WO2004062839A1 - Grooving cutting tool and throw-away tip - Google Patents

Grooving cutting tool and throw-away tip Download PDF

Info

Publication number
WO2004062839A1
WO2004062839A1 PCT/JP2003/017022 JP0317022W WO2004062839A1 WO 2004062839 A1 WO2004062839 A1 WO 2004062839A1 JP 0317022 W JP0317022 W JP 0317022W WO 2004062839 A1 WO2004062839 A1 WO 2004062839A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
tip
width direction
serrations
grooving
Prior art date
Application number
PCT/JP2003/017022
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoyoshi Sakamoto
Original Assignee
Mitsubishi Materials Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corporation filed Critical Mitsubishi Materials Corporation
Priority to AU2003296189A priority Critical patent/AU2003296189A1/en
Publication of WO2004062839A1 publication Critical patent/WO2004062839A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/04Cutting-off tools
    • B23B27/045Cutting-off tools with chip-breaking arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2205/00Fixation of cutting inserts in holders
    • B23B2205/02Fixation using an elastically deformable clamping member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2260/00Details of constructional elements
    • B23B2260/132Serrations

Definitions

  • the present invention relates to a grooving tool mainly used for performing grooving or parting-off on the outer periphery of a workpiece in turning and a throw-away tip (hereinafter, referred to as a chip) mounted on the grooving tool. Things.
  • a tip mounting seat having a pair of chip restraining surfaces opposed to each other is formed at a tip end portion of the cutting tool body extending along the axial direction.
  • the tip mounting seat has one end in the longitudinal direction on the upper surface.
  • a chip having a cutting edge formed on the ridge is mounted so that the cutting edge protrudes from the tool body toward the tip end in the axial direction.
  • the pair of chip binding surfaces press and fix the upper and lower surfaces of the chip by the elastic deformation of the cutting tool body as the clamping means.
  • These pair of chip binding surfaces are convex V-shaped along the axial direction, respectively.
  • the upper and lower surfaces of the chip are also formed in a concave V shape along the axial direction (longitudinal direction).
  • the contact surfaces where the pair of chip restraining surfaces and the upper and lower surfaces of the chip are in contact with each other.
  • they since they are merely V-shaped, they cannot be said to have a sufficiently large contact area, and it is difficult to secure high mounting rigidity of the chip. . Disclosure of the invention
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a grooving tool capable of maintaining a high mounting rigidity of a chip and a chip mounted on the grooving tool.
  • a grooved cutting tool includes a pair of tips opposed to each other at a tip end of a cutting tool body extending along an axial direction.
  • a tip mounting seat having a constraining surface is formed.
  • the tip mounting seat has a tip having a cutting edge formed on a ridge line on one end side in the longitudinal direction on the upper surface.
  • the pair of chip restraining surfaces are mounted so as to protrude to the distal end side, and the pair of chip restraining surfaces is a grooving tool for pressing and fixing the upper and lower surfaces of the chip by clamping.
  • a plurality of grooves and ridges extending along the direction are alternately arranged, and a selection is formed on each of the upper and lower surfaces of the chip, corresponding to the shape of the pair of chip constraint surfaces. In which so that a serration is formed.
  • a serration formed by alternately arranging a plurality of grooves and peaks is formed of two contact surfaces formed by a pair of chip restraining surfaces of the chip mounting seat and upper and lower surfaces of the chip being in contact with each other.
  • the contact surfaces in the form of a wave are formed, so that the contact area can be increased and the mounting rigidity of the chip can be increased.
  • the serrations are formed into a corrugated shape, for example, when the plurality of grooves (peaks) constituting the serration have the same shape, and the pitches of the selections formed on the pair of chip restraining surfaces (the upper and lower surfaces of the chip) are the same, respectively.
  • the chip can be inserted into the chip mounting seat even if some grooves and peaks to be engaged are misaligned, and the upper and lower surfaces of the chip can be pressed and fixed by a pair of chip restraining surfaces. This can cause the cutting edge to shift due to the incorrectly inserted tip.
  • the grooving tool of the present invention adopts the following configuration. That is, it is preferable that the chip can only be inserted at an accurate position, the groove portion and the crest portion located at positions where they are to be engaged with each other are accurately engaged, and erroneous insertion of the chip is prevented.
  • At least one of the selections formed on each of the pair of chip constraint surfaces has at least one groove and another groove. Are different from each other, or the shape of at least one peak is different from the shape of another peak
  • a pitch of the serration formed on one of the pair of chip restraining surfaces and a pitch of the selection formed on the other are different from each other.
  • the serrations respectively formed on the pair of chip constraint surfaces are preferably symmetrical with respect to a width direction central portion.
  • the cutting edge is also formed on the other end side ridge line in the longitudinal direction on the upper surface of the tip, the cutting edge formed on the other end side ridge is projected from the cutting tool body toward the front end side. The tip can be reattached to the tip, and the position of the cutting edge does not shift.
  • the chip according to the present invention is a chip in which a cutting edge is formed on a ridge line on one end side in a longitudinal direction on an upper surface opposed to a lower surface, wherein the upper and lower surfaces have a plurality of grooves extending along the longitudinal direction. Selections in which mountains are alternately arranged are formed.
  • the shape of at least one groove and the shape of another groove are different from each other.
  • the shape of at least one ridge and the shape of another ridge are different from each other, or the pitch of the selection formed on one of the upper and lower surfaces and the pitch of the serration formed on the other. It is preferable that the switches are different from each other.
  • the serrations formed on the pair of chip bundle surfaces are respectively symmetrical with respect to the center in the width direction. Further, it is preferable that a cutting edge is also formed on the other end side ridge line in the longitudinal direction on the upper surface.
  • FIG. 1 is a side view showing a grooving tool according to a first embodiment, which is a basic configuration of the present invention.
  • FIG. 2 is a top view showing a grooving tool according to the first embodiment, which is a basic configuration of the present invention.
  • FIG. 3 is a front end view showing the grooving tool according to the first embodiment, which is a basic configuration of the present invention.
  • FIG. 4 is a side view showing a chip of the grooving tool according to the first embodiment, which is a basic configuration of the present invention.
  • FIG. 5 is a top view showing a grooving byte chip according to the first embodiment, which is a basic configuration of the present invention.
  • FIG. 6 is a front end view showing a tip of a grooving tool according to the first embodiment, which is a basic configuration of the present invention.
  • FIG. 7 is an enlarged front view of an essential part for explaining a chip mounting state of the grooving tool according to the first embodiment, which is a basic configuration of the present invention.
  • FIG. 8 is an enlarged front view of an essential part for explaining a chip mounting state of a grooving byte according to a second embodiment of the present invention.
  • FIG. 9 is an enlarged front view of a main part for describing a chip mounting state of a grooving byte according to a third embodiment of the present invention.
  • FIG. 10 is an enlarged front view of an essential part for explaining a chip mounting state of a grooving byte according to a fourth embodiment of the present invention.
  • FIG. 11 is an enlarged front view of a main part for describing a chip mounting state of a grooving byte according to a fifth embodiment of the present invention.
  • FIG. 12 is an enlarged front view of an essential part for describing a chip mounting state of a grooving byte according to a sixth embodiment of the present invention.
  • FIG. 13 illustrates a state in which a grooving tool according to a seventh embodiment of the present invention is mounted on a chip.
  • FIG. 6 is an enlarged front view of a main part for performing the operation.
  • FIG. 14 is an enlarged front view of an essential part for explaining a chip mounting state of a grooving byte according to an eighth embodiment of the present invention.
  • FIG. 15 is an enlarged front view of an essential part for explaining a chip mounting state of a grooving tool according to a ninth embodiment of the present invention.
  • FIG. 16 is an enlarged front view of an essential part for explaining a chip mounting state of the grooving byte according to the tenth embodiment of the present invention.
  • FIG. 17 is an enlarged front view of an essential part for explaining a chip mounting state of the grooving byte according to the eleventh embodiment of the present invention.
  • FIG. 18 is an enlarged front view of an essential part for explaining a tip mounting state of the grooving tool according to the 12th embodiment of the present invention.
  • FIG. 19 is an enlarged front view of a main part for explaining a chip mounting state of the grooving byte according to the thirteenth embodiment of the present invention.
  • FIG. 20 is an enlarged front view of a main part for explaining a chip mounting state of the grooving byte according to the fourteenth embodiment of the present invention.
  • FIG. 21 is an enlarged front view of an essential part for explaining a chip mounting state of a grooving byte according to a fifteenth embodiment of the present invention.
  • FIG. 22 is an enlarged front view of an essential part for explaining a chip mounting state of the grooving byte according to the sixteenth embodiment of the present invention.
  • FIG. 23 is an enlarged front view of a main part for explaining a chip mounting state of the grooving byte according to the seventeenth embodiment of the present invention.
  • FIG. 24 is an enlarged front view of an essential part for explaining a tip mounting state of the grooving tool according to the eighteenth embodiment of the present invention.
  • FIG. 25 is an enlarged front view of an essential part for explaining a chip mounting state of the grooving byte according to the ninth embodiment of the present invention.
  • FIG. 26 is an enlarged front view of an essential part for explaining a chip mounting state of the grooving byte according to the 20th embodiment of the present invention.
  • FIG. 27 is an enlarged front view of a main part for describing a chip mounting state of the grooving tool according to the 20th embodiment of the present invention.
  • FIG. 28 is a side view showing the grooving tool according to the twenty-first embodiment of the present invention.
  • FIG. 29 is a side view showing the tip of the grooving tool according to the 21st embodiment of the present invention.
  • FIG. 30 is a top view showing a chip of the grooving pite according to the 21st embodiment of the present invention.
  • the grooving tool 10 has a tool body 11 that extends along the axial direction and forms a substantially quadrangular prism centered on the axis 0.
  • the tip 1 2 of the cutting tool body 11 has a thickness direction perpendicular to the direction of the axis O with its upper surface 12 A connected to the upper surface 11 A of the cutting tool body 11 via an inclined surface 11 B. Since it protrudes upward (in the vertical direction in FIGS. 1 and 3), it is thicker than the rear end portion of the tool body 11.
  • a slit 1 4 is formed until the position close to the above-mentioned inclined surface 11 B Is cut so that the tip 12 of the cutting tool body 11 is positioned at the upper tip 15 A located above the slit 14 and the lower tip located below the slit 14.
  • the tip is divided into 15B and 2B.
  • the upper end 15A and the lower end 15B are cut until the slit 14 is close to the inclined surface 11B of the cutting tool body 11.
  • the base portion on the rear end side becomes thinner, and the thinned portion can be elastically deformed in a direction approaching the lower end portion 15B with the fulcrum as a fulcrum.
  • the tip end surface 13 of the cutting tool body 11 corresponding to the lower end portion 15 B is provided with an axis O from one end side in the width direction (the lower side in FIG. 2 and the right side in FIG. 3).
  • a substantially flat plate-like projection 16 is formed so as to protrude toward the front end of the cutting tool, while the tip surface 13 of the cutting tool body 11 corresponding to the upper end 15A has one end in the width direction.
  • An arm-shaped protruding portion 17 protruding from the side portion toward the front end side in the direction of the axis ⁇ is formed so as to extend to an upper side of the above-mentioned substantially flat plate-shaped protruding portion 16.
  • the arm-shaped protrusion 17 is formed so as to extend to the upper side of the substantially plate-shaped protrusion 16, the lower surface 17 A of the arm-shaped protrusion 17 is The upper surface 16A of the substantially plate-shaped protrusion 16 is arranged to face the predetermined distance from the upper surface 16A, and the lower surface 17A of the arm-shaped protrusion 17 is located The upper surface 16 A of the substantially flat protruding portion 16 serves as the second chip restraining surface 32 in the chip mounting seat 30.
  • one end in the width direction of the tip end surface 13 of the cutting tool body 11 is located at the rear end side of the gap located between the first chip restriction surface 31 and the second chip restriction surface 32 in the direction of the axis ⁇ .
  • the wall portion 33 is formed so as to be recessed and to be recessed one step from the one end portion of the distal end surface 13 to the rear end side in the axis O direction so as to face the distal end side in the axis O direction. That is, a tip comprising a pair of tip restraining surfaces 31, 32 arranged opposite to each other on the tip end portion 12 of the cutting tool body 11, and a wall surface 33 facing the tip side in the direction of the axis ⁇ .
  • the mounting seat 30 is formed.
  • the first chip restraining surface 31 of the chip mounting seat 30 is formed on the arm-shaped projection 17 projecting from the upper end 15A, and the second chip restraining surface 31 of the chip mounting seat 30 is formed.
  • the chip constraining surface 32 is formed on a substantially plate-shaped protrusion 16 protruding from the lower protrusion 15B, and the upper end 15A is connected to the lower end 15B. Therefore, the first chip constraint surface 31 is also elastically deformable in a direction approaching the second chip constraint surface 32.
  • a plurality of grooves 4 1... and ridges 4 2... extending along the axis O direction (in a direction parallel to the axis O direction) are formed on the first chip constraint surface 31 in the chip mounting seat 30. Serrations 40 alternately arranged are formed.
  • a plurality of grooves 41 extending along the direction of the axis O (in a direction parallel to the direction of the axis ⁇ ) intersect with the ridges 42 on the second chip restraining surface 32 of the chip mounting seat 30. Serrations 40 which are arranged mutually are formed.
  • a plurality of The grooves 41 are substantially identical in shape, so that the depths of these grooves are maintained substantially constant, and the plurality of grooves 41 are substantially identical in shape. However, these mountain heights are maintained substantially constant with each other.
  • the pitch of the selection 40 is maintained substantially constant over substantially the entire length in the width direction (the left-right direction in FIG. 7), that is, the bottoms 41 A, 4 of the adjacent grooves 41, 41.
  • the distance in the width direction between 1 A is kept almost constant (The distance in the width direction between the tops 42 A and 42 A of the adjacent peaks 42 and 42 is kept almost constant Yes)
  • the selection 40 formed on the first chip constraint surface 31 is symmetrical with respect to the widthwise central portion of the first chip constraint surface 31, that is, the first chip. It is formed symmetrically with respect to a line X connecting the central portion in the width direction of the chip constraint surface 31 and the central portion in the width direction of the second chip constraint surface 32.
  • each of the grooves 41 and the ridges 42 is described as follows. It is composed of two flat side walls 43, 43, respectively, and the recess formed by the intersection of two side walls 43, 43 adjacent in the width direction becomes the groove 41, The protrusion formed by the intersection of the two side wall surfaces 4 3, 4 3 adjacent in the direction is the peak 42.
  • the side wall surfaces 43 located at both ends in the width direction, are formed. Constitute half of the mountain 42.
  • the inclination angle between each of the flat side walls 4 3, which constitute the plurality of grooves 4 1, and the ridges 4 2, and the straight line X (the narrow angle formed by the side wall surface 4 3, and the straight line X) ) Indicates that, although the side walls 43 adjacent in the width direction have different inclination directions, all side walls 43 are set to be substantially the same (the absolute value of the inclination angle is It is set to be almost the same).
  • the bottom 41 A of the groove 41 forming the intersection of the two side walls 43, 43 is formed by a flat surface extending in a direction orthogonal to the straight line X (even a curved surface that is smoothly curved).
  • the top portion 4 2 A of the peak portion 42 forming the intersection of the two side walls 4 3, 4 3 is also flat extending in the direction perpendicular to the straight line X. It is composed of surfaces (which may be smoothly curved surfaces).
  • the above-mentioned groove depth and peak height are determined by the above-mentioned flat surface forming the bottom 41 A of the groove 41 and the flat surface forming the top 42 A of the peak 42 adjacent to the groove 41. Refers to the distance in the straight X direction.
  • the serration 40 formed on the second chip restraining surface 32 is viewed in a cross section orthogonal to the direction of the axis ⁇ , as can be understood from FIG. 7, the serration 40 is formed on the first chip restraining surface 31. It has almost the same shape as the selected selection 40.
  • the chip 50 mounted on the chip mounting seat 30 as described above has a substantially rectangular parallelepiped shape as shown in FIGS. 4 to 6, and the upper surface 51 opposing the lower surface 52. Is perpendicular to the longitudinal direction P of the ridge line at one end (the left side in FIGS. 4 and 5) and the other end (the right side in FIGS. 4 and 5) of the chip 50 in the longitudinal direction P. Cutting edges 53, 54 extending in the longitudinal direction are formed respectively, and the ridges at both ends in the width direction (vertical direction in FIG. 5) at one end and the other end in the longitudinal direction P of the chip 50 are cut. A pair of transverse cutting edges 53A, 53A and a pair of transverse cutting edges 54A, 54A are formed on each of the blades 53, 54 so as to intersect each other via a part of the corner.
  • the end faces 55, 56 connected to the cutting edges 53, 54 and facing one end and the other end in the longitudinal direction P are flank surfaces of the cutting edges 53, 54, and are provided on the lower surface 52 side.
  • the tip 50 is inclined toward the center in the longitudinal direction P of the tip 50 to give a positive clearance angle, and the transverse cutting edges 53 A, 53 A and 54 A, The side facing the both ends in the width direction following the 54 A is the flank of the transverse cutting edges 53 A, 53 A and 54 A, 54 A.
  • the tip 50 is inclined so as to move toward the center in the width direction of the chip 50, so that a positive clearance angle is given.
  • Surfaces 57 and 58 are formed, and a central portion 51A of the upper surface 51 connecting the rake surfaces 57 and 58 is provided along the longitudinal direction P (in a direction parallel to the longitudinal direction P).
  • a serration 60 is formed by alternately arranging a plurality of extending grooves 61 and ridges 62.
  • a plurality of grooves 61 extending along the longitudinal direction P (in a direction parallel to the longitudinal direction P) and peaks 62 are alternately arranged.
  • One part 60 is formed.
  • the plurality of grooves 61 forming the serration 60 When viewed in a cross section orthogonal to the longitudinal direction P (the direction of the axis O), the plurality of grooves 61 forming the serration 60 have substantially the same shape, so that the depths of these grooves are substantially constant. Are maintained and the heights of the ridges 62 are maintained substantially constant by making the ridges 62 have substantially the same shape. Also, the pitch of the serration 60 is maintained substantially constant over substantially the entire length in the width direction (the left-right direction in FIGS.
  • the serration 60 formed in the central portion 51A of the upper surface 51 is symmetrical with respect to the widthwise central portion of the upper surface 51 (central portion 51A). It is formed symmetrically with respect to a straight line Y connecting the center in the width direction of 51 (central portion 51 A) and the center of the lower surface 52 in the width direction.
  • each of the two flat side walls 6 3, 6 3 is composed of two flat side walls 6 3, 6 3, and a recess formed by the intersection of two adjacent side walls 6 3, 6 3 in the width direction becomes a groove 6 1.
  • the convex portion formed by the intersection of two side wall surfaces 6 3, 6 3 adjacent in the direction is a mountain portion 62.
  • the side wall surfaces located at both ends in the width direction are formed.
  • 3 constitutes a half groove 6 1.
  • the inclination angle between each of the flat side walls 6 3, which constitute the plurality of grooves 6 1 and the peaks 6 2, and the straight line Y is determined by the side walls 6 3, 6 adjacent in the width direction.
  • the bottom 61A of the groove 61 which forms the intersection of the two side walls 63, 63, is formed by a smoothly curved curved surface (even a flat surface extending in a direction perpendicular to the straight line X).
  • the top 6 2 A of the peak 6 2 which forms the intersection of the two side walls 6 3, 6 3 is a flat surface extending in the direction orthogonal to the straight line X. It is composed of surfaces (which may be smoothly curved surfaces).
  • the above groove depth and peak height are determined by the straight line between the curved surface forming the bottom 61A of the groove 61 and the flat surface forming the top 62A of the peak 62 adjacent to the groove 61. Refers to the distance in the X direction.
  • the serration 60 formed on the lower surface 52 is viewed in a cross section orthogonal to the direction of the axis 0, as can be understood from FIGS. 6 and 7, the serration 60 corresponds to the central portion 51A of the upper surface 51. It has substantially the same shape as the formed selection 60.
  • the longitudinal direction P is parallel to the axis O direction of the byte body 11, and the end face 55 facing one end in the longitudinal direction P is the tip of the axis ⁇ direction.
  • the blade 53 is made to protrude from the substantially flat protruding portion 16 of the cutting tool body 11 to the tip end side in the direction of the axis O.
  • the central portion 51A of the upper surface 51 of the chip 50 is disposed so as to face the first chip restraining surface 31 of the chip mounting seat 30 and is brought into contact with each other, so that the lower surface 51 of the chip 50 Are arranged so as to face the second chip restraining surface 32 of the chip mounting seat 30 and are brought into contact with each other.
  • the other end of the chip 50 in the longitudinal direction P (the rear end in the direction of the axis O) is connected to the other end.
  • the facing end surface 56 is arranged to face the wall surface 33 facing the tip end side in the direction of the axis ⁇ of the chip mounting seat 30 and is in contact with each other.
  • the first chip restraining surface 31 of the chip mounting seat 30 and the central portion 51 A of the upper surface 51 of the chip 50 have a plurality of grooves 4 1,. ... and mountains Since the selections 40 and 60 are formed by alternately arranging the parts 4 2..., 6 2, the first chip restraining surface 31 and the upper surface 51 of the chip 50 are formed. As shown in FIG. 7, the contact surface formed when the central portion 51 A of the two contacts each other forms a corrugated shape in which the serrations 40 and 60 are interlocked.
  • the second chip restraining surface 32 of the chip mounting seat 30 and the lower surface 52 of the chip 50 have a plurality of grooves 4 1..., 6 1. ., 62 are alternately arranged, so that the second chip restraining surface 32 and the lower surface 52 of the chip 50 are mutually connected.
  • the contact surface formed by contacting each other also has a wave shape in which the selections 40 and 60 are interdigitated.
  • the center in the width direction of the first chip restraining surface 31 in the chip mounting seat 30 is connected to the center in the width direction of the second chip restraining surface.
  • the straight line X and the straight line Y connecting the widthwise central portion of the upper surface 51 (center portion 51A) of the chip 50 and the widthwise central portion of the lower surface 52 are matched.
  • the lower end 1 of the tip body 1 1 of the cutting tool body 11 is inserted so that the clamp port 18 as a clamping means passes through the upper end 15 A of the tip 12 of the cutting tool body 11.
  • the head 18A of this clamp port 18 is fitted into the step 20 formed at the upper end 15A, and is screwed into the female thread 19 formed at 5B. 20 is pressed.
  • the upper end portion 15A is elastically deformed in a direction approaching the lower end portion 15B, and is formed into an arm-shaped projection 17 projecting from the upper end portion 15A.
  • the first chip constraining surface 31 is also elastically deformed in a direction approaching the second chip constraining surface 32 formed on the substantially flat protrusion 16 protruding from the lower protrusion 15B.
  • the first chip restraining surface 31 and the second chip restraining surface 32 of the chip mounting seat 30 are brought close to each other by the clamp port 18 as a clamping means, 3 1 and the second chip restraining surface 32 press and fix the central portion 51 A of the upper surface 51 of the chip 50 and the lower surface 52, and the chip 50 is mounted on the chip mounting seat 30. It has been fixed.
  • the grooving tool 10 on which the chip 50 is mounted in this way is formed on one end side ridge line in the longitudinal direction P on the upper surface 51 of the chip 50, and the substantially flat projecting portion of the tool body 11 is formed.
  • the first chip restraining surface 31 and the second chip restraining surface of the chip mounting seat 30 when the chip 50 is mounted and fixed on the chip mounting seat 30, the first chip restraining surface 31 and the second chip restraining surface of the chip mounting seat 30.
  • a plurality of grooves 4 extending along the direction of the axis ⁇ form a contact surface formed by contact between the central portion 51 of the upper surface 51 and the lower surface 52 of the upper surface 51 of the chip 50.
  • 61, ... and peaks 42, ..., 62 are alternately arranged in a wave shape in which selections 40, 60 are combined.
  • the tip 50 mounted on the tip mounting seat 30 is a transverse cutting edge connected via a corner to a cutting edge 53 protruding from the cutting tool body 11 toward the tip side in the direction of the axis O. Since it has 53 A and 53 A, it is not only when feeding to the tip side in the axis ⁇ direction is applied, such as in the above-mentioned grooving and parting-off cutting, but also crosses in the axis ⁇ direction. Even when the lateral feed is given, the cutting can be performed by causing the horizontal cutting blades 53 A and 53 A to act on the work.
  • the plurality of grooves 41 1, 61, and the ridges 42, 62, constituting the above-mentioned serration structure extend along the axis ⁇ . Therefore, it is possible to reliably suppress the displacement of the chip 50 even when a cutting load is applied in a lateral direction intersecting with the axis O direction.
  • the selections 40, 40 formed on the first chip restraining surface 31 and the second chip restraining surface 32 of the chip mounting seat 30 are in the width direction. It is symmetrical with respect to the central part, and the serrations 60, 60 formed on the central part 51A of the upper surface 51 and the lower surface 52 of the chip 50 are symmetrical with respect to the central part in the width direction. It has been.
  • the longitudinal direction P on the upper surface 51 of the chip 50 If the cutting edge 53 (and the horizontal cutting edge 53 A, 53 A) formed on the ridge line on one end side of the tip is worn, the tip 50 is moved to the end face 5 facing the other end side in the longitudinal direction P.
  • the cutting edge 5 4 (and the horizontal cutting edges 54 A, 54 A) formed on the other end of the upper surface 51 in the longitudinal direction P is oriented to the tip side in the direction of the axis ⁇ .
  • the plurality of grooves 4 1,..., 6 1,. 2 "', 62" have the same shape, and the serrations 40, 40 (60) formed on the pair of chip constraining surfaces 31, 32 (the upper and lower surfaces 51, 52 of the chip) respectively. , 60 0) have the same pitch, so that the groove 4 1 (groove 6 1) and the peak 6 1 to be engaged
  • the chip 50 can be inserted into the chip mounting seat 30, and the upper and lower surfaces 51, 52 of the chip 50 can be connected to a pair of chip restraining surfaces. Since it can be pressed and fixed by 31 and 32, there is a possibility that the position of the cutting edge 53 (54) may be displaced in a state where the tip 50 is incorrectly inserted.
  • the pair of chip restraining surfaces 3 1, 3 2 For at least one of the formed selections 40, 40, the shape of at least one groove 41 and the shape of the other grooves 41 are different from each other.
  • the shape of at least one peak 42 and the shape of the other peaks 42 are different from each other), or the pitch of the serration 0 formed on one of the pair of chip constraint surfaces 31, 32. And by making the pitch of the serrations 40 formed on the other side different from each other, it is possible to insert the chip 50 only at a correct position, thereby eliminating the possibility of the chip being erroneously inserted. Is preferred.
  • the grooving tool 10 which employs a configuration capable of preventing erroneous insertion of the chip 50, will be specifically described.
  • the same parts as those in the embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • FIGS. 8 and 9 which are views when viewed from the tip side in the direction of the axis O
  • the width direction (see FIG. And the left and right direction in FIG. 9)
  • One ridge 42 located at the center is formed to be slightly larger than the other ridges 42 and one ridge located at the center in the width direction.
  • the peak height of 42 is larger than the peak height of the other peaks 42 ...
  • a selection 60 corresponding to the serration 40 formed on the first chip constraining surface 31 is formed on the central portion 51A of the upper surface 51 of the chip 50. I have.
  • the distance in the width direction of the flat surface formed by the bottoms 4 1 A of the grooves 41 in the serration 40 formed on the first chip restraining surface 31 is one peak located at the center in the width direction.
  • the bottoms 41 A, 41 A of the grooves 41, 41 adjacent to 42 they are set to L and set to be substantially the same as the serrations 40 formed on the second chip constraint surface 32.
  • it is set to L1 and set to be larger than the serration 40 formed on the second chip constraint surface 32.
  • the distance in the width direction of the flat surface formed by the bottom portions 41 A of the grooves 41 in the selection 40 formed on the first chip constraint surface 31 is all Is set to a substantially constant L, and is substantially the same as the cell 40 formed on the second chip constraint surface 32.
  • the distance in the width direction between the tops 42A, 42A of the adjacent peaks 42, 42 in the selection 40 formed on the first chip constraint surface 31 is the widthwise center. Is set to P between one of the peaks 42 located adjacent to each other and the peaks 42 and 42 adjacent thereto, and the selection 40 formed on the second chip restraining surface 32 is set to P. In addition to the above, it is set to P1 and set to be smaller than the serration 40 formed on the second chip constraint surface 32 except for these.
  • the serration 40 formed on the first chip constraining surface 31 has its width direction (FIG. 1).
  • One ridge 42 located at the center is formed so as to be slightly smaller than the other ridges 42 and one located at the center in the width direction.
  • the height of the mountain 42 is smaller than the height of the other mountain 42.
  • a serration 60 corresponding to the serration 40 formed on the first chip constraint surface 31 is formed in the central portion 51A of the upper surface 51 of the chip 50.
  • the distance in the width direction of the flat surface formed by the bottoms 41 A of the grooves 41 in the selection 40 formed on the first chip constraint surface 31 is one of the distances in the width direction center.
  • L1 is set to be larger than the selection 40 formed on the second chip constraint surface 32. In addition to these, they are set to L and set to be substantially the same as the selection 40 formed on the second chip constraint surface 32 except for these.
  • the distance in the width direction of the flat surface formed by the bottoms 41 A of the grooves 41 in the selection 40 formed on the first chip constraint surface 31 is all Is set to a substantially constant L, and is substantially the same as the serration 40 formed on the second chip constraint surface 32.
  • the distance in the width direction between the tops 42A, 42A of the adjacent peaks 42, 42 in the selection 40 formed on the first chip constraint surface 31 is the widthwise center. Is set at P 1 between one peak 42 located adjacent to the peak 42 and the peaks 42 adjacent to the peak 42, and the selection 40 formed on the second chip constraint surface 32 is set to P 1. In addition to the above, it is set to P and set to be substantially the same as the serration 40 formed on the second chip constraint surface 32 except for these. In the sixth and seventh embodiments of the present invention, it can be understood from FIGS.
  • one groove 41 located at the center in the width direction corresponds to the other groove 4.
  • the groove depth of one groove 41 located at the center in the width direction is larger than the groove depth of the other grooves 41.
  • a selection 60 corresponding to the selection 40 formed on the first chip constraining surface 31 is formed on the central portion 51A of the upper surface 51 of the chip 50. Have been.
  • the distance in the direction is set to P1 between the peaks 42, 42 adjacent to one groove 41 located at the center in the width direction, and is formed on the second chip restraining surface 32.
  • it is set to be larger than the serration 40, and other than that, it is set to P and set to be substantially the same as the selection 40 formed on the second chip constraint surface 32.
  • the distance in the width direction of the flat surface formed by the bottoms 4 1 A of the grooves 4 1 in the serration 40 formed on the first chip restraining surface 31 is equal to that of one groove 41 located at the center in the width direction.
  • it is set to L1 and is set to be larger than the serration 40 formed on the second chip constraint surface 32.
  • Moni in addition to this, set L, and is approximately set to the same as the second Sereshiyon 4 0 formed on the chip restraining surface 3 2.
  • the distance in the width direction of the flat surface formed by the bottoms 41 A of the grooves 41 in the serration 40 formed on the first chip constraint surface 31 is substantially the same. It is set to a constant L and is substantially the same as the cell 40 formed on the second chip constraint surface 32.
  • the distance in the width direction between the tops 42A and 42A of the adjacent peaks 42 and 42 in the serration 40 formed on the first chip constraint surface 31 is located at the center in the width direction. Between the peaks 4 2, 4 2 adjacent to one groove 41, it is set to P 1 and set to be larger than the serration 40 formed on the second chip restraining surface 32. Otherwise, it is set to P and set to be substantially the same as the selection 40 formed on the second chip constraint surface 32.
  • FIGS. 14 and 15 are views when viewed from the tip side in the direction of the axis O when viewed in a cross section orthogonal to the direction of the axis 0.
  • one groove 41 located at the center in the width direction corresponds to the other groove 4.
  • the groove depth of one groove 41 located at the center in the width direction is smaller than the groove depth of the other grooves 41.
  • a serration 60 corresponding to the serration 40 formed on the first chip constraint surface 31 is formed in the central portion 51A of the upper surface 51 of the chip 50.
  • the width direction between the tops 42 A and 42 A of the adjacent peaks 42 and 42 in the serration 40 formed on the first chip constraint surface 31 is set to P 1 and the distance formed on the second chip restraining surface 32 is set to P 1.
  • P 1 the distance between the peaks 42 and 42 adjacent to one groove 41 located at the center in the width direction
  • P 2 the distance formed on the second chip restraining surface 32.
  • it is set to be smaller than the section 40, and in other cases, it is set to P and is set to be substantially the same as the selection 40 formed on the second chip constraint surface 32.
  • the distance in the width direction of the flat surface formed by the bottoms 4 1 A of the grooves 4 1 in the serration 40 formed on the first chip restraining surface 31 is equal to that of one groove 41 located at the center in the width direction.
  • it is set to L and is set to be substantially the same as the selection 40 formed on the second chip constraint surface 32.
  • it is set to L 1 is greatly set than selenides one Chillon 4 0 formed on the second chip restraining surface 3 2.
  • the distance in the width direction of the flat surface formed by the bottoms 41 A of the grooves 41 in the selection 40 formed on the first chip constraint surface 31 is: All of them are set to a substantially constant L, and are almost the same as the serrations 40 formed on the second chip constraint surface 32.
  • the distance in the width direction between the tops 42A, 42A of the adjacent peaks 42, 42 in the serration 40 formed on the first chip constraint surface 31 is located at the center in the width direction. Between the peaks 4 2, 42 adjacent to one groove 41, which is set to P 1 and smaller than the serration 40 formed on the second chip constraint surface 32. Otherwise, it is set to P and set to be substantially the same as the selection 40 formed on the second chip constraint surface 32.
  • FIGS. 16 and 17 are views when viewed from the tip side in the direction of the axis O when viewed in a cross section orthogonal to the direction of the axis ⁇ .
  • one peak portion 42 located in the center in the width direction is the other. Is formed so as to be slightly larger (smaller) than the peaks 4 2... of the other peaks 4 2... located at the center in the width direction.
  • the serrations 40 formed on the first chip constraining surface 31 and the second chip constraining surface 3 ′ 2 are different from the first embodiment.
  • 40 are two grooves 41, 41 and three peaks 42, respectively (half peaks 42, 42 located at both ends in the width direction). (Including two).
  • a serration 60 corresponding to the selection 40 formed on the first chip constraint surface 31 is formed in the central portion 51 A of the upper surface 51 of the chip 50. I have.
  • the width between the tops 42 A, 42 A of the adjacent peaks 42, 42 in the selection 40 formed on the first chip constraint surface 31 is set to a substantially constant P for all (two), and is substantially the same as the serration 40 formed on the second chip constraint surface 32.
  • the distance in the width direction of the flat surface formed by the bottoms 41A of the grooves 41 in the serration 40 formed on the first chip constraint surface 31 is set to L for all (two). Approximately the same as the selection 40 formed on the second chip constraint surface 32 Is set to
  • the width direction between the tops 42A and 42A of the adjacent peaks 42 and 42 in the serration 40 formed on the first chip constraint surface 31 is set to a substantially constant P for all (two), and is substantially the same as the selection 40 formed on the second chip constraint surface 32.
  • the distance in the width direction of the flat surface formed by the bottoms 4 1 A of the grooves 41 in the serration 40 formed on the first chip restraining surface 31 is one peak located at the center in the width direction.
  • the bottoms 41 A, 41 A of the grooves 4 1, 41 adjacent to 42, all (two) are set to L 1 and the serrations 4 formed on the second chip constraint surface 32 are set. It is set larger than 0.
  • FIGS. 18 to 20 are views when viewed from the tip side in the axis O direction.
  • the serration 40 formed on the first chip constraining surface 31 the half peaks 42, 42 located at both ends in the width direction (left and right directions in FIGS. 18 to 20) are formed.
  • a serration 60 corresponding to the selection 40 formed on the first chip constraint surface 31 is formed in the central portion 51 A of the upper surface 51 of the chip 50. I have.
  • the serrations 40, 40 formed on the first chip constraining surface 31 and the second chip constraining surface 32 respectively, have peaks 4 at the center in the width direction.
  • the selections 40, 40 formed on the first chip constraining surface 31 and the second chip constraining surface 32 are respectively located at the center portions in the width direction.
  • the groove 41 is located at
  • the serrations 40 and 40 formed on the first chip constraining surface 31 and the second chip constraining surface 32 respectively have a peak 42 in the center in the width direction.
  • the selections 40 and 40 formed on the first chip constraint surface 31 and the second chip constraint surface 32 are different from the first and second embodiments.
  • 40 is composed of a small number of two grooves 4 1, 4 1 and three peaks 4 2... (Including two half peaks 4 2, 4 2 located at both ends in the width direction). It has been done.
  • FIGS. 21 to 23 are views when viewed from the tip side in the axis ⁇ direction.
  • one peak portion 4 2 located at the center in the width direction (left-right direction in FIGS. 21 to 23)
  • the inclination angle between each of the side walls 4 3, 4 3 constituting the portion 4 1) and the straight line X is formed on the other side wall surface 4 3 — (and the second chip constraint surface 32).
  • Each of the side walls 4 3-constituting the plurality of grooves 41 and the peaks 42 of the serration 40 is formed so as to be larger than the inclination angle between the straight line X and the central part in the width direction.
  • the height of one peak 42 (groove depth of groove 41) is smaller than the height of other peaks 42 (groove depth of groove 41 %) To have.
  • a selection 60 corresponding to the serrations 40 formed on the first chip constraint surface 31 is formed on the central portion 51A of the upper surface 51 of the chip 50. I have.
  • the serrations 40, 40 formed on the first chip constraining surface 31 and the second chip constraining surface 32, respectively have peaks 4 in the center in the width direction. 2 and the height of one peak 4 2 located at the center in the width direction of the selection 40 formed on the first chip restraint surface 31 is the same as the height of the other peaks 4 2.
  • the serrations 40, 40 formed on the first chip constraining surface 31 and the second chip constraining surface 32, respectively are located at the center in the width direction. With the groove portion 41 positioned, the groove depth of one groove portion 41 located at the center in the width direction of the selection 40 formed on the first chip restraining surface 31 is the same as the groove depth of the other groove portions 4 1.
  • the serrations 40, 40 formed on the first chip constraining surface 31 and the second chip constraining surface 32 respectively, have the peaks 42 at the center in the width direction.
  • the height of one peak 42 located at the center in the width direction of the selection 40 formed on the first chip constraint surface 31 is smaller than the height of the other peaks 42.
  • the serrations 40 and 40 formed on the first chip constraint surface 31 and the second chip constraint surface 32 are respectively 2
  • the book is composed of a small number of two grooves 41, 41 and three peaks 42 (including two half peaks 42, 42 located at both ends in the width direction).
  • the selection 40 formed on the first chip restraining surface 31 is located at the center in the width direction (the horizontal direction in FIGS. 24 and 25).
  • One groove 41 is formed so as to be wider than the other grooves 41.
  • the groove width of one groove 41 located in the center in the width direction is the same as that of the other grooves 41.
  • One ridge 42 which is larger than the width or located at the center in the width direction, is formed to be wider than the other ridges 42, and the center in the width direction is formed.
  • the peak width of one peak 42 located in is larger than the peak width of the other peaks 42.
  • a serration 60 corresponding to the selection 40 formed on the first chip constraint surface 31 is formed in the central portion 51 A of the upper surface 51 of the chip 50. I have.
  • one groove 41 located at the center in the width direction of the selection 40 formed on the first chip restraining surface 31 has a plurality of substantially identical shapes.
  • one peak 42 located at the center in the width direction of the serration 40 formed on the first chip constraint surface 31 has a plurality of grooves 4 of substantially the same shape.
  • a plurality of ridges 4 2 ... of the same shape as 1 ... are alternately arranged at a substantially constant pitch.
  • the shape is such that two adjacent peaks 42, 42 of the arrayed serrations 40 are connected.
  • the shape of at least one groove 41 and the shape of the other grooves 41 are made different from each other (at least one The shape of the peak 42 is different from the shape of the other peaks 42.
  • one ridge 41 located at the center in the width direction of the selection 40 formed on the first chip constraint surface 31 is formed.
  • one groove portion 42 located at the center in the width direction of the serration 40 formed on the first chip restraint surface 31 is slightly larger or smaller.
  • the sides forming the two peaks 4 2, 4 2 located at both ends in the width direction of the selection 40 formed on the first chip constraint surface 31 are increased, and in the fifteenth to seventeenth embodiments, the selection 40 formed on the first chip constraint surface 31 is reduced.
  • the groove width or the peak part 42 of one groove part 41 located at the center in the width direction of the serration 40 formed on the first chip constraint surface 31 is set. Mountain width is increased.
  • the serrations 40, 40 formed on the pair of chip constraint surfaces 31, 32, and the upper and lower surfaces 51, 52 of the chip 50 are formed. Since the formed serrations 60 and 60 are symmetrical with respect to the center in the width direction, respectively, even if the above-described configuration for preventing incorrect insertion of the chip 50 is adopted, The cutting edge 54 formed on the ridge line on the other end of the tip 50 can be remounted so that it protrudes from the cutting tool body 11 toward the tip end in the direction of the axis 0, and it can be used twice. You can do it.
  • FIG. 26 is a view when viewed from the tip side in the direction of the axis ⁇ when viewed in a section orthogonal to the direction of the axis ⁇
  • the first chip The pitch P1 of the selection 40 formed on the constraint surface 31 and the pitch P of the serration 40 formed on the second chip constraint surface 32 are different from each other.
  • the pitches 1 and P of the serrations 40 and 40 formed on the first chip constraining surface 31 and the second chip constraining surface 32 respectively correspond to the width direction (FIG. 2). (Left-right direction in FIG. 6), and is maintained substantially constant over substantially the entire length, and the relationship between these pitches PI and P is defined as P 1 ⁇ P and ⁇ ⁇ 1 ⁇ ⁇ (n: integer). -ing
  • a serration 60 corresponding to the serration 40 formed on the first chip constraint surface 31 is formed in the central portion 51A of the upper surface 51 of the chip 50.
  • One pitch is different from the other pitch.
  • the pitch P1 of the serration 40 formed on the first chip constraint surface 31 is the second chip constraint.
  • the pitch P is smaller than the pitch P of the serrations 40 formed on the surface 32.
  • the upper and lower surfaces of the serrations 40, 40 formed on the pair of chip constraint surfaces 31, 32 and the chip 50 are similar to the second to 19th embodiments described above.
  • the serrations 60, 60 formed in 51, 52 are symmetrical with respect to the center in the width direction, respectively. Even when the configuration is adopted, the cutting edge 54 formed on the other end side ridge of the tip 50 can be mounted again so as to protrude from the cutting tool main body 11 toward the tip end in the direction of the axis ⁇ . It can be reused.
  • the chip 50 is different from the cutting edge 53 (and the horizontal cutting edge 53 A, 53 A) formed on the upper surface 51 at the ridge line on one end side in the longitudinal direction P. It is described as having the cutting edge 54 (and the horizontal cutting edge 54 A, 54 A) formed on the end side ridge line, but is not limited to this. As in the twenty-first embodiment of the present invention shown in FIG. 30, the cutting edge 53 (and the horizontal cutting edge 53 A, 53 A) is formed only on the ridge line on one end side in the longitudinal direction P on the upper surface 51 of the chip 50. ) May be formed.
  • the other edge of the other end in the longitudinal direction P on the upper surface 51 of the chip 50 is not a cutting edge, and the end face of the chip 50 facing the other end in the longitudinal direction P
  • Reference numeral 56 denotes a flat surface substantially perpendicular to the longitudinal direction P.
  • the end face 56 facing the other end in the longitudinal direction P is arranged so as to face the wall surface 33 facing the tip side in the axis ⁇ direction of the chip mounting seat 30. They are mounted on the chip mounting seat 30 so that they come into contact with each other.
  • the present invention mainly performs grooving on the outer periphery of a workpiece in turning,
  • the present invention relates to a grooving tool used for performing parting-off cutting and a chip to be mounted on the grooving tool.
  • a pair of chip binding surfaces in a chip mounting seat and upper and lower surfaces of the chip are provided.
  • the two contact surfaces formed by contacting each other form a wave-shaped contact surface in which serrations in which a plurality of grooves and peaks are alternately arranged are interlocked, and the contact area is reduced. This can increase the mounting rigidity of the chip.
  • At least one of the selections formed on each of the pair of chip constraint surfaces has a shape of at least one groove and a shape of another groove. Different from each other (or at least one of the ridges and the other ridges), or a pitch of the selection formed on one of the pair of chip restraining surfaces and the other. If the pitches of the selected selections are different from each other, measures are taken to prevent incorrect insertion of chips.

Abstract

A grooving cutting tool, wherein serrations (40) and (60) formed by alternately arranging a plurality of groove parts (41) and (61) and crest parts (42) and (62) extending along the direction of an axis (O) are formed in the first tip restricting surface (31) of a tip mounting seat (30) and on the upper surface (51) center portion (51A) of a tip (50), and the serrations (40) and (60) formed by alternately arranging the plurality of groove parts (41) and (61) and crest parts (42) and (62) extending along the direction of the axis (O) are formed in the second tip restricting surface (32) of the tip mounting seat (30) and on the lower surface (52) of the tip (50), whereby the mounting rigidity of the tip can be increased.

Description

溝入れパイ卜及びスローァウェイチップ 技術分野  Grooving pipes and throwaway chips
本発明は、 主として旋削加工においてワークの外周に溝入れ加工を行ったり、 突切り切削を行うのに用いられる溝入れ用バイト及びこれに装着されるスローァ ウェイチップ (以下、 チップと称する。 ) に関するものである。  BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grooving tool mainly used for performing grooving or parting-off on the outer periphery of a workpiece in turning and a throw-away tip (hereinafter, referred to as a chip) mounted on the grooving tool. Things.
なお、 本出願は、 日本国への特許出願 (特願 2 0 0 3 - 0 0 2 2 3 7 ) に基づ くものであり、 この日本出願の記載内容は本明細書の一部として取り込まれるも のとする。 背景技術  This application is based on a patent application to Japan (Japanese Patent Application No. 2003-0202 37), and the contents of this Japanese application are incorporated as a part of this specification. Shall be accepted. Background art
従来、 この種の溝入れバイトとしては、 特開平 8— 1 8 7 6 0 3号公報 (段落 0 0 0 8 ) に開示されているようなものが知られており、 この溝入れバイトは、 軸線方向に沿って延在するバイト本体の先端部に、 互いに相対向する一対のチッ プ拘束面を有するチップ取付座が形成されていて、 このチップ取付座に、 上面に おける長手方向の一端側稜線に切刃が形成されたチップが、 その切刃をバイト本 体から軸線方向の先端側に突出させるようにして装着されたものである。  Conventionally, as this kind of grooving tool, there has been known a grooving tool disclosed in Japanese Patent Application Laid-Open No. 8-18763 (paragraph 008). A tip mounting seat having a pair of chip restraining surfaces opposed to each other is formed at a tip end portion of the cutting tool body extending along the axial direction. The tip mounting seat has one end in the longitudinal direction on the upper surface. A chip having a cutting edge formed on the ridge is mounted so that the cutting edge protrudes from the tool body toward the tip end in the axial direction.
そして、 クランプ手段としてのバイト本体の弾性変形により、 一対のチップ拘 束面がチップの上下面を押圧固定しているのであるが、 これら一対のチップ拘束 面はそれぞれ軸線方向に沿った凸 V状に形成され、 これに対応するように、 チッ プの上下面もそれぞれ軸線方向 (長手方向) に沿った凹 V状に形成されている。 しかしながら、 上述したような特開平 8— 1 8 7 6 0 3号公報に記載の溝入れ バイトでは、 チップ取付座における一対のチップ拘束面とチップの上下面とが互 いに接触しあう接触面が、 単なる V状をなしているだけであるため、 それらの接 触面積を十分に大きく確保できているとは言えず、 チップの高い取付剛性を確保 することが困難であるという問題があつた。 発明の開示 The pair of chip binding surfaces press and fix the upper and lower surfaces of the chip by the elastic deformation of the cutting tool body as the clamping means. These pair of chip binding surfaces are convex V-shaped along the axial direction, respectively. Corresponding to this, the upper and lower surfaces of the chip are also formed in a concave V shape along the axial direction (longitudinal direction). However, in the grooving tool described in Japanese Patent Application Laid-Open No. Hei 8-187603, the contact surfaces where the pair of chip restraining surfaces and the upper and lower surfaces of the chip are in contact with each other. However, since they are merely V-shaped, they cannot be said to have a sufficiently large contact area, and it is difficult to secure high mounting rigidity of the chip. . Disclosure of the invention
本発明は、 上記課題に鑑みてなされたもので、 チップの取付剛性を高く保つこ とができる溝入れバイト及びこれに装着されるチップを提供することを目的とす る。  The present invention has been made in view of the above problems, and an object of the present invention is to provide a grooving tool capable of maintaining a high mounting rigidity of a chip and a chip mounted on the grooving tool.
上記の課題を解決して、 このような目的を達成するために、 本発明による溝入 れバイトは、 軸線方向に沿って延在するバイト本体の先端部に、 互いに相対向す る一対のチップ拘束面を有するチップ取付座が形成されるとともに、 このチップ 取付座には、 上面における長手方向の一端側稜線に切刃が形成されたチップがそ の切刃を前記バイト本体から前記軸線方向の先端側に突出させるように装着され ていて、 クランプ手段により前記一対のチップ拘束面が前記チップの上下面を押 圧固定する溝入れバイトであって、 前記一対のチップ拘束面には、 前記軸線方向 に沿って延びる複数の溝部と山部とが交互に配列されてなるセレ一ションがそれ ぞれ形成されていて、 前記チップの上下面には、 前記一対のチップ拘束面の形状 に対応するようなセレーションがそれぞれ形成されているものである。  In order to solve the above problems and achieve such an object, a grooved cutting tool according to the present invention includes a pair of tips opposed to each other at a tip end of a cutting tool body extending along an axial direction. A tip mounting seat having a constraining surface is formed. The tip mounting seat has a tip having a cutting edge formed on a ridge line on one end side in the longitudinal direction on the upper surface. The pair of chip restraining surfaces are mounted so as to protrude to the distal end side, and the pair of chip restraining surfaces is a grooving tool for pressing and fixing the upper and lower surfaces of the chip by clamping. A plurality of grooves and ridges extending along the direction are alternately arranged, and a selection is formed on each of the upper and lower surfaces of the chip, corresponding to the shape of the pair of chip constraint surfaces. In which so that a serration is formed.
このような構成とすると、 チップ取付座における一対のチップ拘束面とチップ の上下面とが互いに接触しあってできる 2つの接触面が、 複数の溝部と山部とが 交互に配列されてなるセレーション同士が嚙み合わされた波形状の接触面をなす ことになり、 その接触面積を増大させることができて、 チップの取付剛性を高め ることができる。  With such a configuration, a serration formed by alternately arranging a plurality of grooves and peaks is formed of two contact surfaces formed by a pair of chip restraining surfaces of the chip mounting seat and upper and lower surfaces of the chip being in contact with each other. As a result, the contact surfaces in the form of a wave are formed, so that the contact area can be increased and the mounting rigidity of the chip can be increased.
ここで、 上記のように、 チップ取付座における一対のチップ拘束面とチップの 上下面とが互いに接触しあってできる 2つの接触面を、 セレーシヨン同士が嚙み 合わされた波形状にしたとき、 例えば、 セレーシヨンを構成する複数の溝部 (山 部) が互いに同一形状で、 一対のチップ拘束面 (チップの上下面) にそれぞれ形 成されたセレ一ション同士のピッチが互いに同一であるような場合には、 嚙み合 わされるべき溝部と山部とがいくつかずれていたとしても、 チップをチップ取付 座に揷入でき、 このチップの上下面を一対のチップ拘束面で押圧固定することが できてしまうので、 チップが誤挿入された状態となつて切刃の位置がずれるおそ れがある。  Here, as described above, when the two contact surfaces formed by the pair of chip restraining surfaces and the upper and lower surfaces of the chip in the chip mounting seat are in contact with each other, when the serrations are formed into a corrugated shape, for example, When the plurality of grooves (peaks) constituting the serration have the same shape, and the pitches of the selections formed on the pair of chip restraining surfaces (the upper and lower surfaces of the chip) are the same, respectively. The chip can be inserted into the chip mounting seat even if some grooves and peaks to be engaged are misaligned, and the upper and lower surfaces of the chip can be pressed and fixed by a pair of chip restraining surfaces. This can cause the cutting edge to shift due to the incorrectly inserted tip.
そのため、 本発明の溝入れバイトでは、 以下のような構成を採用することによ り、 チップを正確な位置に挿入することしかできなくして、 互いに嚙み合わされ るべき位置にある溝部と山部とを正確に嚙み合わせ、 チップの誤挿入を防止する ことが好ましい。 Therefore, the grooving tool of the present invention adopts the following configuration. That is, it is preferable that the chip can only be inserted at an accurate position, the groove portion and the crest portion located at positions where they are to be engaged with each other are accurately engaged, and erroneous insertion of the chip is prevented.
•前記軸線方向に直交する断面で見たときに、 前記一対のチップ拘束面にそれぞ れ形成された前記セレ一シヨンの少なくとも一方について、 少なくとも 1つの溝 部の形状と他の溝部の形状とが互いに異なっている、 あるいは、 少なくとも 1つ の山部の形状と他の山部の形状とが互いに異なっている  When viewed in a cross section orthogonal to the axial direction, at least one of the selections formed on each of the pair of chip constraint surfaces has at least one groove and another groove. Are different from each other, or the shape of at least one peak is different from the shape of another peak
-前記軸線方向に直交する断面で見たときに、 前記一対のチップ拘束面のうちの 一方に形成された前記セレーシヨンのピッチと他方に形成された前記セレ一ショ ンのピッチとが互いに異なっている  When viewed in a cross section orthogonal to the axial direction, a pitch of the serration formed on one of the pair of chip restraining surfaces and a pitch of the selection formed on the other are different from each other. Is
さらに、 前記軸線方向に直交する断面で見たときに、 前記一対のチップ拘束面 にそれぞれ形成された前記セレーションは、 それぞれ幅方向中央部を挟んで対称 形になっていることが好ましく、 このような構成とすると、 前記チップの前記上 面における長手方向の他端側稜線にも切刃を形成したときに、 この他端側稜線に 形成された切刃をバイト本体から先端側に突出させるようにチップを装着し直す ことができるとともに、 その切刃の位置がずれるようなこともない。  Further, when viewed in a cross section orthogonal to the axial direction, the serrations respectively formed on the pair of chip constraint surfaces are preferably symmetrical with respect to a width direction central portion. When the cutting edge is also formed on the other end side ridge line in the longitudinal direction on the upper surface of the tip, the cutting edge formed on the other end side ridge is projected from the cutting tool body toward the front end side. The tip can be reattached to the tip, and the position of the cutting edge does not shift.
また、 本発明によるチップは、 下面に対向する上面における長手方向の一端側 稜線に切刃が形成されたチップであって、 前記上下面には、 前記長手方向に沿つ て延びる複数の溝部と山部とが交互に配列されてなるセレ一シヨンがそれぞれ形 成されているものである。  Further, the chip according to the present invention is a chip in which a cutting edge is formed on a ridge line on one end side in a longitudinal direction on an upper surface opposed to a lower surface, wherein the upper and lower surfaces have a plurality of grooves extending along the longitudinal direction. Selections in which mountains are alternately arranged are formed.
また、 前記長手方向に直交する断面で見たときに、 前記上下面にそれぞれ形成 された前記セレーションの少なくとも一方について、 少なくとも 1つの溝部の形 状と他の溝部の形状とが互いに異なっている、 あるいは、 少なくとも 1つの山部 の形状と他の山部の形状とが互いに異なっていたり、 前記上下面のうちの一方に 形成された前記セレ一シヨンのピッチと他方に形成された前記セレーションのピ ツチとが互いに異なっていたりすることが好ましい。  Further, when viewed in a cross section orthogonal to the longitudinal direction, at least one of the serrations respectively formed on the upper and lower surfaces, the shape of at least one groove and the shape of another groove are different from each other. Alternatively, the shape of at least one ridge and the shape of another ridge are different from each other, or the pitch of the selection formed on one of the upper and lower surfaces and the pitch of the serration formed on the other. It is preferable that the switches are different from each other.
また、 前記長手方向に直交する断面で見たときに、 前記一対のチップ^束面に それぞれ形成された前記セレーシヨンは、 それぞれ幅方向中央部を挟んで対称形 になっていることが好ましい。 また、 前記上面における長手方向の他端側稜線にも切刃が形成されていること が好ましい。 図面の簡単な説明 Also, when viewed in a cross section orthogonal to the longitudinal direction, it is preferable that the serrations formed on the pair of chip bundle surfaces are respectively symmetrical with respect to the center in the width direction. Further, it is preferable that a cutting edge is also formed on the other end side ridge line in the longitudinal direction on the upper surface. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の基本構成となる第 1実施形態による溝入れバイトを示す側面 図である。  FIG. 1 is a side view showing a grooving tool according to a first embodiment, which is a basic configuration of the present invention.
図 2は、 本発明の基本構成となる第 1実施形態による溝入れバイトを示す上面 図である。  FIG. 2 is a top view showing a grooving tool according to the first embodiment, which is a basic configuration of the present invention.
図 3は、 本発明の基本構成となる第 1実施形態による溝入れバイトを示す先端 面図である。  FIG. 3 is a front end view showing the grooving tool according to the first embodiment, which is a basic configuration of the present invention.
図 4は、 本発明の基本構成となる第 1実施形態による溝入れバイトのチップを 示す側面図である。  FIG. 4 is a side view showing a chip of the grooving tool according to the first embodiment, which is a basic configuration of the present invention.
図 5は、 本発明の基本構成となる第 1実施形態による溝入れバイ卜のチップを 示す上面図である。  FIG. 5 is a top view showing a grooving byte chip according to the first embodiment, which is a basic configuration of the present invention.
図 6は、 本発明の基本構成となる第 1実施形態による溝入れバイトのチップを 示す先端面図である。  FIG. 6 is a front end view showing a tip of a grooving tool according to the first embodiment, which is a basic configuration of the present invention.
図 7は、 本発明の基本構成となる第 1実施形態による溝入れバイトのチップ装 着状態を説明するための要部拡大先端面図である。  FIG. 7 is an enlarged front view of an essential part for explaining a chip mounting state of the grooving tool according to the first embodiment, which is a basic configuration of the present invention.
図 8は、 本発明の第 2実施形態による溝入れバイ卜のチップ装着状態を説明す るための要部拡大先端面図である。  FIG. 8 is an enlarged front view of an essential part for explaining a chip mounting state of a grooving byte according to a second embodiment of the present invention.
図 9は、 本発明の第 3実施形態による溝入れバイ卜のチップ装着状態を説明す るための要部拡大先端面図である。  FIG. 9 is an enlarged front view of a main part for describing a chip mounting state of a grooving byte according to a third embodiment of the present invention.
図 1 0は、 本発明の第 4実施形態による溝入れバイ卜のチップ装着状態を説明 するための要部拡大先端面図である。  FIG. 10 is an enlarged front view of an essential part for explaining a chip mounting state of a grooving byte according to a fourth embodiment of the present invention.
図 1 1は、 本発明の第 5実施形態による溝入れバイ卜のチップ装着状態を説明 するための要部拡大先端面図である。  FIG. 11 is an enlarged front view of a main part for describing a chip mounting state of a grooving byte according to a fifth embodiment of the present invention.
図 1 2は、 本発明の第 6実施形態による溝入れバイ卜のチップ装着状態を説明 するための要部拡大先端面図である。  FIG. 12 is an enlarged front view of an essential part for describing a chip mounting state of a grooving byte according to a sixth embodiment of the present invention.
図 1 3は、 本発明の第 7実施形態による溝入れバイトのチップ装着状態を説明 するための要部拡大先端面図である。 FIG. 13 illustrates a state in which a grooving tool according to a seventh embodiment of the present invention is mounted on a chip. FIG. 6 is an enlarged front view of a main part for performing the operation.
図 1 4は、 本発明の第 8実施形態による溝入れバイ卜のチップ装着状態を説明 するための要部拡大先端面図である。  FIG. 14 is an enlarged front view of an essential part for explaining a chip mounting state of a grooving byte according to an eighth embodiment of the present invention.
図 1 5は、 本発明の第 9実施形態による溝入れバイトのチップ装着状態を説明 するための要部拡大先端面図である。  FIG. 15 is an enlarged front view of an essential part for explaining a chip mounting state of a grooving tool according to a ninth embodiment of the present invention.
図 1 6は、 本発明の第 1 0実施形態による溝入れバイ卜のチップ装着状態を説 明するための要部拡大先端面図である。  FIG. 16 is an enlarged front view of an essential part for explaining a chip mounting state of the grooving byte according to the tenth embodiment of the present invention.
図 1 7は、 本発明の第 1 1実施形態による溝入れバイ卜のチップ装着状態を説 明するための要部拡大先端面図である。  FIG. 17 is an enlarged front view of an essential part for explaining a chip mounting state of the grooving byte according to the eleventh embodiment of the present invention.
図 1 8は、 本発明の第 1 2実施形態による溝入れバイトのチップ装着状態を説 明するための要部拡大先端面図である。  FIG. 18 is an enlarged front view of an essential part for explaining a tip mounting state of the grooving tool according to the 12th embodiment of the present invention.
図 1 9は、 本発明の第 1 3実施形態による溝入れバイ卜のチップ装着状態を説 明するための要部拡大先端面図である。  FIG. 19 is an enlarged front view of a main part for explaining a chip mounting state of the grooving byte according to the thirteenth embodiment of the present invention.
図 2 0は、 本発明の第 1 4実施形態による溝入れバイ卜のチップ装着状態を説 明するための要部拡大先端面図である。  FIG. 20 is an enlarged front view of a main part for explaining a chip mounting state of the grooving byte according to the fourteenth embodiment of the present invention.
図 2 1は、 本発明の第 1 5実施形態による溝入れバイ卜のチップ装着状態を説 明するための要部拡大先端面図である。  FIG. 21 is an enlarged front view of an essential part for explaining a chip mounting state of a grooving byte according to a fifteenth embodiment of the present invention.
図 2 2は、 本発明の第 1 6実施形態による溝入れバイ卜のチップ装着状態を説 明するための要部拡大先端面図である。  FIG. 22 is an enlarged front view of an essential part for explaining a chip mounting state of the grooving byte according to the sixteenth embodiment of the present invention.
図 2 3は、 本発明の第 1 7実施形態による溝入れバイ卜のチップ装着状態を説 明するための要部拡大先端面図である。  FIG. 23 is an enlarged front view of a main part for explaining a chip mounting state of the grooving byte according to the seventeenth embodiment of the present invention.
図 2 4は、 本発明の第 1 8実施形態による溝入れバイトのチップ装着状態を説 明するための要部拡大先端面図である。  FIG. 24 is an enlarged front view of an essential part for explaining a tip mounting state of the grooving tool according to the eighteenth embodiment of the present invention.
図 2 5は、 本発明の第 1 9実施形態による溝入れバイ卜のチップ装着状態を説 明するための要部拡大先端面図である。  FIG. 25 is an enlarged front view of an essential part for explaining a chip mounting state of the grooving byte according to the ninth embodiment of the present invention.
図 2 6は、 本発明の第 2 0実施形態による溝入れバイ卜のチップ装着状態を説 明するための要部拡大先端面図、  FIG. 26 is an enlarged front view of an essential part for explaining a chip mounting state of the grooving byte according to the 20th embodiment of the present invention,
図 2 7は、 本発明の第 2 0実施形態による溝入れバイトのチップ装着状態を説 明するための要部拡大先端面図である。 図 2 8は、 本発明の第 2 1実施形態による溝入れバイトを示す側面図である。 図 2 9は、 本発明の第 2 1実施形態による溝入れバイトのチップを示す側面図 である。 FIG. 27 is an enlarged front view of a main part for describing a chip mounting state of the grooving tool according to the 20th embodiment of the present invention. FIG. 28 is a side view showing the grooving tool according to the twenty-first embodiment of the present invention. FIG. 29 is a side view showing the tip of the grooving tool according to the 21st embodiment of the present invention.
図 3 0は、 本発明の第 2 1実施形態による溝入れパイトのチップを示す上面図 である。 発明を実施するための最良の形態  FIG. 30 is a top view showing a chip of the grooving pite according to the 21st embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
まず、 本発明の基本構成となる第 1実施形態を図 1〜図 7によって説明する。 本第 1実施形態による溝入れバイト 1 0は、 図 1〜図 3に示すように、 軸線〇 方向に沿って延在し、 軸線 0を中心とした略四角柱状をなすバイト本体 1 1を有 しており、 このバイト本体 1 1の先端部 1 2は、 その上面 1 2 Aがバイト本体 1 1の上面 1 1 Aに傾斜面 1 1 Bを介して連なって軸線 O方向に直交する厚み方向 (図 1及び図 3における上下方向) の上方側に張り出しているために、 バイト本 体 1 1の後端側部分よりも肉厚形状となっている。  First, a first embodiment as a basic configuration of the present invention will be described with reference to FIGS. As shown in FIGS. 1 to 3, the grooving tool 10 according to the first embodiment has a tool body 11 that extends along the axial direction and forms a substantially quadrangular prism centered on the axis 0. The tip 1 2 of the cutting tool body 11 has a thickness direction perpendicular to the direction of the axis O with its upper surface 12 A connected to the upper surface 11 A of the cutting tool body 11 via an inclined surface 11 B. Since it protrudes upward (in the vertical direction in FIGS. 1 and 3), it is thicker than the rear end portion of the tool body 11.
, さらに、 バイト本体 1 1の先端面 1 3から軸線 O方向の後端側に向けてバイト 本体 1 1の上下面と略平行に、 上記の傾斜面 1 1 Bに近接する位置までスリット 1 4が切り込まれていることによって、 バイト本体 1 1の先端部 1 2が、 スリツ ト 1 4の上方側に位置する上方側先端部 1 5 Aとスリット 1 4の下方側に位置す る下方側先端部 1 5 Bとに 2分されている。  , Further, from the front end face 13 of the cutting tool body 1 1 to the rear end side in the direction of the axis O, in a direction substantially parallel to the upper and lower surfaces of the cutting tool body 11, a slit 1 4 is formed until the position close to the above-mentioned inclined surface 11 B Is cut so that the tip 12 of the cutting tool body 11 is positioned at the upper tip 15 A located above the slit 14 and the lower tip located below the slit 14. The tip is divided into 15B and 2B.
これら上方側先端部 1 5 A及び下方側先端部 1 5 Bのうち、 上方側先端部 1 5 Aは、 スリット 1 4がバイト本体 1 1の傾斜面 1 1 Bに近接する位置まで切り込 まれているために、 後端側の付け根部分が肉薄となり、 この肉薄となった部分を 支点として下方側先端部 1 5 Bに近づく方向に弾性変形可能となっている。 そして、 下方側先端部 1 5 Bに対応したバイト本体 1 1の先端面 1 3には、 そ の幅方向の一端側 (図 2における下方側、 図 3における右方側) 部分から、 軸線 O方向の先端側に突出するような略平板状の突出部 1 6が形成され、 一方、 上方 側先端部 1 5 Aに対応したバイト本体 1 1の先端面 1 3には、 その幅方向の一端 側部分から、 軸線〇方向の先端側に突出するようなアーム状の突出部 1 7が、 上 記の略平板状の突出部 1 6の上方側まで延出するように形成されている。 このようにアーム状の突出部 1 7は、 略平板状の突出部 1 6の上方側まで延出 するように形成されているため、 このアーム状の突出部 1 7の下面 1 7 Aは、 略 平板状の突出部 1 6の上面 1 6 Aと所定の間隔を介して対向するように配置され ることとなり、 アーム状の突出部 1 7の下面 1 7 Aがチップ取付座 3 0における 第 1チップ拘束面 3 1とされ、 略平板状の突出部 1 6の上面 1 6 Aがチップ取付 座 3 0における第 2チップ拘束面 3 2とされるのである。 Of the upper end 15A and the lower end 15B, the upper end 15A is cut until the slit 14 is close to the inclined surface 11B of the cutting tool body 11. As a result, the base portion on the rear end side becomes thinner, and the thinned portion can be elastically deformed in a direction approaching the lower end portion 15B with the fulcrum as a fulcrum. The tip end surface 13 of the cutting tool body 11 corresponding to the lower end portion 15 B is provided with an axis O from one end side in the width direction (the lower side in FIG. 2 and the right side in FIG. 3). A substantially flat plate-like projection 16 is formed so as to protrude toward the front end of the cutting tool, while the tip surface 13 of the cutting tool body 11 corresponding to the upper end 15A has one end in the width direction. An arm-shaped protruding portion 17 protruding from the side portion toward the front end side in the direction of the axis 〇 is formed so as to extend to an upper side of the above-mentioned substantially flat plate-shaped protruding portion 16. Since the arm-shaped protrusion 17 is formed so as to extend to the upper side of the substantially plate-shaped protrusion 16, the lower surface 17 A of the arm-shaped protrusion 17 is The upper surface 16A of the substantially plate-shaped protrusion 16 is arranged to face the predetermined distance from the upper surface 16A, and the lower surface 17A of the arm-shaped protrusion 17 is located The upper surface 16 A of the substantially flat protruding portion 16 serves as the second chip restraining surface 32 in the chip mounting seat 30.
また、 第 1チップ拘束面 3 1と第 2チップ拘束面 3 2との間に位置する隙間の 軸線〇方向の後端側には、 バイト本体 1 1の先端面 1 3の幅方向の一端側部分が 位置しているとともに、 この先端面 1 3の一端側部分から軸線 O方向の後端側に 一段凹むようにして軸線 O方向の先端側を向く壁面 3 3が形成されている。 すなわち、 バイト本体 1 1の先端部 1 2に、 互いに相対向して配置される一対 のチップ拘束面 3 1 , 3 2と、 軸線〇方向の先端側を向く壁面 3 3とからなるチ ップ取付座 3 0が形成されているのである。  Also, one end in the width direction of the tip end surface 13 of the cutting tool body 11 is located at the rear end side of the gap located between the first chip restriction surface 31 and the second chip restriction surface 32 in the direction of the axis 〇. The wall portion 33 is formed so as to be recessed and to be recessed one step from the one end portion of the distal end surface 13 to the rear end side in the axis O direction so as to face the distal end side in the axis O direction. That is, a tip comprising a pair of tip restraining surfaces 31, 32 arranged opposite to each other on the tip end portion 12 of the cutting tool body 11, and a wall surface 33 facing the tip side in the direction of the axis 〇. The mounting seat 30 is formed.
なお、 チップ取付座 3 0における第 1チップ拘束面 3 1は、 上記の上方側先端 部 1 5 Aから突出するアーム状の突出部 1 7に形成され、 チップ取付座 3 0にお ける第 2チップ拘束面 3 2は、 上記の下方側突出部 1 5 Bから突出する略平板状 の突出部 1 6に形成されていて、 しかも、 上方側先端部 1 5 Aが下方側先端部 1 5 Bに近づく方向に弾性変形可能となっているため、 第 1チップ拘束面 3 1も第 2チップ拘束面 3 2に近づく方向に弾性変形可能となっている。  The first chip restraining surface 31 of the chip mounting seat 30 is formed on the arm-shaped projection 17 projecting from the upper end 15A, and the second chip restraining surface 31 of the chip mounting seat 30 is formed. The chip constraining surface 32 is formed on a substantially plate-shaped protrusion 16 protruding from the lower protrusion 15B, and the upper end 15A is connected to the lower end 15B. Therefore, the first chip constraint surface 31 is also elastically deformable in a direction approaching the second chip constraint surface 32.
このようなチップ取付座 3 0における第 1チップ拘束面 3 1には、 軸線 O方向 に沿って (軸線 O方向と平行な方向に) 延びる複数の溝部 4 1…と山部 4 2…と が交互に配列されてなるセレーション 4 0が形成されている。  A plurality of grooves 4 1… and ridges 4 2… extending along the axis O direction (in a direction parallel to the axis O direction) are formed on the first chip constraint surface 31 in the chip mounting seat 30. Serrations 40 alternately arranged are formed.
また、 チップ取付座 3 0における第 2チップ拘束面 3 2にも、 軸線 O方向に沿 つて (軸線〇方向と平行な方向に) 延びる複数の溝部 4 1…と山部 4 2…とが交 互に配列されてなるセレーシヨン 4 0が形成されている。  Also, a plurality of grooves 41 extending along the direction of the axis O (in a direction parallel to the direction of the axis と) intersect with the ridges 42 on the second chip restraining surface 32 of the chip mounting seat 30. Serrations 40 which are arranged mutually are formed.
ここで、 第 1チップ拘束面 3 1に形成されたセレーシヨン 4 0を、 軸線 O方向 に直交する断面で見たときについて考えるが、 その断面図に代えて、 軸線 O方向 の先端側から見たときの図 7を用いて説明することとする。  Here, consider the case where the serration 40 formed on the first chip constraint surface 31 is viewed in a cross section orthogonal to the axis O direction, but viewed from the tip side in the axis O direction instead of the cross-sectional view. This will be described with reference to FIG.
軸線 0方向に直交する断面で見たときには、 セレ一シヨン 4 0を構成する複数 の溝部 4 1…が互いに略同一形状をなすことによって、 これらの溝深さが互いに 略一定に維持されているとと.もに、 複数の溝部 4 2…が互いに略同一形状をなす ことによって、 これらの山高さが互いに略一定に維持されている。 When viewed in a cross section orthogonal to the axis 0 direction, a plurality of The grooves 41 are substantially identical in shape, so that the depths of these grooves are maintained substantially constant, and the plurality of grooves 41 are substantially identical in shape. However, these mountain heights are maintained substantially constant with each other.
また、 セレ一シヨン 4 0のピッチが幅方向 (図 7における左右方向) の略全長 に亘つて略一定に維持されている、 つまり、 隣接する溝部 4 1, 4 1の底部 4 1 A, 4 1 A間の幅方向での距離が略一定に維持されている (隣接する山部 4 2 , 4 2の頂部 4 2 A, 4 2 A間の幅方向での距離が略一定に維持されている) 。 さらに、 この第 1チップ拘束面 3 1に形成されたセレ一シヨン 4 0は、 第 1チ ップ拘束面 3 1の幅方向中央部を挟んで対称形とされている、 つまり、 第 1チッ プ拘束面 3 1の幅方向中央部と第 2チップ拘束面 3 2の幅方向中央部とを結ぶ直 線 Xを挟んで対称に形成されている。  Also, the pitch of the selection 40 is maintained substantially constant over substantially the entire length in the width direction (the left-right direction in FIG. 7), that is, the bottoms 41 A, 4 of the adjacent grooves 41, 41. The distance in the width direction between 1 A is kept almost constant (The distance in the width direction between the tops 42 A and 42 A of the adjacent peaks 42 and 42 is kept almost constant Yes) Further, the selection 40 formed on the first chip constraint surface 31 is symmetrical with respect to the widthwise central portion of the first chip constraint surface 31, that is, the first chip. It is formed symmetrically with respect to a line X connecting the central portion in the width direction of the chip constraint surface 31 and the central portion in the width direction of the second chip constraint surface 32.
ここで、 セレ一シヨン 4 0を構成する複数の溝部 4 1…及び山部 4 2…につい て、 より詳しい形状を説明するのであれば、 各溝部 4 1…及び山部 4 2…は、 そ れぞれ 2つの平坦な側壁面 4 3, 4 3によって構成されているのであり、 幅方向 で隣接する 2つの側壁面 4 3, 4 3が交差することによってできる凹部が溝部 4 1となり、 幅方向で隣接する 2つの側壁面 4 3 , 4 3が交差することによってで きる凸部が山部 4 2となっている。  Here, if a more detailed description of the plurality of grooves 41 and the ridges 42 constituting the selection 40 is to be described in more detail, each of the grooves 41 and the ridges 42 is described as follows. It is composed of two flat side walls 43, 43, respectively, and the recess formed by the intersection of two side walls 43, 43 adjacent in the width direction becomes the groove 41, The protrusion formed by the intersection of the two side wall surfaces 4 3, 4 3 adjacent in the direction is the peak 42.
なお、 幅方向の両端に位置する溝部 4 1, 4 1のそれぞれについて、 これを構 成している 2つの側壁面 4 3 , 4 3のうち、 幅方向の両端側に位置する側壁面 4 3が半分の山部 4 2を構成している。  For each of the grooves 41, 41 located at both ends in the width direction, of the two side walls 43, 43 constituting the grooves, the side wall surfaces 43, located at both ends in the width direction, are formed. Constitute half of the mountain 42.
また、 複数の溝部 4 1…及び山部 4 2…を構成している平坦な側壁面 4 3…の それぞれと上記の直線 Xとの傾斜角度 (側壁面 4 3と直線 Xとがなす狭角) は、 幅方向で隣接する側壁面 4 3, 4 3同士の傾斜の向きは互いに異なっているもの の、 すべての側壁面 4 3…について略同一に設定されている (傾斜角度の絶対値 が略同一に設定されている) 。  Also, the inclination angle between each of the flat side walls 4 3, which constitute the plurality of grooves 4 1, and the ridges 4 2, and the straight line X (the narrow angle formed by the side wall surface 4 3, and the straight line X) ) Indicates that, although the side walls 43 adjacent in the width direction have different inclination directions, all side walls 43 are set to be substantially the same (the absolute value of the inclination angle is It is set to be almost the same).
さらに、 2つの側壁面 4 3 , 4 3の交差部分をなす溝部 4 1の底部 4 1 Aは、 上記の直線 Xに対して直交する方向に延在する平坦面 (滑らかに湾曲する湾曲面 でもよい) で構成されているとともに、 2つの側壁面 4 3 , 4 3の交差部分をな す山部 4 2の頂部 4 2 Aも、 上記の直線 Xに対して直交する方向に延在する平坦 面 (滑らかに湾曲する湾曲面でもよい) で構成されている。 Further, the bottom 41 A of the groove 41 forming the intersection of the two side walls 43, 43 is formed by a flat surface extending in a direction orthogonal to the straight line X (even a curved surface that is smoothly curved). And the top portion 4 2 A of the peak portion 42 forming the intersection of the two side walls 4 3, 4 3 is also flat extending in the direction perpendicular to the straight line X. It is composed of surfaces (which may be smoothly curved surfaces).
なお、 上述した溝深さ及び山高さは、 .溝部 4 1の底部 4 1 Aをなす平坦面とこ の溝部 4 1に隣接する山部 4 2の頂部 4 2 Aをなす平坦面との上記の直線 X方向 での距離のことを指す。  The above-mentioned groove depth and peak height are determined by the above-mentioned flat surface forming the bottom 41 A of the groove 41 and the flat surface forming the top 42 A of the peak 42 adjacent to the groove 41. Refers to the distance in the straight X direction.
一方、 第 2チップ拘束面 3 2に形成されたセレーシヨン 4 0を、 軸線〇方向に 直交する断面で見たときについても、 図 7から理解できるように、 第 1チップ拘 束面 3 1に形成されたセレ一シヨン 4 0と略同一形状をなしている。  On the other hand, when the serration 40 formed on the second chip restraining surface 32 is viewed in a cross section orthogonal to the direction of the axis 〇, as can be understood from FIG. 7, the serration 40 is formed on the first chip restraining surface 31. It has almost the same shape as the selected selection 40.
そして、 上記のようなチップ取付座 3 0に装着されるチップ 5 0は、 図 4〜図 6に示すように、 略直方体状をなしているものであり、 下面 5 2に対向する上面 5 1には、 チップ 5 0の長手方向 Pにおける一端側 (図 4及び図 5における左方 側) 及び他端側 (図 4及び図 5における右方側) の稜線に、 長手方向 Pに直交す る方向に延びる切刃 5 3 , 5 4がそれぞれ形成されているとともに、 チップ 5 0 の長手方向 Pの一端部分及び他端部分における幅方向 (図 5における上下方向) の両端側の稜線に、 切刃 5 3, 5 4のそれぞれにコーナ一部を介して交差する一 対の横切刃 5 3 A, 5 3 A及び一対の横切刃 5 4 A, 5 4 Aがそれぞれ形成され ている。  The chip 50 mounted on the chip mounting seat 30 as described above has a substantially rectangular parallelepiped shape as shown in FIGS. 4 to 6, and the upper surface 51 opposing the lower surface 52. Is perpendicular to the longitudinal direction P of the ridge line at one end (the left side in FIGS. 4 and 5) and the other end (the right side in FIGS. 4 and 5) of the chip 50 in the longitudinal direction P. Cutting edges 53, 54 extending in the longitudinal direction are formed respectively, and the ridges at both ends in the width direction (vertical direction in FIG. 5) at one end and the other end in the longitudinal direction P of the chip 50 are cut. A pair of transverse cutting edges 53A, 53A and a pair of transverse cutting edges 54A, 54A are formed on each of the blades 53, 54 so as to intersect each other via a part of the corner.
これら切刃 5 3, 5 4に連なって長手方向 Pの一端側及び他端側を向く端面 5 5 , 5 6は、 切刃 5 3, 5 4の逃げ面とされて、 下面 5 2側に向かうにしたがい チップ 5 0における長手方向 Pの中央部側に向かうように傾斜させられてポジの 逃げ角が与えられ、 また、 横切刃 5 3 A, 5 3 A及び横切刃 5 4 A, 5 4 Aに連 なって幅方向の両端側を向く側面は、 横切刃 5 3 A, 5 3 A及び横切刃 5 4 A, 5 4 Aの逃げ面とされて、 下面 5 2側に向かうにしたがいチップ 5 0における幅 方向の中央部側に向かうように傾斜させられてポジの逃げ角が与えられている。 チップ 5 0の上面 5 1には、 切刃 5 3 , 5 4及び横切刃 5 3 A, 5 3 A, 5 4 A, 5 4 Aに連なるように、 長手方向 Pの両端部分にそれぞれすくい面 5 7 , 5 8が形成されており、 これらすくい面 5 7, 5 8を接続する上面 5 1の中央部分 5 1 Aには、 長手方向 Pに沿って (長手方向 Pと平行な方向に) 延びる複数の溝 部 6 1…と山部 6 2…とが交互に配列されてなるセレーシヨン 6 0が形成されて いる。 また、 チップ 5 0の下面 5 2にも、 長手方向 Pに沿って (長手方向 Pと平行な 方向に) 延びる複数の溝部 6 1…と山部 6 2…とが交互に配列されてなるセレ一 シヨン 6 0が形成されている。 The end faces 55, 56 connected to the cutting edges 53, 54 and facing one end and the other end in the longitudinal direction P are flank surfaces of the cutting edges 53, 54, and are provided on the lower surface 52 side. The tip 50 is inclined toward the center in the longitudinal direction P of the tip 50 to give a positive clearance angle, and the transverse cutting edges 53 A, 53 A and 54 A, The side facing the both ends in the width direction following the 54 A is the flank of the transverse cutting edges 53 A, 53 A and 54 A, 54 A. The tip 50 is inclined so as to move toward the center in the width direction of the chip 50, so that a positive clearance angle is given. On the upper surface 51 of the insert 50, rake the cutting edges 53, 54 and the transverse cutting edges 53A, 53A, 54A, 54A at both ends in the longitudinal direction P, respectively. Surfaces 57 and 58 are formed, and a central portion 51A of the upper surface 51 connecting the rake surfaces 57 and 58 is provided along the longitudinal direction P (in a direction parallel to the longitudinal direction P). A serration 60 is formed by alternately arranging a plurality of extending grooves 61 and ridges 62. Also, on the lower surface 52 of the chip 50, a plurality of grooves 61 extending along the longitudinal direction P (in a direction parallel to the longitudinal direction P) and peaks 62 are alternately arranged. One part 60 is formed.
ここで、 上面 5 1の中央部分 5 1 Aに形成されたセレーシヨン 6 0を、 長手方 向 Pに直交する断面で見たときについて考えるが、 その断面図に代えて、 長手方 向 P (軸線〇方向) の先端側から見たときの図 6及び図 7を用いて説明すること とする。  Here, consider the case where the serration 60 formed in the central portion 51A of the upper surface 51 is viewed in a cross section orthogonal to the longitudinal direction P. Instead of the cross-sectional view, the longitudinal direction P (axial line The description will be made with reference to FIGS. 6 and 7 when viewed from the tip side (〇 direction).
長手方向 P (軸線 O方向) に直交する断面で見たときに、 セレーシヨン 6 0を 構成する複数の溝部 6 1…が互いに略同一形状をなすことによって、 これらの溝 深さが互いに略一定に維持されているとともに、 複数の山部 6 2…が互いに略同 一形状をなすことによって、 これらの山高さが互いに略一定に維持されている。 また、 セレーシヨン 6 0のピッチが幅方向 (図 6及び図 7における左右方向) の略全長に亘つて略一定に維持されている、 つまり、 隣接する溝部 6 1, 6 1の 底部 6 1 A, 6 1 A間の幅方向での距離が略一定に維持されている (隣接する山 部 6 2, 6 2の頂部 6 2 A, 6 2 A間の幅方向での距離が略一定に維持されてい る) 。  When viewed in a cross section orthogonal to the longitudinal direction P (the direction of the axis O), the plurality of grooves 61 forming the serration 60 have substantially the same shape, so that the depths of these grooves are substantially constant. Are maintained and the heights of the ridges 62 are maintained substantially constant by making the ridges 62 have substantially the same shape. Also, the pitch of the serration 60 is maintained substantially constant over substantially the entire length in the width direction (the left-right direction in FIGS. 6 and 7), that is, the bottom 61A of the adjacent grooves 61, 61, The distance in the width direction between 61 A is maintained almost constant (The distance in the width direction between the tops 62 A and 62 A of adjacent peaks 62 and 62 is maintained substantially constant ing) .
さらに、 この上面 5 1の中央部分 5 1 Aに形成されたセレーシヨン 6 0は、 上 面 5 1 (中央部分 5 1 A) の幅方向中央部を挟んで対称形とされている、 つまり 、 上面 5 1 (中央部分 5 1 A) の幅方向中央部と下面 5 2の幅方向中央部とを結 ぶ直線 Yを挟んで対称に形成されている。  Furthermore, the serration 60 formed in the central portion 51A of the upper surface 51 is symmetrical with respect to the widthwise central portion of the upper surface 51 (central portion 51A). It is formed symmetrically with respect to a straight line Y connecting the center in the width direction of 51 (central portion 51 A) and the center of the lower surface 52 in the width direction.
ここで、 セレーシヨン 6 0を構成する複数の溝部 6 1 ···及び山部 6 2…につい て、 より詳しい形状を説明するのであれば、 各溝部 6 1…及び山部 6 2…は、 そ れぞれ 2つの平坦な側壁面 6 3 , 6 3によって構成されているのであり、 幅方向 で隣接する 2つの側壁面 6 3, 6 3が交差することによってできる凹部が溝部 6 1となり、 幅方向で隣接する 2つの側壁面 6 3 , 6 3が交差することによってで きる凸部が山部 6 2となっている。  Here, if a more detailed description is given of the plurality of grooves 6 1... And the ridges 6 2, which constitute the serration 60, the grooves 6 1, and the ridges 6 2. Each of the two flat side walls 6 3, 6 3 is composed of two flat side walls 6 3, 6 3, and a recess formed by the intersection of two adjacent side walls 6 3, 6 3 in the width direction becomes a groove 6 1. The convex portion formed by the intersection of two side wall surfaces 6 3, 6 3 adjacent in the direction is a mountain portion 62.
なお、 幅方向の両端に位置する山部 6 2, 6 2のそれぞれについて、 これを構 成している 2つの側壁面 6 3, 6 3のうち、 幅方向の両端側に位置する側壁面 6 3が半分の溝部 6 1を構成している。 また、 複数の溝部 6 1…及び山部 6 2…を構成している平坦な側壁面 6 3…の それぞれと上記の直線 Yとの傾斜角度は、 幅方向で隣接する側壁面 6 3 , 6 3同 士の傾斜の向きは互いに異なっているものの、 すべての側壁面 6 3…について略 同一に設定されている (傾斜角度の絶対値が略同一に設定されている) 。 For each of the ridges 62, 62 located at both ends in the width direction, of the two side walls 63, 63 constituting the ridges 62, 62, the side wall surfaces located at both ends in the width direction are formed. 3 constitutes a half groove 6 1. Further, the inclination angle between each of the flat side walls 6 3, which constitute the plurality of grooves 6 1 and the peaks 6 2, and the straight line Y is determined by the side walls 6 3, 6 adjacent in the width direction. Although the inclination directions of the three members are different from each other, they are set to be substantially the same for all the side walls 63 (the absolute values of the inclination angles are set to be substantially the same).
さらに、 2つの側壁面 6 3 , 6 3の交差部分をなす溝部 6 1の底部 6 1 Aは、 滑らかに湾曲する湾曲面 (上記の直線 Xに対して直交する方向に延在する平坦面 でもよい) で構成されているとともに、 2つの側壁面 6 3 , 6 3の交差部分をな す山部 6 2の頂部 6 2 Aは、 上記の直線 Xに対して直交する方向に延在する平坦 面 (滑らかに湾曲する湾曲面でもよい) で構成されている。  Furthermore, the bottom 61A of the groove 61, which forms the intersection of the two side walls 63, 63, is formed by a smoothly curved curved surface (even a flat surface extending in a direction perpendicular to the straight line X). The top 6 2 A of the peak 6 2 which forms the intersection of the two side walls 6 3, 6 3 is a flat surface extending in the direction orthogonal to the straight line X. It is composed of surfaces (which may be smoothly curved surfaces).
なお、 上述した溝深さ及び山高さは、 溝部 6 1の底部 6 1 Aをなす湾曲面とこ の溝部 6 1に隣接する山部 6 2の頂部 6 2 Aをなす平坦面との上記の直線 X方向 での距離のことを指す。  The above groove depth and peak height are determined by the straight line between the curved surface forming the bottom 61A of the groove 61 and the flat surface forming the top 62A of the peak 62 adjacent to the groove 61. Refers to the distance in the X direction.
一方、 下面 5 2に形成されたセレーシヨン 6 0を、 軸線 0方向に直交する断面 で見たときについても、 図 6及び図 7から理解できるように、 上面 5 1の中央部 分 5 1 Aに形成されたセレ一シヨン 6 0と略同一形状をなしている。  On the other hand, when the serration 60 formed on the lower surface 52 is viewed in a cross section orthogonal to the direction of the axis 0, as can be understood from FIGS. 6 and 7, the serration 60 corresponds to the central portion 51A of the upper surface 51. It has substantially the same shape as the formed selection 60.
このような構成とされたチップ 5 0は、 その長手方向 Pをバイ卜本体 1 1の軸 線 O方向と平行にし、 かつ、 長手方向 Pの一端側を向く端面 5 5を軸線〇方向の 先端側に向けるようにして、 バイ卜本体 1 1の先端部 1 2に形成されたチップ取 付座 3 0に取り付けられていて、 上面 5 1における長手方向 Pの一端側稜線に形 成された切刃 5 3を、 バイト本体 1 1の略平板状の突出部 1 6から軸線 O方向の 先端側に突出させている。  In the chip 50 having such a configuration, the longitudinal direction P is parallel to the axis O direction of the byte body 11, and the end face 55 facing one end in the longitudinal direction P is the tip of the axis 〇 direction. Is attached to the tip mounting seat 30 formed on the tip end 12 of the byte body 11 so as to face the side, and the cut formed at one end ridge line in the longitudinal direction P on the upper surface 51. The blade 53 is made to protrude from the substantially flat protruding portion 16 of the cutting tool body 11 to the tip end side in the direction of the axis O.
このとき、 チップ 5 0の上面 5 1の中央部分 5 1 Aがチップ取付座 3 0の第 1 チップ拘束面 3 1に対向して配置されるとともに互いに接触させられ、 チップ 5 0の下面 5 1がチップ取付座 3 0の第 2チップ拘束面 3 2に対向するように配置 されて互いに接触させられ、 さらに、 チップ 5 0の長手方向 Pの他端側 (軸線 O 方向の後端側) を向く端面 5 6がチップ取付座 3 0の軸線〇方向の先端側を向く 壁面 3 3と対向して配置されるとともに互いに接触させられている。  At this time, the central portion 51A of the upper surface 51 of the chip 50 is disposed so as to face the first chip restraining surface 31 of the chip mounting seat 30 and is brought into contact with each other, so that the lower surface 51 of the chip 50 Are arranged so as to face the second chip restraining surface 32 of the chip mounting seat 30 and are brought into contact with each other. Further, the other end of the chip 50 in the longitudinal direction P (the rear end in the direction of the axis O) is connected to the other end. The facing end surface 56 is arranged to face the wall surface 33 facing the tip end side in the direction of the axis の of the chip mounting seat 30 and is in contact with each other.
また、 チップ取付座 3 0の第 1チップ拘束面 3 1及びチップ 5 0の上面 5 1の 中央部分 5 1 Aには、 軸線 0方向に沿って延びる複数の溝部 4 1 ···, 6 1…と山 部 4 2 ···, 6 2…とが交互に配列されてなるセレ一シヨン 4 0 , 6 0が形成され ていることから、 これら第 1チップ拘束面 3 1とチップ 5 0の上面 5 1の中央部 分 5 1 Aとが互いに接触しあってできる接触面が、 図 7に示すように、 セレーシ ヨン 4 0, 6 0同士が嚙み合わされた波形状をなすことになる。 The first chip restraining surface 31 of the chip mounting seat 30 and the central portion 51 A of the upper surface 51 of the chip 50 have a plurality of grooves 4 1,. ... and mountains Since the selections 40 and 60 are formed by alternately arranging the parts 4 2..., 6 2, the first chip restraining surface 31 and the upper surface 51 of the chip 50 are formed. As shown in FIG. 7, the contact surface formed when the central portion 51 A of the two contacts each other forms a corrugated shape in which the serrations 40 and 60 are interlocked.
さらに、 チップ取付座 3 0の第 2チップ拘束面 3 2及びチップ 5 0の下面 5 2 には、 軸線 O方向に沿って延びる複数の溝部 4 1 ···, 6 1…と山部 4 2 ···, 6 2 …とが交互に配列されてなるセレ一シヨン 4 0 , 6 0が形成されていることから 、 これら第 2チップ拘束面 3 2とチップ 5 0の下面 5 2とが互いに接触しあって できる接触面も、 図 7に示すように、 セレ一シヨン 4 0, 6 0同士が嚙み合わさ れた波形状をなすことになる。  Further, the second chip restraining surface 32 of the chip mounting seat 30 and the lower surface 52 of the chip 50 have a plurality of grooves 4 1..., 6 1. ., 62 are alternately arranged, so that the second chip restraining surface 32 and the lower surface 52 of the chip 50 are mutually connected. As shown in Fig. 7, the contact surface formed by contacting each other also has a wave shape in which the selections 40 and 60 are interdigitated.
なお、 この状態では、 軸線 O方向に直交する断面で見たときに、 チップ取付座 3 0における第 1チップ拘束面 3 1の幅方向中央部と第 2チップ拘束面の幅方向 中央部を結ぶ直線 Xと、 チップ 5 0における上面 5 1 (中央部分 5 1 A) の幅方 向中央部と下面 5 2の幅方向中央部とを結ぶ直線 Yとが一致させられている。 そして、 クランプ手段としてのクランプポルト 1 8が、 バイト本体 1 1の先端 部 1 2における上方側先端部 1 5 Aを貫通するように、 バイト本体 1 1の先端部 1 2の下方側先端部 1 5 Bに形成された雌ねじ部 1 9にねじ込まれていて、 この クランプポルト 1 8の頭部 1 8 Aが上方側先端部 1 5 Aに形成された段差部 2 0 に嵌め込まれてこの段差部 2 0が押圧されている。  In this state, when viewed in a cross section orthogonal to the direction of the axis O, the center in the width direction of the first chip restraining surface 31 in the chip mounting seat 30 is connected to the center in the width direction of the second chip restraining surface. The straight line X and the straight line Y connecting the widthwise central portion of the upper surface 51 (center portion 51A) of the chip 50 and the widthwise central portion of the lower surface 52 are matched. Then, the lower end 1 of the tip body 1 1 of the cutting tool body 11 is inserted so that the clamp port 18 as a clamping means passes through the upper end 15 A of the tip 12 of the cutting tool body 11. The head 18A of this clamp port 18 is fitted into the step 20 formed at the upper end 15A, and is screwed into the female thread 19 formed at 5B. 20 is pressed.
これにより、 上方側先端部 1 5 Aが下方側先端部 1 5 Bに近づく方向に弾性変 形させられ、 この上方側先端部 1 5 Aから突出するアーム状の突出部 1 7に形成 された第 1チップ拘束面 3 1も、 下方側突出部 1 5 Bから突出する略平板状の突 出部 1 6に形成された第 2チップ拘束面 3 2に近づく方向に弾性変形させられて いる。  As a result, the upper end portion 15A is elastically deformed in a direction approaching the lower end portion 15B, and is formed into an arm-shaped projection 17 projecting from the upper end portion 15A. The first chip constraining surface 31 is also elastically deformed in a direction approaching the second chip constraining surface 32 formed on the substantially flat protrusion 16 protruding from the lower protrusion 15B.
すなわち、 クランプ手段としてのクランプポルト 1 8によって、 チップ取付座 3 0の第 1チップ拘束面 3 1と第 2チップ拘束面 3 2とが互いに接近させられて いることにより、 これら第 1チップ拘束面 3 1と第 2チップ拘束面 3 2とが、 チ ップ 5 0の上面 5 1の中央部分 5 1 Aと下面 5 2とを押圧固定して、 チップ 5 0 がチップ取付座 3 0に装着されて固定されているのである。 このようにしてチップ 5 0が装着された溝入れバイト 1 0は、 そのチップ 5 0 の上面 5 1における長手方向 Pの一端側稜線に形成されて、 バイト本体 1 1の略 平板状の突出部 1 6から軸線〇方向の先端側へ突出させられている切刃 5 3によ つて、 軸線回りに回転させられているワークの外周に溝入れ加工を行ったり、 突 切り切削を施していく。 That is, since the first chip restraining surface 31 and the second chip restraining surface 32 of the chip mounting seat 30 are brought close to each other by the clamp port 18 as a clamping means, 3 1 and the second chip restraining surface 32 press and fix the central portion 51 A of the upper surface 51 of the chip 50 and the lower surface 52, and the chip 50 is mounted on the chip mounting seat 30. It has been fixed. The grooving tool 10 on which the chip 50 is mounted in this way is formed on one end side ridge line in the longitudinal direction P on the upper surface 51 of the chip 50, and the substantially flat projecting portion of the tool body 11 is formed. With the cutting edge 53 protruding from the end 6 in the direction of the axis 〇 in the direction of the axis 溝, grooving or parting-off cutting is performed on the outer periphery of the work rotated around the axis.
本第 1実施形態による溝入れバイト 1 0では、 チップ 5 0がチップ取付座 3 0 に装着されて固定されたときには、 チップ取付座 3 0における第 1チップ拘束面 3 1及び第 2チップ拘束面 3 2とチップ 5 0における上面 5 1の中央部分 5 1 A 及び下面 5 2とが接触しあってできる接触面が、 軸線〇方向に沿って延びる複数 の溝部 4;!…, 6 1…と山部 4 2 ···, 6 2…とが交互に配列されてなるセレ一シ ヨン 4 0, 6 0同士が嚙み合わされた波形状となっている。  In the grooving tool 10 according to the first embodiment, when the chip 50 is mounted and fixed on the chip mounting seat 30, the first chip restraining surface 31 and the second chip restraining surface of the chip mounting seat 30. A plurality of grooves 4 extending along the direction of the axis が form a contact surface formed by contact between the central portion 51 of the upper surface 51 and the lower surface 52 of the upper surface 51 of the chip 50. , 61, ... and peaks 42, ..., 62 are alternately arranged in a wave shape in which selections 40, 60 are combined.
これにより、 従来の V状をなす接触面と比較したときには、 その接触面積を大 幅に増大させることができ、 チップ 5 0の取付剛性を高めることができる。 また、 チップ取付座 3 0に装着されたチップ 5 0は、 バイト本体 1 1から軸線 O方向の先端側へ突出させられた切刃 5 3に対してコーナー部を介して接続され る横切刃 5 3 A, 5 3 Aを有していることから、 上述した溝入れ加工や突切り切 削のような軸線〇方向の先端側への送りが与えられる場合だけではなく、 軸線〇 方向に交差する横方向への送りが与えられる場合であっても、 横切刃 5 3 A, 5 3 Aをワークに対して作用させて切削加工を行うことができる。  As a result, the contact area can be greatly increased as compared with the conventional V-shaped contact surface, and the mounting rigidity of the chip 50 can be increased. The tip 50 mounted on the tip mounting seat 30 is a transverse cutting edge connected via a corner to a cutting edge 53 protruding from the cutting tool body 11 toward the tip side in the direction of the axis O. Since it has 53 A and 53 A, it is not only when feeding to the tip side in the axis 〇 direction is applied, such as in the above-mentioned grooving and parting-off cutting, but also crosses in the axis 〇 direction. Even when the lateral feed is given, the cutting can be performed by causing the horizontal cutting blades 53 A and 53 A to act on the work.
そして、 このとき、 上記のセレーシヨン構造を構成している複数の溝部 4 1一 , 6 1…と山部 4 2 ···, 6 2…とが、 軸線〇方向に沿って延在しているために、 軸線 O方向に交差する横方向にかかる切削負荷に対しても、 チップ 5 0のズレを 確実に抑制することが可能となっている。  At this time, the plurality of grooves 41 1, 61, and the ridges 42, 62, constituting the above-mentioned serration structure extend along the axis 〇. Therefore, it is possible to reliably suppress the displacement of the chip 50 even when a cutting load is applied in a lateral direction intersecting with the axis O direction.
さらに、 軸線 O方向に直交する断面で見たときには、 チップ取付座 3 0の第 1 チップ拘束面 3 1及び第 2チップ拘束面 3 2に形成されたセレ一シヨン 4 0, 4 0が幅方向中央部を挟んで対称形とされ、 かつ、 チップ 5 0の上面 5 1の中央部 分 5 1 A及び下面 5 2に形成されたセレーシヨン 6 0, 6 0が幅方向中央部を挟 んで対称形とされている。  Further, when viewed in a cross section orthogonal to the direction of the axis O, the selections 40, 40 formed on the first chip restraining surface 31 and the second chip restraining surface 32 of the chip mounting seat 30 are in the width direction. It is symmetrical with respect to the central part, and the serrations 60, 60 formed on the central part 51A of the upper surface 51 and the lower surface 52 of the chip 50 are symmetrical with respect to the central part in the width direction. It has been.
そのため、 ワークの切削において、 チップ 5 0の上面 5 1における長手方向 P の一端側稜線に形成された切刃 5 3 (及び横切刃 5 3 A, 5 3 A) が摩耗した場 合には、 チップ 5 0を、 その長手方向 Pにおける他端側を向く端面 5 6を軸線〇 方向の先端側に向けるとともに上面 5 1の長手方向 Pの他端側稜線に形成された 切刃 5 4 (及び横切刃 5 4 A, 5 4 A) をバイト本体 1 1の略平板状の突出部 1 6から軸線 0方向の先端側に突出させるように装着し直すことにより、 2回の使 い回しを行ってチップ 5 0の有効利用を図ることができるとともに、 チップ装着 状態での切刃 5 3, 5 4の位置が変化してしまうこともない。 Therefore, when cutting the workpiece, the longitudinal direction P on the upper surface 51 of the chip 50 If the cutting edge 53 (and the horizontal cutting edge 53 A, 53 A) formed on the ridge line on one end side of the tip is worn, the tip 50 is moved to the end face 5 facing the other end side in the longitudinal direction P. The cutting edge 5 4 (and the horizontal cutting edges 54 A, 54 A) formed on the other end of the upper surface 51 in the longitudinal direction P is oriented to the tip side in the direction of the axis を. By re-mounting the chip 50 so that it protrudes from the substantially flat plate-shaped projection 16 toward the tip end in the direction of the axis 0, the chip 50 can be used twice and effective use of the chip 50 can be achieved. The position of the cutting blades 53, 54 in the state does not change.
' ところで、 上述した第 1実施形態による溝入れバイト 1 0では、 各セレ一ショ ン 4 0, 6 0を構成している複数の溝部 4 1 ···, 6 1 ··· (山部 4 2 "', 6 2 "·) が互いに同一形状で、 一対のチップ拘束面 3 1 , 3 2 (チップの上下面 5 1 , 5 2 ) にそれぞれ形成されたセレーシヨン 4 0, 4 0 ( 6 0 , 6 0 ) 同士のピッチ が互いに同一であるため、 嚙み合わされるべき溝部 4 1 (溝部 6 1 ) と山部 6 1By the way, in the grooving tool 10 according to the first embodiment described above, the plurality of grooves 4 1,..., 6 1,. 2 "', 62") have the same shape, and the serrations 40, 40 (60) formed on the pair of chip constraining surfaces 31, 32 (the upper and lower surfaces 51, 52 of the chip) respectively. , 60 0) have the same pitch, so that the groove 4 1 (groove 6 1) and the peak 6 1 to be engaged
(山部 4 2 ) とがいくつかずれていたとしても、 チップ 5 0をチップ取付座 3 0 に揷入することができ、 チップ 5 0の上下面 5 1 , 5 2を一対のチップ拘束面 3 1, 3 2で押圧固定することができてしまうので、 チップ 5 0が誤挿入された状 態となつて、 切刃 5 3 ( 5 4 ) の位置がずれるおそれがある。 Even if there is some deviation from the (mountain portion 4 2), the chip 50 can be inserted into the chip mounting seat 30, and the upper and lower surfaces 51, 52 of the chip 50 can be connected to a pair of chip restraining surfaces. Since it can be pressed and fixed by 31 and 32, there is a possibility that the position of the cutting edge 53 (54) may be displaced in a state where the tip 50 is incorrectly inserted.
これを解決するため、 上述した基本構成となる第 1実施形態の溝入れバイト 1 0に対して、 軸線〇方向に直交する断面で見たときに、 一対のチップ拘束面 3 1 , 3 2にそれぞれ形成されたセレ一シヨン 4 0, 4 0の少なくとも一方について 、 少なくとも 1つの溝部 4 1の形状と他の溝部 4 1…の形状とを互いに異ならせ In order to solve this, when viewed in a cross section orthogonal to the direction of the axis に 対 し て, the pair of chip restraining surfaces 3 1, 3 2 For at least one of the formed selections 40, 40, the shape of at least one groove 41 and the shape of the other grooves 41 are different from each other.
(少なくとも 1つの山部 4 2の形状と他の山部 4 2…の形状とを互いに異ならせ ) たり、 一対のチップ拘束面 3 1, 3 2のうちの一方に形成されたセレーシヨン 0のピッチと他方に形成されたセレーシヨン 4 0のピッチとを互いに異ならせ たりするといつた改良を加えることにより、 チップ 5 0を正確な位置にしか揷入 できなくして、 チップが誤挿入されるおそれをなくすことが好ましい。 (The shape of at least one peak 42 and the shape of the other peaks 42 are different from each other), or the pitch of the serration 0 formed on one of the pair of chip constraint surfaces 31, 32. And by making the pitch of the serrations 40 formed on the other side different from each other, it is possible to insert the chip 50 only at a correct position, thereby eliminating the possibility of the chip being erroneously inserted. Is preferred.
以下、 具体的に、 チップ 5 0の誤挿入防止を可能にする構成を採用した本発明 の第 2〜第 2 0実施形態の溝入れバイト 1 0を説明していくが、 上述した第 1実 施形態と同様の部分には同一の符号を用いてその説明を省略する。  Hereinafter, the grooving tool 10 according to the second to 20th embodiments of the present invention, which employs a configuration capable of preventing erroneous insertion of the chip 50, will be specifically described. The same parts as those in the embodiment are denoted by the same reference numerals, and description thereof will be omitted.
本発明の第 2及び第 3実施形態では、 軸線〇方向に直交する断面で見たときに 、 軸線 O方向の先端側から見たときの図である図 8及び図 9から理解できるよう に、 第 1チップ拘束面 3 1に形成されたセレ一シヨン 4 0において、 その幅方向 (図 8及び図 9における左右方向) 中央部に位置する 1つの山部 4 2が他の山部 4 2…よりも一回り大きくなるように形成されており、 幅方向中央部に位置する 1つの山部 4 2の山高さが、 他の山部 4 2…の山高さよりも大きくなつている。 そして、 このような第 1チップ拘束面 3 1に形成されたセレーシヨン 4 0に対 応するようなセレ一シヨン 6 0が、 チップ 5 0の上面 5 1の中央部分 5 1 Aに形 成されている。 In the second and third embodiments of the present invention, when viewed in a cross section orthogonal to the axis 軸 direction, As can be understood from FIGS. 8 and 9, which are views when viewed from the tip side in the direction of the axis O, in the selection 40 formed on the first chip restraining surface 31, the width direction (see FIG. And the left and right direction in FIG. 9) One ridge 42 located at the center is formed to be slightly larger than the other ridges 42 and one ridge located at the center in the width direction. The peak height of 42 is larger than the peak height of the other peaks 42 ... Then, a selection 60 corresponding to the serration 40 formed on the first chip constraining surface 31 is formed on the central portion 51A of the upper surface 51 of the chip 50. I have.
詳述すると、 第 2実施形態においては、 第 1チップ拘束面 3 1に形成されたセ レーシヨン 4 0における隣接する山部 4 2, 4 2の頂部 4 2 A, 4 2 A間の幅方 向での距離が、 すべてについて略一定の Pに設定されて、 第 2チップ拘束面 3 2 に形成されたセレーシヨン 4 0と略同一になっている。  More specifically, in the second embodiment, in the width direction between the tops 42A and 42A of the adjacent peaks 42 and 42 in the serration 40 formed on the first chip constraint surface 31. Is set to a substantially constant value P for all cases, and is substantially the same as the serration 40 formed on the second chip constraint surface 32.
また、 第 1チップ拘束面 3 1に形成されたセレーシヨン 4 0における溝部 4 1 …の底部 4 1 A…がなす平坦面の幅方向での距離が、 幅方向中央部に位置する 1 つの山部 4 2に隣接する溝部 4 1, 4 1の底部 4 1 A, 4 1 Aでは、 Lに設定さ れて、 第 2チップ拘束面 3 2に形成されたセレーシヨン 4 0と略同一に設定され ているとともに、 これら以外では、 L 1に設定されて、 第 2チップ拘束面 3 2に 形成されたセレーシヨン 4 0よりも大きく設定されている。  Further, the distance in the width direction of the flat surface formed by the bottoms 4 1 A of the grooves 41 in the serration 40 formed on the first chip restraining surface 31 is one peak located at the center in the width direction. At the bottoms 41 A, 41 A of the grooves 41, 41 adjacent to 42, they are set to L and set to be substantially the same as the serrations 40 formed on the second chip constraint surface 32. In addition, other than these, it is set to L1 and set to be larger than the serration 40 formed on the second chip constraint surface 32.
一方、 第 3実施形態においては、 第 1チップ拘束面 3 1に形成されたセレ一シ ヨン 4 0における溝部 4 1…の底部 4 1 A…がなす平坦面の幅方向での距離が、 すべてについて略一定の Lに設定されて、 第 2チップ拘束面 3 2に形成されたセ レ一シヨン 4 0と略同一になっている。  On the other hand, in the third embodiment, the distance in the width direction of the flat surface formed by the bottom portions 41 A of the grooves 41 in the selection 40 formed on the first chip constraint surface 31 is all Is set to a substantially constant L, and is substantially the same as the cell 40 formed on the second chip constraint surface 32.
また、 第 1チップ拘束面 3 1に形成されたセレ一シヨン 4 0における隣接する 山部 4 2, 4 2の頂部 4 2 A, 4 2 A間の幅方向での距離が、 幅方向中央部に位 置する 1つの山部 4 2とこれに隣接する山部 4 2, 4 2との間では、 Pに設定さ れて、 第 2チップ拘束面 3 2に形成されたセレ一シヨン 4 0と略同一に設定され ているとともに、 これら以外では、 P 1に設定されて、 第 2チップ拘束面 3 2に 形成されたセレーシヨン 4 0よりも小さく設定されている。  Also, the distance in the width direction between the tops 42A, 42A of the adjacent peaks 42, 42 in the selection 40 formed on the first chip constraint surface 31 is the widthwise center. Is set to P between one of the peaks 42 located adjacent to each other and the peaks 42 and 42 adjacent thereto, and the selection 40 formed on the second chip restraining surface 32 is set to P. In addition to the above, it is set to P1 and set to be smaller than the serration 40 formed on the second chip constraint surface 32 except for these.
本発明の第 4及び第 5実施形態では、 軸線〇方向に直交する断面で見たときに 、 軸線〇方向の先端側から見たときの図である図 1 0及び図 1 1から理解できる ように、 第 1チップ拘束面 3 1に形成されたセレーシヨン 4 0において、 その幅 方向 (図 1 0及び図 1 1における左右方向) 中央部に位置する 1つの山部 4 2が 他の山部 4 2…よりも一回り小さくなるように形成されており、 幅方向中央部に 位置する 1つの山部 4 2の山高さが、 他の山部 4 2…の山高さよりも小さくなつ ている。 In the fourth and fifth embodiments of the present invention, when viewed in a cross section orthogonal to the axis 軸 direction, As can be understood from FIGS. 10 and 11, which are views when viewed from the tip side in the direction of the axis 〇, the serration 40 formed on the first chip constraining surface 31 has its width direction (FIG. 1). 0 and Fig. 1 1) One ridge 42 located at the center is formed so as to be slightly smaller than the other ridges 42 and one located at the center in the width direction. The height of the mountain 42 is smaller than the height of the other mountain 42.
そして、 このような第 1チップ拘束面 3 1に形成されたセレーシヨン 4 0に対 応するようなセレーシヨン 6 0が、 チップ 5 0の上面 5 1の中央部分 5 1 Aに形 成されている。  Then, a serration 60 corresponding to the serration 40 formed on the first chip constraint surface 31 is formed in the central portion 51A of the upper surface 51 of the chip 50.
詳述すると、 第 4実施形態においては、 第 1チップ拘束面 3 1に形成されたセ レーシヨン 4 0における隣接する山部 4 2 , 4 2の頂部 4 2 A, 4 2 A間の幅方 向での距離が、 すべてについて略一定の Pに設定されて、 第 2チップ拘束面 3 2 に形成されたセレーシヨン 4 0と略同一になっている。  More specifically, in the fourth embodiment, in the width direction between the tops 42 A, 42 A of the adjacent peaks 42, 42 in the serration 40 formed on the first chip constraint surface 31. Is set to a substantially constant value P for all cases, and is substantially the same as the serration 40 formed on the second chip constraint surface 32.
また、 第 1チップ拘束面 3 1に形成されたセレ一シヨン 4 0における溝部 4 1 …の底部 4 1 A…がなす平坦面の幅方向での距離が、 幅方向中央部に位置する 1 つの山部 4 2に隣接する溝部 4 1, 4 1の底部4 1八, 4 1 Aでは、 L 1に設定 されて、 第 2チップ拘束面 3 2に形成されたセレ一シヨン 4 0よりも大きく設定 されているとともに、 これら以外では、 Lに設定されて、 第 2チップ拘束面 3 2 に形成されたセレ一ション 4 0と略同一に設定されている。  Also, the distance in the width direction of the flat surface formed by the bottoms 41 A of the grooves 41 in the selection 40 formed on the first chip constraint surface 31 is one of the distances in the width direction center. At the bottoms 41, 18 and 41A of the grooves 41, 41 adjacent to the peaks 42, L1 is set to be larger than the selection 40 formed on the second chip constraint surface 32. In addition to these, they are set to L and set to be substantially the same as the selection 40 formed on the second chip constraint surface 32 except for these.
一方、 第 5実施形態においては、 第 1チップ拘束面 3 1に形成されたセレ一シ ヨン 4 0における溝部 4 1…の底部 4 1 A…がなす平坦面の幅方向での距離が、 すべてについて略一定の Lに設定されて、 第 2チップ拘束面 3 2に形成されたセ レ一ション 4 0と略同一になっている。  On the other hand, in the fifth embodiment, the distance in the width direction of the flat surface formed by the bottoms 41 A of the grooves 41 in the selection 40 formed on the first chip constraint surface 31 is all Is set to a substantially constant L, and is substantially the same as the serration 40 formed on the second chip constraint surface 32.
また、 第 1チップ拘束面 3 1に形成されたセレ一シヨン 4 0における隣接する 山部 4 2, 4 2の頂部 4 2 A, 4 2 A間の幅方向での距離が、 幅方向中央部に位 置する 1つの山部 4 2とこれに隣接する山部 4 2 , 4 2との間では、 P 1に設定 されて、 第 2チップ拘束面 3 2に形成されたセレ一シヨン 4 0よりも小さく設定 されているとともに、 これら以外では、 Pに設定されて、 第 2チップ拘束面 3 2 に形成されたセレーシヨン 4 0と略同一に設定されている。 本発明の第 6及び第 7実施形態では、 軸線 O方向に直交する断面で見たときに 、 軸線〇方向の先端側から見たときの図である図 1 2及び図 1 3から理解できる ように、 第 1チップ拘束面 3 1に形成されたセレ一シヨン 4 0において、 その幅 方向 (図 1 2及び図 1 3における左右方向) 中央部に位置する 1つの溝部 4 1が 他の溝部 4 1…よりも一回り大きくなるように形成されており、 幅方向中央部に 位置する 1つの溝部 4 1の溝深さが、 他の溝部 4 1…の溝深さよりも大きくなつ ている。 Also, the distance in the width direction between the tops 42A, 42A of the adjacent peaks 42, 42 in the selection 40 formed on the first chip constraint surface 31 is the widthwise center. Is set at P 1 between one peak 42 located adjacent to the peak 42 and the peaks 42 adjacent to the peak 42, and the selection 40 formed on the second chip constraint surface 32 is set to P 1. In addition to the above, it is set to P and set to be substantially the same as the serration 40 formed on the second chip constraint surface 32 except for these. In the sixth and seventh embodiments of the present invention, it can be understood from FIGS. 12 and 13 which are views when viewed from the tip side in the direction of the axis と き に when viewed in a cross section orthogonal to the direction of the axis O. In addition, in the selection 40 formed on the first chip restraining surface 31, one groove 41 located at the center in the width direction (the left-right direction in FIGS. 12 and 13) corresponds to the other groove 4. The groove depth of one groove 41 located at the center in the width direction is larger than the groove depth of the other grooves 41.
そして、 このような第 1チップ拘束面 3 1に形成されたセレ一シヨン 4 0に対 応するようなセレ一シヨン 6 0が、 チップ 5 0の上面 5 1の中央部分 5 1 Aに形 成されている。  Then, a selection 60 corresponding to the selection 40 formed on the first chip constraining surface 31 is formed on the central portion 51A of the upper surface 51 of the chip 50. Have been.
詳述すると、 第 6実施形態においては、 第 1チップ拘束面 3 1に形成されたセ レ一シヨン 4 0における隣接する山部 4 2 , 4 2の頂部 4 2 A, 4 2 A間の幅方 向での距離が、 幅方向中央部に位置する 1つの溝部 4 1に隣接する山部 4 2, 4 2の間では、 P 1に設定されて、 第 2チップ拘束面 3 2に形成されたセレーショ ン 4 0よりも大きく設定されているとともに、 これ以外では、 Pに設定されて、 第 2チップ拘束面 3 2に形成されたセレ一シヨン 4 0と略同一に設定されている また、 第 1チップ拘束面 3 1に形成されたセレーシヨン 4 0における溝部 4 1 …の底部 4 1 A…がなす平坦面の幅方向での距離が、 幅方向中央部に位置する 1 つの溝部 4 1の頂部 4 1 Aでは、 L 1に設定されて、 第 2チップ拘束面 3 2に形 成されたセレーシヨン 4 0よりも大きく設定されているとともに、 これ以外では 、 Lに設定されて、 第 2チップ拘束面 3 2に形成されたセレーシヨン 4 0と略同 一に設定されている。  More specifically, in the sixth embodiment, the width between the tops 4 2 A and 42 A of the adjacent peaks 42 and 42 in the cell 40 formed on the first chip constraint surface 31. The distance in the direction is set to P1 between the peaks 42, 42 adjacent to one groove 41 located at the center in the width direction, and is formed on the second chip restraining surface 32. In addition to the above, it is set to be larger than the serration 40, and other than that, it is set to P and set to be substantially the same as the selection 40 formed on the second chip constraint surface 32. The distance in the width direction of the flat surface formed by the bottoms 4 1 A of the grooves 4 1 in the serration 40 formed on the first chip restraining surface 31 is equal to that of one groove 41 located at the center in the width direction. At the top 41A, it is set to L1 and is set to be larger than the serration 40 formed on the second chip constraint surface 32. Moni, in addition to this, set L, and is approximately set to the same as the second Sereshiyon 4 0 formed on the chip restraining surface 3 2.
一方、 第 7実施形態においては、 第 1チップ拘束面 3 1に形成されたセレーシ ヨン 4 0における溝部 4 1…の底部 4 1 A…がなす平坦面の幅方向での距離が、 すべてについて略一定の Lに設定されて、 第 2チップ拘束面 3 2に形成されたセ レ一シヨン 4 0と略同一になっている。  On the other hand, in the seventh embodiment, the distance in the width direction of the flat surface formed by the bottoms 41 A of the grooves 41 in the serration 40 formed on the first chip constraint surface 31 is substantially the same. It is set to a constant L and is substantially the same as the cell 40 formed on the second chip constraint surface 32.
また、 第 1チップ拘束面 3 1に形成されたセレーシヨン 4 0における隣接する 山部 4 2, 4 2の頂部 4 2 A, 4 2 A間の幅方向での距離が、 幅方向中央部に位 置する 1つの溝部 4 1に隣接する山部 4 2 , 4 2の間では、 P 1に設定されて、 第 2チップ拘束面 3 2に形成されたセレーシヨン 4 0よりも大きく設定されてい るとともに、 これ以外では、 Pに設定されて、 第 2チップ拘束面 3 2に形成され たセレ一シヨン 4 0と略同一に設定されている。 Also, the distance in the width direction between the tops 42A and 42A of the adjacent peaks 42 and 42 in the serration 40 formed on the first chip constraint surface 31 is located at the center in the width direction. Between the peaks 4 2, 4 2 adjacent to one groove 41, it is set to P 1 and set to be larger than the serration 40 formed on the second chip restraining surface 32. Otherwise, it is set to P and set to be substantially the same as the selection 40 formed on the second chip constraint surface 32.
本発明の第 8及び第 9実施形態では、 軸線 0方向に直交する断面で見たときに 、 軸線 O方向の先端側から見たときの図である図 1 4及び図 1 5から理解できる ように、 第 1チップ拘束面 3 1に形成されたセレ一シヨン 4 0において、 その幅 方向 (図 1 4及び図 1 5における左右方向) 中央部に位置する 1つの溝部 4 1が 他の溝部 4 1…よりも一回り小さくなるように形成されており、 幅方向中央部に 位置する 1つの溝部 4 1の溝深さが、 他の溝部 4 1…の溝深さよりも小さくなつ ている。  In the eighth and ninth embodiments of the present invention, it can be understood from FIGS. 14 and 15 which are views when viewed from the tip side in the direction of the axis O when viewed in a cross section orthogonal to the direction of the axis 0. In addition, in the selection 40 formed on the first chip constraining surface 31, one groove 41 located at the center in the width direction (the left-right direction in FIGS. 14 and 15) corresponds to the other groove 4. The groove depth of one groove 41 located at the center in the width direction is smaller than the groove depth of the other grooves 41.
そして、 このような第 1チップ拘束面 3 1に形成されたセレーシヨン 4 0に対 応するようなセレーシヨン 6 0が、 チップ 5 0の上面 5 1の中央部分 5 1 Aに形 成されている。  Then, a serration 60 corresponding to the serration 40 formed on the first chip constraint surface 31 is formed in the central portion 51A of the upper surface 51 of the chip 50.
詳述すると、 第 8実施形態においては、 第 1チップ拘束面 3 1に形成されたセ レーシヨン 4 0における隣接する山部 4 2 , 4 2の頂部 4 2 A, 4 2 A間の幅方 向での距離が、 幅方向中央部に位置する 1つの溝部 4 1に隣接する山部 4 2, 4 2の間では、 P 1に設定されて、 第 2チップ拘束面 3 2に形成されたセレ一ショ ン 4 0よりも小さく設定されているとともに、 これ以外では、 Pに設定されて、 第 2チップ拘束面 3 2に形成されたセレ一シヨン 4 0と略同一に設定されている また、 第 1チップ拘束面 3 1に形成されたセレーシヨン 4 0における溝部 4 1 …の底部 4 1 A…がなす平坦面の幅方向での距離が、 幅方向中央部に位置する 1 つの溝部 4 1の頂部 4 1 Aでは、 Lに設定されて、 第 2チップ拘束面 3 2に形成 されたセレ一シヨン 4 0と略同一に設定されているとともに、 これ以外では、 L 1に設定されて、 第 2チップ拘束面 3 2に形成されたセレ一シヨン 4 0よりも大 きく設定されている。  More specifically, in the eighth embodiment, in the width direction between the tops 42 A and 42 A of the adjacent peaks 42 and 42 in the serration 40 formed on the first chip constraint surface 31. The distance between the peaks 42 and 42 adjacent to one groove 41 located at the center in the width direction is set to P 1 and the distance formed on the second chip restraining surface 32 is set to P 1. In addition to this, it is set to be smaller than the section 40, and in other cases, it is set to P and is set to be substantially the same as the selection 40 formed on the second chip constraint surface 32. The distance in the width direction of the flat surface formed by the bottoms 4 1 A of the grooves 4 1 in the serration 40 formed on the first chip restraining surface 31 is equal to that of one groove 41 located at the center in the width direction. At the top 41 A, it is set to L and is set to be substantially the same as the selection 40 formed on the second chip constraint surface 32. In addition to this, it is set to L 1, is greatly set than selenides one Chillon 4 0 formed on the second chip restraining surface 3 2.
一方、 第 9実施形態においては、 第 1チップ拘束面 3 1に形成されたセレ一シ ヨン 4 0における溝部 4 1…の底部 4 1 A…がなす平坦面の幅方向での距離が、 すべてについて略一定の Lに設定されて、 第 2チップ拘束面 3 2に形成されたセ レーション 4 0と略同一になっている。 On the other hand, in the ninth embodiment, the distance in the width direction of the flat surface formed by the bottoms 41 A of the grooves 41 in the selection 40 formed on the first chip constraint surface 31 is: All of them are set to a substantially constant L, and are almost the same as the serrations 40 formed on the second chip constraint surface 32.
また、 第 1チップ拘束面 3 1に形成されたセレーシヨン 4 0における隣接する 山部 4 2 , 4 2の頂部 4 2 A, 4 2 A間の幅方向での距離が、 幅方向中央部に位 置する 1つの溝部 4 1に隣接する山部 4 2 , 4 2の間では、 P 1に設定されて、 第 2チップ拘束面 3 2に形成されたセレーシヨン 4 0よりも小さく設定されてい るとともに、 これ以外では、 Pに設定されて、 第 2チップ拘束面 3 2に形成され たセレ一シヨン 4 0と略同一に設定されている。  Also, the distance in the width direction between the tops 42A, 42A of the adjacent peaks 42, 42 in the serration 40 formed on the first chip constraint surface 31 is located at the center in the width direction. Between the peaks 4 2, 42 adjacent to one groove 41, which is set to P 1 and smaller than the serration 40 formed on the second chip constraint surface 32. Otherwise, it is set to P and set to be substantially the same as the selection 40 formed on the second chip constraint surface 32.
本発明の第 1 0及び第 1 1実施形態では、 軸線〇方向に直交する断面で見たと きに、 軸線 O方向の先端側から見たときの図である図 1 6及び図 1 7から理解で きるように、 第 1チップ拘束面 3 1に形成されたセレーシヨン 4 0において、 そ の幅方向 (図 1 6及び図 1 7における左右方向) 中央部に位置する 1つの山部 4 2が他の山部 4 2…よりも一回り大きく (小さく) なるように形成されており、 幅方向中央部に位置する 1つの山部 4 2の山高さが、 他の山部 4 2…の山高さよ りも大きく (小さく) なっているものであるが、 上述した第 1〜第 9実施形態と 異なり、 第 1チップ拘束面 3 1及び第 2チップ拘束面 3' 2に形成されたセレーシ ヨン 4 0 , 4 0が、 それぞれ 2つの溝部 4 1, 4 1と 3つの山部 4 2 ··· (幅方向 の両端に位置する半分の山部 4 2, 4 2を 2つ含む) との少数から構成されたも のである。  In the tenth and eleventh embodiments of the present invention, it is understood from FIGS. 16 and 17 which are views when viewed from the tip side in the direction of the axis O when viewed in a cross section orthogonal to the direction of the axis 〇. As can be seen, in the serration 40 formed on the first chip constraining surface 31, one peak portion 42 located in the center in the width direction (the left-right direction in FIGS. 16 and 17) is the other. Is formed so as to be slightly larger (smaller) than the peaks 4 2… of the other peaks 4 2… located at the center in the width direction. Although it is larger (smaller), unlike the first to ninth embodiments described above, the serrations 40 formed on the first chip constraining surface 31 and the second chip constraining surface 3 ′ 2 are different from the first embodiment. , 40 are two grooves 41, 41 and three peaks 42, respectively (half peaks 42, 42 located at both ends in the width direction). (Including two).
そして、 このような第 1チップ拘束面 3 1に形成されたセレ一シヨン 4 0に対 応するようなセレーシヨン 6 0が、 チップ 5 0の上面 5 1の中央部分 5 1 Aに形 成されている。  Then, a serration 60 corresponding to the selection 40 formed on the first chip constraint surface 31 is formed in the central portion 51 A of the upper surface 51 of the chip 50. I have.
詳述すると、 第 1 0実施形態においては、 第 1チップ拘束面 3 1に形成された セレ一シヨン 4 0における隣接する山部 4 2 , 4 2の頂部 4 2 A, 4 2 A間の幅 方向での距離が、 すべて (2つ) について略一定の Pに設定されて、 第 2チップ 拘束面 3 2に形成されたセレーシヨン 4 0と略同一になっている。  More specifically, in the tenth embodiment, the width between the tops 42 A, 42 A of the adjacent peaks 42, 42 in the selection 40 formed on the first chip constraint surface 31. The distance in the direction is set to a substantially constant P for all (two), and is substantially the same as the serration 40 formed on the second chip constraint surface 32.
また、 第 1チップ拘束面 3 1に形成されたセレーシヨン 4 0における溝部 4 1 …の底部 4 1 A…がなす平坦面の幅方向での距離が、 すべて (2つ) について、 Lに設定されて、 第 2チップ拘束面 3 2に形成されたセレ一ション 4 0と略同一 に設定されている。 Further, the distance in the width direction of the flat surface formed by the bottoms 41A of the grooves 41 in the serration 40 formed on the first chip constraint surface 31 is set to L for all (two). Approximately the same as the selection 40 formed on the second chip constraint surface 32 Is set to
一方、 第 1 1実施形態においては、 第 1チップ拘束面 3 1に形成されたセレー シヨン 4 0における隣接する山部 4 2 , 4 2の頂部 4 2 A, 4 2 A間の幅方向で の距離が、 すべて (2つ) について略一定の Pに設定されて、 第 2チップ拘束面 3 2に形成されたセレ一シヨン 4 0と略同一になっている。  On the other hand, in the first embodiment, in the width direction between the tops 42A and 42A of the adjacent peaks 42 and 42 in the serration 40 formed on the first chip constraint surface 31. The distance is set to a substantially constant P for all (two), and is substantially the same as the selection 40 formed on the second chip constraint surface 32.
また、 第 1チップ拘束面 3 1に形成されたセレーシヨン 4 0における溝部 4 1 …の底部 4 1 A…がなす平坦面の幅方向での距離が、 幅方向中央部に位置する 1 つの山部 4 2に隣接する溝部 4 1 , 4 1の底部 4 1 A, 4 1 Aでは、 すべて (2 つ) について、 L 1に設定されて、 第 2チップ拘束面 3 2に形成されたセレーシ ヨン 4 0よりも大きく設定されている。  Further, the distance in the width direction of the flat surface formed by the bottoms 4 1 A of the grooves 41 in the serration 40 formed on the first chip restraining surface 31 is one peak located at the center in the width direction. At the bottoms 41 A, 41 A of the grooves 4 1, 41 adjacent to 42, all (two) are set to L 1 and the serrations 4 formed on the second chip constraint surface 32 are set. It is set larger than 0.
本発明の第 1 2〜第 1 4実施形態では、 軸線 O方向に直交する断面で見たとき に、 軸線 O方向の先端側から見たときの図である図 1 8〜図 2 0から理解できる ように、 第 1チップ拘束面 3 1に形成されたセレーシヨン 4 0において、 その幅 方向 (図 1 8〜図 2 0における左右方向) の両端に位置する半分の山部 4 2, 4 2のそれぞれを構成している側壁面 4 3 (幅方向の両端に位置する溝部 4 1, 4 1のそれぞれを構成している側壁面 4 3, 4 3のうち、 幅方向の両端側に位置す る側壁面 4 3 ) と上記の直線 Xとの傾斜角度が、 他の側壁面 4 3〜 (及び第 2チ ップ拘束面 3 2に形成されたセレ一シヨン 4 0の溝部 4 1…及び山部 4 2…を構 成する側壁面 4 3 ···) のそれぞれと上記の直線 Xとの傾斜角度よりも大きくなる ように形成されており、 幅方向の両端に位置する 2つの山部 4 2の山高さが、 他 の山部 4 2…の山高さよりも小さくなつている。  In the 12th to 14th embodiments of the present invention, when viewed in a cross section orthogonal to the axis O direction, it is understood from FIGS. 18 to 20 which are views when viewed from the tip side in the axis O direction. In order to make it possible, in the serration 40 formed on the first chip constraining surface 31, the half peaks 42, 42 located at both ends in the width direction (left and right directions in FIGS. 18 to 20) are formed. Side wall surface 4 3 that constitutes each of them (located at both ends in the width direction of side wall surfaces 4 3 and 4 3 that constitute each of grooves 41 and 41 located at both ends in the width direction) The inclination angle between the side wall surface 43) and the above-mentioned straight line X is different from that of the other side wall surface 43 ~ (and the groove 41 of the selection 40 formed on the second chip restraining surface 32) and the mountain. Each of the side walls 4 3. That 2 Tsunoyama section 4 2 of the mountain height, are smaller summer than other mountain section 4 2 ... mountain height of.
そして、 このような第 1チップ拘束面 3 1に形成されたセレ一シヨン 4 0に対 応するようなセレーシヨン 6 0が、 チップ 5 0の上面 5 1の中央部分 5 1 Aに形 成されている。  Then, a serration 60 corresponding to the selection 40 formed on the first chip constraint surface 31 is formed in the central portion 51 A of the upper surface 51 of the chip 50. I have.
詳述すると、 第 1 2実施形態においては、 第 1チップ拘束面 3 1及び第 2チッ プ拘束面 3 2に形成されたセレーシヨン 4 0, 4 0はそれぞれ、 その幅方向中央 部に山部 4 2を位置させていて、 第 1 3実施形態においては、 第 1チップ拘束面 3 1及び第 2チップ拘束面 3 2に形成されたセレ一シヨン 4 0, 4 0はそれぞれ 、 その幅方向中央部に溝部 4 1を位置させている。 一方、 第 1 4実施形態においては、 第 1チップ拘束面 3 1及ぴ第 2チップ拘束 面 3 2に形成されたセレーシヨン 4 0 , 4 0はそれぞれ、 その幅方向中央部に山 部 4 2を位置させているものであるが、 上述した第 1 2及び第 1 3実施形態と異 なり、 第 1チップ拘束面 3 1及び第 2チップ拘束面 3 2に形成されたセレ一ショ ン 4 0, 4 0が、 それぞれ 2つの溝部 4 1, 4 1と 3つの山部 4 2 ··· (幅方向の 両端に位置する半分の山部 4 2 , 4 2を 2つ含む) との少数から構成されたもの である。 More specifically, in the 12th embodiment, the serrations 40, 40 formed on the first chip constraining surface 31 and the second chip constraining surface 32, respectively, have peaks 4 at the center in the width direction. In the thirteenth embodiment, the selections 40, 40 formed on the first chip constraining surface 31 and the second chip constraining surface 32 are respectively located at the center portions in the width direction. The groove 41 is located at On the other hand, in the 14th embodiment, the serrations 40 and 40 formed on the first chip constraining surface 31 and the second chip constraining surface 32 respectively have a peak 42 in the center in the width direction. Although they are positioned, unlike the first and second embodiments described above, the selections 40 and 40 formed on the first chip constraint surface 31 and the second chip constraint surface 32 are different from the first and second embodiments. 40 is composed of a small number of two grooves 4 1, 4 1 and three peaks 4 2... (Including two half peaks 4 2, 4 2 located at both ends in the width direction). It has been done.
本発明の第 1 5〜第 1 7実施形態では、 軸線〇方向に直交する断面で見たとき に、 軸線〇方向の先端側から見たときの図である図 2 1〜図 2 3から理解できる ように、 第 1チップ拘束面 3 1に形成されたセレ一シヨン 4 0において、 その幅 方向 (図 2 1〜図 2 3における左右方向) 中央部に位置する 1つの山部 4 2 (溝 部 4 1 ) を構成している側壁面 4 3 , 4 3のそれぞれと上記の直線 Xとの傾斜角 度が、 他の側壁面 4 3— (及び第 2チップ拘束面 3 2に形成されたセレーシヨン 4 0の複数の溝部 4 1…及び山部 4 2…を構成する側壁面 4 3 - のそれぞれと 上記の直線 Xとの傾斜角度よりも大きくなるように形成されており、 幅方向中央 部に位置する 1つの山部 4 2の山高さ (溝部 4 1の溝深さ) が、 他の山部 4 2 の山高さ (溝部 4 1…の溝深さ) よりも小さくなつている。  In the fifteenth to seventeenth embodiments of the present invention, when viewed in a cross section orthogonal to the axis 図 direction, it is understood from FIGS. 21 to 23 which are views when viewed from the tip side in the axis 〇 direction. As can be seen, in the selection 40 formed on the first chip constraining surface 31, one peak portion 4 2 (groove) located at the center in the width direction (left-right direction in FIGS. 21 to 23) The inclination angle between each of the side walls 4 3, 4 3 constituting the portion 4 1) and the straight line X is formed on the other side wall surface 4 3 — (and the second chip constraint surface 32). Each of the side walls 4 3-constituting the plurality of grooves 41 and the peaks 42 of the serration 40 is formed so as to be larger than the inclination angle between the straight line X and the central part in the width direction. The height of one peak 42 (groove depth of groove 41) is smaller than the height of other peaks 42 (groove depth of groove 41 ...) To have.
そして、 このような第 1チップ拘束面 3 1に形成されたセレーション 4 0に対 応するようなセレ一シヨン 6 0が、 チップ 5 0の上面 5 1の中央部分 5 1 Aに形 成されている。  Then, a selection 60 corresponding to the serrations 40 formed on the first chip constraint surface 31 is formed on the central portion 51A of the upper surface 51 of the chip 50. I have.
詳述すると、 第 1 5実施形態においては、 第 1チップ拘束面 3 1及び第 2チッ プ拘束面 3 2に形成されたセレーシヨン 4 0, 4 0はそれぞれ、 その幅方向中央 部に山部 4 2を位置させて、 第 1チップ拘束面 3 1に形成されたセレ一シヨン 4 0の幅方向中央部に位置する 1つの山部 4 2の山高さが他の山部 4 2…の山高さ よりも小さくなつていて、 第 1 6実施形態においては、 第 1チップ拘束面 3 1及 び第 2チップ拘束面 3 2に形成されたセレーシヨン 4 0, 4 0はそれぞれ、 その 幅方向中央部に溝部 4 1を位置させて、 第 1チップ拘束面 3 1に形成されたセレ ーシヨン 4 0の幅方向中央部に位置する 1つの溝部 4 1の溝深さが他の溝部 4 1 …の溝深さよりも小さくなつている。 一方、 第 1 7実施形態においては、 第 1チップ拘束面 3 1及び第 2チップ拘束 面 3 2に形成されたセレーシヨン 4 0, 4 0はそれぞれ、 その幅方向中央部に山 部 4 2を位置させて、 第 1チップ拘束面 3 1に形成されたセレ一シヨン 4 0の幅 方向中央部に位置する 1つの山部 4 2の山高さが他の山部 4 2…の山高さよりも 小さくなつているものであるが、 上述した第 1 5及び第 1 6実施形態と異なり、 第 1チップ拘束面 3 1及び第 2チップ拘束面 3 2に形成されたセレーシヨン 4 0 , 4 0が、 それぞれ 2つの溝部 4 1, 4 1と 3つの山部 4 2 ··· (幅方向の両端に 位置する半分の山部 4 2 , 4 2を 2つ含む) との少数から構成されたものである 本発明の第 1 8〜第 1 9実施形態では、 軸線 O方向に直交する断面で見たとき に、 軸線〇方向の先端側から見たときの図である図 2 4及び図 2 5から理解でき るように、 第 1チップ拘束面 3 1に形成されたセレ一シヨン 4 0において、 その 幅方向 (図 2 4及び図 2 5における左右方向) 中央部に位置する 1つの溝部 4 1 が他の溝部 4 1…よりも幅が大きくなるように形成されており、 幅方向中央部に 位置する 1つの溝部 4 1の溝幅が、 他の溝部 4 1…の溝幅よりも大きくなつてい る、 あるいは、 その幅方向中央部に位置する 1つの山部 4 2が他の山部 4 2…よ りも幅が大きくなるように形成されており、 幅方向中央部に位置する 1つの山部 4 2の山幅が、 他の山部 4 2…の山幅よりも大きくなつている。 More specifically, in the fifteenth embodiment, the serrations 40, 40 formed on the first chip constraining surface 31 and the second chip constraining surface 32, respectively, have peaks 4 in the center in the width direction. 2 and the height of one peak 4 2 located at the center in the width direction of the selection 40 formed on the first chip restraint surface 31 is the same as the height of the other peaks 4 2. In the sixteenth embodiment, the serrations 40, 40 formed on the first chip constraining surface 31 and the second chip constraining surface 32, respectively, are located at the center in the width direction. With the groove portion 41 positioned, the groove depth of one groove portion 41 located at the center in the width direction of the selection 40 formed on the first chip restraining surface 31 is the same as the groove depth of the other groove portions 4 1. It's getting smaller. On the other hand, in the seventeenth embodiment, the serrations 40, 40 formed on the first chip constraining surface 31 and the second chip constraining surface 32, respectively, have the peaks 42 at the center in the width direction. As a result, the height of one peak 42 located at the center in the width direction of the selection 40 formed on the first chip constraint surface 31 is smaller than the height of the other peaks 42. However, unlike the above-described fifteenth and sixteenth embodiments, the serrations 40 and 40 formed on the first chip constraint surface 31 and the second chip constraint surface 32 are respectively 2 The book is composed of a small number of two grooves 41, 41 and three peaks 42 (including two half peaks 42, 42 located at both ends in the width direction). In the eighteenth to nineteenth embodiments of the invention, when viewed in a cross section orthogonal to the direction of the axis O, FIG. As can be understood from FIGS. 4 and 25, the selection 40 formed on the first chip restraining surface 31 is located at the center in the width direction (the horizontal direction in FIGS. 24 and 25). One groove 41 is formed so as to be wider than the other grooves 41. The groove width of one groove 41 located in the center in the width direction is the same as that of the other grooves 41. One ridge 42, which is larger than the width or located at the center in the width direction, is formed to be wider than the other ridges 42, and the center in the width direction is formed. The peak width of one peak 42 located in is larger than the peak width of the other peaks 42.
そして、 このような第 1チップ拘束面 3 1に形成されたセレ一シヨン 4 0に対 応するようなセレーシヨン 6 0が、 チップ 5 0の上面 5 1の中央部分 5 1 Aに形 成されている。  Then, a serration 60 corresponding to the selection 40 formed on the first chip constraint surface 31 is formed in the central portion 51 A of the upper surface 51 of the chip 50. I have.
詳述すると、 第 1 8実施形態においては、 第 1チップ拘束面 3 1に形成された セレ一シヨン 4 0における幅方向中央部に位置する 1つの溝部 4 1が、 略同一形 状の複数の溝部 4 1…と略同一形状の複数の山部 4 2…とが略一定のピッチで交 互に配列されてなるセレーシヨン 4 0における隣接する 2つの溝部 4 1, 4 1を 連結したような形状となっている。  More specifically, in the eighteenth embodiment, one groove 41 located at the center in the width direction of the selection 40 formed on the first chip restraining surface 31 has a plurality of substantially identical shapes. A shape in which two adjacent grooves 41, 41 in a serration 40, in which the grooves 41 and a plurality of peaks 42 having the same shape are alternately arranged at a substantially constant pitch, are connected. It has become.
一方、 第 1 9実施形態においては、 第 1チップ拘束面 3 1に形成されたセレー シヨン 4 0における幅方向中央部に位置する 1つの山部 4 2が、 略同一形状の複 数の溝部 4 1…と略同一形状の複数の山部 4 2…とが略一定のピッチで交互に配 列されてなるセレーシヨン 4 0における隣接する 2つの山部 4 2, 4 2を連結し たような形状となっている。 On the other hand, in the ninth embodiment, one peak 42 located at the center in the width direction of the serration 40 formed on the first chip constraint surface 31 has a plurality of grooves 4 of substantially the same shape. A plurality of ridges 4 2 ... of the same shape as 1 ... are alternately arranged at a substantially constant pitch. The shape is such that two adjacent peaks 42, 42 of the arrayed serrations 40 are connected.
以上説明したような本発明の第 2〜第 1 9実施形態では、 軸線〇方向に直交す る断面で見たときに、 一対のチップ拘束面 3 1, 3 2にそれぞれ形成されたセレ ーシヨン 4 0の少なくとも一方 (例えば第 1チップ拘束面 3 1に形成されたセレ ーシヨン 4 0 ) について、 少なくとも 1つの溝部 4 1の形状と他の溝部 4 1…の 形状とを互いに異ならせ (少なくとも 1つの山部 4 2の形状と他の山部 4 2…の 形状とを互いに異ならせ) た構成を採用している。  In the second to nineteenth embodiments of the present invention as described above, when viewed in a cross section orthogonal to the direction of the axis 〇, the selection portions 4 formed on the pair of chip constraint surfaces 31 and 32 respectively. 0 (for example, the selection 40 formed on the first chip constraining surface 31), the shape of at least one groove 41 and the shape of the other grooves 41 are made different from each other (at least one The shape of the peak 42 is different from the shape of the other peaks 42.
例えば、 第 2〜第 5及び第 1 0〜第 1 1実施形態では、 第 1チップ拘束面 3 1 に形成されたセレ一ション 4 0の幅方向中央部に位置する 1つの山部 4 1を一回 り大きくあるいは小さくし、 第 6〜第 9実施形態では、 第 1チップ拘束面 3 1に 形成されたセレーシヨン 4 0の幅方向中央部に位置する 1つの溝部 4 2を一回り 大きくあるいは小さくし、 第 1 2〜第 1 4実施形態では、 第 1チップ拘束面 3 1 に形成されたセレ一ション 4 0の幅方向の両端に位置する 2つの山部 4 2, 4 2 を構成する側壁面 4 3, 4 3のそれぞれと上記の直線 Xとの傾斜角度を大きくし 、 第 1 5〜第 1 7実施形態では、 第 1チップ拘束面 3 1に形成されたセレ一ショ ン 4 0の幅方向中央部に位置する 1つの山部 4 1あるいは溝部 4 2を構成する側 壁面 4 3 , 4 3のそれぞれと上記の直線 Xとの傾斜角度を大きくし、 第 1 8〜第 1 9実施形態では、 第 1チップ拘束面 3 1に形成されたセレーシヨン 4 0の幅方 向中央部に位置する 1つの溝部 4 1の溝幅あるいは山部 4 2の山幅を大きくして いる。  For example, in the second to fifth and tenth to eleventh embodiments, one ridge 41 located at the center in the width direction of the selection 40 formed on the first chip constraint surface 31 is formed. In the sixth to ninth embodiments, one groove portion 42 located at the center in the width direction of the serration 40 formed on the first chip restraint surface 31 is slightly larger or smaller. However, in the 12th to 14th embodiments, the sides forming the two peaks 4 2, 4 2 located at both ends in the width direction of the selection 40 formed on the first chip constraint surface 31. The inclination angle between each of the wall surfaces 43 and 43 and the straight line X is increased, and in the fifteenth to seventeenth embodiments, the selection 40 formed on the first chip constraint surface 31 is reduced. The inclination angle between each of the side walls 4 3, 4 3 and the straight line X that constitutes one ridge portion 4 1 or groove portion 4 located at the center in the width direction In the eighteenth to nineteenth embodiments, the groove width or the peak part 42 of one groove part 41 located at the center in the width direction of the serration 40 formed on the first chip constraint surface 31 is set. Mountain width is increased.
これにより、 チップ 5 0をチップ取付座 3 0に揷入する際、 互いに嚙み合わさ れるべき第 1チップ拘束面 3 1のセレーシヨン 4 0の溝部 4 1 (山部 4 2 ) と、 チップ 5 0の上面 5 1の中央部分 5 1 Aに形成されたセレーシヨン 6 0の山部 6 2 (溝部 6 1 ) とが 1つでもずれていたりすると、 これらセレーシヨン 4 0, 6 0同士が互いに干渉しあい、 チップ 5 0の挿入を行うことができなくなつている すなわち、 必然的に、 チップ 5 0をチップ取付座 3 0に対して正確な位置にし か挿入できなくなつており、 チップ 5 0が誤挿入されるおそれがなくなって、 切 刃 5 3の位置ずれなどが生じることがないのである。 As a result, when inserting the chip 50 into the chip mounting seat 30, the groove 41 of the serration 40 of the first chip restraining surface 31 to be engaged with each other and the chip 50 If at least one of the peaks 6 2 (grooves 6 1) of the serration 60 formed in the central portion 51 A of the upper surface 51 of the surface is displaced, these serrations 40 and 60 interfere with each other, Insertion of chip 50 is no longer possible.In other words, chip 50 cannot be inserted only in the correct position with respect to chip mounting seat 30, and chip 50 is incorrectly inserted. Is no longer likely to be No displacement of the blade 53 occurs.
しかも、 これら第 2〜第 1 9実施形態に共通して、 一対のチップ拘束面 3 1 , 3 2に形成されたセレーシヨン 4 0, 4 0とチップ 5 0の上下面 5 1 , 5 2に形 成されたセレーシヨン 6 0 , 6 0とは、 それぞれ幅方向中央部を挟んで対称形に なっていることから、 上記のようなチップ 5 0の誤挿入防止対策の構成を採用し た場合でも、 チップ 5 0の他端側稜線に形成された切刃 5 4をバイト本体 1 1か ら軸線 0方向の先端側に突出させるように装着し直すことができ、 2回の使い回 しを行うことができるようになつている。  Moreover, in common with the second to nineteenth embodiments, the serrations 40, 40 formed on the pair of chip constraint surfaces 31, 32, and the upper and lower surfaces 51, 52 of the chip 50 are formed. Since the formed serrations 60 and 60 are symmetrical with respect to the center in the width direction, respectively, even if the above-described configuration for preventing incorrect insertion of the chip 50 is adopted, The cutting edge 54 formed on the ridge line on the other end of the tip 50 can be remounted so that it protrudes from the cutting tool body 11 toward the tip end in the direction of the axis 0, and it can be used twice. You can do it.
本発明の第 2 0実施形態では、 軸線〇方向に直交する断面で見たときに、 軸線 〇方向の先端側から見たときの図である図 2 6から理解できるように、 第 1チッ プ拘束面 3 1に形成されたセレ一シヨン 4 0のピッチ P 1と、 第 2チップ拘束面 3 2に形成されたセレーシヨン 4 0のピッチ Pとが互いに異なっている。  In the twenty-first embodiment of the present invention, as can be understood from FIG. 26, which is a view when viewed from the tip side in the direction of the axis 、 when viewed in a section orthogonal to the direction of the axis 〇, the first chip The pitch P1 of the selection 40 formed on the constraint surface 31 and the pitch P of the serration 40 formed on the second chip constraint surface 32 are different from each other.
詳述すると、 第 2 0実施形態においては、 第 1チップ拘束面 3 1及び第 2チッ プ拘束面 3 2に形成されたセレーシヨン 4 0, 4 0のピッチ 1, Pがそれぞれ 幅方向 (図 2 6における左右方向) の略全長に亘つて略一定に維持されていると ともに、 これらピッチ P I , Pの関係が、 P 1 < P、 かつ、 η Ρ 1≠Ρ ( n :整 数) とされているのである。  More specifically, in the 20th embodiment, the pitches 1 and P of the serrations 40 and 40 formed on the first chip constraining surface 31 and the second chip constraining surface 32 respectively correspond to the width direction (FIG. 2). (Left-right direction in FIG. 6), and is maintained substantially constant over substantially the entire length, and the relationship between these pitches PI and P is defined as P 1 <P and η Ρ 1 ≠ Ρ (n: integer). -ing
そして、 このような第 1チップ拘束面 3 1に形成されたセレーシヨン 4 0に対 応するようなセレーシヨン 6 0が、 チップ 5 0の上面 5 1の中央部分 5 1 Aに形 成されている。  Then, a serration 60 corresponding to the serration 40 formed on the first chip constraint surface 31 is formed in the central portion 51A of the upper surface 51 of the chip 50.
以上説明したような本発明の第 2 0実施形態では、 軸線 O方向に直交する断面 で見たときに、 一対のチップ拘束面 3 1, 3 2にそれぞれ形成されたセレ一ショ ン 4 0のうちの一方のピッチと、 他方のピッチとを互いに異ならせた構成を採用 しており、 例えば、 第 1チップ拘束面 3 1に形成されたセレーシヨン 4 0のピッ チ P 1が、 第 2チップ拘束面 3 2に形成されたセレーシヨン 4 0のピッチ Pより も小さくなつている。  In the twenty-first embodiment of the present invention described above, when viewed in a cross section orthogonal to the direction of the axis O, the selection 40 formed on the pair of chip constraint surfaces 31 and 32 respectively. One pitch is different from the other pitch.For example, the pitch P1 of the serration 40 formed on the first chip constraint surface 31 is the second chip constraint. The pitch P is smaller than the pitch P of the serrations 40 formed on the surface 32.
これにより、 チップ 5 0をチップ取付座 3 0に挿入する際、 互いに嚙み合わさ れるべき第 1チップ拘束面 3 1のセレ一シヨン 4 0の溝部 4 1 (山部 4 2 ) と、 チップ 5 0の上面 5 1の中央部分 5 1 Aに形成されたセレーシヨン 6 0の山部 6 2 (溝部 6 1 ) とが 1つでもずれていたりすると、 図 2 7の 2点鎖線で示される ように、 これらセレ一シヨン 4 0 , 6 0同士が互いに干渉しあい、 チップ 5 0の 挿入を行うことができなくなつている。 As a result, when the chip 50 is inserted into the chip mounting seat 30, the groove 41 of the selection 40 of the first chip restraining surface 31 to be engaged with each other and the chip 5 are formed. Top surface of 0 5 Central part of 1 5 Serration formed on 1 A 6 Crest of 0 6 If any one of the grooves 2 (groove 6 1) is displaced, as shown by the two-dot chain line in FIG. 27, these selections 40 and 60 interfere with each other and insert the chip 50. You can no longer do it.
すなわち、 必然的に、 チップ 5 0をチップ取付座 3 0に対して正確な位置にし か挿入できなくなつており、 チップ 5 0が誤挿入されるおそれがなくなって、 切 刃 5 3の位置ずれなどが生じることがないのである。  In other words, it is inevitable that the chip 50 can only be inserted at the correct position with respect to the chip mounting seat 30, and there is no possibility that the chip 50 will be incorrectly inserted. Such a thing does not occur.
しかも、 第 2 0実施形態では、 上述した第 2〜第 1 9実施形態と同様に、 一対 のチップ拘束面 3 1 , 3 2に形成されたセレーシヨン 4 0 , 4 0とチップ 5 0の 上下面 5 1 , 5 2に形成されたセレーシヨン 6 0, 6 0とは、 それぞれ幅方向中 央部を挟んで対称形になっていることから、 上記のようなチップ 5 0の誤挿入防 止対策の構成を採用した場合でも、 チップ 5 0の他端側稜線に形成された切刃 5 4をバイト本体 1 1から軸線〇方向の先端側に突出させるように装着し直すこと ができ、 2回の使い回しを行うことができるようになつている。  Moreover, in the 20th embodiment, the upper and lower surfaces of the serrations 40, 40 formed on the pair of chip constraint surfaces 31, 32 and the chip 50 are similar to the second to 19th embodiments described above. The serrations 60, 60 formed in 51, 52 are symmetrical with respect to the center in the width direction, respectively. Even when the configuration is adopted, the cutting edge 54 formed on the other end side ridge of the tip 50 can be mounted again so as to protrude from the cutting tool main body 11 toward the tip end in the direction of the axis 〇. It can be reused.
なお、 上述した各実施形態においては、 チップ 5 0が、 その上面 5 1における 長手方向 Pの一端側稜線に形成された切刃 5 3 (及び横切刃 5 3 A, 5 3 A) と 他端側稜線に形成された切刃 5 4 (及び横切刃 5 4 A, 5 4 A) とを備えたもの として説明しているが、 これに限定されることはなく、 例えば図 2 8〜図 3 0に 示す本発明の第 2 1実施形態のように、 チップ 5 0の上面 5 1における長手方向 Pの一端側稜線のみに切刃 5 3 (及び横切刃 5 3 A, 5 3 A) が形成されている ものでもよい。  In each of the above-described embodiments, the chip 50 is different from the cutting edge 53 (and the horizontal cutting edge 53 A, 53 A) formed on the upper surface 51 at the ridge line on one end side in the longitudinal direction P. It is described as having the cutting edge 54 (and the horizontal cutting edge 54 A, 54 A) formed on the end side ridge line, but is not limited to this. As in the twenty-first embodiment of the present invention shown in FIG. 30, the cutting edge 53 (and the horizontal cutting edge 53 A, 53 A) is formed only on the ridge line on one end side in the longitudinal direction P on the upper surface 51 of the chip 50. ) May be formed.
本発明の第 2 1実施形態では、 チップ 5 0の上面 5 1における長手方向 Pの他 端側稜線が切刃とされておらず、 このチップ 5 0における長手方向 Pの他端側を 向く端面 5 6は、 長手方向 Pに略直交する平坦面とされている。  In the twenty-first embodiment of the present invention, the other edge of the other end in the longitudinal direction P on the upper surface 51 of the chip 50 is not a cutting edge, and the end face of the chip 50 facing the other end in the longitudinal direction P Reference numeral 56 denotes a flat surface substantially perpendicular to the longitudinal direction P.
そして、 このようなチップ 5 0は、 長手方向 Pの他端側を向く端面 5 6を、 チ ップ取付座 3 0における軸線〇方向の先端側を向く壁面 3 3に対向して配置させ て互いに接触させるようにして、 チップ取付座 3 0に装着されるのである。 産業上の利用の可能性  In such a chip 50, the end face 56 facing the other end in the longitudinal direction P is arranged so as to face the wall surface 33 facing the tip side in the axis 〇 direction of the chip mounting seat 30. They are mounted on the chip mounting seat 30 so that they come into contact with each other. Industrial potential
本発明は、 主として旋削加工においてワークの外周に溝入れ加工を行ったり、 突切り切削を行うのに用いられる溝入れ用バイト及びこれに装着されるチップに 関するものであり、 この本発明によれば、 チップ取付座における一対のチップ拘 束面とチップの上下面とが互いに接触しあってできる 2つの接触面が、 複数の溝 部と山部とが交互に配列されてなるセレーション同士が嚙み合わされた波形状の 接触面をなすことになり、.その接触面積を増大させることができて、 チップの取 付剛性を高めることができる。 The present invention mainly performs grooving on the outer periphery of a workpiece in turning, The present invention relates to a grooving tool used for performing parting-off cutting and a chip to be mounted on the grooving tool. According to the present invention, a pair of chip binding surfaces in a chip mounting seat and upper and lower surfaces of the chip are provided. The two contact surfaces formed by contacting each other form a wave-shaped contact surface in which serrations in which a plurality of grooves and peaks are alternately arranged are interlocked, and the contact area is reduced. This can increase the mounting rigidity of the chip.
また、 本発明では、 軸線方向に直交する断面で見たときに、 一対のチップ拘束 面にそれぞれ形成されたセレ一ションの少なくとも一方について、 少なくとも 1 つの溝部の形状と他の溝部の形状とを互いに異ならせ (あるいは、 少なくとも 1 つの山部の形状と他の山部の形状とを互いに異ならせ) たり、 一対のチップ拘束 面のうちの一方に形成されたセレ一シヨンのピツチと他方に形成されたセレ一シ ヨンのピッチとを互いに異ならせたりするといつたチップの誤挿入防止対策を施 すようにしている。  Further, in the present invention, when viewed in a cross section orthogonal to the axial direction, at least one of the selections formed on each of the pair of chip constraint surfaces has a shape of at least one groove and a shape of another groove. Different from each other (or at least one of the ridges and the other ridges), or a pitch of the selection formed on one of the pair of chip restraining surfaces and the other. If the pitches of the selected selections are different from each other, measures are taken to prevent incorrect insertion of chips.
このため、 互いに嚙み合わされるべき溝部と山部とが 1つでもずれると、 チッ プをチップ取付座に挿入できな'くなり、 必然的に、 チップを正確な位置にしか揷 入することができないので、 チップの誤挿入を防止してその切刃の位置がずれる こともない。  For this reason, if at least one of the grooves and peaks to be engaged with each other is displaced, it becomes impossible to insert the chip into the chip mounting seat, and the chip must be inserted only at the correct position. This prevents erroneous insertion of the insert and prevents the position of the cutting edge from shifting.

Claims

請求の範囲 The scope of the claims
1 . 軸線方向に沿って延在するバイト本体の先端部に、 互いに相対向する一対 のチップ拘束面を有するチップ取付座が形成されるとともに、 このチップ取付座 には、 上面における長手方向の一端側稜線に切刃が形成されたスローアウエイチ ップがその切刃を前記バイ卜本体から前記軸線方向の先端側に突出させるように 装着されていて、 クランプ手段により前記一対のチップ拘束面が前記スローァゥ エイチップの上下面を押圧固定する溝入れバイ卜であって、 1. A tip mounting seat having a pair of mutually opposing tip restraining surfaces is formed at the tip of a cutting tool body extending along the axial direction, and the tip mounting seat has one end in the longitudinal direction on the upper surface. A throw-away chip having a cutting edge formed on a side ridge is mounted so that the cutting edge protrudes from the bit body toward the distal end in the axial direction, and the pair of chip restraining surfaces is clamped by clamping means. A grooved press for pressing and fixing the upper and lower surfaces of the thrower tip,
前記一対のチップ拘束面には、 前記軸線方向に沿って延びる複数の溝部と山部 とが交互に配列されてなるセレーションがそれぞれ形成されていて、  Serrations formed by alternately arranging a plurality of grooves and ridges extending along the axial direction are formed on the pair of chip constraint surfaces, respectively.
前記スローァウェイチップの上下面には、 前記一対のチップ拘束面の形状に対 応するようなセレーションがそれぞれ形成されている溝入れバイト。  A grooving tool having serrations formed on upper and lower surfaces of the throw-away chip, respectively, so as to correspond to the shapes of the pair of chip-restricting surfaces.
2 . 請求項 1に記載の溝入れバイトにおいて、  2. The grooving tool according to claim 1,
前記軸線方向に直交する断面で見たときに、  When viewed in a cross section orthogonal to the axial direction,
前記一対のチップ拘束面にそれぞれ形成された前記セレーションの少なくとも 一方について、 少なくとも 1つの溝部の形状と他の溝部の形状とが互いに異なつ ている、 あるいは、 少なくとも 1つの山部の形状と他の山部の形状とが互いに異 なっている溝入れバイト。  At least one of the serrations respectively formed on the pair of chip restraining surfaces has a shape of at least one groove and a shape of another groove different from each other, or a shape of at least one crest and another shape. Grooving tools with different peak shapes.
3 . 請求項 1に記載の溝入れバイトにおいて、  3. The grooving tool according to claim 1,
前記軸線方向に直交する断面で見たときに、  When viewed in a cross section orthogonal to the axial direction,
前記一対のチップ拘束面のうちの一方に形成された前記セレ一シヨンのピッチ と他方に形成された前記セレ一シヨンのピッチとが互いに異なっている溝入れバ ィ卜。  A grooving byte in which the pitch of the selection formed on one of the pair of chip constraint surfaces and the pitch of the selection formed on the other are different from each other.
4. 請求項 1に記載の溝入れバイトにおいて、  4. In the grooving tool according to claim 1,
前記軸線方向に直交する断面で見たときに、  When viewed in a cross section orthogonal to the axial direction,
前記一対のチップ拘束面にそれぞれ形成された前記セレーションは、 それぞれ 幅方向中央部を挟んで対称形になっている溝入れバイト。  The serrations respectively formed on the pair of chip restraining surfaces are grooved cutting tools which are symmetrical with respect to a width direction central portion.
5 . 請求項 1に記載の溝入れバイトにおいて、  5. The grooving tool according to claim 1,
前記スローァウェイチップは、 前記上面における長手方向の他端側稜線にも切 刃が形成されている溝入れバイ卜。 The throw-away tip is also cut along the other edge in the longitudinal direction on the upper surface. Grooving bit with blade formed.
6 . 下面に対向する上面における長手方向の一端側稜線に切刃が形成されたス 口一ァウェイチップであつて、  6. A mouth-away tip having a cutting edge formed at one longitudinal ridge on the upper surface facing the lower surface,
前記上下面には、 前記長手方向に沿って延びる複数の溝部と山部とが交互に配 列されてなるセレーションがそれぞれ形成されているスローァウェイチップ。  A throwaway chip having serrations formed by alternately arranging a plurality of grooves and ridges extending along the longitudinal direction on the upper and lower surfaces.
7 . 請求項 6に記載のスロ一ァウェイチップにおいて、  7. In the throwaway chip according to claim 6,
前記長手方向に直交する断面で見たときに、  When viewed in a cross section orthogonal to the longitudinal direction,
前記上下面にそれぞれ形成された前記セレーションの少なくとも一方について 、 少なくとも 1つの溝部の形状と他の溝部の形状とが互いに異なっている、 ある いは、 少なくとも 1つの山部の形状と他の山部の形状とが互いに異なっているス ローァウェイチップ。  At least one of the serrations respectively formed on the upper and lower surfaces has a shape of at least one groove and a shape of another groove different from each other, or a shape of at least one crest and another crest Slowway tips with different shapes.
8 . 請求項 6に記載のスローァウェイチップにおいて、  8. The throwaway tip of claim 6, wherein:
前記長手方向に直交する断面で見たときに、  When viewed in a cross section orthogonal to the longitudinal direction,
前記上下面のうちの一方に形成された前記セレ一ションのピッチと他方に形成 された前記セレーシヨンのピッチとが互いに異なっているスローァウェイチップ  A throwaway chip in which a pitch of the selection formed on one of the upper and lower surfaces and a pitch of the serration formed on the other are different from each other.
9 . 請求項 6に記載のスローァウェイチップにおいて、 9. The throwaway tip according to claim 6,
前記長手方向に直交する断面で見たときに、  When viewed in a cross section orthogonal to the longitudinal direction,
前記一対のチップ拘束面にそれぞれ形成された前記セレーシヨンは、 それぞれ 幅方向中央部を挟んで対称形になっているスローァウェイチップ。  The throwaway chips, wherein the serrations respectively formed on the pair of chip restraining surfaces are respectively symmetrical with respect to a width direction central portion.
1 0 . 請求項 6に記載のスロ一ァウェイチップにおいて、  10. The throwaway chip according to claim 6,
前記上面における長手方向の他端側稜線にも切刃が形成されているスローァゥ エイチップ。  A throw-away tip in which a cutting edge is also formed on the other end side ridge line in the longitudinal direction on the upper surface.
PCT/JP2003/017022 2003-01-08 2003-12-26 Grooving cutting tool and throw-away tip WO2004062839A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003296189A AU2003296189A1 (en) 2003-01-08 2003-12-26 Grooving cutting tool and throw-away tip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-2237 2003-01-08
JP2003002237A JP2004209615A (en) 2003-01-08 2003-01-08 Grooving tool and throwaway tip

Publications (1)

Publication Number Publication Date
WO2004062839A1 true WO2004062839A1 (en) 2004-07-29

Family

ID=32708852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/017022 WO2004062839A1 (en) 2003-01-08 2003-12-26 Grooving cutting tool and throw-away tip

Country Status (3)

Country Link
JP (1) JP2004209615A (en)
AU (1) AU2003296189A1 (en)
WO (1) WO2004062839A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080037A1 (en) * 2004-02-20 2005-09-01 Sandvik Intellectual Property Ab Slot milling cutter
EP1666179A2 (en) 2004-12-01 2006-06-07 Präzisions-Drehteile Löcher GmbH Cutting insert for grooving and cutting-off of work pieces and insert holder
US7780381B2 (en) * 2004-02-20 2010-08-24 Sandvik Intellectual Property Ab Slot milling cutter
EP2427290A1 (en) * 2009-05-07 2012-03-14 TaeguTec Ltd. Cutting tool and cutting insert for the same
WO2023079546A1 (en) 2021-11-03 2023-05-11 Iscar Ltd. Cutting insert having laterally spaced apart, longitudinally extending wedge abutment surfaces, tool holder and cutting tool
EP4275821A1 (en) * 2022-05-10 2023-11-15 Walter Ag Turning insert, turning tool body and turning tool for cutting metal workpieces

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101529368B1 (en) * 2009-02-04 2015-06-16 오에스지 가부시키가이샤 Bevel head replacement rotary tool, tip head, and tool body
DE102010027413A1 (en) * 2010-07-15 2012-01-19 Kennametal Inc. Replaceable cutting insert for side milling cutter to produce e.g. deep hole drills, has plate surfaces turned away from each other and supporting relief-like profile, and V-shaped opening between handle strips and/or truncated pyramids
AT13405U1 (en) 2012-01-20 2013-12-15 Ceratizit Austria Gmbh HART MATERIAL THREAD CONNECTION
DE102012004804C5 (en) 2012-03-09 2019-03-14 Kennametal Inc. Puncture cutting plate and lancing cutting tool
CN102601395B (en) * 2012-03-21 2014-03-19 株洲钻石切削刀具股份有限公司 Blade for carrying out groove processing and cutting
CN102601403B (en) * 2012-03-21 2014-07-09 株洲钻石切削刀具股份有限公司 Tool holder for grooving cutting blade
CN103857486B (en) * 2012-10-10 2016-04-27 伊斯卡有限公司 For cutting the cutting tool of the cutter assembly of removal, cutting body and clamping device
US8926233B2 (en) * 2013-01-16 2015-01-06 Kennametal Inc. Toolholder and cutting insert therefor
US9205499B2 (en) 2013-09-11 2015-12-08 Kennametal Inc. Cutting insert with finishing and roughing cutting edges
US9211590B2 (en) 2013-09-20 2015-12-15 Kennametal Inc. Screw head wedge clamp assembly for cutting tool
US9211589B2 (en) 2013-10-08 2015-12-15 Kennametal Inc. Double-sided, nonagon cutting insert
US9475138B2 (en) 2014-01-22 2016-10-25 Kennametal Inc. Cutting tool having insert pocket with cantilevered member
US9579727B2 (en) 2014-05-28 2017-02-28 Kennametal Inc. Cutting assembly with cutting insert having enhanced coolant delivery
US10406605B2 (en) * 2016-09-13 2019-09-10 Iscar, Ltd. Cutting tool having an indexable cutting insert retained by a moment force about a pivot axis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2779992A (en) * 1954-04-14 1957-02-05 United States Steel Corp Cutting tool with removable bit
WO1996017706A1 (en) * 1994-12-08 1996-06-13 Seco Tools Ab Tool and insert for chip removal machining
WO1999012681A1 (en) * 1997-09-10 1999-03-18 Seco Tools Ab (Publ) Tool for chip removing machining

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2779992A (en) * 1954-04-14 1957-02-05 United States Steel Corp Cutting tool with removable bit
WO1996017706A1 (en) * 1994-12-08 1996-06-13 Seco Tools Ab Tool and insert for chip removal machining
WO1999012681A1 (en) * 1997-09-10 1999-03-18 Seco Tools Ab (Publ) Tool for chip removing machining

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080037A1 (en) * 2004-02-20 2005-09-01 Sandvik Intellectual Property Ab Slot milling cutter
US7780381B2 (en) * 2004-02-20 2010-08-24 Sandvik Intellectual Property Ab Slot milling cutter
EP1666179A2 (en) 2004-12-01 2006-06-07 Präzisions-Drehteile Löcher GmbH Cutting insert for grooving and cutting-off of work pieces and insert holder
EP1666179A3 (en) * 2004-12-01 2006-08-02 Präzisions-Drehteile Löcher GmbH Cutting insert for grooving and cutting-off of work pieces and insert holder
EP2427290A1 (en) * 2009-05-07 2012-03-14 TaeguTec Ltd. Cutting tool and cutting insert for the same
EP2427290A4 (en) * 2009-05-07 2012-10-24 Taegu Tec Ltd Cutting tool and cutting insert for the same
US9211597B2 (en) 2009-05-07 2015-12-15 Taegutec, Ltd. Cutting tool and cutting insert for the same
WO2023079546A1 (en) 2021-11-03 2023-05-11 Iscar Ltd. Cutting insert having laterally spaced apart, longitudinally extending wedge abutment surfaces, tool holder and cutting tool
US11806793B2 (en) 2021-11-03 2023-11-07 Iscar, Ltd. Cutting insert having laterally spaced apart, longitudinally extending wedge abutment surfaces, tool holder and cutting tool
EP4275821A1 (en) * 2022-05-10 2023-11-15 Walter Ag Turning insert, turning tool body and turning tool for cutting metal workpieces
WO2023217481A1 (en) * 2022-05-10 2023-11-16 Walter Ag Turning insert, turning tool body and turning tool for cutting metal workpieces

Also Published As

Publication number Publication date
JP2004209615A (en) 2004-07-29
AU2003296189A1 (en) 2004-08-10

Similar Documents

Publication Publication Date Title
WO2004062839A1 (en) Grooving cutting tool and throw-away tip
US7866924B2 (en) Clamping mechanism for cutting insert
US6244790B1 (en) Tool and insert for chip removal machining
US7537419B2 (en) Cutting tool, with serrated connecting surfaces on the insert and insert seat
US8454278B2 (en) Eight-edged cutting insert, and tool holder for same
US8465233B2 (en) Slot-milling tool and slot-milling insert for a slot-milling tool
KR101712249B1 (en) Cutting insert having curved ramps for insertion into a tool holder, cutting tool and method of assembly
JP2010526678A (en) Eight-blade cutting insert and its tool holder
KR20040002650A (en) Insert, holder and cutting tool
JP2008137117A (en) Cutting edge replaceable self clamp cutting tool
JP2002263919A (en) Tool holder
US9492873B2 (en) Clamp mechanism of cutting insert, cutting tool, cutting insert, and clamp member
JP3953068B2 (en) Throw-away ball end mill
RU2768817C1 (en) Cutting insert having a chamfer with separate chamfer parts convex in the upper direction, and a non-rotating cutting tool provided with such an insert
KR20190081058A (en) Cutting insert and cutting tool mounted with the same
KR102576412B1 (en) Modular turning tools with interchangeable adapters
JP2004042157A (en) Replaceable blade edge type tip, and cutting tool using tip
JP2004167635A (en) Mechanism for clamping throwaway chip, and throwaway tip used for the same
CN111438409B (en) Cutting tool with replaceable cutting insert
CN114951718A (en) Cutting tool, cutting insert and holder
JP2003011005A (en) Grooving throwaway tip
JP2004042168A (en) Grooving cutting tool and throw-away tip
CN113056341A (en) Cutting tool
CN111375787B (en) Cutting insert and cutting tool
JP6892637B2 (en) Cutting tool with replaceable cutting edge

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase