WO2004055210A1 - Molecules inhibitrices de la synthese proteique du virus de l'hepatite c et procede de criblage desdites molecules inhibitrices - Google Patents

Molecules inhibitrices de la synthese proteique du virus de l'hepatite c et procede de criblage desdites molecules inhibitrices Download PDF

Info

Publication number
WO2004055210A1
WO2004055210A1 PCT/FR2003/003675 FR0303675W WO2004055210A1 WO 2004055210 A1 WO2004055210 A1 WO 2004055210A1 FR 0303675 W FR0303675 W FR 0303675W WO 2004055210 A1 WO2004055210 A1 WO 2004055210A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
seq
region
hcv
tires
Prior art date
Application number
PCT/FR2003/003675
Other languages
English (en)
Inventor
Larissa Balakireva
Original Assignee
Universite Joseph Fourier
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Joseph Fourier filed Critical Universite Joseph Fourier
Priority to EP03813166A priority Critical patent/EP1570089A1/fr
Priority to US10/538,471 priority patent/US20060035212A1/en
Priority to AU2003296819A priority patent/AU2003296819A1/en
Publication of WO2004055210A1 publication Critical patent/WO2004055210A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/576Immunoassay; Biospecific binding assay; Materials therefor for hepatitis
    • G01N33/5767Immunoassay; Biospecific binding assay; Materials therefor for hepatitis non-A, non-B hepatitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/02Screening involving studying the effect of compounds C on the interaction between interacting molecules A and B (e.g. A = enzyme and B = substrate for A, or A = receptor and B = ligand for the receptor)

Definitions

  • the invention relates to the treatment of viral or non-viral pathologies in which proteins are involved, the synthesis of which is initiated through an internal ribosome entry site (IRES), of which at least part of the sequence is similar from one IRES to another.
  • IRES internal ribosome entry site
  • pathologies are notably but not limited to, among viral pathologies, viruses belonging to the Flaviridae family such as hepatitis C virus (HCV), swine fever (CSFV), bovine diarrhea ( BVDV), and among non-viral pathologies, cancers in which certain proteins are involved, such as for example fibroblast growth factors responsible for the neovascularization of developing tumors, the proto-oncogene c-myc etc ...
  • the treatment proposed in the invention consists in preventing the binding of the translation initiation factor, eIF3, to RNA constituting the 5 ′ non-coding part of the IRES (Internai Ribosome Entry Site) sequence of viral genomes or of certain genes involved in the abovementioned pathologies, so as to inhibit protein synthesis.
  • IRES Internai Ribosome Entry Site
  • the subject of the invention is also a method for screening for molecules capable of inhibiting the formation of the complex: sequence of TIRES / eIF3, in particular nucleotides 56 to 92 of domain II of TIRES and the recombinant polypeptide corresponding to the part central (amino acids 185 to 279) of the protein subunit pi 16 (also called pi 10, eIF3b, eIF-3eta (BLAST P55884)) of eIF3.
  • sequence of TIRES / eIF3 in particular nucleotides 56 to 92 of domain II of TIRES and the recombinant polypeptide corresponding to the part central (amino acids 185 to 279) of the protein subunit pi 16 (also called pi 10, eIF3b, eIF-3eta (BLAST P55884)) of eIF3.
  • the process of research and development of new therapeutic drug discovery molecules requires above all the identification of new targets associated with diseases (protein, RNA or DNA, or their complex) and their validation.
  • the identified and validated target is then used in molecular screening tests, which allow the selection of active molecules.
  • the target being constituted by a specific sequence of HCV TIRES (domain II) and a recombinant polypeptide derived from the sequence of the subunit pl l6 of eIF3.
  • the invention is more particularly described in connection with the treatment of the HCV virus although this also applies to the swine fever virus (CSFV) or that of bovine diarrhea (BVDV). , and this, taking into account the strong homology existing between these viruses belonging to the same family.
  • CSFV swine fever virus
  • BVDV bovine diarrhea
  • the hepatitis C virus has been identified as being responsible for non-A non-B hepatitis developed frequently during chronic malignant pathologies, such as cirrhosis of the liver or hepatocellular carcinoma.
  • HCV is transmitted by blood transfusion or blood derivatives.
  • the HCV genome is in the form of single-stranded RNA with a size of around 9.4 kb and coding for a single polyprotein consisting of 3,010 amino acids (CHOO et al., 1989).
  • HCV messenger TARN is not done by recognition of the cap (or CAP), since the latter is absent (translation called “cap-dependent"), but through an internal ribosome entry site (IRES), positioned at the 5 'untranslated region (5'-UTR) of HCV, between nucleotides 40 and 372 of the HCV sequence (translation known as "cap- independent ") (equivalent to SEQ ID1 according to the invention).
  • IRS internal ribosome entry site
  • TIRES of HCV is folded in on itself to form three domains or regions, in a loop, respectively regions II (Ha, Ilb), III (ma, IHb, IIIc, Illd, Ille, Illf) and IV as shown in FIG. 1 (ZHAO et al, 2001), TIRES further comprising a start AUG codon.
  • the single-stranded RNA of CSFV and BVDV also contains an IRES sequence containing a start AUG codon, the structure of TIRES being similar to that of HCV (FIG. 1).
  • the alignment of the sequences consisting of the genome of these three viruses shows a strong homology of the region II of TIRES, in particular of the MRR site (RNA recognition pattern), which tends to suggest that the molecules acting on TIRES of the HCV could also act on that of the CSFV or the BVDV.
  • RNA recognition pattern RNA recognition pattern
  • the initiation of translation of mRNA begins with the recognition and fixation by TIRES of the 40S ribosomal subunit and of initiation factors, in particular, the initiation factor called "eIF3".
  • the initiation factor eIF3 is a multiprotein complex consisting of 10 different subunits such as for example p36, p44, p47, p66, pi 10, pi 16 and pl70. Secondary structure prediction studies have shown that the pi 16 subunit has in its central part, located between amino acids 185 and 279, a recognition pattern for TARN ⁇ - ⁇ - ⁇ - ⁇ - ⁇ - ⁇ . The location of the recognition motif of the pi 16 subunit of eIF3 is represented in FIG. 2. Similarly, the C-terminal part of the p44 subunit also has a similar structure ⁇ - ⁇ - ⁇ - ⁇ - ⁇ - ⁇ , corresponding to a hypothetical MRR.
  • RNA binding protein RNA binding protein
  • proteins lnRNP or even snRNP proteins binding to single-stranded DNA.
  • the central part of the pi 16 subunit is folded in a conformation similar to that of the known MRRs for the conserved amino acids IVVD and TK / RGF / YVE located in leaves 1 and 3 corresponding to the RNP-2 and RNP-1 recognition patterns (see Figure 2).
  • the MRR of pi 16 of eIF3 meets the criteria of "putative RNA-binding proteins", its real capacity to fix TARN has never been demonstrated before.
  • document FR-A-2 815 358 describes a method of treating hepatitis C which consists in preventing the protein synthesis of HCV by supposed inhibition of the binding of the pi 16 subunit of eIF3 to region III of TIRES.
  • the candidate molecules for this inhibition correspond to polypeptides having an affinity with region III of TIRES greater than that of the pi16 subunit of eIF3.
  • the polypeptide inhibitors are obtained by screening for pi16 proteins mutated with the IRES sequence of HCV. More precisely, only the central part corresponding to the recognition motif (MRR) is mutated, the polypeptide being capable of binding to the IIIb loop of HCV TIRES with an affinity greater than or equal to that of the non-mutated MRR of pi 16.
  • the mutations are introduced into the MRR by random mutagenesis or by targeted mutagenesis according to the phage display technique.
  • no indication is given concerning the nucleotide sequence of region III of TIRES capable of interacting with the mutated MRR.
  • no results of a possible inhibition are given in the examples. Sizova et al, 1998, showed that eIF3 protected the Illb apical region of TIRES of HCV and CSFV, in particular nucleotides 204, 212, 214, 215 and 220 (see Figure 1, labeled nucleotides ⁇ ), from enzymatic cleavage or chemical changes.
  • the document WO 01/44266 also reports the interaction between the pi 16 subunit of the initiation factor eIF3 and the region III of HCV TIRES, more precisely at the level of a domain capable of pairing and defining two sequences. 7 base and 9 base nucleotides, respectively.
  • the definition of this minimal motif makes it possible to implement a test to identify compounds capable of competing in the formation of the eIF3-HCV complex.
  • document US-A-6,001,990 describes a series of oligonucleotides, selected for their capacity to inhibit the translation of TNA of HCV.
  • Toligonucleotide of 28 nucleotides of sequence TAGACGCTTTCTGCGTG AAGACAGTAGT corresponding to the sequence SEQ ID 3 of this document, effectively hybridizes with region II of TIRES of HCV.
  • RNA-binding proteins of the MRR family recognize short single-stranded sequences ( ⁇ 10 nt) belonging to a loop in RNA structures of the loop-stem type or to a stem extension. These short fragments integrated into an appropriate structural context are essential for the specific binding of MRRs to messenger RNAs. or premessagers comprising 1000 nucleotides or more. Therefore, it is important to identify the minimum sequence of TIRES of TIRES interacting with the MRR.
  • the identification of this minimum sequence makes it possible first of all to understand the mechanism of the interaction, but also to design complementary antisense oligonucleotides (of size generally between 30-35nt) capable of inhibiting the formation of the complex RNA / protein or in the case of RNAi (interference RNA or silencing of size between 21-23 nt) to target the interaction region.
  • the identification of the minimum sequence is also essential for carrying out the structural studies necessary for in silico screening as well as for the optimization of active molecules. According to a technique known to those skilled in the art, the atomic structure of the RNA / protein complex or RNA alone in 3 dimensions is sought by NMR.
  • RNA fragments of small size (less than 25 nt).
  • a second technique corresponds to X-ray crystallography, a technique which can be applied to larger RNA fragments, however limited to 70 nt.
  • the crystallography of proteins is not limited by size but can however only be applied to isolated proteins and not to multiprotein complexes, such as eIF3 (deletion).
  • one of the problems which the invention proposes to solve is to precisely identify the smallest RNA sequence of TIRES which binds to the MRR of pi 16, so that this sequence can be used in screening methods for molecules of interest (deletion).
  • the candidate molecules can be existing or future molecules whose inhibitory properties are tested by screening.
  • the invention firstly relates to a method for screening molecules according to which, in vitro: a the pi 16 subunit (SEQ ID4) of the protein eIF3, the nucleotide sequence of region II (SEQ) is incubated together ID2) of TIRES of HCV or any sequence containing at least 10 successive nucleotides of region II (SEQ ID 2) of TIRES of HCV and the molecule to be tested, b / we then detect the possible formation of complex pi 16 / region II IRES , the absence of a complex testifying to the inhibitory capacity of the molecule tested, to inhibit the formation of said complexes, c / the molecules inhibiting the formation of complexes are selected.
  • molecule we mean any chemical molecule of synthetic or natural origin, known or future. This term also designates multiprotein complexes such as antibodies, proteins, peptides, ribonucleotides or natural or modified deoxyribonucleotides, and PNA molecules (peptides-nucleic acids).
  • the pi16 subunit of eIF3 contains a TARN recognition motif (MRR) located in the central part, more specifically between amino acids 175 and 279 of the sequence SEQ ID4.
  • the amino acid sequence of the pi 16 MRR corresponds to the sequence SEQ ID5.
  • SEQ ID5 only the sequence of the recognition motif of the pi 16 protein (SEQ ID5) is incubated.
  • the MRR polypeptide from pi 16 (SEQ ID5) is preferably produced in recombinant form, in association with a tag facilitating its purification. It can be labeled, during preparation, with radioactive, biotinylated or fluorescent amino acids, making it possible to detect the formation of the protein / RNA complex.
  • sequence consensus contains 37 nucleotides located between nucleotides 56 and 92 of the IRES sequence of HCV.
  • This sequence can be produced by chemical synthesis or by in vitro transcription, and labeled by radioactivity, biotinylation or fluorescence.
  • region II is incubated and corresponds to the consensus nucleotide sequence SEQ ID3 or a sequence comprising at least 8 successive of the sequence SEQ ID 3.
  • RNA is an unstable molecule
  • the RNA molecule to be incubated according to the invention can be modified in order to increase its stability.
  • it can contain phosphorothioate, methylphosphonate, phosphoramidate, acetamidate, carbamate, etc. skeletons.
  • It can also contain modified bases, such as 2'-deoxynucleosides, 2 '-O-alkylnucleosides, 2' -fluoro-2 '-deoxynucleosides.
  • the incubation is carried out in a buffer solution at room temperature.
  • increasing concentrations of molecules to be tested are incubated in order to detect a possibly dose-dependent efficacy.
  • the second step of the process consists in detecting the formation of protein / RNA complex. Any detection method known to a person skilled in the art can be implemented. If radiolabelled RNA is used, the RNA / protein / molecule mixture is advantageously filtered through a nitrocellulose membrane, then the detection is done by measuring the radioactivity bound to the membrane, corresponding to the amount of RNA fixed on protein. Alternatively, TARN can be labeled non-radioactively (by example with biotin), incubated with the protein, filtered through a nitrocellulose membrane and revealed using streptavidin or specific antibodies.
  • RNA / protein interaction can be used to detect RNA / protein interaction, such as SPA (Scintillation Proximity Assay), FRET (Fluorescence Resonance Energy Transfer), HTRF (Homogeneous Time-Resolved Fluorescence), LANCE (Lanthanide Chelation Excitation), FP (Fluorescence Polarization), FCS (Fluorescence Correlation Spectroscopy), FL (Fluorescence Lifetime Measurements).
  • SPA Scintillation Proximity Assay
  • FRET Fluorescence Resonance Energy Transfer
  • HTRF Homogeneous Time-Resolved Fluorescence
  • LANCE Lanthanide Chelation Excitation
  • FP Fluorescence Polarization
  • FCS Fluorescence Correlation Spectroscopy
  • FL Fluorescence Lifetime Measurements
  • the purified pi 16 MRR polypeptide is immobilized using antibodies specific for the myc epitope, present in the C-terminal part of the polypeptide, or Ni 2+ chelators, on a 96-well plate impregnated with glitter.
  • the radiolabelled consensus RNA is added. A signal is only detected if TARN is attached to the immobilized polypeptide.
  • this screening technique was used by the Applicant to study and compare the capacity of 15 different aminoglycosides to dissociate the MRR complex from pi 16 / consensus RNA.
  • the screening results according to the invention are correlated with those of additional tests consisting in testing, ex vivo, the influence of the selected molecule on the cap-independent translation (dependent on TIRES) and the translation cap-dependent using a bi-cistronic construction.
  • This step can be implemented by any method known to those skilled in the art, in particular by the construction of bicistronic vectors consisting of two luciferases framing the sequence of region II (SEQ ID 2) or any sequence containing at least 10 nucleotides successive of region II (SEQ ID 2), or the consensus sequence (SEQ ID 3) or a flanking sequence comprising at least 8 successive nucleotides of the sequence SEQ ID 3; the first luciferase being translated in a cap-dependent manner and the second in a cap-independent manner or vice versa. Cells are then transfected with the bicistronic vectors and the rate of translation by Dual Luciferase is measured.
  • the cells capable of being transfected are chosen in a conventional manner by a person skilled in the art, such as, for example, HeLa cells or even Huh 7 cells.
  • the comparison of the results obtained with the screening test proposed by the Applicant and those of the bicistronic tests makes it possible to retain only the molecules capable both of preventing the fixation of pi 16 on the domain II of TIRES in vitro and of inhibiting specifically IRES-dependent translation in a cellular model (ex vivo).
  • tobramycin is both capable of dissociating the pi 16/11 complex in vitro at all the concentrations tested and is the most specific inhibitor of the translation controlled by TIRES demonstrates the validity and relevance of the choice of the pi 16 / IRES complex as a screening target.
  • the invention also relates to the use of the molecules identified at the end of the screening process described above for the preparation of a medicament intended for the treatment of hepatitis C (HCV), of swine fever (CSFV) , bovine diarrhea (BVDV).
  • HCV hepatitis C
  • CSFV swine fever
  • BVDV bovine diarrhea
  • any molecule capable of inhibiting in vitro the binding of the pi 16 protein in particular its recognition motif (MRR) to region II or a sequence containing at least 10 successive nucleotides of region II (SEQ ID 2), in particular a part of region II corresponding to the sequence SEQ ID3 or a sequence comprising at least 8 successive nucleotides of the sequence SEQ ID 3, can be used for the manufacture of a medicament intended for the treatment of hepatitis C (HCV) , swine fever (CSFV), bovine diarrhea (BVDV).
  • MRR recognition motif
  • SEQ ID 2 sequence containing at least 10 successive nucleotides of region II
  • SEQ ID3 in particular a part of region II corresponding to the sequence SEQ ID3 or a sequence comprising at least 8 successive nucleotides of the sequence SEQ ID 3
  • HCV hepatitis C
  • CSFV swine fever
  • BVDV bovine diarrhea
  • the Applicant has found that the aminoglycosides, in particular tobramycin, were capable of inhibiting the binding of the MRR of pi 16 to the consensus sequence of the region II of TIRES and that, in addition, this inhibition did not affect cap-dependent translation.
  • the invention also relates to the use of aminoglycosides, in particular tobramycin, for the manufacture of a composition intended for the treatment of hepatitis C (HCV), swine fever (CSFV), bovine diarrhea (BVDV).
  • aminoglycosides in particular tobramycin
  • HCV hepatitis C
  • CSFV swine fever
  • BVDV bovine diarrhea
  • They may also be derivatives of aminoglycosides, in particular derivatives of tobramycin, having improved properties in the pharmaceutical context.
  • These aminoglycosides, preferably tobramycin, or their derivatives can be administered in combination with liposomes for better absorption.
  • the Taminogroup in position 6 ′ in tobramycin is particularly exposed and can be selectively acetylated and then used to graft other groups.
  • the invention therefore also relates to the use of tobramycin analogs, particularly those modified in the 6 'amino position, for the treatment of hepatitis C.
  • RNAi containing 19 nucleotides of the sequence SEQ ID 3 (consensus sequence) flanked by UU can be used as a medicament for the treatment of the same pathologies as above.
  • the invention therefore also relates to a pharmaceutical composition
  • a pharmaceutical composition comprising an antisense oligonucleotide complementary to the sequence SEQ ID 3 or any sequence comprising at least 8 successive nucleotides of the sequence SEQ ID 3, exception of the sequence TAGACGCTTTCT GCGTGAAGACAGTAGT.
  • the molecules tested in the screening process can be known molecules such as for example aminoglycosides but also molecules still to be developed.
  • the invention also relates to a method for screening a library of molecules in silico consisting of: - to determine the atomic coordinates either of region II of TIRES (SEQ ID 2) of HCV or of any sequence containing at least 10 successive nucleotides of region II (SEQ ID 2) of HCV TIRES, or of the binding sequence specifically to the MRR of the protein PI 16 of eIF3 (SEQ ID 3) or a sequence comprising at least 8 successive nucleotides of the sequence SEQ ID 3, either of the region II complex (SEQ ID 2) or of the specific sequence (SEQ ID 3) with the recognition motif of the protein pi 16 of eIF3 (SEQ ID 5)
  • the molecules thus identified can then be tested in the method described above, consisting in detecting RNA / protein complexes in vitro.
  • Figure 1 is a representation of the structure of HCV TIRES. This consists of 3 loop domains, II (lia, Ilb), III (Illa, Illb, IIIc, Illd, Ille, Illf) and IV. References ⁇ and ® indicate the nucleotides involved in the binding of eIF3 according to references Sizova et al. (1998) and Kieft et al. (2001), respectively.
  • Figure 2 shows the location of the TARN Recognition Pattern in the pi 16 subunit of eIF3 and the prediction of its secondary structure.
  • FIG. 3 compares the affinity of the MRR of pi 16 for regions II, Illabc, IlIeflV and the whole of HCV TIRES, measured after retention on nitrocellulose. On the left, a graphic representation of TIRES of HCV makes it possible to locate the different fragments tested.
  • FIG. 4 is a diagram showing the principle of the method for producing random sub-fragments of HCV TIRES.
  • FIG. 5 is a diagram showing the principle of the selection process of the random sub-fragments specific to the MRR of pi 16 of eIF3 obtained according to the diagram of FIG. 4 (5 A), and the sequences of the transcription matrices and of the primers used (5B).
  • FIG. 6 represents the results of alignment of the RNA sequences, selected at the end of the 4 th and 5 th selection / amplification cycles (6A), and the location of the “consensus” sequence (direction orientation) in TIRES of HCV (6B).
  • FIG. 7A shows the capacity of the consensus sequence (DOR4-35 and DOR5-4) to inhibit the interaction between IRES and MRR of pi 16, compared with that of TIRES, II, Ilabc, IlIeflV and transfer RNA.
  • FIG. 7B shows that the consensus sequence (nt 56-92) has an affinity for the MRR-pl 16 of eIF3 greater than that of the Illa fragment (nt 153-173) and that of the apical part of fragment II (nt 73 -92).
  • FIG. 8 represents the capacity of the aminoglycosides to inhibit the binding of the MRR of eIF3 to the consensus sequence of the region II of HCV TIRES.
  • FIG. 9 represents the effect of aminoglycosides on cap-dependent and cap-independent translation in cell culture.
  • the bicistronic construction, the cloning scheme of which is shown in FIG. 9A, is used for the transient transfection of HeLa cells with 1 ⁇ g of plasmid DNA ( Figure 9B) and 2.5 ⁇ g of pDNA ( Figure 9C).
  • Example 1 Demonstration of the capacity of the recognition motif (MRR) of pl16 to bind to the region II of PIRES of HCV
  • the amino acid sequence of the recognition motif (MRR) of the pi 16 protein corresponds to the sequence SEQ ID5 located between amino acids 175 and 279 of the sequence SEQ ID4 (corresponding to the sequence of the pi 16 protein).
  • the cDNA coding for the MRR is amplified by RT-PCR from DNA extracted from HeLa cells in the presence of the following primers:
  • nucleotide sequences are synthesized and cloned, respectively: - a nucleotide sequence corresponding to the totality of TIRES located between nucleotides 40 and 372 of the HCV DNA (b),
  • nucleotide sequence corresponding to the Illabc region located between nucleotides 141 and 252 of the DNA of HCV ⁇ ,
  • SEQ ID8 ACCGCTAGCCTCCCCTGTGAGGAACTACT
  • SEQ ID9 GAAAGCTTTTTTCTTTGAGGTTTAGGATTTGTGCTCATGATG CACG
  • the amplified fragment is first cloned into a plasmid pGEM-T then then into pSP-luc + (Promega) between Nhel and Hind III sites.
  • the plasmid pSP-IRES-lucH- thus obtained contains TIRES of HCV clone in fusion with the luciferase under control of the promoter SP6.
  • the TIRES sequence was aligned and compared to the other IRES sequences deposited in the banks (such as D49374 or AF139594). The identity observed was 96.6%, which corresponds to the average rate of genomic variability of IRES between different strains of HCV.
  • oligonucleotides Two overlapping oligonucleotides, the first of which, SEQ ID10, consists of the promoter for T7 polymerase and the nucleotide sequence of the Illa and Illb region (Nt 139-215 of HCV TARN) and the second, SEQ ID11, of the nucleotide sequence of the Illb region and IIIc (Nt 193-252 of HCV TARN) are hybridized in the presence of a Klenow fragment.
  • SEQ ID10 consists of the promoter for T7 polymerase and the nucleotide sequence of the Illa and Illb region (Nt 139-215 of HCV TARN)
  • SEQ ID11 the nucleotide sequence of the Illb region and IIIc
  • the double stranded cDNA fragment obtained is then amplified by PCR in the presence of T7 corresponding to SEQ ID 12: TAATACGACTCACTATAGGG. And of a flanking oligonucleotide whose sequence is as follows: SEQ IDl 3: TAGCAGTCTCGCGGGGGCACG.
  • the cDNA corresponding to the IlIeflV region was obtained by PCR amplification of the plasmid pSP- ⁇ IRES-luc + using primers whose nucleotide sequences correspond to those of SP6 (SEQ IDl 4: TATTTAGGTGACACTATAGAAT) and SEQ IDl 3.
  • the plasmid pSP- ⁇ IRES-luc + results from the digestion of the plasmid pSP-IRES-luc + by Nhel, the cleavage sites being located between nucleotides 39/40 and 248/249 of TIRES.
  • the amplification product SP6 -> SEQ ID13 is then used as a matrix in the in vitro transcription reaction using SP6-polymerase (SP6 MEGAscript, Ambion).
  • the cDNA corresponding to the Iiab region was obtained by PCR amplification of the plasmid pSP-IRES-luc + using the primers SP6 (SEQ ID 14) and SEQ ID 15 GTCCTGGTGGCTGCAGGACACTCATAC.
  • the amplification product SP6 -> SEQ IDl 5 is then used as a template in the in vitro transcription reaction using SP6-polymerase.
  • Radiolabeled RNA fragments are obtained by in vitro transcription of the above-mentioned matrices in the presence of [ ⁇ -32P] UTP.
  • the RNA fragments are purified in a 6% acrylamide-urea gel and precipitated.
  • the RNA pellets are taken up in 25mM Tris-HCl, pH 7.4.
  • TARN was incubated at 65 ° C in the aforementioned buffer for 5-7 min and then slowly cooled to room temperature.
  • the renatured RNAs were incubated with increasing concentrations of protein in the same 25mM Tris-HCl buffer, pH 7.4, at room temperature for 5 min.
  • the mixture of proteins and RNA is then deposited on a nitrocellulose membrane previously washed with the same buffer.
  • the radioactivity of the filter containing the RNA-protein complexes was measured using the MicroBeta Trilux radioactivity counter (PerkinElmer).
  • MRR RNA recognition motifs
  • SERF Selection of Random Fragments
  • TIRES cDNA 2 ug of TIRES cDNA are digested with 5U of Dnase I (Rnase-free, Amersham), at room temperature, for 15 minutes, making it possible to obtain cDNA fragments, the size of which varies between 30 and 100 nucleotides. Blunt ends are generated at the end of the cDNA fragments obtained, by Taq-polymerase at 72 ° C, for 10 minutes in a PCR buffer based on dNTP 1 mMol. Taq-polymerase simultaneously adds additional “dA” residues to the T '3' end of fragments ( Figure 4).
  • the recombinant protein MRRpl 16 of eIF3 is purified on a Ni-NTA-agarose column under native conditions (FIG. 5).
  • the purified protein is then incubated with the library consisting of the purified RNA fragments obtained above in a 25 mM Tris-HCl buffer, pH 7.4 for 15 min at room temperature.
  • the concentration of TARN is, initially equal to 0.2 ⁇ M and that of the protein, equal to 0.8 ⁇ M.
  • the protein / RNA mixture is then deposited on a nitrocellulose membrane previously washed with the same buffer.
  • the filter containing the RNA-protein complexes is then cut into pieces and TARN is extracted with an SDS solution, 0.1%), sodium acetate 0.3M pH 5.0 for one hour at room temperature.
  • the RNA is then recovered by precipitation in tethanol in the presence of tRNA used to facilitate precipitation.
  • the RNA pellet is then taken up in 10 ⁇ l of water and subjected to reverse transcription in the presence of the reverse transcriptase "Stratascript" of T oligonucleotide T7 (Stratagene).
  • the single-stranded DNA fragments are then amplified by PCR using Toligonucleotide T7 (SEQ ID 14), T oligonucleotide SP6 (SEQ ID 14) and the sequence SEQ ID 16 corresponding to the linker region adjacent to SP6.
  • the concentration d RNA in subsequent cycles is equal to 0.058 ⁇ M and that of the protein is regularly reduced from a value of 1.2 ⁇ M in the second cycle to a value of 0.2 ⁇ M in the fifth cycle.
  • obtained after the fourth and fifth cycles are cloned into a plasmid pTrcHis2-TOPO (Invitrogen) chosen to facilitate the cloning process in the absence of the T7 promoter.
  • the plasmids were purified and sequenced.
  • the sequences obtained were aligned with the software assistant Clustal W DNA (Thompson, JDet al CLUSTAL W: improving the sensitivity of progressive multiple sequence aligned through sequence weighting, positions-specific gap penalties and weight matrix choice. (1994) Nucleic Acids Research, 22, 4673-4680) available during e on the PHz Bio-Informatique Lyonnais website.
  • 11 clones contain the sequence UACUGUCUUCACGCAGAAAGCGUCUAGCAUGGCGUU corresponding to nucleotides 56 to 92 of the sequence SEQ ID1
  • 2 clones contain the sequence CGCCTCATGCCTGGAGAT (nt 61-72 of SEQ IDl) and one clone shows homology with the part 84-90 of SEQ IDl.
  • these results identify the region of TIRES 56-92 of sequence TACTGTCTTCACGCAGAAAGCGTCTAGCCATGGCGTT (SEQ ID3) as corresponding to the binding site of MRRpl 16 (FIG. 6B).
  • the advantage of the present discovery is to seek to inhibit the binding of the MRR of pi 16 to the consensus sequence SEQ ID 3 of the region II of TIRES to prevent the initiation of translation and consequently protein synthesis by HCV.
  • aminoglycosides represent a class of chemical molecules that interact specifically with certain folded RNA molecules, such as 16S ribosomal RNA, ribozymes, and the TAR region of HIV.
  • RNA molecules such as 16S ribosomal RNA, ribozymes, and the TAR region of HIV.
  • specificity of these molecules with regard to HCV TARN as well as their capacity to inhibit IRES-dependent translation of HCV TIRES has not been previously demonstrated.
  • the screening test is carried out as follows.
  • the pi 16 MRR and the region II consensus sequence are incubated in the presence of different aminoglycosides.
  • the RNA mixture is then deposited on a nitrocellulose membrane under the same conditions as in Example 2.
  • the results are shown in FIG. 8.
  • the compounds tobramycin and streptomycin inhibit the formation of the RNA-protein complex at all the concentrations tested.
  • Tobramycin inhibits 43% of the MRRpl 16/11 complex at a concentration of 20 ⁇ M and 54% at 40 ⁇ M.
  • Streptomycin inhibits 25% of the MRRpl 16/11 complex at a concentration of 20 ⁇ M and 36% at 40 ⁇ M In contrast, neomycin and sisomycin only inhibit the complex at concentrations greater than 40 ⁇ M .
  • the aminoglycosides kanamycin A, kanamycin B and tobramycin are molecules of very similar structure. However, tobramycin (43% inhibition at 20 ⁇ M) is more active than kanamycin B (22% inhibition at 20 ⁇ M) which is in turn more active than kanamycin A (0% inhibition at 20 , 40 and 80 ⁇ M). This indicates that the presence of an aminogroup in position R2 (tobramycin and kanamycin B) promotes the dissociation of the complex, while the presence of the hydroxyl group in position RI is unfavorable there (kanamycin A) On the other hand, the amino group in position 6 is not directly involved in the interaction and can therefore be used to introduce modifications allowing the necessary active concentrations to be reduced.
  • Bicistronic constructs consisting of a first cistron corresponding to the Renilla luciferase gene, followed by the IRES sequence, followed by a second cistron corresponding to the Firefly luciferase gene (pRluc-IRES-Fluc) are prepared as follows.
  • a plasmid pRL-SV40 (Promega) is linearized with Xba I and dephosphorylated.
  • TIRES is amplified with the Firefly luciferase gene by PCR, in the presence of complementary oligonucleotides containing the Xbal sites.
  • the PCR products are then subcloned into the plasmid pTrcHis2-TOPO (Invitrogen) in order to control digestion.
  • the Tinsert ligation containing TIRES with the luciferase gene Firefly and the linearized vector pRL-SV40 is carried out using T4 DNA ligase (Biolabs).
  • HeLa cells suspended in serum-free DMEM are transfected with 1 to 2.5 ⁇ g of plasmid pRluc-IRES-Fluc by electroporation at 0.5 V for 30 milliseconds using a Méder gene (BioRad).
  • the cells are then cultured in 24 or 96-well plates in the presence of different aminoglycosides, at concentrations between 2 and 5 mM for 24-36 hrs.
  • tobramycin inhibits the synthesis of Firefly luciferase controlled by TIRES of the hepatitis C virus by 90.4%, while the synthesis of Renilla luciferase, controlled by "cap”, is not inhibited (168% of the control).
  • a similar effect is observed at a concentration of tobramycin of 2 mM (the synthesis of IRES-luciferase is inhibited at 83% and that of cap-luciferase is inhibited only at 27%).
  • Hygromycin and G418 inhibit both cap-dependent and IRES-dependent translation in an IRES-nonspecific manner.
  • streptomycin inhibits the translation of the two cistrons in an IRES-non-specific manner (from 5mM in concentration).
  • certain aminoglycosides are capable of inhibiting TIRES-dependent translation in an IRES-specific manner, without inhibiting the translation of the host cell.
  • These non-toxic molecules for the cell at the indicated concentrations can be used to treat hepatitis C.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Communicable Diseases (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Virology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Oncology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

L'invention concerne un procédé de criblage de molécules selon lequel, in vitro :a/ on incube ensemble la sous unité p116 (SEQ ID4) de la protéine eIF3, la séquence nucléotidique de la région II (SEQ ID2) de l'IRES de VHC ou toute séquence contenant au moins 10 nucléotides successifs de la région II (SEQ ID 2) de l'IRES de VHC et la molécule à tester,b/ on détecte ensuite la formation éventuelle de complexe p116 / région II IRES, l'absence de complexe témoignant de la capacité inhibitrice de la molécule testée, à inhiber la formation desdits complexes,c/ on sélectionne les molécules inhibant la formation des complexes.

Description

MOLECULES INfflBITRICES DE LA SYNTHESE PROTEIQUE DU VIRUS DE L'HEPATITE C ET PROCEDE DE CRIBLAGE DESDITES MOLECULES INHIBITRICES
L'invention se rapporte au traitement de pathologies virales ou non virales dans lesquelles sont impliquées des protéines, dont la synthèse est initiée par le biais d'un site d'entrée interne des ribosomes (IRES), dont au moins une partie de la séquence est similaire d'un IRES à l'autre. Parmi ces pathologies figurent notamment mais de façon non limitative, parmi les pathologies virales, les virus appartenant à la famille des Flaviridae tels que le virus de l'hépatite C (VHC), de la peste porcine (CSFV), de la diarrhée bovine (BVDV), et parmi les pathologies non virales, les cancers dans lesquels sont impliquées certaines protéines, telles que par exemple les facteurs de croissance fibroblastiques responsables de la néovascularisation des tumeurs en développement, le proto-oncogène c-myc etc.... Plus précisément, le traitement proposé dans l'invention consiste à empêcher la fixation du facteur d'initiation de la traduction, eIF3, sur TARN constitutif de la partie 5 'non codante de la séquence IRES (Internai Ribosome Entry Site) des génomes viraux ou de certains gènes impliqués dans les pathologies précitées, de sorte à inhiber la synthèse protéique. En conséquence, l'invention a également pour objet un procédé de criblage de molécules aptes à inhiber la formation du complexe : séquence de TIRES / eIF3, en particulier les nucleotides 56 à 92 du domaine II de TIRES et le polypeptide recombinant correspondant à la partie centrale (acides aminés 185 à 279) de la sous-unité protéique pi 16 (également dénommée pi 10, eIF3b, eIF-3eta (BLAST P55884)) de eIF3.
Le processus de recherche et développement de nouvelles molécules thérapeutiques «Drug Discovery» nécessite avant tout l'identification de nouvelles cibles associées aux maladies (protéine, ARN ou ADN, ou leur complexe) et leur validation. La cible identifiée et validée est ensuite utilisés dans des tests de criblage de molécules, qui permettent de sélectionner des molécules actives. C'est cette approche qui est proposée par le Demandeur, la cible étant constituée par une séquence spécifique de TIRES de VHC (domaine II) et un polypeptide recombinant dérivé de la séquence de la sous-unité pl l6 de eIF3. Dans la suite de la description, l'invention est plus particulièrement décrite en rapport avec le traitement du virus du VHC bien que celle-ci s'applique également au virus de la peste porcine (CSFV) ou celui de la diarrhée bovine (BVDV), et ce, compte tenu de la forte homologie existant entre ces virus appartenant à la même famille.
Le virus de l'hépatite C a été identifié comme étant responsable de l'hépatite non A non B développée fréquemment au cours de pathologies chroniques malignes, du type par exemple cirrhose du foie ou encore carcinome hépato-cellulaire. Le VHC est transmis par transfusion sanguine ou de dérivés sanguins. Le génome du VHC se présente sous forme d'ARN simple brin d'une taille avoisinant les 9,4 kb et codant pour une polyprotéine unique constituée de 3 010 acides aminés (CHOO et al., 1989).
Contrairement au schéma classique, l'initiation de la traduction de TARN messager de VHC ne se fait pas par reconnaissance de la coiffe (ou CAP), puisque celle-ci est absente (traduction dite "cap-dépendante"), mais par le biais d'un site d'entrée interne des ribosomes (IRES), positionné au niveau de la région 5' non traduite (5'-UTR) du VHC, entre les nucleotides 40 et 372 de la séquence du VHC (traduction dite "cap- indépendante") (équivalente à SEQ ID1 selon l'invention). Le mécanisme de synthèse des protéines virales étant très différent de celui de la cellule-hôte, une stratégie possible de développement de nouvelles molécules thérapeutiques consiste à inhiber la synthèse protéique virale sans influence aucune sur la synthèse protéique de la cellule hôte. De plus, la séquence de TIRES étant une région très conservée chez ce virus réputé très variable (92% d'homologie), on peut s'attendre à ce que l'utilisation de cette séquence comme cible, soit particulièrement intéressante.
Différentes études de structures ont montré que TIRES du VHC était replié sur lui-même pour former trois domaines ou régions, en boucle, respectivement les régions II (Ha, Ilb), III (ma, IHb, IIIc, Illd, Ille, Illf) et IV tels que représentées sur la figure 1 (ZHAO et al, 2001), TIRES comprenant en outre un codon start AUG. L'ARN simple brin du CSFV et du BVDV contient également une séquence IRES contenant un codon start AUG, la structure de TIRES étant similaire à celle du VHC (figure 1). En outre, l'alignement des séquences constitué du génome de ces trois virus montre une forte homologie de la région II de TIRES, notamment du site MRR (RNA récognition motif), ce qui tend à laisser penser que les molécules agissant sur TIRES du VHC pourraient également agir sur celui du CSFV ou du BVDV. En pratique, l'initiation de la traduction de TARNm débute par la reconnaissance et la fixation par TIRES de la sous-unité ribosomique 40S et de facteurs d'initiation, en particulier, le facteur d'initiation dénommé "eIF3".
Le facteur d'initiation eIF3 est un complexe multiprotéique constitué de 10 sous-unités différentes telles que par exemple p36, p44, p47, p66, pi 10, pi 16 et pl70. Les études de prédiction de structure secondaire ont montré que la sous-unité pi 16 présentait dans sa partie centrale, située entre les acides aminés 185 et 279, un motif de reconnaissance de TARN (MRR) β-α-β-β-α-β. La localisation du motif de reconnaissance de la sous-unité pi 16 de eIF3 est représentée sur la figure 2. De la même façon, la partie C-terminale de la sous-unité p44 présente, elle aussi, une structure similaire β-α-β-β-α-β, correspondant à un MRR hypothétique. Ce type de motif est retrouvé dans un grand nombre de protéines se liant à TARN (RNA binding protein), telles que par exemples les protéines lnRNP ou encore snRNP, mais également dans quelques protéines se liant à de ADN simple brin. D'après les algorithmes de prédiction de structure secondaire, la partie centrale de la sous-unité pi 16 est repliée selon une conformation similaire à celle des MRR connus pour les acides aminés conservés IVVD et TK/RGF/YVE localisés dans des feuilles 1 et 3 correspondants aux motifs de reconnaissance RNP-2 et RNP-1 (voir figure 2). Bien que de par sa structure secondaire et son homologie, le MRR de pi 16 de eIF3 réponde aux critères des "putative RNA-binding proteins", sa réelle capacité à fixer TARN n'a jamais été mise en évidence auparavant.
En effet, le document FR-A-2 815 358 décrit une méthode de traitement de l'hépatite C consistant à empêcher la synthèse protéique du VHC par inhibition supposée de la fixation de la sous-unité pi 16 de eIF3 sur la région III de TIRES. Les molécules candidates à cette inhibition correspondent à des polypeptides présentant une affinité avec la région III de TIRES supérieure à celle de la sous-unité pi 16 de eIF3. En pratique, les inhibiteurs polypeptidiques sont obtenus par criblage de protéines pi 16 mutées avec la séquence IRES de VHC. Plus précisément, seule la partie centrale correspondant au motif de reconnaissance (MRR) est mutée, le polypeptidique étant susceptible de se fixer sur la boucle Illb de TIRES de VHC avec une affinité supérieure ou égale à celle du MRR non muté de pi 16. En pratique, les mutations sont introduites dans le MRR par mutagénèse aléatoire ou par mutagénèse ciblée selon la technique de phage display. Là encore, aucune indication n'est donnée concernant la séquence nucléotidique de la région III de TIRES susceptible d'interagir avec le MRR muté. En outre, aucun résultat d'une éventuelle inhibition n'est donné dans les exemples. Sizova et al, 1998, ont montré que eIF3 protégeait la région apicale Illb de TIRES du VHC et du CSFV, en particulier les nucleotides 204, 212, 214, 215 et 220 (voir Figure 1, nucleotides marqués ©), du clivage enzymatique ou de modifications chimiques. Plus récemment, Kieft et al, 2001, en utilisant les mêmes méthodes que celles mises en œuvre par SIZOVA précité, ont identifié les nucleotides de la tige Illa, boucle Illb et tige Illb comme étant les éléments principaux de l'interaction (voir Figure 1, nucleotides marqués (D). De plus, en utilisant la technique dite «filter-binding assay », ces différents auteurs ont montré que la délétion de la région apicale Illb entraînait une diminution de l'interaction eIF3-IRES d'au moins 10-fois. Ainsi, la boucle apicale Illb est actuellement considérée comme étant le site le plus probable de fixation de eIF3. Toutefois, aucun de ces documents ne montre de manière précise l'existence d'une interaction entre le domaine Illb isolé et eIF3. De même, aucun d'entre eux n'identifie une séquence d'ARN spécifique se liant à eIF3.
Buratti et al, 1998, a montré que les protéines pi 70 et 116/pl lO de eIF3 se liaient à la région III de TIRES de VHC sans toutefois, là encore, identifier la séquence d'ARN de TIRES envisagée.
Le document WO 01/44266 rapporte également l'interaction entre la sous-unité pi 16 du facteur d'initiation eIF3 et la région III de TIRES de VHC, plus précisément au niveau d'un domaine capable de s'apparier et définissant deux séquences nucléotidiques de 7 bases et 9 bases, respectivement. La définition de ce motif minimal permet de mettre en œuvre un test pour identifier des composés capables d'entrer en compétition dans la formation du complexe eIF3-VHC.
Par ailleurs, le document US-A-6 001 990 décrit une série d'oligonucléotides, sélectionnés pour leur capacité à inhiber la traduction de TARN de VHC. Parmi eux, Toligonucléotide de 28 nucleotides de séquence TAGACGCTTTCTGCGTG AAGACAGTAGT, correspondant à la séquence SEQ ID 3 de ce document, s'hybride effectivement avec la région II de TIRES de VHC.
On sait que les ARN-binding protéines de la famille MRR reconnaissent des séquences courtes simple brin (<10 nt) appartenant à une boucle dans des structures d'ARN de type boucle-tige ou à une extension de tige. Ces fragments courts intégrés dans un contexte structural approprié sont essentiels à la fixation spécifique des MRR aux ARN messagers ou prémessagers comprenant 1000 nucleotides ou plus. Par conséquent, il est important d'identifier la séquence minimale de TARN de TIRES interagissant avec le MRR. En effet, l'identification de cette séquence minimum permet tout d'abord de comprendre le mécanisme de l'interaction, mais aussi de concevoir des oligonucléotides antisens complémentaires (de taille comprise généralement entre 30-35nt) susceptibles d'inhiber la formation du complexe ARN/protéine ou dans le cas d'ARNi (ARN d'interférence ou silencing de taille comprise entre 21-23 nt) de cibler la région d'interaction. L'identification de la séquence minimale est également essentielle pour effectuer les études structurales nécessaires pour le criblage in silico ainsi que pour l'optimisation de molécules actives. Selon une technique connue de l'homme du métier, on recherche la structure atomique du complexe ARN/protéine ou ARN seul en 3 dimensions par RMN. On sait que cette technique ne peut être utilisée que pour des fragments d'ARN seul ou complexé, de faible taille (inférieure à 25 nt). Une seconde technique correspond à la cristallographie aux rayons X, technique qui peut être appliquée aux fragments d'ARN de plus grande taille limitée toutefois à 70nt. Au contraire, la cristallographie des protéines n'est pas limitée par la taille mais ne peut cependant n'être appliquée que sur des protéines isolées et non sur des complexes multiprotéiques, tels que eIF3 (délétion).
En d'autres termes, l'un des problèmes que se propose de résoudre l'invention est d'identifier précisément la plus petite séquence d'ARN de TIRES se liant au MRR de pi 16, de sorte à pouvoir utiliser cette séquence dans des méthodes de criblage de molécules d'intérêt (délétion).
Au cours de sa recherche, le Demandeur a non seulement découvert que la sous-unité pi 16 de eIF3 ne se fixait pas sur la région III mais sur la région II de TIRES de VHC (SEQ 2 selon l'invention), mais également réussi à identifier précisément la séquence nucléotidique de TIRES, dénommée par la suite séquence consensus (SEQ 3 selon l'invention), interagissant avec le MRR de pi 16.
Par ailleurs, la fonctionnalité du MRR (SEQ 5 selon l'invention) prédit dans la sous-unité pi 16 de eIF3 (SEQ 4 selon l'invention) a été démontrée par le Demandeur. Ainsi, l'expression de cette partie centrale de la sous-unité pi 16 de eIF3 sous forme recombinante et la mise en évidence de sa fixation spécifique au domaine II de TIRES de VHC permet d'utiliser ce polypeptide à la place du complexe multiprotéique eIF3, nécessitant une purification à partir de lysat de cellules en culture ou de réticulocytes. Ceci permet d'une part de rendre le criblage beaucoup moins onéreux mais surtout d'appliquer des méthodes de biologie structurale, telles que la RMN ou la cristallographie, pour résoudre la structure atomique de ce complexe ARN-protéine et pour concevoir des inhibiteurs.
Compte tenu de Thomologie existant entre la séquence IRES de VHC et celles du CSFV et du BVDV, la découverte de la séquence consensus permet d'envisager de traiter les différentes pathologies dans lesquels ces virus sont impliqués, grâce à des molécules aptes à bloquer la synthèse protéique par inhibition de la fixation de la sous-unité protéique pi 16 de eIF3, en particulier de son MRR, sur la région II de ces virus.
Les molécules candidates peuvent être des molécules existantes ou futures dont les propriétés inhibitrices sont testées par criblage.
En conséquence, l'invention concerne tout d'abord un procédé de criblage de molécules selon lequel, in vitro : a on incube ensemble la sous unité pi 16 (SEQ ID4) de la protéine eIF3, la séquence nucléotidique de la région II (SEQ ID2) de TIRES de VHC ou toute séquence contenant au moins 10 nucleotides successifs de la région II (SEQ ID 2) de TIRES de VHC et la molécule à tester, b/ on détecte ensuite la formation éventuelle de complexe pi 16 / région II IRES, l'absence de complexe témoignant de la capacité inhibitrice de la molécule testée, à inhiber la formation desdits complexes, c/ on sélectionne les molécules inhibant la formation des complexes.
Par molécule, on désigne toute molécule chimique d'origine synthétique ou naturelle, connue ou future. Ce terme désigne également des complexes multiprotéiques comme des anticorps, des protéines, des peptides, des ribonucléotides ou des désoxyribonucléotides naturels ou modifiés, et des molécules PNA (peptides-nucleic acids).
Comme déjà dit, la sous unité pi 16 de eIF3 contient un motif de reconnaissance de TARN (MRR) situé dans la partie centrale, plus spécifiquement entre les acides aminés 175 et 279 de la séquence SEQ ID4. La séquence d'acides aminés du MRR de pi 16 correspond à la séquence SEQ ID5. En d'autres termes et dans un mode de réalisation avantageux du procédé de criblage de l'invention, seule la séquence du motif de reconnaissance de la protéine pi 16 (SEQ ID5) est incubée. Le polypeptide MRR de pi 16 (SEQ ID5) est préférentiellement produit sous forme recombinante, en association avec un tag facilitant sa purification. Il peut être marqué, lors de la préparation, à l'aide d'acides aminés radioactifs, biotinylés ou fluorescents, permettant de détecter la formation du complexe protéine/ARN.
Par ailleurs et comme il sera démontré dans les exemples, le Demandeur a identifié précisément la séquence de la région II de TIRES du VHC se liant au motif de reconnaissance de la protéine pi 16. Cette séquence, dénommée dans la suite de la description "séquence consensus" (SEQ ID3), contient 37 nucleotides situés entre les nucleotides 56 et 92 de la séquence IRES du VHC. Cette séquence peut être produite par synthèse chimique ou par transcription in vitro, et marquée par radioactivité, biotinylation ou fluorescence.
En conséquence et dans un mode de réalisation préféré, seule une partie de la région II est incubée et correspond à la séquence nucléotidique consensus SEQ ID3 ou une séquence comprenant au moins 8nt successifs de la séquence SEQ ID 3.
L'ARN étant une molécule instable, la molécule d'ARN à incuber selon l'invention peut être modifiée en vue d'augmenter sa stabilité. Dans ce but, elle peut contenir des squelettes phosphorothioates, méthylphosphonates, phosphoramidates, acétamidates, carbamates, ...etc. Elle peut également contenir des bases modifiées, telles que des 2'- désoxynucléosides, 2 ' -O-alcylnucléosides, 2 ' -fluoro-2 ' -désoxynucléosides.
En pratique, l'incubation est effectuée dans une solution tampon à température ambiante. Avantageusement, des concentrations croissantes de molécules à tester sont incubées afin de détecter une efficacité éventuellement dose dépendante.
La seconde étape du procédé consiste à détecter la formation de complexe protéine / ARN. Toute méthode de détection connue de l'homme du métier peut être mise en œuvre. Si de TARN radiomarqué est utilisé, le mélange ARN/protéine/molécule est avantageusement filtré au travers d'une membrane de nitrocellulose, puis la détection se fait par mesure de la radioactivité liée à la membrane, correspondant à la quantité d'ARN fixée sur la protéine. Alternativement, TARN peut être marqué non radioactivement (par exemple avec de la biotine), incubé avec la protéine, filtré au travers d'une membrane de nitrocellulose et révélé à l'aide de streptavidine ou d'anticorps spécifiques.
D'autres techniques peuvent être utilisées pour détecter l'interaction ARN/protéine, telles que SPA (Scintillation Proximity Assay), FRET (Fluorescence Résonance Energy Transfer), HTRF (Homogeneous Time-Resolved Fluorescence), LANCE (Lanthanide Chelation Excitation), FP (Fluorescence Polarization), FCS (Fluorescence Corrélation Spectroscopy), FL (Fluorescence Lifetime Measurements).
Dans l'approche SPA, le polypeptide MRR de pi 16 purifié est immobilisé à l'aide d'anticorps spécifiques de Tépitope myc, présent dans la partie C-terminale du polypeptide, ou des chélateurs de Ni2+, sur une plaque 96 puits imprégnée de scintillant. L'ARN consensus radiomarqué est ajouté. Un signal n'est détecté que si TARN est fixé sur le polypeptide immobilisé.
Comme il sera décrit dans les exemples (Figure 8), cette technique de criblage a été utilisée par le Demandeur pour étudier et comparer la capacité de 15 aminoglycosides différents à dissocier le complexe MRR de pi 16/ ARN consensus.
Dans un mode de réalisation avantageux, les résultats du criblage selon l'invention sont corrélés avec ceux de tests supplémentaires consistant à tester, ex vivo, l'influence de la molécule sélectionnée sur la traduction cap-indépendante (dépendante de TIRES) et la traduction cap-dépendante à l'aide d'une construction bi-cistronique.
Cette étape peut être mise en œuvre par toute méthode connue de l'homme du métier, en particulier par la construction de vecteurs bicistroniques constitués de deux luciférases encadrant la séquence de la région II (SEQ ID 2) ou toute séquence contenant au moins 10 nucleotides successifs de la région II (SEQ ID 2), ou la séquence consensus (SEQ ID 3) ou une séquence flanquante comprenant au moins 8 nucleotides successifs de la séquence SEQ ID 3 ; la première luciférase étant traduite de manière cap-dépendante et la seconde de manière cap-indépendante ou inversement. Des cellules sont ensuite transfectées par les vecteurs bicistroniques puis le taux de traduction par Dual Luciférase est mesuré. Les cellules susceptibles d'être transfectées sont choisies de manière classique par l'homme du métier, telles que par exemples les cellule HeLa ou encore Huh 7. La comparaison des résultats obtenus avec le test de criblage proposé par le Demandeur et ceux des tests bi-cistroniques permet de ne retenir que les molécules aptes à la fois à empêcher la fixation de pi 16 sur le domaine II de TIRES in vitro et à inhiber spécifiquement la traduction IRES-dépendante dans un modèle cellulaire (ex vivo). De plus, comme le montre l'exemple 4, le fait que la tobramycine soit à la fois capable de dissocier in vitro le complexe pi 16/11 à toutes les concentrations testées et soit l'inhibiteur le plus spécifique de la traduction contrôlée par TIRES démontre la validité et la pertinence du choix du complexe pi 16/IRES comme cible de criblage.
En conséquence, l'invention concerne également l'utilisation des molécules identifiées à l'issue du procédé de criblage précédemment décrit pour la préparation d'un médicament destiné au traitement de l'hépatite C (VHC), de la peste porcine (CSFV), de la diarrhée bovine (BVDV).
Plus largement, toute molécule apte à inhiber in vitro la fixation de la protéine pi 16, en particulier son motif de reconnaissance (MRR) sur la région II ou une séquence contenant au moins 10 nucleotides successifs de la région II (SEQ ID 2), notamment une partie de la région II correspondant à la séquence SEQ ID3 ou une séquence comprenant au moins 8 nucleotides successifs de la séquence SEQ ID 3, peut être utilisée pour la fabrication d'un médicament destiné au traitement de l'hépatite C (VHC), de la peste porcine (CSFV), de la diarrhée bovine (BVDV).
Dans le cadre d'un premier essai mettant en œuvre le procédé de criblage de l'invention, le Demandeur a constaté que les aminoglycosides, en particulier la tobramycine, étaient aptes à inhiber la fixation du MRR de pi 16 sur la séquence consensus de la région II de TIRES et qu'en outre, cette inhibition n'affectait pas la traduction cap-dépendante.
En conséquence, l'invention concerne également l'utilisation d' aminoglycosides, en particulier de la tobramycine, pour la fabrication d'une composition destinée au traitement de l'hépatite C (VHC), de la peste porcine (CSFV), de la diarrhée bovine (BVDV). Il peut également s'agir de dérivés des aminoglycosides, en particulier des dérivés de la tobramycine, possédant des propriétés améliorées dans le contexte pharmaceutique. Ces aminoglycosides, préférentiellement la tobramycine, ou leurs dérivés peuvent être administrés en association avec des liposomes en vue d'une meilleures absorption.
En particulier, Taminogroupe en position 6' dans la tobramycine est particulièrement exposé et peut être sélectivement acétylé puis utilisé pour greffer d'autres groupements. L'invention concerne donc également l'utilisation des analogues de la tobramycine, particulièrement ceux modifiés en position amino 6', pour le traitement de l'hépatite C.
Par ailleurs, la découverte de la séquence consensus rend possible l'utilisation d'un oligonucléotide anti-sens complémentaire de la séquence SEQ ID 3 ou toute séquence comprenant au moins 8 nucleotides successifs de la séquence SEQ ID 3, à l'exception de la séquence TAGACGCTTTCTGCGTGAAGACAGTAGT, comme médicament, en particulier pour le traitement de l'hépatite C (VHC), de la peste porcine (CSFV), de la diarrhée bovine (BVDV). Dans le même sens, des ARNi contenant 19 nucleotides de la séquence SEQ ID 3 (séquence consensus) flanqués par UU peuvent être utilisés comme médicament pour le traitement des mêmes pathologies que ci-avant.
Dans un premier mode de réalisation, l'invention a donc également pour objet une composition pharmaceutique comprenant un oligonucléotide anti-sens complémentaire de la séquence SEQ ID 3 ou toute séquence comprenant au moins 8 nucleotides successifs de la séquence SEQ ID 3, à l'exception de la séquence TAGACGCTTTCT GCGTGAAGACAGTAGT.
Comme déjà dit, les molécules testées dans le procédé de criblage peuvent être des molécules connues telles que par exemple les aminoglycosides mais également des molécules restant à développer.
Dans ce dernier cas, il apparaît possible, d'identifier in silico, à partir d'une bibliothèque de molécules, des molécules capables d'inhiber la synthèse protéique des virus appartenant à la famille de Flaviridae.
En conséquence, l'invention concerne également un procédé de criblage d'une bibliothèque de molécules in silico consistant : - à déterminer les coordonnées atomiques soit de la région II de TIRES (SEQ ID 2) du VHC ou de toute séquence contenant au moins 10 nucleotides successifs de la région II (SEQ ID 2) de TIRES de VHC, soit de la séquence se liant spécifiquement au MRR de la protéine PI 16 de eIF3 (SEQ ID 3) ou une séquence comprenant au moins 8 nucleotides successifs de la séquence SEQ ID 3, soit du complexe de la région II (SEQ ID 2) ou de la séquence spécifique (SEQ ID 3) avec le motif de reconnaissance de la protéine pi 16 de eIF3 (SEQ ID 5)
- puis à cribler la bibliothèque de molécules chimiques avec les coordonnées atomiques ainsi déterminées.
Tout logiciel connu de l'homme du métier pourra être utilisé pour la détermination des coordonnées atomiques.
Les molécules ainsi identifiées pourront alors être testées dans le procédé décrit précédemment consistant à détecter in vitro des complexes ARN/protéine.
L'invention et les avantages qui en découlent ressortiront mieux de l'exemple de réalisation suivant à l'appui des figures annexées.
La figure 1 est une représentation de la structure de TIRES de VHC. Celui-ci est constitué de 3 domaines en boucle, II (lia, Ilb), III (Illa, Illb, IIIc, Illd, Ille, Illf) et IV. Les références © et ® indiquent les nucleotides impliqués dans la fixation de eIF3 d'après les références Sizova et al. (1998) et Kieft et al. (2001), respectivement. La figure 2 montre la localisation du Motif de Reconnaissance de TARN dans la sous-unité pi 16 de eIF3 et la prédiction de sa structure secondaire.
La Figure 3 compare l'affinité du MRR de pi 16 pour les régions II, Illabc, IlIeflV et la totalité de TIRES de VHC, mesurée après rétention sur nitrocellulose. A gauche, une représentation graphique de TIRES du VHC permet de localiser les différents fragments testés. La figure 4 est un schéma montrant le principe du procédé de production de sous-fragments aléatoires de TIRES de VHC.
La figure 5 est un schéma montrant le principe du procédé de sélection des sous-fragments aléatoires spécifiques du MRR de pi 16 de eIF3 obtenus selon le schéma de la figure 4 (5 A), et les séquences des matrices de transcription et des amorces utilisées (5B). La Figure 6 représente les résultats d'alignement des séquences d'ARN, sélectionnées à la fin des 4eme et 5eme cycle de sélection/amplification (6A), et la localisation de la séquence «consensus » (orientation sens) dans TIRES du VHC (6B).
La figure 7A montre la capacité de la séquence consensus (DOR4-35 et DOR5-4) à inhiber l'interaction entre IRES et MRR de pi 16, par rapport à celle de TIRES, II, Ilabc, IlIeflV et ARN de transfert.
La figure 7B montre que la séquence consensus (nt 56-92) présente une affinité pour le MRR-pl 16 de eIF3 supérieure à celle du fragment Illa (nt 153-173) et à celle de la partie apicale du fragment II (nt 73-92). La figure 8 représente la capacité des aminoglycosides à inhiber la fixation du MRR d'eIF3 sur la séquence consensus de la région II de TIRES de VHC. La figure 9 représente l'effet des aminoglycosides sur la traduction cap-dépendante et cap-indépendante en culture cellulaire. La construction bicistronique dont le schéma de clonage est représenté à la figure 9A est utilisée pour la transfection transitoire de cellules HeLa avec 1 μg d'ADN plasmidique (Figure 9B) et 2,5 μg d'ADNp (Figure 9C).
Exemple 1 : Mise en évidence de la capacité du motif de reconnaissance (MRR) de pll6 à se fixer sur la région II de PIRES de VHC
1/ Clonage et expression du motif de reconnaissance de pi 16 de eIF3
La séquence d'acides aminés du motif de reconnaissance (MRR) de la protéine pi 16 correspond à la séquence SEQ ID5 située entre les acides aminés 175 et 279 de la séquence SEQ ID4 (correspondant à la séquence de la protéine pi 16). L'ADNc codant pour le MRR est amplifié par RT-PCR à partir d'ADN extrait de cellules HeLa en présence des amorces suivantes :
- SEQ ID6 : CATATGGATCGGCCCCAGGAAGCAGATGGAATC
- SEQ ID7 : GTGCTCGAGCCACTCGTCACTGATCGTCATATA Le fragment amplifié est clone dans un plasmide pET-30b (Novagen) en fusion avec His6-Tag C-terminal entre les sites Nde et Xho. La protéine est ensuite produite dans E. Coli (souche BL211ysS) puis purifiée sur Ni2+ - NTA agarose dans des conditions natives. 2/ Synthèse de TIRES total et ses fragments Illabc. IlIeflV et Iiab
a/ Principe On synthétise et on clone 4 séquences nucléotidiques différentes, respectivement : - une séquence nucléotidique correspondant à la totalité de TIRES située entre les nucleotides 40 et 372 de l'ADN de VHC (b),
- une séquence nucléotidique correspondant à la région Illabc, située entre les nucleotides 141 et 252 de l'ADN de VHC ©,
- une séquence nucléotidique correspondant à la région IlIeflV située entre les nucleotides 250 et 372 de l'ADN de VHC (d),
- une séquence nucléotidique correspondant à la région Iiab située entre les nucleotides 40 et 119 de l'ADN de VHC (e).
b/ Clonage de la totalité de la séquence nucléotidique de TIRES (SEQ IDl L'ADNc de TIRES (SEQ IDl) est amplifié par RT-PCR à partir d'ARN total isolé de patients atteints du VHC (génotype lb) en présence des amorces nucléotidiques suivantes :
SEQ ID8 : ACCGCTAGCCTCCCCTGTGAGGAACTACT SEQ ID9 :GAAAGCTTTTTTCTTTGAGGTTTAGGATTTGTGCTCATGATG CACG
Le fragment amplifié est d'abord clone dans un plasmide pGEM-T puis ensuite dans pSP-luc+ (Promega) entre des sites Nhel et Hind III. Le plasmide pSP-IRES-lucH- ainsi obtenu contient TIRES du VHC clone en fusion avec la luciférase sous contrôle du promoteur SP6.
Une fois séquencée (GenomeExpress, Grenoble), la séquence de TIRES a été alignée et comparée aux autres séquences d'IRES déposées dans les banques (telles que D49374 ou AF139594). L'identité observée était de 96,6% ce qui correspond au taux moyen de variabilité génomique des IRES entre différentes souches du VHC.
c/ Synthèse de la région Illabc
La synthèse de TADNc de la région Illabc est effectuée de la manière suivante. Deux oligonucléotides chevauchant, dont le premier, SEQ ID10, est constitué du promoteur de la T7 polymérase et de la séquence nucléotidique de la région Illa et Illb (Nt 139-215 de TARN de VHC) et le second, SEQ IDl 1, de la séquence nucléotidique de la région Illb et IIIc (Nt 193-252 de TARN de VHC) sont hybrides en présence d'un fragment de Klenow. Les oligonucléotides ont les séquences suivantes :
- SEQ ÏÏDIO : TAATACGACTCACTATAGGGTAGTGGTCTGCGGAACCGGT GAGTACACCGGAATTGCCAGGACGACCGGGTCCTTTCTTGGATAAACCCGCT CAA
- SEQ IDl1 : TAGCAGTCTCGCGGGGGCACGCCCAAATCTCCAGGCATTG AGCGGGTTGATCCAAGAAAG
Le fragment d' ADNc double brins obtenu est ensuite amplifié par PCR en présence de T7 correspondant à la SEQ ID 12 : TAATACGACTCACTATAGGG. Et d'un oligonucléotide flanquant dont la séquence est la suivante : SEQ IDl 3 : TAGCAGTCTCGCGGGGGCACG.
άl Synthèse de la région IlIeflV L'ADNc correspondant à la région IlIeflV (Nt 250-372) a été obtenu par amplification PCR du plasmide pSP-ΔIRES-luc+ à l'aide des amorces dont les séquences nucléotidiques correspondent à celles de SP6 (SEQ IDl 4 : TATTTAGGTGACACTATAGAAT) et SEQ IDl 3. Le plasmide pSP-ΔIRES-luc+ résulte de la digestion du plasmide pSP-IRES-luc+ par Nhel, les sites de coupure étant situés entre les nucleotides 39/40 et 248/249 de TIRES. Le produit d'amplification SP6 -> SEQ IDl 3 est ensuite utilisé comme matrice dans la réaction de transcription in vitro à l'aide de la SP6-polymerase (SP6 MEGAscript, Ambion).
e/ Synthèse de la région Iiab L'ADNc correspondant à la région Iiab a été obtenu par amplification par PCR du plasmide pSP-IRES-luc+ à l'aide des amorces SP6 (SEQ ID 14 ) et SEQ ID 15 GTCCTGGTGGCTGCAGGACACTCATAC. Le produit d'amplification SP6 -> SEQ IDl 5 est ensuite utilisé comme matrice dans la réaction de transcription in vitro à l'aide de la SP6-polymerase.
3/ Fixation du MRR de pi 16 sur TIRES et ses domaines Illabc. IlIeflV. Iiab
Des fragments d'ARN radiomarqués sont obtenus par transcription in vitro des matrices précitées en présence de [α-32P]UTP. Les fragments d'ARN sont purifiés dans un gel à 6 % d'acrylamide-urée et précipités. Les culot d'ARN sont repris dans 25mM Tris-HCl, pH 7,4. Afin de permettre la renaturation, TARN a été incubé à 65°C dans le tampon précité pendant 5-7min puis lentement refroidi jusqu'à température ambiante. Les ARN renaturés ont été incubés avec des concentrations croissantes de protéine dans le même tampon 25mM Tris-HCl, pH 7,4, à température ambiante pendant 5 min. Le mélange de protéines et d'ARN est ensuite déposé sur une membrane de nitrocellulose préalablement lavée avec le même tampon. La radioactivité du filtre contenant les complexes ARN-protéine a été mesurée à l'aide de compteur de radioactivité MicroBeta Trilux (PerkinElmer).
Dans l'hypothèse d'une inhibition compétitive, le MRR de pi 16 a été préalablement incubé avec de TARN non radiomarqué (concentration : protéine 0,7 μM, ARN : 0,1 à 1 μM) pendant 30 min à température ambiante suivi de l'ajout de TARN de TIRES radiomarqué. L'analyse de fixation de TARN sur la protéine a été effectuée exactement comme décrit ci-dessus.
4/ Résultats
L'affinité des motifs de reconnaissance d'ARN (MRR) de la sous-unité pi 16 de eIF3 pour TIRES entier et ses fragments II, Illabc et IlIeflV a été étudié par rétention sur nitrocellulose. Comme il apparaît sur la Figure 3, la protéine fixe TIRES avec un Kd apparent de 0,8μM. Cependant, l'affinité de MRRpl lό pour le fragment Illabc (site putatif de fixation de eIF3) est significativement inférieure à celle pour TIRES et comparable à celle pour IlIeflV utilisé comme témoin négatif. Cela était inattendu, d'autant que les résultats publiés antérieurement supposaient que la partie apicale de la boucle formant la région Illb était le site probable de fixation de eIF3 (Sizova D, 1998 ; Buratti, 1998 ; Kieft et al, 2001 ; F-A-2 815 358). En réalité et comme montre cette figure, le motif de reconnaissance de eIF3 se trouve non pas sur la région Illabc mais sur la région I Exemple 2 : Identification de la séquence consensus se liant au MRR p!16
1/ Production de sous-fragments aléatoires de TIRES de VHC et procédé de sélection de fragments spécifiques se fixant au MRRpl 16 de eIF3
La méthode dénommée SERF (Sélection of Random Fragments) décrite par STELZ (2000) est utilisée pour synthétiser les séquences aléatoires de TIRES. Son principe est représenté sur la figure 4.
A/ Production des sous-fragments
2 ug ADNc de TIRES sont digérés par 5U d'une Dnase I (Rnase-free, Amersham), à température ambiante, pendant 15 minutes, permettant d'obtenir des fragments d'ADNc, dont la taille varie entre 30 et 100 nucleotides. Des bouts francs sont générés à l'extrémité des fragments d'ADNc obtenus, par Taq-polymérase à 72 °C, pendant 10 minutes dans un tampon PCR à base de dNTP 1 mMol. La Taq-polymérase ajoute en même temps des résidus supplémentaires « dA » à T extrémité 3' de fragments (Figure 4). Ceci permet d'augmenter l'efficacité de ligation des fragments obtenus dans le vecteur pGEM-T-Easy (Promega), muni à son tour de «dT» complémentaires à l'extrémité 5' (Figure 4). Les fragments d'ADN sont ensuite clones en présence de T4 DNA ligase (BioLabs) dans un vecteur pGEM-T Easy (Promega) entre les promoteurs T7 et SP6. Les fragments d'ADN sont ensuite amplifiés en présence des oligonucléotides T7 et SP6 puis le produit d'amplification est utilisé comme matrice pour la transcription par SP6 (MEGAscript, Ambion). Les transcrits de taille supérieure à 200nt correspondant aux transcrits avec Tinsert > 60nt ont été purifiés sur gel d'acrylamide 10 % 8M urée (figure 4, M correspondant à des marqueurs ARN « Century markers », Ambion).
B/ Sélection des sous-fragments La protéine recombinante MRRpl 16 de eIF3 est purifiée sur colonne Ni-NTA-agarose dans des conditions natives (figure 5). La protéine purifiée est ensuite incubée avec la bibliothèque constituée des fragments d'ARN purifiés obtenus ci-avant dans un tampon 25mM Tris-HCl, pH 7,4 pendant 15 min à température ambiante. La concentration de TARN est, au départ égale à 0,2 μM et celle de la protéine, égale à 0,8 μM. Le mélange protéine / ARN est ensuite déposé sur une membrane de nitrocellulose préalablement lavée avec le même tampon. Le filtre contenant les complexes ARN-protéine est ensuite coupé en morceaux et TARN est extrait avec une solution SDS, 0,1%), sodium acétate 0,3M pH 5,0 pendant une heure à température ambiante. L'ARN est ensuite récupéré par précipitation dans Téthanol en présence d'ARNt utilisé pour faciliter la précipitation. Le culot d'ARN est ensuite repris dans lOμl d'eau et soumis à une transcription inverse en présence de la reverse transcriptase «Stratascript» de T oligonucléotide T7 (Stratagene). Les fragments d'ADN simple brin sont ensuite amplifiés par PCR au moyen de Toligonucléotide T7 (SEQ ID 14), de T oligonucléotide SP6 (SEQ ID 14) et de la séquence SEQ ID 16 correspondant à la région linker adjacente à SP6.
- SEQ ID 16 : TATTTAGGTGACACTATAGAATACTCAAGCTATGCAT CCAACGCGTTG Une PCR de contrôle est conduite parallèlement avec les oligonucléotides SP6 et T7 afin de confirmer l'absence d'ADN-matrice contaminant, parmi les ARN sélectionnés. Les fragments amplifiés par PCR sont ensuite purifiés puis utilisés comme matrice de transcription dans le cycle suivant. Le cycle de sélection / amplification est répété 5 fois. Les produits de RT-PCR sont analysés sur gel d'agarose 2 % (figure 5 : Φx sont des markers ADN (stratagene), 1 et 2 sont des produits d'amplification obtenus avec les amorces SP6 ou SEQ IDl 6. La concentration d'ARN lors des cycles ultérieurs est égale à 0,058 μM et celle de la protéine est diminuée régulièrement d'une valeur de 1,2 μM lors du second cycle à une valeur de 0,2 μM au cinquième cycle. Les produits de RT-PCR obtenus après les quatrième et cinquième cycles sont clones dans un plasmide pTrcHis2- TOPO (Invitrogen) choisi pour faciliter le procédé de clonage en l'absence du promoteur T7. Les plasmides ont été purifiés et séquences. Les séquences obtenues ont été alignées à l'aide de logiciel Clustal W DNA (Thompson , J.D.et al CLUSTAL W : improving the sensitivity of progressive multiple séquence alignaient through séquence weighting, positions-specific gap penalties and weight matrix choice. (1994) Nucleic Acids Research, 22, 4673-4680) disponible sur le site du Pôle Bio-Informatique Lyonnais.
2/ Résultats
Comme illustré figure 6A, parmi 16 séquences d'ARN sélectionnés, clones au bout de 4 et 5 cycles et séquences à l'aide de la T7 amorce, 11 clones contiennent la séquence UACUGUCUUCACGCAGAAAGCGUCUAGCAUGGCGUU correspondant aux nucleotides 56 à 92 de la séquence SEQ IDl, 2 clones contiennent la séquence CGCCTCATGCCTGGAGAT (nt 61-72 de SEQ IDl) et un clone montre une homologie avec la partie 84-90 de SEQ IDl. Ainsi, ces résultats identifient la région de TIRES 56-92 de séquence TACTGTCTTCACGCAGAAAGCGTCTAGCCATGGCGTT (SEQ ID3) comme correspondant au site de fixation de MRRpl 16 (figure 6B).
L'hypothèse de T inhibition compétitive offre un moyen supplémentaire d'étude de la spécificité de l'interaction en question. Comme il est indiqué sur la figure 7A, les séquences consensus des clones 4-35 (DOR 4-35) et 5-4 (DOR 5-4) sont les inhibiteurs les plus efficaces (après TIRES lui-même) de l'interaction IRES-MRR de pi 16. Ces résultats confirment que la séquence consensus identifiée est un déterminant de la fixation de MRR ρl 16 sur TIRES entier.
De plus, les résultats des études d'affinité de MRRpl 16 pour les différents fragments de TIRES (Figure 7B) par « filter-binding assay » montrent que le fragment consensus nt 56- 92 est suffisant pour permettre la fixation de MRRpl 16. Au contraire, la région 73-92 correspondant à la boucle apicale de la région II (Ilb) n'est pas suffisante pour la fixation de ce polypeptide.
Exemple 3 : Test de criblage in-vitro
L'intérêt de la présente découverte est de chercher à inhiber la fixation du MRR de pi 16 sur la séquence consensus SEQ ID 3 de la région II de TIRES pour empêcher Tinitiation de la traduction et par conséquent la synthèse protéique par le VHC.
Parmi les molécules potentielles, le Demandeur a sélectionné les aminoglycosides. Les aminoglycosides représentent une classe de molécules chimiques interagissant spécifiquement avec certaines molécules d'ARN repliées, telles que TARN ribosomale 16S, les ribozymes, et la région TAR du VIH. Cependant, la spécificité de ces molécules vis à vis de TARN du VHC ainsi que leur capacité à inhiber la traduction IRES- dépendante de TIRES du VHC n'a pas été démontré auparavant.
Le test de criblage est effectué comme suit. On incube le MRR de pi 16 et la séquence consensus de la région II en présence de différents aminoglycosides. Le mélange d'ARN est ensuite déposé sur une membrane de nitrocellulose dans les mêmes conditions que dans l'exemple 2. Les résultats sont représentés sur la figure 8. Parmi les 15 aminoglycosides testés à 4 concentrations différentes, les composés tobramycine et streptomycine inhibent la formation du complexe ARN-protéine à toutes les concentrations testées. Le tobramycine inhibe 43% du complexe MRRpl 16/11 à concentration 20 μM et 54% à 40 μM. La streptomycine, quant à elle, inhibe 25% du complexe MRRpl 16/11 à concentration 20 μM et 36% à 40 μ M. En revanche, la néomycine et la sisomycine n'inhibent le complexe qu'à des concentrations supérieures à 40 μM.
Les aminoglycosides kanamycine A, kanamycine B et tobramycine sont des molécules de structure très proche. Cependant, la tobramycine (43% d'inhibition à 20 μM) est plus active que la kanamycine B (22% d'inhibition à 20 μM) qui est à son tour plus active que la kanamycine A (0% d'inhibition à 20, 40 et 80 μM). Ceci indique que la présence d'un aminogroupe en position R2 (tobramycine et kanamycine B) favorise la dissociation du complexe, alors que la présence du groupe hydroxyle en position RI y est défavorable (kanamycine A) Par contre, le groupe amino en position 6' n'est pas directement impliqué dans l'interaction et peut donc être utilisé pour introduire des modifications permettant de diminuer les concentrations actives nécessaires.
Exemple 4 ; Inhibition de la traduction cap-indépendante ex vivo
Dans cet exemple, on établit une corrélation entre les résultats obtenus dans le système de criblage in vitro (exemple 2) et ceux d'un système cellulaire bicistronique. Ceci permet de vérifier que l'inhibition de la formation du complexe protéine pi 16 eIF3 / ARN de TIRES du VHC par une molécule chimique entraîne également une inhibition de la traduction dépendante de TIRES dans des cellules ex vivo. Par ailleurs, ce test permet de déceler une éventuelle toxicité de la molécule en question pour la cellule elle-même, tout en mesurant son effet sur la traduction cap-dépendante.
a/ Préparation de vecteurs bicistroniques Des construits bicistroniques constitués d'un premier cistron correspondant au gène de la luciférase Renilla, suivi de la séquence IRES, suivi d'un second cistron correspondant au gène de la luciférase Firefly (pRluc-IRES-Fluc) sont préparés de la façon suivante. Un plasmide pRL-SV40 (Promega) est linéarisé avec Xba I et déphosphorylé. Parallèlement, TIRES est amplifié avec le gène de la luciférase Firefly par PCR, en présence d'oligonucléotides complémentaires contenant les sites Xbal. Les produits de PCR sont ensuite sous-clonés dans le plasmide pTrcHis2-TOPO (Invitrogen) afin de contrôler la digestion. La ligation de Tinsert contenant TIRES avec le gène de la luciférase Firefly et le vecteur pRL-SV40 linéarisé est effectuée à l'aide de T4 DNA ligase (Biolabs).
b/ Transfection de cellule HeLa 107 cellules HeLa suspendues dans du DMEM exempte de sérum sont transfectées par 1 à 2,5 ug de plasmide pRluc-IRES-Fluc par électroporation à 0,5 V pendant 30 millisecondes au moyen d'un Gène Puiser (BioRad). Les cellules sont ensuite cultivées dans des plaques 24 ou 96 puits en présence de différentes aminoglycosides, à des concentrations comprises entre 2 et 5 mM pendant 24-36hs. L'activité de luciférase Renilla (traduction cap-dépendante) et celle de la luciférase Firefly (traduction cap- indépendante=virale) dans les lysats cellulaires est mesurée et comparée au moyen du test Dual-luciférase (Promega) et de luminometre Lumat LB9507 (Berthold).
c/ Résultats L'effet de 10 différents aminoglycosides sur la traduction dépendante de TIRES et sur la traduction cap-dépendante est étudié à l'aide de cellules HeLa transfectées par la construction bicistronique (Figure 9A).
D'après les résultats apparaissant sur la figure 9B, parmi les 9 aminoglycosides testées, à concentration ImM, la tobramycine inhibe la synthèse de la luciférase Firefly contrôlée par TIRES du virus de l'hépatite C à 90,4%, alors que la synthèse de la luciférase Renilla, contrôlée par « cap », n'est pas inhibée (168% du contrôle). Un effet similaire est observé à une concentration de tobramycine de 2mM (la synthèse de IRES-luciferase est inhibée à 83% et celle de cap-luciferase est inhibée seulement à 27%).
L'hygromycine et G418 inhibent à la fois la traduction cap-dépendante et IRES- dépendante d'un façon IRES-nonspécifique.
L'effet de la paromomycine aux concentrations 1, 2 et 5 mM est plus prononcé sur la traduction IRES-dépendante (inhibée à 37%) que sur la traduction cap-dépendante (inhibée à 6,3%) et est donc modérément IRES-spécifique. Lorsque Ton augmente la quantité d'ARN produite dans les cellules, en utilisant une plus forte concentration d'ADN plasmidique (Figure 9C), l'effet de tobramycine est moins prononcé (inhibition de la traduction IRES-dépendante de 36,5% à 2mM et de 69% à 5mM), avec une synthèse cap-dépendante non-inhibée (268 et 134% de contrôle).
Dans les mêmes conditions, la streptomycine inhibe la traduction des deux cistrons d'une façon IRES-non spécifique (à partir de 5mM en concentration). Ainsi, certains aminoglycosides sont capables d'inhiber la traduction dépendante de TIRES d'un façon IRES-spécifique, sans inhiber la traduction de la cellule-hôte. Ces molécules non toxiques pour la cellule aux concentrations indiquées peuvent être utilisés pour traiter l'hépatite C.
Les résultats obtenus avec le système bicistronique sont cohérents avec ceux du test de criblage développé par le Demandeur (MRRpl 16/ domaine II) : la même molécule, la tobramycine, a été identifiée comme la plus active dans les deux systèmes. Ceci montre la pertinence du test de criblage revendiqué, qui peut être utilisé pour identifier de nouveaux inhibiteurs de la fixation de eIF3 sur TIRES et de la traduction IRES-dépendante.
BIBLIOGRAPHIE
1. Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M. (1989) Science 244:359-62 "Isolation of a cDNA clone derived from a blood-borne non- A, non-B viral hepatitis génome."
2. Sizova DV, Kolupaeva VG, Pestova TV, Shatsky IN, Hellen CU (1998) J Virol 72:4775-82, Spécifie interaction of eukaryotic translation initiation factor 3 with the 5' nontranslated régions of hepatitis C virus and classical swine fever virus RNAs. 3. Kieft J., Zhou K., Jubin R., Doudna J., RNA (2001), 7:194-206, Mechanism of ribosome recruitment by hepatitis C IRES RNA 4. Buratti E, Tisminetzky S, Zotti M, Baralle FE (1998) Nucleic Acids Res 26:3179-
87 Functional analysis of the interaction between HCV 5'UTR and putative subunits of eukaryotic translation initiation factor eIF3. 5. Zhao WD, Wimmer E. (2001) J Virol 75:3719-30 Genetic analysis of a poliovirus/hepatitis C virus chimera: new structure for domain II of the internai ribosomal entry site of hepatitis C virus.
6. Block KL, Vornlocher HP, Hershey JW. Characterization of cDNAs encoding the p44 and p35 subunits of human translation initiation factor eIF3. (1998) J Biol Chem. 273:31901-8.
7. Asano K, Vornlocher HP, Richter-Cook NJ, Merrick WC, Hinnebusch AG, Hershey JW. (1997) Structure of cDNAs encoding human eukaryotic initiation factor 3 subunits. Possible rôles in RNA binding and macromolecular assembly. J Biol Chem. 272:27042-52. 8. Stelz U, Spahn C, Nierhaus KH, (2000) Proc Natl Acad Scie USA 97, 4597-4602 «Selecting rRNA binding sites for the ribosomal proteins L4 et L6 from randomly fragmented rRNA application of method called SERF»

Claims

REVENDICATIONS
1/ Procédé de criblage de molécules selon lequel, in vitro : a/ on incube ensemble la sous unité pi 16 (SEQ ID4) de la protéine eIF3, la séquence nucléotidique de la région II (SEQ ID2) de TIRES de VHC ou toute séquence contenant au moins 10 nucleotides successifs de la région II (SEQ ID 2) de TIRES de VHC et la molécule à tester, b/ on détecte ensuite la formation éventuelle de complexe pi 16 / région II IRES, l'absence de complexe témoignant de la capacité inhibitrice de la molécule testée, à inhiber la formation desdits complexes, c/ on sélectionne les molécules inhibant la formation des complexes.
2/ Procédé selon la revendication 1, caractérisé en ce que seule la séquence du motif de reconnaissance de la protéine pi 16 (SEQ ID5) est incubée.
3/ Procédé selon la revendication 1, caractérisé en ce que seule une partie de la région II est incubée et correspond à la séquence nucléotidique consensus SEQ ID3 ou une séquence comprenant au moins 8 nucleotides successifs de la séquence SEQ ID 3.
4/ Procédé selon la revendication 1, caractérisé en ce que la molécule à tester est incubée à des doses croissantes.
5/ Procédé selon la revendication 1, caractérisé en ce que la détection est effectuée par filtration du mélange au travers d'une membrane de nitrocellulose, puis par mesure de la radioactivité liée à la membrane correspondant à la quantité d'ARN fixée sur la membrane.
6/ Procédé selon la revendication 1, caractérisé en ce que Ton teste ensuite, ex vivo, l'influence de la molécule sélectionnée en c) sur la traduction cap-indépendante et la traduction cap-dépendante pour ne retenir que les molécules inhibant la traduction cap-indépendante sans influencer la traduction cap-dépendante. 7/ Procédé selon la revendication 6, caractérisé en ce qu'on construit des vecteurs bicistroniques constitués de deux luciférase encadrant la séquence de la région II (SEQ ID 2) ou toute séquence contenant au moins 10 nucleotides successifs de la région II (SEQ ID 2), ou la séquence consensus (SEQ ID 3) ou une séquence comprenant au moins 8 nucleotides successifs de la séquence SEQ ID 3; la première luciférase étant traduite de manière cap-dépendante et la seconde de manière cap-indépendante ou inversement.
8/ Utilisation des molécules sélectionnées à l'issue du procédé de criblage objet de Tune des revendications 1 à 7 pour la fabrication d'un médicament destiné au traitement de l'hépatite C (VHC), de la peste porcine (CSFV), de la diarrhée bovine (BVDV).
9/ Utilisation d'un aminoglycoside pour la fabrication d'un médicament destiné au traitement de l'hépatite C (NHC), de la peste porcine (CSFV), de la diarrhée bovine (BVDV).
10/ Utilisation selon la revendication 9, caractérisée en ce que Taminoglycoside est la tobramycine.
11/ Composition pharmaceutique comprenant un oligonucléotide anti-sens complémentaire de la séquence SEQ ID 3 ou de toute séquence comprenant au moins 8 nucleotides successifs de la séquence SEQ ID 3, à l'exception de T oligonucléotide de séquence TAGACGCTTTCTGCGTGAAGACAGTAGT.
12/ Utilisation d'un oligonucléotide anti-sens complémentaire de la séquence SEQ ID 3 ou de toute séquence comprenant au moins 8 nucleotides successifs de la séquence SEQ ID 3, à l'exception de T oligonucléotide de séquence TAGACGCTTTCTGCG TGAAGACAGTAGT, comme médicament, pour le traitement de l'hépatite C (VHC) (délétion).
PCT/FR2003/003675 2002-12-12 2003-12-11 Molecules inhibitrices de la synthese proteique du virus de l'hepatite c et procede de criblage desdites molecules inhibitrices WO2004055210A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03813166A EP1570089A1 (fr) 2002-12-12 2003-12-11 Molecules inhibitrices de la synthese proteique du virus de l'hepatite c et procede de criblage desdites molecules inhibitrices
US10/538,471 US20060035212A1 (en) 2002-12-12 2003-12-11 Molecules inhibiting hepatitis c virus protein synthesis and method for screening same
AU2003296819A AU2003296819A1 (en) 2002-12-12 2003-12-11 Molecules inhibiting hepatitis c virus protein synthesis and method for screening same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0215718A FR2848572B1 (fr) 2002-12-12 2002-12-12 Molecules inhibitrices de la synthese proteique du virus de l'hepatite c et procede de criblage desdites molecules inhibitrices
FR02/15718 2002-12-12

Publications (1)

Publication Number Publication Date
WO2004055210A1 true WO2004055210A1 (fr) 2004-07-01

Family

ID=32338718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/003675 WO2004055210A1 (fr) 2002-12-12 2003-12-11 Molecules inhibitrices de la synthese proteique du virus de l'hepatite c et procede de criblage desdites molecules inhibitrices

Country Status (5)

Country Link
US (1) US20060035212A1 (fr)
EP (1) EP1570089A1 (fr)
AU (1) AU2003296819A1 (fr)
FR (1) FR2848572B1 (fr)
WO (1) WO2004055210A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9227956B2 (en) 2013-04-17 2016-01-05 Pfizer Inc. Substituted amide compounds

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005041984A1 (fr) * 2003-10-31 2005-05-12 Steele Philip M Compositions et traitements destines a des infections par un virus enveloppe
PL2666859T3 (pl) * 2006-04-03 2019-09-30 Roche Innovation Center Copenhagen A/S Kompozycja farmaceutyczna zawierająca antysensowne oligonukleotydy anty-miRNA
ES2715625T3 (es) * 2006-04-03 2019-06-05 Roche Innovation Ct Copenhagen As Composición farmacéutica que comprende oligonucleótidos antisentido anti-miARN
MX2009003729A (es) * 2006-10-09 2009-04-22 Santaris Pharma As Copuestos antagonistas de acido ribonucleico para la modulacion de proproteina convertasa subtilisina/kexina tipo 9a.
EP2126079A1 (fr) * 2007-03-22 2009-12-02 Santaris Pharma A/S Composés arn antagonistes pour l'inhibition de l'expression de l'apo-b100
DK2149605T3 (da) * 2007-03-22 2013-09-30 Santaris Pharma As Korte RNA antagonist forbindelser til modulering af det ønskede mRNA
CA2697970A1 (fr) * 2007-08-30 2009-03-05 Santaris Pharma A/S Composes antagonistes d'arn permettant la modulation de fabp4/ap2
JP6035010B2 (ja) * 2007-10-04 2016-11-30 ロシュ・イノベーション・センター・コペンハーゲン・アクティーゼルスカブRoche Innovation Center Copenhagen A/S マイクロmir
EP2268811A1 (fr) * 2008-03-07 2011-01-05 Santaris Pharma A/S Compositions pharmaceutiques pour le traitement de maladies associées aux microarn
US8492357B2 (en) 2008-08-01 2013-07-23 Santaris Pharma A/S Micro-RNA mediated modulation of colony stimulating factors
WO2010122538A1 (fr) * 2009-04-24 2010-10-28 Santaris Pharma A/S Compositions pharmaceutiques pour le traitement de patients souffrant du vhc ne réagissant pas aux interférons
WO2011009697A1 (fr) 2009-07-21 2011-01-27 Santaris Pharma A/S Oligomères anti-sens ciblant pcsk9
EP3591054A1 (fr) 2013-06-27 2020-01-08 Roche Innovation Center Copenhagen A/S Oligomères et conjugués antisens ciblant pcsk9

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023041A2 (fr) * 1993-04-02 1994-10-13 Ribogene, Inc. Procede d'inactivation selective de replication virale
US6001990A (en) * 1994-05-10 1999-12-14 The General Hospital Corporation Antisense inhibition of hepatitis C virus
US6153421A (en) * 1997-07-18 2000-11-28 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Cloned genomes of infectious hepatitis C viruses and uses thereof
WO2001044266A2 (fr) * 1999-12-16 2001-06-21 Ribotargets Limited Dosages
US6284458B1 (en) * 1992-09-10 2001-09-04 Isis Pharmaceuticals, Inc. Compositions and methods for treatment of hepatitis C virus-associated diseases
FR2815358A1 (fr) * 2000-10-17 2002-04-19 Parteurop Dev Polypeptides inhibiteurs de l'ires du virus de l'hepatite c et procede de criblage desdits polypeptides

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284458B1 (en) * 1992-09-10 2001-09-04 Isis Pharmaceuticals, Inc. Compositions and methods for treatment of hepatitis C virus-associated diseases
WO1994023041A2 (fr) * 1993-04-02 1994-10-13 Ribogene, Inc. Procede d'inactivation selective de replication virale
US6001990A (en) * 1994-05-10 1999-12-14 The General Hospital Corporation Antisense inhibition of hepatitis C virus
US6153421A (en) * 1997-07-18 2000-11-28 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Cloned genomes of infectious hepatitis C viruses and uses thereof
WO2001044266A2 (fr) * 1999-12-16 2001-06-21 Ribotargets Limited Dosages
FR2815358A1 (fr) * 2000-10-17 2002-04-19 Parteurop Dev Polypeptides inhibiteurs de l'ires du virus de l'hepatite c et procede de criblage desdits polypeptides

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BURATTI E ET AL: "FUNCTIONAL ANALYSIS OF THE INTERACTION BETWEEN HCV 5'UTR AND PUTATIVE SUBUNITS OF EUKARYOTIC TRANSLATION INITIATION FACTOR ELF3", NUCLEIC ACIDS RESEARCH, OXFORD UNIVERSITY PRESS, SURREY, GB, vol. 26, no. 13, 1 July 1998 (1998-07-01), pages 3179 - 3187, XP000993424, ISSN: 0305-1048 *
CASTROAGUDIN J F ET AL: "Streptococcus bovis bacteremia and endocarditis in patients with liver disease without evidence of colonic pathology.", REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS, vol. 88, no. 9, 1996, pages 605 - 608, XP009015917, ISSN: 1130-0108 *
CHEN P J ET AL: "Molecular biology of hepatitis D virus: research and potential for application.", JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY. AUSTRALIA OCT 1997, vol. 12, no. 9-10, October 1997 (1997-10-01), pages S188 - S192, XP009015926, ISSN: 0815-9319 *
SIZOVA D V ET AL: "SPECIFIC INTERACTION OF EUKARYOTIC TRANSLATION INITIATION FACTOR 3 WITH THE 5' NONTRANSLATED REGIONS OF HEPATITIS C VIRUS AND CLASSICAL SWINE FEVER VIRUS RNAS", JOURNAL OF VIROLOGY, THE AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 72, no. 6, June 1998 (1998-06-01), pages 4775 - 4782, XP000993423, ISSN: 0022-538X *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9227956B2 (en) 2013-04-17 2016-01-05 Pfizer Inc. Substituted amide compounds

Also Published As

Publication number Publication date
FR2848572B1 (fr) 2005-12-09
AU2003296819A1 (en) 2004-07-09
FR2848572A1 (fr) 2004-06-18
US20060035212A1 (en) 2006-02-16
EP1570089A1 (fr) 2005-09-07

Similar Documents

Publication Publication Date Title
US10457939B2 (en) Neuroprotective molecules and methods of treating neurological disorders and inducing stress granules
Lee et al. cis-acting RNA signals in the NS5B C-terminal coding sequence of the hepatitis C virus genome
Cammas et al. Cytoplasmic relocalization of heterogeneous nuclear ribonucleoprotein A1 controls translation initiation of specific mRNAs
EP0693126B9 (fr) Procede d&#39;inactivation selective de replication virale
Spångberg et al. HuR, a protein implicated in oncogene and growth factor mRNA decay, binds to the 3′ ends of hepatitis C virus RNA of both polarities
WO2004055210A1 (fr) Molecules inhibitrices de la synthese proteique du virus de l&#39;hepatite c et procede de criblage desdites molecules inhibitrices
JP2003501050A (ja) 天然型PrPSCを特異的に認識する核酸分子、製造及び使用
KR20140091750A (ko) 표적 단백질에 결합하는 핵산 단편
JP2005529590A (ja) ARE含有mRNAとHuRタンパク質の結合のインヒビターの同定方法
US7232807B2 (en) Compositions and methods for binding agglomeration proteins
CA2509494A1 (fr) Procede d&#39;introduction de sirna dans des adipocytes
Florentz et al. Specific valylation identity of turnip yellow mosaic virus RNA by yeast valyl‐tRNA synthetase is directed by the anticodon in a kinetic rather than affinity‐based discrimination
EP3738603A1 (fr) Inhibiteur de ntcp
WO2006016657A1 (fr) Médicament pour le traitement du vhc ou la prévention de l’infection par vhc
Teterina et al. Strand-specific RNA synthesis defects in a poliovirus with a mutation in protein 3A
Fromentin et al. A method for in vitro assembly of hepatitis C virus core protein and for screening of inhibitors
Scarpitti et al. A noncanonical RNA-binding domain of the fragile X protein, FMRP, elicits translational repression independent of mRNA G-quadruplexes
WO2022054801A1 (fr) ARNsi ET SON UTILISATION
AU761012B2 (en) Vector expressing the full-length gene of RNA virus and use thereof
WO2008108521A1 (fr) Nouvelle utilisation de kiaa0317 en tant que régulateur de l&#39;apoptose
US20050261486A1 (en) Compositions and methods for binding agglomeration proteins
JP4265402B2 (ja) p300ヒストンアセチル化酵素インヒビターを含む転写阻害用組成物及び該p300ヒストンアセチル化酵素インヒビターを阻害し得る阻害物質のスクリーニング方法
US7951928B2 (en) Gene encoding a protein and preventive/remedy for neurodegenerative diseases such as polyglutamine diseases by utilizing the same
Zhu et al. Nucleolin interacts with the rabbit hemorrhagic disease virus replicase RdRp, nonstructural proteins p16 and p23, playing a role in virus replication
Sun Structural Studies of Viral RNAs and Peptide Targeting

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003813166

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006035212

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10538471

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003813166

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10538471

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP