. The inclination toward the front end portion 48 is substantially the same as the angle of the bottom surface of the cleaning tank 103. For this reason, by pressing the nucleic acid capturing chip 31 under the washing tank 103, the washing solution can be prevented from flowing out to the waste liquid hole 104.
  • the chip is made of a transparent or translucent synthetic resin.
  • a disc-shaped blocking member 40b for preventing the solid phase from flowing out is inserted into the tip end side by press-fitting, and a disc-shaped blocking member 40a is inserted on the head 54 side. Is provided.
  • These blocking members 40a and 4Ob have a large number of holes through which liquids and gases can easily pass, and the holes are large enough to prevent the outflow of the solid phase.
  • Polypropylene is used as the material of the blocking members 40a and 4Ob. Since this material can reduce non-specific adsorption of proteins, nucleic acids, and the like, the influence on the purity and yield of nucleic acids is small.
  • the blocking member 40a has a plurality of projecting insertion guides 37 on the lower surface side for facilitating insertion into the chip 31.
  • the room sandwiched between the blocking members 40a and 40b is filled with flint glass (Wako Pure Chemical Industries) powder 44 as a solid phase.
  • This print glass has a high silica content having a nucleic acid capturing effect.
  • the cross section of the internal space containing the solid phase is preferably larger than the opening for aspirating and discharging the sample. This is because the dead volume (sample that does not touch the solid phase) during suction and discharge can be reduced. It is desirable that the tip for suction and discharge is thin. This is because the sample remaining at the bottom of the conical sample container can be suctioned and discharged. It is desirable that the thickness of the opening for sucking and discharging the sample be thin. This is because the sample liquid droplets and the cleaning liquid droplets adhering to the vicinity of the opening are reduced, and the generation of contaminants can be reduced.
  • the solid phase has a thin flat plate shape that has a thickness in the chip major axis direction.
  • a disk shape is desirable. This is because clogging of the solid phase can be reduced and the volume of the solid phase can be increased.
  • the tip of the nucleic acid-capturing chip 31 is shaped like a combination of a large column containing a solid phase and a small column with an opening. Its longitudinal cross section is substantially convex and has an opening at the tip. For this reason, the substantially convex valley may be contaminated by the sample due to the suction and discharge of the sample from the opening.
  • a sample from which nucleic acid is to be extracted is put into a sample container 13, held by a sample rack, and set in a sample area on the apparatus 100.
  • operation by the refining device 100 is started.
  • the first reagent (degrading enzyme solution, specifically ProK) is injected into the reaction vessel.
  • the nozzle holder 3 4 is operated, the reagent discharge nozzle 3 9 moves to the chip rack 9 1 above, fitting the 1st reagent dispensing tip 9 4 reagent discharge nozzle 3 9 .
  • the attached reagent dispensing tip 94 is moved onto a reagent bottle 92 containing a reagent such as the first reagent and lowered into the bottle.
  • a predetermined amount of the first reagent is sucked into the dispensing tip 15 by causing the syringe pump 32 to perform a suction operation.
  • the reagent sucked into the dispensing tip 15 is discharged into the container 24a.
  • the reagent dispensing tip 94 is moved to the tip removing device 27b, and the used reagent dispensing tip 94 is removed.
  • the first reagent and the nucleic acid-containing sample are mixed in a reaction vessel. This elutes the nucleic acid.
  • the nozzle holder 17 is operated to move the dispensing and stirring nozzle 36 onto the tip rack 14a, and the first dispensing tip 15 is fitted to the dispensing and stirring nozzle 36. Combine.
  • the second reagent (the dissolving reagent, specifically, guanidine hydrochloride solution) is mixed with the mixed sample in the reaction vessel. This elutes the nucleic acids.
  • the arm 16 and the nozzle holder 17 are operated to move the dispensing tip 15 to the position of the tip remover 27a, which is the standby position.
  • the arm 33 and the nozzle holder 34 are operated, and the reagent discharge nozzle 39 is moved to the container 24a from which the aforementioned sample is discharged.
  • the syringe pump 32 is operated to discharge a prescribed amount of the second reagent as the dispenser reagent.
  • the arm 33 and the nozzle holder 34 are operated again, and the arm 33 and the nozzle holder 34 are moved to the position of the chip remover 27 b which is the standby position.
  • the waiting dispensing tip 15 is again moved to the first processing container 24a on the container rack 23a, and all the samples in the processing container 24a are separated. Suction into the injection tip 15 and discharge to the first processing container 24a one or more times. This mixes the nucleic acid-containing sample with the second reagent.
  • remove the dispensing nozzle 36 from the tip Move to 2 7a and remove the used dispensing tip 15 from the dispensing nozzle 36 according to the removal operation described above.
  • the dispensing nozzle 36 is returned to the position of the cleaning section 18, and after a predetermined amount of pure water is discharged from the dispensing nozzle 36, a small amount of air is sucked into the tip of the dispensing nozzle 36.
  • the third reagent (binding promoter, principally diethylene glycol dimethyl ether) is mixed with the mixed sample in the reaction vessel.
  • the eluted nucleic acid is changed to a state of binding to the nucleic acid capturing carrier.
  • the arm 33 and the nozzle holder 34 are operated, and the reagent discharge nozzle 39 is moved to the container 24a from which the above-described sample is discharged.
  • a predetermined amount of the third reagent, which is the dispenser reagent is discharged.
  • the arm 33 and the nozzle holder 3-4 are operated again, and moved to the position of the tip remover 27 b which is the standby position.
  • the waiting dispensing tip 15 is moved onto the first processing vessel 24a on the container rack 23a again, and all the samples in the processing vessel 24a are dispensed. Suction into the chip 15 and discharge to the first processing container 24a are performed at least once. This mixes the nucleic acid-containing sample with the third reagent.
  • the reagent dispensing tip 94 is moved to the chip remover 27 b, and the used reagent dispensing tip 94 is removed.
  • the nucleic acid is captured on the solid phase in the nucleic acid capture chip.
  • the nozzle holder 13 is operated to move the dispensing and stirring nozzle 36 onto the tip rack 30, and the first nucleic acid capturing chip is fitted to the dispensing and stirring nozzle 36.
  • the dispensing nozzle 36 moves to the position of the first processing container 24a on the container rack 23a with the nucleic acid capturing chip 31 coupled thereto.
  • the nucleic acid capture chip 31 is lowered, and the entire amount of the mixture of the sample and the first, second, and third reagents contained in the first processing container is aspirated by the syringe pump 10 into the chip. It is sucked into the nucleic acid capturing chip 31 by operation.
  • the mixed solution comes into contact with the surface of the glass powder 44 as a solid phase in the chip 31.
  • the sucked mixture is discharged back into the first processing container 24, and the discharged mixture is again sucked into the same nucleic acid capturing chip 31.
  • the number of contacts between the solid phase surface and the mixed solution is increased, and the efficiency of nucleic acid adsorption by the solid phase is increased.
  • the entire amount of the mixed solution is finally sucked into the first nucleic acid capturing chip 31, and the chip 31 is moved to the washing unit 29.
  • FIG. 9 is a flowchart showing a cleaning process.
  • the inside of the chip is washed twice using the fourth reagent (first washing reagent, the main components of which are guanidine hydrochloride and diethylene glycol dimethyl ether) and the fifth reagent (second washing reagent, the main component of which is ethanol).
  • first washing reagent the main components of which are guanidine hydrochloride and diethylene glycol dimethyl ether
  • second washing reagent the main component of which is ethanol
  • the fourth reagent removes mainly proteins
  • the fifth reagent removes impurities other than proteins that cannot be washed with the fourth reagent.
  • steps after c are performed.
  • the sample in the nucleic acid capturing chip 31 is discharged, and then the nucleic acid capturing chip 31 is filled with the fourth reagent (a). Specifically, first, the nucleic acid capturing chip 31 is inserted into the washing tank 103. At this time, the distal end portion 48 of the nucleic acid capturing chip 31 is inserted into the waste liquid hole 104. Further, the nucleic acid capturing chip 31 is fixed in close contact with the bottom of the washing tank 103. As a result, the washing tank 103 and the waste liquid hole 104 are separated.
  • the sample accumulated in the chip after the nucleic acid adsorption step is discharged into the washing section 29 by the discharging operation of the syringe pump 10.
  • the flow path switching valve 83 is driven to connect the washing liquid flow path to the nucleic acid capturing chip 31.
  • the air switching valve 82 is driven to physically connect and open the inside and outside of the chip.
  • the pressure inside the nucleic acid capturing chip 31 is always equal to the pressure outside the chip.
  • the syringe pump 80 is driven to inject the fourth reagent into the chip. Since the pressure in the chip does not increase, the washing solution discharged by the syringe pump 80 is not discharged from the opening at the tip of the nucleic acid capturing chip 31 and accumulates in the chip. At this time, the level of the cleaning liquid in the chip is higher than the position of the solid phase, and the solid phase is immersed in the cleaning liquid.
  • the air switching valve 82 is driven to shut off the flow path connecting the inside of the chip and the outside of the chip.
  • the fourth reagent held on the nucleic acid capture sample chip is discharged (b). Specifically, the following procedure is performed.
  • the air discharge pump 87 is driven to increase the pressure in the chip.
  • the cleaning liquid in the chip flows in one direction from the head (upper) to the tip (lower), passes through the solid phase, and is discharged from the tip.
  • the sample, cleaning liquid, and the like are scattered into the waste liquid hole 104 from the tip of the chip by air blow discharge.
  • the chip and the bottom of the washing tank 103 are in close contact with each other, droplets do not scatter above the washing tank 103, and no contamination occurs for other samples.
  • the inner wall of the chip and the surface of the solid phase can be washed, and all the residual liquid can be discharged from the nucleic acid capturing chip 31.
  • the air blow discharge not only discharges the sample and the cleaning liquid, but also promotes the drying of the carrier for trapping the nucleic acid. Due to the synergistic effect with the liquid discharge by wind pressure, the liquid in the chip can be efficiently removed.
  • the air switching valve 82 When the viscosity of the reagent is high, first activate the air switching valve 82 to capture nucleic acids.
  • the syringe pump 10 is connected to the atmosphere via the tip 31. In this state, the syringe pump 10 is driven to suck air. Then, the air switching valve 82 is driven again to shut off the air. Then, the syringe pump 10 is driven to push out the remaining reagent in the chip. By this repetition, the residual liquid adhering to the inner wall of the chip, the solid phase, or the like can be reliably discarded.
  • the second washing step is performed in the same manner as the first washing, using the fifth reagent (second washing solution). Thereby, impurities other than the protein that cannot be washed with the fourth reagent can be removed.
  • the outside of the nucleic acid capture sample chip 31 is washed (c). Since the fourth reagent remaining outside the chip affects the subsequent elution step, it must be sufficiently washed in this step.
  • the fifth reagent (second cleaning liquid) is injected into the water storage tank 102 from the cleaning liquid injection port 101 in a state where the chip and the bottom surface of the cleaning tank 103 are in close contact with each other. Since this cleaning solution is used only for cleaning the outside of the chip, it is not suitable for cleaning the inside of the chip, but inexpensive sterilized water or the like can be used.
  • the injected cleaning liquid flows into the cleaning tank 103 through the communication channel 106 connected to the cleaning tank 103. Since the communication channel 106 has a smaller cross-sectional area than the cleaning liquid inlet 101, the water storage tank 102 stores a fixed amount of cleaning liquid.
  • the washing solution that has flowed into the washing tank 103 accumulates in the washing tank 103 because the waste liquid hole 104 is closed by the nucleic acid capturing chip 31.
  • the outer wall of the chip excluding the tip end portion 48 that is, a portion with a low degree of contamination can be cleaned.
  • the tip end portion 48 with a high degree of contamination does not come into contact with the cleaning solution, so that the contamination at the tip end portion 48 does not diffuse.
  • the washing water accumulates up to the position of the bypass channel 105, and the washing water exceeding that position is discharged to the waste liquid hole 104 via the bypass channel 105. Pa If the position of the bypass path 105 is higher than the expected contamination site, contamination outside the chip can be reliably removed.
  • the tip 48 of the nucleic acid capturing chip 31 is washed (d). Intensive cleaning of the parts not cleaned in the previous process. Specifically, the nucleic acid capturing chip 31 that is in contact with the washing tank 103 is moved upward to provide a predetermined gap. The upward movement amount is, for example, about 0.5 mm. The cleaning liquid used for external cleaning of the chip is discharged to the waste liquid hole 104 from this gap. Since the gap is small, the washing water jumps out of the chip and flows down to the waste liquid hole 104 along the shape of the chip. The manner in which the washing water jumps out can be adjusted depending on the amount of accumulated washing water and the shape of the gap.
  • the distal end portion 48 of the nucleic acid capturing chip 31 can be washed.
  • a place where cleaning is difficult such as a step portion having a substantially convex shape.
  • the cleaning can be surely performed by adjusting the way of the washing water popping out.
  • the liquid ball adhering to the tip end portion 48 is removed (e and f). Thereby, scattering at the time of tip movement can be prevented.
  • the cleaning liquid is injected again and the cleaning water is stored in the water tank 102.
  • the drive of the water injection pump is continued.
  • the nucleic acid capturing chip 31 is inserted into the water storage tank 102, and the tip end portion 48 is brought into contact with the washing liquid surface (e).
  • the nucleic acid capturing chip 31 is moved upward (f).
  • the moving speed is A relatively slow one is desirable.
  • the speed is about 1-2 mm per second.
  • the liquid droplets attached to the tip of the nucleic acid capturing chip 31 are captured on the cleaning liquid surface by surface tension, so that the liquid droplets can be efficiently removed.
  • a trace amount of reagent is used.
  • nucleic acids are extracted using a very small amount of extract. For this reason, even if the washing liquid is contaminated, the volume of the reaction solution is disturbed and the extraction accuracy is deteriorated.
  • the liquid droplets attached to the tip end portion 48 are scattered by the movement of the nucleic acid capturing chip 31 and cause contamination.
  • the above-described contamination can be avoided by the liquid ball process. It should be noted that the same effect can be obtained by fixing the height of the nucleic acid capturing chip 31 and raising and lowering the liquid level by the cleaning liquid injection pump. That is, the nucleic acid capturing chip 31 and the washing liquid surface may be relatively moved and brought into contact.
  • the cleaning liquid injected from the cleaning liquid inlet 101 is temporarily stored in the water tank 102, and then discharged to the waste liquid hole 104 through the cleaning tank 103. Thereby, the water storage tank 102, the cleaning tank 103, and the waste liquid hole 104 can be washed.
  • the nucleic acid captured on the solid phase is eluted, and the nucleic acid is collected in a storage container. Specifically, the washed nucleic acid capturing chip 31 is moved to the liquid receiving section 28 and waits. In the nucleic acid elution step, the reagent nozzle 39 moves to the position of the reaction container 24b.
  • the syringe pump 32 is operated to aspirate the sixth reagent (eluent, the main component is Tris Buffer), which is a dispenser reagent, and a single amount of the eluent is discharged by the syringe pump 32 being pushed out. Discharge into the first processing container 24b.
  • the reagent dispensing nozzle 39 holding the remaining amount of the eluent moves to the chip removing portion 27 b and stands by.
  • the nucleic acid capturing chip 31 is moved to the first processing container 24 b on the container rack 23 b, and the eluate in the first processing container 24 b is captured. Into the tip 31 for use.
  • the eluent comes into contact with the solid phase, and the nucleic acid adsorbed on the solid phase surface is eluted into the eluent.
  • the operation of sucking again into the same chip 31 is repeated a predetermined number of times.
  • the reagent dispensing nozzle 39 moves to the second processing container 24b, and discharges the next one eluent into the corresponding processing container.
  • the nucleic acid capturing chip 31 is moved to the second processing container 24b, the eluate in the processing container 24b is sucked into the nucleic acid capturing chip 31, and the same nucleic acid as described above is used.
  • the elution step is repeated to elute the nucleic acid adsorbed on the nucleic acid capturing carrier.
  • the nucleic acid capturing chip 31 is moved to the position of the chip remover 27a, and the chip is removed.
  • the nozzle holder 17 is driven to move the dispensing and stirring nozzle 36 onto the tip rack 14 b, and the dispensing tip 15 is fitted to the dispensing and stirring nozzle 36. Then, it is moved to the first row of the reaction vessel 24b containing the eluate recovered in the previous step. Next, the eluate in the reaction vessel is aspirated into the dispensing tip 15. Next, it is moved to the position of the container 26 for the purified tip dispensing product. By the pushing operation of the syringe pump 32, the eluent contained in the dispensing tip 15 is discharged into the first purified product container 26.
  • the eluate containing the nucleic acid eluted from the solid phase is collected in the purified product container 26.
  • the dispensing tip 15 is moved to the second processing vessel 24b, the eluate in the processing vessel 24b is sucked into the dispensing tip 15 and the same as described above.
  • the eluate containing the nucleic acid is collected in the first purified product container 26.
  • the dispensing tip 15 a is moved to the chip remover 27 a, and the used dispensing tip 15 is removed from the dispensing nozzle 36.
  • the dispensing nozzle 36 with the dispensing tip removed is 29 Move to 9 and discharge water from the nozzle tip, then inhale a small amount of air into the nozzle tip and wait at that position. This completes the procedure for purifying the nucleic acid for the first sample. Thereafter, the purifying apparatus 100 continues the nucleic acid purification operation on the second and subsequent samples, and the operation is a repetition of the above-described example.
  • the up-and-down movement of the nucleic acid capturing chip 31 and the control of the injection of the washing solution can prevent the sample and the reagent from scattering, and can reliably wash the chip.
  • contamination can be prevented, and an apparatus for purifying nucleic acid with high washing efficiency can be provided.
  • the device configuration is simple, and cost reduction can be achieved.
  • the present embodiment relates to a nucleic acid purifying apparatus
  • the present invention is not limited to this.
  • it can be applied to an automatic analyzer using a chip, such as an automatic biochemical analyzer, an automatic immune analyzer, and an automatic urine analyzer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

An automatic analyzer where a sample container is cleaned through at least two processes, and a cleaning method of a sample container. At first, the sample container is brought into contact, in the vicinity of the opening thereof, with the vicinity of the discharging hole of a cleaning vessel thus forming a vessel section, i.e. a cleaning space where a liquid can be reserved. Surface of the vessel section includes the surface of the sample container but does not include the opening part. Cleaning liquid is injected into the vessel section, a specified quantity of the cleaning liquid is reserved and then a part of the sample container (excluding the opening part) is cleaned. Subsequently, a specified gap is formed between the sample container and the cleaning vessel under a state where a specified quantity of the cleaning liquid is reserved in the vessel section. The reserved cleaning liquid flows out from the gap and cleans the opening part before being discharged to the discharging hole of the cleaning vessel.

Description

明 細 書  Specification
試料容器を備えた自動分析.装置、 及び試料容器の洗浄方法 技術分野  Automatic analysis with a sample container, and a method for cleaning the sample container
本発明は、 試料容器を備えた自動分析装置、 及び試料容器の洗浄方法 に関する。 例えば、 核酸捕捉固相を内蔵する核酸捕捉チップを備えた核 酸抽出装置、 及び核酸捕捉チップの洗浄方法に関する。 背景技術  The present invention relates to an automatic analyzer provided with a sample container, and a method for cleaning a sample container. For example, the present invention relates to a nucleic acid extracting device provided with a nucleic acid capturing chip having a built-in nucleic acid capturing solid phase, and a method for cleaning a nucleic acid capturing chip. Background art
特開平 1 1 一 2 6 6 8 6 4号公報では、 シリカ含有の固相を内蔵した 核酸捕捉用チップを用いて核酸抽出を自動化する方法が記載されている, この方法では、 チップ内に洗浄液を吸引し、 核酸を結合した固相及びチ ップ内を洗浄し、 その廃液を吐出する。 この際、 チップの外壁に洗浄液 が付着する。  Japanese Patent Application Laid-Open No. H11-1266664 describes a method for automating nucleic acid extraction using a nucleic acid capturing chip containing a silica-containing solid phase. Then, the solid phase to which the nucleic acid is bound and the inside of the chip are washed, and the waste liquid is discharged. At this time, the cleaning liquid adheres to the outer wall of the chip.
洗浄後に実施される溶離工程において使用する溶離試薬の量は微量で ある。 この為、 洗浄液がチップに残留し溶離試薬に混ざると、 溶離液濃 度を変え、 核酸の回収率を乱す。  The amount of the elution reagent used in the elution step performed after the washing is very small. For this reason, if the washing solution remains on the chip and mixes with the elution reagent, the concentration of the eluent changes, disturbing the nucleic acid recovery rate.
また、 チップ外壁に付着した洗浄液は、 時間の経過とともにチップ先 端に集まって液玉となる。 この液玉は、 核酸捕捉用チップの移動時に飛 び散.り、 コンタミネーシヨンの原因となる。  In addition, the cleaning liquid adhering to the outer wall of the chip collects at the tip of the chip with the passage of time to form a liquid droplet. The liquid droplets scatter when the nucleic acid capturing chip is moved, causing contamination.
本発明の目的は、 コンタミネーシヨ ンの発生を防止し、 効率的に試料 容器を洗浄することである。 発明の開示 .  An object of the present invention is to prevent generation of contamination and to efficiently wash a sample container. DISCLOSURE OF THE INVENTION.
本発明は、 試料容器を少なく とも 2つの工程により洗浄する自動分析 装置及び試料容器の洗浄法である。 まず、 試料容器の開口部近傍と洗浄 容器の排出孔近傍を接触し、液溜可能な洗浄空間である器部を形成する。 この器部の表面は、 試料容器の表面を含むが、 開口部は含まない。 この 器部に洗浄液を注入し、 所定量の洗浄液を溜め、 試料容器の一部 (開口 部は含まない箇所) を洗浄する。 次に、 所定量の洗浄液が器部に溜まつ ている状態において、 試料容器と洗浄容器に所定の隙間を形成する。 溜 まっていた洗浄液は隙間から流出し、 開口部を洗浄し、 洗浄容器の排出 孔中へ排出される。 The present invention provides an automated analysis system that cleans sample containers in at least two steps. This is a method for cleaning the device and the sample container. First, the vicinity of the opening of the sample container and the vicinity of the discharge hole of the washing container are brought into contact with each other to form a vessel which is a washing space capable of storing liquid. The surface of this vessel includes the surface of the sample container, but does not include the opening. A cleaning solution is injected into the container, a predetermined amount of the cleaning solution is stored, and a part of the sample container (a portion not including the opening) is washed. Next, a predetermined gap is formed between the sample container and the cleaning container while a predetermined amount of the cleaning liquid is accumulated in the vessel. The accumulated cleaning liquid flows out of the gap, cleans the opening, and is discharged into the discharge hole of the cleaning container.
本発明では、 開口部以外を先に洗浄し、 次に開口部近傍を洗浄する。 この為、 開口部近傍の試料汚れが、 洗浄液を介して試料容器全体に拡散 しない。 また、 洗浄液の容量と隙間の形状を規定すると、 隙間から流出 する洗浄液の流れを調節できる。 この流れの制御により、 開口部近傍が 凹凸等の存在する洗い難い構造であっても、 洗浄液がその特定箇所に常 に届く。 この為、 洗い難い構造の試料容器であっても、 毎回確実に洗浄 できる。  In the present invention, portions other than the opening are cleaned first, and then the vicinity of the opening is cleaned. For this reason, the sample contamination near the opening does not diffuse to the entire sample container via the cleaning liquid. Also, by defining the volume of the cleaning liquid and the shape of the gap, the flow of the cleaning liquid flowing out of the gap can be adjusted. By controlling this flow, the cleaning liquid always reaches the specific location even if the opening has a structure that is difficult to wash, such as irregularities. Therefore, even a sample container having a structure that is difficult to wash can be reliably washed every time.
また、 本発明は、 外部と隔離された排出孔に試料を吐出し、 その後、 試料容器と排出孔を洗浄する自動分析装置及び洗浄法である。 まず、 試 料容器の開口部近傍と洗浄容器の排出孔付近を接触し、 液溜可能な器部 を形成する。 この際、 器部と隔離された排出孔中に思料容器の開口部が 配置される。 次に、 試料容器内の試料を排出孔へ排出し、 また、 器部に 洗浄液を注入する。 尚、 試料排出と洗浄液注入の手順は順不同である。 次に、 試料容器と洗浄容器に隙間を形成し、 溜まっていた洗浄液を排出 孔へ流す。 隙間から流出する洗浄液流は、 開口部と排出孔を洗浄する。 本発明では、 外部と隔離された領域である排出孔へ試料を吐出する。 この隔離領域は、 洗浄液にて隔離された状態を維持しつつ洗浄される。 吐出により生じた試料の飛沫は、 隔離領域内部にのみ存在し外部へ拡散 しない為、 試料飛沫の飛散による汚染の危険性を回避できる。 この為、 例えば、 試料容器に固相等の流体抵抗が存在し、 試料の吐出を阻害する 場合でも、 高圧により強制的に吐出できる。 Further, the present invention is an automatic analyzer and a cleaning method for discharging a sample to a discharge hole isolated from the outside, and thereafter cleaning the sample container and the discharge hole. First, the vicinity of the opening of the sample container and the vicinity of the discharge hole of the washing container are brought into contact with each other to form a vessel capable of storing liquid. At this time, the opening of the thought container is placed in the discharge hole isolated from the container. Next, the sample in the sample container is discharged to the discharge hole, and the cleaning liquid is injected into the container. The order of sample discharge and washing liquid injection is not specified. Next, a gap is formed between the sample container and the washing container, and the accumulated washing liquid flows into the discharge hole. The cleaning liquid flowing out of the gap cleans the opening and the discharge hole. In the present invention, the sample is discharged to the discharge hole, which is a region isolated from the outside. This isolated area is cleaned while maintaining the isolated state with the cleaning liquid. Since the droplets of the sample generated by the discharge are present only inside the isolated area and do not diffuse outside, the danger of contamination due to the scattering of the sample droplets can be avoided. For this reason, for example, even when fluid resistance such as a solid phase is present in the sample container and the discharge of the sample is obstructed, the sample can be forcibly discharged by high pressure.
以下、 上記及びその他の本発明の新規な特徴と効果について、 図面を 参照して説明する。 図面の簡単な説明  Hereinafter, the above and other novel features and effects of the present invention will be described with reference to the drawings. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 一実施例における洗浄部の概略図である。 第 2図は、 一実 施例の洗浄工程における洗浄部動作 a〜 f の説明図である。 第 3図は、 一実施例における液体分注用流路の概略図である。 第 4図は、 一実施例 におけるノズルからチップを取り外す動作の説明図である。 第 5図は、 一実施例における核酸捕捉用チップの概略図である。 第 6図は、 一実施 例における核酸精製用装置の平面図である。 第 7図は、 一実施例におけ る核酸精製用装置の外観概略図である。 第 8図は、 一実施例における電 気系の構成を示すブロックダイヤグラムである。 第 9図は、 一実施例に おける洗浄工程のフロー図である。 発明を実施するための最良の形態  FIG. 1 is a schematic diagram of a cleaning unit in one embodiment. FIG. 2 is an explanatory diagram of cleaning unit operations a to f in the cleaning step of one embodiment. FIG. 3 is a schematic view of a liquid dispensing channel in one embodiment. FIG. 4 is an explanatory diagram of an operation of removing a chip from a nozzle in one embodiment. FIG. 5 is a schematic view of a chip for capturing nucleic acids according to one embodiment. FIG. 6 is a plan view of an apparatus for purifying nucleic acid according to one embodiment. FIG. 7 is a schematic external view of an apparatus for purifying nucleic acid in one embodiment. FIG. 8 is a block diagram showing a configuration of an electric system in one embodiment. FIG. 9 is a flowchart of a cleaning step in one embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に基づく一実施例である核酸精製用装置を、 第 1図〜第 9図を参照して説明する。 .  Hereinafter, an apparatus for purifying nucleic acid according to an embodiment of the present invention will be described with reference to FIG. 1 to FIG. .
第 6図は核酸精製用装置の平面図、 第 7図は核酸精製用装置の外観概 略図を示す。 核酸の精製用装置 1 0 0は、 水平方向 (X方向) に移動可 能な 2本のアーム 1 6, 3 3を具備する。 一方のアーム 1 6は、 分注ノ ズル 3 6 (図示せず) を保持するノズルホルダー 1 7を、 アーム 1 6の 長さ方向に沿って水平方向 (Y方向) に移動可能に備えている。 他方の アーム 3 3は、 試薬吐出ノズル 3 9 (図示せず) を保持するノズルホル ダー 3 4を、 アーム 3 3の長さ方向に沿って水平方向 (Y方向) に移動 可能に備えている。 試薬吐出ノズル 3 9は、 ディスポチップの装着可能 なノズルと、 ディスポチップを使用せず、 直接試薬吐出が可能なデイス ペンサノズルの、 複数のノズルが設置されている。 ノズルホルダー 1 7, 3 4は、 対応するァ一ム 1 6, 3 3に対し、 いずれも上下方向 ( Z方向) に動作できる。 FIG. 6 is a plan view of the nucleic acid purification device, and FIG. 7 is a schematic external view of the nucleic acid purification device. The nucleic acid purification apparatus 100 includes two arms 16 and 33 that can move in the horizontal direction (X direction). One arm 16 holds a nozzle holder 17 for holding a dispensing nozzle 36 (not shown), It is provided so that it can move in the horizontal direction (Y direction) along the length direction. The other arm 33 has a nozzle holder 34 holding a reagent discharge nozzle 39 (not shown) so as to be movable in the horizontal direction (Y direction) along the length of the arm 33. The reagent discharge nozzle 39 is provided with a plurality of nozzles, a nozzle capable of mounting a disposable tip and a dispenser nozzle capable of directly discharging a reagent without using a disposable tip. The nozzle holders 17 and 34 can operate in the vertical direction (Z direction) with respect to the corresponding arms 16 and 33.
本体架台の作業面 5には、 未使用の多数の分注用チップ 1 5を載置し た 2個のチップラック 1 4 a, 1 4 bが所定エリアにセッ トされる。 こ れらのチップラック 1 4 a, 1 4 bは、 第 3図に示すように、 各分注用 チップ 1 5を挿入し得る穴を有しており、 分注用チップの先端が作業面 5又はチッブラック底面に接触しないような高さを持った箱形をなす。 各チッブラック 1 4 aは最大 9 6本、 1 4 bは最大 4 8本までの分注用 チップ 1 5を保持できる。  On the work surface 5 of the main body stand, two tip racks 14a and 14b on which a large number of unused dispensing tips 15 are placed are set in a predetermined area. As shown in FIG. 3, these tip racks 14a and 14b have holes into which each dispensing tip 15 can be inserted, and the tip of the dispensing tip is a work surface. 5 or a box with a height that does not touch the bottom of the chip black. Each chip black 14a can hold up to 96 dispensing tips 15, and 14b can hold up to 48 dispensing tips 15.
また、 作業面 5には、 未使用の多数の核酸捕捉用チップ 3 1 を載置し たチップラック 3 0が所定エリアにセッ トされる。 チップラック 3 0の 形状は、 先のチップラック 1 4と同様である。 この例ではチップラック 3 0上に最大 9 6本までの核酸捕捉用チップ 3 1 を保持できる。  Further, on the work surface 5, a chip rack 30 on which a large number of unused nucleic acid capturing chips 31 are placed is set in a predetermined area. The shape of the tip rack 30 is the same as that of the tip rack 14 described above. In this example, a maximum of 96 nucleic acid capturing chips 31 can be held on the chip rack 30.
作業面 5には、 検体ラック 1 2が所定エリァにセッ トされる。 検体ラ ック 1 2は、 処理対象となる検体、 すなわち核酸を含有する試料を収容 できる。 本実施例では、 各検体ラック 1 2は最大 4 8本の検体容器 1 3 を保持できる。  On the work surface 5, the sample rack 12 is set in a predetermined area. The sample rack 12 can contain a sample to be processed, that is, a sample containing nucleic acids. In this embodiment, each sample rack 12 can hold a maximum of 48 sample containers 13.
また、 作業面 5には、 未使用の処理容器 2 4 a , 2 4 bを多数保持し た容器ラック 2 3 a , 2 3 bが所定エリァにセッ トされる。 容器ラック 2 3 a , 2 3 bは、 各々最大 6 4本までの処理容器 2 4を保持できる。 さらに容器ラック 2 3 a , 2 3 bは温度調節機能を持ち、 処理容器 24 2 4 bを加熱, 冷却することが可能である。 加熱により、 核酸捕捉用担 体から核酸を効率良く溶離できる。 また、 冷却により、 溶離した核酸を 含む溶液の蒸発を防ぎ、 一定時間保存できる。 作業面 5には、 未使用の 精製品用容器 2 6を多数保持した容器保存ラック 2 5が所定エリァにセ ッ トされる。 この精製品用容器 2 6は、 精製処理がなされた核酸含有液 を試料別に回収するものである。 本実施例では、 容器ラック 2 5は、 大 型の精製品用容器 2 6 aを最大 8本、 小型の製製品容器 2 6 bを最大 9 6本、 1 ラック内に 9 6個の穴を持つ容器 2 6 cを最大 2個保持でき る。 Also, on the work surface 5, container racks 23a and 23b holding many unused processing containers 24a and 24b are set in a predetermined area. Container rack Each of 23 a and 23 b can hold a maximum of 64 processing containers 24. Further, the container racks 23a and 23b have a temperature control function, and can heat and cool the processing containers 2424b. By heating, nucleic acids can be efficiently eluted from the nucleic acid capturing carrier. In addition, the cooling prevents the solution containing the eluted nucleic acid from evaporating, and can be stored for a certain period of time. On the work surface 5, a container storage rack 25 holding many unused purified product containers 26 is set in a predetermined area. The purified product container 26 collects the purified nucleic acid-containing liquid for each sample. In this embodiment, the container rack 25 has a maximum of eight large-sized refined product containers 26a, 96 small-sized product containers 26b, and 96 holes in one rack. Holds up to two containers 26 c.
また、 作業面 5には、 第 5図に示すチップ外し器 2 7 aが設けられて いる。 チップ外し器 2 7 aは、 分注ノズル 3 6に接続された分注用チヅ プ 1 5及び核酸捕捉用チップ 3 1 をノズルから取り外す。 また、 分注ノ ズル 3 6のホームポジションとなる。  Further, the work surface 5 is provided with a chip remover 27a shown in FIG. The chip remover 27a removes the dispensing tip 15 and the nucleic acid capturing tip 31 connected to the dispensing nozzle 36 from the nozzle. Also, it is the home position of dispensing nozzle 36.
また、 作業面 5には、 洗浄部 1 8 , 2 8が設けられる。 洗浄部 1 8は、 核酸捕捉用チップ 3 1からの不要な液を排出する機能を兼ね備える。  Further, the work surface 5 is provided with cleaning sections 18 and 28. The washing unit 18 also has a function of discharging unnecessary liquid from the nucleic acid capturing chip 31.
第 1図に、 洗浄部 1 8の詳細を示す。 洗浄部 1 8は、 洗浄水注入口 1 0 1 と、 貯水槽 1 0 2, 洗浄槽 1 0 3, 廃液孔 1 0 4, バイパス流路 1 0 5から構成されている。  FIG. 1 shows the details of the cleaning section 18. The washing section 18 is composed of a washing water inlet 101, a water storage tank 102, a washing tank 103, a waste liquid hole 104, and a bypass flow passage 105.
洗浄水注入口 1 0 1は、 本洗浄部へ洗浄液を注入する流路であり、 洗 浄液給水用ポンプ (図示せず) に接続されている。  The washing water inlet 101 is a flow path for injecting the washing liquid into the main washing section, and is connected to a washing liquid supply pump (not shown).
貯水槽 1 0 2は、 核酸捕捉用チップ先端に付着する液玉を除去するた めに、 一時的に洗浄液を溜める部分である。 貯水槽 1 0 2の下部には洗 浄液排出用の流路が設けてあり、 この流路から洗浄槽 1 0 3へ洗浄液を 供給する。 この流路は特に開閉弁を必要とせず、 本流路の断面積と、 洗 浄液注入口 1 0 1からの試薬供給量の相互バランスで、 貯水槽 1 0 2の 液面高さが定まるようになっている。 The water reservoir 102 is a portion for temporarily storing a cleaning liquid in order to remove liquid droplets attached to the tip of the nucleic acid capturing chip. At the lower part of the water storage tank 102, a flow path for discharging the cleaning liquid is provided. From this flow path, the cleaning liquid is supplied to the cleaning tank 103. Supply. This flow path does not require an on-off valve, and the cross-sectional area of this flow path and the amount of reagent supplied from the cleaning liquid inlet 101 balance each other so that the liquid level in the water storage tank 102 is determined. It has become.
洗浄槽 1 0 3は、 核酸捕捉用チップ 3 1 の外部を洗浄し、 排液を処理 する容器である。 洗浄槽 1 0 3の内部側面は、 略直方体形状であり、 そ の断面積は、 核酸捕捉用チップ 3 1 の外径より大きい。 洗浄槽 1 0 3の 底部は、 下に細くなるテ一パ状であり、 先端に排出孔 1 0 4が存在する。 洗浄槽 1 0 3は、 核酸捕捉チップ 3 1 をその内部側面と接触することな く挿入できる。 核酸捕捉用チップ 3 1のテーパ部が、 洗浄槽 1 0 3のテ —パ状の底面と接触すると、 廃液孔 1 0 4への洗浄液の排出を防止でき る。 これにより、 洗浄層 1 0 3内に洗浄液を溜めることができる。 この 際、 核酸捕捉チップ 3 1の先端部 4 8は、 排出孔 1 0 4に入った状態と なっている。  The washing tank 103 is a vessel for washing the outside of the nucleic acid capturing chip 31 and treating the drainage. The inner side surface of the washing tank 103 has a substantially rectangular parallelepiped shape, and its cross-sectional area is larger than the outer diameter of the nucleic acid capturing chip 31. The bottom of the cleaning tank 103 has a tapered shape tapered downward, and has a discharge hole 104 at the tip. The washing tank 103 can be inserted without contacting the nucleic acid capturing chip 31 with the inner side surface thereof. When the tapered portion of the nucleic acid capturing chip 31 comes into contact with the tape-like bottom surface of the washing tank 103, it is possible to prevent the washing solution from being discharged to the waste liquid hole 104. As a result, the cleaning liquid can be stored in the cleaning layer 103. At this time, the distal end portion 48 of the nucleic acid capturing chip 31 is in a state of entering the discharge hole 104.
廃液孔 1 0 4は、 廃液を洗浄部外へ排出できる排出孔であり、 その断 面積は先端部 4 8より大きい円である筒形状である。 これにより、 核酸 捕捉用チップ 3 1 を洗浄槽 1 0 3に挿入した際、 先端部 4 8は廃液孔 1 0 4中に収まる。  The waste liquid hole 104 is a discharge hole through which the waste liquid can be discharged to the outside of the cleaning unit, and has a cylindrical shape having a cross-sectional area larger than a tip end 48. Thus, when the nucleic acid capturing chip 31 is inserted into the washing tank 103, the distal end portion 48 fits in the waste liquid hole 104.
バイパス流路 1 0 5は、 その一端が洗浄槽 1 0 3の内部と繋がり、 他 端が廃液孔 1 0 4と繋がる流路である。 洗浄槽 1 0 3内の余分な洗浄試 薬は、 本流路により廃液孔 1 0 4へ排出される。 本流路の配置により、 洗浄槽 1 0 3内に溜まる洗浄試薬の液量を規定できる。 また、 試料の吸 引排出される先端部 4 8の近傍は試料汚染の可能性が高い。 しかし、 満 杯時の洗浄液量高さが、 予想される汚染箇所以上となる様にすれば、 チ ップの汚染を確実に洗浄できる。  The bypass flow path 105 is a flow path having one end connected to the inside of the washing tank 103 and the other end connected to the waste liquid hole 104. Excess cleaning reagent in the cleaning tank 103 is discharged to the waste liquid hole 104 through this channel. By the arrangement of the main flow path, the amount of the cleaning reagent stored in the cleaning tank 103 can be regulated. In addition, there is a high possibility that the sample is contaminated in the vicinity of the tip end 48 where the sample is sucked and discharged. However, if the level of the cleaning liquid when full is higher than the expected contamination site, the contamination of the chip can be surely cleaned.
また、 架台 1 0 0には、 洗浄液ポトル 1 9 , 溶離液ポトル 2 0, 希釈 3 000062 In addition, the stand 100 has a washing solution potter 19, an eluent potter 20, and dilution 3 000062
液ボトル 2 1、 及び結合促進剤ポトル 2 2等の各種試薬容器が配置され ている (図示せず)。 洗浄液ポトル 1 9は、 核酸捕捉用チップ 3 1内の 固相を洗浄する洗浄液を収容する。 溶離液ボトル 2 0は、 固相に結合さ れた核酸を溶出させるための溶離液を収容する。 希釈液ポトル 2 1は、 希釈液を収容し、 結合促進剤ボトル 2 2は、 固相への核酸の結合を促進 する結合促進物質の溶液を収容する。 Various reagent containers such as a liquid bottle 21 and a binding promoter 22 are arranged (not shown). The washing solution potter 19 contains a washing solution for washing the solid phase in the nucleic acid capturing chip 31. The eluent bottle 20 contains an eluent for eluting the nucleic acid bound to the solid phase. The diluent pottor 21 contains a diluent, and the binding promoter bottle 22 contains a solution of a binding promoting substance that promotes binding of nucleic acid to a solid phase.
第 3図により、 分注ノズル 3 6の周辺構造を説明する。 分注ノズル 3 6は、 吸引 · 吐出 · 攪拌用, 試薬吐出用、 及びエア吐出用のポンプと 接続している。 シリンジポンプ 1 0は、 分注用チップ 1 5及び核酸捕捉 用チップ 3 1 における吸引 · 吐出 ' 攪拌を行うポンプである。 シリンジ ポンプ 8 0は、 固相洗浄用試薬を核酸捕捉用チップ 3 1に吐出するボン プであり、 複数接続されている。 シリンジポンプ以外にも、 ベロ一ズポ ンプ, ペリスタポンプ等、 送液機能を有するポンプも利用できる。 吐出 用ポンプ 8 7は、 核酸捕捉用チップ 3 1の固相内の残液をチップ外部に 排出するためのポンプである。 また、 吐出用ポンプ 8 7 とチップを繋ぐ 流路には、 大気開放用の弁 8 2と、 外部からの物質の侵入を防ぐ為のフ ィル夕 8 6が接続されている。  The peripheral structure of the dispensing nozzle 36 will be described with reference to FIG. The dispensing nozzle 36 is connected to a pump for suction, discharge, stirring, reagent discharge, and air discharge. The syringe pump 10 is a pump for performing suction / discharge and stirring in the dispensing tip 15 and the nucleic acid capturing tip 31. The syringe pump 80 is a pump that discharges the solid phase washing reagent to the nucleic acid capturing chip 31 and is connected in plurality. In addition to the syringe pump, a pump having a liquid sending function such as a bellows pump and a peristaltic pump can be used. The discharge pump 87 is a pump for discharging the remaining liquid in the solid phase of the nucleic acid capturing chip 31 to the outside of the chip. In addition, a flow path connecting the discharge pump 87 and the chip is connected to a valve 82 for opening to the atmosphere and a filter 86 for preventing intrusion of substances from the outside.
第 4図により、 分注ノズル 3 6への分注用チップ 1 5及び核酸捕捉用 チップ 3 1の着脱を説明する。  The attachment / detachment of the dispensing tip 15 and the nucleic acid capturing tip 31 to / from the dispensing nozzle 36 will be described with reference to FIG.
チップの装着は、 チップラック 1 4 a, 1 4 b , 3 0上において、 ノ ズルを降下してチップをノズルの先端に嵌合し達成される。 また、 チッ プの除去は、 チップ外し器 2 7 aを利用する。 チップ外し器 2 7 aは、 所定高さ位置に板状部材を有している。 この板状部材には、 チップ頭部 5 2 , 5 4の外径よりも小さく、 且つ分注ノズル 3 6の外径より大きな 幅のスリツ ト 5 5が形成されている。 チップの除去は、 スリッ ト 5 5の 位置する高さよりも各チップの頭部 5 2, 5 4が低い状態でノズル 3 6 をスリッ ト内に侵入するように水平移動させる。 次いで、 ノズルホルダ 一 1 7を上昇させて、 頭部 5 2, 5 4を板状部材の下面に当接させる。 そして、 ノズルホルダーの更なる上昇によりチップ 1 5, 3 1が分注ノ ズル 3 6から抜け落ちる。 抜け落ちたチップは、 チップ廃棄口 5 0 (図 示せず) に落下し、 回収箱 (図示せず) 内に回収される。 試薬分注用の チップ廃棄はチップ外し器 2 7 bを用いて同様に行われる。 The tip is mounted by lowering the nozzle and fitting the tip to the tip of the nozzle on the tip racks 14a, 14b, 30. For chip removal, a chip remover 27a is used. The chip remover 27a has a plate-like member at a predetermined height position. A slit 55 having a width smaller than the outer diameter of the tip heads 52 and 54 and larger than the outer diameter of the dispensing nozzle 36 is formed on this plate-shaped member. Chip removal should be done in slit 55 With the heads 52, 54 of each chip lower than the height at which they are located, the nozzle 36 is moved horizontally so as to enter the slit. Next, the nozzle holder 117 is raised to bring the heads 52, 54 into contact with the lower surface of the plate-shaped member. Then, the tips 15 and 31 fall out of the dispensing nozzle 36 due to the further rise of the nozzle holder. The dropped chips fall into a chip disposal port 50 (not shown) and are collected in a collection box (not shown). Disposal of tips for dispensing reagents is performed in the same manner using a tip remover 27b.
第 8図により、 核酸精製用装置の電気系の構成を説明する。 動作制御 部としてのパーソナルコンピュータ (P C ) 6 0には、 操作条件及び検 体情報を入力するための操作パネルとしてのキーポード 6 1 , 入力情報 や警告情報等を表示するための表示装置としての C R T 6 2 , 装置の各 機構部を制御する機構制御部 6 5等が接続される。 機構制御部 6 5は、 4つのステッピングモータ 7 1〜 7 4 , 2つの A Cサーポモータ 7 5及 び 7 6, ベローズポンプ 8 0、 及び 2つの電磁弁 8 1及び 8 2を制御す る。 ステッピングモータ 7 1は、 シリンジポンプのシリンジ 1 0を駆動 し、 吸排動作を行わせる。 ステッピングモータ 7 2は、 シリンジポンプ 8 0のシリンジ 3 2を駆動し、 吸排動作を行わせる。 ステッピングモー 夕 7 3は、 ノズルホルダー 1 7を水平方向及び上下方向に移動させる。 ステツピングモータ 7 4は、 ノズルホルダー 3 4を水平方向及び上下方 向に移動させる。 A Cサーポモー夕 7' 5はァ一ム 1 6を水平移動させ、 A Cサ一ポモ一夕 7 6はアーム 3 3を水平移動させる。 そして、 核酸精 製装置の各機構は、 所定のプログラムに従って動作する。  The configuration of the electrical system of the nucleic acid purification device will be described with reference to FIG. The personal computer (PC) 60 as an operation control unit has a keyboard 61 as an operation panel for inputting operation conditions and specimen information, and a CRT as a display device for displaying input information and warning information. 62, a mechanism control section 65 for controlling each mechanism section of the apparatus, and the like. The mechanism control section 65 controls four stepping motors 71 to 74, two AC servomotors 75 and 76, a bellows pump 80, and two solenoid valves 81 and 82. The stepping motor 71 drives the syringe 10 of the syringe pump to perform a suction / discharge operation. The stepping motor 72 drives the syringe 32 of the syringe pump 80 to perform a suction / discharge operation. In the stepping mode 73, the nozzle holder 17 is moved horizontally and vertically. The stepping motor 74 moves the nozzle holder 34 horizontally and upward and downward. The AC supporter 7 '5 moves the arm 16 horizontally, and the AC supporter 7 6 moves the arm 33 horizontally. Each mechanism of the nucleic acid purification apparatus operates according to a predetermined program.
第 5図により、 核酸捕捉用チップ 3 1の構成を説明する。  The configuration of the nucleic acid capturing chip 31 will be described with reference to FIG.
核酸捕捉用チップ 3 1は、 頭部 5 4が分注用ノズル 3 6の先端に気密 に嵌合される内径を有する。 下方は、 先端部 4 8に向けて徐々に内径が 細くなるように形成され、 先端部 4 8の先端に試料を吸引吐出する開口 が存在する。 先端部 4 8に向けての傾きは、 洗浄槽 1 0 3の底面とほぼ 同様の角度になっている。 この為、 洗浄槽 1 0 3下部に核酸捕捉用チッ プ 3 1を押し付けることにより、 廃液孔 1 0 4への洗浄液流出を防止で さる。 The nucleic acid capturing chip 31 has an inner diameter such that the head 54 is airtightly fitted to the tip of the dispensing nozzle 36. In the lower part, the inside diameter gradually increases toward the tip 48. An opening for sucking and discharging the sample exists at the tip of the tip portion 48. The inclination toward the front end portion 48 is substantially the same as the angle of the bottom surface of the cleaning tank 103. For this reason, by pressing the nucleic acid capturing chip 31 under the washing tank 103, the washing solution can be prevented from flowing out to the waste liquid hole 104.
チップは、 透明もしくは半透明な合成樹脂からなる。 チップの先端側 には、 固相が流出することを防止するための円板状の阻止部材 4 0 bを 圧入により挿入し、頭部 5 4の側には円板状の阻止部材 4 0 aを設ける。 これらの阻止部材 4 0 a , 4 O bは、 液体及び気体が容易に通過し得る 多数の孔を有するが、 その孔は固相の流出を阻止できる大きさである。 阻止部材 4 0 a, 4 O bの材質としては、 ポリプロピレンを用いる。 こ の材質は、 タンパク質や核酸等の非特異吸着を少なくできるので、 核酸 の精製度や収率への影響が小さい。 阻止部材 4 0 aは、 チップ 3 1への 挿入を容易にするための突起状の揷入用補助ガイ ド 3 7を下面側に複数 個有する。 阻止部材 4 0 aと 4 0 bによって挟まれた部屋には、 固相と してフリントガラス (和光純薬工業製) の粉末 4 4を充填する。 このフ リントガラスは核酸捕捉効果を有するシリカ含有量が大きい。  The chip is made of a transparent or translucent synthetic resin. A disc-shaped blocking member 40b for preventing the solid phase from flowing out is inserted into the tip end side by press-fitting, and a disc-shaped blocking member 40a is inserted on the head 54 side. Is provided. These blocking members 40a and 4Ob have a large number of holes through which liquids and gases can easily pass, and the holes are large enough to prevent the outflow of the solid phase. Polypropylene is used as the material of the blocking members 40a and 4Ob. Since this material can reduce non-specific adsorption of proteins, nucleic acids, and the like, the influence on the purity and yield of nucleic acids is small. The blocking member 40a has a plurality of projecting insertion guides 37 on the lower surface side for facilitating insertion into the chip 31. The room sandwiched between the blocking members 40a and 40b is filled with flint glass (Wako Pure Chemical Industries) powder 44 as a solid phase. This print glass has a high silica content having a nucleic acid capturing effect.
核酸捕捉チップ 3 1 において、 固相を内蔵する内部空間の断面は、 試 料の吸引排出用の開口より大きいことが望ましい。 吸引排出時のデッ ド ボリューム (固相に触れない試料) を低減できる為である。 また、 吸引 排出する先端部は細いことが望ましい。 円錐形状の試料容器底部に残つ た試料を吸引排出できる為である。 また、 試料を吸引排出する開口の肉 厚は薄いことが望ましい。 開口近傍に付着する試料液玉や洗浄液液玉が 小さくなり、 コン夕ミネ一シヨンの発生を低減できる為である。 また、 固相は、 チップ長軸方向に対して厚みを持つ、 厚みの薄い平板形状 (例 えば円盤形状) が望ましい。 固相の目詰まりを減らし、 且つ固相体積を 増大できる為である。 この為、 核酸捕捉用チップ 3 1の先端は、 固相を 内蔵する大きな円柱部と、 開口を備える小さな円柱を組み合わせた様な 形状となっている。 その長軸方向断面は、 略凸形状であり、 先端に開口 が存在する。 このため、 開口からの試料の吸引排出により、 略凸形状の 谷部が試料により汚染される場合がある。 In the nucleic acid capture chip 31, the cross section of the internal space containing the solid phase is preferably larger than the opening for aspirating and discharging the sample. This is because the dead volume (sample that does not touch the solid phase) during suction and discharge can be reduced. It is desirable that the tip for suction and discharge is thin. This is because the sample remaining at the bottom of the conical sample container can be suctioned and discharged. It is desirable that the thickness of the opening for sucking and discharging the sample be thin. This is because the sample liquid droplets and the cleaning liquid droplets adhering to the vicinity of the opening are reduced, and the generation of contaminants can be reduced. In addition, the solid phase has a thin flat plate shape that has a thickness in the chip major axis direction. For example, a disk shape is desirable. This is because clogging of the solid phase can be reduced and the volume of the solid phase can be increased. For this reason, the tip of the nucleic acid-capturing chip 31 is shaped like a combination of a large column containing a solid phase and a small column with an opening. Its longitudinal cross section is substantially convex and has an opening at the tip. For this reason, the substantially convex valley may be contaminated by the sample due to the suction and discharge of the sample from the opening.
次に、 第 6図により、 核酸の精製操作を説明する。  Next, the operation of purifying nucleic acids will be described with reference to FIG.
核酸含有試料の精製操作を開始する前に、 核酸を抽出する検体を検体 容器 1 3に入れて検体ラックにより保持し、 装置 1 0 0上の検体エリァ にセッ トする。 分注チップ 1 5を有するチップラック 1 4 a , 核酸捕捉 用チップ 3 1 を有するチップラック 3 0, 試薬分注用チップ 9 4を有す るチップラック 9 1,各ディスペンザ試薬ポトル 1 9 a, 1 9 b , 1 9 c , 1 9 d, 1 9 e (図示せず)、 処理容器 2 4 a , 2 4 b及び精製品用容 器 2 6 a, 2 6 , 2 6 c を、 それぞれ所定の場所にセッ トした後、 精 製用装置 1 0 0による操作を開始する。  Before starting the operation of purifying a nucleic acid-containing sample, a sample from which nucleic acid is to be extracted is put into a sample container 13, held by a sample rack, and set in a sample area on the apparatus 100. Tip rack 14 a with dispensing tip 15, tip rack 30 with nucleic acid capturing tip 31, tip rack 91 with reagent dispensing tip 94, each dispenser reagent pot 19 a, 19 b, 19 c, 19 d, 19 e (not shown), processing containers 24 a, 24 b, and containers 26 a, 26, 26 c for purified products After setting in the place, operation by the refining device 100 is started.
まず、 第 1試薬(分解酵素液、 具体的には Pr oK) を反応容器に注入す る。 具体的には、 ノズルホルダー 3 4を動作させ、 試薬吐出ノズル 3 9 をチップラック 9 1上へ移動し、 第 1番目の試薬分注用チップ 9 4を試 薬吐出ノズル 3 9に嵌合する。 次に、 取り付けた試薬分注用チップ 9 4 を第 1試薬等の試薬を収めた試薬ボトル 9 2上へ移動し、 該ボトル内へ 降下させる。 次に、 シリ ンジポンプ 3 2に吸引動作させることにより分 注用チップ 1 5内に所定量の第 1試薬を吸入する。 次に、 容器 2 4 a上 に移動した後、 分注用チップ 1 5内に吸引した試薬を容器 2 4 a内に吐 出する。 そして、 試薬分注用チップ 9 4をチップ外し器 2 7 bへ移動さ せ、 使用した試薬分注用チップ 9 4を取り外す。 次に、 反応容器において第 1試薬と核酸含有試料を混合する。 これに より核酸を溶出させる。 具体的には、 ノズルホルダー 1 7を動作して、 分注攪拌ノズル 3 6をチップラック 1 4 a上へ移動し、 第 1番目の分注 用チップ 1 5を分注攪拌ノズル 3 6に嵌合する。 分注攪拌ノズル 3 6を 検体ラック 1 2上の第 1番目の検体容器 1 3まで移動し、 分注用チップ 1 5を検体容器内に降下する。 シリンジポンプ 1 0の吸引動作により分 注用チップ 1 5内に所定量の検体を吸入する。 検体を吸入した分注用チ ップ 1 5を容器ラック 2 3 a上の第 1番目の処理容器 2 4 a上へ移動し その処理容器 2 4 aへ分注用チップ 1 5内の検体の全量を吐出する。 そ の吐出後に再び吐出液の全量を同じ分注用チップ 1 5内に吸入し、 更に 第 1番目の処理容器 2 4 aへ吐出することを 1回以上行う。 これにより 第一試薬と検体を混合する。 First, the first reagent (degrading enzyme solution, specifically ProK) is injected into the reaction vessel. Specifically, the nozzle holder 3 4 is operated, the reagent discharge nozzle 3 9 moves to the chip rack 9 1 above, fitting the 1st reagent dispensing tip 9 4 reagent discharge nozzle 3 9 . Next, the attached reagent dispensing tip 94 is moved onto a reagent bottle 92 containing a reagent such as the first reagent and lowered into the bottle. Next, a predetermined amount of the first reagent is sucked into the dispensing tip 15 by causing the syringe pump 32 to perform a suction operation. Next, after moving onto the container 24a, the reagent sucked into the dispensing tip 15 is discharged into the container 24a. Then, the reagent dispensing tip 94 is moved to the tip removing device 27b, and the used reagent dispensing tip 94 is removed. Next, the first reagent and the nucleic acid-containing sample are mixed in a reaction vessel. This elutes the nucleic acid. Specifically, the nozzle holder 17 is operated to move the dispensing and stirring nozzle 36 onto the tip rack 14a, and the first dispensing tip 15 is fitted to the dispensing and stirring nozzle 36. Combine. Move the dispensing and stirring nozzle 36 to the first sample container 13 on the sample rack 12 and lower the dispensing tip 15 into the sample container. A predetermined amount of the sample is sucked into the dispensing tip 15 by the suction operation of the syringe pump 10. Move the dispensing tip 15 from which the sample was inhaled to the first processing container 24 a on the container rack 23 a and move the dispensing tip 15 into the processing container 24 a. Dispense the entire volume. After the discharge, the whole amount of the discharged liquid is again sucked into the same dispensing tip 15 and further discharged to the first processing container 24a one or more times. Thereby, the first reagent and the sample are mixed.
次に、 第 2試薬 (溶解試薬、 具体的には塩酸グァニジン溶液) と、 反 応容器中の混合試料を混合する。 これにより、 核酸を溶出させる。 具体 的には、 アーム 1 6, ノズルホルダー 1 7を動作し、 分注用チップ 1 5 を待機位置であるチップ外し器 2 7 aの位置へ移動させる。 次にアーム 3 3, ノズルホルダー 3 4を動作させ、 試薬吐出ノズル 3 9を前述の試 料が吐出してある容器 2 4 aへ移動する。 次にシリンジポンプ 3 2を動 作させ、 デイスペンサ試薬である第 2試薬を規定量吐出する。 次に再び アーム 3 3 , ノズルホルダ一 3 4を動作させ、 待機位置であるチップ外 し器 2 7 bの位置へ移動する。 次に待機していた分注用チップ 1 5を再 び容器ラック 2 3 a上の第 1番目の処理容器 2 4 a上へ移動し、 処理容 器 2 4 a内の試料すベてを分注用チップ 1 5内へ吸引し、 更に第 1番目 の処理容器 2 4 aへ吐出することを 1回以上行う。 これにより核酸含有 試料と第 2試薬を混合する。 その後、 分注ノズル 3 6をチップ外し器 2 7 aまで移動し、 上述した取り外し動作に従って、 分注ノズル 3 6か ら使用済みの分注用チップ 1 5を取り外す。 次いで、 分注ノズル 3 6を 洗浄部 1 8の位置に戻し、 分注ノズル 3 6から純水を所定量吐出させた 後、 分注ノズル 3 6の先端に少量の空気を吸入する。 Next, the second reagent (the dissolving reagent, specifically, guanidine hydrochloride solution) is mixed with the mixed sample in the reaction vessel. This elutes the nucleic acids. Specifically, the arm 16 and the nozzle holder 17 are operated to move the dispensing tip 15 to the position of the tip remover 27a, which is the standby position. Next, the arm 33 and the nozzle holder 34 are operated, and the reagent discharge nozzle 39 is moved to the container 24a from which the aforementioned sample is discharged. Next, the syringe pump 32 is operated to discharge a prescribed amount of the second reagent as the dispenser reagent. Then, the arm 33 and the nozzle holder 34 are operated again, and the arm 33 and the nozzle holder 34 are moved to the position of the chip remover 27 b which is the standby position. Next, the waiting dispensing tip 15 is again moved to the first processing container 24a on the container rack 23a, and all the samples in the processing container 24a are separated. Suction into the injection tip 15 and discharge to the first processing container 24a one or more times. This mixes the nucleic acid-containing sample with the second reagent. Then, remove the dispensing nozzle 36 from the tip Move to 2 7a and remove the used dispensing tip 15 from the dispensing nozzle 36 according to the removal operation described above. Next, the dispensing nozzle 36 is returned to the position of the cleaning section 18, and after a predetermined amount of pure water is discharged from the dispensing nozzle 36, a small amount of air is sucked into the tip of the dispensing nozzle 36.
次に、 第 3試薬 (結合促進剤、 主成分はジエチレングリコールジメチ ルェ一テル) と、 反応容器中の混合試料を混合する。 これにより溶出さ せた核酸を、 核酸捕捉用担体に結合する状態へ変化させる。 具体的には、 アーム 3 3 , ノズルホルダー 3 4を動作し、 試薬吐出ノズル 3 9 を前述 の試料が吐出してある容器 2 4 aへ移動する。 次に、 デイスペンザ試薬 である第 3試薬を規定量吐出する。 次に再びアーム 3 3, ノズルホルダ — 3 4を動作させ、 待機位置であるチップ外し器 2 7 bの位置へ移動す る。 次に待機していた分注用チップ 1 5を再び容器ラック 2 3 a上の第 1番目の処理容器 2 4 a上へ移動し、 処理容器 2 4 a内の試料すベてを 分注用チップ 1 5内へ吸引し、 更に第 1番目の処理容器 2 4 aへ吐出す ることを 1回以上行う。これにより核酸含有試料と第 3試薬を混合する。 次に試薬分注用チップ 9 4をチップ外し器 2 7 bへ移動させ、 使用した 試薬分注用チップ 9 4を取り外す。  Next, the third reagent (binding promoter, principally diethylene glycol dimethyl ether) is mixed with the mixed sample in the reaction vessel. Thereby, the eluted nucleic acid is changed to a state of binding to the nucleic acid capturing carrier. Specifically, the arm 33 and the nozzle holder 34 are operated, and the reagent discharge nozzle 39 is moved to the container 24a from which the above-described sample is discharged. Next, a predetermined amount of the third reagent, which is the dispenser reagent, is discharged. Next, the arm 33 and the nozzle holder 3-4 are operated again, and moved to the position of the tip remover 27 b which is the standby position. Next, the waiting dispensing tip 15 is moved onto the first processing vessel 24a on the container rack 23a again, and all the samples in the processing vessel 24a are dispensed. Suction into the chip 15 and discharge to the first processing container 24a are performed at least once. This mixes the nucleic acid-containing sample with the third reagent. Next, the reagent dispensing tip 94 is moved to the chip remover 27 b, and the used reagent dispensing tip 94 is removed.
次に、 核酸捕捉チップ内の固相に核酸を捕捉する。 具体的には、 ノズ ルホルダ一 3 を動作し、 分注攪拌ノズル 3 6をチップラック 3 0上へ 移動し、第 1番目の核酸捕捉用チップを分注攪拌ノズル 3 6に嵌合する。 その後、 分注ノズル 3 6は、 核酸捕捉用チップ 3 1を結合した状態で、 容器ラック 2 3 a上の第 1番目の処理容器 2 4 aの位置へ移動する。 核 酸捕捉用チップ 3 1を降下し、 そのチップ内に、 第 1番目の処理容器に 入っている検体と第 1 , 第 2 , 第 3試薬の混合液の全量を、 シリンジポ ンプ 1 0の吸引動作により核酸捕捉用チップ 3 1内に吸入する。 これに より混合液が、 チップ 3 1内の固相としてのガラス粉末 4 4の表面に接 触する。 次いで、 吸入した混合液を第 1番目の処理容器 2 4内に吐出し て戻し、 吐出された混合液を再び同一の核酸捕捉用チップ 3 1内に吸入 する。 この混合液の吐出と吸入を複数回繰り返すことにより固相表面と 混合液との接触数を増大し、 固相による核酸の吸着効率を高める。 所定 回数の吸排の後に最終的に第 1番目の核酸捕捉用チップ 3 1内へ混合液 の全量を吸入し、 該チップ 3 1を洗浄部 2 9へ移動する。 Next, the nucleic acid is captured on the solid phase in the nucleic acid capture chip. Specifically, the nozzle holder 13 is operated to move the dispensing and stirring nozzle 36 onto the tip rack 30, and the first nucleic acid capturing chip is fitted to the dispensing and stirring nozzle 36. Thereafter, the dispensing nozzle 36 moves to the position of the first processing container 24a on the container rack 23a with the nucleic acid capturing chip 31 coupled thereto. The nucleic acid capture chip 31 is lowered, and the entire amount of the mixture of the sample and the first, second, and third reagents contained in the first processing container is aspirated by the syringe pump 10 into the chip. It is sucked into the nucleic acid capturing chip 31 by operation. to this The mixed solution comes into contact with the surface of the glass powder 44 as a solid phase in the chip 31. Next, the sucked mixture is discharged back into the first processing container 24, and the discharged mixture is again sucked into the same nucleic acid capturing chip 31. By repeating the discharge and inhalation of the mixed solution a plurality of times, the number of contacts between the solid phase surface and the mixed solution is increased, and the efficiency of nucleic acid adsorption by the solid phase is increased. After the predetermined number of times of suction and discharge, the entire amount of the mixed solution is finally sucked into the first nucleic acid capturing chip 31, and the chip 31 is moved to the washing unit 29.
次に、 核酸捕捉用チップ 3 1 を洗浄する。 以下、 洗浄方法について、 第 2図及び第 9図を参照して説明する。 第 2図の aと bはチップ内部洗 浄を示し、 cはチップ外部洗浄を示し、 dはチップ先端洗浄をし、 e と f は液玉除去を示す。 第 9図は、 洗浄工程を示すフロ一図である。 尚、 チップ内部洗浄は第 4試薬 (第 1洗浄試薬、 主成分は塩酸グァニジンと ジエチレングリコールジメチルエーテル), 第 5試薬 (第 2洗浄試薬、 主成分はエタノール) を用いて、 計 2回実施される。 第 4試薬により主 にたんぱく質を除去し、 第 5試薬により第 4試薬で洗浄できないたんぱ く質以外の不純物を除去する。 つまり、 第 2図の aと bの手順を洗浄液 を変更して 2度実施したの後に、 c以降の手順を実施する。  Next, the nucleic acid capturing chip 31 is washed. Hereinafter, the cleaning method will be described with reference to FIG. 2 and FIG. In FIG. 2, a and b indicate cleaning inside the chip, c indicates cleaning outside the chip, d indicates cleaning at the tip of the chip, and e and f indicate liquid droplet removal. FIG. 9 is a flowchart showing a cleaning process. The inside of the chip is washed twice using the fourth reagent (first washing reagent, the main components of which are guanidine hydrochloride and diethylene glycol dimethyl ether) and the fifth reagent (second washing reagent, the main component of which is ethanol). The fourth reagent removes mainly proteins, and the fifth reagent removes impurities other than proteins that cannot be washed with the fourth reagent. In other words, after performing steps a and b in FIG. 2 twice by changing the cleaning solution, the steps after c are performed.
まず、 核酸捕捉用チップ 3 1内の試料を排出し、 その後、 核酸捕捉用 チップ 3 1内を第 4試薬で満たす ( a )。 具体的には、 まず、 核酸捕捉 用チップ 3 1 を洗浄槽 1 0 3に挿入する。 この時、 核酸捕捉用チップ 3 1の先端部 4 8は廃液孔 1 0 4内に挿入される。 また、 核酸捕捉用チ ップ 3 1は、 洗浄槽 1 0 3底面と密着して固定させる。 これにより、 洗 浄槽 1 0 3 と廃液孔 1 0 4は分離される。  First, the sample in the nucleic acid capturing chip 31 is discharged, and then the nucleic acid capturing chip 31 is filled with the fourth reagent (a). Specifically, first, the nucleic acid capturing chip 31 is inserted into the washing tank 103. At this time, the distal end portion 48 of the nucleic acid capturing chip 31 is inserted into the waste liquid hole 104. Further, the nucleic acid capturing chip 31 is fixed in close contact with the bottom of the washing tank 103. As a result, the washing tank 103 and the waste liquid hole 104 are separated.
次に、 核酸吸着工程後のチップ内に溜まった試料を、 シリンジポンプ 1 0の吐出動作により洗浄部 2 9内へ排出する。 次に、 流路開閉電«弁 8 3を駆動し、 洗浄液流路と核酸捕獲用チップ 3 1 と接続する。 同時に空気切替弁 8 2を駆動し、 チップ内とチップ外 を物理的に接続し、 開放する。 これにより核酸捕捉用チップ 3 1内の圧 力は、 常に、 チップ外の圧力と同等となる。 Next, the sample accumulated in the chip after the nucleic acid adsorption step is discharged into the washing section 29 by the discharging operation of the syringe pump 10. Next, the flow path switching valve 83 is driven to connect the washing liquid flow path to the nucleic acid capturing chip 31. At the same time, the air switching valve 82 is driven to physically connect and open the inside and outside of the chip. Thus, the pressure inside the nucleic acid capturing chip 31 is always equal to the pressure outside the chip.
次に、 シリンジポンプ 8 0を駆動し、 第 4試薬をチップ内に注入する。 チップ内の圧力が上昇しないため、 シリンジポンプ 8 0で吐出された洗 浄液は核酸捕捉用チップ 3 1の先端の開口からは排出されず、 チップ内 に溜まる。 このとき、 チップ内の洗浄液面は固相配置位置より高くなり、 固相は洗浄液に浸つた状態となる。  Next, the syringe pump 80 is driven to inject the fourth reagent into the chip. Since the pressure in the chip does not increase, the washing solution discharged by the syringe pump 80 is not discharged from the opening at the tip of the nucleic acid capturing chip 31 and accumulates in the chip. At this time, the level of the cleaning liquid in the chip is higher than the position of the solid phase, and the solid phase is immersed in the cleaning liquid.
そして、 空気切替弁 8 2を駆動し、 チップ内とチップ外を結ぶ流路を 遮断する。  Then, the air switching valve 82 is driven to shut off the flow path connecting the inside of the chip and the outside of the chip.
次に、 核酸捕捉試料チップに保持された第 4試薬を排出する ( b )。 具体的には、 以下の手順を実行する。  Next, the fourth reagent held on the nucleic acid capture sample chip is discharged (b). Specifically, the following procedure is performed.
まず、 エア吐出用ポンプ 8 7を駆動し、 チップ内の圧力を上げる。 チ ップ内の洗浄液は、 頭部 (上方) から先端部 (下方) に向けて一方向に 流動し、 固相を通過し、 先端部から排出される。 この時、 チップの先端 からはエアブロー吐出により、 試料, 洗浄液等が廃液孔 1 0 4内に飛散 する。 しかし、 チップと洗浄槽 1 0 3底面が密着している為、 洗浄槽 1 0 3上方に飛沫が飛散せず、 他の検体に対するコンタミネ一シヨ ンは 発生しない。 これにより、 チップ内壁及び固相表面を洗浄し、 核酸捕捉 用チップ 3 1から残液をすベて排出できる。  First, the air discharge pump 87 is driven to increase the pressure in the chip. The cleaning liquid in the chip flows in one direction from the head (upper) to the tip (lower), passes through the solid phase, and is discharged from the tip. At this time, the sample, cleaning liquid, and the like are scattered into the waste liquid hole 104 from the tip of the chip by air blow discharge. However, since the chip and the bottom of the washing tank 103 are in close contact with each other, droplets do not scatter above the washing tank 103, and no contamination occurs for other samples. As a result, the inner wall of the chip and the surface of the solid phase can be washed, and all the residual liquid can be discharged from the nucleic acid capturing chip 31.
また、 エアブロー吐出は、 試料, 洗浄液の排出を行うだけでなく、 核 酸捕捉用担体部分の乾燥を促進する。 風圧による液排出との相乗効果に より、 チップ内の液体を効率良く除去できる。  The air blow discharge not only discharges the sample and the cleaning liquid, but also promotes the drying of the carrier for trapping the nucleic acid. Due to the synergistic effect with the liquid discharge by wind pressure, the liquid in the chip can be efficiently removed.
試薬の粘性の高い場合は、 まず空気切替弁 8 2を駆動し、 核酸捕捉用 チップ 3 1を介して、 シリンジポンプ 1 0を大気と接続する。 この状態 にて、 シリンジポンプ 1 0を駆動し、 空気を吸引する。 その後、 再び空 気切替弁 8 2を駆動し、 大気と遮断する。 そして、 シリンジポンプ 1 0 を駆動し、 チップ内の残試薬を押し出す。 この繰り返しにより、 チップ 内壁や固相等に付着した残液を確実に廃棄できる。 When the viscosity of the reagent is high, first activate the air switching valve 82 to capture nucleic acids. The syringe pump 10 is connected to the atmosphere via the tip 31. In this state, the syringe pump 10 is driven to suck air. Then, the air switching valve 82 is driven again to shut off the air. Then, the syringe pump 10 is driven to push out the remaining reagent in the chip. By this repetition, the residual liquid adhering to the inner wall of the chip, the solid phase, or the like can be reliably discarded.
2回目の洗浄工程は、 第 5試薬 (第 2洗浄液) を用い、 1回目の洗浄 と同様に実施する。 これにより、 第 4試薬で洗浄できないたんぱく質以 外の不純物を除去できる。  The second washing step is performed in the same manner as the first washing, using the fifth reagent (second washing solution). Thereby, impurities other than the protein that cannot be washed with the fourth reagent can be removed.
次に、 核酸捕捉試料チップ 3 1の外部を洗浄する ( c )。 チップ外部 に残留した第 4試薬は、 後の溶離工程に置く影響を及ぼすため、 本工程 で十分に洗浄しておく必要がる。 具体的には、 チップと洗浄槽 1 0 3の 底面が密着した状態において、 洗浄液注入口 1 0 1より第 5試薬 (第 2 洗浄液) を貯水槽 1 0 2に注入する。 この洗浄液は、 チップ外部の洗浄 にのみ利用する為、 チップ内部の洗浄には不適であるが安価な滅菌水等 を使用できる。  Next, the outside of the nucleic acid capture sample chip 31 is washed (c). Since the fourth reagent remaining outside the chip affects the subsequent elution step, it must be sufficiently washed in this step. Specifically, the fifth reagent (second cleaning liquid) is injected into the water storage tank 102 from the cleaning liquid injection port 101 in a state where the chip and the bottom surface of the cleaning tank 103 are in close contact with each other. Since this cleaning solution is used only for cleaning the outside of the chip, it is not suitable for cleaning the inside of the chip, but inexpensive sterilized water or the like can be used.
注入された洗浄液は、 洗浄槽 1 0 3 と繋がる連通流路 1 0 6を通って 洗浄槽 1 0 3内に流れ出る。 連通流路 1 0 6は、 洗浄液注入口 1 0 1よ り断面積が小さい為、 貯水槽 1 0 2は一定量の洗浄液を貯水する。 洗浄 槽 1 0 3内に流れ出た洗浄液は、 廃液孔 1 0 4が核酸捕捉用チップ 3 1 により閉塞されている為、 洗浄槽 1 0 3に溜まる。 これにより、 チップ 先端部 4 8を除くチップ外壁、 つまり汚染度の低い箇所を洗浄できる。 この段階では、 汚染度の高いチップ先端部 4 8 と洗浄液が触れない為、 チップ先端部 4 8の汚染が拡散しない。  The injected cleaning liquid flows into the cleaning tank 103 through the communication channel 106 connected to the cleaning tank 103. Since the communication channel 106 has a smaller cross-sectional area than the cleaning liquid inlet 101, the water storage tank 102 stores a fixed amount of cleaning liquid. The washing solution that has flowed into the washing tank 103 accumulates in the washing tank 103 because the waste liquid hole 104 is closed by the nucleic acid capturing chip 31. As a result, the outer wall of the chip excluding the tip end portion 48, that is, a portion with a low degree of contamination can be cleaned. At this stage, the tip end portion 48 with a high degree of contamination does not come into contact with the cleaning solution, so that the contamination at the tip end portion 48 does not diffuse.
洗浄水は、 バイパス流路 1 0 5の位置まで溜まり、 その位置を越えた 洗浄水はバイパス流路 1 0 5を経由して廃液孔 1 0 4へ排出される。 パ ィパス流路 1 0 5の位置を、 予想される汚染部位より上すれば、 チップ 外部の汚染は確実に除去できる。 The washing water accumulates up to the position of the bypass channel 105, and the washing water exceeding that position is discharged to the waste liquid hole 104 via the bypass channel 105. Pa If the position of the bypass path 105 is higher than the expected contamination site, contamination outside the chip can be reliably removed.
次に、 核酸捕捉用チップ 3 1 の先端部 4 8 を洗浄する ( d )。 前工程 で洗浄しない箇所を集中的に洗浄する。 具体的には、 洗浄槽 1 0 3 と接 触している核酸捕捉用チップ 3 1を上方に移動し、所定の隙間を設ける。 上方への移動量は、 例えば 0 . 5 mm 程度である。 チップの外部洗浄に使 用された洗浄液は、 この隙間から、 廃液孔 1 0 4へ排出される。 隙間が 小さい為、 洗浄水はチップから飛び出し、 チップの形状に沿って廃液孔 1 0 4へ流れ落ちる。 この洗浄水の飛び出し方は、 溜まっている洗浄水 の量、 隙間の形状により調整できる。 これにより、 核酸捕捉用チップ 3 1の先端部 4 8を洗浄できる。 特に、 略凸形状の段差部分等の洗浄が 困難な場所も確実に洗浄できる。 本実施例で用いた断面が略凸形状のチ ップ以外においても、 洗浄水の飛び出し方を調整すれば、 確実に洗浄で さる。  Next, the tip 48 of the nucleic acid capturing chip 31 is washed (d). Intensive cleaning of the parts not cleaned in the previous process. Specifically, the nucleic acid capturing chip 31 that is in contact with the washing tank 103 is moved upward to provide a predetermined gap. The upward movement amount is, for example, about 0.5 mm. The cleaning liquid used for external cleaning of the chip is discharged to the waste liquid hole 104 from this gap. Since the gap is small, the washing water jumps out of the chip and flows down to the waste liquid hole 104 along the shape of the chip. The manner in which the washing water jumps out can be adjusted depending on the amount of accumulated washing water and the shape of the gap. Thereby, the distal end portion 48 of the nucleic acid capturing chip 31 can be washed. In particular, it is possible to reliably clean a place where cleaning is difficult, such as a step portion having a substantially convex shape. Even if the cross section used in the present embodiment is other than the chip having a substantially convex shape, the cleaning can be surely performed by adjusting the way of the washing water popping out.
また、 チップと接していた洗浄槽 1 0 3の一部や、 廃液孔 1 0 4の内 部を洗浄できる。 これにより、 エアブローにより廃液孔 1 0 4中に飛散 していた飛沫等も除去できる。 この為、 エアプロ一による飛沫の、 廃液 孔外への飛散によるコンタミネーシヨンを回避できる。  In addition, a part of the cleaning tank 103 in contact with the chip and the inside of the waste liquid hole 104 can be cleaned. As a result, droplets and the like that have been scattered in the waste liquid holes 104 by air blowing can also be removed. Therefore, it is possible to avoid contamination due to the splash of the air propellant outside the waste liquid hole.
次に、 チップ先端部 4 8に付着している液玉を除去する ( e及び f )。 これにより、 チップ移動時の飛散を防止できる。 具体的には、 再度、 洗 浄液を注入し、 貯水槽 1 0 2に洗浄水を貯水する。 貯水槽 1 0 2内の水 位を保つ為、 注水用のポンプの駆動は継続させる。 そして、 水位を維持 した状態で、 核酸捕捉用チップ 3 1を貯水槽 1 0 2内に挿入し、 チップ 先端部 4 8を洗浄液面に着水させる ( e )。  Next, the liquid ball adhering to the tip end portion 48 is removed (e and f). Thereby, scattering at the time of tip movement can be prevented. Specifically, the cleaning liquid is injected again and the cleaning water is stored in the water tank 102. In order to maintain the water level in the water storage tank 102, the drive of the water injection pump is continued. Then, with the water level maintained, the nucleic acid capturing chip 31 is inserted into the water storage tank 102, and the tip end portion 48 is brought into contact with the washing liquid surface (e).
次に、 核酸捕捉用チップ 3 1を上方に移動させる ( f )。 移動速度は、 比較的遅い方が望ましい。 例えば、 1秒間に 1〜 2 mm 程度の速度であ る。 これにより、 核酸捕捉用チップ 3 1の先端に付着した液玉が、 表面 張力により洗浄液面に捕捉される為、 液玉を効率的に除去できる。 核酸 抽出処置においては、 極微量の試薬を用いる。 特に、 後工程の抽出工程 では、 微量の抽出液を用いて核酸を抽出する。 この為、 洗浄液であって も、 コンタミネーシヨンすれば反応溶液の容量を乱し、 抽出精度を悪化 させる。 また、 チップ先端部 4 8に付着した液玉は、 核酸捕捉用チップ 3 1の移動により、 飛散し、 コンタミネーシヨンの要因となる。 しかし、 液玉工程により、 上述のコンタミネーシヨンは回避できる。 尚、 核酸捕 捉用チップ 3 1の高さを固定し、 洗浄液注入用ポンプにより液面高さを 上下しても、 同様の効果を得る。 つまり、 核酸捕捉用チップ 3 1 と洗浄 液面を相対的に移動し、 接触させれば良い。 Next, the nucleic acid capturing chip 31 is moved upward (f). The moving speed is A relatively slow one is desirable. For example, the speed is about 1-2 mm per second. As a result, the liquid droplets attached to the tip of the nucleic acid capturing chip 31 are captured on the cleaning liquid surface by surface tension, so that the liquid droplets can be efficiently removed. In the nucleic acid extraction procedure, a trace amount of reagent is used. In particular, in the subsequent extraction step, nucleic acids are extracted using a very small amount of extract. For this reason, even if the washing liquid is contaminated, the volume of the reaction solution is disturbed and the extraction accuracy is deteriorated. In addition, the liquid droplets attached to the tip end portion 48 are scattered by the movement of the nucleic acid capturing chip 31 and cause contamination. However, the above-described contamination can be avoided by the liquid ball process. It should be noted that the same effect can be obtained by fixing the height of the nucleic acid capturing chip 31 and raising and lowering the liquid level by the cleaning liquid injection pump. That is, the nucleic acid capturing chip 31 and the washing liquid surface may be relatively moved and brought into contact.
また、 洗浄液注入口 1 0 1から注入された洗浄液は貯水槽 1 0 2で一 時的に溜められた後、洗浄槽 1 0 3を通って廃液孔 1 0 4に排出される。 これにより、 貯水槽 1 0 2 , 洗浄槽 1 0 3 , 廃液孔 1 0 4を洗浄できる。 次に、 固相に捕捉さている核酸を溶離し、 核酸を保存容器内へ回収す る。 具体的には、 洗浄の終了した核酸捕捉用チップ 3 1 を、 液受け部 2 8へ移動し、 待機する。 核酸の溶離工程に当り、 試薬ノズル 3 9は反 応容器 2 4 bの位置へ移動する。 シリンジポンプ 3 2を動作させディス ペンサ試薬である第 6試薬 (溶離液、 主成分は Tr i sBu f f e r) を吸引し、 更にシリンジポンプ 3 2の押出し動作により、 1回分の量の溶離液を第 1番目の処理容器 2 4 b内に吐出する。 残りの量の溶離液を保有してい る試薬分注ノズル 3 9は、 チップ外し部 2 7 bへ移動し、 待機する。 次に、 核酸捕捉用チップ 3 1を容器ラック 2 3 b上の第 1番目の処理 容器 2 4 bへ移動し、 第 1番目の処理容器 2 4 b内の溶離液を核酸捕捉 用チップ 3 1内に吸入する。 これにより溶離液が固相に接触し、 固相表 面に吸着されていた核酸を溶離液中に溶出させる。 チップ 3 1内に吸入 した溶離液を元の処理容器 2 4 bへ吐出した後、 再度同一チップ 3 1内 に吸入する操作を所定回数繰り返す。 そして、 試薬分注ノズル 3 9が第 2番目の処理容器 2 4 bへ移動し、 次の 1回分の溶離液を該当処理容器 内へ吐出する。 続いて、 核酸捕捉用チップ 3 1 を第 2番目の処理容器 2 4 bへ移動し、 処理容器 2 4 b内の溶離液を核酸捕捉用チップ 3 1内 に吸入し、 上述したと同様の核酸溶出操作を実行する。 溶離工程を繰り 返し、 核酸捕捉用担体に吸着した核酸を確実に溶出する。 上記工程の終 了後、 核酸捕捉用チップ 3 1 を、 チップ外し器 2 7 aの位置へ移動し、 チップを取り外す。 Further, the cleaning liquid injected from the cleaning liquid inlet 101 is temporarily stored in the water tank 102, and then discharged to the waste liquid hole 104 through the cleaning tank 103. Thereby, the water storage tank 102, the cleaning tank 103, and the waste liquid hole 104 can be washed. Next, the nucleic acid captured on the solid phase is eluted, and the nucleic acid is collected in a storage container. Specifically, the washed nucleic acid capturing chip 31 is moved to the liquid receiving section 28 and waits. In the nucleic acid elution step, the reagent nozzle 39 moves to the position of the reaction container 24b. The syringe pump 32 is operated to aspirate the sixth reagent (eluent, the main component is Tris Buffer), which is a dispenser reagent, and a single amount of the eluent is discharged by the syringe pump 32 being pushed out. Discharge into the first processing container 24b. The reagent dispensing nozzle 39 holding the remaining amount of the eluent moves to the chip removing portion 27 b and stands by. Next, the nucleic acid capturing chip 31 is moved to the first processing container 24 b on the container rack 23 b, and the eluate in the first processing container 24 b is captured. Into the tip 31 for use. As a result, the eluent comes into contact with the solid phase, and the nucleic acid adsorbed on the solid phase surface is eluted into the eluent. After discharging the eluate sucked into the chip 31 into the original processing container 24b, the operation of sucking again into the same chip 31 is repeated a predetermined number of times. Then, the reagent dispensing nozzle 39 moves to the second processing container 24b, and discharges the next one eluent into the corresponding processing container. Subsequently, the nucleic acid capturing chip 31 is moved to the second processing container 24b, the eluate in the processing container 24b is sucked into the nucleic acid capturing chip 31, and the same nucleic acid as described above is used. Perform the elution procedure. The elution step is repeated to elute the nucleic acid adsorbed on the nucleic acid capturing carrier. After the above steps are completed, the nucleic acid capturing chip 31 is moved to the position of the chip remover 27a, and the chip is removed.
次に、 ノズルホルダ一 1 7を駆動し、 分注攪拌ノズル 3 6をチップラ ック 1 4 b上へ移動し、 分注用チップ 1 5を分注攪拌ノズル 3 6に嵌合 する。 次いで前工程で回収した溶離液を収めた反応容器 2 4 bの 1列目 へ移動する。 次いで反応容器内の溶離液を分注用チップ 1 5内に吸引す る。 次いで分注用チップ精製品用容器 2 6の位置へ移動する。 シリンジ ポンプ 3 2の押出し動作により、 分注用チップ 1 5内にあった溶離液を 第 1番目の精製品用容器 2 6内に吐出する。 これにより精製品容器 2 6 には、 固相から溶出された核酸を含む溶離液が回収される。 続いて、 分 注用チップ 1 5を第 2番目の処理容器 2 4 bへ移動し、 処理容器 2 4 b 内の溶離液を分注用チップ 1 5内に吸入し、 上述したものと同様の核酸 溶出操作を実行した後、 核酸を含む溶離液を第 1番目の精製品用容器 2 6内に回収する。 溶離液の吐出を終了した分注用チップ 1 5 aは、 チ ップ外し器 2 7 aへ移動し、 分注ノズル 3 6から使用済みの分注用チッ プ 1 5を取り外す。 分注用チップを外した分注ノズル 3 6は、 洗浄部 2 9へ移動し、 ノズル先端から水を吐出した後、 ノズル先端に微量の空 気を吸入し、 その位置で待機する。 以上で、 第 1番目の検体に対する核 酸の精製操作が終了する。 このあと、 精製用装置 1 0 0は、 第 2番目以 降の検体に対し核酸精製操作を続行するが、 その操作は上述した例の繰 り返しである。 Next, the nozzle holder 17 is driven to move the dispensing and stirring nozzle 36 onto the tip rack 14 b, and the dispensing tip 15 is fitted to the dispensing and stirring nozzle 36. Then, it is moved to the first row of the reaction vessel 24b containing the eluate recovered in the previous step. Next, the eluate in the reaction vessel is aspirated into the dispensing tip 15. Next, it is moved to the position of the container 26 for the purified tip dispensing product. By the pushing operation of the syringe pump 32, the eluent contained in the dispensing tip 15 is discharged into the first purified product container 26. As a result, the eluate containing the nucleic acid eluted from the solid phase is collected in the purified product container 26. Subsequently, the dispensing tip 15 is moved to the second processing vessel 24b, the eluate in the processing vessel 24b is sucked into the dispensing tip 15 and the same as described above. After performing the nucleic acid elution operation, the eluate containing the nucleic acid is collected in the first purified product container 26. After dispensing the eluent, the dispensing tip 15 a is moved to the chip remover 27 a, and the used dispensing tip 15 is removed from the dispensing nozzle 36. The dispensing nozzle 36 with the dispensing tip removed is 29 Move to 9 and discharge water from the nozzle tip, then inhale a small amount of air into the nozzle tip and wait at that position. This completes the procedure for purifying the nucleic acid for the first sample. Thereafter, the purifying apparatus 100 continues the nucleic acid purification operation on the second and subsequent samples, and the operation is a repetition of the above-described example.
本実施例によれば、 核酸捕捉チップ 3 1 の上下動作、 及び洗浄液の注 入制御により、 試料及び試薬の飛散を防止し、 チップを確実に洗浄でき る。 これにより、 コンタミネーシヨンを防止し、 洗浄効率の高い核酸精 製用装置を提供できる。 また、 装置構成も簡便であり、 コスト低減を達 成できる。  According to the present embodiment, the up-and-down movement of the nucleic acid capturing chip 31 and the control of the injection of the washing solution can prevent the sample and the reagent from scattering, and can reliably wash the chip. As a result, contamination can be prevented, and an apparatus for purifying nucleic acid with high washing efficiency can be provided. In addition, the device configuration is simple, and cost reduction can be achieved.
本実施例は核酸精製装置であるが、 本発明はこれに限定されない。 例 えば、 生化学自動分析装置, 免疫自動分析装置, 尿自動分析装置等のチ ップを利用する自動分析装置に応用できる。 産業上の利用可能性  Although the present embodiment relates to a nucleic acid purifying apparatus, the present invention is not limited to this. For example, it can be applied to an automatic analyzer using a chip, such as an automatic biochemical analyzer, an automatic immune analyzer, and an automatic urine analyzer. Industrial applicability
コンタミネーシヨ ンの発生を防止し、 効率的に試料容器を洗浄できる 自動分析装置及び洗浄法を提供できる。  It is possible to provide an automatic analyzer and a washing method capable of preventing the occurrence of contamination and efficiently washing a sample container.

Claims

請 求 の 範 囲 The scope of the claims
1 . 核酸自動抽出装置であって、  1. An automatic nucleic acid extraction apparatus,
核酸捕捉物質を内蔵し、 核酸含有溶液を吸引及び z又は排出する核酸 捕捉チップと、  A nucleic acid-capturing chip that contains a nucleic acid-capturing substance and aspirates and z- or discharges a solution containing nucleic acids
核酸捕捉チップを動かす移動機構と、  A moving mechanism for moving the nucleic acid capturing chip,
洗浄容器と、  A washing container,
核酸捕捉チップを洗うチップ洗浄液を洗浄容器へ注入する洗浄液注入 機構とを備え、  A washing solution injection mechanism for injecting a chip washing solution for washing the nucleic acid capture chip into the washing container,
洗浄容器はチップ洗浄液を排出する廃液孔を備え、  The cleaning container has a waste liquid hole for discharging the chip cleaning liquid,
核酸捕捉チップにより廃液孔を閉塞する。  The waste liquid hole is closed by the nucleic acid capturing chip.
2 . 請求項 1記載の核酸自動分析装置であって、  2. The automatic nucleic acid analyzer according to claim 1, wherein
核酸捕捉チップにより廃液孔が閉塞された洗浄容器にチップ洗浄液を 溜め、 核酸捕捉チップから核酸含有溶液を排出する。  The chip washing solution is stored in a washing container in which the waste liquid hole is closed by the nucleic acid capturing chip, and the nucleic acid-containing solution is discharged from the nucleic acid capturing chip.
3 . 請求項 1記載の核酸自動分析装置であって、 3. The automatic nucleic acid analyzer according to claim 1, wherein
核酸捕捉チップにより廃液孔が閉塞された洗浄容器にチップ洗浄液を 溜め、 その後、 核酸捕捉チップを廃液孔から切り離し、 溜められたチッ プ洗浄液を廃液孔へ流して核酸捕捉チップを洗浄する。  The chip washing liquid is collected in the washing container in which the waste liquid hole is closed by the nucleic acid capturing chip, and thereafter, the nucleic acid capturing chip is separated from the waste liquid hole, and the collected chip cleaning liquid is flown into the waste liquid hole to wash the nucleic acid capturing chip.
4 . 請求項 3記載の核酸自動分析装置であって、  4. The automatic nucleic acid analyzer according to claim 3, wherein
核酸捕捉チップを洗浄した後に核酸捕捉チップ先端を洗浄液に接触さ せ、 その後に離す。  After washing the nucleic acid capture chip, bring the tip of the nucleic acid capture chip into contact with the cleaning solution, and then release.
5 . 以下の構成を含む自動分析装置 ;  5. An automatic analyzer including the following components;
試料を吸引及び/又は排出する開口部を有する試料容器を洗浄する洗 浄液を供給する洗浄液供給機構 ;  A cleaning liquid supply mechanism for supplying a cleaning liquid for cleaning a sample container having an opening for sucking and / or discharging a sample;
洗浄液を排出する排出孔を有する洗浄容器 ;  A cleaning container having a discharge hole for discharging a cleaning liquid;
試料容器及びノ又は洗浄容器を動かし、 試料容器と洗浄容器を接触させ、 洗浄液を保持できる液溜空間を形成 し、 Move the sample container and the or the washing container, The sample container and the washing container are brought into contact with each other to form a liquid storage space that can hold the washing solution.
試料容器と洗浄容器に所定の隙間を設け、 液溜空間に保持された所定 量の洗浄液を排出孔へ流す移動機構。  A moving mechanism that provides a predetermined gap between the sample container and the cleaning container and allows a predetermined amount of cleaning liquid held in the liquid storage space to flow to the discharge hole.
6 . 請求項 5記載の自動分析装置であって、 6. The automatic analyzer according to claim 5, wherein
開口部が、 先端に開口を有する凸形状である。  The opening has a convex shape with an opening at the tip.
7 . 請求項 6記載の自動分析装置であって、 7. The automatic analyzer according to claim 6, wherein
試料容器が、 核酸捕捉物質を内蔵する核酸捕捉チップである。  The sample container is a nucleic acid capturing chip containing a nucleic acid capturing substance.
8 . 請求項 6記載の自動分析装置であって、  8. The automatic analyzer according to claim 6, wherein
洗浄容器が、 液溜空間に注入された洗浄液を排出する液面位置決め孔 を有する。  The cleaning container has a liquid level positioning hole for discharging the cleaning liquid injected into the liquid storage space.
9 . 請求項 5記載の自動分析装置であって、  9. The automatic analyzer according to claim 5, wherein
試料容器内の圧力を制御するポンプを有し、  Having a pump for controlling the pressure in the sample container,
該ポンプが、 試料容器と洗浄容器の接触した状態において、 開口部か ら試料を吐出する。  The pump discharges the sample from the opening when the sample container and the cleaning container are in contact with each other.
1 0 . 請求項 5記載の自動分析装置であって、  10. The automatic analyzer according to claim 5, wherein
移動機構が、 液溜空間に保持された所定量の洗浄液を排出孔へ流した 後に、 試料容器の開口部を洗浄液と接触させる。  The moving mechanism causes a predetermined amount of the cleaning liquid held in the liquid storage space to flow to the discharge hole, and then brings the opening of the sample container into contact with the cleaning liquid.
1 1 . 以下の構成を含む自動分析装置 ;  1 1. Automatic analyzer including the following components;
試料を排出する開口部を有する試料容器を洗浄する洗浄液を供給する 洗浄液供給機構 ;  A cleaning liquid supply mechanism for supplying a cleaning liquid for cleaning a sample container having an opening for discharging a sample;
洗浄液を排出する排出孔を有する洗浄容器 ;  A cleaning container having a discharge hole for discharging a cleaning liquid;
試料容器及び/又は洗浄容器を動かし、  Move the sample container and / or wash container,
試料容器と洗浄容器を接触させ、 洗浄液を保持できる液溜空間を形成 し、 また、 試料容器と洗浄容器を離し、 液溜空間に保持された洗浄液を排 出孔へ流す移動機構 ; The sample container and the washing container are brought into contact with each other to form a liquid storage space that can hold the washing solution. A moving mechanism that separates the sample container from the washing container and allows the washing liquid held in the liquid storage space to flow to the discharge hole;
試料容器内の圧力を制御し、 試料容器と洗浄容器の接触した状態にお いて開口部から排出孔に試料を排出するポンプ。  A pump that controls the pressure in the sample container and discharges the sample from the opening to the discharge hole when the sample container is in contact with the washing container.
1 2 . 請求項 1 1記載の自動分析装置であって、  1 2. The automatic analyzer according to claim 1, wherein
試料容器が、 試料の排出を妨げる流体抵抗を備える。  A sample container is provided with a fluid resistance that prevents sample discharge.
1 3 . 請求項 1 1記載の自動分析装置であって、  13. The automatic analyzer according to claim 11, wherein
試料容器が、 核酸吸着物質を備える。  The sample container includes a nucleic acid-adsorbing substance.
1 4 . 請求項 1 1記載の自動分析装置であって、  14. The automatic analyzer according to claim 11, wherein
試料容器が、 石英ウールを備える。  The sample container comprises quartz wool.
1 5 . 請求項 1 1記載の自動分析装置であって、  15. The automatic analyzer according to claim 11, wherein
排出孔が、 開口部を挿入できる孔形状である。  The discharge hole has a hole shape into which the opening can be inserted.
1 6 . 請求項 1 1記載の自動分析装置であって、  16. The automatic analyzer according to claim 11, wherein
洗浄容器が、 液溜空間に注入された洗浄液を排出する液面位置決め孔 を有する。  The cleaning container has a liquid level positioning hole for discharging the cleaning liquid injected into the liquid storage space.
1 7 . 請求項 1 1記載の自動分析装置であって、  17. The automatic analyzer according to claim 11, wherein
移動機構が、 液溜空間に保持された洗浄液を排出孔へ流した後に、 試 料容器の開口部を洗浄液と接触させる。  The moving mechanism causes the opening of the sample container to come into contact with the cleaning liquid after flowing the cleaning liquid held in the liquid storage space to the discharge hole.
1 8 . 以下の手順を含む、 試料を吸引及び 又は排出する開口部を含む 試料容器の洗浄法 ;  18 8. A method for cleaning a sample container including an opening for aspirating and / or discharging a sample, including the following steps;
洗浄容器の排出孔を試料容器により閉塞し、 洗浄容器に洗浄液を注入 し、 開口部を含まない試料容器表面を洗浄し、 試料容器と排出孔を離し、 設けられた所定の隙間から所定量の洗浄液を排出孔へ流し、 開口部を含 む試料容器表面を洗浄する。  Close the discharge hole of the washing container with the sample container, inject the cleaning solution into the washing container, wash the surface of the sample container not including the opening, separate the sample container from the discharge hole, and remove a predetermined amount of Rinse the washing solution into the discharge hole to wash the surface of the sample container including the opening.
1 9 . 請求項 1 8記載の洗浄法であって、 開口部が、 先端に開口を有する凸形状である洗浄法。 1 9. The cleaning method according to claim 18, wherein A cleaning method in which the opening has a convex shape having an opening at the tip.
2 0 . 請求項 1 8記載の洗浄法であって、 20. The cleaning method according to claim 18, wherein
試料容器が、 核酸捕捉物質を内蔵する核酸捕捉チップである。  The sample container is a nucleic acid capturing chip containing a nucleic acid capturing substance.
2 1 . 請求項 1 8記載の洗浄法であって、 21. The cleaning method according to claim 18, wherein
洗浄容器の排出孔を試料容器により閉塞した状態におい一て、 試料容器 内の試料を開口部から排出孔へ移す。  With the discharge hole of the washing container closed with the sample container, the sample in the sample container is transferred from the opening to the discharge hole.
2 2 . 請求項 1 8記載の洗浄法であって、 以下の手順を含む方法 ; 開口部を洗浄液と接触し、 その後に離し、 開口部近傍に付いた洗浄液 を減らす。  22. The cleaning method according to claim 18, wherein the method includes the steps of: contacting the opening with a cleaning solution, separating the opening, and then removing the cleaning solution attached to the vicinity of the opening.
2 3 . 以下の手順を含む、 試料を排出する開口部を含む試料容器の洗浄 法 ;  23. A method for cleaning a sample container including an opening for discharging a sample, including the following steps;
試料容器により洗浄容器の排出孔を閉塞し、 試料容器内の試料を排出 孔内へ移し、 洗浄容器に洗浄液を注入し、 試料容器と排出孔を離し、 設' けられた隙間から洗浄液を排出孔へ流す。  Close the discharge hole of the washing container with the sample container, transfer the sample in the sample container into the discharge hole, inject the cleaning liquid into the cleaning container, separate the sample container and the discharge hole, and discharge the cleaning liquid from the provided gap. Pour into holes.
2 4 . 請求項 2 3記載の洗浄法であって、 24. The cleaning method according to claim 23, wherein
試料容器が、 試料の排出を妨げる流体抵抗を備える。  A sample container is provided with a fluid resistance that prevents sample discharge.
2 5 . 請求項 2 3記載の方法であって、 25. The method according to claim 23, wherein
試料容器が、 核酸吸着物質を備える。  The sample container includes a nucleic acid-adsorbing substance.
2 6 . 請求項 2 3記載の方法であって、 26. The method of claim 23, wherein
試料容器が、 石英ウールを備える。  The sample container comprises quartz wool.
2 7 . 請求項 2 3記載の方法であって、  27. The method of claim 23, wherein
排出孔が、 開口部を挿入できる孔形状である。  The discharge hole has a hole shape into which the opening can be inserted.
2 8 . 請求項 2 3記載の方法であって、 以下の手順を含む方法 ;  28. The method of claim 23, comprising the following steps:
開口部を洗浄液と接触し、 その後に離し、 開口部近傍に付いた洗浄液 を減らす。  The opening is brought into contact with the cleaning liquid and then released, reducing the amount of cleaning liquid attached near the opening.
PCT/JP2003/000062 2003-01-08 2003-01-08 Automatic analyzer with sample container and cleaning method of sample container WO2004063755A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004566252A JP4154390B2 (en) 2003-01-08 2003-01-08 Automatic analyzer with sample container and method for cleaning sample container
PCT/JP2003/000062 WO2004063755A1 (en) 2003-01-08 2003-01-08 Automatic analyzer with sample container and cleaning method of sample container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/000062 WO2004063755A1 (en) 2003-01-08 2003-01-08 Automatic analyzer with sample container and cleaning method of sample container

Publications (1)

Publication Number Publication Date
WO2004063755A1 true WO2004063755A1 (en) 2004-07-29

Family

ID=32697357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000062 WO2004063755A1 (en) 2003-01-08 2003-01-08 Automatic analyzer with sample container and cleaning method of sample container

Country Status (2)

Country Link
JP (1) JP4154390B2 (en)
WO (1) WO2004063755A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292737A (en) * 2006-03-28 2007-11-08 Fujifilm Corp Pipette tip, liquid receiving structure, and liquid supply device
JP2008185505A (en) * 2007-01-31 2008-08-14 Seiko Epson Corp Inspection device and using method therefor
JP2017015452A (en) * 2015-06-29 2017-01-19 株式会社日立ハイテクノロジーズ Automatic analyzer
WO2017216739A1 (en) * 2016-06-14 2017-12-21 Cellply S.R.L. Screening kit and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168557A (en) * 1980-05-30 1981-12-24 Fujitsu General Ltd Washing apparatus for pipetting tray and jig or the like in electrophoresis apparatus
JPH04369461A (en) * 1991-06-17 1992-12-22 Hitachi Ltd Particle measuring apparatus
JPH06222065A (en) * 1992-12-17 1994-08-12 Smithkline Beckman Corp Device and method for cleaning fluid probe
JPH11271331A (en) * 1998-03-25 1999-10-08 Horiba Ltd Washing mechanism of sampling nozzle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168557A (en) * 1980-05-30 1981-12-24 Fujitsu General Ltd Washing apparatus for pipetting tray and jig or the like in electrophoresis apparatus
JPH04369461A (en) * 1991-06-17 1992-12-22 Hitachi Ltd Particle measuring apparatus
JPH06222065A (en) * 1992-12-17 1994-08-12 Smithkline Beckman Corp Device and method for cleaning fluid probe
JPH11271331A (en) * 1998-03-25 1999-10-08 Horiba Ltd Washing mechanism of sampling nozzle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292737A (en) * 2006-03-28 2007-11-08 Fujifilm Corp Pipette tip, liquid receiving structure, and liquid supply device
JP2008185505A (en) * 2007-01-31 2008-08-14 Seiko Epson Corp Inspection device and using method therefor
JP2017015452A (en) * 2015-06-29 2017-01-19 株式会社日立ハイテクノロジーズ Automatic analyzer
WO2017216739A1 (en) * 2016-06-14 2017-12-21 Cellply S.R.L. Screening kit and method
EP3258240A3 (en) * 2016-06-14 2017-12-27 Cellply S.R.L. Screening kit and method
RU2739327C2 (en) * 2016-06-14 2020-12-23 Селплай С.Р.Л. Kit and method of screening

Also Published As

Publication number Publication date
JPWO2004063755A1 (en) 2006-05-18
JP4154390B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JP3752417B2 (en) Nucleic acid purification method and purification apparatus
JP5292267B2 (en) SAMPLE PROCESSING DEVICE, SAMPLE PROCESSING METHOD, AND REACTION CONTAINER USED FOR THEM
JP5202339B2 (en) Container repeated use magnetic particle parallel processing apparatus and container repeated use magnetic particle parallel processing method
JPH11266864A (en) Purification of nucleic acid and device for purification
EP2017339A1 (en) Nucleic acid purification instrument
JP2004290211A (en) Tool and method for collecting nucleic acid
TW201842180A (en) Nucleic acid separation apparatus
JP7156154B2 (en) Medium processing system and medium processing method
KR100632893B1 (en) Sample processing device and sample processing method
WO2008059685A1 (en) Analyzer
JP4154390B2 (en) Automatic analyzer with sample container and method for cleaning sample container
JP2002191351A (en) Apparatus for purifying nucleic acid and chip for capturing nucleic acid
JP2000346852A (en) Nucleic acid refining reagent pack and nucleic acid refining apparatus
JP5599488B2 (en) Sample processing method
JP3635645B1 (en) Nucleic acid extraction equipment
JP2008020275A (en) Automatic solid-phase extractor
JP4576340B2 (en) Automatic analyzer
WO2023134778A1 (en) Separation assembly, purification apparatus and control method
JP2000266764A (en) Dispenser
JP2001136955A (en) Device for automatically purifying nucleic acid
JP3776320B2 (en) Method and apparatus for recovering multiple nucleic acids on the same solid phase
WO2003031618A1 (en) Method of collecting nucleic acid
JP3978762B2 (en) Automatic separation and extraction apparatus and reagent tank transfer method
JP2002243746A (en) Automatic separation extractor
JP2001269160A (en) Apparatus for automatically purifying nucleic acid

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 2004566252

Country of ref document: JP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase