WO2004055299A1 - Ensemble d'admission pour nettoyeur de piscine automoteur - Google Patents

Ensemble d'admission pour nettoyeur de piscine automoteur Download PDF

Info

Publication number
WO2004055299A1
WO2004055299A1 PCT/AU2002/001688 AU0201688W WO2004055299A1 WO 2004055299 A1 WO2004055299 A1 WO 2004055299A1 AU 0201688 W AU0201688 W AU 0201688W WO 2004055299 A1 WO2004055299 A1 WO 2004055299A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanes
rotor assembly
vane
assembly according
rotor
Prior art date
Application number
PCT/AU2002/001688
Other languages
English (en)
Inventor
Wieslaw Niewiarowski
Original Assignee
K.K. Australia Pty Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by K.K. Australia Pty Ltd. filed Critical K.K. Australia Pty Ltd.
Priority to CA002509371A priority Critical patent/CA2509371A1/fr
Priority to AU2002347199A priority patent/AU2002347199A1/en
Priority to US10/538,194 priority patent/US20060143841A1/en
Priority to EP02782516A priority patent/EP1585878A1/fr
Priority to PCT/AU2002/001688 priority patent/WO2004055299A1/fr
Publication of WO2004055299A1 publication Critical patent/WO2004055299A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H4/00Swimming or splash baths or pools
    • E04H4/14Parts, details or accessories not otherwise provided for
    • E04H4/16Parts, details or accessories not otherwise provided for specially adapted for cleaning
    • E04H4/1654Self-propelled cleaners

Definitions

  • the invention relates to automatic submerged, self-propelled pool cleaners and, in particular, that type of pool cleaner incorporating a rotor or impeller to drive the self-propelling mechanism, as distinct from those , pool cleaners relying upon differential water hammer for propulsion (oscillation-type).
  • Submerged, self-propelled pool cleaners typically comprise the pool cleaner device connected to a pool filter and pump via a flexible hose and pump/filter pipe infrastructure.
  • the attached pump provides a negative static pressure drawing water through the pool cleaner so that the water may be filtered to remove various debris and, in the case of a saltwater pool, to pass over an electrode for dissociating chlorine from the salt and so disinfect the water.
  • Submerged self-propelled pool cleaners use the negative static pressure to drive the device around the pool so that debris and material adhering to the floor and walls of the pool may be drawn in through the device and subsequently filtered from the pool water.
  • US 4,536,908 discloses a suction cleaner for a swimming pool that is supported on a bogie or truck assembly with inclined supporting feet.
  • the bogie assembly is mechanically rocked by means of a turbine through which water is pulled by suction to cause the cleaner to move.
  • a second turbine drives a hose connection at the top of the cleaner in opposite directions with long periods of dwell in between.
  • the device is continuously driven in the forward or turning directions and is driven and steered by three turbines and three gearboxes.
  • FIG. 1 Another pool cleaner of the turbine type is disclosed in US 4,939,806, the contents of which are incorporated herein by reference.
  • the disclosed invention is a cleaner having a head mounted on wheels. There is a suction passage and a propeller which is driven by the turbine and which propels the head. A rudder, which is oscillated via a gear train driven by the turbine, is used to vary the direction of movement of the head.
  • a further turbine pool cleaner is disclosed in US 5,099,535, the contents of which are enclosed herein by reference.
  • a cleaner for a submerged surface comprises a body that defines a suction passage and pressure passage.
  • the suction passage extends between an inlet and outlet in the body and is connectable to the inlet of a filtration system by flexible hose.
  • a second hose connects the inlet on the device to an outlet of the system. Water flowing under pressure to the inlet drives a turbine which in turn drives hind wheels to displace the apparatus over the surface while debris or the like is sucked up through the suction passage and out through the hose that is attached to the filtration system.
  • the suction and return hoses are those of the flexible kind typically used in swimming pool cleaning systems.
  • US 4,208,752 An oscillating version of pool cleaner is disclosed in US 4,208,752, the contents of which are incorporated herein by reference.
  • the invention of US 4,208,752 discloses an apparatus for cleaning swimming pools in a stepwise movement over the pool walls comprises a balanced operating head having an inlet and an outlet, the outlet adapted to be swivelably connected to a longitudinally resilient and flexible suction hose.
  • the inlet axis is inclined at an angle to that of the outlet.
  • a passage extends through the head from inlet to outlet, and an oscillator valve in the head is adapted to alternately open and close said passage.
  • a baffle plate is disposed in the head between the inlet and valve to form a restricted suction connection between inlet and outlet around the valve when the passage is closed.
  • the flow of water causes the valve to oscillate between its two terminal positions. In one position, the flow is full and direct through the opening and passage to the outlet. In the other position of the valve, there is a maximum reduction in liquid flow through the head. This results in an intermittent cut off flow through the head as the valve oscillates between its terminal positions, and this in turn causes pulsation which result in longitudinal contractions and relaxations in the longitudinally resilient suction pipe from the head to the outlet from the swimming pool to its filter unit. In consequence of these contractions and relaxations and a simultaneous reduction and increase of the force applied to hold the cleaning head disc against the surface to be cleaned, a step by step movement of the head takes place over the surface to be cleaned.
  • a second oscillating pool cleaner is disclosed in US 4,807,318, the contents of which are incorporated herein by reference.
  • An automatic pool cleaner is disclosed which also operates on the interruption of an induced flow of water through the cleaner.
  • the interruption in the flow of water drawn through the pool cleaner is used to provide a propulsive force to cause the cleaner to move over submerged pool surfaces.
  • the control of the interruption is effected through a tubular axially resilient diaphragm one end of which is closed and adapted to hold normally closed a passage from the head of the pool cleaner to the usual form of flexible hose connecting the pool cleaner to the filtration unit.
  • the flow of water through the pool cleaner causes a suction in a passageway greater than that in a connection, the result being that a spring and diaphragm force the closure of the passageway.
  • the intermittent interruption of flow through the passageway and hose, and the simultaneous release of the force holding the cleaner and disc against the submerged surface causes the cleaner to move in a stepwise manner over the surface to be cleaned.
  • Both the turbine and oscillation type pool cleaner requires the ingress of water flow to be at high speed.
  • the energy imparted to the turbine is drawn from the kinetic energy of the velocity head of the inflowing water, thus the faster the flow of water, the greater the energy imparted to the turbine and consequently the pool cleaner will move more effectively.
  • the oscillation type of pool cleaner depends upon the differential of momentum caused by a water hammer event being as a direct result of the mass flow of the water. Being directly proportional to velocity of the water, consequently effective movement is also dependent upon the velocity head of the inlet water flow. This need for a high velocity head for effective movement is also a considerable limitation on the ability of the pool cleaners to process large objects.
  • the invention provides a rotor assembly for a self propelling pool cleaner including a housing having a water inlet orifice and a water outlet orifice, a rotor within the housing including a plurality of vanes defining a plurality of spaces between adjacent vanes each vane having pressure sealing means forming a pressure seal between adjacent spacers when said pressure sealing means is in contact with an internal wall of the housing wherein a negative static water pressure applied at the outlet orifice leads to a differential water pressure between two adjacent spaces causing rotation of the rotor.
  • an impulse turbine is defined as a system which converts velocity head to mechanical energy through impacting a rotor or impeller with a high velocity jet "...
  • the turbine type pool cleaner functions in precisely the same way and is correctly identified as a turbine in that mechanical energy to propel the cleaner is derived from the kinetic energy of the high velocity inlet water flow.
  • the present invention differs markedly in that it is analogous to a hydraulic motor.
  • the present invention does not rely upon a high velocity head from the inlet but instead creates a pressure differential between adjacent spaces within the housing of the rotor assembly.
  • the differential pressure applies a force against the inlet side of the vane dividing the spaces having the differential pressure driving the rotor in a direction towards the outlet orifice.
  • the mechanical energy required to drive the pool cleaner is imparted by the work done by the pressure differential and so is dependent upon the force applied and consequently the negative static pressure applied by the pool pump and not the kinetic energy derived from the velocity head of the inlet water flow.
  • This system is inherently more efficient in that velocity head can be reduced by shock losses as the inlet water flow enters the chamber and also losses in impacting the vanes of the turbine.
  • the present invention by adopting a principle similar to a hydraulic motor is inherently more efficient and so displays a distinct advantage over the turbine pool cleaners of the prior art.
  • the invention requires only a rotor having a pressure sealing means such that the static pressure developed by the pool pump drives the rotor rather than the high velocity water jet which is needed for a turbine type pool cleaner. To this end being driven by the static pressure permits the inlet orifice to be as large as possible and so accept larger objects to by passed through the rotor assembly.
  • the inlet orifice is not limited in size and, in fact, it is preferable that a much larger inlet orifice is used not only to receive larger objects, but also to maximize the pressure differential by reducing the velocity head.
  • the vanes must be stiff enough, or supported sufficiently, to resist the load and not buckle or collapse under the applied load. Therefore, the vanes may be made of metal or plastic and sized so as to resist the applied loading. Having a relatively stiff vane, it is necessary to seal between the vane and the internal wall of the housing but may be flexible enough to buckle and enable the passage of large objects.
  • the vane may be constructed from a flexible material and supported by a more rigid member and so combining the effects of the pressure sealing means with sufficient rigidity to resist the applied force. It must be recognised that in such an arrangement, a balance in the selection of materials must be made so as to be sufficiently flexible to act as a seal but stiff enough so that any unsupported portion of the flexible vane may still resist the applied force. The person skilled in the art will recognise that such a selection, as well as dimensioning the rigid element, will be an iterative process dependent upon the magnitude of the pressure differential.
  • the vanes may be capable of a directional stiffness such that they may be stiff enough to resist the applied force but may be collapsed, in a resilient manner when contacted by collapsing means on the return portion of the chamber.
  • the directional stiffness may be provided by the "tape measure” effect whereby the material of the vane may be metal or plastic in a curved shape whereby the applied force acts on the concave face of the curve.
  • the curved shape increases the moment of inertia of the tape and provides a higher degree of stiffness.
  • a force applied on the convex side of the tape leads to the tape measure flattening. Consequently, there is a substantial reduction in the stiffness of the overall element.
  • the collapsing means may be a small projection placed past the outlet orifice, which causes the vane to collapse or, more preferably, may be the reduction in size of the housing, reducing the distance between the internal wall of the housing and the axis of the rotor.
  • the reduced clearance applies an interference in a direction opposed to the applied force causing the vane to flatten.
  • the resilient material from which the vane is made will then permit the vane to recover its shape on the drive side of the housing past the inlet orifice.
  • the vanes may be made from a very flexible material, for instance, silicone or polyurethane, or other such material that is resistant to pool chemicals and displays good pressure-sealing properties.
  • Said flexible vanes may be supported by rigid or extremely stiff elements, which support the vane for a portion of its length, preferably 50 to 75 per cent.
  • the vanes possibly in combination with the support elements, may have means for selective stiffness.
  • such means for selective stiffness may be an arrangement changing the shape of the flexible vane so that when a pressure differential is developed, the flexible vanes form a shape having greater stiffness.
  • the flexible vanes On the return portion of the chamber, the flexible vanes may collapse onto the flat face when contact is made with the internal wall of the housing and so maintain a seal with the housing.
  • the means to selectively stiffen the flexible vanes may be provided by the support elements, which are capable of transmitting the pressure differential to the flexible vane and drawing it into a shaped portion of the support element so that the flexible vane may selectively deform from a flat, low stiffness shape to a higher stiffness curved shape.
  • the flexible vane On release of the pressure differential at and beyond the outlet orifice, the flexible vane may resume the flat orientation and be readily collapsed on contact with the internal wall.
  • the scope to reduce the rotor assembly is dependent upon the size of the support elements but is almost independent of the size of the flexible vanes.
  • Figure 1 is a perspective view of the open sided rotor assembly according to the present invention
  • Figure 2a is a schematic cross-sectional view of the vane of the rotor assembly of Figure 1 ;
  • Figure 2b is a further schematic cross-sectional view of the vane of the rotor assembly according to Figure 1.
  • Figure 1 shows a rotor assembly 1 according to the present invention.
  • the rotor assembly 1 is one part of a self-propelled pool cleaner.
  • the rotor assembly is one part of a self-propelled pool cleaner.
  • the rotor assembly 1 is used not only to draw in the inlet water flow 6 but to provide energy to the movement mechanism to propel the pool cleaner about the swimming pool and serve its primary function.
  • the rotor assembly 1 of the present invention comprises a housing 2 and a rotor 3 within the housing, said rotor 3 comprising a plurality of flexible vanes 4 and rigid vane supports 5.
  • the rotor assembly 1 draws the inlet water flow 6 into the housing 2 via inlet orifice 7 and finally expels the outlet water flow 8 through the outlet orifice 9 either to another part of the pool cleaner or directly into the hose arrangement and directs the water flow 8 to the pool filter.
  • the flow of water though the housing 2 divides the housing into a drive portion 14 between the inlet 7 and outlet 9 and a return portion 15 of the housing 2 from the outlet 9 to the inlet 7.
  • the housing 2 is completely immersed, the majority of flow in the housing is on the drive portion 14 with the return portion having a markedly reduced flow of water.
  • the rotor assembly 1 of the present invention is differentiated from a rotor assembly for a turbine type pool cleaner in that the vanes 4, being of a flexible nature, provide a pressure seal 10 between adjacent spaces 11 and 12.
  • the pool pump functions by providing a negative static pressure at the outlet 9 of the housing 2 creating a negative static pressure within space 12.
  • the inlet orifice 7 is sized so that the velocity head of the inlet water flow 6 is small and the static pressure in space 11 is not dissimilar to that of the external static pressure within the swimming pool. Consequently, a pressure differential between space 12 and space 11 creates an applied force pushing the vane 4 towards the outlet 9 and rotating the rotor 3 in a preferred direction.
  • the pressure seal 10 ensures the rotor undergoes work, being the product of the applied static pressure force and the distance through which the rotor is moved and this energy converted to mechanical energy to the mechanism driving the propulsion system for the pool cleaner.
  • the flexible vane 4 must act as a relatively soft seal against the internal wall of the housing.
  • Materials such as silicone and polyurethane are ideal for such an application. However, said materials are known to provide little stiffness and unsupported such a flexible vane 4 could not resist the applied static pressure force used to drive the rotor 3.
  • Vane supports 5 are incorporated with each flexible vane 4 being supported by a vane support. The vane supports preferably 50 to 75 per cent of the length of the flexible vane 4 providing sufficient extension beyond the vane support 5 to form a seal with the internal wall of the housing.
  • the rotor assembly 1 of the present invention further features a housing 2 having a reduced size on the return portion 15 as compared to the drive portion 14 and so reducing the overall size of the pool cleaner.
  • the unsupported length of the flexible vane 4 is maximized so that when the flexible vane 16 reaches the return portion of the housing 15, it is collapsible into a defined position rotor return face 17 and the required clearance for the drive portion 14 is not required for the return portion 15.
  • the unsupported length of the flexible vane 4 must be maximized.
  • a further feature of the rotor assembly 1 according to the present invention is the ability of the rotor 3 to selectively stiffen the flexible vane 4 in the drive portion 14.
  • the vane support 5 has pressure leakage holes 13, which permit the applied static force to be applied to the full length of the flexible vane 4 instead of just the unsupported length. This has the advantage of removing the upper peripheral edge of the support vane 5 from acting as a point of rotation for the unsupported length of the flexible vane 4.
  • the face of the vane support 5 adjacent to the flexible vane 4 is shaped such that as the flexible vane 4 is pressed into the vane support 5 under the applied static pressure force, the flexible vane 4 is resiliently deformed into a curved shape. Consequently, whilst a pressure difference exists between the adjacent spaces 11 and 12, the flexible vane 4 adopts the higher stiffness curved shape and on rotation of the rotor 3, when the pressure difference is equalised adjacent the outlet 9, the flexible vane 4 resiliently reforms a flat shape ready for collapsing into flexible vane 16 on the return portion of the housing.
  • FIG. 2a shows the undeformed cross-sectional shape of the flexible vane 4 of nominal width (B) and depth (D).
  • the neutral (N.A.) axis about which the flexible vane 4 may bend is used to determine the moment of inertia (I) of the cross-sectional shape.
  • a notional relationship between the dimensions are suggested as the width (B) being twenty times that of the depth (D) giving a moment of inertia equal to 1.67 D 4 .
  • Figure 2b shows the deformed shape of the flexible vane 4 should the deformed shape be a half circle.
  • width (B) and depth (D) the moment of inertia of the deformed shape becomes 2,388 D 4 .
  • D depth
  • the selective stiffness of the flexible vane 4 is enhanced on being deformed from a flat strip. It follows that for a range of similar parameters, the person skilled in the art can determine the required stiffness enhancement for the applied static pressure force and determine the material properties, flexible vane size and deformed shape required to resist the applied static pressure force.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

L'invention concerne un ensemble rotor (1) pour un nettoyeur de piscine automoteur, lequel ensemble comprend un carter (2) présentant un orifice d'entrée d'eau (7) et un orifice de sortie d'eau (9), un rotor (3) situé à l'intérieur du carter (2) et présentant une pluralité d'aubes (4) qui définissent une pluralité d'espaces (11, 12) entre des aubes adjacentes (4), chaque aube (4) étant pourvue d'un moyen d'étanchéité (10) formant un joint d'étanchéité entre des espaces adjacents (11, 12) lorsque ce moyen d'étanchéité (10) est en contact avec une paroi interne du carter (2), une pression d'eau statique négative appliquée au niveau de l'orifice de sortie (9) induisant une pression d'eau différentielle entre deux espaces adjacents (11, 12), de façon à provoquer la rotation du rotor (3).
PCT/AU2002/001688 2002-12-13 2002-12-13 Ensemble d'admission pour nettoyeur de piscine automoteur WO2004055299A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002509371A CA2509371A1 (fr) 2002-12-13 2002-12-13 Ensemble d'admission pour nettoyeur de piscine automoteur
AU2002347199A AU2002347199A1 (en) 2002-12-13 2002-12-13 Intake assembly for self-propelled pool cleaner
US10/538,194 US20060143841A1 (en) 2002-12-13 2002-12-13 Intake assembly for self-propelled pool cleaner
EP02782516A EP1585878A1 (fr) 2002-12-13 2002-12-13 Ensemble d'admission pour nettoyeur de piscine automoteur
PCT/AU2002/001688 WO2004055299A1 (fr) 2002-12-13 2002-12-13 Ensemble d'admission pour nettoyeur de piscine automoteur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/AU2002/001688 WO2004055299A1 (fr) 2002-12-13 2002-12-13 Ensemble d'admission pour nettoyeur de piscine automoteur

Publications (1)

Publication Number Publication Date
WO2004055299A1 true WO2004055299A1 (fr) 2004-07-01

Family

ID=32513234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2002/001688 WO2004055299A1 (fr) 2002-12-13 2002-12-13 Ensemble d'admission pour nettoyeur de piscine automoteur

Country Status (5)

Country Link
US (1) US20060143841A1 (fr)
EP (1) EP1585878A1 (fr)
AU (1) AU2002347199A1 (fr)
CA (1) CA2509371A1 (fr)
WO (1) WO2004055299A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001470A1 (fr) * 2010-06-28 2012-01-05 Zodiac Pool Care Europe Nettoyeurs automatiques de piscine et composants de ceux-ci
EP3187665A3 (fr) * 2013-08-30 2017-10-04 Hayward Industries, Inc. Système de nettoyage de piscine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7690066B2 (en) * 2005-11-03 2010-04-06 Zodiac Pool Care, Inc. Automatic pool cleaner
US8845276B2 (en) * 2008-09-23 2014-09-30 Zodiac Pool Systems, Inc. Fluid-powered motors and pumps
US9222274B1 (en) * 2012-09-05 2015-12-29 Gsg Holdings, Inc. Angled pool valve module
AU2013338558B2 (en) 2012-10-30 2016-01-14 Pavel Sebor Turbine-driven swimming pool cleaning apparatus and method
US10036175B2 (en) 2012-10-30 2018-07-31 Pavel Sebor Turbine-driven swimming pool cleaning apparatus and method
EP4107346A4 (fr) 2020-02-19 2024-02-21 Pavel Sebor Appareil de nettoyage automatique de piscine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US847060A (en) * 1906-06-28 1907-03-12 Cleophas Gamache Brush.
US3321787A (en) * 1964-12-17 1967-05-30 Robert R Myers Swimming pool cleaning means
US3959838A (en) * 1974-02-28 1976-06-01 Harvey John Hannah Underwater cleaning
US3979788A (en) * 1974-07-05 1976-09-14 Bieri Pumpenbau A.G. Mobile machine for cleaning swimming pools
DE2612043A1 (de) * 1976-03-22 1977-09-29 Berg Ferdi A Fahrbares geraet zum reinigen von schwimmbecken durch ansaugen und absondern von im bereich des beckenbodens befindlichen sinkstoffen
WO2001027415A1 (fr) * 1999-10-12 2001-04-19 Poolvergnuegen Systeme de nettoyage automatique de piscine a turbine

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3803658A (en) * 1971-01-14 1974-04-16 J Raubenheimer Cleaning devices
US4208752A (en) * 1976-08-23 1980-06-24 Hofmann Helmut J Cleaning apparatus for submerged surfaces
US4394140A (en) * 1977-12-30 1983-07-19 Smith International, Inc. Degassing system and centrifugal pump
AU552554B2 (en) * 1982-04-02 1986-06-05 Hayward Pool Products (Australia) Pty Ltd Suction cleaner head for submerged surfaces
US4840645A (en) * 1983-04-15 1989-06-20 Allied-Signal Inc. Rotary separator with a porous shroud
US4939806A (en) * 1988-01-07 1990-07-10 Liberty Pool Products S.A. Pool cleaner
US5099535A (en) * 1988-02-18 1992-03-31 Daniel J. D. Chauvier Cleaner for submerged surfaces
US5402569A (en) * 1994-02-28 1995-04-04 Hypro Corporation Method of manufacturing a pump with a modular cam profile liner
US5554004A (en) * 1995-07-27 1996-09-10 Ametek, Inc. Fan impeller assembly
US6193465B1 (en) * 1998-09-28 2001-02-27 General Electric Company Trapped insert turbine airfoil
ES2217085T3 (es) * 2000-01-28 2004-11-01 New Ermes Europe S.P.A. Dispositivo para la eliminacion de polvo de suciedad.
US6854148B1 (en) * 2000-05-26 2005-02-15 Poolvernguegen Four-wheel-drive automatic swimming pool cleaner
US6782578B1 (en) * 2000-05-26 2004-08-31 Poolvergnuegen Swimming pool pressure cleaner with internal steering mechanism
US7162763B2 (en) * 2000-06-24 2007-01-16 Henkin-Laby, Llc Turbine drive apparatus and method suited for suction powered swimming pool cleaner
US6354797B1 (en) * 2000-07-27 2002-03-12 General Electric Company Brazeless fillet turbine nozzle
DE10128790A1 (de) * 2001-06-13 2002-12-19 Stihl Maschf Andreas Ansaugvorrichtung für die Verbrennungsluft eines Verbrennungsmotors in einem handgeführten Arbeitsgerät
JP2003106103A (ja) * 2001-10-02 2003-04-09 Honda Motor Co Ltd 回転機の静翼
US6984315B2 (en) * 2003-12-16 2006-01-10 Dolton Iii Edward Gerard Pool cleaning device
US7472478B2 (en) * 2004-10-29 2009-01-06 Honeywell International Inc. Adaptive machining and weld repair process
US7341431B2 (en) * 2005-09-23 2008-03-11 General Electric Company Gas turbine engine components and methods of fabricating same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US847060A (en) * 1906-06-28 1907-03-12 Cleophas Gamache Brush.
US3321787A (en) * 1964-12-17 1967-05-30 Robert R Myers Swimming pool cleaning means
US3959838A (en) * 1974-02-28 1976-06-01 Harvey John Hannah Underwater cleaning
US3979788A (en) * 1974-07-05 1976-09-14 Bieri Pumpenbau A.G. Mobile machine for cleaning swimming pools
DE2612043A1 (de) * 1976-03-22 1977-09-29 Berg Ferdi A Fahrbares geraet zum reinigen von schwimmbecken durch ansaugen und absondern von im bereich des beckenbodens befindlichen sinkstoffen
WO2001027415A1 (fr) * 1999-10-12 2001-04-19 Poolvergnuegen Systeme de nettoyage automatique de piscine a turbine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001470A1 (fr) * 2010-06-28 2012-01-05 Zodiac Pool Care Europe Nettoyeurs automatiques de piscine et composants de ceux-ci
US9611668B2 (en) 2010-06-28 2017-04-04 Zodiac Pool Systems, Inc. Automatic pool cleaners and components thereof
EP3187665A3 (fr) * 2013-08-30 2017-10-04 Hayward Industries, Inc. Système de nettoyage de piscine
US10066411B2 (en) 2013-08-30 2018-09-04 Hayward Industries, Inc. Swimming pool cleaner
US10876318B2 (en) 2013-08-30 2020-12-29 Hayward Industries, Inc. Swimming pool cleaner
US10947750B2 (en) 2013-08-30 2021-03-16 Hayward Industries, Inc. Swimming pool cleaner
AU2020203428B2 (en) * 2013-08-30 2022-03-17 Hayward Industries, Inc. Swimming pool cleaner
EP4039918A1 (fr) * 2013-08-30 2022-08-10 Hayward Industries, Inc. Système de nettoyage de piscine
US12018510B2 (en) 2013-08-30 2024-06-25 Hayward Industries, Inc. Swimming pool cleaner

Also Published As

Publication number Publication date
CA2509371A1 (fr) 2004-07-01
AU2002347199A1 (en) 2004-07-09
EP1585878A1 (fr) 2005-10-19
US20060143841A1 (en) 2006-07-06

Similar Documents

Publication Publication Date Title
EP0994995B1 (fr) Appareil de nettoyage des surfaces immergees d'une piscine
US6751822B2 (en) Submerged surface pool cleaning device
US6782578B1 (en) Swimming pool pressure cleaner with internal steering mechanism
US5033148A (en) Apparatus for cleaning a surface submerged in a liquid
US7805792B2 (en) Pool cleaning robot
US6398878B1 (en) Automatic pool cleaner including motion sensor and repositioning means
US7293314B2 (en) Turbine drive apparatus and method suited for suction powered swimming pool cleaner
EP2275626A3 (fr) Dispositif de nettoyage de piscine alimenté par aspiration
NZ333405A (en) Water suction powered automatic swimming pool cleaning system
US20020170129A1 (en) Magnetic control valve for a suction powered pool cleaner
RU2271425C2 (ru) Робот с прижимным клапаном для автоматической очистки бассейна и способ повышения способности робота для автоматической очистки бассейна
EP1585878A1 (fr) Ensemble d'admission pour nettoyeur de piscine automoteur
US5384928A (en) Submerged surface cleaner
US5706540A (en) Automatic cleaners for sweeping and cleaning swimming pools
EP0556029A1 (fr) Appareil de nettoyage automatique de piscine et son dispositif de direction
CA2414101C (fr) Dispositif de nettoyage a air comprime pour piscine pourvu d'un mecanisme de guidage interne
US20040194237A1 (en) Underwater cleaning apparatus using suction grip
US4789364A (en) Displacement apparatus for submerged cleaner
US5274868A (en) Elevation limiter for submersible suction cleaner
EP0558337B1 (fr) Aspirateur sous-marin auto-propulsé et méthode de nettoyage
US20110088725A1 (en) Guide device for an automatic device for cleaning a surface immersed in a liquid
US7039979B2 (en) Apparatus for maintaining pressure on underwater vacuum cleaning device
EP1338727A1 (fr) Appareil de nettoyage des surfaces immergées d'une piscine
WO1999024683A1 (fr) Dispositif de nettoyage d'une surface immergee
CA2090195C (fr) Aspirateur submersible automoteur

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2509371

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002347199

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2002782516

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006143841

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10538194

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002782516

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10538194

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP