JP2004202449A - Method for removing heavy metal in incineration ash - Google Patents

Method for removing heavy metal in incineration ash Download PDF

Info

Publication number
JP2004202449A
JP2004202449A JP2002377524A JP2002377524A JP2004202449A JP 2004202449 A JP2004202449 A JP 2004202449A JP 2002377524 A JP2002377524 A JP 2002377524A JP 2002377524 A JP2002377524 A JP 2002377524A JP 2004202449 A JP2004202449 A JP 2004202449A
Authority
JP
Japan
Prior art keywords
heavy metal
water
heavy metals
acid
kri
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002377524A
Other languages
Japanese (ja)
Inventor
Yasushi Nakao
裕史 中尾
Hironori Suzuki
宏典 鈴木
Masataka Usui
正隆 臼井
Yasuo Nomura
保夫 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kowa Co Ltd
Original Assignee
Kowa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Co Ltd filed Critical Kowa Co Ltd
Priority to JP2002377524A priority Critical patent/JP2004202449A/en
Priority to CA2509108A priority patent/CA2509108C/en
Priority to CNB200380107371XA priority patent/CN100540162C/en
Priority to KR1020057008301A priority patent/KR101080894B1/en
Priority to JP2004562944A priority patent/JPWO2004058423A1/en
Priority to AU2003292829A priority patent/AU2003292829A1/en
Priority to PCT/JP2003/016784 priority patent/WO2004058423A1/en
Publication of JP2004202449A publication Critical patent/JP2004202449A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/70Chemical treatment, e.g. pH adjustment or oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/80Destroying solid waste or transforming solid waste into something useful or harmless involving an extraction step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B2101/00Type of solid waste
    • B09B2101/30Incineration ashes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/26Treatment of water, waste water, or sewage by extraction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Health & Medical Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Processing Of Solid Wastes (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily and efficiently removing heavy metals in incineration ash, and for accelerating the recycling of the incineration ash. <P>SOLUTION: The method for removing heavy metals in incineration ash is characterized in that an aqueous solution containing the heavy metals produced by contacting the incineration ash of industrial waste with water is brought into contact with a heavy metal adsorbent. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、産業廃棄物の焼却灰から重金属を簡便かつ効率良く除去する方法に関する。
【0002】
【従来の技術】
カドミウム、銅、亜鉛、クロム、鉛などの重金属による環境汚染は微量の濃度で生物に毒性を示すため世界中で問題となっている。一方、都市ゴミ、工場ゴミ等に代表される産業廃棄物は、通常焼却場において焼却され、廃棄されている。当該焼却灰中に重金属が含まれている場合には、最終処分場に搬送され処分されている。このように重金属を含む焼却灰は最終処分場に搬送されるだけであり、何ら再利用されていない。
【0003】
【発明が解決しようとする課題】
従って、本発明の目的は焼却灰中の重金属を簡便かつ効率良く除去し、焼却灰の再利用を促進する方法を提供することにある。
【0004】
【課題を解決するための手段】
そこで本発明者は、焼却灰中の重金属除去手段について種々検討したところ、従来の重金属の除去手段である凝集沈殿法によっては焼却灰から重金属だけを除去することができないが、焼却灰中の重金属を水溶液中に移行させ、当該水溶液を重金属吸着剤に接触させれば、焼却灰中の重金属が簡便かつ効率良く除去でき、焼却灰がセメントの原料等として使用可能になることを見出し、本発明を完成した。
【0005】
すなわち、本発明は、産業廃棄物の焼却灰を水に接触させて生じる重金属含有水溶液を、重金属吸着剤に接触させることを特徴とする焼却灰中の重金属除去方法を提供するものである。
【0006】
【発明の実施の形態】
本発明に用いられる産業廃棄物の焼却灰は、都市ゴミ、工場ゴミ、紙、可燃性プラスチック、木くず、繊維くず、ゴムくず、金属くず、汚泥、廃油、廃酸、廃アルカリ等の産業廃棄物の焼却灰である。産業廃棄物の焼却場は通常図1のように、産業廃棄物をキルンで焼却し、焼却灰は冷却水に導入され、スラリーとして処理される。焼却灰に重金属が含まれる場合は、このスラリーは最終処分場にて処分される。
【0007】
本発明においては、当該重金属を含有する焼却灰を水に接触させて重金属含有水溶液を生じさせる。Ag、Cd、Co、Cr、Cu、Fe、Hg、Mn、Ni、Pb、Pd、Zn等の重金属は、塩基性領域では水酸化物を生成し、沈殿する。従って、重金属水溶液を生成させるには、水を酸性にする必要がある。すなわち、焼却灰を水に接触させて重金属含有水溶液を生成させるには、焼却灰に水を接触させた後、当該水のpHを酸性側に調節するか、又は酸性側にpHを調節した水を焼却灰に接触させればよい。当該pHは4〜8、特に5〜7とするのが好ましい。pHの調節には、水に塩酸、硫酸、硝酸等の無機酸、クエン酸、しゅう酸、酢酸等の有機酸等を添加すればよい。
【0008】
得られた重金属含有水溶液を、重金属吸着剤に接触させて重金属を除去する。用いられる重金属吸着剤としては、バイオマス由来重金属吸着剤、イオン交換樹脂、キレート樹脂、活性炭、電解質ゲル等が挙げられる。バイオマス由来重金属吸着剤としては、バクテリア、カビ、酵母等の微生物、海藻及びそれらの死菌体が挙げられる。このうち、微生物死菌体としては、Biotechnol. prog. 1995, 11, 235-250に記載のような重金属吸着性微生物死菌体、例えばバチルス属、カンジダ属、クラドスポリウム属、リゾプス属、サッカロマイセス属、ピキア属、セネデスムス属、ペニシリウム属、アスペルギルス属、トリコデルマ属、アスコフィラム属、フーカス属、アブシディア属、スタフィロコッカス属等に属する重金属吸着性微生物死菌体が好ましい。このうち、バチルス sp.KRI−02又はその類縁菌、バチルス・リケニフォルミス及びスタフィロコッカス sp.KRI−04又はその類縁菌から選ばれる菌を酸処理して得られる菌体が、アルカリ処理した場合に比べ、当該酸処理によって菌体重量があまり減少せず、菌体単位重量当たりの重金属吸着量が増加することから特に好ましい。バチルス・リケニフォルミスのうち、バチルス・リケニフォルミスKRI−03(FERM BP−8167)及びその類縁株が特に好ましい。スタフィロコッカス sp.KRI−04又はその類縁菌のうち、スタフィロコッカス sp.KRI−04(FERM BP−8166)及びその類縁株が特に好ましい。ここで類縁株とは、その菌株と同一の種に属し、その菌株と同様な重金属吸着能を有する菌株をいう。
【0009】
これらの菌の酸処理に用いられる酸としては、これらの菌を死滅させることのできる酸であれば特に制限されないが、塩酸、硫酸、硝酸などの無機酸;酢酸、蟻酸、吉草酸、プロピオン酸、蓚酸、クエン酸等の有機酸が挙げられる。酸処理は、菌が死滅する条件であればよく、例えば菌をpH0.5〜2の酸の水溶液で15〜150分処理するのが好ましい。また、酸処理する時の温度は菌の生育温度が好ましい。なお、酸処理に先立って、菌は水で洗浄しておくのが好ましい。
【0010】
酸処理後の菌体は、水で洗浄してpHを中性に戻すのが好ましい。酸処理菌体は、水等への懸濁液としてもよいが、凍結乾燥、噴霧乾燥、加熱等の手段で乾燥して用いるのが好ましい。
【0011】
得られた酸処理菌体は、アルカリ処理菌体に比べて菌体重量の減少が極めて少なく、かつ重金属吸着能は未処理菌体に比べて増大している。従って、酸処理菌体は、未処理生菌体及びアルカリ処理菌体に比べて重金属吸着剤として特に有用である。
【0012】
また、イオン交換樹脂としては、陽イオン交換樹脂、具体的には強酸性陽イオン交換樹脂及び弱酸性陽イオン交換樹脂が挙げられる。キレート樹脂としてはイミノジ酢酸基、ポリアミン基、N−メチルグルカミン基、アミドキシム基、アミノリン酸基、ジチオカルバミン酸基、チオ尿素基等のキレート性基を有する樹脂が挙げられる。また電解質ゲルとしては、カルボキシル基、アミノ基、水酸基等を有し、金属結合能を有する電解質ゲルが挙げられる。
【0013】
これらの重金属吸着剤は、固体担体を含有する形態が好ましい。固体担体としては種々の無機担体及び樹脂担体が挙げられる。
【0014】
重金属吸着剤を固定化するための無機担体としては、シリカゲル、アルミナ、ガラス、珪藻土、テフロン(登録商標)等が挙げられる。また樹脂担体としてはセルロース、アクリルアミド誘導体、ポリスルホン、ポリビニルアルコール、ポリスチレン、アルギン酸カルシウム、カラゲニン、ポリエチレンイミン等が挙げられる。これら無機担体及び樹脂担体は、それぞれ単独で用いることもできるが、組み合せて用いることもできる。
【0015】
重金属吸着剤に重金属含有水溶液を接触させる手段としては、重金属含有水溶液を重金属吸着剤に連続して接触させる方法(図2参照)、バッチ処理する方法(図3参照)等が挙げられる。バッチ処理法においては、重金属の吸着効果を高めるための攪拌装置を設けるのが望ましい。
【0016】
かくして焼却灰中の重金属は、除去される。吸着された重金属は、有機酸、無機酸添加によるpHの低下、EGTA、EDTAなどのキレート剤添加等により重金属吸着剤から容易に溶出するので、重金属の回収も可能である。
【0017】
【実施例】
次に実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれら実施例に何ら限定されない。
【0018】
実施例1(重金属吸着菌の選択と同定)
(1)重金属吸着菌の選択
土壌を生理食塩水で懸濁後静置し、その上清を1mMの重金属を含むBrain Heart Infusion Agar培地に植え、1日後出現したコロニーを選択した。
【0019】
(2)得られた菌株の同定
a.方法
細菌第一段階試験として、光学顕微鏡U−LH1000(オリンパス,日本)による細胞形態、グラム染色性、胞子の有無、鞭毛による運動性の有無を観察した。Brain Heart Infusion Agar(Becton Dickinson, NJ, U.S.A)+寒天培地(B. H. I agar)上でのコロニー形態を観察した。カタラーゼ反応、オキシダーゼ反応、ブドウ糖からの酸/ガス産生、ブドウ糖の酸化/発酵(O/F)について試験を行った。
細菌第二段階試験として、APIシステム(bioMerieux, France: http://www.biomerieux.fr/home#en.htm)を使い、その測定方法に従い生化学的性状試験を実施した。
また、追加試験として生理性状試験を行った。
【0020】
b.結果
第一段階試験結果を表1に示す。
【0021】
【表1】

Figure 2004202449
【0022】
第二段階試験及び追加試験の結果を表2〜4に示す。
【0023】
【表2】
Figure 2004202449
【0024】
【表3】
Figure 2004202449
【0025】
【表4】
Figure 2004202449
【0026】
以上の結果から、KRI−02はバチルス属に属するが菌種の特定には至らなかった。従って、この菌は、バチルス sp.KRI−02と命名した。また、KRI−03は、バチルス・リケニフォルミスに属すると判断し、バチルス・リケニフォルミス KRI−03と命名した。また、KRI−04は、スタフィロコッカス属に属するが、菌種の特定には至らなかった。従って、この菌はスタフィロコッカス sp.KRI−04と命名した。KRI−02はFERM BP−8165として、KRI−03はFERM BP−8167として、KRI−04はFERM BP−8166として、それぞれ、独立行政法人産業技術総合研究所 特許微生物寄託センターに寄託されている。
【0027】
実施例2
KRI−02、KRI−03及びKRI−04をBrain Heart Infusin培地(Difco)で培養後水で洗浄し、湿重量の5倍容量の0.5N塩酸を添加して懸濁した。その後、塩酸添加バクテリアは37℃で2時間振とうした。また、Brierleyらの方法(USP4,992,179)も比較検討した。すなわち、湿重量の5倍容量の3%水酸化ナトリウムを添加したバクテリアは50℃または100℃で10分振とうした。振とう後、いずれのバクテリアも水で十分洗浄し、凍結乾燥した。その結果、表5に示すように、水で洗浄した場合(未処理)と比べ、酸処理では重量が20%程度の減少に止まったが、水酸化ナトリウム処理では50%以上減少し、特に100℃で処理した場合には60%以上減少した。
【0028】
【表5】
Figure 2004202449
【0029】
実施例3(金属吸着量の測定)
凍結乾燥して得られたバクテリアの粉末を緩衝溶液中(Tris:100mM)に分散して60mg/mLの懸濁液を調製した。Tris(10mM)を用いて2.4mMに調製した重金属水溶液(CdC12、CuSO4、ZnCl2、NiCl2)1mLにバクテリア懸濁液を20μL入れて2時間攪拌した。反応終了後に遠心によって分離した上清中の重金属濃度を原子吸光光度計を用いて測定した。
【0030】
結果を表6〜9に示す。カドミウムおよび銅の吸着量はKRI−02、KRI−03、KRI−04では水洗浄に比べ酸処理により増加した。水酸化ナトリウム処理によってもカドミウムの吸着量はKRI−02、KRI−03、KRI−04で増加したが、酸処理のほうが水酸化ナトリウム処理よりも大きかった。亜鉛およびニッケルの吸着量はKRI−02、KRI−03、KRI−04で水洗浄に比べ酸処理により増加したが、水酸化ナトリウム処理(100℃)のほうがわずかに取り込み量が高かった。水酸化ナトリウムの50℃および100℃での処理による重金属の取り込み量を比較すると、50℃より100℃の処理のほうが吸着量が増加した。
【0031】
【表6】
Figure 2004202449
【0032】
【表7】
Figure 2004202449
【0033】
【表8】
Figure 2004202449
【0034】
【表9】
Figure 2004202449
【0035】
実施例4(吸着・溶出試験)
100mMトリス緩衝液中(pH7.5)に凍結乾燥したバクテリア(KRI−02)を分散して懸濁液(60mg/mL)を調製した。このバクテリア懸濁液20μLを、Tris(10mM)を用いて2.4mMに調製した重金属水溶液(CuSO4、NiCl2)1mLに添加し2時間攪拌した(それぞれpH6.0およびpH7.3)。反応終了後遠心分離して上清(a)と菌層に分離した。菌層には塩酸(pH1.54)を加え30分間攪拌し再度遠心によって上清(b)と菌層に分離した。上清(a)、(b)中の重金属濃度は原子吸光光度計を用いて測定し吸着量および脱着量を算出した。塩酸処理後の菌層は100mM Tris(pH7.5)中で洗浄してpHを中性に戻し、重金属の吸着・脱着実験を繰り返した(3回)。結果を図4及び5に示す。いずれの金属も2回目の吸着量は1回目に比べ減少したが、2回目、3回目はほぼ同じ吸着量を示した。脱着量はCuの場合は吸着量の90%以上の良好な値を示した。Niの場合1回目は少なかったが、2回目、3回目は吸着量とほぼ同じ値を示し、いずれの金属においても再利用可能であることが判明した。
【0036】
実施例5
図2のように、産業廃棄物焼却施設中にpH調節剤投入部及び重金属吸着剤部を設置し、キルンで生じた焼却灰を冷却水に投入し、pHを5〜6に調節し、その冷却水を重金属吸着剤部を通過させるか、望ましくは攪拌装置を備えたバッチシステム(図3)で処理することにより、水相中の重金属が簡便かつ効率良く除去できる。ここで、重金属吸着剤には、前記実施例2で得られた微生物死菌体が使用できる。
【0037】
【発明の効果】
産業廃棄物の焼却灰を水に接触させて生じる重金属含有水溶液を、重金属吸着剤に接触させることにより簡便かつ効率的に焼却灰中の重金属を除去することができる。
【図面の簡単な説明】
【図1】現状の産業廃棄物焼却施設の一例を示す図である。
【図2】産業廃棄物焼却施設に重金属吸着剤を設置した装置の一例を示す図である。
【図3】攪拌装置を備えたバッチシステムの重金属吸着剤部の一例を示す図である。
【図4】KRI−02株のCuに対する吸着、溶出試験結果を示す図である。
【図5】KRI−02株のNiに対する吸着、溶出試験結果を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for easily and efficiently removing heavy metals from incinerated ash of industrial waste.
[0002]
[Prior art]
Environmental pollution from heavy metals such as cadmium, copper, zinc, chromium, and lead is a problem worldwide because it is toxic to living organisms at trace concentrations. On the other hand, industrial waste typified by urban garbage, factory garbage, and the like is usually incinerated at an incineration plant and discarded. If heavy metals are contained in the incinerated ash, they are transported to the final disposal site and disposed of. Thus, the incinerated ash containing heavy metals is only transported to the final disposal site and is not reused at all.
[0003]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method for easily and efficiently removing heavy metals from incinerated ash and promoting reuse of incinerated ash.
[0004]
[Means for Solving the Problems]
Therefore, the present inventor studied various means for removing heavy metals from incinerated ash. As a result, it was not possible to remove only heavy metals from incinerated ash by the coagulation sedimentation method, which is a conventional means for removing heavy metals. Was transferred to an aqueous solution, and the aqueous solution was brought into contact with a heavy metal adsorbent, heavy metals in the incinerated ash could be easily and efficiently removed, and the incinerated ash could be used as a raw material for cement. Was completed.
[0005]
That is, the present invention provides a method for removing heavy metals in incinerated ash, which comprises contacting a heavy metal-containing aqueous solution produced by contacting incinerated ash of industrial waste with water with a heavy metal adsorbent.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The incinerated ash of industrial waste used in the present invention is municipal waste, industrial waste, paper, combustible plastic, wood waste, fiber waste, rubber waste, metal waste, sludge, waste oil, waste acid, waste alkali, and other industrial waste. Incineration ash. Industrial waste incineration plants usually incinerate industrial waste in kilns as shown in Fig. 1, and incinerated ash is introduced into cooling water and treated as slurry. If the incinerated ash contains heavy metals, this slurry is disposed of at the final disposal site.
[0007]
In the present invention, the heavy metal-containing incineration ash is brought into contact with water to produce a heavy metal-containing aqueous solution. Heavy metals such as Ag, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Pd, and Zn generate hydroxides and precipitate in the basic region. Therefore, it is necessary to make water acidic in order to generate a heavy metal aqueous solution. That is, in order to contact the incineration ash with water to generate a heavy metal-containing aqueous solution, after contacting the incineration ash with water, adjust the pH of the water to an acidic side, or adjust the pH of the water to an acidic side. May be brought into contact with incineration ash. The pH is preferably between 4 and 8, especially between 5 and 7. The pH may be adjusted by adding an inorganic acid such as hydrochloric acid, sulfuric acid or nitric acid, or an organic acid such as citric acid, oxalic acid or acetic acid to water.
[0008]
The obtained heavy metal-containing aqueous solution is brought into contact with a heavy metal adsorbent to remove heavy metals. Examples of the heavy metal adsorbent used include a biomass-derived heavy metal adsorbent, an ion exchange resin, a chelate resin, activated carbon, and an electrolyte gel. Examples of the biomass-derived heavy metal adsorbent include microorganisms such as bacteria, molds, and yeasts, seaweeds, and dead cells thereof. Among them, the dead microorganism cells include, as described in Biotechnol.prog. 1995, 11, 235-250, dead metal-adsorbing microorganism dead cells, for example, Bacillus, Candida, Cladosporium, Rhizopus, Saccharomyces Preferred is a dead metal-adsorbing microorganism belonging to the genus, Pichia, Synedesmus, Penicillium, Aspergillus, Trichoderma, Ascophyllum, Fucus, Absididia, Staphylococcus, or the like. Of these, Bacillus sp. KRI-02 or its relatives, Bacillus licheniformis and Staphylococcus sp. Bacterial cells obtained by acid-treating a bacterium selected from KRI-04 or a related bacterium are not significantly reduced in cell weight by the acid treatment as compared with the case of alkali treatment, and heavy metal adsorption per cell unit weight It is particularly preferred because the amount increases. Among Bacillus licheniformis, Bacillus licheniformis KRI-03 (FERM BP-8167) and related strains are particularly preferable. Staphylococcus sp. Among KRI-04 or its relatives, Staphylococcus sp. KRI-04 (FERM BP-8166) and its relatives are particularly preferred. Here, the related strain refers to a strain belonging to the same species as the strain and having the same heavy metal adsorption ability as the strain.
[0009]
The acid used for acid treatment of these bacteria is not particularly limited as long as it is an acid capable of killing these bacteria, but inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid; acetic acid, formic acid, valeric acid, propionic acid Oxalic acid, citric acid and the like. The acid treatment may be any condition under which the bacteria are killed. For example, it is preferable to treat the bacteria with an aqueous solution of an acid having a pH of 0.5 to 2 for 15 to 150 minutes. The temperature at the time of the acid treatment is preferably the growth temperature of the bacteria. It is preferable that the bacteria be washed with water before the acid treatment.
[0010]
The cells after acid treatment are preferably washed with water to return the pH to neutral. The acid-treated microbial cells may be used as a suspension in water or the like, but it is preferable to use them after drying by means such as freeze-drying, spray-drying, and heating.
[0011]
The obtained acid-treated cells have a very small decrease in the cell weight as compared with the alkali-treated cells, and the heavy metal adsorption ability is increased as compared with the untreated cells. Therefore, the acid-treated cells are particularly useful as a heavy metal adsorbent as compared with untreated viable cells and alkali-treated cells.
[0012]
In addition, examples of the ion exchange resin include a cation exchange resin, specifically, a strongly acidic cation exchange resin and a weakly acidic cation exchange resin. Examples of the chelating resin include resins having a chelating group such as an iminodiacetic acid group, a polyamine group, an N-methylglucamine group, an amidoxime group, an aminophosphate group, a dithiocarbamic acid group, and a thiourea group. Examples of the electrolyte gel include an electrolyte gel having a carboxyl group, an amino group, a hydroxyl group, and the like and having a metal binding ability.
[0013]
These heavy metal adsorbents preferably have a form containing a solid carrier. Examples of the solid carrier include various inorganic carriers and resin carriers.
[0014]
Examples of the inorganic carrier for immobilizing the heavy metal adsorbent include silica gel, alumina, glass, diatomaceous earth, and Teflon (registered trademark). Examples of the resin carrier include cellulose, acrylamide derivatives, polysulfone, polyvinyl alcohol, polystyrene, calcium alginate, carrageenin, and polyethyleneimine. These inorganic carriers and resin carriers can be used alone or in combination.
[0015]
Means for bringing the heavy metal-containing aqueous solution into contact with the heavy metal adsorbent include a method of continuously bringing the heavy metal-containing aqueous solution into contact with the heavy metal adsorbent (see FIG. 2), a method of performing a batch treatment (see FIG. 3), and the like. In the batch processing method, it is desirable to provide a stirrer for increasing the effect of adsorbing heavy metals.
[0016]
Thus, heavy metals in the incineration ash are removed. The adsorbed heavy metal is easily eluted from the heavy metal adsorbent by lowering the pH by adding an organic acid or an inorganic acid, or by adding a chelating agent such as EGTA, EDTA, etc., so that the heavy metal can be recovered.
[0017]
【Example】
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0018]
Example 1 (Selection and identification of heavy metal-adsorbing bacteria)
(1) Selection of heavy metal-adsorbed bacteria The soil was suspended in physiological saline and allowed to stand. The supernatant was inoculated on a Brain Heart Infusion Agar medium containing 1 mM heavy metal, and colonies that appeared one day later were selected.
[0019]
(2) Identification of the obtained strain a. Method As a first stage test of bacteria, cell morphology, Gram stainability, presence or absence of spores, and presence or absence of motility by flagella were observed using an optical microscope U-LH1000 (Olympus, Japan). Colony morphology was observed on Brain Heart Infusion Agar (Becton Dickinson, NJ, USA) + agar medium (BHI agar). Tests were performed on catalase reaction, oxidase reaction, acid / gas production from glucose, and glucose oxidation / fermentation (O / F).
As a second stage test of bacteria, a biochemical property test was performed using an API system (bioMerieux, France: http://www.biomerieux.fr/home#en.htm) according to the measurement method.
In addition, a physiological property test was performed as an additional test.
[0020]
b. Results The results of the first stage test are shown in Table 1.
[0021]
[Table 1]
Figure 2004202449
[0022]
Tables 2 to 4 show the results of the second stage test and the additional test.
[0023]
[Table 2]
Figure 2004202449
[0024]
[Table 3]
Figure 2004202449
[0025]
[Table 4]
Figure 2004202449
[0026]
From the above results, KRI-02 belongs to the genus Bacillus, but did not determine the bacterial species. Therefore, this bacterium is Bacillus sp. It was named KRI-02. Further, KRI-03 was determined to belong to Bacillus licheniformis, and was named Bacillus licheniformis KRI-03. Further, KRI-04 belongs to the genus Staphylococcus, but did not lead to the identification of the bacterial species. Therefore, this bacterium is Staphylococcus sp. It was named KRI-04. KRI-02 has been deposited as FERM BP-8165, KRI-03 has been deposited as FERM BP-8167, and KRI-04 has been deposited as FERM BP-8166 at the Patent Microorganisms Depositary of the National Institute of Advanced Industrial Science and Technology.
[0027]
Example 2
KRI-02, KRI-03 and KRI-04 were cultured in Brain Heart Infusin medium (Difco), washed with water, and suspended by adding 0.5N hydrochloric acid in a volume 5 times the wet weight. Thereafter, the bacteria added with hydrochloric acid were shaken at 37 ° C. for 2 hours. The method of Brierley et al. (US Pat. No. 4,992,179) was also compared. That is, the bacteria to which 5% by volume of the wet weight of 3% sodium hydroxide was added were shaken at 50 ° C. or 100 ° C. for 10 minutes. After shaking, all bacteria were sufficiently washed with water and freeze-dried. As a result, as shown in Table 5, the weight was only reduced by about 20% in the acid treatment as compared with the case of washing with water (untreated), but decreased by 50% or more in the sodium hydroxide treatment, particularly 100%. When treated at ℃, it decreased by more than 60%.
[0028]
[Table 5]
Figure 2004202449
[0029]
Example 3 (Measurement of metal adsorption amount)
Bacterial powder obtained by freeze-drying was dispersed in a buffer solution (Tris: 100 mM) to prepare a 60 mg / mL suspension. 20 μL of the bacterial suspension was added to 1 mL of a heavy metal aqueous solution (CdC 12 , CuSO 4 , ZnCl 2 , NiCl 2 ) adjusted to 2.4 mM using Tris (10 mM) and stirred for 2 hours. After completion of the reaction, the concentration of heavy metals in the supernatant separated by centrifugation was measured using an atomic absorption spectrophotometer.
[0030]
The results are shown in Tables 6-9. The amounts of cadmium and copper adsorbed by KRI-02, KRI-03, and KRI-04 were increased by the acid treatment as compared with water washing. The amount of cadmium adsorbed by sodium hydroxide treatment also increased with KRI-02, KRI-03, and KRI-04, but the acid treatment was larger than the sodium hydroxide treatment. The adsorption amount of zinc and nickel increased by acid treatment in KRI-02, KRI-03, and KRI-04 compared to water washing, but the uptake amount was slightly higher in sodium hydroxide treatment (100 ° C.). Comparing the amount of heavy metal taken in by the treatment of sodium hydroxide at 50 ° C. and 100 ° C., the amount of adsorption increased at 50 ° C. than at 100 ° C.
[0031]
[Table 6]
Figure 2004202449
[0032]
[Table 7]
Figure 2004202449
[0033]
[Table 8]
Figure 2004202449
[0034]
[Table 9]
Figure 2004202449
[0035]
Example 4 (adsorption / elution test)
Lyophilized bacteria (KRI-02) were dispersed in 100 mM Tris buffer (pH 7.5) to prepare a suspension (60 mg / mL). 20 μL of this bacterial suspension was added to 1 mL of a heavy metal aqueous solution (CuSO 4 , NiCl 2 ) adjusted to 2.4 mM using Tris (10 mM) and stirred for 2 hours (pH 6.0 and pH 7.3, respectively). After completion of the reaction, the mixture was centrifuged to separate the supernatant (a) and the bacterial layer. Hydrochloric acid (pH 1.54) was added to the bacterial layer, stirred for 30 minutes, and centrifuged again to separate the supernatant (b) and the bacterial layer. The concentrations of heavy metals in the supernatants (a) and (b) were measured using an atomic absorption spectrophotometer, and the amounts of adsorption and desorption were calculated. The bacterial layer after the hydrochloric acid treatment was washed in 100 mM Tris (pH 7.5) to return the pH to neutral, and the experiment for adsorption and desorption of heavy metals was repeated (3 times). The results are shown in FIGS. For all metals, the amount of adsorption in the second time decreased compared to the first time, but the second and third times showed almost the same amount of adsorption. In the case of Cu, the desorption amount showed a good value of 90% or more of the adsorption amount. In the case of Ni, the first time was small, but the second time and the third time showed almost the same value as the adsorption amount, indicating that any metal can be reused.
[0036]
Example 5
As shown in FIG. 2, a pH adjuster input section and a heavy metal adsorbent section are installed in an industrial waste incineration facility, and incineration ash generated in the kiln is injected into cooling water to adjust the pH to 5 to 6, The heavy metal in the aqueous phase can be easily and efficiently removed by passing the cooling water through the heavy metal adsorbent section or desirably treating it with a batch system (FIG. 3) equipped with a stirrer. Here, the dead microorganism cells obtained in Example 2 can be used as the heavy metal adsorbent.
[0037]
【The invention's effect】
The heavy metal in the incinerated ash can be easily and efficiently removed by contacting the heavy metal-containing aqueous solution generated by contacting the incinerated ash of the industrial waste with water with the heavy metal adsorbent.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a current industrial waste incineration facility.
FIG. 2 is a diagram illustrating an example of an apparatus in which a heavy metal adsorbent is installed in an industrial waste incineration facility.
FIG. 3 is a diagram showing an example of a heavy metal adsorbent section of a batch system provided with a stirring device.
FIG. 4 is a graph showing the results of an adsorption and elution test of KRI-02 strain on Cu.
FIG. 5 is a graph showing the results of an adsorption and dissolution test of KRI-02 strain on Ni.

Claims (6)

産業廃棄物の焼却灰を水に接触させて生じる重金属含有水溶液を、重金属吸着剤に接触させることを特徴とする焼却灰中の重金属除去方法。A method for removing heavy metals from incinerated ash, comprising contacting a heavy metal-containing aqueous solution produced by contacting incinerated ash of industrial waste with water with a heavy metal adsorbent. 重金属吸着剤が、バイオマス由来重金属吸着剤、イオン交換樹脂及びキレート樹脂から選ばれるものである請求項1記載の重金属除去方法。The method for removing heavy metals according to claim 1, wherein the heavy metal adsorbent is selected from a biomass-derived heavy metal adsorbent, an ion exchange resin, and a chelate resin. 重金属吸着剤が、微生物死菌体である請求項1又は2記載の重金属除去方法。The method for removing heavy metals according to claim 1 or 2, wherein the heavy metal adsorbent is a microorganism-killed cell. 焼却灰を水に接触させて重金属含有水溶液を生成させる手段が、焼却灰に水を接触させた後当該水のpHを酸性側に調節するか、又は酸性側にpHを調節した水を焼却灰に接触させるものである請求項1〜3のいずれか1項記載の重金属除去方法。Means for contacting the incineration ash with water to generate a heavy metal-containing aqueous solution is to adjust the pH of the water to an acidic side after contacting the incineration ash with water, or to convert the water whose pH has been adjusted to an acidic side to the incineration ash. The method for removing heavy metals according to any one of claims 1 to 3, wherein the heavy metal is brought into contact with. 焼却灰を水に接触させた後の水溶液のpHを4〜8に調節する請求項1〜3のいずれか1項記載の重金属除去方法。The method for removing heavy metals according to any one of claims 1 to 3, wherein the pH of the aqueous solution after contacting the incinerated ash with water is adjusted to 4 to 8. 重金属含有水溶液が、重金属吸着剤に連続して接触するか又は重金属吸着剤にバッチ処理で接触するものである請求項1〜5のいずれか1項記載の重金属除去方法。The method for removing heavy metals according to any one of claims 1 to 5, wherein the heavy metal-containing aqueous solution continuously contacts the heavy metal adsorbent or contacts the heavy metal adsorbent in a batch process.
JP2002377524A 2002-12-26 2002-12-26 Method for removing heavy metal in incineration ash Pending JP2004202449A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002377524A JP2004202449A (en) 2002-12-26 2002-12-26 Method for removing heavy metal in incineration ash
CA2509108A CA2509108C (en) 2002-12-26 2003-12-25 Method for removing heavy metals in incineration ash
CNB200380107371XA CN100540162C (en) 2002-12-26 2003-12-25 Method for removing heavy metals from incineration ash
KR1020057008301A KR101080894B1 (en) 2002-12-26 2003-12-25 Method for removing heavy metal in incineration ash
JP2004562944A JPWO2004058423A1 (en) 2002-12-26 2003-12-25 Method for removing heavy metals from incineration ash
AU2003292829A AU2003292829A1 (en) 2002-12-26 2003-12-25 Method for removing heavy metal in incineration ash
PCT/JP2003/016784 WO2004058423A1 (en) 2002-12-26 2003-12-25 Method for removing heavy metal in incineration ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002377524A JP2004202449A (en) 2002-12-26 2002-12-26 Method for removing heavy metal in incineration ash

Publications (1)

Publication Number Publication Date
JP2004202449A true JP2004202449A (en) 2004-07-22

Family

ID=32677397

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2002377524A Pending JP2004202449A (en) 2002-12-26 2002-12-26 Method for removing heavy metal in incineration ash
JP2004562944A Pending JPWO2004058423A1 (en) 2002-12-26 2003-12-25 Method for removing heavy metals from incineration ash

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2004562944A Pending JPWO2004058423A1 (en) 2002-12-26 2003-12-25 Method for removing heavy metals from incineration ash

Country Status (6)

Country Link
JP (2) JP2004202449A (en)
KR (1) KR101080894B1 (en)
CN (1) CN100540162C (en)
AU (1) AU2003292829A1 (en)
CA (1) CA2509108C (en)
WO (1) WO2004058423A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122720A1 (en) * 2006-04-21 2007-11-01 Kazuhiro Niisawa Method of metal recovery
JP2010284607A (en) * 2009-06-12 2010-12-24 Toshiba Corp Phosphorus adsorbent and system for recovering phosphorus
WO2011018977A1 (en) * 2009-08-11 2011-02-17 太平洋セメント株式会社 Organic sludge drying system and drying method
WO2011018976A1 (en) * 2009-08-11 2011-02-17 太平洋セメント株式会社 Organic sludge drying system and drying method
JP2014012272A (en) * 2012-06-07 2014-01-23 Tokyo Metropolitan Industrial Technology Research Institute Heavy metal adsorbent, and heavy metal recovery method
JP2014155902A (en) * 2013-02-15 2014-08-28 Sanai Fujita Method and plant for treating incineration ash of garbage and sewage sludge
CN111872027A (en) * 2020-07-16 2020-11-03 常熟理工学院 Method for co-processing waste incineration fly ash and printing and dyeing waste liquid

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015006178A (en) * 2013-06-05 2015-01-15 ヴァーレ、ソシエダージ、アノニマVale S.A. Process for obtaining copper nanoparticles from a fungus selected from hypocrea lixii and trichoderma koningiopsis, and use of the fungus selected from hypocrea lixii and trichoderma koningiopsis in bioremediation of waste water and production of copper nanoparticles
JP2015027288A (en) * 2013-06-05 2015-02-12 ヴァーレ、ソシエダージ、アノニマVale S.A. Method for obtaining copper nanoparticles from rhodotorula mucilaginosa, bioremediation of waste water, and usage of rhodotorula mucilaginosa in production of copper nanoparticles
CN110813990B (en) * 2019-11-15 2021-12-03 斯蒂芬·Y·周 Advanced oxidation and packaging fixation treatment method for solid waste incineration fly ash
CN111842310B (en) * 2020-07-22 2021-11-30 浙江农林大学 Biomass gradient deliming pretreatment method
KR102446284B1 (en) * 2020-09-28 2022-09-26 한국에너지기술연구원 System and Method for generating H2 using fly ash

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130390B2 (en) * 1973-03-26 1976-08-31
JPS49131984A (en) * 1973-04-25 1974-12-18
JPS5051481A (en) * 1973-09-07 1975-05-08
JPS5051988A (en) * 1973-09-10 1975-05-09
JPS61101711A (en) * 1984-10-24 1986-05-20 Hirochika Okuyama Method for making incinerated ash harmless
US5055402A (en) * 1989-01-04 1991-10-08 Bio-Recovery Systems, Inc. Removal of metal ions with immobilized metal ion-binding microorganisms
KR920701427A (en) * 1989-10-18 1992-08-11 원본미기재 Polymer Beads Containing Fixed Metal Extraction Solvents
JPH0823974A (en) * 1994-07-18 1996-01-30 Kuraray Co Ltd Production of gel holding immobilized biocatalyst
JPH11199227A (en) * 1998-01-16 1999-07-27 Toshiba Plant Kensetsu Co Ltd Method for recovering chemical raw material from fly ash
JP5105679B2 (en) * 2001-09-28 2012-12-26 日本エンバイロケミカルズ株式会社 Method for producing carrier for water treatment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122720A1 (en) * 2006-04-21 2007-11-01 Kazuhiro Niisawa Method of metal recovery
JP2010284607A (en) * 2009-06-12 2010-12-24 Toshiba Corp Phosphorus adsorbent and system for recovering phosphorus
WO2011018977A1 (en) * 2009-08-11 2011-02-17 太平洋セメント株式会社 Organic sludge drying system and drying method
WO2011018976A1 (en) * 2009-08-11 2011-02-17 太平洋セメント株式会社 Organic sludge drying system and drying method
JP2014012272A (en) * 2012-06-07 2014-01-23 Tokyo Metropolitan Industrial Technology Research Institute Heavy metal adsorbent, and heavy metal recovery method
JP2014155902A (en) * 2013-02-15 2014-08-28 Sanai Fujita Method and plant for treating incineration ash of garbage and sewage sludge
CN111872027A (en) * 2020-07-16 2020-11-03 常熟理工学院 Method for co-processing waste incineration fly ash and printing and dyeing waste liquid
CN111872027B (en) * 2020-07-16 2021-09-07 常熟理工学院 Method for co-processing waste incineration fly ash and printing and dyeing waste liquid

Also Published As

Publication number Publication date
CN1732053A (en) 2006-02-08
KR101080894B1 (en) 2011-11-07
JPWO2004058423A1 (en) 2006-04-27
CA2509108A1 (en) 2004-07-15
CN100540162C (en) 2009-09-16
KR20050086484A (en) 2005-08-30
CA2509108C (en) 2011-11-15
AU2003292829A1 (en) 2004-07-22
WO2004058423A1 (en) 2004-07-15

Similar Documents

Publication Publication Date Title
Yang et al. Enhanced biosorption of Cr (VI) from synthetic wastewater using algal-bacterial aerobic granular sludge: Batch experiments, kinetics and mechanisms
Arivalagan et al. Removal of cadmium from aqueous solution by batch studies using Bacillus cereus
Mangaiyarkarasi et al. Bioreduction of Cr (VI) by alkaliphilic Bacillus subtilis and interaction of the membrane groups
Congeevaram et al. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates
Kumar et al. Biosorption of chromium (VI) from aqueous solution and electroplating wastewater using fungal biomass
López et al. Nickel biosorption by free and immobilized cells of Pseudomonas fluorescens 4F39: a comparative study
Hussein et al. Isolation and characterization of Pseudomonas resistant to heavy metals contaminants
JP4478022B2 (en) Heavy metal adsorbent composition
US8748153B2 (en) Biosorbents for the extraction of metals
Abdel-Monem et al. Biosorption of nickel by Pseudomonas cepacia 120S and Bacillus subtilis 117S
JP2004202449A (en) Method for removing heavy metal in incineration ash
JP2008104361A (en) Method for denitrification in presence of salt
CN109110863A (en) Utilize the method for fortimicin in chemical activation/micro-wave digestion activation biological carbon materials removal water body
Deepa et al. Application of co-immobilized microbial biochar beads in hybrid biofilter towards effective treatment of chrome tanning wastewater
CN113072164B (en) Activated carbon for enhancing Fenton-like reaction removal efficiency and preparation and use methods thereof
Busnelli et al. Copper removal mediated by Pseudomonas veronii 2E in batch and continuous reactors
Kumaran et al. ABSORPTION STUDIES ON HEAVY METALS BY ISOLATED BACTERIAL STRAIN (PSEUDOMONAS Sp.) FROM UPPANAR ESTUARINE WATER, SOUTHEAST COAST OF INDIA.
CN114410693B (en) Biological iron-manganese oxide, preparation method thereof and application thereof in simultaneous removal of arsenic and antimony in wastewater
JP3406631B2 (en) Activated carbon immobilized with microbial cells, its production method and use
JP2001225095A (en) Method for treatment of environmental pollutant substance
Ojoawo et al. Bioremediation of Zn, Cu, Mg and Pb in Fresh Domestic Sewage by Brevibacterium sp.
Zouboulis et al. Heavy metals removal from industrial wastewaters by biosorption
Khalil et al. Biosorption of trivalent chromium using Ca-alginate immobilized and alkali-treated biomass
JP2005261234A (en) New microorganism and method for removing arsenic by microorganism
Ponia et al. International Journal of Current Microbiology and Applied Sciences