WO2004063380A1 - Serie de virus adeno-associes recombinants convenant pour l'induction du chemin d'interference d'arn et therapie genique - Google Patents

Serie de virus adeno-associes recombinants convenant pour l'induction du chemin d'interference d'arn et therapie genique Download PDF

Info

Publication number
WO2004063380A1
WO2004063380A1 PCT/CN2003/000939 CN0300939W WO2004063380A1 WO 2004063380 A1 WO2004063380 A1 WO 2004063380A1 CN 0300939 W CN0300939 W CN 0300939W WO 2004063380 A1 WO2004063380 A1 WO 2004063380A1
Authority
WO
WIPO (PCT)
Prior art keywords
associated virus
recombinant
recombinant adeno
gene
virus
Prior art date
Application number
PCT/CN2003/000939
Other languages
English (en)
French (fr)
Inventor
Xiaobing Wu
Xiaoyan Dong
Xin Ma
Xiaochun Lu
Yunde Hou
Original Assignee
Agtc Gene Technology Company Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agtc Gene Technology Company Ltd. filed Critical Agtc Gene Technology Company Ltd.
Priority to AU2003284795A priority Critical patent/AU2003284795A1/en
Publication of WO2004063380A1 publication Critical patent/WO2004063380A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • C12N2310/111Antisense spanning the whole gene, or a large part of it
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • the present invention belongs to the field of biotechnology, and particularly relates to a series of adenovirus-associated virus vector construction strategies, methods, and uses in the field of gene therapy that specifically inhibit genes related to specific diseases through the RNAi pathway. Background technique
  • the application of the present invention is in our research (Ma Xin, Lu Xiaochun, Wu Xiaobing, etc.
  • AAV vector plasmid-mediated luciferase shRNA inhibits its expression in mammalian cells. Chinese Journal of Experimental and Clinical Virology, 2002, 16 (3): 253-255) and further applications of recombinant adeno-associated virus vectors (WU Zj, WU Xb, CAO H, etc.)
  • WU Zj, WU Xb, CAO H, etc. recombinant adeno-associated virus vectors
  • Gene silencing is widespread in plants, fungi, and animals (Leirdal M, Sioud M. Gene silencing in mammalian cells through pre-formed small RNA duplexes. Biochem Biophys Res Commun. 2002 Jul 19; 295 (3): 744-8.), Due to the rise of transgenic technology, people have conducted more in-depth research on transgene silencing. About 30% of transgenic experiments in higher plants have resulted in gene silencing, which is a universal gene regulation mechanism.
  • transgene silencing There are two main types of transgene silencing: one is transcriptional gene silencing (TGS), and the other is posttranscriptional gene silencing (PTGS).
  • TGS transcriptional gene silencing
  • PTGS posttranscriptional gene silencing
  • methylation mainly occurs in the promoter region, and gene transcription is suppressed.
  • PTGS methylation mainly occurs in the coding region of genes, and genes can be transcribed to produce mR A, but mRNA is specifically degraded in the cytoplasm. The two are not a simple front-to-back relationship in time, nor are they separated from each other in space due to the presence of the nuclear membrane.
  • Post-transcriptional silencing is a sequence-specific RNA degradation process, which mainly acts on transcription products with high homology, including transcription products of endogenous genes with homology. It is widely present in various organisms. Until recently, it has not been found that a phenomenon called cosuppression in plants, a Banling phenomenon in fungi, or RNA interference (RNAi) in animals may be found. It has great similarities and is related to the PTGS phenomenon (Harmon GJ. RNA interference. Nature. 2002 Jul 11; 418 (6894): 244-51.) 0 It is now generally believed that PTGS was formed during the long-term evolution of organisms A defense system against viruses, transposable elements and other transferable nucleic acids.
  • transgene silencing is nothing more than the host cell's view of the foreign gene as a sequence harmful to itself and suppressing it.
  • This inhibition of cells against foreign nucleic acids has a sequence-specific characteristic, so once the intra-transcriptional silencing mechanism is activated, the cells have "immunity" to the homologous sequences of the transferred nucleic acids.
  • RNAi first observed in caenorhabditis nematodes and fruit flies
  • sRNA double-stranded RNA
  • ssRNA Stranded RNA
  • the enzyme responsible for cleaving dsRNA has been proven to be a dsRNA-specific RNase, called Dicer, which produces dsRNA degradation products.
  • RNA silencing complex RISC
  • dsRNA triggers gene silencing in mammalian somatic cells
  • synthetic dsRNA or less than 30bp siRNA can avoid this non-specific inhibition of gene expression in mammalian cells. Studying RNAi as a method of experimentally regulating gene expression and exploring gene function at the genome level.
  • RNA interference is an evolutionarily conserved genomic level immune monitoring mechanism. It is a multi-step process that involves the generation of active small 21-23nt interfering RNA (siRNA) through the action of Rasell endonuclease Dicer. (Hannon GJ. RNA interference. Nature. 2002 Jul ll; 418 (6894): 244-51o Sharp PA. RNA interference-2001.GENES & DEVELOPMENT, 2001,
  • RNAi Ribonucleic acid
  • RNAi The most interesting things about RNAi are:
  • dsRNA is double-stranded RNA, not single-stranded antisense RNA, and is an interference reagent.
  • Intervention activity can cause interference in cells and tissues far from the site of introduction.
  • dsRNAs Response of mammalian cells to dsRNAs can activate two pathways, exceeding 30bp DsR As caused extensive degradation of non-sequence-specific mR A and turned off translation. 19-23bp (short dsRNA molecules, siRNA) short dsRNA molecules synthesized in vitro mimic RNAi pathway intermediates, which can cause sequences in mammals. Specific gene expression inhibition (Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAi in mammalian cells. Science, 2002, 296: 550-553. Sui G, Soohoo C, Affar EIB, et al. DNA vector-based RNAi technology for suppressing gene expression in mammals. PNAS, 2002, 99: 5515-5520. Yu JY, DeRuiter SL, Turner DL. Pass
  • RNA interference is a type of RA-induced post-transcriptional regulation that has a high degree of sequence specificity and specifically silences specific genes, causing them to lose or reduce their function. It belongs to post-transcriptional gene silencing ( Posttranscriptional Gene Silencing, PTGS) 0
  • RNA interference RNA interference
  • dsRNS double strands RNA
  • Dicer 21-23 nucleotide small RNA fragments (small) by Dicer, a member of the RNase III family.
  • siRNA interfering RNAs
  • RISC RA silencing complex
  • the sense strand of mRNA and dsRNA A strand exchange occurs, and the sense strand in the original dsRNA is replaced by mRNA, which is released from the enzyme-dsRNA complex #, and the mRNA is in the position of the original sense strand.
  • the nuclease cleaves and degrades the mRNA at the same position.
  • RNA interference RNA interference
  • RNA interference RNA interference
  • the RNAi phenomenon exists widely in the gene regulation mechanisms of various organisms, and is considered to be a mechanism for cellular anti-RNA virus replication. Compared with several other technologies that cause loss of function or reduce mutations, RNAi technology has obvious advantages. It is more effective than antisense RNA technology and homologous co-suppression, and it is more likely to cause loss of function.
  • RNAi technology is mainly used as a powerful post-genomic project research tool to determine the function of specific genes. It is used to perform loss of function or reduce mutations of specific genes to determine their functions. Successful analysis of all 19,000 gene functions.
  • RNAi technology introduced synthetic dsR A directly into target tissue cells by injection or immersion. Although these methods can inhibit the expression of the target gene, this gene silencing cannot exist stably (Billy E, Brondani V, Zhang H, et al. Specific interference of gene expression induced by long double-stranded RNA in mouse embryo teratoma cell lines. Proc Natl Acad Sci US A. 2001 Dec 4; 98 (25): 14428-33 0 Elbashir SM, Harborth J, Lendeckel W, et al. RNA interference mediated by 21-nucleotide RNA duplexes in cultured mammalian cells. Nature.
  • the target sequence of the target gene was expressed in a reversed manner under the control of a specific promoter and expressed in a transgenic organism to form a dsRNA product with a hairpin loop structure, thereby silencing the target gene.
  • mammalian expression vectors on RNAi continued to emerge.
  • the original vector used a long hairpin RNA (lhRNA) structure, which greatly inhibited the target gene, reaching more than 90%. It activates RNA-dependent protein kinase (PKR), triggers non-specific degradation of other mR A and interferon response in the body, and its application is limited.
  • PTR RNA-dependent protein kinase
  • transcription the process of transcription of a specific RNAi nucleotide fragment in foreign literature is called expression.
  • expression is the complete process of transcription from DNA to RNA and then to protein, and this particular process from DNA to RNA should be called transcription. Therefore, in the description of the present invention, related concepts are involved. We generally describe it as transcription, and the functional unit that performs transcription is called a transcription unit. However, there is also the word "expression" in accordance with the practice of foreign counterparts.
  • Adeno-associated virus is a non-pathogenic parvovirus with a single-stranded DNA of 4680 nt in genome.
  • the life cycle of AAV virus has two modes of latent infection and lytic infection.
  • the lytic replication of AAV virus requires the participation of a helper virus: delta mouth adenovirus or herpes simplex virus (HSV).
  • HSV herpes simplex virus
  • the AAV virus was previously virally integrated into the host cell chromosome.
  • Recombinant AAV vector modified by AAV virus has attracted attention due to its safety, stability, infection of both dividing cells and non-dividing cells, high infection efficiency, and long-term expression of foreign genes. New type of gene transfer and gene therapy vector.
  • RNAi short hairpin RA
  • a plasmid vector was designed and constructed to carry luciferase shRNA.
  • the expression of this luciferase shRNA is controlled by the human U6 snR A promoter (a DNA-directed RNA Pol II promoter).
  • the advantage of Pol III is that it guides the synthesis of small non-coding transcripts. At a string of 4-5 T's.
  • the present invention relates to the use of plasmids to carry RNAi nucleotide fragments, and the plasmids carrying RNAi are transfected into cells or animals cultured in vitro, so that particles can be in cells or
  • the RNAi nucleotide fragments are continuously transcribed in the animal body to achieve the biological role that the RNAi nucleotide fragments should play.
  • the transcription unit composed of the RNAi nucleotide fragment and its upstream and downstream regulatory sequences is constructed by constructing an AAV vector cell line and a dye capable of packaging and producing a recombinant virus (rAAV-LucRNAi) carrying the RNAi nucleotide transcription unit.
  • a short hairpin loop expression plasmid to inhibit the expression of luciferase in BHK-21 cells.
  • the specific method is to design primers in genomic DNA and use PCR to call out the human U6 snR A promoter, inversely repeat the 21 bp luciferase target sequence separated by a 9 bp sequence, and ligate it with the AAV vector plasmid pSNAV to construct luciferin Enzyme RNAi expression plasmid pSNAV / U6 / LucRNAi (in the description of the present invention, pSNAV / U6 / LucRNAi is the same as pSNAV-U6-LucRNAi), the aforementioned AAV vector plasmid pSNAV can also be used in a series of general-purpose AAV vectors (Chinese patent application: 99119038.6) instead.
  • BHK-21 cells were co-transfected with pMAMneoLuc plasmid, and luciferase cell lines were transfected separately, and their inhibitory effects on luciferase expression were measured.
  • the results showed that pSNAV / U6 / LucRNAi inhibited the expression of luciferase in co-transfected pMAMneoLuc by 50%, and inhibited the expression of luciferase in luciferase cell lines by 70%. Inhibiting the short hairpin loop LucR Ai transcribed in solid bodies can effectively inhibit the expression of luciferase in BHK-21 cells.
  • the RNAi technology of the present invention relates to a long structure including lhR A with a longer 100-700 base stem, a shR A with a 19-29 base stem, and a dsR without a hairpin-like structure, with or without a circular structure of other related gene sequences A.
  • the invention relates to:
  • AAV vectors that can form shRNA products for single or multiple target sequences of multiple specific target genes under the control of multiple U6 snRNA or H1RNA promoters, respectively;
  • AAV vectors with specific regulatory sequences such as single and multiple hypoxic response elements, blood glucose response elements, etc.
  • specific regulatory sequences such as single and multiple hypoxic response elements, blood glucose response elements, etc.
  • tissue-specific or potent promoters to form IhRNA products.
  • Method A The target sequence should start with G (anti-sense of the shRNAi transcript of the PCR introduction method), record 18-29 bases backward, 19-23bp is recommended;
  • Method B The target sequence should start with C (PCR introduction method shRNAi transcripts first) 2.2 The best target sequence fragment 5 found or obtained by experiment. If there is no G or C at the end, G or C should be added. Generally speaking, adding 1-5 1 ⁇ 2 has no obvious effect on RNAi inhibition, except for the transcription start site. Should be G Xibu, 5, 1-3 A ends may be conducive to shRNA stability;
  • the GC content of the sequence is required to be 20% to 70%, and 30% to 65% is recommended.
  • the A complementary to the sense strand in the primers can be replaced by G or vice versa. Note that the complementary part of the antisense strand should not be changed. Transcription products form UG pairing, which may not affect RNAi activity, and still require no 3 or more consecutive T in the sense sequence;
  • the 50-700 base stem sequence should be mostly in the coding region, and 200-600bp is recommended;
  • the GC content of the recommended sequence is moderate. If other genes are included in the loop, the gene whose coding region is less than 1/2 of the stem length should be selected.
  • Another option of this method is to find two sequences, one of which contains the other sequence, and the extra portion of the long fragment is mainly concentrated at one end to form a circular structure;
  • Upstream primers are located at the proximal regulatory elements of the U6 snRNA promoter or other three types of TFIII extragenic promoters. Outside, in general, PCR amplification products include TATA boxes and proximal regulatory elements so that the structure of the introduced shRNA can be obtained. For effective transcription, specific regulatory sequences can also be added within this range, such as: hypoxia response elements, tetracycline inducible elements, etc.
  • the upstream primer of our experiment is located at -329--312 (GGTGTTTCGTCCTTTCCACAA) of the U6 promoter. For ease of operation, 5, add the Xhol site.
  • the downstream primer is two parts. First, determine the sequence of the outer hairpin-like structure. The stem should use the fragment determined by the previous method B or A.
  • the loop structure is 5-9 bp bases, and generally 9 bp is the best. According to our experience and literature, the 5 after transcription is the sense fragment and the 3 'is the antisense fragment. It has a higher inhibitory effect than the reverse design.
  • the termination sequence TTTTT and the restriction enzyme site used are added to the outside. (We use Bgl II or BamH Do. The medial part is the 3 'end of the U6 promoter. We use the -1--20 part (CCCCAGTGGAAAGACGCG). Note this ambiguity primer.
  • pTeasy-U6 plasmid also known as pShuttle-U6 plasmid
  • This plasmid included the -417-300bp fragment of the U6 gene.
  • Conditions Cycle 30 cycles at 94 ° C for 45 seconds, 56 ° C for 45 seconds, and 72 ° C for 45 seconds.
  • the product can be digested with enzymes and ligated to the shuttle plasmid, or constructed with T vector.
  • the stem uses the fragment determined in the previous method A.
  • the loop structure is 5-9 bp bases, generally 9bp is the best.
  • 5 is the sense segment and 3 is the antisense segment after transcription, which is more effective than the reverse inhibition.
  • Add a terminator TTTTT on the outside and the restriction enzyme site used (we End digestion with Bgl ll or BamH I). Bases are added on the inside to ensure that the hairpin-like structure sequence is at the post-transcription site of the U6 promoter. Synthetic one-end and one-adhesion large linker can be used to synthesize double-strand, and apply after annealing. Note that the end 5 should be phosphorylated.
  • the upstream primers are the same as above (see “Method 1: PCR introduction method, 1.)
  • the downstream primers are:
  • GAAGTGT TTCGGTGTTTCGTCCTTTCCACA introduces the Xmnl site, (to apply this downstream primer, two bases AC should be added to the 5th end of the hairpin-like structure sequence to ensure the correct transcription of the hairpin-like structure).
  • AAV vector plasmid method of constructing multiple hairpin loop structures under the control of multiple TFIII extragenic promoters is to improve the above method, and the units can be connected in series, but the directions must be consistent.
  • the stem and loop fragments obtained by enzyme digestion or PCR were ligated downstream of the target promoter of the AAV vector plasmid pSNAV and ligated with the PolyA sequence.
  • the product of this method has extremely high inhibition efficiency, but it may cause interferon response, activate PKR and RNaseL, non-specifically degrade other mRNAs, and may cause apoptosis.
  • the general-purpose AAV vector pSNAV was constructed in our lab (Chinese Patent Application No. 99119038.6).
  • BHK cells were transfected with the pSNAV recombinant plasmid carrying the lhRNA structure, and the corresponding AAV virus vector cell line BHK / pSNAV-lhRNA was selected and cultured.
  • BHK cells were cultured in RPMI1640 medium containing 10% fetal bovine serum at 37 ° C. Will carry The pSNAV recombinant plasmid with lhRNA structure was transfected into BHK cells with lipofectamine (GIBCO BRL), digested 24 hours later, and passaged at 1: 2 to 5. Add G418 800 g / ml for selective culture. Apparently resistant cell clones formed after 10 days.
  • Figure 1 shows the PCR amplification results of human U6 snRNA promoter, where M is DL2000 Marker; 1 is the PCR product of human U6 snRNA promoter.
  • Figure 2 shows the results of electrophoresis identification of the recombinant plasmid pSNAV-U6-LucR Ai by Xhol + Xmnl digestion, where M is the molecular weight marker of DL2000 + DL15000; 1 is the Xhol + Xmnl digestion identification result of pSNAV / U6 / Luc; 2 is pSNAV Xhol + Xmnl digestion control.
  • FIG. 3 Construction of r AAV vector plasmid pSNAV-U6-LucRNAi with short hairpin loop RNA expression cassette.
  • Figure 4 pSNAV-U6-LucRNAi inhibits the level of co-transfected plasmid MAMneoLuc luciferase expression.
  • Plasmids, strains and cell lines The plasmid pMAMneoLUC was purchased from InVitrogen.
  • the universal AAV vector plasmid pSNAV was constructed by Wu Xiaobing et al. (Wu Zhijian, Wu Xiaobing, Hou Yunde. Construction of a series of adenovirus-associated virus vectors and study of expression of galactosidase. Acta Virologica Sinica, 2000, 16: 1-6).
  • the above plasmids were amplified in E. coli DH5 strain (GIBCO / BRL). Golden hamster kidney cells BHK-21 were purchased from ATCC.
  • the luciferase detection kit was purchased from Promega.
  • T4 ligase and various restriction enzymes are products of Biolab, and liposome transfection agent Lipofectamine was purchased from GIBCO / BRL.
  • T4 ligase and various restriction enzymes are products of Biolab, and liposome transfection agent Lipofectamine was purchased from GIBCO / BRL.
  • Example 2-1 Obtaining a short dsDNA molecule containing a luciferase target sequence: Find a target sequence that matches the characteristics from the start codon of the Firefly luciferase gene in pMAMneoLuc (Clonetech). Reference 3--5 Synthesis 5, 21bp terminal phosphate of the target sequence for the luciferase gene coding region 143-163nt of the two oligonucleotide strands (SEQID NO, 43, SEQID N0.44 , labeled P4, P5). Including the 5′-end Bgl ll digestion site, the two opposite target sequences (21bp) in the opposite direction are separated by a loop of a 9bp non-homologous sequence.
  • T protruding stems are 21bp short and 9bp loops. Human Pol III terminated within or immediately after 5 T.
  • primers P4 and P5 dilute P4 and P5 primers with water to 100 pmol / ⁇ 1, take 4.75 ⁇ 1 each, add 1M NaCl 0.5 ⁇ 1 to a final concentration of 50 mM, heat the water bath to 94 ° C for 5 minutes, and cool to room temperature naturally.
  • Example 2-2 Construction and identification of AAV vector plasmid pSNAV-U6-lucR Ai: 1 ⁇ I of annealed double-stranded DNA (1 ⁇ g), 2 ⁇ 1 of the recovered pShuttle-U6 / XhoI + XmnI digested 330bp U6 promoter fragment, SNAV / XhoI + BamHI 1 ⁇ I, 1 ⁇ 1 T 4 DNA Ligase, 1 ⁇ ⁇ 10 ⁇ 4 DNA Ligase buffer, 4 ⁇ 1 (1 ⁇ 2 0. 16 ° C ligation 4 Hours. Transformation. Pick a single clone.
  • the recombinant plasmid pSNAV-U6-hicR Ai was cut into four bands of 2422 bp, 2312 bp, 962 bp, and 923 b, and the control plasmid pSNAV was cut into 2708 bp, 2422 bp, and 962 bp. And 923 bp four bands. Recombinant plasmids with correct digestion results were identified by PCR reaction.
  • PCR reactants As follows: Template ⁇ ⁇ ⁇ , Taq 0.5 ⁇ 1 , 10X PCR buffer ⁇ ⁇ ⁇ , U6 upstream primer ⁇ ⁇ ⁇ , the U6 primer 1 ⁇ 1, dH 2 0 41.5 ⁇ L 94 ° C 5 minutes, 94 "C 45 seconds , 45 ° C at 56 ° C, 45 seconds at 72 ° C, 30 cycles. Recombinant plasmids with correct digestion results were extended with 330bp promoter. The construction of the AAV vector plasmid pSNAV-U6-lucR Ai is shown in the attached drawing Figure 3. Example 3 Observation of the inhibitory effect of pSNAV-U6-LucRNAi transfection on co-transfected plasmid pMAMneoLuc to inhibit the expression of luciferase Example 3-1 Co-transfection inhibition test:
  • the luciferase activity was measured 24 hours after transfection.
  • a blank control group and two positive control groups were set up in the experiment: pSNAV-U6-LucRNAi group and pMAMneoLuc group. Three wells were tested in each group. The results are shown in Table 2 and Figure 4 of the accompanying drawings.
  • A is the result of the blank control group
  • B is the result of the pSNAV / U6 / Luc group
  • C is the result of the pMAMneoLuc group
  • D is the result of the pMAMneoLuc + pSNAV / U6 / Luc group.
  • the luciferase expression was detected at 12, 24, and 48 hours after co-transfection.
  • the inhibitory effect was enhanced from 12 to 24 hours, with the highest inhibitory effect at 24 hours, and the inhibitory effect was weakened after 48 hours (results not shown). It shows that with the extension of time, as the transfected inhibitory plasmid, that is, the luciferase shRNA expression plasmid pSNAV-U6-LucRNAi, is diluted with cell division, the inhibitory effect decreases with time.
  • the expression of luciferase detected at 24 hours after transfection is shown in Table 2. After 24 hours of co-transfection of the two plasmids, the expression of luciferase was reduced by approximately 50%.
  • the method for detecting luciferase activity is as follows:
  • Detection kit Luciferase Assay Syatem (Promega, Cat. # E1501), detection instrument Turner Design Instument 9600-001 (Turner BioSystems, USA). Detection steps: 2.1 Cell luciferase protein extraction: Wash the cells twice with PBS without Mg 2+ Ca 2+ , remove PBS as much as possible, add lxLysis Buffer (cell lysate) 100 ⁇ 1 ( 24-well plate), after the cells completely detached, suck them into a 1.5ml Eppendorf tube, vortex for 15 seconds, and centrifuge at 4 ° C at 12000 rpm for 4 minutes. Take the supernatant for immediate detection or freeze at -70 ° C for later use.
  • 2.2 Cell luciferase protein detection First prepare the prepared luciferase reaction substrate at room temperature to equilibrate to about 25 ° C; Add 96 ⁇ l, 100 ⁇ l luciferase reaction substrate to the sample cell lysate supernatant in each well of the 96-well plate for detection. After vortexing slightly, use a single reading. The detection value is Relative Light Units (RLU).
  • RLU Relative Light Units
  • Example 3-2 Obtaining of a luciferase cell line:
  • pMAMneoLuc was transfected into BHK-21 cells with liposome Lipofectamine 2000. After 48 hours, the cells were selectively cultured with 800 ⁇ g1 G418. After the resistant clones are formed (about 10 days), trypsinize and mix them. Continue to grow with G418 for 15 days. After passage, use G418-free medium to grow. This cell line is named BHK. / Luc cells.
  • A is the result of the blank control group
  • B is the result of the 0. ⁇ ⁇ group
  • C is the result of the 0.5 ⁇ 1 group
  • D is the result of the 1 ⁇ group.
  • the results of the inhibition of luciferase expression in luciferase cell lines by pSNAV-U6-LucRNAi are shown in Table 3.
  • the 3 ⁇ g inhibitory plasmid reduced the expression of luciferase by as much as 70%. This shows that shRNA-mediated RNAi synthesized from DNA templates in vivo has a dose effect. The more RNAi plasmids are transfected, the stronger the inhibitory effect.
  • Example 4 Establishment of AAV vector cell line containing LucR Ai gene and capable of packaging and producing recombinant virus rAAV-LucRNAi
  • pSNAV-U6-LucR Ai was transfected into BHK-21 cells with liposome Lipofectamine 2000. After 48 hours, the cells were selectively cultured with 800 g / ml G418. After the resistant clones are formed (about 10 days), trypsinize and mix them. Continue to grow with G418 for selection until the cells are full. After passage, use G418-free medium for culture. Name this cell line BHK / LucRNAi. .
  • the AAV vector Lin cells BHK / LucRNAi expansion culture the culture broth containing 10% fetal bovine serum RPMI1640.
  • a spinner flask 110mmX480mm, a product of Wheaton
  • the helper virus HSVl-rc / AUL2 was added for infection (MOI 0.1), and the virus was adsorbed by rotating at low speed for 2 hours.
  • the rAAV-LucRNAi virus titer was determined with reference to 9 '10 and was performed by dot hybridization.
  • Example 7 In vitro inhibition experiment of rAAV-LucRNAi virus According to reference 11 , 2.5 X 10 4 BHK-21 / LucRNAi cells were seeded per well, and the cells were infected with rAAV-LucRNAi virus (l ⁇ lOVg. / Well) 24 hours later, and changed to 10% RPMI 1640 after 1 hour. The luciferase activity was measured at 27 hours.
  • Example 8 In vivo inhibition of rAAV-LucRNAi virus in mice
  • RNA polymerase III promoters can express functional small hairpin RNAs (shRNAs) from DNA templates in vivo, which cause gene suppression and siRNAs-like effects.
  • shRNAs small hairpin RNAs
  • the empty shRNA expression vector had no effect (results not shown); reverse insertion of shRNA prevented gene silencing Effect because it alters the termination of RA polymerase III and produces shRNAs of inappropriate structure.
  • RNAi will be used in the functional genome or to identify targets for designed drugs. It's a more promising system than knockout mice because it doesn't require time-consuming crossbreeding to disable groups of genes at the same time.
  • Gene therapy currently relies on ectopic expression of foreign proteins; however, by silencing disease-related genes with DNA vectors that mediate shRNAs expression, RNAi technology eventually complements this method of gaining functionality.
  • Our method of RNAi introduction is also suitable for clinical development of viral and non-viral gene transfer vectors.
  • the U6 shRNA expression cassette we use is small and suitable for introduction into cells through DNA-dependent viral vectors.
  • the combined use of marker genes and one (or more) U6 hairpin loop expression cassettes in the viral vector will facilitate functional analysis (Reference Reference 8 ).
  • AAV target-associated virus
  • RNA interference-2001 (RNA interference -2001). GENES & DEVELOPMENT, 2001, 15: 485-490;
  • RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells RNA interference by expressing short interfering RNAs and helical RNAs in mammalian cells.
  • PNAS ⁇ United States Proceedings of the National Academy of Sciences), 2002, 99: 6047-6052;
  • Example 9-1 The target gene A targeted for the treatment of heart failure is: a phospholamban gene.
  • SHRNA1 of the phosphoprotein gene (PHOSPHOLAMBAN): its coding region is 59-79 bases of the phosphoprotein gene, the sequence is
  • GCCCCAGCAAGCGCGTCAGAA SEQ ID NO. 1.
  • the sequence obtained through the design of the large adaptor method is: 5, -CGCCCCAGCAAGCGCGTCAGAACTATCGTACTTCTGACG CGCTTGCTGGGGCTTTTTAGATC-3 '(SEQ ID NO. 24).
  • SHRNA2 for phosphoprotein gene (PHOSPHOLAMBAN): its coding region is 73-93 bases of the phosphoprotein gene, and its sequence is GTC AGAACCTCC AGAACCTCT (SEQ ID NO. 2).
  • LOOP ring uses GGACTCGAT.
  • Downstream primer 5, -AAAAAGTCAGAACCTCCA GAACCTCTGGA CTCG
  • the LOOP ring uses TCAAGCTTC (containing the HINDIII site).
  • SHR A3 of Phosphoprotein Gene (PHOSPHOLAMBAN): Its coding region is 59-78 bases of Phosphoprotein gene, the sequence is
  • a short sense primer and an antisense primer were used for PCR amplification, and the length of the IhRNA short fragment targeting the phospholamban gene was 535 bp.
  • Short sense primer and Antisense primer were used for PCR amplification to obtain the IhRNA for the phospholamban gene.
  • the long and short fragments were connected at the head and the first phase, and the two tails were cut to form the head and tail of the new IhRNA.
  • the endonuclease site is linked to the vector.
  • Short sense primer AAGT CCAATACCTT ACTCGC (SEQ ID NO. 4, coding region 7-26 bases) short fragment.
  • Antisense primer AAAA GTGGT GGCAA CGCAG (SEQ ID NO. 5).
  • Target gene B angiotensin receptor 1 (ATR1)
  • shRNA4 GCTGAAGACTGTGGCCAGTGT (coding region 174-194 bases, SEQ ID N0.7.) Downstream primer: 5, -GGATCCAAAAACTGAA GACTGTGGCCAGTGTTCAAGCTTCACACT
  • Example 10-1 Target gene C vascular endothelial growth factor 165
  • shRNA5 GTCTATCAGCGCAGCTACTGC (SEQ ID NO. 39, coding region 136-156 bases),
  • shRNA6 GTGGACATCTTCCAGGAGTAC (SEQ ID NO.8, coding region 175-195 bases), downstream primers: 5, -GGATCCAAAAAGTGGACAT CTTCCAGGAGTACTCAAGCTTCGTACT
  • Short sense primer GAGGAGGGCAGAATCATCACGA (SEQ ID NO.10, coding region 95-116 bases).
  • Antisense primer GCCTTGCAACGCGAGTCTGT (502-521 bases in coding region, SEQ ID NO.ll) 0
  • Example 10-2 Target gene D cyclin D1 (cyclin D1) shRNA8: GAAGATCGTCGCCACCTGGAT (171-191 bases in coding region, SEQ ID N0.13) 0 Downstream primer: 5, -GGATCCAAAAAGAAGA TCGTCGCCACCTGGATTCAAGCTTCATCCA
  • shRNA9 GAGGTCTGCGAGGAACAGAAG (coding region 196-216 bases, SEQ ID N0.14).
  • Downstream primer 5 '-GGATCCAAAAAGAGGTCT GCGAGGAACAGAAGTCAAGCTTCCTTCT
  • Short sense primer CGCGCCCTCGGTGTCCTACTTCA (coding region 141-136 bases, SEQ ID NO.16
  • Antisense primer ACGCTCCCCGCTGCCACCAT (604-623 bases in coding region, SEQ ID N0.17) 0
  • shRNAll GCCTTCCACCGTTCATTCTAG (98-118 bases of coding region, SEQ ID N0.19) 0 Downstream primer: 5, -GGATCCAAAAAGCCTT CCACCGTTCATTCTAGTCAAGCTTCCTAGAA
  • shRNA12 GAAGAGTTGGGCTCTGTCAGC (255-275 bases in coding region, SEQ ID NO.20) 0 Downstream primer: 5, -GGATCCAAAAA GAAGAGTTGGGCTCTGTCAGCTCAAGCTTCGCTGA
  • shRNAll and shRNA13 double shRNA tandem approach under the control of a double U6 promoter.
  • shRNA13 GTGTCCTGCCTGAAGGAGCTG (coding region
  • Example 11 Recombinant adeno-associated virus of inducible RNAi pathway for treating autoimmune diseases:
  • TNF- ⁇ - tumor necrosis factor a
  • shRNA14 GTGGAGCTGAGAGATAACCAG (121-141 bases in coding region, SEQ ID NO.22) precedeDownstream primer: 5, -GGATCCAAAAA GTGGAGCTGAGAGATAACCAGTCAAGCTTCCTGG
  • shR A15 GATAACCAGCTGGTGGTGCCA (133-153 bases in coding region, SEQ ID NO.23) 0 Downstream primers: 5, -GGATCCAAAAAGATAA CCAGCTGGTGGTGCCATCAAGCTTCTGG CACCACCAGCTGGTTATCGGTGTTTCGTCCTTTCCACAA-3 '(SEQ ID NO. 38).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Virology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

可诱导 RNA i 途径的用于基因治疗的系列重组腺相关病毒 发明领域
本发明属于生物技术领域, 具体涉及一系列通过 RNAi途径特 异地抑制特定疾病相关基因的用于基因治疗领域的腺病毒伴随病毒 载体的构建策略、 方法及用途。 背景技术
本发明申请是在我们所做的研究 (马鑫, 鲁晓春, 吴小兵等。 AAV载体质粒介导的荧光素酶 shRNA抑制其在哺乳动物细胞中的 表达。 中华实验和临床病毒学杂志, 2002, 16 ( 3 ): 253-255 )的基 础上所做的进一步的应用, 同时, 也是重组腺相关病毒载体的进一 步的应用 (WU Zj,WU Xb, CAO H ,等。 一种新的且高效的腺相关 病毒载体生产系统. 中国科学 C辑英文 2002; 45(1):96-104。 吴小 兵, 董小岩, 伍志坚等.一种快速高效分离和純化重组腺病毒伴随病 毒载体的方法。 科学通报, 2000, 45 ( 19 ): 2071-2075 伍志坚, 吴 小兵, 曹 晖等.一种高效的重组腺伴随病毒载体生产系统。 中国科 学 C辑, 2001 , 31 ( 5 ): 423-430。
基因沉默 ( GENE SILENCING )现象广泛存在于植物、真菌和 动物(Leirdal M, Sioud M.通过预先形成的小 RNA双链体在哺乳 动物细胞中进行基因沉默. Biochem Biophys Res Commun. 2002 Jul 19;295(3):744-8. ) 中, 由于转基因技术的兴起, 人们对转基因沉默 进行了更深入的研究。 在高等植物中大约 30%的转基因实验都导致 了基因沉默, 是一种普遍存在的基因调控机制。
转基因沉默主要分为两种类型: 一是转录水平上的基因沉默 ( Transcriptional Gene Silencing, TGS ), 二是转录后水平上的基 因沉默(Posttranscriptional Gene Silencing, PTGS )。 前者 AJL生 在核内的事件, 而后者发生在细胞质中。 两者都与超甲基化
( Hypermethylated )有关, 在 TGS现象中, 甲基化主要发生在启 动子区域, 基因的转录受到抑制; 而 PTGS中, 甲基化主要发生在 基因的编码区, 基因能够转录, 产生 mR A, 但 mRNA在细胞质 中被特异性地降解。 二者在时间上并非简单的前后关系, 在空间上 也不因为核膜的存在而相互隔离。
转录后沉默表现为一种序列特异性的 RNA降解过程,主要作用 于同源性较高的转录产物,包括具有同源性的内源基因的转录产物。 它广泛存在于各种生物中, 直到最近人们才发现在植物中被称为共 抑制 ( Cosuppression )、 真菌中被称为 Quelling现象、 动物中被称 为 RNA干扰( RNA interference, RNAi )的现象可能具有很大的相 似性,都与 PTGS现象有关( Harmon GJ. RNA interference. Nature. 2002 Jul 11;418(6894):244-51. )0 现在普遍认为 PTGS是生物在长期 进化过程中所形成的对病毒、 转座因子和其它可转移核酸的防御系 统。 因为这些外源核酸的引入很 能使宿主细胞内的平衡机制遭到 致命破坏。 而转基因沉默, 无非是宿主细胞将外源基因视为对自身 有害的序列而将其抑制。 细胞对外源核酸的这种抑制作用具有序列 特异性的特点, 所以一旦细胞内转录后沉默机制被启动, 细胞对转 入的核酸的同源序列就有了 "免疫" 能力。
尽管 PTGS (首先在植物和真菌中证实) 和 RNAi (首先在 caenorhabditis线虫和果蝇中观察到 )分别被证实, 遗传和生化分析 揭示这些多步骤途径间的进化上的联系。 这些途径有一些共同的成 分, 包括它们被双链 RNA sRNA ) 引发, 且引发的 dsRNA被酶 切加工成小的长为 20-25个碱基的片段, 这些片段介导序列特异性 识别靶单链 RNA ( ssRNA )。 已经证实负责切割引发 dsRNA的酶是 dsRNA特异性 RNase, 称为 Dicer, 产生 dsRNA降解产物。 这些小 dsRNA或者短的干扰性 RNAs ( siRNAs )作为降解靶 ssRNA所需 的酶复合体的向导,它包括在对应于输入 dsRNA的区域中常规间隙 中 21-23个碱基。 Dicer还有解旋酶活性, 其它区域的功能尚不能确 定, 这些对果蝇和线虫中的 RNAi是很重要的。 而且, Dicer在正常 发育所需的转录物的加工中有作用。 到目前为止, 仅证实多亚基复 合体或者 NA介导的切割靶 RNA沉默复合体 ( RISC ) 中的一种 蛋白质成分 Argonaute2 。 dsRNA引发哺乳动物体细胞中的基因沉 默、合成的 dsRNA或者少于 30bp的 siRNA能够避免哺乳动物细胞 中基因表达的这种非特异性抑制。 研究 RNAi作为实验调控基因表 达和在基因组水平探索基因功能的一种方法。
RNA干扰是一种进化上保守的基因组水平的免疫监控机制,是 多步驟过程,涉及通过 R ase lll内切核酸酶 Dicer的作用产生有活 性的小的 21-23nt干扰性 RNA ( siRNA ), 介导其互补同源 mR A 序列的特异性降解( Hannon GJ. RNA interference. Nature. 2002 Jul ll;418(6894):244-51o Sharp PA. RNA interference - 2001.GENES & DEVELOPMENT, 2001,
15:485-490 )。 RNAi现象广泛发现于真菌、 拟南芥、 水螅、 涡 虫、 锥虫、 斑马鱼等大多数真核生物中。 RNAi的机制正在逐步阐 明, 与此同时, 作为功能基因组研究领域中的有力工具, RNAi也 越来越为人们所重视。
有关 RNAi最令人感兴趣的地方是:
1. dsRNA即双链 RNA, 而非单链反义 RNA, 是干扰试剂。
2. 其作用是高度特异的。
3. 其作用强度是相当强的 (每个细胞中仅需要几个 dsRNA分 子即可以产生有效的干预)
4. 干预活性(并假设是 dsRNA ) 能在远离导入位点的细胞和 组织中产生干预。
哺乳动物细胞对 dsRNAs的反应可以活化两条途径,超过 30bp 的 dsR As 引起的广泛的非序列特异性 mR A的降解和翻译的关 闭,体外合成的短的 dsRNA分子 19-23bp ( short dsRNA molecules, siRNA )模拟 RNAi途径中间体, 能在哺乳动物中引起序列特异性 的基因表达的抑制( Brummelkamp TR, Bernards R, Agami R. 一种 在哺乳动物 细胞 中 稳定表达短干扰性 RNAi 的 系 统. Science,2002,296:550-553。 Sui G, Soohoo C, Affar EIB, et al.抑 制哺乳动物中基因表达的基于 DNA 载体的 RNAi 技 术. PNAS,2002,99:5515-5520。 Yu JY, DeRuiter SL, Turner DL.通过
PNAS,2002,99:6047-6052 )。
RNA干扰(RNAi )是一种具有高度的序列专一性, 特异地使 特定基因沉默,使其功能丧失或降低的一种 R A诱导的转录后调控 方式, 它属于转录后水平上的基因沉默 ( Posttranscriptional Gene Silencing, PTGS )0
RNA干扰(RNAi ) 的基本过程分两步, 首先进入细胞的默链 RNA ( double strands RNA, dsRNS )被一种 RNA酶 III家族成员 Dicer 切割成 21-23 核苷酸长的小 RNA 片段(small interfering RNAs, siRNA ), 这些 siRNA片段可与该核酸酶的 dsRNA结合结 构域结合, 整合进入 R A沉默复合物 ( RISC ), 作为模板识别目的 mRNA, 在 RISC复合物中, mRNA与 dsRNA的有义链发生链互 换, 原先 dsRNA中的有义链被 mRNA代替, 从酶 -dsRNA复合物 中#放出来, 而 mRNA则处于原先的有义链的位置。核酸酶在同样 位置对 mRNA 进行切割降解, 这样又产生了 21-23 核苷酸长的 dsRNA小片段, 与核酸酶形成复合物, 继续对目的 mRNA进行切 割, 从而使目的基因沉默, 产生 RNAi 现象(RNA 干扰, RNA interference )。其优点和特点在于其高度的序列专一性和高效的靶基 因抑制效率。 RNAi 现象在各种生物的基因调控机制中广泛存在, 被认为是 一种细胞抗 RNA病毒复制的机制,与其它几种导致功能丧失或降低 突变的技术相比, RNAi技术具有明显的优势, 它比反义 RNA技术 和同源共抑制更有效, 更容易产生功能丧失。 正是其高度序列专一 性和高效靶基因抑制效率的特点使其倍受瞩目, 从发现至今的短短 不足 5年间 RNAi技术的应用从线虫、 斑马鱼等低等生物迅速扩展 到高等植物、 哺乳动物。 目前 RNAi技术主要做为一种强有力的用 以确定特定基因功能的后基因组计划研究工具, 用以对特定基因进 行功能丧失或降低突变, 从而确定其功能, 并已在美丽圆线虫的几 近全部 19000个基因功能分析中获得成功。
早期的 RNAi技术是通过注射或浸泡等方法将合成的 dsR A直 接导入靶组织细胞内的, 这些方法虽然可以抑制目的基因的表达, 但这种基因沉默却不能稳定存在( Billy E, Brondani V, Zhang H, et al. 由小鼠胚畸胎瘤细胞系中长的双链 RNA诱导的基因表达特异性 干扰. Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14428-330 Elbashir SM, Harborth J, Lendeckel W,et al.培养的哺乳动物细胞 中由 21个核苷酸 RNA双链体介导的 RNA干扰. Nature. 2001 May 24;411(6836):494-8oFraser AG, Kamath RS, Zipperlen P, et al.通过 系统 RNA干扰进行 C. elegans染色体 I的功能性基因组分析. ature. 2000 Nov 16;408(6810):325-30。 Schmidt U, Monte F, Miyamoto MI,et al. 通过腺病毒基因转移肌质网 Ca2+-ATP酶恢复衰老大鼠心 脏的舒张功能. Circulation 2000;101: 790-6 )。而后科学家们对 RNAi 技术进行了改进, 将目的基因的靶序列以反向重复的方式, 在特定 启动子调控下,在转基因生物中表达形成具发夹环结构的 dsRNA产 物, 从而使目的基因沉默。 进入 2002年, 关于 RNAi的哺乳动物表 达载体不断涌现, 最初的载体采用长茎发夹样结构 (long hairpin RNA, lhRNA ), 使目的基因得到极大抑制, 达到 90 %以上, 但因 其激活 RNA依赖蛋白激酶( RNA-dependent protein kinase, PKR )、 引发其他 mR A非特异降解和机体干扰素反应, 而应用受限。 ί½ 科学家们( Miyagishi M, Taira K. U6启动子驱动的具有 4个尿苷 3, 突出端的 siRNA 高效抑制哺乳动物细胞中表达的靶基因. Nature Biotechnol. 2002 May;20(5) :497-5000 Paul CP, Good PD, Winer I,et al. 在人细胞中有效表达小的干扰性 RNA. Nat Biotechnol. 2002 May;20(5):505-8 )利用在 DNA指导的 RNA聚合酶 III ( TFIII ) 的 基因外启动子(包括 U6 snRNA、 HI RNA等)构建了可形成具小 片段(19-23碱基茎)发夹环结构 dsRNA ( short hairpin RNA, shRNA )产物的载体, 模仿 Dicer切割成的 21-23bp siRNA获得成 功, 该方法具有抑制作用强、 不激活 PKR、 不引发其他 mRNA降 解、 表达产物稳定、 作用持久等优点。 目前已有数个对此的相关报 导 (Paddison PJ, Caudy AA, Bernstein E, et al. 短发夹 RNA ( shRNA )在哺乳动物中诱导序列特异性沉默. Genes Dev. 2002 Apr 15;16(8):948-58. Paddison PJ, Caudy AA, Hannon GJ.通过 RNAi 在哺乳动物细胞中稳定抑制基因表达. PNAS.2002, 99:1443-1448。 Sui G, Soohoo C, Affar EIB, et al.抑制哺乳动物细胞中基因表达的一种 基于 DNA载体的 RNAi技术. PNAS,2002,99:5515-5520。 Wurl, P.; Kappler, M.; Meye, A.; et al: 在软组织肉瘤病人中共表达 survivin 和 TERT以及肿瘤相关死亡的危险. Lancet 2002, 359: 943-945,. ), 并有利用该类载体构建的哺乳动物细胞系产生。
在传统反义基因治疗方案中, 人们通常病毒、 质粒等方式, 使 特定靶基因的反义链得以表达, 或直接通过非病毒载体导入经或未 经 ^饰的反义 DNA ( Eizema K, Fechner H, Bezstarosti K, et al.作 为改善心脏收缩功能异常的新途径的基于腺病毒的受磷蛋白反义表 达: 一种构成性病毒与一种内皮素应答心脏启动子的比较. Circulation. 2000 May 9;101(18):2193-9. )。这些方法虽然可使特定靶 基因得到某种程度的抑制, 但抑制程度效果大多仍无法达到临床治 疗的要求。 随着 R Ai研究的深入,应用各种方式使 dsRNA在细胞 内产生的方法接连涌现,在此基础上,我们提出了应用 AAV为载体, 导入可产生诱导 RNAi途径, 使特定疾病相关基因得以高度、 特异 性抑制的基因治疗方案。
另外, 需要说明的是, 国外文献中对转录出某一特定 RNAi核 苷酸片段的过程称之为表达。我们认为,表达是说明由 DNA转录成 RNA然后翻译成蛋白质的完整过程, 而由 DNA转录成 RNA的这 一特定的过程应该称之为转录, 因而, 在本发明的描述中, 涉及相 关概念之处我们一般描述为转录, 而完成转录作用的功能单位我们 称之为转录单元。 但也有按国外同行惯例沿用 "表达" 字眼的。
腺病毒伴随病毒 ( adeno-associated virus, AAV )是一种非致病 性的微小病毒, 基因组为 4680nt的单链 DNA。 AAV病毒的生活周 期有潜伏性感染和裂解性感染两种方式。 AAV病毒的裂解性复制需 要有辅助病毒: δ口腺病毒或单纯 渗病毒 ( herpes simplex virus, HSV )的参与。 在没有辅助病毒存在时, AAV病毒以前病毒方式整 合在宿主细胞染色体中。 由 AAV病毒改造而来的重组 AAV病毒载 体因其安全、 稳定、 既可感染分裂细胞又可感染不分裂细胞、 感染 效率高、 可长期表达外源基因等优点而受到关注, 是一种具有广泛 用途的新型基因转移及基因治疗载体。
在本发明中,我们使用了我们先前发明的重组 AAV病毒载体的 包装和生产的策略(吴小兵等, 申请号: 99119039.4, 发明名称: 可用于大规模生产的重组腺病毒伴随病毒生产方法及用途;伍志坚, 吴小兵, 曹 晖等.一种高效的重组腺伴随病毒载体生产系统。 中国 科学 C辑, 2001, 31 ( 5 ): 423-430 ), 将各种具有特定目的的 RNAi 核苷酸片段进行包装, 成为各种携带了 RNAi核苷酸片段的重组腺 相关病毒。 并通过重组 目关病毒这种载体进行 RNAi核苷酸片段 的基因转移和基因复制, 以达到相应的研究和治疗目的。 发明内容
本发明利用了我们先前申请的发明的技术平台 (专利申请号:
99119038.6, 发明名称: 系列通用型腺病毒伴随病毒载体的构建及 用途; 专利申请号: 99119039.4, 发明名称: 可用于大规模生产的 重组腺病毒伴随病毒生产方法及用途),通过提供一系列可产生诱导 RNAi途径, 使特定疾病相关基因得以高度、 特异性抑制的 AAV载 体构建方法, 生产出可供基因治疗研究和临床应用的重组 AAV 病 毒。
鉴于化学合成 siRNAs 费用高, 转染效率低。 我们构建一种表 达短发夹环 RNA ( short hairpin R A, shRNA )的质粒载体, 拟以 此质粒载体携带各种 RNAi; 另外, 设计并构建的一种质粒载体, 是携带了荧光素酶 shRNA的, 此荧光素酶 shRNA的表达受人 U6 snR A启动子(一种 DNA指导的 RNA Pol ΠΙ基因外启动子) 的 控制, Pol III的优势在于指导合成小的非编码转录物其 3, 末端终 止于一串 4-5个 T处。
我们研究了体内合成的 shRNA对被转染的报告基因(荧光素酶 基因) 的抑制效果。 我们的实驗表明: 从转染的人 U6表达载体产 生的荧光素酶 shRNA有效且特异地抑制了 BHK-21细胞中 70%荧 光素酶的表达, 并且从 DNA模板合成的 shRNA介导的抑制有剂量 反应, 转染的 RNAi质粒越多, 抑制效果越强, 从而提供了比转染 化学合成的 siRNA更经济有效的方法。该方法适用于例如原代细胞 培养、 整体动物研究和基因治疗等难以导入体外合成的 siRNA的情 况。
本发明涉及用质粒携带 RNAi核苷酸片段, 将携带 RNAi的质 粒转染至体外培养的细胞内或动物体内, 从而^:粒能在细胞内或 动物体内源源不断地转录出 RNAi核苷酸片段, 来达到 RNAi核苷 酸片段应起到的生物学作用。 另外, 该 RNAi核苷酸片段及其上、 下游调控序列所共同构成的转录单元, 通过构建能包装生产携带有 RNAi核苷酸转录单元的重组病毒 ( rAAV-LucRNAi ) 的 AAV载体 细胞株和染毒等过程, 也被包装成为一种携带了 RNAi核苷酸片段 转录单元的重组 W=目关病毒载体, 通过 目关病毒载体进行 RNAi 核苷酸片段的基因转移和转录, 来达到 RNAi核苷酸片段应起到的 生物学作用。
在本发明中的实施例中, 我们构建了一个短发夹环表达质粒在 BHK-21细胞中抑制荧光素酶的表达。 具体方法是 ^ 基因组 DNA 中设计引物用 PCR调出人 U6 snR A启动子, 与被 9bp序列间隔 的 21bp荧光素酶靶序列的反向重复, 并与 AAV载体质粒 pSNAV 相连接, 构建成荧光素酶 RNAi表达质粒 pSNAV/U6/LucRNAi (在 本发明描述中 pSNAV/U6/LucRNAi与 pSNAV-U6-LucRNAi相同), 前面所述 AAV载体质粒 pSNAV也可用系列通用型 AAV载体(中 国专利申请: 99119038.6 ) 代替。 与 pMAMneoLuc 质粒共转染 BHK-21 细胞, 以及单独转染荧光素酶细胞株, 分别检测对荧光素 酶表达的抑制效果。实验结果显示 pSNAV/U6/LucRNAi对共转染的 pMAMneoLuc 中荧光素酶的表达抑制 50%, 而对荧光素酶细胞株 中荧光素酶的表达抑制 70%。 抑制实 实体内转录出的短发夹环 LucR Ai能够有效抑制荧光素酶在 BHK-21细胞中的表达。
本发明的 RNAi技术涉及包含或不包含其它相关基因序列的环 状结构的含有较长 100-700碱基茎 lhR A、 具有 19-29碱基茎的 shR A以及不具有发夹样结构的 dsR A。
本发明涉及:
(1)确定特定靶基因的用于诱导 RNAi 的目的序列, 构建在 U6 snRNA或 H1RNA启动子控制下的可形成 shRNA产物的 AAV载体; (2)构建在 U6 snRNA或 H1RNA启动子分别控制下的特定靶基 因的正义和反义 DNA序列的 AAV载体;
(3)构建在多个 U6 snRNA或 H1RNA启动子分别控制下的特定 靶基因的多个目的序列的可形成 shRNA产物的 AAV载体;
(4)构建在多个 U6 snRNA或 H1RNA启动子分别控制下的多个 特定靶基因的单个或多个目的序列的可形成 shRNA产物的 AAV载 体;
(5)构建含特异调控序列(如单个和多个缺氧反应元件、血糖反 应元件等)和/或组织特异性或强效启动子控制下的可形成具 IhRNA 产物的 AAV载体。
在本发明的各种携带有 IhRNA结构的重组 AAV病毒的构建过 程中, 首先需要确定并获得特定靶基因的用于诱导 RNAi的目的序 列,然后构建在 U6 snRNA或 H1RNA启动子控制下的 shRNA结构 AAV载体质粒,构建含特异调控序列和 /或组织特异性或强效启动子 控制下的可形成 IhRNA结构的 AAV载体质粒, 之后制备相应的重 组 AAV病毒, 最后我们对常见的心血管疾病、肿瘤及自身免疫性疾 病的数个靶基因进行了抑制实验。 针对特定靶基因的用于诱导 RNAi的目的序列的确定的方法和 步驟:
1.获得特定靶基因 mRNA序列;
2.如利用 U6 snRNA或 H1RNA启动子, 在其起始密码子下游 50 - lOObp以下位置开始寻找, 以避开 DNA结合蛋白位点, 一般选 取起始密码子后 100-300 bp (经验值 );
2.1方法 A: 目的序列应以 G为开始 ( PCR引入法 shRNAi转 录产物先反义), 向后记录 18-29个碱基, 推荐 19-23bp; 方法 B: 目的序列应以 C ( PCR引入法 shRNAi转录产物先正义)为开始, 2.2寻到或实验获得的最佳目的序列片段 5, 端如无 G或 C, 应添加 G或 C, 一般而言添加 1-5个½对 RNAi抑制作用无明显 影响,除转录起始位点应为 G夕卜, 5,端 1-3个 A可能有利于 shRNA 稳定;
2.3要求序列内无连续 3个及以上 T,如采用发夹样结构,还要 求序列内无连续 3个及以上 Α;
2.4要求序列 GC含量在 20 % -70 % ,推荐 30 % -65 %; 并可将引 物中与正义链互补的 Α换为 G或反之,注意与反义链互补部分不要 变, 改变后可在转录产物形成 UG配对, 可能不影响 RNAi活性, 仍要求正义序列内无连续 3个及以上 T;
2.5如采用发夹样结构, 应进行序列 2级结构分析;
3.如利用 IsRNA结构, 50-700碱基茎序列应大部分在编码区, 推荐 200-600bp;
3.1 建议序列 GC含量适中, 环内若包含其它基因, 应选择其 编码区小于茎长度 1/2的基因;
3.2 本方法另一种选择, 寻找两个序列, 其中一个序列包含有 另一个序列, 长片段多出部分主要集中在一端, 用以形成环状结构;
3.3 注意不要使编码区得以正确转录;
4.将寻到的序列到 NCBI进行 BLAST查询,确保该序列仅有一 个靶序列, 否则重复步驟 2或 3;
5.对于要求抑制效率很高的序列选择, 可采用以下两种方法: 5.1 将选择的多个序列用人工合成方法或体外 dsRNA合成试剂 盒(如 Dharmacon siACE - RNAi® )合成 dsRNA;
5.2在相对的两个 U6 snRNA启动子或其它 TFIII的基因外启 动子之间插入双链选择的多个序列, 构建小 质粒文库, 进行转 染, 在蛋白和或 RNA水平检测, 观察抑制效率, 或通过抗体亲和、 免疫磁珠、 流式细胞仪等方法的筛选, 以选择最佳。 构建在 U6 snRNA或 H1RNA启动子控制下的 shR A结构 AAV 载体质粒的方法:
方法 1: PCR引入法
1.1上游引物在 U6 snRNA启动子或其它三类 TFIII的基因外启 动子的近端调控元件 5, 外侧, 一般而言 PCR扩增产物包含 TATA 盒及近端调控元件即可使引入的 shRNA结构得到有效转录,在此范 围内还可加入特定调控序列, 如: 缺氧反应元件、 四环素可诱导元 件等。 我们 实验的上游引物位于 U6 启动子的 -329 - -312(GGTGTTTCGTCCTTTCCACAA),为便于操作, 5,加入 Xhol 位点。
1.2 下游引物为两部分, 首先确定外侧发夹样结构序列, 茎应 用前面方法 B或 A确定的片段, 环结构为 5-9 bp碱基, 一般 9 bp 效果最理想。根据我们的经验和文献, 转录后的 5, 为正义片段, 3' 为反义片段比相反设计所产生的抑制效果要高, 在其外侧加入终止 序列 TTTTT和所用的限制性内切酶位点 (我们用 Bgl II或 BamH D o 内侧部分为 U6 启动子的 3' 端, 我们应用 -1 - -20 部分 (CCCCAGTGGAAAGACGCG)。 注意这晃 义引物。
1.3 模板我们应用我们提取构建的 pTeasy-U6 质粒 (亦称 pShuttle-U6质粒), 该质粒包括 U6基因的 -417 -300bp片段。 条件 循环 30个 94°C 45秒、 56°C 45秒、 72°C 45秒, 产物可经酶切后 0连接于穿梭质粒, 或经 T载体后再构建。
方法 2: 大衔接头法
2.1确定发夹样结构序列, 茎应用前面方法 A确定的片段, 环 结构为 5-9 bp碱基,一般 9bp效果最理想。根据我们的经验和文献, 转录后的 5, 为正义片段, 3, 为反义片段比反过来抑制效果要高。 在其外侧加入终止序列 TTTTT和所用的限制性内切酶位点 (我们 用 Bgl ll或 BamH I )酶切后的末端构造。 内侧添加碱基以保证发夹 样结构序列在 U6启动子转录后位点。 人工合成一平端一粘端的大 衔接头, 可用合成双链, 退火后应用, 注意平端 5, 应磷酸化。
2.2 上游引物同上(参见 "方法 1: PCR引入法, 1. ) 下游引物为:
GAAGTGT TTCGGTGTTTCGTCCTTTCCACA, 引入了 Xmnl位点, (应用该下游引物时需在发夹样结构序列 5, 端加入两 个碱基 AC, 以保证发夹样结构的正确转录)。
2.3 将大衔接头、 U6启动子片段及穿^ 粒载体行 3片段连接 构建目的质粒。
构建在多个 TFIII的基因外启动子分别控制下多个发夹环结构 的 AAV载体质粒方法即将上述方法加以改进, 将各单元串连即可, 但要保证方向一致。 构建含特异调控序列和 /或组织特异性或强效启动子控制下的 可形成 lhRNA结构的 AAV载体盾粒:
将酶切或 PCR法得到茎及环片段连接在 AAV载体质粒 pSNAV 的目的启动子下游并连有 PolyA序列。 根据我们的经验和文献, 该 方法产物抑制效率极高, 但可能引起干扰素反应, 激活 PKR和 RNaseL, 非特异降解其它 mRNA, 并可能引发凋亡。对此我们采用 环中引入腺病毒 VAI RNA 以求克服此付作用。通用型 AAV载体质 粒 pSNAV为本室构建(中国专利申请号: 99119038.6 )。
可形成 lhRNA结构的重组 AAV病毒载体细胞林的建立及相应 的重组 AAV病毒的制备:
用携带了 lhRNA结构的 pSNAV重組质粒转染 BHK细胞经选 择培养得到相应的 AAV病毒载体细胞株 BHK/pSNAV-lhRNA: BHK 细胞用含 10 %胎牛血清的 RPMI1640培养液 37°C培养。 将携带了 lhRNA结构的 pSNAV 重组质粒用脂质体 lipofectamine ( GIBCO BRL )转染 BHK细胞, 24hr后消化, 1:2〜5传代。 加 G418 800 g/ml选择培养。 10天后可形成明显抗性细胞克隆。 在倒置荧光显微 镜下观察细胞克隆, 见细胞状况良好, 将其消化后混合并扩大培养 并分别冻存保种。用全功能辅助病毒 HS Vl-rc感染扩大培养的细胞, 经检测发现产生了重组 AAV- lhRNA病毒。 测定重组 AAV- lhRNA 病毒的滴度。 重组 AAV病毒的生产、 制备方法(吴小兵, 董小岩, 伍志坚等.一种快速高效分离和纯化重组腺病毒伴随病毒载体的方 法。 科学通报, 2000, 45 ( 19 ): 2071-2075。 伍志坚, 吴小兵, 曹 晖 等.一种高效的重组腺伴随病毒载体生产系统。中国科学 C辑, 2001, 31 ( 5 ): 423-430 )参见我们先前所申请的专利技术(专利申请号: 99119039.4, 发明名称: 可用于大规模生产的重组腺病毒伴随病毒 生产方法及用途; 专利申请号: 99119038.6, 发明名称: 系列通用 型腺病毒伴随病毒载体的构建及用途)。 附图说明
图 1 为人 U6 snRNA启动子 PCR扩增结果图 , 其中 M为 DL2000 Marker; 1为人 U6 snRNA启动子的 PCR产物。
图 2 为 Xhol+Xmnl酶切鉴定重组质粒 pSNAV-U6-LucR Ai 电泳鉴定结果图, 其中 M为 DL2000+DL15000分子量标志; 1为 pSNAV/U6/Luc 的 Xhol+Xmnl 酶切鉴定结果; 2 为 pSNAV 的 Xhol+Xmnl酶切对照。
图 3 含短发夹环 RNA 表达盒的 r AAV 载体质粒 pSNAV-U6-LucRNAi构建。
图 4 pSNAV-U6-LucRNAi抑制共转染质粒 MAMneoLuc荧光 素酶表达的水平变化。
图 5 pSNAV-U6-LucRNAi抑制荧光素酶细胞株中荧光素酶表达 的水平变化。 具体实施方式
我们对常见的心血管疾病、肿瘤及自身免疫性疾病( Folkman, J: 癌、 血管、 类风湿性和其他疾病的血管生成. ature Med. 1995, 1: 27-31 )的数个靶基因进行了抑制, 下面提供出部分实施实例并对其 中部分方法和用途作了详细说明, 但并不意味着本发明范围仅限于 下面所列举的序列、 靶基因和疾病, 也并不意味着限制本发明的内 容。
以下实施例中涉及的实验所用到的实验材料与方法:
质粒、菌株和细胞株: 质粒 pMAMneoLUC购自 InVitrogen。 通用型 AAV载体质粒 pSNAV为吴小兵等构建(伍志坚, 吴小兵, 候云德.系列腺病毒伴随病毒载体的构建及表达半乳糖苷酶的研究. 病毒学报, 2000 , 16 : 1-6 )。 上述质粒均在大肠杆菌 DH5 株 ( GIBCO/BRL ) 中扩增。 金黄地鼠肾细胞 BHK-21购自 ATCC。 荧光素酶检测试剂盒购自 Promega公司。
工具酶及其它试剂: T4连接酶、各种限制性内切酶为 Biolab 公司产品,脂质体转染剂 Lipofectamine购自 GIBCO/BRL公司。 实施例 1 含有人 U6 snRNA启动子的庸粒的构建
人 U6 snRNA启动子的获得: ^夕卜周血提取人基因组 DNA。 用 Vector NTI辅助设计引物,上游引物序列( SEQID NO.40,标记为 P1 ) 为: CTCGAGCCCCAGTGGAAAGAC GCG, 下游引物序列 ( SEQID N0.41,标记为 P2 )为:
CGTGTCATCCTTGCGCAGGGG (:。 扩增产物长度为: 414bp。 用 第一轮 PCR产物作为模板, 用上游引物和内引物进行巢式 PCR扩 增出 334bp ( -334bp-+lbp )人 U6启动子序列。 内引物序列( SEQID N0.42,标记为 P3 )为:
AAGCTTGAAGTGTTTCGTGGTTTCCACA。将巢式 PCR产物装 入 Promega公司的 T-easy载体中, 测序证实序列正确后, 用 Xhol 和 Hind III切下 330bp的人 U6启动子序列。 插到 pShuttle
/Xhol+Hindlll酶切过的质粒, 构建成 Shuttle-U6质粒。
人 U6 snR A启动子序列 (-334nt— lnt ) 的 PCR扩增结果见说明 书附图中的图 1,它的核苷酸序列测序结果见表 1。表中 A为 PubMed 中公布的人 U6 snRNA启动子序列; B为我们分离的人 U6 snRNA 启动子序列(SEQID N0.45,标记为 P6)。
l. 我们分离的人 U6 snRNA启动子序列与 PubMed中公布的进行比对
A l CCCCAGTGGA AAGACGCGCA GGCAAAACGC ACCACGTGAC GGAGCGTGAC B l
A51 CGCGCGCCGA 6CGCGCGCCA AGGTCGGGCA GGAAGAGGGC CTATTTCCCA B
A101 TGATTCCTTC ATATTTGCAT ATACGATACA AGGCTGTTAG AGAGATAATT B 一 — — rp
A151 AGAATTAATT TGACTGTAAA CACAAAGATA TTAGTACAAA ATACGTGACG B
A201 TAGAAAGTAA TAATTTCTTG GGTAGTTTGC AGTTTTAAAA TTATGTTTTA B
A251 AAATGGACTA TCATATGCTT ACCGTAACTT GAAAGTATTT CGATTTCTTG B
A GCTTTATATA TCTTGTGGAA AGGACGAA^C ACCG
B301
与 Genbank公布的人 U6 snRNA序列相比, 我们的结果与所 报道的 U6 启动子的序列与有一个碱基不同。 我们得到的人 U6 snRNA在 -204位由原来的 A突变为 T。实验表明这一个碱基的差别 并不影响其作为 RNA Pol III基因外启动子在哺乳动物细胞内转录 shRNA的活性。 实施例 2 含有并可转录产生荧光素酶 shRNA的 AAV载体质 粒的构建
实施例 2-1 含有荧光素酶靶序列的短 dsDNA分子的获得: 从 pMAMneoLuc ( Clonetech ) 中 Firefly荧光素酶基因起始密 码子下游寻找符合特征的靶序列。 参考文献 3-5合成 5, 末端磷酸化 的针对荧光素酶基因编码区 143-163nt 的 21bp靶序列的两条寡核 苷酸链(SEQID NO,43、 SEQID N0.44,分别标记为 P4、 P5 )。 包括 5, 端携带的 Bgl ll酶切位点, 反向的两个一致的靶序列(21bp )被 9bp的非同源序列的环间隔。 3, 末端加有 RNA Pol III终止信号的 5个 T, 预期体内转录的 R A会折叠形成几个 3, T突出的茎部为 21bp、 环为 9bp的短发夹环。 人 Pol III在 5个 T内或紧跟 5个 T 处终止。
P4: 5,
-ACCGGTGAACATCACGTACGCGGAGCAGTCCAGTCCGCG TACGTGATGTTCACCTTT TTA-3' ,
P5: 5,
-GATCTAAAAAGGTGAACATCACGTACGCGGACTGGACTGC TCCGCGTACGTGATGTT CACCGGT-3'
取引物 P4和 P5, 用水分别稀释 P4和 P5引物为 lOOpmol/ μ 1, 各取 4.75 μ 1引物加入 1M NaCl 0.5 μ 1至终浓度为 50mM, 水浴加 热至 94°C5分钟, 自然冷却至室温便得到退火双链 DNA, 实施例 2-2 AAV载体质粒 pSNAV-U6-lucR Ai的构建与鉴定: 取 1 μ I 退火双链 DNA ( 1 μ g ) , 2 μ 1 回收的 pShuttle-U6/XhoI+XmnI酶切得到的 330bp的 U6启动子片段, 以 SNAV/XhoI+BamHI 1 μ I, 加入 1 μ 1 T4 DNA Ligase , Ι μ Ι ΙΟ ΧΤ4 DNA Ligase緩冲液, 4 μ 1 (1Η20。 16°C连接 4小时。 转化。 挑 取单个克隆。 提取质粒, 分别用 Xhol+Xmnl酶切和 Pstl酶切, 进 行酶切鉴定后确定获得重组质粒 pSNAV-U6-lucR Ai。 用 Xhol+Xmnl酶切时,重组质粒 pSNAV-U6-lucRNAi被切成 4759bp、 1462b 和 398bp三条带,对照质粒 pSNAV被切成 4763bp、 1854bp 和 398bp 三 条带 。 Xhol+Xmnl 酶切鉴定 重 组质 粒 pSNAV-U6-LucRNAi电泳鉴定结果见说明书附图中的图 2。 用 Pstl 酶切时, 重组质粒 pSNAV-U6-hicR Ai被切成 2422 bp、 2312 bp, 962 bp和 923 b 四条带,对照质粒 pSNAV被切成 2708 bp、 2422 bp、 962 bp和 923 bp四条带。 酶切结果正确的重组质粒再用 PCR反应 来鉴定。 PCR反应体系如下: 模板 Ι μ ΐ , Taq 0.5 μ 1 , 10X PCR buffer Ι μ ΐ, U6上游引物 Ι μ ΐ , U6内引物 1 μ 1, dH20 41.5 μ L 94 °C 5分钟, 94 "C 45秒, 56°C 45秒, 72°C 45秒, 30个循环, 酶切结果正确的重组质粒均扩出 330bp的启动子带来。 AAV载体质 粒 pSNAV-U6-lucR Ai的构建见说明书附图中的图 3。 实施例 3 pSNAV-U6-LucRNAi 的转染对共转染质粒 pMAMneoLuc表达荧光素酶的抑制效果的观察实施例 3-1共转染抑 制试验:
按 GIBCO/BRL产品说明书提供的方法, 用 Lipofectamine将 pMAMneoLuc 和 pSNAV-U6-LucR Ai 按照 pMAMneoLuc: pSNAV-U6-LucRNAi=l: 2.8的比例共转染 BHK-21 细胞。 转染后 24小时测荧光素酶活性。试验中设立空白对照组和 2个阳性对照组: pSNAV-U6-LucRNAi组和 pMAMneoLuc组。每组重复测试 3个孔。 结果见表 2·和说明书附图的图 4。
表 2. pSNAV-U6-LucRNAi对共转染的 pMAMneoLuc荧光素酶 表达的抑制试验结果
2 A B C D
4小时 空 pSNA MA pMAMneoLuc+p
白 V/U6/Luc MneoLuc SNAV/U6/Luc 孔 6 1522. 6601 29466.24
1 82.352 392 3.32
4
孔 5 1418. 6875 30529.87
2 23.126 724 3.24
9
孔 7 1467. 6754 29876.48
3 55.541 806 6.18
7
在说明书附图的图 4 中, A 为空白对照組的结果, B 为 pSNAV/U6/Luc 組的结果, C 为 pMAMneoLuc组的结果, D 为 pMAMneoLuc+pSNAV/U6/Luc组的结果。
在共转染后 12、 24、 48小时分别检测荧光素酶的表达, 从 12 到 24小时抑制效果增强, 24小时抑制效果最高, 再到 48小时后抑 制效果减弱(结果未出示)。 说明随时间延长, 随着所转染的抑制质 粒即荧光素酶 shRNA表达质粒 pSNAV-U6-LucRNAi伴随细胞分裂 而稀释,抑制效果随时间延长而减弱。转染后 24小时检测的荧光素 酶表达如表 2所示, 两质粒共转染 24小时后, 大约使荧光素酶的表 达降低 50%; 同时做抑制质粒 pSNAV-U6-LucRNAi与 EGFP表达 质粒的共转染实验, 荧光显微镜下观察未见抑制质粒转染前后绿色 荧光强度的变化,说明抑制效果是特异的,只针对与 shRNA颈部序 列同源的荧光素酶的表达。
荧光素酶活性的检测方法按照下述步骤检测:
检测试剂盒: Luciferase Assay Syatem (Promega,Cat. #E1501), 检 测 仪 器 Turner Design Instument 9600-001 (Turner BioSystems,USA)。 检测步骤: 2.1 细胞荧光素酶蛋白提取: 将被检 细胞用不含 Mg2+Ca2+的 PBS洗细胞 2次, 并尽可能吸去 PBS, 加 lxLysis Buffer (细胞裂解液 )100 μ 1 ( 24孔板), 待细胞完全脱落后吸 入 1.5ml Eppendorf管中, 涡旋混合 15秒钟后, 4°C12000转离心 4 分钟, 取上清立即检测或冻存在 -70 °C备用。 2.2 细胞荧光素酶蛋白 检测: 先将已配制好的荧光素酶反应底物置室温平衡至约 25°C;。 检 测用 96孔板每孔加样品细胞裂解液上清 20 μ 1, 100 μ 1荧光素酶反 应底物。 稍涡旋混合后, 用单次读数检测。 检测值为相对光单位 Relative Light Units (RLU)。
实施例 3-2 荧光素酶细胞株的获得:
按照 GIBCO/BRL 产品说明书提供的方法, 用脂质体 Lipofectamine 2000将 pMAMneoLuc转染 BHK-21细胞, 48小时 后, 用 800 μ ^πι1 G418选择培养。 待抗性克隆形成后 (约 10天左 右), 用胰酶消化混合, 继续用 G418选择培养至 15天细胞长满, 传代后换用不含 G418的培养液培养, 将此细胞株命名为 BHK/Luc 细胞。
实施例 3-3 pSNAV-U6-LucRNAi对荧光素酶细胞株表达荧光 素酶的抑制:
每孔接种 2.5 X 104个 BHK-21/Luc 细胞, 24 小时后用 Lipofectamine 2000转染 pSNAV-U6-LucRNAi质粒( 0.3 μ g/1 μ 1 ), 5小时后换为 10% RPMI 1640。 27小时测荧光素酶活性。 每个试验 组设立 2个孔重复。 试验结果见表 3和说明书附图的图 5。
表 3. pSNAV-U6-LucRNAi对荧光素酶细胞林中荧光素酶表达 的抑制
不同的剂 孔 1 孔 2 量组
A 空白对照 104395 99869
B 72156.6 65734.9 pSNAV/U6/Luc 0.03 μ g
C 47861.9 55926.3
0.3
D 3 38324.1 36402 在说明书附图的图 5中, A为空白对照组的结果, B为 Ο.ΐ μ ΐ 组的结果, C为 0.5 μ 1组的结果, D为 Ι μ ΐ组的结果。
pSNAV-U6-LucRNAi对荧光素酶细胞株中荧光素酶表达的抑 制结果如表 3所示体内表达, 3 μ g抑制质粒降低荧光素酶表达最强 到 70%。说明体内从 DNA模板合成的 shRNA介导的 RNAi有剂量 效应, 转染的 RNAi质粒越多, 抑制效果越强。
本实验中我们研究了体内合成的 shRNA对转染的报告基因荧 光素酶的抑制效果。 我们的实验表明: 从转染的人 U6表达载体产 生的荧光素酶 shRNA 有效地和特异地抑制了荧光素酶细胞林 BHK-21/Luc细胞中荧光素酶的表达, 抑制强度最高达 70%, 并且 从 DNA模板合成的 shRNA介导的抑制效果表现出剂量效应, 转染 的 RNAi质粒越多, 抑制效果越强(参考文献 7 )。 本实验结果提供 了比转染化学合成的 siRNA更经济有效的方法。该方法适用于例如 原代细胞培养、 整体动物研究和基因治疗等难以导入体外合成的 siRNA的情况。 实施例 4 含有 LucR Ai 基因并能包装生产重組病毒 rAAV-LucRNAi的 AAV载体细胞株的建立
按照 GIBCO/BRL 产品说明书提供的方法, 用脂质体 Lipofectamine 2000将 pSNAV-U6-LucR Ai转染 BHK-21细胞, 48 小时后, 用 800 g/ml G418选择培养。 待抗性克隆形成后 (约 10 天左右), 用胰酶消化混合, 继续用 G418选择培养至细胞长满, 传 代后换用不含 G418 的培养液培养, 将此细胞株命名为 BHK/LucRNAi。 实施例 5 重组病毒 rAAV-LucRNAi的包装
按照参考文献 9' 10 ,将 AAV载体细胞林 BHK/LucRNAi扩大培 养, 所用培养液为含 10%胎牛血清的 RPMI1640。 在 600ml培养瓶 长满后, 转入转瓶(110mmX480mm, Wheaton公司产品)培养, 细胞长满后(每瓶约为 8X108个细胞)弃去培养液。 然后加入辅助 病毒 HSVl-rc/AUL2感染(MOI为 0.1 ), 低速转动吸附病毒 2小 时。 每个转瓶加 200ml无血清 1640培养液, 在 37°C低速转动培养。
48小时细胞完全病变、 容易脱落时, 盖紧瓶盖剧烈振摇, 将瓶壁上 的细胞全部洗脱至培养液中, 收集培养物进一步純化, 获得重组病 毒 rAAV-LucRNAi。 实施例 6 rAAV-LucRNAi病毒滴度测定
rAAV-LucRNAi病毒滴度测定参照文献 9' 10 , 采用点杂交方法 进行。 实施例 7 rAAV-LucRNAi病毒的体外抑制实验 参照文献 11进行,每孔接种 2.5 X 104个 BHK-21/LucRNAi细胞, 24小时后用 rAAV-LucRNAi病毒感染细胞( l XlOVg./孔), 1小时 后换为 10% RPMI 1640。 27小时测荧光素酶活性。 实施例 8 rAAV-LucRNAi病毒的小鼠体内抑制实验
用改进的流体动力学的转染方法 (参考文献 2·4 )将荧光素酶 siRNA或者是无关 siRNA与荧光素酶表达质粒共同注射,导入到成 年小鼠的肝中。 我们在活动物中取肝监测荧光素酶表达, 发现其表 达量依赖于报告质粒用量(未出示结果)。
我们的结果表明在成年小鼠中有 siRNA介导的对荧光素酶表达 的特异性抑制 (PO.0115 ) 而无关 siR As没有效果(Ρ<0·864; )。 荧光素酶 siRNAs降低荧光素酶的表达量平均为 81% ( ± 2.2% )。 这些发现表明 R Ai能够下调成年小鼠中基因的表达。
与 siRNAs不同 ,使用 RNA聚合酶 III启动子在体内能从 DNA 模板表达功能性的小发夹环 RNAs ( small hairpin RNA, shRNAs ), 它们引起基因抑制和 siRNAs —样有效。 同 源 shRNA ( pSNAV/U6/Luc )的表达抑制荧光素酶的表达高达 98%(士 0.6% ), 空的 shRNA表达载体没有效果(未出示结果); 将 shRNA反向插 入时阻止了基因沉默作用, 因为其改变了 R A聚合酶 III的终止并 且产生了不恰当结构的 shRNA。 这些发现表明质粒编码的 shRNAs 能够在成年小鼠中引起潜在的和特异的 RNAi反应。
RNAi 将应用于功能性基因组中或者去鉴定所设计的药物的靶 子。 它是一个比基因敲除小鼠更有前景的系统, 因为不需要费时的 杂交, 就能使成组基因同时失去功能。 目前基因治疗依赖于异位表 达外源蛋白质; 然而,通过用介导 shRNAs表达的 DNA载体沉默疾 病相关基因, RNAi技术最终补充了这种获得功能的方法。 我们的 RNAi导入的方法也适应于临床上发展病毒和非病毒基因转移载体。 我们所用的 U6 shRNA表达盒较小, 适合于通过 DNA依赖的 病毒载体导入到细胞中在病毒载体中联合使用标记基因和一个(或 多个) U6发夹环表达盒将促 因功能分析 (参考文献 8 )。 我们建 立的稳定抑制荧光素酶的 AAV/lucRNAi载体细胞系,可用于进行长 期的基因功能的研究。建立可诱导的 shRNA表达系统,研究其产物 对细胞生存必须的基因功能。 今后的工作包括构建携带各种目标基 因的 RNAi的 目关病毒 ( AAV )载体, 为进一步构建携带疾病相 关基因 RNAi可下调疾病相关基因的用于基因治疗的 AAV载体打下 基础。 以上实施例 1 - 8所引用的文献包括:
1. Harmon GJ., RNA interference (RNA干扰). Nature (《自 然》 ), 2002, 418:244-251;
2. Sharp PA. RNA interference-2001 (RNA 干扰 -2001). GENES & DEVELOPMENT (《基因 &发展》), 2001, 15: 485-490;
3. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAi in mammalian cells (― 种用于在哺乳动物细胞中稳定表达短干扰 R N A i系统). Science (《科学》),2002,296:550-553;
4. Sui G, Soohoo C, Affar EIB, et al. A DNA vector based RNAi technology to suppress gene expression in mammalian cells (用于在 哺乳动物细胞中抑制基因表达的基于 D N A载体的 RNAi技术) . PNAS(《美国国家科学院院刊》),2002, 99: 5515-5520;
5. Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells (通过在哺乳动物细胞中表达短干扰 R N A s和螺 旋 RNAs的 R N A干扰) . PNAS (《美国国家科学院院刊》), 2002, 99: 6047-6052;
6.伍志坚, 吴小兵,候云德.系列腺病毒伴随病毒载体的构建及 表达半乳糖苷酶的研究.病毒学报, 2000, 16: 1-6;
7. Paddison PJ, Caudy AA, Hannon GJ. Stable suppression of gene expression by RNAi in mammalian cells (在喷 动物细胞中通 过 RNAi稳定抑制基因表达). PNAS (《美国国家科学院院刊》). 2002, 99:1443-1448;
8. Miyagishi M, Taira K. U6 promoter-driven siRNAs with four uridine 3 Overhangs efficiently suppress targeted gene expression in mammalian cells (在哺乳动物细胞中通过具有四个尿嘧啶 3,突出端 的 U 6启动子控制的 siRNAs 有效地抑制靶基因表达) . Nature Biotech(《自然 生物技术》), 20: 497-500;
9. 吴小兵, 董小岩,伍志坚等.一种快速高效分离和纯化重组腺 病毒伴随病毒载体的方法。 科学通报, 2000, 45 ( 19 ): 2071-2075;
10.伍志坚, 吴小兵, 曹晖等.一种高效的重组腺伴随病毒载体 生产系统。 中国科学 C辑, 2001, 31 ( 5 ): 423-430;
11.伍志坚, 吴小兵等.重组腺伴随病毒载体介导的 hEPO转移 及表达。 生物化学与生物物理学报, 2002, 34 ( 2 ): 176-180。 实施例 9 用于治疗心血管疾病的可诱导 RNAi途径的重組腺 相关病毒:
通过对心血管疾病相关的研究进展的分析, 我们进行了下面的 设计。 所参考的相关的文献如下: ( Baartscheer A. 心力衰竭中 SERCA 的腺病毒基因转移, 一种有希望的治疗方法? Cardiovasc Res. 2001 Feb 1 ;49(2) :249-52. del Monte F, Harding SE, Dec GW,et al: 人心力衰竭中通过基因转移靶定受磷蛋白. Circulation. 2002 Feb 26;105(8):904-7. Gelband CH, Reaves PY, Evans J, et al.血管 紧张素 II 1型受体反义基因治疗防止高血压中肾脏血管钙离子动态 平衡发生改变. Hypertension. 1999 Jan;33(l Pt 2):360-5。 Martens, J. R.; Reaves, P. Y.; et al: 通 it^管紧张素 II 1型受体反义基因治疗 防止高血压中新血管和心脏病理生理的改变. Proc. Nat. Acad. Sci.
1998, 95: 2664-2669. Miyamoto MI, Monte F, Schmidt U, et al. SERCA2a 的腺病毒基因转移提高了向心力衰竭转变的主动脉捆住 的大鼠的左心室的功能. Pro Nat Acad Sci 2000;97: 793-8。 Pachori AS, Numan MT, Ferrario CM, et al. 用 AT(1)R-AS基因治疗的血 压独立的心脏肥大的变薄. Hypertension. 2002 May;39(5):969-75. Paradis, P.; Dali-Youcef, Ν·; Paradis, F. W.;et al: 在心肌细胞中过 度表达血管紧张素 II 1型受体诱导心脏肥大和改型. Proc. Nat. Acad. Sci. 2000,97: 931-936。 Periasamy M, Huke S. SERCA 泵水平是 Ca(2+)动态平衡和心肌收缩性的关键决定物. J Mol Cell Cardiol. 2001; Jun;33(6):1053-63. Schmidt U, Monte F, Miyamoto MI,et al. 通过肌质网 Ca2+-ATP 酶的腺病毒基因转移恢复衰老大鼠的心脏舒 张功能. Circulation 2000;101: 790-6 )。
实施例 9-1 治疗心力衰竭, 针对的靶基因 A是: 受磷蛋白基因 ( phospholamban )。
针对受磷蛋白基因 (PHOSPHOLAMBAN ) 的 SHRNA1: 其 编 码 区 为 受磷蛋 白 基 因 的 59-79 碱基 , 序 列 为
GCCCCAGCAAGCGCGTCAGAA ( SEQ ID NO.l )。
在此编码区的基础上采用大衔接头法设计所获的序列为: 5, -CGCCCCAGCAAGCGCGTCAGAACTATCGTACTTCTGACG CGCTTGCTGGGGCTTTTTAGATC-3 ' ( SEQ ID NO. 24 )。 针对受磷蛋白基因 (PHOSPHOLAMBAN ) 的 SHRNA2: 其 编码区为受磷蛋白基因的 73-93碱基, 序列为 GTC AGAACCTCC AGAACCTCT ( SEQ ID NO. 2 )。 LOOP环应用 GGACTCGAT。 下游引物: 5, -AAAAAGTCAGAACCTCCA GAACCTCTGGA CTCG
ATAGAGGTTCTGGAGGTTCTGACGGTGTTTCGTCCTT TCCACAA-3' ( SEQ ID NO. 25 )。 以下各 SHR AI方法中 LOOP 环均采用 TCAAGCTTC (内含 HINDIII位点)。 针对受磷蛋白基因 (PHOSPHOLAMBAN ) 的 SHR A3: 其 编码区为受磷蛋白基因的 59-78碱基, 序列为
GCCCCAGCAAGCGCGTCAGA ( SEQ ID NO. 3 )0 下游引物: 5, -AAAAAGACATATCAAGATGAGACAGATCAAGCTTCTCTGT CTCATCTTGATATGTCGGTGTTTCGTCCTTTCCACAA-3' ( SEQ ID NO. 26 )。 针对受磷蛋白基因 (PHOSPHOLAMBAN ) 的 LHR A:
用 Short sense primer和 Antisense primer 两条引物进行 PCR 扩增, 得到的针对受磷蛋白基因(phospholamban )的 IhRNA短片 段的长度为 535 bp。
用 Long sense primer和 Antisense primer 两条引物进行 PCR 扩增, 得到的针对受磷蛋白基因(phospholamban )的 IhRNA长片 段的长度为 652 bp。
用 Short sense primer和 Antisense primer 两条引物进行 PCR 扩增, 得到的针对受磷蛋白基因 (phospholamban ) 的 IhRNA, 将 长、 短片段首、 首相接, 两尾断形成新 IhRNA的首尾, 用设计的内 切酶位点连于载体。
Short sense primer: AAGT CCAATACCTT ACTCGC ( SEQ ID NO.4 , 编码区 7-26碱基)短片段。 Antisense primer: AAAA GTGGT GGCAA CGCAG ( SEQ ID NO. 5 )。
Long sense primer: TAAA AGGAG ACAGC TCGCG( SEQ ID NO. 6 )长片段。 实施例 9-2 治疗高血压, 靶基因 B: 血管紧张素 2受体 1型 ( angiotensin receptor 1 , ATR1 )
shRNA4: GCTGAAGACTGTGGCCAGTGT (编码区 174-194 碱基, SEQ ID N0.7。) 下游引物: 5, -GGATCCAAAAACTGAA GACTGTGGCCAGTGTTCAAGCTTCACACT
GGCCACAGTCTTCAGGGTGTTTCGTCCTTTCCACAA-3' ( SEQ ID NO.27 )。 实施例 10 用于治疗肿瘤的可诱导 R Ai途径的重组腺相关病 毒:
参考文献依次如下:
Folkman, J: 癌、 血管的、 类风湿的和其他疾病中的血管生成. Nature Med. 1995, 1: 27-31"
Fukumura, D.; Xavier, R.; Sugiura, T.; et al: 基质细胞中肿瘤 诱导的 VEGF启动子活性. Cell 1998.,94: 715-725。
Gonzalez-Suarez, Ε·; Samper, E.; Flores, J. Μ·; Blasco, M. A.: 具有短端粒的端粒酶缺陷小鼠能抗皮肤肿瘤发生. ature Genet. 2000,26: 114-117.。
Hinds, P. W.; Dowdy, S. F.; Eaton, E. N.;et al: 一种起癌基因功 能的人细胞周期蛋白基因. Proc. Nat. Acad. Sci. 1994, 91: 709-713 。
Klein, M.; Vignaud, J.-M.; Hennequin, V.; et al: 血管内皮生长 因子的增量表达是乳头状甲状腺癌的一种恶化预后标记. J. Clin. Endocr. Metab. 2001 , 86: 656-658。
Kolquist, K. A.; EUisen, L. W.; Counter, C. M.; et al: 在早期癌 前病变和正常组织中的部分细胞中 TERT 的表达. Nature Genet. 1998, 19: 182-186·。
Schrump DS, Chen A, Consoli U.通过反义细胞周期蛋白 D抑 制肺癌增殖. Cancer Gene Ther. 1996 Mar-Apr;3(2):131-5。
Shay, J. W.; Zou, Y.; Hiyama, E.; Wright, W. E.: 端粒酶和癌. Hum. Molec. Genet. 2001, 10: 677-685 <,
Wurl, P.; Kappler, M.; Meye, A.; et al: 在软组织肉瘤病人中共 表达 survivin和 TERT以及肿瘤相关死亡的危险. Lancet 2002, 359: 943-945. o
Yu, Q.; Geng, Y.; Sicinski, P.: 通过细胞周期蛋白 D1切除特异 保护防止乳腺癌. Nature 2001, 411: 1017-1021.。 实施例 10-1 靶基因 C : 血管内皮生长因子 165 ( vascular endothelial growth factor , VEGF )
shRNA5: GTCTATCAGCGCAGCTACTGC ( SEQ ID NO.39, 编码区 136-156碱基),
下游引物: 5, -GGATCCAAAAAGTCTATCAGCGCAGCTACT GCTCAAGCTTCGCAG
TAGCTGCGCTGATAGACGGTGTTTCGTCCTTTCCACAA
-3' ( SEQ ID NO.28 )。
shRNA6: GTGGACATCTTCCAGGAGTAC ( SEQ ID NO.8, 编码区 175-195碱基 ),下游引物: 5, -GGATCCAAAAAGTGGACAT CTTCCAGGAGTACTCAAGCTTCGTACT
CCTGGAAGATGTCCACGGTGTTTCGTCCTTTCCACAA- 3, ( SEQ ID NO.29 )。 shRNA7: GCTACTGCCATCCAATCGAGACC ( SEQ ID NO.9, 编码区 149-171碱基)。 下游引物: 5,
-GGATCCAAAAAGCTACTGCCATCCAATCGAGACCTCAAGC T
TCGGTCTCGATTGGATGGCAGTAGCGGTGTTTCGTCCT TTCCACAA-3' ( SEQ ID NO.30 )。
lhRNA:
Short sense primer: GAGGAGGGCAGAATCATCACGA ( SEQ ID NO.10, 编码区 95-116碱基)。
Antisense primer: GCCTTGCAACGCGAGTCTGT (编码区 502-521碱基, SEQ ID NO.ll )0
Long sense primer: CAATGACGAGGGCCTGGAGTG (编码 区 261-281碱基, SEQ ID N0.12 )0 长片段 426bp 短片段 260bp。 实施例 10-2 靶基因 D: 细胞周期蛋白 Dl ( cyclin Dl ) shRNA8: GAAGATCGTCGCCACCTGGAT (编码区 171-191 碱基, SEQ ID N0.13 )0 下游引物: 5, -GGATCCAAAAAGAAGA TCGTCGCCACCTGGATTCAAGCTTCATCCA
GGTGGCGACGATCTTCGGTGTTTCGTCCTTTCCACAA- 3, ( SEQ ID N0.31 )0
shRNA9: GAGGTCTGCGAGGAACAGAAG (编码区 196-216 碱基, SEQ ID N0.14 )。下游引物: 5' -GGATCCAAAAAGAGGTCT GCGAGGAACAGAAGTCAAGCTTCCTTCT
GTTCCTCGCAGACCTCGGTGTTTCGTCCTTTCCACAA-3 , ( SEQ ID NO.32 )0
shRNAlO: GAACAGAAGTGCGAGGAGGAG (编码区
208-228碱基, SEQ ID N0.15 )0 下游引物: 5, -GGATCCAAAAAGAACAGAAGTGCGAGGAGGAGTCAAGCT TCCTCC
TCCTCGCACTTCTGTTCGGTGTTTCGTCCTTTCCACAA- 3' ( SEQ ID NO.33 )0 lhRNA
Short sense primer: CGCGCCCTCGGTGTCCTACTTCA (编 码区 141-136碱基, SEQ ID NO.16
Antisense primer: ACGCTCCCCGCTGCCACCAT (编码区 604-623碱基, SEQ ID N0.17 )0
Long sense primer: GCTGCGGGCCATGCTGAAGG (编码 区 81-100碱基, SEQ ID NO.18 )0 长片段 543bp 短片段 510bp。 实施例 10-3 靶基因 E: 端粒酶 RNA成分 ( Telomerase R A,
TR )
在载体构建中我们采用了双 U6启动子分别控制下的双 shRNA 的串连方式。
shRNAll: GCCTTCCACCGTTCATTCTAG (编码区 98-118 碱基, SEQ ID N0.19 )0 下游引物: 5, -GGATCCAAAAAGCCTT CCACCGTTCATTCTAGTCAAGCTTCCTAGAA
TGAACGGTGGAAGGCGGTGTTTCGTCCTTTCCACAA-3 , ( SEQ ID NO.34 )
shRNA12: GAAGAGTTGGGCTCTGTCAGC ( 编码 区 255-275碱基, SEQ ID NO.20 )0 下游引物: 5, -GGATCCAAAAA GAAGAGTTGGGCTCTGTCAGCTCAAGCTTCGCTGA
CAGAGCCCAACTCTTCGGTGTTTCGTCCTTTCCACAA-3 , ( SEQ ID NO.35 )0 实施例 10-4 基因 F: 端粒酶逆转录组分 ( telomerase reverse transcriptase , TERT )
在载体构建中我们采用了双 U6启动子分别控制下的双 shRNA ( shRNAll和 shRNA13 ) 的串连方式。
shRNA13: GTGTCCTGCCTGAAGGAGCTG (编码区
220-240碱基, SEQ ID NO.21 )„ 下游引物: 5, -GGATCCAAAAA GTGTCCTGCCTGAAGGAGCTGTCAAGCTT
CCAGCTCCTTCAGGCAGGACACGGTGTTTCGTCCTTT CCACAA-3' ( SEQ ID NO.36 )。 实施例 11 用于治疗自身免疫疾病的可诱导 RNAi途径的重组 腺相关病毒:
治疗类风湿性关节炎, 靶基因肿瘤坏死因子 (tumor necrosis factor a , TNF-α- )0
shRNA14: GTGGAGCTGAGAGATAACCAG ( 编码 区 121-141碱基, SEQ ID NO.22 )„ 下游引物: 5, -GGATCCAAAAA GTGGAGCTGAGAGATAACCAGTCAAGCTTCCTGG
TTATCTCTCAGCTCCACGGTGTTTCGTCCTTTCCACAA- 3' ( SEQ ID NO.37 )0
shR A15: GATAACCAGCTGGTGGTGCCA (编码区 133-153 碱基, SEQ ID NO.23 )0 下游引物: 5, -GGATCCAAAAAGATAA CCAGCTGGTGGTGCCATCAAGCTTCTGG CACCACCAGCTGGTTATCGGTGTTTCGTCCTTTCCACAA-3' ( SEQ ID NO.38 )。

Claims

权 利 要 求
1. 一类携带了特定的 RNAi核苷酸片段的重组腺相关病毒, 由 以下成分构成:
1 )重组腺相关病毒外壳;
2 )特定的 RNAi核苷酸片段;
3 )对重组腺相关病毒外壳内包裹携带的特定的 RNAi核苷酸片 段进行转录、 表达调控的调控单元。
2.根据权利要求 1的重组腺相关病毒, 其中重组! ^目关病毒外 壳来源于 2型腺相关病毒。
3.根据权利要求 1的重组腺相关病毒, 其中重组腺相关病毒外 壳来源于 1型腺相关病毒。
4.根据权利要求 1的重組腺相关病毒, 其中重组腺相关病毒所 携带特定的 RNAi核苷酸片段是针对心血管疾病的。
5.根据权利要求 1的重组 目关病毒, 其中重组腺相关病毒所 携带特定的 RNAi核苷酸片段是针对肿瘤的;
6.根据权利要求 4的重组腺相关病毒, 其中针对心血管疾病的 特定的 ShRNAi核苷酸片段的核苷酸序列特征是:
5' -GCCCCAGCAAGCGCGTCAGAA-3'。
7.根据权利要求 5的重组腺相关病毒, 其中针对肿瘤疾病的特 定的 RNAi核苷酸片段的核苷 列特征是:
5' -GTCTATCAGCGCAGCTACTGC-3'。
8.根据权利要求 1的重组 M=目关病毒, 其中对特定的 RNAi核 苷酸片段进行转录、 表达调控的调控单元的结构是: 在 U6 snRNA 或 H1R A启动子控制下的可形成 shRNA产物的 AAV载体盾粒。
9.根据权利要求 1的重组 目关病毒,其中携带了特定的 RNAi 核苷酸片段的重组腺相关病毒可以用于治疗各种疾病。
10. 一种携带了特定的 RNAi核苷酸片段的重组 目关病毒的 制备方法, 其特征是, 所述的方法包括: 确定针对特定靶基因的用 于诱导 RNAi的目的序列, 构建在 U6 snRNA或 H1R A启动子控 制下的可形成 shRNA产物的 AAV载体质粒;再用该 AAV载体质粒 转染宿主细胞; 然后用重组 HSVl-rc病毒感染该宿主细胞。
PCT/CN2003/000939 2002-11-07 2003-11-07 Serie de virus adeno-associes recombinants convenant pour l'induction du chemin d'interference d'arn et therapie genique WO2004063380A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003284795A AU2003284795A1 (en) 2002-11-07 2003-11-07 Series of recombinant adeno-associated virus useful for inducing rnai pathway and gene therapy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN02149319.7 2002-11-07
CNA021493197A CN1498964A (zh) 2002-11-07 2002-11-07 可诱导RNAi途径的用于基因治疗的系列重组腺相关病毒

Publications (1)

Publication Number Publication Date
WO2004063380A1 true WO2004063380A1 (fr) 2004-07-29

Family

ID=32686813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2003/000939 WO2004063380A1 (fr) 2002-11-07 2003-11-07 Serie de virus adeno-associes recombinants convenant pour l'induction du chemin d'interference d'arn et therapie genique

Country Status (3)

Country Link
CN (1) CN1498964A (zh)
AU (1) AU2003284795A1 (zh)
WO (1) WO2004063380A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510786A (ja) 2004-08-23 2008-04-10 シレンティス・エセ・ア・ウ 眼内圧の上昇によって特徴付けられる眼の疾患のsiRNAによる治療
CN111235150A (zh) * 2020-03-11 2020-06-05 苏州世诺生物技术有限公司 用于抑制非洲猪瘟病毒复制的shRNA及其用途

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009088786A1 (en) * 2007-12-31 2009-07-16 Nanocor Therapeutics, Inc. Rna interference for the treatment of heart failure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999061642A1 (en) * 1998-05-27 1999-12-02 Cell Genesys, Inc. Recombinant aav vectors for gene therapy of hemophilia a
WO2001036623A2 (en) * 1999-11-05 2001-05-25 Avigen, Inc. Ecdysone-inducible adeno-associated virus expression vectors
WO2001075164A2 (en) * 2000-03-30 2001-10-11 Whitehead Institute For Biomedical Research Rna sequence-specific mediators of rna interference
WO2001094605A2 (en) * 2000-06-09 2001-12-13 University Of Florida Research Foundation, Inc. Recombinant aav vectors for gene therapy of obesity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999061642A1 (en) * 1998-05-27 1999-12-02 Cell Genesys, Inc. Recombinant aav vectors for gene therapy of hemophilia a
WO2001036623A2 (en) * 1999-11-05 2001-05-25 Avigen, Inc. Ecdysone-inducible adeno-associated virus expression vectors
WO2001075164A2 (en) * 2000-03-30 2001-10-11 Whitehead Institute For Biomedical Research Rna sequence-specific mediators of rna interference
WO2001094605A2 (en) * 2000-06-09 2001-12-13 University Of Florida Research Foundation, Inc. Recombinant aav vectors for gene therapy of obesity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510786A (ja) 2004-08-23 2008-04-10 シレンティス・エセ・ア・ウ 眼内圧の上昇によって特徴付けられる眼の疾患のsiRNAによる治療
CN111235150A (zh) * 2020-03-11 2020-06-05 苏州世诺生物技术有限公司 用于抑制非洲猪瘟病毒复制的shRNA及其用途
CN111235150B (zh) * 2020-03-11 2020-10-27 苏州世诺生物技术有限公司 用于抑制非洲猪瘟病毒复制的shRNA及其用途

Also Published As

Publication number Publication date
CN1498964A (zh) 2004-05-26
AU2003284795A1 (en) 2004-08-10

Similar Documents

Publication Publication Date Title
Sun et al. Multi-miRNA hairpin method that improves gene knockdown efficiency and provides linked multi-gene knockdown
Lu et al. Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and MicroRNA biogenesis
EP2164965B1 (en) A primary micro rna expression cassette
US20110229880A1 (en) Gene silencing
Gou et al. A novel approach for the construction of multiple shRNA expression vectors
WO2011114106A2 (en) Gene silencing
AU2009209571A1 (en) Methods and compositions capable of causing post-transcriptional silencing of gene expression in a synergic manner
Größl et al. A novel artificial microRNA expressing AAV vector for phospholamban silencing in cardiomyocytes improves Ca2+ uptake into the sarcoplasmic reticulum
Garraway et al. Design and evaluation of small interfering RNAs that target expression of the N-methyl-D-aspartate receptor NR1 subunit gene in the spinal cord dorsal horn
Herrera-Carrillo et al. Influence of the loop size and nucleotide composition on AgoshRNA biogenesis and activity
WO2003091433A1 (fr) Systeme d&#39;expression pour molecule d&#39;arn a tige-boucle ayant un effet d&#39;arni
Gou et al. Primer extension-based method for the generation of a siRNA/miRNA expression vector
Jenke et al. The nonviral episomal replicating vector pEPI-1 allows long-term inhibition of bcr-abl expression by shRNA
Shen et al. Reversal of multidrug resistance of gastric cancer cells by downregulation of TSG101 with TSG101siRNA
JPWO2005017154A1 (ja) 改良されたsiRNA分子およびこれを用いた遺伝子発現の抑制法
WO2004063380A1 (fr) Serie de virus adeno-associes recombinants convenant pour l&#39;induction du chemin d&#39;interference d&#39;arn et therapie genique
Hernández-Hoyos et al. Analysis of T-cell development by using short interfering RNA to knock down protein expression
US20210348167A1 (en) siNA MOLECULES, METHODS OF PRODUCTION AND USES THEREOF
Zhang et al. RNA interference, A potential strategy for isoform-specific phosphatidylinositol 3-kinase targeted therapy in ovarian cancer
Walchli et al. Vector-based delivery of siRNAs: in vitro and in vivo challenges
WO2004016780A1 (fr) Vecteur de virus adeno-associe inhibant le fonctionnement du gene par le rnai
Rinne et al. Adenovirus-mediated delivery of short hairpin RNA (shRNA) mediates efficient gene silencing in terminally differentiated cardiac myocytes
Jian et al. A simple strategy for generation of gene knockdown constructs with convergent H1 and U6 promoters
JP4228071B2 (ja) C型肝炎ウイルスのタンパク質合成及び/又はc型肝炎ウイルスの複製を抑制することができる二本鎖オリゴヌクレオチド
Sumimoto et al. The RNA silencing technology applied by lentiviral vectors in oncology

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP