WO2004058423A1 - Method for removing heavy metal in incineration ash - Google Patents

Method for removing heavy metal in incineration ash Download PDF

Info

Publication number
WO2004058423A1
WO2004058423A1 PCT/JP2003/016784 JP0316784W WO2004058423A1 WO 2004058423 A1 WO2004058423 A1 WO 2004058423A1 JP 0316784 W JP0316784 W JP 0316784W WO 2004058423 A1 WO2004058423 A1 WO 2004058423A1
Authority
WO
WIPO (PCT)
Prior art keywords
heavy metal
heavy metals
water
aqueous solution
removing heavy
Prior art date
Application number
PCT/JP2003/016784
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Nakao
Hironori Suzuki
Masataka Usui
Yasuo Nomura
Original Assignee
Kowa Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Co., Ltd. filed Critical Kowa Co., Ltd.
Priority to CA2509108A priority Critical patent/CA2509108C/en
Priority to JP2004562944A priority patent/JPWO2004058423A1/en
Priority to AU2003292829A priority patent/AU2003292829A1/en
Publication of WO2004058423A1 publication Critical patent/WO2004058423A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/70Chemical treatment, e.g. pH adjustment or oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/80Destroying solid waste or transforming solid waste into something useful or harmless involving an extraction step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B2101/00Type of solid waste
    • B09B2101/30Incineration ashes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/26Treatment of water, waste water, or sewage by extraction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Definitions

  • the present invention relates to a method for easily and efficiently removing heavy metals from incinerated ash of industrial waste.
  • an object of the present invention is to provide a method for easily and efficiently removing heavy metals in incinerated ash and promoting the reuse of incinerated ash.
  • the present inventor conducted various studies on means for removing heavy metals from incinerated ash, and it was not possible to remove only heavy metals from incinerated ash by the coagulation sedimentation method (see Fig. 1), which is a conventional method for removing heavy metals.
  • the heavy metals in the incinerated ash are transferred into the aqueous solution and the aqueous solution is brought into contact with the heavy metal adsorbent, the heavy metals in the incinerated ash can be easily and efficiently removed, and the incinerated ash can be used as a raw material for cement, etc. And completed the present invention.
  • the present invention relates to a heavy metal-containing material produced by contacting incinerated ash of industrial waste with water. It is intended to provide a method for removing heavy metals from incinerated ash, which comprises contacting an aqueous solution with a heavy metal adsorbent.
  • the heavy metal in incineration ash can be removed simply and efficiently by contacting the heavy metal-containing aqueous solution produced by contacting the incineration ash of industrial waste with water with the heavy metal adsorbent.
  • Figure 1 is a diagram showing an example of a current industrial waste incineration facility.
  • FIG. 2 is a diagram showing an example of an apparatus in which a heavy metal adsorbent is installed in an industrial waste incineration facility. .
  • FIG. 3 is a diagram showing an example of a heavy metal adsorbent section of a batch system provided with a stirrer.
  • FIG. 4 is a diagram showing the results of an adsorption and elution test of Cu KR-102 strain on Cu.
  • FIG. 5 is a graph showing the results of an adsorption and dissolution test of strain KR I-0.2 on Ni.
  • FIG. 6 is a graph showing the adsorbing ability of Teflon-containing microbial cell beads for Cu (first and tenth rounds).
  • FIG. 7 is a graph showing the adsorption capacity (first time and tenth time) of the Teflon-containing microbial cell beads for Zn.
  • FIG. 8 is a graph showing the adsorption ability of heat-treated bacterial beads on Cu.
  • FIG. 9 is a diagram showing the adsorption ability of heat-treated bacterial beads on Zn.
  • FIG. 10 is a graph showing the adsorption ability of heat-treated microbial cell beads for Cu (first time and tenth time).
  • FIG. 11 is a diagram showing the adsorption capacity (first and tenth times) of the heat-treated microbial cell beads for Zn.
  • FIG. 12 is a diagram showing the relationship between the amount of added bacterial cell beads and the ability to adsorb Zn.
  • FIG. 13 is a diagram showing the relationship between the number of regenerating bacterial peas and the ability to adsorb Zn.
  • the incinerated ash of industrial waste used in the present invention is used for industrial waste such as municipal waste, industrial waste, paper, flammable plastic, wood waste, textile waste, rubber waste, metal waste, sludge, waste oil, waste acid, waste aluminum waste, etc.
  • Waste incineration ash As shown in Fig. 1, industrial waste incineration plants usually incinerate industrial waste in a kiln, and the incinerated ash is introduced into cooling water and treated as a slurry. If the incinerated ash contains heavy metals, this slurry is disposed of at the final disposal site.
  • the heavy metal-containing incineration ash is brought into contact with water to generate a heavy metal-containing aqueous solution.
  • Heavy metals such as Ag, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Pd, and Zn can form hydroxides in the basic region. , Settle. Therefore, it is necessary to make water acidic in order to generate a heavy metal aqueous solution. That is, in order to contact the incineration ash with water to produce a heavy metal-containing aqueous solution, after contacting the incineration ash with water, adjust the pH of the water to an acidic side, or adjust the pH of the water to an acidic side. May be brought into contact with the incineration ash.
  • the pH is preferably between 4 and 8, especially between 5 and 7.
  • inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid
  • organic acids such as citric acid, oxalic acid, and acetic acid may be added to water.
  • the obtained heavy metal-containing aqueous solution is brought into contact with a heavy metal adsorbent to remove heavy metals.
  • a heavy metal adsorbent used include a biomass-derived heavy metal adsorbent, an ion exchange resin, a chelate resin, activated carbon, and an electrolyte gel.
  • the biomass-derived heavy metal adsorbent include microorganisms such as bacteria, molds, and yeasts, seaweeds, and dead cells thereof.
  • the biomass-derived heavy metal adsorbent is preferably a dead cell obtained by acid-treating a microorganism.
  • the dead microorganisms include heavy metal-adsorbing dead microorganisms as described in Biotechnol. Prog.
  • the acid treatment is particularly preferable because the acid treatment does not significantly reduce the weight of the bacterial cells and increases the amount of heavy metal adsorbed per unit weight of the bacterial cells, as compared with the case of re-treatment.
  • Bacillus licheniformis Bacillus licheniformis KR 1-03 (FERM BP-8167) and related strains are particularly preferred. Staphylococcus sp. KR I-04 or its relatives, Staphylococcus sp. KR I-04 (FERM
  • the term “related strain” refers to a strain belonging to the same species as the strain and having the same heavy metal adsorption ability as the strain.
  • the acid used for the acid treatment of these bacteria is not particularly limited as long as they can kill these bacteria. Inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid; acetic acid, formic acid, valeric acid, and propionic acid And organic acids such as oxalic acid and citric acid.
  • the acid treatment may be performed under conditions that kill the bacteria. For example, it is preferable to treat the bacteria with an aqueous solution of an acid having a pH of 5-2 for 15 to 150 minutes.
  • the temperature at the time of the acid treatment is preferably the growth temperature of the bacteria.
  • the bacteria are washed with water before the acid treatment.
  • the cells after the acid treatment are preferably washed with water to return the pH to neutral.
  • the acid-treated microbial cells may be used as a suspension in water or the like, but are preferably used after drying by means such as freeze-drying, spray-drying, and heating.
  • the acid-treated cells obtained showed a very small decrease in cell weight as compared to the cells treated with Arikari, and the ability to adsorb heavy metals was increased as compared to untreated cells. Therefore, the acid-treated cells are particularly useful as a heavy metal adsorbent as compared with untreated viable cells and alkali-treated cells.
  • a cation exchange resin specifically, a strongly acidic cation Exchange resins and weakly acidic cation exchange resins.
  • the chelating resin include resins having a chelating group such as an iminodiacetic acid group, a polyamine group, an N-methyldalcamine group, an amidoxime group, an aminophosphoric acid group, a dithiolrubamic acid group, and a thiourea group.
  • the electrolyte gel include an electrolyte gel having a hydroxyl group, an amino group, a hydroxyl group and the like and having a metal binding ability.
  • These heavy metal adsorbents preferably have a form containing a solid carrier.
  • the solid carrier include various inorganic carriers and resin carriers.
  • Examples of the inorganic carrier for immobilizing the heavy metal adsorbent include silica gel, alumina, glass, diatomaceous earth, and Teflon (registered trademark).
  • Examples of the resin carrier include cellulose, acrylamide derivatives, polysulfone, polyvinyl alcohol, polystyrene, calcium alginate, lagenin, polyethyleneimine, and the like. These inorganic carriers and resin carriers can be used alone or in combination.
  • microorganism-killed cells typified by acid-treated cells are preferably used in the form of microbeads supported on the inorganic carrier or resin carrier.
  • bacterial beads in which dead bacterial cells are supported on the resin carrier are particularly preferred.
  • the weight ratio of dead cells in the microbeads to the inorganic carrier or resin carrier is preferably 1:10 to: L0: 1, more preferably 1: 5 to 5: 1.
  • the method for producing microbial beads is a method of dropping a mixture of dead cells and the carrier and a medium such as liquid nitrogen (dropping method); using a nucleus of lactose or the like; And a method of granulating the mixture by spraying a mixture of the above and a carrier (granulation method).
  • the microbeads obtained by this granulation method can improve the water resistance by heat treatment.
  • it can be made porous by freeze-thaw treatment to improve the heavy metal adsorption power.
  • the heat treatment is performed at 120 to 250 ° C. for 2 to 30 minutes, particularly 150 to 200 ° C. (: For 5 minutes to 30 minutes.
  • the bacterial beads aggregate during the heavy metal adsorption treatment, the contact efficiency with heavy metals decreases. Therefore, it is preferable to suppress aggregation of the bacterial beads.
  • the aggregation suppressing technique it is preferable to add an additive such as Teflon powder, dibutyl phthalate, castor oil, and ethyl acetate, in addition to the dead cells and the resin when preparing the microbial cell beads.
  • These additives are preferably used in an amount of 0.05 to 5 times, more preferably 0.1 to 2 times the weight of the dead cells.
  • Aggregation can also be suppressed by heat-treating the bacterial beads.
  • the heat treatment conditions are the same as the conditions for improving the water resistance.
  • Means for bringing the heavy metal-containing aqueous solution into contact with the heavy metal adsorbent include a method of continuously bringing the heavy metal-containing aqueous solution into contact with the heavy metal adsorbent (see FIG. 2), a method of performing a batch treatment (see FIG. 3), and the like. In the batch processing method, it is desirable to provide a stirrer to enhance the effect of adsorbing heavy metals.
  • the adsorbed heavy metal is easily eluted from the heavy metal adsorbent by lowering the pH by adding an organic acid or an inorganic acid, or by adding a chelating agent such as EGTA or EDTA, so that the heavy metal can be recovered.
  • a chelating agent such as EGTA or EDTA
  • Example 1 Selection and identification of heavy metal-adsorbing bacteria
  • the soil was suspended in physiological saline and allowed to stand, and the supernatant was inoculated on a Brain Heart Infusion Agar medium containing heavy metals of ImM, and colonies that appeared one day later were selected.
  • Table 1 shows the results of the first stage test.
  • Tables 2 to 4 show the results of the second stage test and the additional test.
  • D-xylose-1 L-xylose-1 aditol- ⁇ -methyl-D-xylosegalactose 1 glucose + fruc I ⁇ ice + mannose + sorbose-1
  • KR I-02 belongs to the genus Bacillus, but the species could not be identified. Therefore, this fungus was named Bacillus sp. KR 1-02.
  • KR I-03 was determined to belong to Bacillus licheniformis, and was named Bacillus licheniformis KR 1-03.
  • KR I-04 belongs to the genus Staphylococcus, but did not lead to the identification of the bacterial species. Therefore, this bacterium was named Staphylococcus sp. KR I-04.
  • KR I_02 as FERM BP-8165, KR I-03 as FERM BP-8167, KR I_04 as FERM BP-8166, respectively, dated August 21, 2002, east of Tsukuba, Ibaraki, Japan 1-1 chome 1 Chuo No. 6 (zip code 305-8516) Deposited at the Patented Microorganisms Depositary, National Institute of Advanced Industrial Science and Technology.
  • Example 2
  • KR I-02, KR I-03, and KR I_04 were cultured in Brain Heart Infusin medium (Difco), washed with water, and suspended by adding 0.5 times the wet weight of 0.5 N hydrochloric acid. Thereafter, the bacteria containing hydrochloric acid were shaken at 37 ° C for 2 hours.
  • USP 4, 992, 179 wet Bacteria to which 5% by weight of 3% sodium hydroxide had been added were shaken at 50 ° C. or 100 ° C. for 10 minutes. After shaking, all bacteria were thoroughly washed with water and lyophilized.
  • the weight was reduced by only about 20% in the acid treatment compared with the case of washing with water (untreated), but decreased by more than 50% in the sodium hydroxide treatment.
  • the value decreased by 60% or more.
  • Bacterial powder obtained by freeze-drying was dispersed in a buffer solution (Tris: 100) to prepare a suspension of 6 OmgZmL. Tris (1 OmM) 2. was stirred bacterial suspension 4mM heavy metal aqueous solution prepared in (CdCl 2 CuS0 4 ZnCl 2 NiCl 2) 1 mL 2 0 ⁇ L put 2 hours using. After the completion of the reaction, the concentration of heavy metals in the supernatant separated by centrifugation was measured using an atomic absorption spectrophotometer.
  • Lyophilized bacteria were dispersed in 100 mM Tris buffer (pH 7.5) to prepare a suspension (6 Omg / mL).
  • Hydrochloric acid Hl. 54 was added to the bacterial layer, stirred for 30 minutes, and centrifuged again to separate the supernatant (b) and the bacterial layer.
  • the concentration of heavy metals in the supernatants (a) and (b) was measured using an atomic absorption spectrophotometer, and the amounts of adsorption and desorption were calculated.
  • the bacterial layer after the treatment with hydrochloric acid was washed in 10 OmM Tris (pH 7.5) to return the pH to neutral, and the adsorption / desorption experiment of heavy metals was repeated (three times).
  • the results are shown in FIGS.
  • the amount of adsorption in the second time decreased compared to the first time, but the second and third times showed almost the same amount of adsorption.
  • the desorption amount showed a good value of 90% or more of the adsorption amount.
  • the first time was small, but the second and third times showed almost the same value as the adsorption amount, indicating that any metal can be reused.
  • PVA polyvinyl alcohol
  • Teflon-mixed bacterial cell beads were prepared.
  • the cohesiveness (stability) of the beads (0.35 g) was examined using 20 mL of ash cooling water (pH 7.5) in the same manner as in Example 6.
  • ash cooling water pH 7.5
  • the cohesiveness (stability) of the gel beads (0.35 g) in 20 mL of ash cooling water (pH 7.5) was examined.
  • the concentration changes of heavy metals (zinc, nickel) and alkaline earth metals (calcium, magnesium) in the ash cooling water were measured with an atomic absorption spectrophotometer.
  • 1 KR I-02 and PVA (Polymerization degree 98-99%) powder crushed to 50 m or less are mixed at a weight ratio of 2 to 1 to obtain a mixed powder.
  • the granulation was performed using a granulating device. That is, spherical granules (lactose) were used as core particles (500 lim), and the mixed powder was sprayed and granulated while spraying an aqueous PVA solution (5%).
  • the granulated particles were heat-dried (70 ° C), sieved to separate particles having a diameter of 1.4 to 1.7, and then heat-treated at 180 ° C for 20 minutes.
  • Heat-treated microbeads or unheated microbeads (0.35 g) were placed in water (20 mL) at 180 ° C. for 20 minutes and shaken for 24 hours. As a result, the particles of the non-heat treated microbeads collapsed and suspended in a few hours after shaking, but the shape of the heat treated microbeads maintained the particles even after 24 hours. From this, it was confirmed that heat treatment of the granulated microbeads can stably immobilize the microbes while maintaining the particle shape.
  • the heat-treated microbeads obtained in Example 11 were immersed in water, washed, freeze-thawed in a state where water was sufficiently contained, and freeze-dried.
  • the frozen beads (0.5 g) were added to zinc-containing wastewater (20 mL) and stirred, and the time dependence of zinc concentration was examined from the beginning of the reaction.
  • As control microbial cell beads that had only been heat treated were used.
  • the zinc concentrations in the waste liquid after freeze drying and freeze thawing after 90 minutes were 354.1 M and 332.8, respectively, which were smaller than the control concentration of 381.6 M. Therefore, when the heat-treated microbeads are frozen, it is possible to rapidly diffuse heavy metals in the beads and to reduce the liquid phase concentration rapidly.
  • Example 11 After immersion in 1N hydrochloric acid, heat-treated microbial beads washed with MES buffer (pH 6) Example 11) was placed in zinc-containing plating wastewater and stirred. Changes in zinc concentration were examined by changing the amount of bacterial cell beads (8, 17.5, 25, 35 mg / mL). Figure 12 shows the results. The change in zinc concentration was dependent on the amount of microbial beads, and the higher the amount of bead added, the greater the initial gradient of the concentration change. Therefore, zinc can be removed by adding microbeads to wastewater containing heavy metals such as zinc, and the zinc can be removed below the wastewater standard (75.6 M). These microbeads can adsorb and remove harmful heavy metals such as copper, iron, cadmium and nickel, in addition to zinc.
  • Example 15 Example 15
  • the heat-treated microbial cell beads (Example 11, 0.35 g) were washed with a MES buffer (pH 6), added to zinc waste water (20 mL), and stirred. After the completion of the adsorption reaction, the bacterial cell beads were removed from the waste liquid, and placed in 1N hydrochloric acid (2 OmL) to remove heavy metals. After that, it was washed with MES and the wastewater was replaced again. This series of adsorption / desorption operations was repeated to regenerate the beads. Heavy metal concentrations were measured with an atomic absorption spectrophotometer. Figure 13 shows the relationship between the zinc adsorption (PH7) and the number of regenerations.
  • the average initial concentration at each measurement was 790 M / iM for zinc and 458 M for iron.
  • the average adsorption amount per g of dry weight (cell beads) was 36.2 mo 1 Zg for zinc and 4.6 AimolZg for iron.
  • the number of times of regeneration was repeated 100 times, but the cell beads maintained their shape, and the amount of P deposited hardly changed.
  • desorption was observed at a rate of 90% or more. Therefore, it was confirmed that the microbeads are durable against a sudden change in pH and can be used repeatedly.
  • a pH regulator input section and heavy metal adsorbent section were installed in an industrial waste incineration facility, incinerated ash generated in the kiln was injected into cooling water, and the pH was adjusted to 5 to 6, Pass the cooling water through the heavy metal adsorbent section or, preferably, a batch system equipped with a stirrer.
  • a system Fig. 3
  • heavy metals in the aqueous phase can be easily and efficiently removed.
  • the dead microorganism cells and the microbeads obtained in Examples 2 to 15 can be used as the heavy metal adsorbent.

Abstract

A method for removing a heavy metal in an incineration ash, characterized in that it comprises contacting an incineration ash from an industrial waste with water to form an aqueous solution containing a heavy metal, and contacting the aqueous solution with a heavy metal absorbing agent. The method allows the removal of heavy metals in an incineration ash in a simple and easy way with good efficiency and the promotion of the reuse of the incineration ash.

Description

焼却灰中の重金属除去方法 技術分野  Method of removing heavy metals from incinerated ash
本発明は、 産業廃棄物の焼却灰から重金属を簡便かつ効率良く除去する方法に 関する。 背景技術  The present invention relates to a method for easily and efficiently removing heavy metals from incinerated ash of industrial waste. Background art
カドミウム、 銅、 亜鉛、 クロム、 鉛などの重金属による環境汚染は微量の濃度 で生物に毒性を示すため世界中で問題となっている。 一方、 都市ゴミ、 工場ゴミ 等に代表される産業廃棄物は、 通常焼却場において焼却され、 廃棄されている。 当該焼却灰中に重金属が含まれている場合には、 最終処分場に搬送され処分され ている。 このように重金属を含む焼却灰は最終処分場に搬送されるだけであり、 何ら再利用されていない。 発明の開示  Environmental pollution from heavy metals such as cadmium, copper, zinc, chromium, and lead is a problem worldwide because it is toxic to living organisms at trace levels. On the other hand, industrial waste such as urban garbage and industrial garbage is usually incinerated at incineration plants and discarded. If the incinerated ash contains heavy metals, they are transported to the final disposal site and disposed of. The incinerated ash containing heavy metals is simply transported to the final disposal site and is not reused at all. Disclosure of the invention
従って、 本発明の目的は焼却灰中の重金属を簡便かつ効率良く除去し、 焼却灰 の再利用を促進する方法を提供することにある。  Therefore, an object of the present invention is to provide a method for easily and efficiently removing heavy metals in incinerated ash and promoting the reuse of incinerated ash.
そこで本発明者は、 焼却灰中の重金属除去手段について種々検討したところ、 従来の重金属の除去竽段である凝集沈殿法 (図 1参照) によっては焼却灰から重 金属だけを除去することができないが、 焼却灰中の重金属を水溶液中に移行させ、 当該水溶液を重金属吸着剤に接触させれば、 焼却灰中の重金属が簡便かつ効率良 く除去でき、 焼却灰がセメントの原料等として使用可能になることを見出し、 本 発明を完成した。  Therefore, the present inventor conducted various studies on means for removing heavy metals from incinerated ash, and it was not possible to remove only heavy metals from incinerated ash by the coagulation sedimentation method (see Fig. 1), which is a conventional method for removing heavy metals. However, if the heavy metals in the incinerated ash are transferred into the aqueous solution and the aqueous solution is brought into contact with the heavy metal adsorbent, the heavy metals in the incinerated ash can be easily and efficiently removed, and the incinerated ash can be used as a raw material for cement, etc. And completed the present invention.
すなわち、 本発明は、 産業廃棄物の焼却灰を水に接触させて生じる重金属含有 水溶液を、 重金属吸着剤に接触させることを特徴とする焼却灰中の重金属除去方 法を提供するものである。 That is, the present invention relates to a heavy metal-containing material produced by contacting incinerated ash of industrial waste with water. It is intended to provide a method for removing heavy metals from incinerated ash, which comprises contacting an aqueous solution with a heavy metal adsorbent.
本発明によれば、 産業廃棄物の焼却灰を水に接触させて生じる重金属含有水溶 液を、 重金属吸着剤に接触させることにより簡便かつ効率的に焼却灰中の重金属 を除去することができる。 図面の簡単な説明  ADVANTAGE OF THE INVENTION According to this invention, the heavy metal in incineration ash can be removed simply and efficiently by contacting the heavy metal-containing aqueous solution produced by contacting the incineration ash of industrial waste with water with the heavy metal adsorbent. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 現状の産業廃棄物焼却施設の一例を示す図である。  Figure 1 is a diagram showing an example of a current industrial waste incineration facility.
図 2は、 産業廃棄物焼却施設に重金属吸着剤を設置した装置の一例を示す図で ある。 .  FIG. 2 is a diagram showing an example of an apparatus in which a heavy metal adsorbent is installed in an industrial waste incineration facility. .
図 3は、 攪拌装置を備えたバッチシステムの重金属吸着剤部の一例を示す図で ある。  FIG. 3 is a diagram showing an example of a heavy metal adsorbent section of a batch system provided with a stirrer.
図 4は、 KR I— 0 2株の C uに対する吸着、 溶出試験結果を示す図である。 図 5は、 KR I— 0 2株の N iに対する吸着、 溶出試験結果を示す図である。 図 6は、 テフロン含有菌体ビーズの C uに対する吸着能 (1回目と 1 0回目) を示す図である。  FIG. 4 is a diagram showing the results of an adsorption and elution test of Cu KR-102 strain on Cu. FIG. 5 is a graph showing the results of an adsorption and dissolution test of strain KR I-0.2 on Ni. FIG. 6 is a graph showing the adsorbing ability of Teflon-containing microbial cell beads for Cu (first and tenth rounds).
図 7は、 テフロン含有菌体ビーズの Z nに対する吸着能 (1回目と 1 0回目) を示す図である。  FIG. 7 is a graph showing the adsorption capacity (first time and tenth time) of the Teflon-containing microbial cell beads for Zn.
図 8は、 熱処理菌体ビーズの C uに対する吸着能を示す図である。  FIG. 8 is a graph showing the adsorption ability of heat-treated bacterial beads on Cu.
図 9は、 熱処理菌体ビーズの Z nに対する吸着能を示す図である。  FIG. 9 is a diagram showing the adsorption ability of heat-treated bacterial beads on Zn.
図 1 0は、 熱処理菌体ビーズの C uに対する吸着能 ( 1回目と 1 0回目) を示 す図である。  FIG. 10 is a graph showing the adsorption ability of heat-treated microbial cell beads for Cu (first time and tenth time).
図 1 1は、 熱処理菌体ビーズの Z nに対する吸着能 (1回目と 1 0回目) を示 す図である。  FIG. 11 is a diagram showing the adsorption capacity (first and tenth times) of the heat-treated microbial cell beads for Zn.
図 1 2は、 菌体ビーズの添加量と Z nの吸着能との関係を示す図である。 図 1 3は、 菌体ピーズの再生回数と Z nの吸着能との関係を示す図である。 発明を実施するための最良の形態 FIG. 12 is a diagram showing the relationship between the amount of added bacterial cell beads and the ability to adsorb Zn. FIG. 13 is a diagram showing the relationship between the number of regenerating bacterial peas and the ability to adsorb Zn. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に用いられる産業廃棄物の焼却灰は、 都市ゴミ、 工場ゴミ、 紙、 可燃性 プラスチック、 木くず、 繊維くず、 ゴムくず、 金属くず、 汚泥、 廃油、 廃酸、 廃 アル力リ等の産業廃棄物の焼却灰である。 産業廃棄物の焼却場は通常図 1のよう に、 産業廃棄物をキルンで焼却し、 焼却灰は冷却水に導入され、 スラリーとして 処理される。 焼却灰に重金属が含まれる場合は、 このスラリーは最終処分場にて 処分される。  The incinerated ash of industrial waste used in the present invention is used for industrial waste such as municipal waste, industrial waste, paper, flammable plastic, wood waste, textile waste, rubber waste, metal waste, sludge, waste oil, waste acid, waste aluminum waste, etc. Waste incineration ash. As shown in Fig. 1, industrial waste incineration plants usually incinerate industrial waste in a kiln, and the incinerated ash is introduced into cooling water and treated as a slurry. If the incinerated ash contains heavy metals, this slurry is disposed of at the final disposal site.
本発明においては、 当該重金属を含有する焼却灰を水に接触させて重金属含有 水溶液を生じさせる。 A g、 C d、 C o、 C r、 C u、 F e、 H g、 M n、 N i、 P b、 P d、 Z n等の重金属は、 塩基性領域では水酸化物を生成し、 沈殿する。 従って、 重金属水溶液を生成させるには、 水を酸性にする必要がある。 すなわち、 焼却灰を水に接触させて重金属含有水溶液を生成させるには、 焼却灰に水を接触 させた後、 当該水の pHを酸性側に調節するか、 又は酸性側に pHを調節した水を焼 却灰に接触させればよい。 当該 pHは 4〜8、 特に 5〜7とするのが好ましい。 pH の調節には、 水に塩酸、 硫酸、 硝酸等の無機酸、 クェン酸、 しゅう酸、 酢酸等の 有機酸等を添加すればよい。  In the present invention, the heavy metal-containing incineration ash is brought into contact with water to generate a heavy metal-containing aqueous solution. Heavy metals such as Ag, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Pd, and Zn can form hydroxides in the basic region. , Settle. Therefore, it is necessary to make water acidic in order to generate a heavy metal aqueous solution. That is, in order to contact the incineration ash with water to produce a heavy metal-containing aqueous solution, after contacting the incineration ash with water, adjust the pH of the water to an acidic side, or adjust the pH of the water to an acidic side. May be brought into contact with the incineration ash. The pH is preferably between 4 and 8, especially between 5 and 7. To adjust the pH, inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid, and organic acids such as citric acid, oxalic acid, and acetic acid may be added to water.
得られた重金属含有水溶液を、 重金属吸着剤に接触させて重金属を除去する。 用いられる重金属吸着剤としては、 バイオマス由来重金属吸着剤、 イオン交換樹 脂、 キレート樹脂、 活性炭、 電解質ゲル等が挙げられる。 バイオマス由来重金属 吸着剤としては、 バクテリア、 カビ、 酵母等の微生物、 海藻及びそれらの死菌体 が挙げられる。 またこれらのバイオマス由来重金属吸着剤としては、 微生物を酸 処理した死菌体が好ましい。 このうち、 微生物死菌体としては、 Bi o techno l . prog. 1995, 11, 235-250に記載のような重金属吸着性微生物死菌体、 例えばバ チルス属、 カンジダ属、 クラドスポリゥム属、 リゾプス属、 サッカロマイセス属、 ピキア属、 セネデスムス属、 ぺニシリウム属、 ァスペルギルス属、 トリコデルマ 属、 ァスコフイラム属、 フーカス属、 アブシディア属、 スタフイロコッカス属等 に属する重金属吸着性微生物死菌体が好ましく、 さらにこれらを酸処理した微生 物死菌体がより好ましい。 このうち、 バチルス sp. KR I— 02又はその類縁 菌、 バチルス 'リケニフォルミス及びスタフイロコッカス s p. KR I— 04 又はその類縁菌から選ばれる菌を酸処理して得られる菌体が、 アル力リ処理した 場合に比べ、 当該酸処理によって菌体重量があまり減少せず、 菌体単位重量当た りの重金属吸着量が増加することから特に好ましい。 バチルス ·リケニフォルミ スのうち、 バチルス · リケニフォルミス KR 1 - 0 3 (F ERM B P— 8167) 及びその類縁株が特に好ましい。 スタフイロコッカス sp. KR I— 04又はその類縁菌のうち、 スタフイロコッカス sp. KR I - 04 (FERMThe obtained heavy metal-containing aqueous solution is brought into contact with a heavy metal adsorbent to remove heavy metals. Examples of the heavy metal adsorbent used include a biomass-derived heavy metal adsorbent, an ion exchange resin, a chelate resin, activated carbon, and an electrolyte gel. Examples of the biomass-derived heavy metal adsorbent include microorganisms such as bacteria, molds, and yeasts, seaweeds, and dead cells thereof. The biomass-derived heavy metal adsorbent is preferably a dead cell obtained by acid-treating a microorganism. Among these, the dead microorganisms include heavy metal-adsorbing dead microorganisms as described in Biotechnol. Prog. 1995, 11, 235-250, such as Bacillus, Candida, Cladosporium, and Rhizopus. , Saccharomyces, Pichia, Senedesmus, Penicillium, Aspergillus, Trichoderma Heavy metal-adsorbing microbial dead cells belonging to the genus, Ascophyllum, Fucus, Absididia, Staphylococcus, etc. are preferable, and microbial dead cells obtained by acid-treating these are more preferable. Among them, cells obtained by acid-treating a bacterium selected from Bacillus sp. KR I-02 or a related bacterium, Bacillus' licheniformis and Staphylococcus sp. The acid treatment is particularly preferable because the acid treatment does not significantly reduce the weight of the bacterial cells and increases the amount of heavy metal adsorbed per unit weight of the bacterial cells, as compared with the case of re-treatment. Among Bacillus licheniformis, Bacillus licheniformis KR 1-03 (FERM BP-8167) and related strains are particularly preferred. Staphylococcus sp. KR I-04 or its relatives, Staphylococcus sp. KR I-04 (FERM
BP-8166) 及びその類縁株が特に好ましい。 ここで類縁株とは、 その菌 株と同一の種に属し、 その菌株と同様な重金属吸着能を有する菌株をいう。 これらの菌の酸処理に用いられる酸としては、 これらの菌を死滅させることの できる酸であれば特に制限されないが、 塩酸、 硫酸、 硝酸などの無機酸;酢酸、 蟻酸、 吉草酸、 プロピオン酸、 蓚酸、 クェン酸等の有機酸が挙げられる。 酸処理 は、 菌が死滅する条件であればよく、 例えば菌を pHO. 5〜 2の酸の水溶液で 15〜150分処理するのが好ましい。 また、 酸処理する時の温度は菌の生育温 度が好ましい。 なお、 酸処理に先立って、 菌は水で洗浄しておくのが好ましい。 酸処理後の菌体は、 水で洗浄して pHを中性に戻すのが好ましい。 酸処理菌体 は、 水等への懸濁液としてもよいが、 凍結乾燥、 噴霧乾燥、 加熱等の手段で乾燥 して用いるのが好ましい。 BP-8166) and its relatives are particularly preferred. Here, the term “related strain” refers to a strain belonging to the same species as the strain and having the same heavy metal adsorption ability as the strain. The acid used for the acid treatment of these bacteria is not particularly limited as long as they can kill these bacteria. Inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid; acetic acid, formic acid, valeric acid, and propionic acid And organic acids such as oxalic acid and citric acid. The acid treatment may be performed under conditions that kill the bacteria. For example, it is preferable to treat the bacteria with an aqueous solution of an acid having a pH of 5-2 for 15 to 150 minutes. The temperature at the time of the acid treatment is preferably the growth temperature of the bacteria. Preferably, the bacteria are washed with water before the acid treatment. The cells after the acid treatment are preferably washed with water to return the pH to neutral. The acid-treated microbial cells may be used as a suspension in water or the like, but are preferably used after drying by means such as freeze-drying, spray-drying, and heating.
得られた酸処理菌体は、 アル力リ処理菌体に比べて菌体重量の減少が極めて少 なく、 かつ重金属吸着能は未処理菌体に比べて増大している。 従って、 酸処理菌 体は、 未処理生菌体及びアルカリ処理菌体に比べて重金属吸着剤として特に有用 である。  The acid-treated cells obtained showed a very small decrease in cell weight as compared to the cells treated with Arikari, and the ability to adsorb heavy metals was increased as compared to untreated cells. Therefore, the acid-treated cells are particularly useful as a heavy metal adsorbent as compared with untreated viable cells and alkali-treated cells.
また、 イオン交換樹脂としては、 陽イオン交換樹脂、 具体的には強酸性陽ィォ ン交換樹脂及び弱酸性陽イオン交換樹脂が挙げられる。 キレート樹脂としてはィ ミノジ酢酸基、 ポリアミン基、 N—メチルダルカミン基、 アミドキシム基、 アミ ノリン酸基、 ジチォ力ルバミン酸基、 チォ尿素基等のキレート性基を有する樹脂 が挙げられる。 また電解質ゲルとしては、 力ルポキシル基、 アミノ基、 水酸基等 を有し、 金属結合能を有する電解質ゲルが挙げられる。 In addition, as the ion exchange resin, a cation exchange resin, specifically, a strongly acidic cation Exchange resins and weakly acidic cation exchange resins. Examples of the chelating resin include resins having a chelating group such as an iminodiacetic acid group, a polyamine group, an N-methyldalcamine group, an amidoxime group, an aminophosphoric acid group, a dithiolrubamic acid group, and a thiourea group. Examples of the electrolyte gel include an electrolyte gel having a hydroxyl group, an amino group, a hydroxyl group and the like and having a metal binding ability.
これらの重金属吸着剤は、 固体担体を含有する形態が好ましい。 固体担体とし ては種々の無機担体及び樹脂担体が挙げられる。  These heavy metal adsorbents preferably have a form containing a solid carrier. Examples of the solid carrier include various inorganic carriers and resin carriers.
重金属吸着剤を固定化するための無機担体としては、 シリカゲル、 アルミナ、 ガラス、 珪藻土、,テフロン (登録商標) 等が挙げられる。 また樹脂担体としては セルロース、 アクリルアミド誘導体、 ポリスルホン、 ボリビニルアルコール、 ポ リスチレン、 アルギン酸カルシウム、 力ラゲニン、 ポリエチレンィミン等が挙げ られる。 これら無機担体及び樹脂担体は、 それぞれ単独で用いることもできる が、 組み合せて用いることもできる。  Examples of the inorganic carrier for immobilizing the heavy metal adsorbent include silica gel, alumina, glass, diatomaceous earth, and Teflon (registered trademark). Examples of the resin carrier include cellulose, acrylamide derivatives, polysulfone, polyvinyl alcohol, polystyrene, calcium alginate, lagenin, polyethyleneimine, and the like. These inorganic carriers and resin carriers can be used alone or in combination.
酸処理菌体に代表される微生物死菌体は、 前記無機担体又は樹脂担体に担持し て菌体ビーズの形態で使用するのが好ましい。 このうち、 死菌体を前記樹脂担体 に担持した菌体ビーズが特に好ましい。 菌体ビーズ中の死菌体と、 前記無機担体 又は樹脂担体との重量比は、 1 : 1 0〜: L 0 : 1、 さらに 1 : 5〜5 : 1が好ま しい。  The microorganism-killed cells typified by acid-treated cells are preferably used in the form of microbeads supported on the inorganic carrier or resin carrier. Of these, bacterial beads in which dead bacterial cells are supported on the resin carrier are particularly preferred. The weight ratio of dead cells in the microbeads to the inorganic carrier or resin carrier is preferably 1:10 to: L0: 1, more preferably 1: 5 to 5: 1.
菌体ビーズの製法としては、 死菌体と前記担体との混合液と液体窒素などの媒 体中に滴下する方法 (滴下法) ;乳糖等の核を用い、 その核の上に死菌体と前記 担体との混合液を噴霧して造粒する方法 (造粒法) 等が挙げられる。 この造粒法 により得られた菌体ビーズは、 熱処理により耐水性を向上させることができる。 また凍結融解処理により多孔化して重金属吸着力を向上させることもできる。 こ こで、 熱処理は、 1 2 0〜 2 5 0 °Cで 2分〜 3 0分、 特に 1 5 0〜 2 0 0。(:で 5 分〜 3 0分行うのが好ましい。  The method for producing microbial beads is a method of dropping a mixture of dead cells and the carrier and a medium such as liquid nitrogen (dropping method); using a nucleus of lactose or the like; And a method of granulating the mixture by spraying a mixture of the above and a carrier (granulation method). The microbeads obtained by this granulation method can improve the water resistance by heat treatment. In addition, it can be made porous by freeze-thaw treatment to improve the heavy metal adsorption power. Here, the heat treatment is performed at 120 to 250 ° C. for 2 to 30 minutes, particularly 150 to 200 ° C. (: For 5 minutes to 30 minutes.
菌体ビーズが、 重金属吸着処理時に凝集すると、 重金属との接触効率が低下す るので、 菌体ビーズの凝集を抑制することが好ましい。 当該凝集抑制技術として は、 菌体ビーズの調製時に死菌体及び樹脂に加えて、 テフロンパウダー、 フタル 酸ジブチル、 ひまし油、 酢酸ェチル等の添加剤を添加するのが好ましい。 これら の添加剤は、 死菌体に対して 0. 05〜5重量倍、 特に0. 1~ 2重量倍用いる のが好ましい。 また、 菌体ビーズを熱処理することによつても凝集が抑制でき る。 ここで熱処理条件は、 前記耐水性向上の条件と同様である。 When the bacterial beads aggregate during the heavy metal adsorption treatment, the contact efficiency with heavy metals decreases. Therefore, it is preferable to suppress aggregation of the bacterial beads. As the aggregation suppressing technique, it is preferable to add an additive such as Teflon powder, dibutyl phthalate, castor oil, and ethyl acetate, in addition to the dead cells and the resin when preparing the microbial cell beads. These additives are preferably used in an amount of 0.05 to 5 times, more preferably 0.1 to 2 times the weight of the dead cells. Aggregation can also be suppressed by heat-treating the bacterial beads. Here, the heat treatment conditions are the same as the conditions for improving the water resistance.
重金属吸着剤に重金属含有水溶液を接触させる手段としては、 重金属含有水溶 液を重金属吸着剤に連続して接触させる方法 (図 2参照) 、 バッチ処理する方法 (図 3参照) 等が挙げられる。 バッチ処理法においては、 重金属の吸着効果を高 めるための攪拌装置を設けるのが望ましい。  Means for bringing the heavy metal-containing aqueous solution into contact with the heavy metal adsorbent include a method of continuously bringing the heavy metal-containing aqueous solution into contact with the heavy metal adsorbent (see FIG. 2), a method of performing a batch treatment (see FIG. 3), and the like. In the batch processing method, it is desirable to provide a stirrer to enhance the effect of adsorbing heavy metals.
かくして焼却灰中の重金属は、 除去される。 吸着された重金属は、 有機酸、 無 機酸添加による pHの低下、 EGTA、 EDTAなどのキレ一ト剤添加等により重 金属吸着剤から容易に溶出するので、 重金属の回収も可能である。 実施例  Thus, heavy metals in the incineration ash are removed. The adsorbed heavy metal is easily eluted from the heavy metal adsorbent by lowering the pH by adding an organic acid or an inorganic acid, or by adding a chelating agent such as EGTA or EDTA, so that the heavy metal can be recovered. Example
次に実施例を挙げて本発明をさらに詳細に説明するが、 本発明はこれら実施例 に何ら限定されない。  Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
実施例 1 (重金属吸着菌の選択と同定) Example 1 (Selection and identification of heavy metal-adsorbing bacteria)
(1) 重金属吸着菌の選択  (1) Selection of heavy metal adsorption bacteria
土壌を生理食塩水で懸濁後静置し、 その上清を ImMの重金属を含む Brain Heart Infusion Agar培地に植え、 1日後出現したコロニーを選択した。  The soil was suspended in physiological saline and allowed to stand, and the supernatant was inoculated on a Brain Heart Infusion Agar medium containing heavy metals of ImM, and colonies that appeared one day later were selected.
(2) 得られた菌株の同定  (2) Identification of the obtained strain
a. 方法  a. Method
細菌第一段階試験として、 光学顕微鏡 U— LH1000 (ォリンパス, 日本) による細胞形態、 グラム染色性、 胞子の有無、 鞭毛による運動性の有無を観察し た。 Brain Heart Infusion Agar (Bee ton Dickinson, NJ, U. S. A) +寒天培地(B. H. I agar)上でのコロニー形態を観察した。 カタラーゼ反応、 ォキシダーゼ反 応、 ブドウ糖からの酸/ガス産生、 ブドウ糖の酸化 Z発酵 (OZF) について試 験を行った。 As a first-stage bacterial test, cell morphology, gram staining, presence of spores, and flagellar motility were observed with a light microscope U-LH1000 (Olympus, Japan). Brain Heart Infusion Agar (Bee ton Dickinson, NJ, US A) + agar medium (B. H. I agar) was observed for colony morphology. Tests were conducted on catalase reaction, oxidase reaction, acid / gas production from glucose, and oxidized Z-fermentation (OZF) of glucose.
細菌第二段階試験として、 AP Iシステム(bioM rieux, France: http://www. biomerieux. fr/home_en. htm)を使い、 その測定方法に従い生化学的性状試験を実 施した。  As a second-stage bacterial test, a biochemical property test was conducted using the API system (bioMrieux, France: http: // www. Biomerieux. Fr / home_en.htm) according to the measurement method.
また、 追加試験として生理性状試験を行った。  In addition, a physiological property test was performed as an additional test.
b. 結果  b. Results
第一段階試験結果を表 1に示す。  Table 1 shows the results of the first stage test.
表 1  table 1
Figure imgf000009_0001
Figure imgf000009_0001
+:陽性、 - :陰性、 w:反応弱  +: Positive,-: negative, w: weak response
第二段階試験及び追加試験の結果を表 2〜 4に示す。 表 2 Tables 2 to 4 show the results of the second stage test and the additional test. Table 2
(K R 1 - 0 2 )  (K R 1-0 2)
コントロール 一 グレセロール + エリスリトール 一  Control one glycerol + erythritol one
D-ァラビノース ― L-ァラビノース + リポース +  D-arabinose-L-arabinose + report +
D -キシロース 一 L -キシロース 一 アド二トール ― β -メチル -D-キシロースガラク 1 ス 一 グルコース + フラク I ^一ス + マンノース + ソルポース 一  D-xylose-1 L-xylose-1 aditol-β-methyl-D-xylosegalactose 1 glucose + fruc I ^ ice + mannose + sorbose-1
ラムノース 一 ズルシトール 一 イノシトール 一  Rhamnose-Dulcitol-Inositol-
発マンニトール + ソルビトール + α -メチル- D -マンノース 酵 Mannitol + sorbitol + α-methyl-D-mannose enzyme
性 α -メチル -D -グルコース N-ァセチルグルコサミン Α-methyl-D-glucose N-acetylglucosamine
の アミグダリン 一 The Amygdalin One
有 + Yes +
、、ヽ アルブチン 一 エスクリン + サリシン +  ,, ヽ Arbutin-esculin + salicin +
セロビオース + マル! ス + 乳糖 ―  Cellobiose + Mal! Su + Lactose-
メリビオース 一 白糖 + トレパース 一  Melibiose-I White sugar + Treppers-I
ィヌリン 一 メレチトース 一 ラフイノース 一  Inulin one meletitose one roughinose one
澱粉 ― グリコーゲン + キシリトール 一  Starch-glycogen + xylitol
ゲンチオビオース ― D -ッラノース 一 D -リキソース 一  Gentiobiose-D-llanoose-1 D-Lyxose-1
D -夕ガトース 一 D -フコース ― L-フコース 一  D-Evening Gateau D-Fucose-L-Fucose 1
D -ァラビトール 一 L -ァラビトール 一 ダルコネー卜 一  D-arabitol one L-arabitol one darconate one
2 -ケトダルコン酸 一 5 -ケトグルコン酸 一  2-ketodalconic acid 1 5-ketogluconic acid 1
iS -ガラクトシダ一ゼ 一 アルギニンジヒドロラーゼ 一  iS-Galactosidase-1 Arginine dihydrolase-1
Raw
リシンデ オル二チンデカルポキシラーゼ 一 化 カルポキシラーゼ 一  Lysine orditin decarboxylase
学 クェン酸の利用性 ― ¾S産生 一 Utilization of citrate-―S production
ウレァ一ゼ - トリブトファンデアミナーゼ 一 験  Urease-tributane deaminase test
インドール産生 一 ァセトイン産生 +  Indole production-acetoin production +
ビラチナ一ゼ + 硝酸塩還元 +  Vilatinase + nitrate reduction +
50°Cでの生育性 +  Viability at 50 ° C +
追嫌気での生育性 一 Growth in remorse
口 10%NaClでの生育性 +  Mouth Viability in 10% NaCl +
馬尿酸塩加水分解性 一  Hippurate hydrolyzable I
カゼイン加水分解性 + Casein hydrolyzable +
表 3 (KR 1 -03)
Figure imgf000011_0001
Table 3 (KR 1 -03)
Figure imgf000011_0001
表 4 Table 4
(KR 1 -04)  (KR 1 -04)
Figure imgf000012_0001
以上の結果から、 KR I— 02はバチルス属に属するが菌種の特定には至らな かった。 従って、 この菌は、 バチルス sp. KR 1—02と命名した。 また、 KR I— 03は、 バチルス · リケニフォルミスに属すると判断し、 バチルス ·リ ケニフォルミス KR 1— 03と命名した。 また、 KR I— 04は、 スタフイロ コッカス属に属するが、 菌種の特定には至らなかった。 従って、 この菌はスタフ イロコッカス sp. KR I— 04と命名した。 KR I _ 02は FERM BP— 8165として、 KR I— 03は FERM BP— 8167として、 KR I _ 04は FERM BP- 8166として、 それぞれ、 平成 14年 8月 21日付 で、 日本国茨城県つくば市東 1丁目 1番地 1中央第 6 (郵便番号 305- 8516) 独立 行政法人産業技術総合研究所 特許微生物寄託センターに寄託されている。 実施例 2
Figure imgf000012_0001
Based on the above results, KR I-02 belongs to the genus Bacillus, but the species could not be identified. Therefore, this fungus was named Bacillus sp. KR 1-02. In addition, KR I-03 was determined to belong to Bacillus licheniformis, and was named Bacillus licheniformis KR 1-03. Also, KR I-04 belongs to the genus Staphylococcus, but did not lead to the identification of the bacterial species. Therefore, this bacterium was named Staphylococcus sp. KR I-04. KR I_02 as FERM BP-8165, KR I-03 as FERM BP-8167, KR I_04 as FERM BP-8166, respectively, dated August 21, 2002, east of Tsukuba, Ibaraki, Japan 1-1 chome 1 Chuo No. 6 (zip code 305-8516) Deposited at the Patented Microorganisms Depositary, National Institute of Advanced Industrial Science and Technology. Example 2
KR I— 02、 KR I— 03及び KR I _ 04を Brain Heart Infusin培地 (Difco) で培養後水で洗浄し、 湿重量の 5倍容量の 0. 5 N塩酸を添加して懸 濁した。 その後、 塩酸添加バクテリアは 37°Cで 2時間振とうした。 また、 Brierleyらの方法 (USP 4, 992, 179) も比較検討した。 すなわち、 湿 重量の 5倍容量の 3 %水酸化ナトリウムを添加したバクテリアは 5 0 °C又は 1 0 0°Cで 1 0分振とうした。 振とう後、 いずれのバクテリアも水で十分洗浄 し、 凍結乾燥した。 その結果、 表 5に示すように、 水で洗净した場合 (未処理) と比べ、 酸処理では重量が 20 %程度の減少に止まったが、 水酸化ナトリゥム処 理では 5 0 %以上減少し、 特に 1 0 0°Cで処理した場合には 6 0 %以上減少し た。 KR I-02, KR I-03, and KR I_04 were cultured in Brain Heart Infusin medium (Difco), washed with water, and suspended by adding 0.5 times the wet weight of 0.5 N hydrochloric acid. Thereafter, the bacteria containing hydrochloric acid were shaken at 37 ° C for 2 hours. We also compared the method of Brierley et al. (USP 4, 992, 179). That is, wet Bacteria to which 5% by weight of 3% sodium hydroxide had been added were shaken at 50 ° C. or 100 ° C. for 10 minutes. After shaking, all bacteria were thoroughly washed with water and lyophilized. As a result, as shown in Table 5, the weight was reduced by only about 20% in the acid treatment compared with the case of washing with water (untreated), but decreased by more than 50% in the sodium hydroxide treatment. In particular, when the treatment was performed at 100 ° C., the value decreased by 60% or more.
表 5  Table 5
Figure imgf000013_0001
実施例 3 (金属吸着量の測定)
Figure imgf000013_0001
Example 3 (Measurement of metal adsorption amount)
凍結乾燥して得られたバクテリアの粉末を緩衝溶液中 (Tris: 1 0 0 ) に分 散して 6 OmgZmLの懸濁液を調製した。 Tris (1 OmM) を用いて 2. 4mMに調製 した重金属水溶液 (CdCl2 CuS04 ZnCl2 NiCl2) 1 mLにバクテリア懸濁液を 2 0 ^L入れて 2時間攪拌した。 反応終了後に遠心によって分離した上清中の重 金属濃度を原子吸光光度計を用いて測定した。 Bacterial powder obtained by freeze-drying was dispersed in a buffer solution (Tris: 100) to prepare a suspension of 6 OmgZmL. Tris (1 OmM) 2. was stirred bacterial suspension 4mM heavy metal aqueous solution prepared in (CdCl 2 CuS0 4 ZnCl 2 NiCl 2) 1 mL 2 0 ^ L put 2 hours using. After the completion of the reaction, the concentration of heavy metals in the supernatant separated by centrifugation was measured using an atomic absorption spectrophotometer.
結果を表 6 9に示す。 カドミウム及び銅の吸着量は KR 1— 02 KR I— 0 3 KR I _ 04では水洗浄に比べ酸処理により増加した。 水酸化ナトリゥム 処理によってもカドミウムの吸着量は KR I— 0 2 KR I _ 0 3 KR I — 04で増加したが、 酸処理のほうが水酸化ナトリウム処理よりも大きかった。 亜 鉛及びニッケルの吸着量は KR 1— 0 2 KR I— 0 3 KR I— 04で水洗浄 に比べ酸処理により増加したが、 水酸化ナトリウム処理 (100°C) のほうがわ ずかに取り込み量が高かった。 水酸化ナトリウムの 50 °C及び 100 °Cでの処理 による重金属の取り込み量を比較すると、 50°Cより 100°Cの処理のほうが吸 着量が増加した。 The results are shown in Table 69. The amounts of cadmium and copper adsorbed by KR 1-02 KR I- 03 KR I_04 were increased by acid treatment compared to water washing. The amount of cadmium adsorbed by sodium hydroxide treatment also increased with KR I-0.2 KR I_03 KR I- 04, but the acid treatment was larger than the sodium hydroxide treatment. The amount of adsorption of zinc and nickel is KR 1-0 2 KR I-0 3 KR I-04 The amount increased by the acid treatment compared to that of the acid treatment, but the uptake was slightly higher in the sodium hydroxide treatment (100 ° C). When comparing the uptake of heavy metals by the treatment of sodium hydroxide at 50 ° C and 100 ° C, the amount of adsorption increased at 100 ° C than at 50 ° C.
表 6  Table 6
Figure imgf000014_0001
表 7
Figure imgf000014_0001
Table 7
Figure imgf000014_0002
表 8
Figure imgf000014_0002
Table 8
Figure imgf000014_0003
表 9
Figure imgf000014_0003
Table 9
ニッケルの吸着量 mol/g)  (Amount of nickel adsorbed mol / g)
処理法  Processing method
KRI-02 KRI-03 KRI-04  KRI-02 KRI-03 KRI-04
未処理 10.2 42.1 37.1  Unprocessed 10.2 42.1 37.1
酸処理 392.3 318.5 330.1  Acid treatment 392.3 318.5 330.1
50で 244.2 293.7 252.1  50 at 244.2 293.7 252.1
水酸ィ匕ナトリウム  Hydroxy sodium
100°C 407.0 335.7 322.3 実施例 4 (吸着 ·溶出試験) 100 ° C 407.0 335.7 322.3 Example 4 (Adsorption and dissolution test)
100mMトリス緩衝液中 (pH7. 5) に凍結乾燥したバクテリア (KR I— 02) を分散して懸濁液 (6 Omg/mL) を調製した。 このバクテリア懸濁液 20 Lを、 Tr i s (1 OmM) を用いて 2. 4 mMに調製した重金属水溶液 (CuS04、 NiCl2) lmLに添加し 2時間攪拌した (それぞれ pH6. 0及び pH7. 3) 。 反応 終了後遠心分離して上清 (a) と菌層に分離した。 菌層には塩酸 ( Hl. 54) を加え 30分間攪拌し再度遠心によって上清 (b) と菌層に分離した。 上清 (a) 、 (b) 中の重金属濃度は原子吸光光度計を用いて測定し吸着量及び脱着 量を算出した。 塩酸処理後の菌層は 10 OmM Tr i s (pH7. 5) 中で洗浄し て pHを中性に戻し、 重金属の吸着 ·脱着実験を繰り返した (3回) 。 結果を図 4 及び 5に示す。 いずれの金属も 2回目の吸着量は 1回目に比べ減少したが、 2回 目、 3回目はほぼ同じ吸着量を示した。 脱着量は Cuの場合は吸着量の 90%以 上の良好な値を示した。 N iの場合 1回目は少なかったが、 2回目、 3回目は吸 着量とほぼ同じ値を示し、 いずれの金属においても再利用可能であることが判明 した。 · 実施例 5 Lyophilized bacteria (KR I-02) were dispersed in 100 mM Tris buffer (pH 7.5) to prepare a suspension (6 Omg / mL). The bacterium suspension 20 L, Tr is (1 OmM ) heavy metal aqueous solution prepared in 4 mM 2. with (CuS0 4, NiCl 2) was added to lmL was stirred for 2 hours (respectively pH 6. 0 and pH 7. 3) After the reaction was completed, centrifugation was performed to separate the supernatant (a) and the bacterial layer. Hydrochloric acid (Hl. 54) was added to the bacterial layer, stirred for 30 minutes, and centrifuged again to separate the supernatant (b) and the bacterial layer. The concentration of heavy metals in the supernatants (a) and (b) was measured using an atomic absorption spectrophotometer, and the amounts of adsorption and desorption were calculated. The bacterial layer after the treatment with hydrochloric acid was washed in 10 OmM Tris (pH 7.5) to return the pH to neutral, and the adsorption / desorption experiment of heavy metals was repeated (three times). The results are shown in FIGS. For all metals, the amount of adsorption in the second time decreased compared to the first time, but the second and third times showed almost the same amount of adsorption. In the case of Cu, the desorption amount showed a good value of 90% or more of the adsorption amount. In the case of Ni, the first time was small, but the second and third times showed almost the same value as the adsorption amount, indicating that any metal can be reused. · Example 5
添加剤含有菌体ビーズの合成 Synthesis of bacterial beads containing additives
10% (w/v) に調製したポリビニルアルコール (PVA) (重合度 1500 〜 1800鹼価度 98 %) 水溶液に P VAと同重量の KR 1 -02と添加剤を加 えて攪拌した。 液体窒素中に調製したサスペンションをシリンジで滴下させた 後、 凍結融解、 凍結乾燥を行った。 添加剤として、 テフロンパウダー、 ひまし 油、 酢酸ェチル、 フタル酸ジブチルを用いた。  To a 10% (w / v) aqueous solution of polyvinyl alcohol (PVA) (polymerization degree: 1500 to 1800, 98% in value) was added KR1-02 and additives of the same weight as PVA and the mixture was stirred. The suspension prepared in liquid nitrogen was dropped with a syringe, followed by freeze-thawing and freeze-drying. Teflon powder, castor oil, ethyl acetate, and dibutyl phthalate were used as additives.
実施例 6 Example 6
添加剤含有菌体ビーズの凝集性の評価 Evaluation of cohesiveness of bacterial beads containing additives
重金属 (カドミウム、 銅、 亜鉛、 ニッケル) に対してアルカリ金属、 アルカリ 土類金属が大過剰に含まれている焼却場の灰冷却水 20 mL (pH 7. 5 ) を用いて ゲルビ一ズ (0. 35 g) の凝集性 (安定性) を調べた。 12時間振とうした後 にゲルの付着、 凝集を肉眼で観察した。 その結果、 無添加の菌体ビーズでは凝集 するのが確認された。 添加剤としてテフ口ンパウダーとフタル酸ジブチルを混合 した添加剤含有菌体ビ一ズでは、 凝集を抑制する効果が最も高かった。 また、 ひ まし油と酢酸ェチルはその効果が中程度であった。 Using 20 mL of ash cooling water (pH 7.5) from an incineration plant that contains a large excess of alkali metals and alkaline earth metals with respect to heavy metals (cadmium, copper, zinc, nickel). The cohesiveness (stability) of the gel beads (0.35 g) was examined. After shaking for 12 hours, the adhesion and aggregation of the gel were visually observed. As a result, it was confirmed that flocculants were aggregated in the cell beads without addition. The additive-containing microbial bead, which is a mixture of teflon powder and dibutyl phthalate as additives, had the highest effect of suppressing aggregation. Castor oil and ethyl acetate were moderately effective.
実施例 7  Example 7
添加剤混合比率の凝集に対する影響  Effect of additive mixing ratio on aggregation
添加剤及び KR I— 02の混合比率 (重量比) に対する凝集の影響を調べるた めに、 テフロン混合系の菌体ビーズを作製した。 実施例 6と同様に灰冷却水 20 mL (pH7. 5) を用いてビーズ (0. 35 g) の凝集性 (安定性) を調べた。 そ の結果、 菌体 (KR I— 02) を混合しないビーズは凝集するが、 PVA以外の 成分の比率を大きくすると凝集が抑制されることが示唆された (表 10) 。  In order to examine the effect of aggregation on the mixing ratio (weight ratio) of the additive and KR I-02, Teflon-mixed bacterial cell beads were prepared. The cohesiveness (stability) of the beads (0.35 g) was examined using 20 mL of ash cooling water (pH 7.5) in the same manner as in Example 6. As a result, it was suggested that beads not mixed with bacterial cells (KR I-02) aggregated, but aggregation was suppressed by increasing the ratio of components other than PVA (Table 10).
表 10  Table 10
混合比率の凝集に対する影響
Figure imgf000016_0001
Effect of mixing ratio on aggregation
Figure imgf000016_0001
〇、 ◎:凝集しない X:凝集する △:少し凝集する  〇, ◎: Not aggregated X: Aggregated △: Slightly aggregated
実施例 8  Example 8
テフ口ン含有菌体ビーズの吸着能  Adsorption capacity of bacterial beads containing teflon
テフロン含有菌体ビーズ (重量比テフロン: PVA:菌体 (KPI- 02)= 1 : 1 : 2) を作製し、 灰冷却水 20mL (pH7. 5) に対する吸着試験後にシユウ酸 20 mL (pHl. 2) を加え溶出試験を行った。 この吸着 '再生の工程を繰り返し吸着 能の変化を観察した。 1回目の吸着能と使用回数 10回目の吸着能を比較した。 使用回数が 10回になっても重金属 (銅、 亜鉛) の吸着能はほとんど低くならな かった。 また、 共存する高濃度の塩の影響をほとんど受けずに吸着、 除去できた (図 6及び 7) 。 Teflon-containing microbial cell beads (weight ratio: Teflon: PVA: microbial cells (KPI-02) = 1: 1: 2) were prepared. After adsorption test with 20 mL of ash cooling water (pH 7.5), oxalic acid 20 mL (pH 1. 2) was added to perform a dissolution test. This adsorption / regeneration process was repeated, and changes in the adsorption capacity were observed. The first adsorption capacity and the number of uses 10 times were compared. The adsorption capacity of heavy metals (copper and zinc) was hardly reduced even after 10 uses. In addition, it was able to be adsorbed and removed with little effect of high concentration of coexisting salt. (Figures 6 and 7).
実施例 9 Example 9
熱処理ビーズの凝集及び吸着に対する影響 Effect on aggregation and adsorption of heat treated beads
前述の方法で KR 1 -02を混合 (重量比 P VA:菌体 = 1 : 2) したゲルビ —ズを作製し、 凍結乾燥後に熱処理 (180°C) を 10分間行った。 前述と同様 に灰冷却水 20mL (pH7. 5) に対してゲルビーズ (0. 35 g) の凝集性 (安 定性) を調べた。 さらに、 熱処理による吸着能の変化を調べるために、 灰冷却水 中の重金属 (亜鉛、 ニッケル) 及びアルカリ土類金属 (カルシウム、 マグネシゥ ム) の濃度変化を原子吸光光度計で測定した。'熱処理及び未熱処理の菌体ビーズ を比較したところ熱処理した菌体ビーズは、 凝集が抑制されて粒子同士の付着が 認められなかった。 他方、 未熱処理は前述の結果と同様に凝集が確認された。 ま た、 灰冷却水中の各金属の濃度変化から、 熱処理前後による吸着能の低下はほと んど認められなかった (図 8及び 9) 。  Gel beads mixed with KR 1-02 (weight ratio PVA: cells = 1: 2) by the method described above were prepared, freeze-dried and heat-treated (180 ° C) for 10 minutes. In the same manner as above, the cohesiveness (stability) of the gel beads (0.35 g) in 20 mL of ash cooling water (pH 7.5) was examined. Furthermore, in order to investigate the change in adsorption capacity due to the heat treatment, the concentration changes of heavy metals (zinc, nickel) and alkaline earth metals (calcium, magnesium) in the ash cooling water were measured with an atomic absorption spectrophotometer. 'Comparison of the heat-treated and non-heat-treated microbeads showed that the heat-treated microbeads were inhibited from agglomeration and no adhesion of particles was observed. On the other hand, agglomeration was confirmed in the non-heat treatment in the same manner as described above. Also, from the change in the concentration of each metal in the ash cooling water, almost no decrease in adsorption capacity before and after heat treatment was observed (Figures 8 and 9).
実施例 10 Example 10
熱処理ビーズの吸着能の変化 Change in adsorption capacity of heat treated beads
前述の熱処理ビーズの吸着試験後にビーズを分離し、 シユウ酸 20mL (pH 1. 2) を入れて各金属の溶出試験を行った。 その後、 Tr i s (10 OmM) で 洗浄を行い、 再び吸着試験を行った。 この一連の操作 (使用回数) を繰り返し行 い、 再生に伴うビーズの吸着能の変化を調べた。 1回目の吸着能と使用回数 10 回目の吸着能を比較した。 その結果、 使用回数が 10回になっても重金属 (銅、 亜鉛) の吸着能はほとんど低くならなかった。 また、 共存する高濃度の塩の影響 をほとんど受けずに吸着、 除去できた (図 10及び 11) 。  After the adsorption test of the heat-treated beads described above, the beads were separated, and 20 mL of oxalic acid (pH 1.2) was added to perform a dissolution test of each metal. After that, it was washed with Tris (10 OmM) and the adsorption test was performed again. This series of operations (the number of uses) was repeated, and the change in the adsorption capacity of the beads due to the regeneration was examined. The first adsorption capacity was compared with the tenth use adsorption capacity. As a result, the adsorption capacity of heavy metals (copper and zinc) was hardly reduced even when the number of uses was 10 times. In addition, it was able to be adsorbed and removed with little effect from coexisting high-concentration salts (Figures 10 and 11).
実施例 11 Example 11
造粒法による菌体ビーズの作製 Preparation of microbeads by granulation method
1 50 m以下に粉砕した KR I— 02と P VA (重合度 鹼価度 98〜 99%) の粉末を重量比 2対 1に混合して混合粉末で得、 遠心流動型コ一ティン グ装置を用いて造粒を行った。 すなわち、 球状顆粒 (乳糖) を核粒子 (500 lim) とし、 PVA水溶液 (5%) を噴霧しながら混合粉末を散布し造粒した。 造粒した粒子は熱乾燥 (70°C) し、 ふるいで直径 1. 4〜1. 7讓の粒子を分 別後、 さらに 180 °Cで 20分間熱処理した。 1 KR I-02 and PVA (Polymerization degree 98-99%) powder crushed to 50 m or less are mixed at a weight ratio of 2 to 1 to obtain a mixed powder. The granulation was performed using a granulating device. That is, spherical granules (lactose) were used as core particles (500 lim), and the mixed powder was sprayed and granulated while spraying an aqueous PVA solution (5%). The granulated particles were heat-dried (70 ° C), sieved to separate particles having a diameter of 1.4 to 1.7, and then heat-treated at 180 ° C for 20 minutes.
実施例 12 Example 12
造粒法による菌体ビーズの耐水化の評価 Evaluation of water resistance of bacterial beads by granulation method
180°Cで 20分間熱処理菌体ビーズまたは未熱処理の菌体ビーズ (0. 35 g) を水 (20mL) に入れて、 24時間振とうさせた。 その結果、 未熱処理菌体 ビーズは振とう後数時間で粒子が崩壌し、 縣濁したが、 熱処理菌体ビーズは 24 時間後でも粒子の形状を保っていた。 このことから、 造粒された菌体ビーズに熱 処理を行うと、 粒子の形状を保持したまま菌体を安定に固定化できることが確認 できた。  Heat-treated microbeads or unheated microbeads (0.35 g) were placed in water (20 mL) at 180 ° C. for 20 minutes and shaken for 24 hours. As a result, the particles of the non-heat treated microbeads collapsed and suspended in a few hours after shaking, but the shape of the heat treated microbeads maintained the particles even after 24 hours. From this, it was confirmed that heat treatment of the granulated microbeads can stably immobilize the microbes while maintaining the particle shape.
実施例 13 Example 13
凍結法によるビーズの多孔化 Making the beads porous by the freezing method
実施例 1 1で得た熱処理菌体ビーズを水に浸漬し洗浄後、 水を充分含ませた状 態で凍結融解を行い、 凍結乾燥した。 亜鉛が含まれたメツキ廃水 (20mL) に凍 結処理を施したビーズ (0. 5 g) を入れて攪拌し、 亜鉛濃度の時間依存性を反 応開始時から調べた。 コントロールとして熱処理だけの菌体ビーズを用いた。 そ の結果、 凍結操作を加えた菌体ビーズの濃度変化がコントロールと比べて大きく なった。 9 0分後の凍結乾燥および凍結融解の廃液中亜鉛濃度はそれぞれ 3 54. 1 M、 3 3 2. 8 で、 コントロールの濃度 3 81. 6 Mより小 さい値を示した。 従って、 熱処理菌体ビーズに凍結処理をすると、 ビーズ内の重 金属の拡散を迅速にして液相濃度の減少を速くすることが可能である。  The heat-treated microbeads obtained in Example 11 were immersed in water, washed, freeze-thawed in a state where water was sufficiently contained, and freeze-dried. The frozen beads (0.5 g) were added to zinc-containing wastewater (20 mL) and stirred, and the time dependence of zinc concentration was examined from the beginning of the reaction. As control, microbial cell beads that had only been heat treated were used. As a result, the change in the concentration of the microbeads subjected to the freezing operation was larger than that of the control. The zinc concentrations in the waste liquid after freeze drying and freeze thawing after 90 minutes were 354.1 M and 332.8, respectively, which were smaller than the control concentration of 381.6 M. Therefore, when the heat-treated microbeads are frozen, it is possible to rapidly diffuse heavy metals in the beads and to reduce the liquid phase concentration rapidly.
実施例 14 Example 14
ビーズによる重金属の除去 Removal of heavy metals by beads
1Nの塩酸に浸漬後、 ME S緩衝液 (pH6) で洗浄した熱処理菌体ビーズ (実 施例 11) を、 亜鉛含有メツキ廃水に入れ攪拌した。 菌体ビーズの添加量 (8、 17. 5、 25、 35mg/mL) を変えて亜鉛の濃度変化を調べた。 結果を図 12 に示す。 亜鉛の濃度変化は菌体ビーズの量に依存し、 ビーズの添加量が高くなる につれて、 濃度変化の初期勾配が大きくなつた。 従って、 亜鉛等の重金属が含ま れる廃水に菌体ビーズを投入することによって、 亜鉛の除去が可能であり、 排水 基準 (75. 6 M) 以下に除去できる。 この菌体ビーズは、 亜鉛以外にも銅、 鉄、 カドミウム、 ニッケルなどの有害重金属を吸着除去することが可能である。 実施例 15 After immersion in 1N hydrochloric acid, heat-treated microbial beads washed with MES buffer (pH 6) Example 11) was placed in zinc-containing plating wastewater and stirred. Changes in zinc concentration were examined by changing the amount of bacterial cell beads (8, 17.5, 25, 35 mg / mL). Figure 12 shows the results. The change in zinc concentration was dependent on the amount of microbial beads, and the higher the amount of bead added, the greater the initial gradient of the concentration change. Therefore, zinc can be removed by adding microbeads to wastewater containing heavy metals such as zinc, and the zinc can be removed below the wastewater standard (75.6 M). These microbeads can adsorb and remove harmful heavy metals such as copper, iron, cadmium and nickel, in addition to zinc. Example 15
ビーズの再生 Regeneration of beads
熱処理菌体ビーズ (実施例 11、 0. 35 g) を ME S緩衝液 (pH6) で洗浄 し、 亜鉛と鉄が含まれたメツキ廃水 (20mL) に入れ攪拌した。 吸着反応終了 後、 菌体ビーズを廃液から取り出し、 1Nの塩酸 (2 OmL) に入れて重金属を脱 離させた。 その後、 ME Sで洗浄を行い再び廃水を入れ換えた。 この一連の吸脱 着の操作を繰り返してビーズの再生を繰り返した。 重金属の濃度は原子吸光光度 計で測定した。 亜鉛の吸着量 (PH7) と再生回数の関係を図 13に示す。 各測定 時における初濃度の平均は亜鉛が 790 /iM、 鉄が 458 Mであった。 乾燥重 量 (菌体ビーズ) 1 g当たりの平均吸着量は亜鉛が 36. 2 mo 1 Z g、 鉄が 4. 6 AimolZgであった。 再生回数を 100回繰り返したが、 菌体ビーズは形 状を保ち、 P及着量はほとんど変化がなかった。 また、 P及着に対する脱離量を調べ た結果、 90%以上の割合で脱離が認められた。 従って、 菌体ビーズは急激な pH の変化に対しても耐久性があり、 繰り返しての使用が可能であることが認められ た。  The heat-treated microbial cell beads (Example 11, 0.35 g) were washed with a MES buffer (pH 6), added to zinc waste water (20 mL), and stirred. After the completion of the adsorption reaction, the bacterial cell beads were removed from the waste liquid, and placed in 1N hydrochloric acid (2 OmL) to remove heavy metals. After that, it was washed with MES and the wastewater was replaced again. This series of adsorption / desorption operations was repeated to regenerate the beads. Heavy metal concentrations were measured with an atomic absorption spectrophotometer. Figure 13 shows the relationship between the zinc adsorption (PH7) and the number of regenerations. The average initial concentration at each measurement was 790 M / iM for zinc and 458 M for iron. The average adsorption amount per g of dry weight (cell beads) was 36.2 mo 1 Zg for zinc and 4.6 AimolZg for iron. The number of times of regeneration was repeated 100 times, but the cell beads maintained their shape, and the amount of P deposited hardly changed. In addition, as a result of examining the amount of desorption with respect to P, desorption was observed at a rate of 90% or more. Therefore, it was confirmed that the microbeads are durable against a sudden change in pH and can be used repeatedly.
実施例 16 Example 16
図 2のように、 産業廃棄物焼却施設中に pH調節剤投入部及び重金属吸着剤部を 設置し、 キルンで生じた焼却灰を冷却水に投入し、 pHを 5〜6に調節し、 その冷 却水を重金属吸着剤部を通過させるか、 望ましくは攪拌装置を備えたバッチシス テム (図 3 ) で処理することにより、 水相中の重金属が簡便かつ効率良く除去で きる。 ここで、 重金属吸着剤には、 前記実施例 2〜1 5で得られた微生物死菌体 及び菌体ビーズが使用できる。 As shown in Fig. 2, a pH regulator input section and heavy metal adsorbent section were installed in an industrial waste incineration facility, incinerated ash generated in the kiln was injected into cooling water, and the pH was adjusted to 5 to 6, Pass the cooling water through the heavy metal adsorbent section or, preferably, a batch system equipped with a stirrer. By treating with a system (Fig. 3), heavy metals in the aqueous phase can be easily and efficiently removed. Here, the dead microorganism cells and the microbeads obtained in Examples 2 to 15 can be used as the heavy metal adsorbent.

Claims

請求の範囲 The scope of the claims
1 . 産業廃棄物の焼却灰を水に接触させて生じる重金属含有水溶液を、 重金属 吸着剤に接触させることを特徴とする焼却灰中の重金属除去方法。 1. A method for removing heavy metals from incinerated ash, comprising contacting an aqueous solution containing heavy metals, which is produced by contacting incinerated ash of industrial waste with water, to a heavy metal adsorbent.
2 . 重金属吸着剤が、 バイオマス由来重金属吸着剤、 イオン交換樹脂及びキレ ート樹脂から選ばれるものである請求項 1記載の重金属除去方法。  2. The method for removing heavy metals according to claim 1, wherein the heavy metal adsorbent is selected from a biomass-derived heavy metal adsorbent, an ion exchange resin and a chelate resin.
3 . 重金属吸着剤が、 微生物死菌体である請求項 1又は 2記載の重金属除去方 法。  3. The method for removing heavy metals according to claim 1, wherein the heavy metal adsorbent is a microorganism-killed cell.
4. 重金属吸着剤が、 微生物を酸処理した死菌体である請求項 1又は 2記載の 重金属除去方法。  4. The method for removing heavy metals according to claim 1, wherein the heavy metal adsorbent is dead cells obtained by acid-treating a microorganism.
5 . 前記微生物死菌体が、 無機担体又は樹脂担体に担持されている請求項 3又 は 4記載の重金属除去方法。  5. The method for removing heavy metals according to claim 3 or 4, wherein the microorganism-killed cells are supported on an inorganic carrier or a resin carrier.
6 . 前記微生物死菌体が、 無機担体又は樹脂担体に担持された菌体ビーズであ る請求項 3又は 4記載の重金属除去方法。  6. The method for removing heavy metals according to claim 3, wherein the microorganism-killed cells are microbeads supported on an inorganic carrier or a resin carrier.
7 . 菌体ビーズが、 担体以外にテフロンパウダー、 フタル酸ジブチル、 ひまし 油又は酢酸ェチルを含むものである請求項 6記載の重金属除去方法。  7. The method for removing heavy metals according to claim 6, wherein the bacterial cell beads contain Teflon powder, dibutyl phthalate, castor oil or ethyl acetate in addition to the carrier.
8 . 菌体ビーズが、 造粒法により得られたものである請求項 6記載の重金属除 去方法。  8. The method for removing heavy metals according to claim 6, wherein the cell beads are obtained by a granulation method.
9 . 焼却灰を水に接触させて重金属含有水溶液を生成させる手段が、 焼却灰に 水を接触させた後当該水の pHを酸性側に調節する力 又は酸性側に pHを調節した 水を焼却灰に接触させるものである請求項 1〜 8のいずれか 1項記載の重金属除 去方法。  9. The means of contacting the incineration ash with water to produce a heavy metal-containing aqueous solution is a method of contacting water with the incineration ash and then adjusting the pH of the water to the acidic side or incinerating the water with the pH adjusted to the acidic side. The heavy metal removal method according to any one of claims 1 to 8, wherein the method is to contact ash.
1 0 . 焼却灰を水に接触させた後の水溶液の pHを 4〜 8に調節する請求項 1〜 8のいずれか 1項記載の重金属除去方法。  10. The method for removing heavy metals according to any one of claims 1 to 8, wherein the pH of the aqueous solution after contacting the incineration ash with water is adjusted to 4 to 8.
1 1 . 重金属含有水溶液が、 重金属吸着剤に連続して接触するか又は重金属吸 着剤にバッチ処理で接触するものである請求項 1〜 1 0のいずれか 1項記載の重 金属除去方法。 11. The weight according to any one of claims 1 to 10, wherein the heavy metal-containing aqueous solution is in continuous contact with the heavy metal adsorbent or in contact with the heavy metal adsorbent in a batch process. Metal removal method.
PCT/JP2003/016784 2002-12-26 2003-12-25 Method for removing heavy metal in incineration ash WO2004058423A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2509108A CA2509108C (en) 2002-12-26 2003-12-25 Method for removing heavy metals in incineration ash
JP2004562944A JPWO2004058423A1 (en) 2002-12-26 2003-12-25 Method for removing heavy metals from incineration ash
AU2003292829A AU2003292829A1 (en) 2002-12-26 2003-12-25 Method for removing heavy metal in incineration ash

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002377524A JP2004202449A (en) 2002-12-26 2002-12-26 Method for removing heavy metal in incineration ash
JP2002-377524 2002-12-26

Publications (1)

Publication Number Publication Date
WO2004058423A1 true WO2004058423A1 (en) 2004-07-15

Family

ID=32677397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016784 WO2004058423A1 (en) 2002-12-26 2003-12-25 Method for removing heavy metal in incineration ash

Country Status (6)

Country Link
JP (2) JP2004202449A (en)
KR (1) KR101080894B1 (en)
CN (1) CN100540162C (en)
AU (1) AU2003292829A1 (en)
CA (1) CA2509108C (en)
WO (1) WO2004058423A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015006178A (en) * 2013-06-05 2015-01-15 ヴァーレ、ソシエダージ、アノニマVale S.A. Process for obtaining copper nanoparticles from a fungus selected from hypocrea lixii and trichoderma koningiopsis, and use of the fungus selected from hypocrea lixii and trichoderma koningiopsis in bioremediation of waste water and production of copper nanoparticles
JP2015027288A (en) * 2013-06-05 2015-02-12 ヴァーレ、ソシエダージ、アノニマVale S.A. Method for obtaining copper nanoparticles from rhodotorula mucilaginosa, bioremediation of waste water, and usage of rhodotorula mucilaginosa in production of copper nanoparticles

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122720A1 (en) * 2006-04-21 2007-11-01 Kazuhiro Niisawa Method of metal recovery
JP2010284607A (en) * 2009-06-12 2010-12-24 Toshiba Corp Phosphorus adsorbent and system for recovering phosphorus
JP2011036796A (en) * 2009-08-11 2011-02-24 Taiheiyo Cement Corp Drying treatment system for organic sludge and drying treatment method therefor
JP2011036795A (en) * 2009-08-11 2011-02-24 Taiheiyo Cement Corp Drying treatment system and drying treatment method for organic sludge
JP6169896B2 (en) * 2012-06-07 2017-07-26 地方独立行政法人東京都立産業技術研究センター Heavy metal adsorbent and heavy metal recovery method
JP5973932B2 (en) * 2013-02-15 2016-08-23 佐内 藤田 Processing method and processing plant for garbage and sewage sludge incineration ash
CN110813990B (en) * 2019-11-15 2021-12-03 斯蒂芬·Y·周 Advanced oxidation and packaging fixation treatment method for solid waste incineration fly ash
CN111872027B (en) * 2020-07-16 2021-09-07 常熟理工学院 Method for co-processing waste incineration fly ash and printing and dyeing waste liquid
CN111842310B (en) * 2020-07-22 2021-11-30 浙江农林大学 Biomass gradient deliming pretreatment method
KR102446284B1 (en) * 2020-09-28 2022-09-26 한국에너지기술연구원 System and Method for generating H2 using fly ash

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49121355A (en) * 1973-03-26 1974-11-20
JPS49131984A (en) * 1973-04-25 1974-12-18
JPS5051481A (en) * 1973-09-07 1975-05-08
JPS5051988A (en) * 1973-09-10 1975-05-09
US5055402A (en) * 1989-01-04 1991-10-08 Bio-Recovery Systems, Inc. Removal of metal ions with immobilized metal ion-binding microorganisms
JPH0823974A (en) * 1994-07-18 1996-01-30 Kuraray Co Ltd Production of gel holding immobilized biocatalyst
JPH11199227A (en) * 1998-01-16 1999-07-27 Toshiba Plant Kensetsu Co Ltd Method for recovering chemical raw material from fly ash
JP2003103284A (en) * 2001-09-28 2003-04-08 Takeda Chem Ind Ltd Carrier for water treatment, method for manufacturing the same and water treatment apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101711A (en) * 1984-10-24 1986-05-20 Hirochika Okuyama Method for making incinerated ash harmless
EP0450047A4 (en) * 1989-10-18 1992-06-24 Us Commerce Polymer bead containing immobilized metal extractant

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49121355A (en) * 1973-03-26 1974-11-20
JPS49131984A (en) * 1973-04-25 1974-12-18
JPS5051481A (en) * 1973-09-07 1975-05-08
JPS5051988A (en) * 1973-09-10 1975-05-09
US5055402A (en) * 1989-01-04 1991-10-08 Bio-Recovery Systems, Inc. Removal of metal ions with immobilized metal ion-binding microorganisms
JPH0823974A (en) * 1994-07-18 1996-01-30 Kuraray Co Ltd Production of gel holding immobilized biocatalyst
JPH11199227A (en) * 1998-01-16 1999-07-27 Toshiba Plant Kensetsu Co Ltd Method for recovering chemical raw material from fly ash
JP2003103284A (en) * 2001-09-28 2003-04-08 Takeda Chem Ind Ltd Carrier for water treatment, method for manufacturing the same and water treatment apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015006178A (en) * 2013-06-05 2015-01-15 ヴァーレ、ソシエダージ、アノニマVale S.A. Process for obtaining copper nanoparticles from a fungus selected from hypocrea lixii and trichoderma koningiopsis, and use of the fungus selected from hypocrea lixii and trichoderma koningiopsis in bioremediation of waste water and production of copper nanoparticles
JP2015027288A (en) * 2013-06-05 2015-02-12 ヴァーレ、ソシエダージ、アノニマVale S.A. Method for obtaining copper nanoparticles from rhodotorula mucilaginosa, bioremediation of waste water, and usage of rhodotorula mucilaginosa in production of copper nanoparticles
JP2020072711A (en) * 2013-06-05 2020-05-14 ヴァーレ、ソシエダージ、アノニマVale S.A. Methods for obtaining copper nanoparticles from fungus selected from hypocrea lixii and trichoderma koningiopsis, as well as use of fungus selected from hypocrea lixii and trichoderma koningiopsis in wastewater bioremediation and copper nanoparticle production

Also Published As

Publication number Publication date
CA2509108A1 (en) 2004-07-15
KR20050086484A (en) 2005-08-30
CN1732053A (en) 2006-02-08
CN100540162C (en) 2009-09-16
KR101080894B1 (en) 2011-11-07
JP2004202449A (en) 2004-07-22
JPWO2004058423A1 (en) 2006-04-27
AU2003292829A1 (en) 2004-07-22
CA2509108C (en) 2011-11-15

Similar Documents

Publication Publication Date Title
JP4478022B2 (en) Heavy metal adsorbent composition
Selatnia et al. Biosorption of Ni2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass
López et al. Nickel biosorption by free and immobilized cells of Pseudomonas fluorescens 4F39: a comparative study
CN112090399A (en) Biological modified micron magnetic charcoal adsorbent and preparation method and application thereof
CN104289185A (en) Granular filtering material for adsorbing and removing heavy metals in water and preparation method thereof
WO2004058423A1 (en) Method for removing heavy metal in incineration ash
CN109179554A (en) Utilize the method for fortimicin in manganese dioxide load biological carbon materials removal water body
Hameed Continuous removal and recovery of lead by alginate beads, free and alginate-immobilized Chlorella vulgaris
CN110801814A (en) Preparation method of magnetic amino walnut shell biochar novel adsorbent
JPH07502927A (en) Method and apparatus for removing manganese from water
CN108993425B (en) Composite biological adsorbent and application thereof
JPH06189778A (en) Biomass reaction product
Çelik et al. Anionically reinforced hydrogel network entrapped fungal cells for retention of cadmium in the contaminated aquatic media
CN111115729A (en) Composite material for industrial wastewater treatment tubular membrane filter layer
Deepa et al. Application of co-immobilized microbial biochar beads in hybrid biofilter towards effective treatment of chrome tanning wastewater
CN112717893B (en) Sewage treatment agent and application thereof in heavy metal wastewater
Hassan et al. Bacterial biosorption of heavy metals
CN114618434A (en) Method for removing Cd in water body2+Preparation method and application of biochar loaded zero-valent iron material
CN113398896A (en) Preparation method of sodium polyacrylate dispersed ferrous sulfide intercalation layered double hydroxide
CN110227417A (en) Suitable for adsorbing the river-snail sheil modification biological charcoal and preparation method thereof of triclosan in muddy water
CN110980967A (en) Microbial composite water purifying agent and preparation method thereof
Cho et al. Biosorption of copper by immobilized biomass of Pseudomonas stutzeri
Saravanan et al. Biochar as sustainable strategy for remediation and regeneration of heavy metal–contaminated soil
Lemos et al. Recent Literature on Biosorption as a Sustainable Environmental Technology to Remove Pollutants
JP2006075701A (en) Metal adsorbent and its production method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1200500980

Country of ref document: VN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004562944

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057008301

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2509108

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 20038A7371X

Country of ref document: CN

Ref document number: 1-2005-501205

Country of ref document: PH

WWP Wipo information: published in national office

Ref document number: 1020057008301

Country of ref document: KR

122 Ep: pct application non-entry in european phase