WO2004055202A2 - Screening method for identifying substances active against halitosis, gingivitis or parodontitis - Google Patents

Screening method for identifying substances active against halitosis, gingivitis or parodontitis Download PDF

Info

Publication number
WO2004055202A2
WO2004055202A2 PCT/EP2003/013814 EP0313814W WO2004055202A2 WO 2004055202 A2 WO2004055202 A2 WO 2004055202A2 EP 0313814 W EP0313814 W EP 0313814W WO 2004055202 A2 WO2004055202 A2 WO 2004055202A2
Authority
WO
WIPO (PCT)
Prior art keywords
methionine
lyase
gamma
particularly preferably
amino acid
Prior art date
Application number
PCT/EP2003/013814
Other languages
German (de)
French (fr)
Other versions
WO2004055202A3 (en
Inventor
Dirk Bockmühl
Julia Boy
Roland Breves
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Priority to AU2003296620A priority Critical patent/AU2003296620A1/en
Publication of WO2004055202A2 publication Critical patent/WO2004055202A2/en
Publication of WO2004055202A3 publication Critical patent/WO2004055202A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/18Testing for antimicrobial activity of a material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/527Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving lyase

Definitions

  • the present invention relates to a screening method for identifying active substances against halitosis, gingivitis or periodontitis, test kits for finding active substances against halitosis, gingivitis or periodontitis, the use of methionine gamma-lyases (METase) for finding active substances against halitosis , Gingivitis or periodontitis; furthermore a test method for proving the effectiveness of substances against halitosis, gingivitis or periodontitis and a method for producing a pharmaceutical preparation for halitosis, gingivitis or periodontitis.
  • MEAse methionine gamma-lyases
  • VSC Volatile sulfur compounds
  • H 2 S hydrogen sulfide (about 30%)
  • OH3-SH methyl mercaptan (about 60%)
  • CH3-S-CH3 dimethyl sulfide (about 10%).
  • the volatile sulfur compounds are sometimes very aggressive and can damage the gums and the oral mucosa.
  • Ng W Tonzetich J .; "Effect of hydrogen sulfide and methyl mercaptan on the permeability of oral mucosa”; J Dent Res. 1984 Jul; 63 (7): 994-7; It is known that hydrogen sulfide and methyl mercaptan increase the permeability of the oral mucosa and can thus promote gum disease.
  • Gum disease is a high risk factor for health. According to studies by the World Health Organization (WHO), over 50% suffer of adult Germans with periodontal diseases that require urgent treatment.
  • WHO World Health Organization
  • 'periodontitis' Gum disease is popularly called 'periodontitis'. This expression is incorrect because the ending "-ose” describes a normal, age-related decline in an organ.
  • the terms "periodontitis” or “inflammatory periodontopathy” are correct.
  • Yoshimura M Nakano Y, Yamashita Y, Oho T, Saito T and Koga T. describe in "Formation of methyl mercaptan from L-methionine by Porphyromonas gingivalis"; Infect immune. 2000 Dec; 68 (12): 6912-6; an L-methionine-alpha-deamino-gamma-mercaptomethane lyase (METase) from P. gingivalis, which produces large amounts of methyl mercaptan.
  • METase L-methionine-alpha-deamino-gamma-mercaptomethane lyase
  • the diagnosis of bad breath is usually carried out by bacterial cultures, sulfide detection methods and organoleptic methods (smelling), or by measuring devices such as the "Halimeter ® " described on the Internet at http://www.halithose.de/halimtr.htm (as of December 16, 2002) ,
  • methionine gamma lyases in particular a methionine gamma lyase from Treponema denticola, can advantageously be used to find new active substances against halitosis, gingivitis or periodontitis.
  • the present invention therefore relates to a screening method for identifying active substances against halitosis, gingivitis or periodontitis, which is characterized in that a) a nucleic acid coding for a methionine gamma lyase is isolated from a pro- or eukaryotic organism or in synthesized in vitro, b) the nucleic acid coding for a methionine gamma lyase and cloned and expressed in suitable host cells or the methionine gamma lyase synthesized in vitro, c) the methionine gamma lyase expressing host cells in spatially separated approaches in the presence of a Sulfur source and a suitable neten detection agent for reaction products cultivated by reactions catalyzed by methionine gamma-lyase; or the methionine-gamma-lyase is introduced into an in vitro test system in spatially separated batches in the presence of
  • the screening method according to the invention when carried out with bacterial host cells producing methionine gamma-lyase, makes it possible to identify substances which prevent VSC formation, without microorganisms present in the oral cavity, without thieves. For this purpose, all substances are discarded which inhibit the formation of VSC, but at the same time kill the bacterial host cell.
  • Methionine- ⁇ -lyases belong to an enzyme family that occur in pro and eukaryotes (but not in mammals) and catalyze the conversion of methionine to ammonia, 2-oxobutyrate and methyl mercaptan.
  • Pyridoxal phosphate is required as a cofactor, which on a conserved region with the consensus sequence [DQ] - [LIMVF] -X (3) - [STAGC] - [STAGCI] -TK- [FYWQ] - [LIVMF] -XG- [HQ] - [SGNH] binds, where K acts as a pyridoxal phosphate binding site.
  • X denotes any amino acids, while the amino acids in brackets describe the possible alternatives for this position, ie [DQ] means that either D or Q can be at this position in the consensus sequence.
  • the METases from the protozoon Trichomonas vaginalis and the bacteria Pseudomonas putida and Porphyromonas gingivalis have already been identified described and characterized. For Fusobacterium nucleatum, the annotation of the genome identified the METase gene.
  • the applicant has succeeded in elucidating the sequence of the oral bacterium Treponema denticola coding for the METase protein and thus showing for the first time that METases also occur in spirochetes.
  • the base sequence of the mgll gene from T. denticola is 64.5% identical to the sequence from P. gingivalis and contains the pyridoxal phosphate binding region, which, in contrast to the other Mgl proteins at position 209, is a Leu instead of one Val has (CLUSTALW alignment):
  • an expression of the form "at least X%” means “X% to 100% (including the basic values X and 100 and all integer and non-integer percentage values in between)”.
  • a protein is to be understood as a polymer which is composed of the natural amino acids and has a largely linear structure and usually assumes a three-dimensional structure to perform its function.
  • the 19 proteinogenic, naturally occurring L-amino acids are designated with the internationally used 1- and 3-letter codes.
  • an enzyme is to be understood as a protein which has a specific biochemical function.
  • Methionine gamma lyases are proteins that catalyze the conversion of methionine to ammonia, 2-oxobutyrate and methyl mercaptan. Numerous proteins are formed as so-called pre-proteins, i.e. together with a signal peptide. This is to be understood as the N-terminal part of the protein, the function of which mostly consists in ensuring that the protein formed is discharged from the producing cell into the periplasm or the surrounding medium and / or that it is correctly folded. Subsequently, the signal peptide is split off from the rest of the protein under natural conditions by a signal peptidase, so that this exerts its actual catalytic activity without the N-terminal amino acids initially present.
  • the mature peptides that is to say the enzymes processed after their production, are preferred over the pre-proteins for technical applications.
  • Pro-proteins are inactive precursors to proteins. Their precursors with signal sequences are called pre-pro proteins.
  • nucleic acids are understood to mean the molecules which are naturally built up from nucleotides and serve as information carriers and which code for the linear amino acid sequence in proteins or enzymes. They can be present as a single strand, as a single strand complementary to this single strand or as a double strand. As the naturally more permanent information carrier, the nucleic acid DNA is preferred for molecular biological work.
  • an RNA is formed for the implementation of the invention in a natural environment, such as, for example, in an expressing cell, which is why RNA molecules essential to the invention also represent embodiments of the present invention.
  • the information unit corresponding to a protein is also referred to as a gene in the sense of the present application.
  • the method according to the invention comprises the production of recombinant proteins.
  • this includes all genetic engineering or microbiological processes which are based on the genes for the proteins of interest being introduced into a host organism suitable for production and being transcribed and translated by the latter.
  • the genes in question are suitably introduced via vectors, in particular expression vectors; but also via those that cause the gene of interest in the host organism to be inserted into an existing genetic element such as the chromosome or other vectors.
  • the functional unit consisting of gene and promoter and any further counterent elements is referred to as an expression cassette. However, it does not necessarily have to be a physical unit.
  • mutations referred to Changes in the nucleotide sequence, such as can be brought about, for example, by known molecular biological methods, are called mutations referred to.
  • deletion, insertion or substitution mutations are known, for example, or those in which different genes or parts of genes are fused to one another (shuffling); these are gene mutations.
  • the associated organisms are called mutants.
  • the proteins derived from mutant nucleic acids are called variants.
  • deletion, insertion or substitution mutations or fusions lead to deletion, insertion or substitution mutations or fusion genes and at the protein level to corresponding deletion, insertion or substitution variants or fusion proteins.
  • Fragments are understood to mean all proteins or peptides that are smaller than natural proteins or those that correspond to fully translated genes and that can also be obtained synthetically, for example. Based on their amino acid sequences, they can be assigned to the relevant complete proteins. For example, they can take on the same structures or have proteolytic or sub-activities, such as the complexation of a substrate. Fragments and deletion variants of parent proteins are basically the same; while fragments are rather smaller fragments, the deletion mutants tend to lack only short areas, and thus only partial functions.
  • the partial sequences correspond to the fragments at the nucleic acid level.
  • chimeras or hybrid proteins are understood to mean those proteins which are composed of elements which naturally come from different polypeptide chains from the same organism or from different organisms. This procedure is also called shuffling or fusion mutagenesis.
  • the purpose of such a fusion can, for example, be to bring about or modify a certain enzymatic function with the aid of the fused-in protein part.
  • it is immaterial whether such a chimeric protein consists of a single polypeptide chain or several subunits, over which different functions can be distributed. For realizing tion of the latter alternative, it is possible, for example, to separate a single chimeric polypeptide chain into several post-translationally or only after a purification step by means of a targeted proteolytic cleavage.
  • Proteins obtained by insertion mutation are to be understood as those variants which have been obtained by methods known per se by inserting a nucleic acid or protein fragment into the starting sequences. Because of their principle similarity, they can be assigned to the chimeric proteins. They differ from those only in the size ratio of the unchanged protein part to the size of the entire protein. The proportion of foreign protein is lower in such insert-mutated proteins than in chimeric proteins.
  • Inversion mutagenesis i.e. a partial reversal of the sequence
  • Inversion mutagenesis can be viewed as a special form of both deletion and insertion. The same applies to a regrouping of different parts of the molecule that deviates from the original amino acid sequence. It can be viewed both as a deletion variant, as an insertion variant, and as a shuffling variant of the original protein.
  • derivatives are understood to mean those proteins whose pure amino acid chain has been chemically modified.
  • derivatizations can take place, for example, biologically in connection with protein biosynthesis by the host organism.
  • Molecular biological methods can be used for this.
  • they can also be carried out chemically, for example by chemically converting a side chain of an amino acid or by covalently binding another compound to the protein.
  • Such a compound can also be, for example, other proteins which are bound to proteins according to the invention, for example, via bifunctional chemical compounds.
  • modifications can, for example, influence the substrate specificity or the binding strength to the substrate or can temporarily block the enzymatic activity if the coupled substance is a Inhibitor acts. This can be useful, for example, for the period of storage.
  • Derivatization should also be understood to mean the covalent bond to a macromolecular carrier.
  • Proteins can also be grouped into groups of immunologically related proteins by reaction with an antiserum or a specific antibody.
  • the members of a group are distinguished by the fact that they have the same antigenic determinant recognized by an antibody.
  • vectors are understood to mean elements consisting of nucleic acids which contain a gene of interest as the characteristic nucleic acid region. They are able to establish this in a species or a cell line over several generations or cell divisions as a stable genetic element that replicates independently of the rest of the genome.
  • Vectors are special plasmids, in particular circular genetic elements, when used in bacteria.
  • cloning vectors In genetic engineering, a distinction is made between those vectors that are used for storage and thus also to a certain extent also for genetic engineering work, the so-called cloning vectors, and those that fulfill the function of realizing the gene of interest in the host cell, that is, the To enable expression of the protein in question. These vectors are called expression vectors.
  • the enzymatic activity of an enzyme under consideration can be deduced from the amino acid or nucleotide sequence by comparison with known enzymes, which are stored, for example, in generally accessible databases. This can be qualitatively or quantitatively modified by other areas of the protein that are not involved in the actual reaction. This could affect, for example, enzyme stability, activity, reaction conditions or substrate specificity. Such a comparison takes place in that similar sequences in the nucleotide or amino acid sequences of the proteins under consideration are assigned to one another. This is called homologation. A tabular assignment of the relevant positions is called alignment. When analyzing nucleotide sequences, both complementary strands and all three possible reading frames must be taken into account; likewise the degeneracy of the genetic code and the organism-specific codon usage. Alignments are now being created using computer programs, such as the FASTA or BLAST algorithms; this procedure is described, for example, by DJ Lipman and WR Pearson (1985) in Science, volume 227, pp. 1435-1441.
  • a compilation of all positions that match in the compared sequences is referred to as a consensus sequence.
  • Such a comparison also allows a statement to be made about the similarity or homology of the compared sequences to one another. This is expressed in percent identity, that is, the proportion of identical nucleotides or amino acid residues in the same positions. A broader concept of homology includes the conserved amino acid exchanges in this value. The percent similarity is then mentioned. Such statements can be made about entire proteins or genes or only about individual areas.
  • the creation of an alignment is the first step in defining a sequence space.
  • This hypothetical space encompasses all sequences to be derived by permutation in individual positions, which result taking into account all variations occurring in the relevant individual positions of the alignment. Every hypothetically possible protein molecule forms a point in this sequence space. For example, two amino acid sequences, which, when largely identical, have two different amino acids each at only two different locations, thus establish a sequence space of four different amino acid sequences. A very large sequence space is obtained if too individual sequences of a room, further homologous sequences can be found. Such high homologies, which exist in pairs, can also be used to recognize very low homologous sequences as belonging to a sequence space.
  • homologous regions of different proteins are those with the same functions, which can be recognized by matches in the primary amino acid sequence. It goes up to complete identities in the smallest areas, so-called boxes, which contain only a few amino acids and mostly perform functions essential for overall activity.
  • the functions of the homologous areas are to be understood as the smallest sub-functions of the function performed by the entire protein, such as, for example, the formation of individual hydrogen bonds for complexing a substrate or transition complex.
  • the nucleic acid is suitably cloned into a vector.
  • the molecular biological dimension of the invention thus consists of vectors with the genes for the corresponding proteins. These can include, for example, those derived from bacterial plasmids, from viruses or from bacteriophages, or predominantly synthetic vectors or plasmids with elements of various origins. With the other genetic elements present in each case, vectors are able to establish themselves as stable units in the host cells concerned over several generations. It is irrelevant in the sense of the invention whether they establish themselves extrachomosomally as separate units or integrate into a chromosome. Which of the numerous systems known from the prior art is chosen depends on the individual case. Decisive factors are, for example, the number of copies that can be achieved, the selection systems available, including above all antibiotic resistance, or the cultivability of the host cells capable of taking up the vectors.
  • the vectors form suitable starting points for molecular biological and biochemical investigations of the gene or associated protein in question and for further developments according to the invention and ultimately for amplification and production of proteins according to the invention. They represent embodiments of the present invention in that the sequences of the nucleic acid regions according to the invention contained in each case lie within the homology ranges specified in more detail above.
  • Preferred embodiments of the present invention are cloning vectors. In addition to the storage, the biological amplification or the selection of the gene of interest, these are suitable for the characterization of the gene in question, for example by creating a restriction map or sequencing. Cloning vectors are also preferred embodiments of the present invention because they represent a transportable and storable form of the claimed DNA. They are also preferred starting points for molecular biological techniques that are not bound to cells, such as the polymerase chain reaction.
  • Expression vectors are chemically similar to the cloning vectors, but differ in the partial sequences that enable them to replicate in the host organisms optimized for the production of proteins and to express the gene contained there.
  • Preferred embodiments are expression vectors which themselves carry the genetic elements necessary for expression. Expression is influenced, for example, by promoters which regulate the transcription of the gene. For example, expression can be carried out by the natural promoter originally located in front of this gene, but also after genetic engineering fusion both by a promoter of the host cell provided on the expression vector and by a modified or a completely different promoter from another organism.
  • Preferred embodiments are those expression vectors which can be regulated via changes in the culture conditions or the addition of certain compounds, such as, for example, the cell density or special factors.
  • Expression vectors enable the associated protein to be produced heterologously, that is to say in an organism other than that from which it can be obtained naturally.
  • a homologous protein extraction from a gene naturally expressing host organism via an appropriate vector is within the scope of the present invention. This can have the advantage that natural modification reactions associated with the translation are carried out on the resulting protein in exactly the same way as they would occur naturally.
  • Embodiments of the present invention can also be cell-free expression systems in which the protein biosynthesis is reproduced in vitro. Such expression systems are also established in the prior art.
  • the in vivo synthesis of an enzyme according to the invention requires the transfer of the associated gene into a host cell, the so-called transformation.
  • all organisms are suitable as host cells, that is to say prokaryotes, eukaryotes or cyanophyta.
  • host cells that are genetically easy to handle, for example as regards transformation with the expression vector and its stable establishment, for example unicellular fungi or bacteria.
  • preferred host cells are characterized by good microbiological and biotechnological manageability. This applies, for example, to easy cultivation, high growth rates, low demands on fermentation media and good production and secretion rates for foreign proteins.
  • the optimal expression systems for the individual case must be determined experimentally from the abundance of different systems available according to the prior art. In this way, each protein according to the invention can be obtained from a large number of host organisms.
  • Preferred embodiments are those host cells whose activity can be regulated on the basis of genetic regulatory elements which are provided, for example, on the expression vector but which may also be present in these cells from the outset. For example, by the controlled addition of chemical compounds that serve as activators, by changing the cultivation conditions or when a certain cell density is reached can be stimulated for expression. This enables the proteins of interest to be produced very economically.
  • Preferred host cells are prokaryotic or bacterial cells. Bacteria are usually distinguished from eukaryotes by shorter generation times and lower demands on the cultivation conditions. In this way, inexpensive methods for obtaining proteins according to the invention can be established. In Gram-negative bacteria, such as E. coli, a large number of proteins are secreted into the periplasmic space, that is, into the compartment between the two membranes enclosing the cells. This can be advantageous for special applications.
  • Gram-positive bacteria such as Bacilli or Actinomycetes or other representatives of the Actinomycetes, on the other hand, have no outer membrane, so that secreted proteins are immediately released into the nutrient medium surrounding the cells, from which, according to another preferred embodiment, the expressed proteins according to the invention are purified directly to let.
  • Expression systems represent a variant of this experimental principle in which additional genes, for example those which are made available on other vectors, influence the production of proteins according to the invention. These can be modifying gene products or those that are to be purified together with the protein according to the invention, for example in order to influence its enzymatic function. These can be, for example, other proteins or enzymes, inhibitors or elements that influence the interaction with different substrates.
  • Such derivatives can be modified, for example, via deletion or insertion mutagenesis with regard to their requirements for the culture conditions, have different or additional selection markers or express other or additional proteins.
  • these can be derivatives which, in addition to the protein produced according to the invention, express further economically interesting proteins.
  • microorganisms which are characterized in that they have been obtained after transformation with one of the vectors described above.
  • These can be cloning vectors, for example, which have been introduced into any bacterial strain for storage and / or modification. Such steps are common in the storage and development of relevant genetic elements. Since the relevant genetic elements can be directly transferred from these microorganisms into gram-negative bacteria suitable for expression, the transformation products mentioned above are also implementations of the subject matter of the invention.
  • Eukaryotic cells can also be suitable for the production of proteins according to the invention.
  • examples include fungi such as Actinomycetes or yeasts such as Saccharomyces or Kluyveromyces. This can be particularly advantageous, for example, if the proteins are to undergo specific modifications in connection with their synthesis which enable such systems. These include, for example, the binding of small molecules such as membrane anchors or oligosaccharides.
  • the host cells of the method according to the invention are cultivated and fermented in a manner known per se, for example in discontinuous or continuous systems. In the first case, a suitable nutrient medium is inoculated with the recombinant bacterial strains and the product is harvested from the medium after an experimentally determined period. Continuous fermentations are characterized by achieving a flow equilibrium in which cells die off telephonically over a comparatively long period of time, but also regrow and product can be removed from the medium at the same time.
  • Fermentation processes are well known per se from the prior art and represent the actual large-scale production step; followed by a suitable purification method.
  • the optimal conditions for the production processes used, for the host cells and / or the proteins to be produced must be determined experimentally on the basis of the previously optimized culture conditions of the strains concerned to the knowledge of the person skilled in the art, for example with regard to fermentation volume, media composition, oxygen supply or stirrer speed.
  • Fermentation processes which are characterized in that the fermentation is carried out via a feed strategy, are also suitable.
  • the media components that are consumed by the ongoing cultivation are fed; one also speaks of a feeding strategy.
  • considerable increases can be achieved both in the cell density and in the dry biomass and / or above all the activity of the protein of interest.
  • the fermentation can also be designed in such a way that undesired metabolic products are filtered out or neutralized by adding buffer or suitable counterions.
  • the protein produced can subsequently be harvested from the fermentation medium. This fermentation process is preferred to product preparation from dry matter, but requires the provision of suitable secretion markers and transport systems.
  • a nucleic acid coding for a methionine gamma lyase is preferably isolated or synthesized, which is selected from METase genes from the protozoan Trichomonas vaginalis and the bacteria Treponema denticola, Pseudomonas putida, Clostridium sporogenes and Fusobacterium nucleatum, particularly preferably Treponema denticola.
  • Clostridium sporogenes METase is described, for example, in the publication by Kreis W and Hession C; "Isolation and purification of L-methionine-alpha-deamino-gamma-mercaptomethane-lyase (L-methioninase) from Clostridium sporogenes"; Cancer Res. 1973 Aug; 33 (8): 1862-5.
  • a nucleic acid coding for a methionine gamma lyase is also preferably isolated or synthesized, the nucleotide sequence of which corresponds to that in Seq. 6 (METase gene from Pseudomonas putida) specified nucleotide sequence to at least 50%, at least 75%, at least 80%, preferably at least 85%, in particular at least 90%, particularly preferably at least 95% and very particularly preferably 100%.
  • a nucleic acid coding for a methionine gamma lyase is also preferably isolated or synthesized, the nucleotide sequence of which corresponds to that in Seq. 5 (METase gene from Fusobacterium nucleatum) specified nucleotide sequence corresponds to at least 50%, at least 75%, at least 80%, preferably at least 85%, in particular at least 90%, particularly preferably at least 95% and very particularly preferably 100%.
  • a nucleic acid coding for a methionine gamma lyase is particularly preferably isolated or synthesized, the nucleotide sequence of which corresponds to that in Seq. 4 (METase gene from Treponema denticola) specified nucleotide sequence corresponds to at least 50%, at least 75%, at least 80%, preferably at least 85%, in particular at least 90%, particularly preferably at least 95% and very particularly preferably 100%.
  • step a) it is also preferred to isolate or synthesize a nucleic acid which codes for a methionine gamma lyase, the amino acid sequence of which corresponds to one of the sequences shown in Seq. 1 to 3 specified amino acid sequences are at least 70%, preferably at least 80%, in particular at least 90%, particularly preferably at least 95% and very particularly preferably 100% identical, or the amino acid sequence of which contains a part which corresponds to one of those described in Seq. 1 to 3 specified amino acid sequences is at least 70%, preferably at least 80%, in particular at least 90%, particularly preferably at least 95% and very particularly preferably 100% identical.
  • step a) it is particularly preferred to isolate or synthesize a nucleic acid which codes for a methionine gamma lyase, the amino acid sequence of which corresponds to one of the sequences shown in Seq. 1 to 3 specified amino acid sequences are at least 70%, preferably at least 80%, in particular at least 90%, particularly preferably at least 95% and very particularly preferably 100% identical, or the amino acid sequence of which contains a part which corresponds to one of those described in Seq. 1 to 3 amino acid sequences given are identical to at least 70%, preferably at least 80%, in particular at least 90%, particularly preferably at least 95% and very particularly preferably 100%.
  • step a) it is particularly preferred to isolate or synthesize a nucleic acid which codes for a methionine gamma lyase, the amino acid sequence of which contains a part which corresponds to the consensus sequence [DQ] - [LIMVF] -X (3) - [STAGC ] - [STAGCI] -TK- [FYWQ] - [LIVMF] -XG- [HQ] - [SGNH] (Seq. ID 7) to at least 96%, in particular at least 97%, preferably at least 98%, preferably to is at least 99%, particularly preferably 100% identical.
  • a methionine gamma lyase is preferably expressed or used, the amino acid sequence of which corresponds to that in Seq. 3 (METase from Pseudomonas putida) specified amino acid sequence corresponds to at least 50%, preferably at least 70%, in particular at least 80%, particularly preferably at least 90% and very particularly preferably 100%.
  • step c) of the method according to the invention preference is likewise given to expressing or using a methionine gamma lyase whose amino acid sequence matches that in Seq. 2 (METase from Fusobacterium nucleatum) specified amino acid sequence corresponds to at least 50%, preferably at least 70%, in particular at least 80%, particularly preferably at least 90% and very particularly preferably 100%.
  • a methionine gamma lyase is particularly preferably expressed or used, the amino acid sequence of which corresponds to that in Seq. 1 (METase from Treponema denticola) specified amino acid sequence corresponds to at least 50%, preferably at least 70%, in particular at least 80%, particularly preferably at least 90% and very particularly preferably 100%.
  • Host cells suitable according to the invention for the expression in step b) are microorganisms, in particular bacteria, particularly preferably E. coli.
  • Detection agents suitable according to the invention for reaction products catalyzed by methionine gamma-lyase reactions are, for example, salts of metals which form sparingly soluble salts with sulfide ions with a solubility product of ⁇ 10-20, preferably a heavy metal salt which precipitates as a sparingly soluble compound with sulfide ions.
  • metals which form sparingly soluble salts with sulfide ions with a solubility product of ⁇ 10-20
  • a heavy metal salt which precipitates as a sparingly soluble compound with sulfide ions.
  • lead acetate is suitable (preferred concentration: about 4 mg / l, broadest concentration: about 0.1 to about 10 mg / l).
  • Salts of Hg, Ni, Sb, Sn, Zn, Ag, Cu, Co, Cd are also possible, Ag and Cu being preferred in addition to Pb.
  • reaction products by methionine-gamma-lyase catalyzed reactions can be carried out by one of the above-mentioned detection agents or z.
  • the enzyme activity of the METase is measured indirectly, for example, by converting ⁇ -ketobutyrate and NADH 2 to 2-hydroxybutyrate and NAD + in a photometer at 340 nm (absorption maximum of NADH 2 ) by reducing the absorbance.
  • Further subjects of the present invention are cloning vectors and expression vectors which contain nucleic acids isolated or synthesized according to the invention.
  • Another object of the present invention is a test kit for finding effective substances against halitosis, gingivitis or periodontitis, which comprises means for performing the method according to the invention.
  • Another object of the present invention is the use of methionine gamma lyases (METase) to find effective substances against halitosis, gingivitis or periodontitis;
  • METase methionine gamma lyases
  • Another object of the present invention is a test method for detecting the effectiveness of substances against halitosis gingivitis or periodontitis, which is characterized in that a) a nucleic acid coding for a methionine gamma lyase is isolated from a pro- or eukaryotic organism or in synthesized in vitro, b) the nucleic acid coding for a methionine-gamma-lyase and cloned and expressed in suitable host cells or the methionine-gamma-lyase synthesized in vitro, c) the methionine-gamma-lyase-expressing host cells in spatially separated approaches in the presence of a Cultivated sulfur source and a suitable detection agent for reaction products by reactions catalyzed by methionine-gamma-lyase or; the methionine gamma lyase is introduced into an in vitro test system in spatially separated batches in the presence of me
  • Another object of the present invention is a method for producing a pharmaceutical preparation for halitosis, gingivitis or periodontitis, which is characterized in that a) active ingredients (inhibitors of METase) are determined with the aid of the screening method according to the invention or the use according to the invention and b) active substances found to be effective (inhibitors of METase) are mixed with pharmacologically suitable and compatible carriers.
  • An enzyme preparation of the overexpressed METase protein can be used to release hydrogen sulfide from methionine, methyl mercaptan or cysteine in an industrial application.
  • the advantages of this procedure are the controlled, gentle release of the aggressive, volatile products.
  • An enzymatic process using methionine as a substrate can be used for the structuring treatment of sulfur-containing fibers, e.g. Serve hair, feathers and wool.
  • the resulting free SH group is used to open the disulfide bridges stabilizing the tertiary structure of the protein fiber and can e.g. serve as a substitute for the use of thioglycolic acid.
  • Another object of the present invention is therefore the use of one of the above-mentioned METases, in particular a METase, the amino acid sequence of which with the in Seq. 1 (METASE from Treponema denticola) specified amino acid sequence corresponds to at least 50%, preferably at least 70%, in particular at least 80%, particularly preferably at least 90% and very particularly preferably 100%, for the structuring treatment of sulfur-containing fibers, such as e.g. Hair, feathers and wool.
  • METASE from Treponema denticola the amino acid sequence of which with the in Seq. 1 (METASE from Treponema denticola) specified amino acid sequence corresponds to at least 50%, preferably at least 70%, in particular at least 80%, particularly preferably at least 90% and very particularly preferably 100%, for the structuring treatment of sulfur-containing fibers, such as e.g. Hair, feathers and wool.
  • a METase protein can be used to desulfurize a sulfur-containing protein, e.g. B. a cosmetic raw material can be used.
  • Another object of the present invention is thus the use of one of the above-mentioned METases, in particular a METase, the amino acid sequence of which with the in Seq. 1 (METASE from Treponema denticola) specified amino acid sequence corresponds to at least 50%, preferably at least 70%, in particular at least 80%, particularly preferably at least 90% and very particularly preferably 100%, for the desulfurization of a sulfur-containing protein, for. B. a cosmetic raw material.
  • METASE from Treponema denticola the amino acid sequence of which with the in Seq. 1 (METASE from Treponema denticola) specified amino acid sequence corresponds to at least 50%, preferably at least 70%, in particular at least 80%, particularly preferably at least 90% and very particularly preferably 100%, for the desulfurization of a sulfur-containing protein, for. B. a cosmetic raw material.
  • cysteine and methionine can be generated in a synthesis process by reversing the enzymatic reaction (expediently under high pressure) using gaseous hydrogen sulfide or methyl mercaptan and ammonia from pyruvate or a-ketobutyrate.
  • methionine As an additive for animal feed, methionine is of considerable technical importance and is produced in complex processes.
  • Another object of the present invention is consequently the use of one of the abovementioned METases, in particular a METase, the amino acid sequence of which corresponds to that in Seq. 1 (METASE from Treponema denticola) specified amino acid sequence corresponds to at least 50%, preferably at least 70%, in particular at least 80%, particularly preferably at least 90% and very particularly preferably 100%, for the synthesis of the amino acids cysteine and methionine.
  • METASE from Treponema denticola specified amino acid sequence corresponds to at least 50%, preferably at least 70%, in particular at least 80%, particularly preferably at least 90% and very particularly preferably 100%, for the synthesis of the amino acids cysteine and methionine.
  • Example 1 heterologous expression of the mgll gene from T. denticola
  • the coding sequence of the mgll gene (METase gene) from T. denticola was amplified using PCR using database comparisons and cloned into a commercially available vector (pGEM-TEasy, Promega). Expression in E. coli can be used for screening for active substances according to the invention as follows:
  • the E. co // cells transformed with the vector containing the mgl1 gene are grown on solid nutrient media (for example LB medium, 1% tryptone, 0.5% yeast extract, 0.5% NaCl, 1-2% agar) ,
  • solid nutrient media for example LB medium, 1% tryptone, 0.5% yeast extract, 0.5% NaCl, 1-2% agar
  • a sulfur source methionine; preferred concentration: 350 mg / l, furthest concentration: 50-1000 mg / l
  • a heavy metal salt which precipitates as a poorly soluble compound with sulfide ions
  • lead acetate was added to the medium (preferred concentration: 4 mg / l broadest concentration: 0.1-10 mg / l).
  • the bacteria are grown at 37 ° C. for 2-7 days (preferably 3 days) under anaerobic conditions in petri dishes or multiwell plates. Aerobic incubation is also possible, but requires incubation periods of 5-10 days.
  • the inhibitory effect of the substance to be tested is evident from the lack of blackening of the colonies.
  • the advantage here is that a growth-inhibiting property of the substance can be checked at the same time, since the expression of the mgll gene alone has no influence on the growth.
  • the mgf / gene from T. denticola is provided at the 5 'end with a sequence which codes for six histidine residues and is constitutive in an expression vector expressed promoter cloned (pGEM).
  • pGEM expression vector expressed promoter cloned
  • the culture is centrifuged off, resuspended in 1 ml of lysis buffer (50 mM NaH 2 PO 4 ; 300 mM NaCl; 10 mM imidazole; pH 8) and frozen at -70 ° C. at least overnight.
  • the digestion takes place after addition of lysozyme (final concentration 1 mg / ml) and an incubation step of 30 min. on ice under native conditions using ultrasound (in total 2 min. with 5 sec. pulses and 5 sec. pause). The lysate is kept for 20-30 min. Centrifuged at 13,000 rpm and 600 ⁇ l of the supernatant purified on a Ni-NTA column (Qiagen) according to the manufacturer's instructions.
  • 10-100 ⁇ g (1-1000 ⁇ g) of the purified enzyme are dissolved in 50 mM Tris-HCl buffer (pH 7 (6-8)) together with 100 mM methionine (10-1000 mM), 2 mM (1-10 mM) NADH, 100 ⁇ M pyridoxal phosphate and 10U lactate dehydrogenase (Röche, preferably from cardiac muscle cells, isoenzyme LDH-1) or hydroxybutyrate dehydrogenase (TEso Diagnostics) incubated at 25 ° C (in Eppendorf tubes or microtiter plates).
  • the enzyme activity of the METase can be measured indirectly by converting 2-oxobutyrate and NADH2 to 2-hydroxybutyrate and NAD + in a photometer at 340 nm (absorption maximum of NADH 2 ) by decreasing the absorbance.
  • the conversion in cuvettes can also be measured under direct observation in the photometer. Incubation time 10-30 min at 25 ° C.
  • Another method for determining the enzyme activity is the reaction of the methyl mercaptan formed with 5,5'-dithio-bis-2-nitrobenzoic acid (DTNB; Sigma Aldrich).
  • DTNB 5,5'-dithio-bis-2-nitrobenzoic acid
  • the batch of the enzyme assay described above is mixed with DTNB (final concentration 0.1 mM) in the cuvette and the conversion to an aryl mercaptan is monitored photometrically at 412 nm.
  • substances can be tested for their inhibitory effect on the METase.
  • a control in which the substance is tested for its inhibitory effect on LDH is important.
  • the above experiment is carried out without methionine and METase, but in the presence of 2 mM pyruvate. Any inhibitory effects can be eliminated by adding Na 2 S ⁇ 3 .
  • accession number is also given for some of the genes or gene products listed below.
  • the respective genes or gene products are disclosed in the database of the National Center for Biotechnology Information (NCBI) under their UniGene Accession Number. This database is accessible on the Internet at the following address: http://www.ncbi.nlm.nih.gov/.
  • the genes or gene products are also available at http://www.ncbi.nlm.nih.gov/UniGene/Hs.Home.html or http://www.ncbi.nlm.nih.gov/genome/ guide directly accessible.
  • Seq.3 (METase, Pseudomonas putida): MHGSNKLPGFATRAIHHGYDPQDHGGALVPPVYQTATFTFPTVEYGAACFAGEQAGHFYSR ISNPTLNLLEARMASLEGGEAGLALASGMGAITSTLWTLLRPGDEVLLGNTLYGCTFAFLH HGIGEFGVKLRHVDMADLQALEAAMTPATRVIYFESPANPNMHMADIAGVAKIARKHGATV VVDNTYCTPYLQRPLELGADLWHSATKYLSGHGDITAGIVVGSQALVDRIRLQGLKDMTG AVLSPHDAALLMRGIKTLNLRMDRHCANAQVLAEFLARQPQVELIHYPGLASFPQYTLARQ QMSQPGGMIAFELKGGIGAGRRFMNALQLFSRAVSLGDAESLAQHPASMTHSSYTPEERAH YGISEGLVRLSVGLEDIDDLLADVQQALKASA

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention relates to a screening method for identifying substances acting against halitosis, gingivitis or parodontitis, test-kits for locating substances acting against halitosis, gingivitis or parodontitis, the use of methionine-gamma-lyase (METase) for locating substances acting against halitosis, gingivitis or parodontitis. The invention also relates to a test method for detecting the effectiveness of substances acting against halitosis, gingivitis or parodontitis and to a method for producing a pharmaceutical preparation against halitosis, gingivitis or parodontitis.

Description

Screening-Verfahren zur Identifikation wirksamer Substanzen gegen Halitosis, Gingivitis oder Parodontitis Screening procedure for the identification of effective substances against halitosis, gingivitis or periodontitis
Die vorliegende Erfindung betrifft ein Screening-Verfahren zur Identifikation wirksamer Substanzen gegen Halitosis, Gingivitis oder Parodontitis, Test-Kits zum Auffinden wirksamer Substanzen gegen Halitosis, Gingivitis oder Parodontitis, die Verwendung von Methionin-Gamma-Lyasen (METase) zum Auffinden wirksamer Substanzen gegen Halitosis, Gingivitis oder Parodontitis; ferner ein Testverfahren zum Nachweis der Wirksamkeit von Substanzen gegen Halitosis, Gingivitis oder Parodontitis sowie ein Verfahren zur Herstellung einer pharmazeutischen Zubereitung gegen Halitosis, Gingivitis oder Parodontitis.The present invention relates to a screening method for identifying active substances against halitosis, gingivitis or periodontitis, test kits for finding active substances against halitosis, gingivitis or periodontitis, the use of methionine gamma-lyases (METase) for finding active substances against halitosis , Gingivitis or periodontitis; furthermore a test method for proving the effectiveness of substances against halitosis, gingivitis or periodontitis and a method for producing a pharmaceutical preparation for halitosis, gingivitis or periodontitis.
Mundgeruch, auch Halitosis oder "Foetor ex ore" genannt, kann verschiedene Ursachen haben. Bei gesunden Menschen wird Mundgeruch jedoch in den meisten Fällen durch Bakterien im Mund- bzw. Rachenraum hervorgerufen, die Körperzellen oder Nahrungsreste verstoffwechseln, wobei als Abbauprodukte von Proteinen u. a. flüchtige Schwefelverbindungen ("volatile sulfur compounds", VSC) entstehen, die für den üblen Geruch verantwortlich gemacht werden.Bad breath, also called halitosis or "foetor ex ore", can have different causes. In healthy people, however, bad breath is in most cases caused by bacteria in the mouth or throat that metabolize body cells or food residues, whereby as a breakdown products of proteins u. a. Volatile sulfur compounds (VSC) are created, which are held responsible for the bad smell.
Diese Schwefelverbindungen sind insbesondere: H2S = Schwefelwasserstoff (zu etwa 30%), OH3-S-H = Methylmercaptan (zu etwa 60 %) und CH3-S-CH3 = Dime- thylsulfid (zu etwa 10 %).These sulfur compounds are in particular: H 2 S = hydrogen sulfide (about 30%), OH3-SH = methyl mercaptan (about 60%) and CH3-S-CH3 = dimethyl sulfide (about 10%).
Die flüchtigen Schwefelverbindungen sind teilweise sehr aggressiv und können das Zahnfleisch und die Mundschleimhaut schädigen. So ist beispielsweise aus Ng W, Tonzetich J.; "Effect of hydrogen sulfide and methyl mercaptan on the per- meability of oral mucosa"; J Dent Res. 1984 Jul;63(7):994-7; bekannt, daß Schwefelwasserstoff und Methylmercaptan die Durchlässigkeit der Mundschleimhaut erhöhen und so Zahnfleischerkrankungen Vorschub leisten können.The volatile sulfur compounds are sometimes very aggressive and can damage the gums and the oral mucosa. For example, Ng W, Tonzetich J .; "Effect of hydrogen sulfide and methyl mercaptan on the permeability of oral mucosa"; J Dent Res. 1984 Jul; 63 (7): 994-7; It is known that hydrogen sulfide and methyl mercaptan increase the permeability of the oral mucosa and can thus promote gum disease.
Zahnfleischerkrankungen stellen einen hohen Risikofaktor für die Gesundheit dar. Nach Untersuchungen der Weltgesundheitsorganisation (WHO) leiden über 50% der erwachsenen Bundesbürger an dringend behandlungsbedürftigen Parodonto- pathien.Gum disease is a high risk factor for health. According to studies by the World Health Organization (WHO), over 50% suffer of adult Germans with periodontal diseases that require urgent treatment.
Zahnfleischerkrankungen werden im Volksmund oft 'Parodontose' genannt. Dieser Ausdruck ist nicht korrekt, da die Endung "-ose" einen normalen, altersbedingten Rückgang eines Organs beschreibt. Richtig sind die Ausdrücke "Parodontitis" oder auch "entzündliche Parodontopathie".Gum disease is popularly called 'periodontitis'. This expression is incorrect because the ending "-ose" describes a normal, age-related decline in an organ. The terms "periodontitis" or "inflammatory periodontopathy" are correct.
Sie ist neben der Karies die weit verbreiteste Erkrankung der Mundhöhle und tritt hauptsächlich bei Erwachsenen auf.In addition to caries, it is the most widespread oral disease and mainly occurs in adults.
Unter Parodontitis versteht man eine durch Bakterien hervorgerufene entzündliche Veränderung des den Zahn umgebenden Gewebes, besonders des Kieferknochens. Eine Parodontitis (= mit Beteiligung der Zahnfleischtaschen und des Knochens) entwickelt sich immer aus einer Zahnfleischentzündung (Gingivitis) und befällt zuerst die der Reinigung am schlechtesten zugänglichen Zahnzwischenräume. Die sich in der Zahnfleischtasche befindlichen Bakterien wirken durch ihre Stoffwechselprodukte, insbesondere durch die von Ihnen produzierten VSC, destruktiv auf Zahnfleisch, Zahnsubstanz und Knochen ein und verstärken so ständig die bereits bestehende Parodontitis.Periodontitis is an inflammatory change in the tissue surrounding the tooth, especially the jawbone, caused by bacteria. Periodontitis (= with involvement of the gum pockets and bone) always develops from gingivitis and first affects the interdental spaces that are most difficult to clean. The bacteria in the gum pocket have a destructive effect on the gums, tooth structure and bones through their metabolic products, in particular through the VSC you produce, thus constantly increasing the existing periodontitis.
Dieses gesundheitliche Problem ist sehr weit verbreitet: Untersuchungen zeigen, daß etwa ab dem 35. Lebensjahr mehr Zähne durch Parodontopathien (Zahnfleischerkrankungen) als durch Karies verloren gehen.This health problem is very widespread: Studies show that more teeth are lost through periodontal disease (gum disease) than from tooth decay from around the age of 35.
Yoshimura M, Nakano Y, Yamashita Y, Oho T, Saito T und Koga T. beschreiben in "Formation of methyl mercaptan from L-methionine by Porphyromonas gingiva- lis"; Infect Immun. 2000 Dec;68(12):6912-6; eine L-Methionine-alpha-deamino- gamma-Mercaptomethan-Lyase (METase) aus P. gingivalis, die große Mengen Methylmercaptan produziert.Yoshimura M, Nakano Y, Yamashita Y, Oho T, Saito T and Koga T. describe in "Formation of methyl mercaptan from L-methionine by Porphyromonas gingivalis"; Infect immune. 2000 Dec; 68 (12): 6912-6; an L-methionine-alpha-deamino-gamma-mercaptomethane lyase (METase) from P. gingivalis, which produces large amounts of methyl mercaptan.
METase aus Bakterien der Mundhöhle wurde allerdings bislang nicht im Zusammenhang mit Halitosis beschrieben, wie der Publikation von Yoshimura M, Nakano Y und Koga T; "L-Methionine-gamma-lyase, as a target to inhibit malodorous bac- terial growth by trifluoromethionine"; Biochem Biophys Res Commun. 2002 Apr 12;292(4):964-8; Seite 964, rechte Spalte, erster Absatz; zu entnehmen ist.However, METase from bacteria in the oral cavity has not been described in connection with halitosis, such as the publication by Yoshimura M, Nakano Y and Koga T; "L-methionine-gamma-lyase, as a target to inhibit malodorous bac- terial growth by trifluoromethionine "; Biochem Biophys Res Commun. 2002 Apr 12; 292 (4): 964-8; Page 964, right column, first paragraph;
Die Diagnose des Mundgeruchs erfolgt üblicherweise durch Bakterienkulturen, Sulfidnachweismethoden und organoleptische Methoden (Riechen), oder durch Meßgeräte, wie das im Internet unter http://www.halithose.de/halimtr.htm (Stand 16.12.2002) beschriebene "Halimeter®".The diagnosis of bad breath is usually carried out by bacterial cultures, sulfide detection methods and organoleptic methods (smelling), or by measuring devices such as the "Halimeter ® " described on the Internet at http://www.halithose.de/halimtr.htm (as of December 16, 2002) ,
Bislang wurde meistens versucht, Halitosis, Gingivitis oder Parodontitis durch bakterizide Wirkstoffe zu bekämpfen, die jedoch teilweise starke Nebenwirkungen haben. Ein anderer Ansatz sieht vor, die VSCs mithilfe von zinkhaltigen Verbindungen zu entfernen. Letzteres Verfahren hat allerdings allenfalls eine kurzfristige Abnahme der Geruchsbildung zur Folge und beugt Gingivitis oder Parodontitis nicht vor.So far, attempts have usually been made to combat halitosis, gingivitis or periodontitis using bactericidal active ingredients, although some of these have strong side effects. Another approach involves removing the VSCs using zinc-containing compounds. However, the latter procedure results in a short-term decrease in odor formation and does not prevent gingivitis or periodontitis.
Es besteht daher ein erheblicher Bedarf an der Bereitstellung neuer Wirkstoffe gegen Halitosis, Gingivitis oder Parodontitis.There is therefore a considerable need to provide new active substances against halitosis, gingivitis or periodontitis.
Überraschenderweise wurde gefunden, daß Methionin-Gamma-Lyasen (METa- sen), insbesondere eine Methionin-Gamma-Lyase aus Treponema denticola, vorteilhaft eingesetzt werden können, um neue Wirkstoffe gegen Halitosis, Gingivitis oder Parodontitis aufzufinden.Surprisingly, it was found that methionine gamma lyases (METases), in particular a methionine gamma lyase from Treponema denticola, can advantageously be used to find new active substances against halitosis, gingivitis or periodontitis.
Gegenstand der vorliegenden Erfindung ist daher ein Screening-Verfahren zur Identifikation wirksamer Substanzen gegen Halitosis, Gingivitis oder Parodontitis, das dadurch gekennzeichnet ist, daß man a) eine für eine Methionin-Gamma-Lyase codierende Nukleinsäure aus einem pro- oder eukaryotischen Organismus isoliert oder in vitro synthetisiert, b) die für eine Methionin-Gamma-Lyase codierende Nukleinsäure kloniert und in geeigneten Wirtszellen exprimiert oder die Methionin-Gamma-Lyase in vitro synthetisiert, c) die Methionin-Gamma-Lyase exprimierenden Wirtszellen in voneinander räumlich getrennten Ansätzen in Gegenwart einer Schwefelquelle und eines geeig- neten Nachweisagens für Reaktionsprodukte durch Methionin-Gamma-Lyase katalysierter Reaktionen kultiviert; oder die Methionin-Gamma-Lyase in voneinander räumlich getrennten Ansätzen in Gegenwart von Methionin, Cystein oder Glutathion in ein in vitro Testsystem einbringt, d) die Ansätze mit möglicherweise die Funktion der Methionin-Gamma-Lyase hemmenden Substanzen versetzt, e) für jeden der voneinander räumlich getrennten Ansätze die Bildung von Reaktionsprodukten durch Methionin-Gamma-Lyase katalysierter Reaktionen bestimmt und so wirksame Substanzen gegen Halitosis, Gingivitis oder Parodontitis identifiziertThe present invention therefore relates to a screening method for identifying active substances against halitosis, gingivitis or periodontitis, which is characterized in that a) a nucleic acid coding for a methionine gamma lyase is isolated from a pro- or eukaryotic organism or in synthesized in vitro, b) the nucleic acid coding for a methionine gamma lyase and cloned and expressed in suitable host cells or the methionine gamma lyase synthesized in vitro, c) the methionine gamma lyase expressing host cells in spatially separated approaches in the presence of a Sulfur source and a suitable neten detection agent for reaction products cultivated by reactions catalyzed by methionine gamma-lyase; or the methionine-gamma-lyase is introduced into an in vitro test system in spatially separated batches in the presence of methionine, cysteine or glutathione, d) the batches are mixed with substances which possibly inhibit the function of the methionine-gamma-lyase, e) for each of the spatially separated approaches determine the formation of reaction products by reactions catalyzed by methionine-gamma-lyase and thus identify active substances against halitosis, gingivitis or periodontitis
Vorteilhafterweise ermöglicht das erfindungsgemäße Screening-Verfahren, wenn es mit Methionin-Gamma-Lyase produzierenden bakteriellen Wirtszellen durchgeführt wird, Substanzen zu identifizieren, die die VSC-Bildung verhindern, όhneTälie im Mundraum vorhandenen Mikroorganismen abzutöten. Man verwirft hierzu alle Substanzen, die zwar die Bildung von VSC inhibieren, gleichzeitig aber die bakterielle Wirtszelle abtöten.Advantageously, the screening method according to the invention, when carried out with bacterial host cells producing methionine gamma-lyase, makes it possible to identify substances which prevent VSC formation, without microorganisms present in the oral cavity, without thieves. For this purpose, all substances are discarded which inhibit the formation of VSC, but at the same time kill the bacterial host cell.
So können Nebenwirkungsfreie oder zumindest nebenwirkungsarme Wirkstoffe aufgefunden werden, die die natürliche und nützliche Keimbesiedelung der Mundhöhle nicht beschädigen.In this way, side effects that are free of side effects or at least have few side effects can be found that do not damage the natural and useful bacterial colonization of the oral cavity.
Methionin-γ-Lyasen (METasen) gehören zu einer Enzymfamilie, die in Pro- und Eukaryonten (nicht jedoch in Säugern) vorkommen und die Umsetzung von Methionin zu Ammoniak, 2-Oxobutyrat und Methylmercaptan katalysieren. Als Cofaktor ist Pyridoxalphosphat notwendig, das an einer konservierten Region mit der Konsensussequenz [DQ]-[LIMVF]-X(3)-[STAGC]-[STAGCI]-T-K-[FYWQ]-[LIVMF]-X-G- [HQ]-[SGNH] bindet, wobei K als Pyridoxalphosphat-Bindestelle fungiert. X bezeichnet dabei beliebige Aminosäuren, während die in Klammern gesetzten Aminosäuren jeweils die für diese Position mögliche Alternativen beschreiben, d.h. [DQ] bedeutet, dass an dieser Position der Konsensussequenz entweder D oder Q stehen kann. Die METasen aus dem Protozoon Trichomonas vaginalis und den Bakterien Pseudomonas putida und Porphyromonas gingivalis wurden bereits beschrieben und charakterisiert. Für Fusobacterium nucleatum wurde durch die Annotation des Genoms das METase-Gen identifiziert.Methionine-γ-lyases (METases) belong to an enzyme family that occur in pro and eukaryotes (but not in mammals) and catalyze the conversion of methionine to ammonia, 2-oxobutyrate and methyl mercaptan. Pyridoxal phosphate is required as a cofactor, which on a conserved region with the consensus sequence [DQ] - [LIMVF] -X (3) - [STAGC] - [STAGCI] -TK- [FYWQ] - [LIVMF] -XG- [HQ] - [SGNH] binds, where K acts as a pyridoxal phosphate binding site. X denotes any amino acids, while the amino acids in brackets describe the possible alternatives for this position, ie [DQ] means that either D or Q can be at this position in the consensus sequence. The METases from the protozoon Trichomonas vaginalis and the bacteria Pseudomonas putida and Porphyromonas gingivalis have already been identified described and characterized. For Fusobacterium nucleatum, the annotation of the genome identified the METase gene.
Der Anmelderin ist es gelungen, die für das METase-Protein kodierende Sequenz des oralen Bakteriums Treponema denticola aufzuklären und damit erstmals zu zeigen, dass METasen auch in Spirochaeten vorkommen.The applicant has succeeded in elucidating the sequence of the oral bacterium Treponema denticola coding for the METase protein and thus showing for the first time that METases also occur in spirochetes.
Die Basensequenz des mgll-Gens aus T. denticola ist zu 64,5% identisch mit der Sequenz aus P. gingivalis und beinhaltet die Pyridoxal-Phosphat Binderegion, die allerdings im Unterschied zu den anderen Mgl-Proteinen an Pos. 209 ein Leu statt eines Val aufweist (CLUSTALW-Alignment):The base sequence of the mgll gene from T. denticola is 64.5% identical to the sequence from P. gingivalis and contains the pyridoxal phosphate binding region, which, in contrast to the other Mgl proteins at position 209, is a Leu instead of one Val has (CLUSTALW alignment):
Besonders interessant ist in diesem Zusammenhang der Austausch von Glu zu Thr an Pos 320, das auf eine zusätzliche Phosphorylierungsstelle in dem Mgl- Protein aus T.denticola hinweisen könnte, die möglicherweise als Target für einen spezifischen Hemmstoff dienen kann.Of particular interest in this context is the exchange of Glu to Thr at position 320, which could indicate an additional phosphorylation site in the Mgl protein from T.denticola, which may possibly serve as a target for a specific inhibitor.
Im folgenden bedeutet ein Ausdruck der Form "mindestens X %" "X % bis 100 % (einschließlich der Eckwerte X und 100 und aller ganzzahligen und nicht ganzzahligen Prozentwerte dazwischen)".In the following, an expression of the form "at least X%" means "X% to 100% (including the basic values X and 100 and all integer and non-integer percentage values in between)".
Unter einem Protein ist im Sinne der vorliegenden Anmeldung ein aus den natürlichen Aminosäuren zusammengesetztes, weitgehend linear aufgebautes, zur Ausübung seiner Funktion zumeist dreidimensionale Struktur annehmendes Polymer zu verstehen. In der vorliegenden Anmeldung werden die 19 proteinogenen, natürlich vorkommenden L-Aminosäuren mit den international gebräuchlichen 1- und 3- Buchstaben-Codes bezeichnet.For the purposes of the present application, a protein is to be understood as a polymer which is composed of the natural amino acids and has a largely linear structure and usually assumes a three-dimensional structure to perform its function. In the present application, the 19 proteinogenic, naturally occurring L-amino acids are designated with the internationally used 1- and 3-letter codes.
Unter einem Enzym ist im Sinne der vorliegenden Anmeldung ein Protein zu verstehen, das eine bestimmte biochemische Funktion ausübt. Unter Methionin- Gamma-Lyasen sind Proteine zu verstehen, die die Umsetzung von Methionin zu Ammoniak, 2-Oxobutyrat und Methylmercaptan katalysieren. Zahlreiche Proteine werden als sogenannte Präproteine, also zusammen mit einem Signalpeptid gebildet. Darunter ist dann der N-terminale Teil des Proteins zu verstehen, dessen Funktion zumeist darin besteht, die Ausschleusung des gebildeten Proteins aus der produzierenden Zelle in das Periplasma oder das umgebende Medium und/oder dessen korrekte Faltung zu gewährleisten. Anschließend wird das Signalpeptid unter natürlichen Bedigungen durch eine Signalpeptidase vom übrigen Protein abgespalten, so daß dieses seine eigentliche katalytische Aktivität ohne die zunächst vorhandenen N-terminalen Aminosäuren ausübt.For the purposes of the present application, an enzyme is to be understood as a protein which has a specific biochemical function. Methionine gamma lyases are proteins that catalyze the conversion of methionine to ammonia, 2-oxobutyrate and methyl mercaptan. Numerous proteins are formed as so-called pre-proteins, i.e. together with a signal peptide. This is to be understood as the N-terminal part of the protein, the function of which mostly consists in ensuring that the protein formed is discharged from the producing cell into the periplasm or the surrounding medium and / or that it is correctly folded. Subsequently, the signal peptide is split off from the rest of the protein under natural conditions by a signal peptidase, so that this exerts its actual catalytic activity without the N-terminal amino acids initially present.
Für technische Anwendungen sind aufgrund ihrer enzymatischen Aktivität die maturen Peptide, das heißt die nach ihrer Herstellung prozessierten Enzyme gegenüber den Präproteinen bevorzugt.Due to their enzymatic activity, the mature peptides, that is to say the enzymes processed after their production, are preferred over the pre-proteins for technical applications.
Pro-Proteine sind inaktive Vorstufen von Proteinen. Deren Vorläufer mit Signalsequenz werden als Prä-Pro-Proteine bezeichnet.Pro-proteins are inactive precursors to proteins. Their precursors with signal sequences are called pre-pro proteins.
Unter Nukleinsäuren sind im Sinne der vorliegenden Anmeldung die natürlicherweise aus Nukleotiden aufgebauten als Informationsträger dienenden Moleküle zu verstehen, die für die lineare Aminosäureabfolge in Proteinen oder Enzymen codieren. Sie können als Einzelstrang, als ein zu diesem Einzelstrang komplementärer Einzelstrang oder als Doppelstrang vorliegen. Als der natürlicherweise dauerhaftere Informationsträger ist die Nukleinsäure DNA für molekularbiologische Arbeiten bevorzugt. Demgegenüber wird für die Realisierung der Erfindung in natürlicher Umgebung, wie beispielsweise in einer exprimierenden Zelle, eine RNA gebildet, weshalb erfindungswesentliche RNA-Moleküle ebenfalls Ausführungsformen der vorliegenden Erfindung darstellen.For the purposes of the present application, nucleic acids are understood to mean the molecules which are naturally built up from nucleotides and serve as information carriers and which code for the linear amino acid sequence in proteins or enzymes. They can be present as a single strand, as a single strand complementary to this single strand or as a double strand. As the naturally more permanent information carrier, the nucleic acid DNA is preferred for molecular biological work. In contrast, an RNA is formed for the implementation of the invention in a natural environment, such as, for example, in an expressing cell, which is why RNA molecules essential to the invention also represent embodiments of the present invention.
Bei DNA sind die Sequenzen beider komplementärer Stränge in jeweils allen drei möglichen Leserastern zu berücksichtigen. Ferner ist zu berücksichtigen, daß verschiedene Codon-Triplets für dieselben Aminosäuren codieren können, so daß eine bestimmte Aminosäure-Abfolge von mehreren unterschiedlichen und möglicherweise nur geringe Identität aufweisenden Nukleotidsequenzen abgeleitet werden kann (Degeneriertheit des genetischen Codes). Außerdem weisen ver- schiedene Organismen Unterschiede im Gebrauch dieser Codons auf. Aus diesen Gründen müssen sowohl Aminosäuresequenzen als auch Nukleotidsequenzen in die Betrachtung des Schutzbereichs einbezogen werden und angegebene Nukleotidsequenzen sind jeweils nur als eine beispielhafte Codierung für eine bestimmte Aminosäurefolge anzusehen.In DNA, the sequences of both complementary strands must be taken into account in all three possible reading frames. It should also be taken into account that different codon triplets can code for the same amino acids, so that a certain amino acid sequence can be derived from several different and possibly only slightly identical nucleotide sequences (degeneracy of the genetic code). In addition, different organisms show differences in the use of these codons. For these reasons, both amino acid sequences and nucleotide sequences have to be included in the consideration of the protected area, and specified nucleotide sequences are only to be regarded as exemplary coding for a specific amino acid sequence.
Die einem Protein entsprechende Informationseinheit wird auch im Sinne der vorliegenden Anmeldung als Gen bezeichnet.The information unit corresponding to a protein is also referred to as a gene in the sense of the present application.
Das erfindungsgemäße Verfahren umfaßt die Herstellung rekombinanter Proteine. Hierunter sind erfindungsgemäß alle gentechnischen oder mikrobiologischen Verfahren zu verstehen, die darauf beruhen, daß die Gene für die interessierenden Proteine in einen für die Produktion geeigneten Wirtsorganismus eingebracht und von diesem transkribiert und translatiert werden. Geeigneterweise erfolgt die Einschleusung der betreffenden Gene über Vektoren, insbesondere Expressionsvektoren; aber auch über solche, die bewirken, daß das interessierende Gen im Wirtsorganismus in ein bereits vorhandenes genetisches Element wie das Chromosom oder andere Vektoren eingefügt werden kann. Die funktioneile Einheit aus Gen und Promotor und eventuellen weiteren gegentischen Elementen wird erfindungsgemäß als Expressionskassette bezeichnet. Sie muß dafür jedoch nicht notwendigerweise auch als physische Einheit vorliegen.The method according to the invention comprises the production of recombinant proteins. According to the invention, this includes all genetic engineering or microbiological processes which are based on the genes for the proteins of interest being introduced into a host organism suitable for production and being transcribed and translated by the latter. The genes in question are suitably introduced via vectors, in particular expression vectors; but also via those that cause the gene of interest in the host organism to be inserted into an existing genetic element such as the chromosome or other vectors. According to the invention, the functional unit consisting of gene and promoter and any further counterent elements is referred to as an expression cassette. However, it does not necessarily have to be a physical unit.
Einem Fachmann ist es über heutzutage allgemein bekannte Methoden, wie beispielsweise die chemische Synthese oder die Polymerase-Kettenreaktion (PCR) in Verbindung mit molekularbiologischen und/oder proteinchemischen Standardmethoden möglich, anhand bekannter DNA- und/oder Aminosäuresequenzen die entsprechenden Nukleinsäuren bis hin zu vollständigen Genen herzustellen. Derartige Methoden sind beispielsweise aus dem "Lexikon der Biochemie", Spektrum Akademischer Verlag, Berlin, 1999, Band 1, S. 267-271 und Band 2, S. 227-229, bekannt.It is possible for a person skilled in the art to use methods which are generally known today, such as chemical synthesis or the polymerase chain reaction (PCR) in conjunction with standard molecular biological and / or protein chemical methods, using known DNA and / or amino acid sequences to determine the corresponding nucleic acids up to complete genes manufacture. Such methods are known, for example, from the "Lexicon of Biochemistry", Spektrum Akademischer Verlag, Berlin, 1999, Volume 1, pp. 267-271 and Volume 2, pp. 227-229.
Änderungen der Nukleotidsequenz, wie sie beispielsweise durch an sich bekannte molekularbiologische Methoden herbeigeführt werden können, werden als Mutati- onen bezeichnet. Je nach Art der Änderung kennt man beispielsweise Deletions-, Insertions- oder Substitutionsmutationen oder solche, bei denen verschiedene Gene oder Teile von Genen miteinander fusioniert (shuffling) werden; dies sind Genmutationen. Die zugehörigen Organismen werden als Mutanten bezeichnet. Die von mutierten Nukleinsäuren abgeleiteten Proteine werden als Varianten bezeichnet. So führen beispielsweise Deletions-, Insertions- Substitutionsmutationen oder Fusionen zu deletions-, insertions- substitutionsmutierten oder Fusionsgenen und auf Proteinebene zu entsprechenden Deletions-, Insertions- oder Substitutionsvarianten, beziehungsweise Fusionsproteinen.Changes in the nucleotide sequence, such as can be brought about, for example, by known molecular biological methods, are called mutations referred to. Depending on the type of change, deletion, insertion or substitution mutations are known, for example, or those in which different genes or parts of genes are fused to one another (shuffling); these are gene mutations. The associated organisms are called mutants. The proteins derived from mutant nucleic acids are called variants. For example, deletion, insertion or substitution mutations or fusions lead to deletion, insertion or substitution mutations or fusion genes and at the protein level to corresponding deletion, insertion or substitution variants or fusion proteins.
Unter Fragmenten werden alle Proteine oder Peptide verstanden, die kleiner sind als natürliche Proteine oder solche, die vollständig translatierten Genen entsprechen, und beispielsweise auch synthetisch erhalten werden können. Aufgrund ihrer Aminosäuresequenzen können sie den betreffenden vollständigen Proteinen zugeordnet werden. Sie können beispielsweise gleiche Strukturen annehmen oder proteolytische Aktivitäten oder Teilaktivitäten ausüben, wie beispielsweise die Komplexierung eines Substrats. Fragmente und Deletionsvarianten von Ausgangsproteinen sind prinzipiell gleichartig; während Fragmente eher kleinere Bruchstücke darstellen, fehlen den Deletionsmutanten eher nur kurze Bereiche, und damit nur einzelne Teilfunktionen.Fragments are understood to mean all proteins or peptides that are smaller than natural proteins or those that correspond to fully translated genes and that can also be obtained synthetically, for example. Based on their amino acid sequences, they can be assigned to the relevant complete proteins. For example, they can take on the same structures or have proteolytic or sub-activities, such as the complexation of a substrate. Fragments and deletion variants of parent proteins are basically the same; while fragments are rather smaller fragments, the deletion mutants tend to lack only short areas, and thus only partial functions.
Den Fragmenten entsprechen auf Nukleinsäure-Ebene die Teilsequenzen.The partial sequences correspond to the fragments at the nucleic acid level.
Unter Chimären oder hybriden Proteinen sind im Sinne der vorliegenden Anmeldung solche Proteine zu verstehen, die aus Elementen zusammengesetzt sind, die natürlicherweise von verschiedenen Polypeptid ketten aus demselben Organismus oder aus verschiedenen Organismen stammen. Dieses Vorgehen wird auch Shuffling oder Fusionsmutagenese genannt. Der Sinn einer solchen Fusion kann beispielsweise darin bestehen, mithilfe des heranfusionierten Proteinteils eine bestimmte enzymatische Funktion herbeizuführen oder zu modifizieren. Es ist dabei im Sinne der vorliegenden Erfindung unwesentlich, ob solch ein chimäres Protein aus einer einzelnen Polypeptid kette oder mehreren Untereinheiten besteht, auf welche sich unterschiedliche Funktionen verteilen können. Zur Realisie- rung der letztgenannten Alternative ist es beispielsweise möglich, posttranslational oder erst nach einem Aufreinigungsschritt durch eine gezielte proteolytische Spaltung eine einzelne chimäre Polypeptid kette in mehrere zu zerlegen.For the purposes of the present application, chimeras or hybrid proteins are understood to mean those proteins which are composed of elements which naturally come from different polypeptide chains from the same organism or from different organisms. This procedure is also called shuffling or fusion mutagenesis. The purpose of such a fusion can, for example, be to bring about or modify a certain enzymatic function with the aid of the fused-in protein part. In the context of the present invention, it is immaterial whether such a chimeric protein consists of a single polypeptide chain or several subunits, over which different functions can be distributed. For realizing tion of the latter alternative, it is possible, for example, to separate a single chimeric polypeptide chain into several post-translationally or only after a purification step by means of a targeted proteolytic cleavage.
Unter durch Insertionsmutation erhaltene Proteinen sind solche Varianten zu verstehen, die über an sich bekannte Methoden durch Einfügen eines Nukleinsäure-, beziehungsweise Proteinfragments in die Ausgangssequenzen erhalten worden sind. Sie sind ihrer prinzipiellen Gleichartigkeit wegen den Chimären Proteinen zuzuordnen. Sie unterscheiden sich von jenen lediglich im Größenverhältnis des unveränderten Proteinteils zur Größe des gesamten Proteins. In solchen inserti- onsmutierten Proteinen ist der Anteil an Fremdprotein geringer als in Chimären Proteinen.Proteins obtained by insertion mutation are to be understood as those variants which have been obtained by methods known per se by inserting a nucleic acid or protein fragment into the starting sequences. Because of their principle similarity, they can be assigned to the chimeric proteins. They differ from those only in the size ratio of the unchanged protein part to the size of the entire protein. The proportion of foreign protein is lower in such insert-mutated proteins than in chimeric proteins.
Inversionsmutagenese, also eine partielle Sequenzumkehrung, kann als Sonderform sowohl der Deletion, als auch der Insertion angesehen werden. Dasselbe gilt für eine von der ursprünglichen Aminosäureabfolge abweichende Neugruppierung verschiedener Molekülteile. Sie kann sowohl als Deletionsvariante, als Insertions- variante, als auch als Shuffling-Variante des ursprünglichen Proteins angesehen werden.Inversion mutagenesis, i.e. a partial reversal of the sequence, can be viewed as a special form of both deletion and insertion. The same applies to a regrouping of different parts of the molecule that deviates from the original amino acid sequence. It can be viewed both as a deletion variant, as an insertion variant, and as a shuffling variant of the original protein.
Unter Derivaten werden im Sinne der vorliegenden Anmeldung solche Proteine verstanden, deren reine Aminosäurekette chemisch modifiziert worden ist. Solche Derivatisierungen können beispielsweise biologisch im Zusammenhang mit der Proteinbiosynthese durch den Wirtsorganismus erfolgen. Hierfür können molekularbiologische Methoden eingesetzt werden. Sie können aber auch chemisch durchgeführt werden, etwa durch die chemische Umwandlung einer Seitenkette einer Aminosäure oder durch kovalente Bindung einer anderen Verbindung an das Protein. Bei solch einer Verbindung kann es sich beispielsweise auch um andere Proteine handeln, die beispielsweise über bifunktionelle chemische Verbindungen an erfindungsgemäße Proteine gebunden werden. Derartige Modifizierungen können beispielsweise die Substratspezifität oder die Bindungsstärke an das Substrat beeinflussen oder eine vorübergehende Blockierung der enzymatischen Aktivität herbeiführen, wenn es sich bei der angekoppelten Substanz um einen Inhibitor handelt. Dies kann beispielsweise für den Zeitraum der Lagerung sinnvoll sein. Ebenso ist unter Derivatisierung die kovalente Bindung an einen makromolekularen Träger zu verstehen.For the purposes of the present application, derivatives are understood to mean those proteins whose pure amino acid chain has been chemically modified. Such derivatizations can take place, for example, biologically in connection with protein biosynthesis by the host organism. Molecular biological methods can be used for this. However, they can also be carried out chemically, for example by chemically converting a side chain of an amino acid or by covalently binding another compound to the protein. Such a compound can also be, for example, other proteins which are bound to proteins according to the invention, for example, via bifunctional chemical compounds. Such modifications can, for example, influence the substrate specificity or the binding strength to the substrate or can temporarily block the enzymatic activity if the coupled substance is a Inhibitor acts. This can be useful, for example, for the period of storage. Derivatization should also be understood to mean the covalent bond to a macromolecular carrier.
Proteine können auch über die Reaktion mit einem Antiserum oder einem bestimmten Antikörper zu Gruppen immunologisch verwandter Proteine zusammengefaßt werden. Die Angehörigen einer Gruppe zeichnen sich dadurch aus, daß sie dieselbe, von einem Antikörper erkannte antigene Determinante aufweisen.Proteins can also be grouped into groups of immunologically related proteins by reaction with an antiserum or a specific antibody. The members of a group are distinguished by the fact that they have the same antigenic determinant recognized by an antibody.
Im Sinne der vorliegenden Erfindung werden alle Enzyme, Proteine, Fragmente und Derivate, sofern sie nicht explizit als solche angesprochen zu werden brauchen, unter dem Oberbegriff Proteine zusammengefaßt.For the purposes of the present invention, all enzymes, proteins, fragments and derivatives, unless they need to be explicitly addressed as such, are summarized under the generic term proteins.
Unter Vektoren werden im Sinne der vorliegenden Erfindung aus Nukleinsäuren bestehende Elemente verstanden, die als kennzeichnenden Nukleinsäurebereich ein interessierendes Gen enthalten. Sie vermögen dieses in einer Spezies oder einer Zellinie über mehrere Generationen oder Zellteilungen hinweg als vom übrigen Genom unabhängig replizierendes, stabiles genetisches Element zu etablieren. Vektoren sind insbesondere bei der Verwendung in Bakterien spezielle Plasmide, also zirkuläre genetische Elemente. Man unterscheidet in der Gentechnik einerseits zwischen solchen Vektoren, die der Lagerung und somit gewissermaßen auch der gentechnischen Arbeit dienen, den sogenannten Klonierungsvekto- ren, und andererseits denen, die die Funktion erfülllen, das interessierende Gen in der Wirtszelle zu realisieren, das heißt, die Expression des betreffenden Proteins zu ermöglichen. Diese Vektoren werden als Expressionsvektoren bezeichnet.For the purposes of the present invention, vectors are understood to mean elements consisting of nucleic acids which contain a gene of interest as the characteristic nucleic acid region. They are able to establish this in a species or a cell line over several generations or cell divisions as a stable genetic element that replicates independently of the rest of the genome. Vectors are special plasmids, in particular circular genetic elements, when used in bacteria. In genetic engineering, a distinction is made between those vectors that are used for storage and thus also to a certain extent also for genetic engineering work, the so-called cloning vectors, and those that fulfill the function of realizing the gene of interest in the host cell, that is, the To enable expression of the protein in question. These vectors are called expression vectors.
Durch Vergleich mit bekannten Enzymen, die beispielsweise in allgemein zugänglichen Datenbanken hinterlegt sind, läßt sich aus der Aminosäure- oder Nukleotid- Sequenz die enzymatische Aktivität eines betrachteten Enzyms folgern. Diese kann durch andere Bereiche des Proteins, die nicht an der eigentlichen Reaktion beteiligt sind, qualitativ oder quantitativ modifiziert werden. Dies könnte beispielsweise die Enzymstabilität, die Aktivität, die Reaktionsbedingungen oder die Sub- stratspezifität betreffen. Solch ein Vergleich geschieht dadurch, daß ähnliche Abfolgen in den Nukleotid- oder Aminosäuresequenzen der betrachteten Proteine einander zugeordnet werden. Dies nennt man Homologisierung. Eine tabellarische Zuordnung der betreffenden Positionen wird als Alignment bezeichnet. Bei der Analyse von Nukleotidsequenzen sind wiederum beide komplementären Stränge und jeweils allen drei möglichen Leserastern zu berücksichtigen; ebenso die Degeneriertheit des genetischen Codes und die organismenspezifische Codon-Usage. Inzwischen werden Alignments über Computerprogramme erstellt, wie beispielsweise durch die Algorithmen FASTA oder BLAST; dieses Vorgehen wird beispielsweise von D. J. Lipman und W. R. Pearson (1985) in Science, Band 227, S. 1435-1441 beschrieben.The enzymatic activity of an enzyme under consideration can be deduced from the amino acid or nucleotide sequence by comparison with known enzymes, which are stored, for example, in generally accessible databases. This can be qualitatively or quantitatively modified by other areas of the protein that are not involved in the actual reaction. This could affect, for example, enzyme stability, activity, reaction conditions or substrate specificity. Such a comparison takes place in that similar sequences in the nucleotide or amino acid sequences of the proteins under consideration are assigned to one another. This is called homologation. A tabular assignment of the relevant positions is called alignment. When analyzing nucleotide sequences, both complementary strands and all three possible reading frames must be taken into account; likewise the degeneracy of the genetic code and the organism-specific codon usage. Alignments are now being created using computer programs, such as the FASTA or BLAST algorithms; this procedure is described, for example, by DJ Lipman and WR Pearson (1985) in Science, volume 227, pp. 1435-1441.
Eine Zusammenstellung aller in den verglichenen Sequenzen übereinstimmenden Positionen wird als Konsensus-Sequenz bezeichnet.A compilation of all positions that match in the compared sequences is referred to as a consensus sequence.
Solch ein Vergleich erlaubt auch eine Aussage über die Ähnlichkeit oder Homologie der verglichenen Sequenzen zueinander. Diese wird in Prozent Identität, das heißt dem Anteil der identischen Nukleotide oder Aminosäurereste an denselben Positionen widergegeben. Ein weiter gefaßter Homologiebegriff bezieht die konservierten Aminosäure-Austausche in diesen Wert mit ein. Es ist dann von Prozent Ähnlichkeit die Rede. Solche Aussagen können über ganze Proteine oder Gene oder nur über einzelne Bereiche getroffen werden.Such a comparison also allows a statement to be made about the similarity or homology of the compared sequences to one another. This is expressed in percent identity, that is, the proportion of identical nucleotides or amino acid residues in the same positions. A broader concept of homology includes the conserved amino acid exchanges in this value. The percent similarity is then mentioned. Such statements can be made about entire proteins or genes or only about individual areas.
Die Erstellung eines Alignments ist der erste Schritt zur Definition eines Sequenzraums. Dieser hypothetische Raum umfaßt sämtliche durch Permutation in Einzelpositionen abzuleitenden Sequenzen, die sich unter Berücksichtigung aller in den betreffenden Einzelpositionen des Alignments auftretenden Variationen ergeben. Jedes hypothetisch mögliche Proteinmolekül bildet einen Punkt in diesem Sequenzraum. Beispielsweise begründen zwei Aminosäuresequenzen, die bei weitgehender Identität an lediglich zwei verschiedenen Stellen jeweils zwei verschiedene Aminosäuren aufweisen, somit einen Sequenzraum von vier verschiedenen Aminosäuresequenzen. Ein sehr großer Sequenzraum wird erhalten, wenn zu einzelnen Sequenzen eines Raums jeweils weitere homologe Sequenzen gefunden werden. Über solche, jeweils paarweise bestehenden hohen Homologien können auch sehr niedrig homologe Sequenzen als einem Sequenzraum zugehörig erkannt werden.The creation of an alignment is the first step in defining a sequence space. This hypothetical space encompasses all sequences to be derived by permutation in individual positions, which result taking into account all variations occurring in the relevant individual positions of the alignment. Every hypothetically possible protein molecule forms a point in this sequence space. For example, two amino acid sequences, which, when largely identical, have two different amino acids each at only two different locations, thus establish a sequence space of four different amino acid sequences. A very large sequence space is obtained if too individual sequences of a room, further homologous sequences can be found. Such high homologies, which exist in pairs, can also be used to recognize very low homologous sequences as belonging to a sequence space.
Homologe Bereiche von verschiedenen Proteinen sind solche mit gleichen Funktionen, die sich durch Übereinstimmungen in der primären Aminosäuresequenz erkennen lassen. Sie geht bis zu völligen Identitäten in kleinsten Bereichen, sogenannten Boxen, die nur wenige Aminosäuren umfassen und meist für die Gesamtaktivität essentielle Funktionen ausüben. Unter den Funktionen der homologen Bereiche sind kleinste Teilfunktionen der vom gesamten Protein ausgeübten Funktion zu verstehen, wie beispielsweise die Ausbildung einzelner Wasserstoffbrückenbindungen zur Komplexierung eines Substrats oder Übergangskomplexes.Homologous regions of different proteins are those with the same functions, which can be recognized by matches in the primary amino acid sequence. It goes up to complete identities in the smallest areas, so-called boxes, which contain only a few amino acids and mostly perform functions essential for overall activity. The functions of the homologous areas are to be understood as the smallest sub-functions of the function performed by the entire protein, such as, for example, the formation of individual hydrogen bonds for complexing a substrate or transition complex.
In Schritt b) des erfindungsgemäßen Verfahrens wird die Nukleinsäure geeigneterweise in einen Vektor Moniert. Die molekularbiologische Dimension der Erfindung besteht somit in Vektoren mit den Genen für die entsprechenden Proteine. Dazu können beispielsweise solche gehören, die sich von bakteriellen Plasmiden, von Viren oder von Bacteriophagen ableiten, oder überwiegend synthetische Vektoren oder Plasmide mit Elementen verschiedenster Herkunft. Mit den weiteren jeweils vorhandenen genetischen Elementen vermögen Vektoren, sich in den betreffenden Wirtszellen über mehrere Generationen hinweg als stabile Einheiten zu etablieren. Es ist dabei im Sinne der Erfindung unerheblich, ob sie sich extra- chomosomal als eigene Einheiten etablieren oder in ein Chromosom integrieren. Welches der zahlreichen aus dem Stand der Technik bekannten Systeme gewählt wird, hängt vom Einzelfall ab. Ausschlaggebend können beispielsweise die erreichbare Kopienzahl, die zur Verfügung stehenden Selektionssysteme, darunter vor allem Antibiotikaresistenzen, oder die Kultivierbarkeit der zur Aufnahme der Vektoren befähigten Wirtszellen sein.In step b) of the method according to the invention, the nucleic acid is suitably cloned into a vector. The molecular biological dimension of the invention thus consists of vectors with the genes for the corresponding proteins. These can include, for example, those derived from bacterial plasmids, from viruses or from bacteriophages, or predominantly synthetic vectors or plasmids with elements of various origins. With the other genetic elements present in each case, vectors are able to establish themselves as stable units in the host cells concerned over several generations. It is irrelevant in the sense of the invention whether they establish themselves extrachomosomally as separate units or integrate into a chromosome. Which of the numerous systems known from the prior art is chosen depends on the individual case. Decisive factors are, for example, the number of copies that can be achieved, the selection systems available, including above all antibiotic resistance, or the cultivability of the host cells capable of taking up the vectors.
Die Vektoren bilden geeignete Ausgangspunkte für molekularbiologische und biochemische Untersuchungen des betreffenden Gens oder zugehörigen Proteins und für erfindungsgemäße Weiterentwicklungen und letztlich für die Amplifikation und Produktion erfindungsgemäßer Proteine. Sie stellen insofern Ausführungsformen der vorliegenden Erfindung dar, als die Sequenzen der enthaltenen erfindungsgemäßen Nukleinsäurebereiche jeweils innerhalb der oben näher bezeichneten Homologiebereiche liegen.The vectors form suitable starting points for molecular biological and biochemical investigations of the gene or associated protein in question and for further developments according to the invention and ultimately for amplification and production of proteins according to the invention. They represent embodiments of the present invention in that the sequences of the nucleic acid regions according to the invention contained in each case lie within the homology ranges specified in more detail above.
Bevorzugte Ausführungsformen der vorliegenden Erfindung sind Klonierungsvektoren. Diese eignen sich neben der Lagerung, der biologischen Amplifikation oder der Selektion des interessierenden Gens für die Charakterisierung des betreffenden Gens, etwa über das Erstellen einer Restriktionskarte oder die Sequenzierung. Klonierungsvektoren sind auch deshalb bevorzugte Ausführungsformen der vorliegenden Erfindung, weil sie eine transportierbare und lagerfähige Form der beanspruchten DNA darstellen. Sie sind auch bevorzugte Ausgangspunkte für molekularbiologische Techniken, die nicht an Zellen gebunden sind, wie beispielsweise die Polymerasekettenreaktion.Preferred embodiments of the present invention are cloning vectors. In addition to the storage, the biological amplification or the selection of the gene of interest, these are suitable for the characterization of the gene in question, for example by creating a restriction map or sequencing. Cloning vectors are also preferred embodiments of the present invention because they represent a transportable and storable form of the claimed DNA. They are also preferred starting points for molecular biological techniques that are not bound to cells, such as the polymerase chain reaction.
Expressionsvektoren sind chemisch den Klonierungsvektoren ähnlich, unterscheiden sich aber in jenen Teilsequenzen, die sie dazu befähigen, in den für die Produktion von Proteinen optimierten Wirtsorganismen zu replizieren und dort das enthaltene Gen zur Expression zu bringen. Bevorzugte Ausführungsformen sind Expressionsvektoren, die selbst die zur Expression notwendigen genetischen Elemente tragen. Die Expression wird beispielsweise von Promotoren beeinflußt, welche die Transkription des Gens regulieren. So kann die Expression durch den natürlichen, ursprünglich vor diesem Gen lokalisierten Promotor erfolgen, aber auch nach gentechnischer Fusion sowohl durch einen auf dem Expressionsvektor bereitgestellten Promotor der Wirtszelle als auch durch einen modifizierten oder einen völlig anderen Promotor eines anderen Organismus.Expression vectors are chemically similar to the cloning vectors, but differ in the partial sequences that enable them to replicate in the host organisms optimized for the production of proteins and to express the gene contained there. Preferred embodiments are expression vectors which themselves carry the genetic elements necessary for expression. Expression is influenced, for example, by promoters which regulate the transcription of the gene. For example, expression can be carried out by the natural promoter originally located in front of this gene, but also after genetic engineering fusion both by a promoter of the host cell provided on the expression vector and by a modified or a completely different promoter from another organism.
Bevorzugte Ausführungsformen sind solche Expressionsvektoren, die über Änderungen der Kulturbedingungen oder Zugabe von bestimmten Verbindungen, wie beispielsweise die Zelldichte oder spezielle Faktoren, regulierbar sind. Expressionsvektoren ermöglichen, daß das zugehörige Protein heterolog, also in einem anderen Organismus als dem, aus dem es natürlicherweise gewonnen werden kann, produziert wird. Auch eine homologe Proteingewinnung aus einem das Gen natürlicherweise exprimierenden Wirtsorganismus über einen passenden Vektor liegt innerhalb des Schutzbereichs der vorliegenden Erfindung. Diese kann den Vorteil aufweisen, daß natürliche, mit der Translation in einem Zusammenhang stehende Modifikationsreaktionen an dem entstehenden Protein genauso durchgeführt werden, wie sie auch natürlicherweise ablaufen würden.Preferred embodiments are those expression vectors which can be regulated via changes in the culture conditions or the addition of certain compounds, such as, for example, the cell density or special factors. Expression vectors enable the associated protein to be produced heterologously, that is to say in an organism other than that from which it can be obtained naturally. Also a homologous protein extraction from a gene naturally expressing host organism via an appropriate vector is within the scope of the present invention. This can have the advantage that natural modification reactions associated with the translation are carried out on the resulting protein in exactly the same way as they would occur naturally.
Ausführungsformen der vorliegenden Erfindung können auch zellfreie Expressionssysteme sein, bei denen die Proteinbiosynthese in vitro nachvollzogen wird. Derartige Expressionssysteme sind im Stand der Technik ebenfalls etabliert.Embodiments of the present invention can also be cell-free expression systems in which the protein biosynthesis is reproduced in vitro. Such expression systems are also established in the prior art.
Die In-vivo-Synthese eines erfindungsgemäßen Enzyms, also die durch lebende Zellen, erfordert den Transfer des zugehörigen Gens in eine Wirtszelle, deren sogenannte Transformation. Als Wirtszellen eignen sich prinzipiell alle Organismen, das heißt Prokaryonten, Eukaryonten oder Cyanophyta. Bevorzugt sind solche Wirtszellen, die sich genetisch gut handhaben lassen, was beispielsweise die Transformation mit dem Expressionsvektor und dessen stabile Etablierung angeht, beispielsweise einzellige Pilze oder Bakterien. Zudem zeichnen sich bevorzugte Wirtszellen durch eine gute mikrobiologische und biotechnologische Handhabbarkeit aus. Das betrifft beispielsweise leichte Kultivierbarkeit, hohe Wachstumsraten, geringe Anforderungen an Fermentationsmedien und gute Produktions- und Sekretionsraten für Fremd proteine. Häufig müssen aus der Fülle an verschiedenen nach dem Stand der Technik zur Verfügung stehenden Systeme die optimalen Expressionssysteme für den Einzelfall experimentell ermitteln werden. Jedes erfindungsgemäße Protein kann auf diese Weise aus einer Vielzahl von Wirtsorganismen gewonnen werden.The in vivo synthesis of an enzyme according to the invention, that is to say by living cells, requires the transfer of the associated gene into a host cell, the so-called transformation. In principle, all organisms are suitable as host cells, that is to say prokaryotes, eukaryotes or cyanophyta. Preferred are host cells that are genetically easy to handle, for example as regards transformation with the expression vector and its stable establishment, for example unicellular fungi or bacteria. In addition, preferred host cells are characterized by good microbiological and biotechnological manageability. This applies, for example, to easy cultivation, high growth rates, low demands on fermentation media and good production and secretion rates for foreign proteins. Often the optimal expression systems for the individual case must be determined experimentally from the abundance of different systems available according to the prior art. In this way, each protein according to the invention can be obtained from a large number of host organisms.
Bevorzugte Ausführungsformen stellen solche Wirtszellen dar, die aufgrund genetischer Regulationselemente, die beispielsweise auf dem Expressionsvektor zur Verfügung gestellt werden, aber auch von vornherein in diesen Zellen vorhanden sein können, in ihrer Aktivität regulierbar sind. Beispielsweise durch kontrollierte Zugabe von chemischen Verbindungen, die als Aktivatoren dienen, durch Änderung der Kultivierungsbedingungen oder bei Erreichen einer bestimmten Zelldichte können diese zur Expression angeregt werden. Dies ermöglicht eine sehr wirtschaftliche Produktion der interessierenden Proteine.Preferred embodiments are those host cells whose activity can be regulated on the basis of genetic regulatory elements which are provided, for example, on the expression vector but which may also be present in these cells from the outset. For example, by the controlled addition of chemical compounds that serve as activators, by changing the cultivation conditions or when a certain cell density is reached can be stimulated for expression. This enables the proteins of interest to be produced very economically.
Bevorzugte Wirtszellen sind prokaryontische oder bakterielle Zellen. Bakterien zeichnen sich gegenüber Eukaryonten in der Regel durch kürzere Generationszeiten und geringere Ansprüche an die Kultivierungsbedingungen aus. Dadurch können kostengünstige Verfahren zur Gewinnung erfindungsgemäßer Proteine etabliert werden. Bei gram-negativen Bakterien, wie beispielsweise E. coli, werden eine Vielzahl von Proteinen in den periplasmatischen Raum sekretiert, also in das Kompartiment zwischen den beiden die Zellen einschließenden Membranen. Dies kann für spezielle Anwendungen vorteilhaft sein. Grampositive Bakterien, wie beispielsweise Bacilli oder Actinomyceten oder andere Vertreter der Actinomyce- tales, besitzen demgegenüber keine äußere Membran, so daß sekretierte Proteine sogleich in das die Zellen umgebende Nährmedium abgegeben werden, aus welchem sich nach einer anderen bevorzugten Ausführungsform die exprimierten erfindungsgemäßen Proteine direkt aufreinigen lassen.Preferred host cells are prokaryotic or bacterial cells. Bacteria are usually distinguished from eukaryotes by shorter generation times and lower demands on the cultivation conditions. In this way, inexpensive methods for obtaining proteins according to the invention can be established. In Gram-negative bacteria, such as E. coli, a large number of proteins are secreted into the periplasmic space, that is, into the compartment between the two membranes enclosing the cells. This can be advantageous for special applications. Gram-positive bacteria, such as Bacilli or Actinomycetes or other representatives of the Actinomycetes, on the other hand, have no outer membrane, so that secreted proteins are immediately released into the nutrient medium surrounding the cells, from which, according to another preferred embodiment, the expressed proteins according to the invention are purified directly to let.
Eine Variante dieses Versuchsprinzips stellen Expressionssysteme dar, bei denen zusätzliche Gene, beispielsweise solche, die auf anderen Vektoren zur Verfügung gestellt werden, die Produktion erfindungsgemäßer Proteine beeinflussen. Hierbei kann es sich um modifizierende Genprodukte handeln oder um solche, die mit dem erfindungsgemäßen Protein gemeinsam aufgereinigt werden sollen, etwa um dessen enzymatische Funktion zu beeinflussen. Dabei kann es sich beispielsweise um andere Proteine oder Enzyme, um Inhibitoren oder um solche Elemente handeln, die die Wechselwirkung mit verschiedenen Substraten beinflussen.Expression systems represent a variant of this experimental principle in which additional genes, for example those which are made available on other vectors, influence the production of proteins according to the invention. These can be modifying gene products or those that are to be purified together with the protein according to the invention, for example in order to influence its enzymatic function. These can be, for example, other proteins or enzymes, inhibitors or elements that influence the interaction with different substrates.
Aufgrund der weitreichenden Erfahrungen, die man beispielsweise hinsichtlich der molekularbiologischen Methoden und der Kultivierbarkeit mit coliformen Bakterien hat, stellen diese bevorzugte Ausführungsformen der vorliegenden Erfindung dar. Besonders bevorzugt sind solche der Gattungen Escherichia coli, insbesondere nichtpathogene, für die biotechnologische Produktion geeignete Stämme. Repräsentative Vertreter dieser Gattungen sind die K12-Derivate und die B- Stämme von Escherichia coli. Stämme, die sich nach an sich bekannten genetischen und/oder mikrobiologischen Methoden von diesen ableiten lassen, und somit als deren Derivate angesehen werden können, besitzen für genetische und mikrobiologische Arbeiten die größte Bedeutung und werden vorzugsweise zur Entwicklung erfindungsgemäßer Verfahren eingesetzt. Solche Derivate können beispielsweise über Deletions- oder Insertionsmutagenese hinsichtlich ihrer Anforderungen an die Kulturbedingungen verändert sein, andere oder zusätzliche Se- lektionsmarker aufweisen oder andere oder zusätzliche Proteine exprimieren. Es kann sich insbeosndere um solche Derivate handeln, die zusätzlich zu dem erfindungsgemäß hergestelleten Protein weitere wirtschaftlich interessante Proteine exprimieren.Based on the extensive experience that one has, for example with regard to molecular biological methods and the cultivability with coliform bacteria, these represent preferred embodiments of the present invention. Particularly preferred are those of the genera Escherichia coli, in particular non-pathogenic strains suitable for biotechnological production. Representative representatives of these genera are the K12 derivatives and the B strains of Escherichia coli. Strains that can be derived from them according to known genetic and / or microbiological methods, and thus can be regarded as their derivatives, are of greatest importance for genetic and microbiological work and are preferably used to develop methods according to the invention. Such derivatives can be modified, for example, via deletion or insertion mutagenesis with regard to their requirements for the culture conditions, have different or additional selection markers or express other or additional proteins. In particular, these can be derivatives which, in addition to the protein produced according to the invention, express further economically interesting proteins.
Auch solche Mikroorganismen sind bevorzugt, die dadurch gekennzeichnet sind, daß sie nach Transformation mit einem der oben beschriebenen Vektoren erhalten worden sind. Dabei kann es sich beispielsweise um Klonierungsvektoren handeln, die zur Lagerung und/oder Modifikation in einen beliebigen Bakterienstamm eingebracht worden sind. Solche Schritte sind in der Lagerung und in der Weiterentwicklung betreffender genetischer Elemente allgemein verbreitet. Da aus diesen Mikroorganismen die betreffenden genetischen Elemente in zur Expression geeignete gram-negative Bakterien unmittelbar übertragen werden können, handelt es sich auch bei den vorangegenagenen Transformationsprodukten um Verwirklichungen des betreffenden Erfindungsgegenstands.Also preferred are those microorganisms which are characterized in that they have been obtained after transformation with one of the vectors described above. These can be cloning vectors, for example, which have been introduced into any bacterial strain for storage and / or modification. Such steps are common in the storage and development of relevant genetic elements. Since the relevant genetic elements can be directly transferred from these microorganisms into gram-negative bacteria suitable for expression, the transformation products mentioned above are also implementations of the subject matter of the invention.
Auch eukaryontische Zellen können sich zur Produktion erfindungsgemäßer Proteine eignen. Beispiele dafür sind Pilze wie Actinomyceten oder Hefen wie Saccha- romyces oder Kluyveromyces. Dies kann beispielsweise dann besonders vorteilhaft sein, wenn die Proteine im Zusammenhang mit ihrer Synthese spezifische Modifikationen erfahren sollen, die derartige Systeme ermöglichen. Dazu gehören beispielsweise die Bindung niedermolekularer Verbindungen wie Membrananker oder Oligosaccaride. Die Wirtszellen des erfindungsgemäßen Verfahrens werden in an sich bekannter Weise kultiviert und fermentiert, beispielsweise in diskontinuierlichen oder kontinuierlichen Systemen. Im ersten Fall wird ein geeignetes Nährmedium mit den re- kombinanten Bakterienstämmen beimpft und das Produkt nach einem experimentell zu ermittelnden Zeitraum aus dem Medium geerntet. Kontinuierliche Fermentationen zeichnen sich durch Erreichen eines Fließgleichgewichts aus, in dem über einen vergleichsweise langen Zeitraum Zellen telweise absterben aber auch nachwachsen und gleichzeitig Produkt aus dem Medium entnommen werden kann.Eukaryotic cells can also be suitable for the production of proteins according to the invention. Examples include fungi such as Actinomycetes or yeasts such as Saccharomyces or Kluyveromyces. This can be particularly advantageous, for example, if the proteins are to undergo specific modifications in connection with their synthesis which enable such systems. These include, for example, the binding of small molecules such as membrane anchors or oligosaccharides. The host cells of the method according to the invention are cultivated and fermented in a manner known per se, for example in discontinuous or continuous systems. In the first case, a suitable nutrient medium is inoculated with the recombinant bacterial strains and the product is harvested from the medium after an experimentally determined period. Continuous fermentations are characterized by achieving a flow equilibrium in which cells die off telephonically over a comparatively long period of time, but also regrow and product can be removed from the medium at the same time.
Fermentationsverfahren sind an sich aus dem Stand der Technik wohlbekannt und stellen den eigentlichen großtechnischen Produktionsschritt dar; gefolgt von einer geeigneten Aufreinigungsmethode.Fermentation processes are well known per se from the prior art and represent the actual large-scale production step; followed by a suitable purification method.
Alle Fermentationsverfahren, die auf einem der oben ausgeführten Verfahren zur Herstellung der rekombinanten Proteine beruhen, stellen entsprechend bevorzugte Ausführungsformen dieses Erfindungsgegenstandes dar.All fermentation processes which are based on one of the processes for producing the recombinant proteins set out above represent correspondingly preferred embodiments of this subject of the invention.
Hierbei müssen die für die eingesetzten Herstellungsverfahren, für die Wirtszellen und/oder die herzustellenden Proteine jeweils optimalen Bedingungen anhand der zuvor optimierten Kulturbedingungen der betreffenden Stämme nach dem Wissen des Fachmanns, beispielsweise hinsichlich Fermentationsvolumen, Medienzusammensetzung, Sauerstoffversorgung oder Rührergeschwindigkeit experimentell ermittelt werden.Here, the optimal conditions for the production processes used, for the host cells and / or the proteins to be produced must be determined experimentally on the basis of the previously optimized culture conditions of the strains concerned to the knowledge of the person skilled in the art, for example with regard to fermentation volume, media composition, oxygen supply or stirrer speed.
Fermentationsverfahren, die dadurch gekennzeichnet sind, daß die Fermentation über eine Zulaufstrategie durchgeführt wird, kommen ebenfalls in Betracht. Hierbei werden, die Medienbestandteile, die durch die fortlaufende Kultivierung verbraucht werden, zugefüttert; man spricht auch von einer Zufütterungsstrategie. Hierdurch können beträchtliche Steigerungen sowohl in der Zelldichte, als auch in der Biotrockenmasse und/oder vor allem der Aktivität des interessierenden Proteins erreicht werden.Fermentation processes, which are characterized in that the fermentation is carried out via a feed strategy, are also suitable. Here, the media components that are consumed by the ongoing cultivation are fed; one also speaks of a feeding strategy. As a result, considerable increases can be achieved both in the cell density and in the dry biomass and / or above all the activity of the protein of interest.
Analog dazu kann die Fermentation auch so gestaltet werden, daß unerwünschte Stoffwechsel produkte herausgefiltert oder durch Zugabe von Puffer oder jeweils passende Gegenionen neutralisiert werden. Das hergestellte Protein kann nachträglich aus dem Fermentationsmedium geerntet werden. Dieses Fermentationsverfahren ist gegenüber der Produktaufbereitung aus der Trockenmasse bevorzugt, erfodert jedoch die Zurverfügungstellung geeigneter Sekretionsmarker und Transportsysteme.Analogously, the fermentation can also be designed in such a way that undesired metabolic products are filtered out or neutralized by adding buffer or suitable counterions. The protein produced can subsequently be harvested from the fermentation medium. This fermentation process is preferred to product preparation from dry matter, but requires the provision of suitable secretion markers and transport systems.
Ohne Sekretion ist u.U. die Aufreinigung des Proteins aus der Zellmasse erforderlich, auch dazu sind verschiedene Verfahrer bekannt, wie Fällung z.B durch Am- moniunrisulfat oder Ethanol, oder die chromatographische Reinigung, wenn erforderlich bis zur Homogenität. Die Mehrzahl der beschriebenen technischen Verfahren dürfte jeoch mit einer angereicherten, stabilisierten Präparation auskommen.Without secretion, the purification of the protein from the cell mass is necessary; various methods are also known for this, such as precipitation, for example by ammonium sulfate or ethanol, or chromatographic purification, if necessary, until homogeneous. However, the majority of the technical processes described should manage with an enriched, stabilized preparation.
Alle bereits oben ausgeführten Elemente können zu Verfahren kombiniert werden, um erfindungsgemäße Proteine herzustellen. Es ist dabei für jedes erfindungsgemäße Protein eine Vielzahl von Kombinationsmöglichkeiten an Verfahrensschritten denkbar. Das optimale Verfahren muß für jeden konkreten Einzelfall experimentell ermittelt werden.All of the elements already explained above can be combined to processes in order to produce proteins according to the invention. A large number of possible combinations of process steps is conceivable for each protein according to the invention. The optimal procedure must be determined experimentally for each specific individual case.
Vorzugsweise isoliert oder synthetisiert man in Schritt a) eine für eine Methionin- Gamma-Lyase codierende Nukleinsäure, die ausgewählt ist unter METase-Genen aus dem Protozoon Trichomonas vaginalis und den Bakterien Treponema denticola, Pseudomonas putida, Clostridium sporogenes und Fusobacterium nucleatum, besonders bevorzugt Treponema denticola.In step a), a nucleic acid coding for a methionine gamma lyase is preferably isolated or synthesized, which is selected from METase genes from the protozoan Trichomonas vaginalis and the bacteria Treponema denticola, Pseudomonas putida, Clostridium sporogenes and Fusobacterium nucleatum, particularly preferably Treponema denticola.
Eine METase aus Clostridium sporogenes ist beispielsweise beschrieben in der Publikation von Kreis W und Hession C; "Isolation and purification of L-methionine- alpha-deamino-gamma-mercaptomethane-lyase (L-methioninase) from Clostridium sporogenes"; Cancer Res. 1973 Aug;33(8):1862-5.A Clostridium sporogenes METase is described, for example, in the publication by Kreis W and Hession C; "Isolation and purification of L-methionine-alpha-deamino-gamma-mercaptomethane-lyase (L-methioninase) from Clostridium sporogenes"; Cancer Res. 1973 Aug; 33 (8): 1862-5.
Ebenfalls bevorzugt wird in Schritt a) eine für eine Methionin-Gamma-Lyase codierende Nukleinsäure isoliert oder synthetisiert, deren Nukleotidsequenz mit der in Seq. 6 (METase-Gen aus Pseudomonas putida) angegebenen Nukleotidsequenz zu mindestens 50 %, zu mindestens 75 %, zu mindestens 80 %, vorzugsweise mindestens 85 %, insbesondere mindestens 90 %, besonders bevorzugt mindestens 95 % und ganz besonders bevorzugt zu 100 % übereinstimmt.In step a), a nucleic acid coding for a methionine gamma lyase is also preferably isolated or synthesized, the nucleotide sequence of which corresponds to that in Seq. 6 (METase gene from Pseudomonas putida) specified nucleotide sequence to at least 50%, at least 75%, at least 80%, preferably at least 85%, in particular at least 90%, particularly preferably at least 95% and very particularly preferably 100%.
Ebenfalls bevorzugt wird in Schritt a) eine für eine Methionin-Gamma-Lyase codierende Nukleinsäure isoliert oder synthetisiert, deren Nukleotidsequenz mit der in Seq. 5 (METase-Gen aus Fusobacterium nucleatum) angegebenen Nukleotidsequenz zu mindestens 50 %, zu mindestens 75 %, zu mindestens 80 %, vorzugsweise mindestens 85 %, insbesondere mindestens 90 %, besonders bevorzugt mindestens 95 % und ganz besonders bevorzugt zu 100 % übereinstimmt.In step a), a nucleic acid coding for a methionine gamma lyase is also preferably isolated or synthesized, the nucleotide sequence of which corresponds to that in Seq. 5 (METase gene from Fusobacterium nucleatum) specified nucleotide sequence corresponds to at least 50%, at least 75%, at least 80%, preferably at least 85%, in particular at least 90%, particularly preferably at least 95% and very particularly preferably 100%.
Besonders bevorzugt wird in Schritt a) eine für eine Methionin-Gamma-Lyase codierende Nukleinsäure isoliert oder synthetisiert, deren Nukleotidsequenz mit der in Seq. 4 (METase-Gen aus Treponema denticola) angegebenen Nukleotidsequenz zu mindestens 50 %, zu mindestens 75 %, zu mindestens 80 %, vorzugsweise mindestens 85 %, insbesondere mindestens 90 %, besonders bevorzugt mindestens 95 % und ganz besonders bevorzugt zu 100 % übereinstimmt.In step a), a nucleic acid coding for a methionine gamma lyase is particularly preferably isolated or synthesized, the nucleotide sequence of which corresponds to that in Seq. 4 (METase gene from Treponema denticola) specified nucleotide sequence corresponds to at least 50%, at least 75%, at least 80%, preferably at least 85%, in particular at least 90%, particularly preferably at least 95% and very particularly preferably 100%.
Ebenfalls bevorzugt wird in Schritt a) eine Nukleinsäure isoliert oder synthetisiert, die für eine Methionin-Gamma-Lyase codiert, deren Aminosäuresequenz mit einer der in Seq. 1 bis 3 angegebenen Aminosäuresequenzen zu mindestens 70 %, vorzugsweise mindestens 80 %, insbesondere mindestens 90 %, besonders bevorzugt mindestens 95 % und ganz besonders bevorzugt zu 100 % identisch ist, oder deren Aminosäuresequenz einen Teil enthält, der mit einer der in Seq. 1 bis 3 angegebenen Aminosäuresequenzen zu mindestens 70 %, vorzugsweise mindestens 80 %, insbesondere mindestens 90 %, besonders bevorzugt mindestens 95 % und ganz besonders bevorzugt zu 100 % identisch ist.In step a) it is also preferred to isolate or synthesize a nucleic acid which codes for a methionine gamma lyase, the amino acid sequence of which corresponds to one of the sequences shown in Seq. 1 to 3 specified amino acid sequences are at least 70%, preferably at least 80%, in particular at least 90%, particularly preferably at least 95% and very particularly preferably 100% identical, or the amino acid sequence of which contains a part which corresponds to one of those described in Seq. 1 to 3 specified amino acid sequences is at least 70%, preferably at least 80%, in particular at least 90%, particularly preferably at least 95% and very particularly preferably 100% identical.
Besonders bevorzugt wird in Schritt a) eine Nukleinsäure isoliert oder synthetisiert, die für eine Methionin-Gamma-Lyase codiert, deren Aminosäuresequenz mit einer der in Seq. 1 bis 3 angegebenen Aminosäuresequenzen zu mindestens 70 %, vorzugsweise mindestens 80 %, insbesondere mindestens 90 %, besonders bevorzugt mindestens 95 % und ganz besonders bevorzugt zu 100 % identisch ist, oder deren Aminosäuresequenz einen Teil enthält, der mit einer der in Seq. 1 bis 3 angegebenen Aminosäuresequenzen zu mindestens 70 %, vorzugsweise mindestens 80 %, insbesondere mindestens 90 %, besonders bevorzugt mindestens 95 % und ganz besonders bevorzugt zu 100 % identisch ist.In step a) it is particularly preferred to isolate or synthesize a nucleic acid which codes for a methionine gamma lyase, the amino acid sequence of which corresponds to one of the sequences shown in Seq. 1 to 3 specified amino acid sequences are at least 70%, preferably at least 80%, in particular at least 90%, particularly preferably at least 95% and very particularly preferably 100% identical, or the amino acid sequence of which contains a part which corresponds to one of those described in Seq. 1 to 3 amino acid sequences given are identical to at least 70%, preferably at least 80%, in particular at least 90%, particularly preferably at least 95% and very particularly preferably 100%.
Besonders bevorzugt wird in Schritt a) eine Nukleinsäure isoliert oder synthetisiert, die für eine Methionin-Gamma-Lyase codiert, deren Aminosäuresequenz einen Teil enthält, der mit der Konsensus-Sequenz [DQ]-[LIMVF]-X(3)-[STAGC]- [STAGCI]-T-K-[FYWQ]-[LIVMF]-X-G-[HQ]-[SGNH] (Seq. ID 7) zu mindestens 96 %, insbesondere zu mindestens 97 %, vorzugsweise zu mindestens 98 %, bevorzugt zu mindestens 99 %, besonders bevorzugt zu 100 % identisch ist.In step a) it is particularly preferred to isolate or synthesize a nucleic acid which codes for a methionine gamma lyase, the amino acid sequence of which contains a part which corresponds to the consensus sequence [DQ] - [LIMVF] -X (3) - [STAGC ] - [STAGCI] -TK- [FYWQ] - [LIVMF] -XG- [HQ] - [SGNH] (Seq. ID 7) to at least 96%, in particular at least 97%, preferably at least 98%, preferably to is at least 99%, particularly preferably 100% identical.
Vorzugsweise wird in Schritt c) des erfindungsgemäßen Verfahrens eine Methionin-Gamma-Lyase exprimiert oder eingesetzt, deren Aminosäuresequenz mit der in Seq. 3 (METase aus Pseudomonas putida) angegebenen Aminosäuresequenz zu mindestens 50 %, vorzugsweise mindestens 70 %, insbesondere mindestens 80 %, besonders bevorzugt mindestens 90 % und ganz besonders bevorzugt zu 100 % übereinstimmt.In step c) of the method according to the invention, a methionine gamma lyase is preferably expressed or used, the amino acid sequence of which corresponds to that in Seq. 3 (METase from Pseudomonas putida) specified amino acid sequence corresponds to at least 50%, preferably at least 70%, in particular at least 80%, particularly preferably at least 90% and very particularly preferably 100%.
Ebenfalls bevorzugt wird in Schritt c) des erfindungsgemäßen Verfahrens eine Methionin-Gamma-Lyase exprimiert oder eingesetzt, deren Aminosäuresequenz mit der in Seq. 2 (METase aus Fusobacterium nucleatum) angegebenen Aminosäuresequenz zu mindestens 50 %, vorzugsweise mindestens 70 %, insbesondere mindestens 80 %, besonders bevorzugt mindestens 90 % und ganz besonders bevorzugt zu 100 % übereinstimmt.In step c) of the method according to the invention, preference is likewise given to expressing or using a methionine gamma lyase whose amino acid sequence matches that in Seq. 2 (METase from Fusobacterium nucleatum) specified amino acid sequence corresponds to at least 50%, preferably at least 70%, in particular at least 80%, particularly preferably at least 90% and very particularly preferably 100%.
Besonders bevorzugt wird in Schritt c) des erfindungsgemäßen Verfahrens eine Methionin-Gamma-Lyase exprimiert oder eingesetzt, deren Aminosäuresequenz mit der in Seq. 1 (METase aus Treponema denticola) angegebenen Aminosäuresequenz zu mindestens 50 %, vorzugsweise mindestens 70 %, insbesondere mindestens 80 %, besonders bevorzugt mindestens 90 % und ganz besonders bevorzugt zu 100 % übereinstimmt. Erfindungsgemäß geeignete Wirtszellen für die Expression in Schritt b) sind Mikroorganismen, insbesondere Bakterien, besonders bevorzugt E. coli.In step c) of the method according to the invention, a methionine gamma lyase is particularly preferably expressed or used, the amino acid sequence of which corresponds to that in Seq. 1 (METase from Treponema denticola) specified amino acid sequence corresponds to at least 50%, preferably at least 70%, in particular at least 80%, particularly preferably at least 90% and very particularly preferably 100%. Host cells suitable according to the invention for the expression in step b) are microorganisms, in particular bacteria, particularly preferably E. coli.
Erfindungsgemäß geeignete Nachweisagenzien für Reaktionsprodukte durch Methionin-Gamma-Lyase katalysierter Reaktionen sind beispielsweise Salze von Metallen, die mit Sulfidionen schwerlösliche Salze mit einem Löslichkeitsprodukt von <10 - 20 bilden, vorzugsweise ein Schwermetallsalz, das mit Sulfidionen als schwer lösliche Verbindung ausfällt. Geeignet ist zum Beispiel Bleiacetat (bevorzugte Konzentration: etwa 4 mg/l weiteste Konzentration: etwa 0,1 bis etwa 10 mg/l). Möglich sind ausserdem Salze von Hg, Ni, Sb, Sn, Zn, Ag, Cu, Co, Cd, wobei neben Pb Ag und Cu bevorzugt sind. Da die Löslichkeit von Sulfidionen im Sauren besonders gering ist, ist ein leicht saures Medium bevorzugt (pH kleiner oder gleich 7). Als Schwefelquelle können neben Methionin auch andere schwefelhaltige Aminosäuren (insb. Cystein) und organische Schwefelverbindungen (Glutathion) dienen (bevorzugte Konzentration: etwa 500 mg/l weiteste Konzentration: etwa 50 bis etwa 1000 mg/l). Von den Zellen aufgrund der METase-Akfivität aus Methionin als Schwefelquelle gebildete Sulfide werden als Bleisuffid ausgefällt und führen zu einer Schwarzfärbung der Kolonie.Detection agents suitable according to the invention for reaction products catalyzed by methionine gamma-lyase reactions are, for example, salts of metals which form sparingly soluble salts with sulfide ions with a solubility product of <10-20, preferably a heavy metal salt which precipitates as a sparingly soluble compound with sulfide ions. For example, lead acetate is suitable (preferred concentration: about 4 mg / l, broadest concentration: about 0.1 to about 10 mg / l). Salts of Hg, Ni, Sb, Sn, Zn, Ag, Cu, Co, Cd are also possible, Ag and Cu being preferred in addition to Pb. Since the solubility of sulfide ions in acid is particularly low, a slightly acidic medium is preferred (pH less than or equal to 7). In addition to methionine, other sulfur-containing amino acids (in particular cysteine) and organic sulfur compounds (glutathione) can also serve as the sulfur source (preferred concentration: about 500 mg / l, furthest concentration: about 50 to about 1000 mg / l). Sulphides formed by the cells due to the METase activity from methionine as a sulfur source are precipitated as lead sulfide and lead to the colony turning black.
Die Bestimmung von Reaktionsprodukten durch Methionin-Gamma-Lyase katalysierter Reaktionen kann durch eines der-obengenannten Nachweisagenzien erfolgen oder z. B. durch Nachweis der bei folgender Reaktion gebildeten Produkte:The determination of reaction products by methionine-gamma-lyase catalyzed reactions can be carried out by one of the above-mentioned detection agents or z. B. by detection of the products formed in the following reaction:
Methionin -> Methylmercaptan + α-Ketobutyrat + Ammoniak (katalysiert METase).Methionine -> methyl mercaptan + α-ketobutyrate + ammonia (catalyzes METase).
Die Enzymaktivität der METase wird beispielsweise indirekt über die Umsetzung von α-Ketobutyrat und NADH2 zu 2-Hydroxybutyrat und NAD+ im Photometer bei 340 nm (Absorptionsmaximum des NADH2) über die Abnahme der Extinktion gemessen. Weitere Gegenstände der vorliegenden Erfindung sind Klonierungsvektoren und Expressionsvektoren, die erfindungsgemäß isolierte oder synthetisierte Nukleinsäuren enthalten.The enzyme activity of the METase is measured indirectly, for example, by converting α-ketobutyrate and NADH 2 to 2-hydroxybutyrate and NAD + in a photometer at 340 nm (absorption maximum of NADH 2 ) by reducing the absorbance. Further subjects of the present invention are cloning vectors and expression vectors which contain nucleic acids isolated or synthesized according to the invention.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Test-Kit zum Auffinden wirksamer Substanzen gegen Halitosis, Gingivitis oder Parodontitis, das Mittel zur Durchführung des erfindungsgemäßen Verfahrens umfaßt.Another object of the present invention is a test kit for finding effective substances against halitosis, gingivitis or periodontitis, which comprises means for performing the method according to the invention.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung von Methionin-Gamma-Lyasen (METase) zum Auffinden wirksamer Substanzen gegen Halitosis, Gingivitis oder Parodontitis;Another object of the present invention is the use of methionine gamma lyases (METase) to find effective substances against halitosis, gingivitis or periodontitis;
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Testverfahren zum Nachweis der Wirksamkeit von Substanzen gegen Halitosis Gingivitis oder Parodontitis, das dadurch gekennzeichnet ist, daß man a) eine für eine Methionin-Gamma-Lyase codierende Nukleinsäure aus einem pro- oder eukaryotischen Organismus isoliert oder in vitro synthetisiert, b) die für eine Methionin-Gamma-Lyase codierende Nukleinsäure kloniert und in geeigneten Wirtszellen exprimiert oder die Methionin-Gamma-Lyase in vitro synthetisiert, c) die Methionin-Gamma-Lyase exprimierenden Wirtszellen in voneinander räumlich getrennten Ansätzen in Gegenwart einer Schwefelquelle und eines geeigneten Nachweisagens für Reaktionsprodukte durch Methionin-Gamma-Lyase katalysierter Reaktionen kultiviert oder; die Methionin-Gamma-Lyase in voneinander räumlich getrennten Ansätzen in Gegenwart von Methionin, Cystein oder Glutathion in ein in vitro Testsystem einbringt, d) die Ansätze mit möglicherweise die Funktion der Methionin-Gamma-Lyase hemmenden Substanzen versetzt, e) für jeden der voneinander räumlich getrennten Ansätze die Bildung von Reaktionsprodukten durch Methionin-Gamma-Lyase katalysierter Reaktionen bestimmt und so den Nachweis der Wirksamkeit von Substanzen gegen Halitosis Gingivitis oder Parodontitis führt. Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung einer pharmazeutischen Zubereitung gegen Halitosis, Gingivitis oder Parodontitis, das dadurch gekennzeichnet ist, daß man a) wirksame Wirkstoffe (Hemmstoffe der METase) mit Hilfe des erfindungsgemäßen Screening-Verfahrens, oder der erfindungsgemäßen Verwendung bestimmt und b) als wirksam befundene Wirkstoffe (Hemmstoffe der METase) mit pharmako- logisch geeigneten und verträglichen Trägern vermischt.Another object of the present invention is a test method for detecting the effectiveness of substances against halitosis gingivitis or periodontitis, which is characterized in that a) a nucleic acid coding for a methionine gamma lyase is isolated from a pro- or eukaryotic organism or in synthesized in vitro, b) the nucleic acid coding for a methionine-gamma-lyase and cloned and expressed in suitable host cells or the methionine-gamma-lyase synthesized in vitro, c) the methionine-gamma-lyase-expressing host cells in spatially separated approaches in the presence of a Cultivated sulfur source and a suitable detection agent for reaction products by reactions catalyzed by methionine-gamma-lyase or; the methionine gamma lyase is introduced into an in vitro test system in spatially separated batches in the presence of methionine, cysteine or glutathione, d) the batches are mixed with substances which possibly inhibit the function of the methionine gamma lyase, e) for each of them spatially separated approaches determined the formation of reaction products by reactions catalyzed by methionine-gamma-lyase and thus leads to the proof of the effectiveness of substances against halitosis gingivitis or periodontitis. Another object of the present invention is a method for producing a pharmaceutical preparation for halitosis, gingivitis or periodontitis, which is characterized in that a) active ingredients (inhibitors of METase) are determined with the aid of the screening method according to the invention or the use according to the invention and b) active substances found to be effective (inhibitors of METase) are mixed with pharmacologically suitable and compatible carriers.
Eine Enzympräparation des überexprimierten METase-Proteins kann verwendet werden, um in einer technischen Anwendung aus Methionin Methylmercaptan bzw aus Cystein Schwefelwasserstoff freizusetzen. Vorteile dieses Verfahrens liegen in der kontrollierten, schonenden Freistzung der agressiven, flüchtigen Produkte. Ein enzymatischer Prozess unter Verwendung von Methionin als Substrat kann zur strukturgebenden Behandlung von schwefelhaltigen Fasern, wie z.B. Haaren, Federn und Wolle dienen. Dabei wird die entstehende freie SH-Gruppe zur Öffnung der die Tertiärstruktur der Proteinfaser stabilisiernden Disulfidbrücken verwendet und kann z.B. als Ersatz für die Verwendungvon Thioglykolsäure dienen.An enzyme preparation of the overexpressed METase protein can be used to release hydrogen sulfide from methionine, methyl mercaptan or cysteine in an industrial application. The advantages of this procedure are the controlled, gentle release of the aggressive, volatile products. An enzymatic process using methionine as a substrate can be used for the structuring treatment of sulfur-containing fibers, e.g. Serve hair, feathers and wool. The resulting free SH group is used to open the disulfide bridges stabilizing the tertiary structure of the protein fiber and can e.g. serve as a substitute for the use of thioglycolic acid.
Ein weiterer Gegenstand der vorliegenden Erfindung ist daher die Verwendung einer der obengenannten METasen, insbesondere einer METase, deren Aminosäuresequenz mit der in Seq. 1 (METase aus Treponema denticola) angegebenen Aminosäuresequenz zu mindestens 50 %, vorzugsweise mindestens 70 %, insbesondere mindestens 80 %, besonders bevorzugt mindestens 90 % und ganz besonders bevorzugt zu 100 % übereinstimmt, zur strukturgebenden Behandlung von schwefelhaltigen Fasern, wie z.B. Haaren, Federn und Wolle.Another object of the present invention is therefore the use of one of the above-mentioned METases, in particular a METase, the amino acid sequence of which with the in Seq. 1 (METASE from Treponema denticola) specified amino acid sequence corresponds to at least 50%, preferably at least 70%, in particular at least 80%, particularly preferably at least 90% and very particularly preferably 100%, for the structuring treatment of sulfur-containing fibers, such as e.g. Hair, feathers and wool.
Die der Freisetzung schwefelhaltiger Verbindungen zugrunde liegende ß- Eliminierungsreaktion erzeugt eine Doppelbindung, die in freien Aminosäuren durch nachfolgende Umlagerung zur Deaminierung führt, alternativ in gebundenen peptidischen Aminosäuren aber durch Wasseranlagerung zur Generierung einer Hydroxyaminosäure führt. Letzlich kann somit aus Cystein Serin und aus Methio- nin Threonin erzeugt werden. Somit kann ein METase-Protein zur Entschwefelung eines schwefelhaltigen Proteins, z. B. eines kosmetischen Rohstoffs verwendet werden.The β-elimination reaction on which the release of sulfur-containing compounds is based generates a double bond which leads to deamination in free amino acids by subsequent rearrangement, but alternatively leads to the generation of a hydroxyamino acid in bound peptide amino acids by addition of water. Ultimately, serum and methio- nin threonine. Thus, a METase protein can be used to desulfurize a sulfur-containing protein, e.g. B. a cosmetic raw material can be used.
Ein weiterer Gegenstand der vorliegenden Erfindung ist somit die Verwendung einer der obengenannten METasen, insbesondere einer METase, deren Aminosäuresequenz mit der in Seq. 1 (METase aus Treponema denticola) angegebenen Aminosäuresequenz zu mindestens 50 %, vorzugsweise mindestens 70 %, insbesondere mindestens 80 %, besonders bevorzugt mindestens 90 % und ganz besonders bevorzugt zu 100 % übereinstimmt, zur Entschwefelung eines schwefelhaltigen Proteins, z. B. eines kosmetischen Rohstoffs.Another object of the present invention is thus the use of one of the above-mentioned METases, in particular a METase, the amino acid sequence of which with the in Seq. 1 (METASE from Treponema denticola) specified amino acid sequence corresponds to at least 50%, preferably at least 70%, in particular at least 80%, particularly preferably at least 90% and very particularly preferably 100%, for the desulfurization of a sulfur-containing protein, for. B. a cosmetic raw material.
Schliesslich können in einem Syntheseverfahren durch Umkehrung der enzymatischen Reaktion (zweckmäßigerweise unter hohem Druck) unter Verwendung von gasförmigen Schwefelwasserstoff bzw Methylmercaptan sowie Ammoniak aus Pyruvat bzw a-Ketobutyrat die wertvollen Aminosäuren Cystein und Methionin erzeugt werden.Finally, the valuable amino acids cysteine and methionine can be generated in a synthesis process by reversing the enzymatic reaction (expediently under high pressure) using gaseous hydrogen sulfide or methyl mercaptan and ammonia from pyruvate or a-ketobutyrate.
Methionin besitzt als Zusatz für tierische Futtermittel eine erhebliche technische Bedeutung und wird in in aufwändigen Verfahren hergestellt.As an additive for animal feed, methionine is of considerable technical importance and is produced in complex processes.
Ein weiterer Gegenstand der voriiegenden Erfindung ist folglich die Verwendung einer der obengenannten METasen, insbesondere einer METase, deren Aminosäuresequenz mit der in Seq. 1 (METase aus Treponema denticola) angegebenen Aminosäuresequenz zu mindestens 50 %, vorzugsweise mindestens 70 %, insbesondere mindestens 80 %, besonders bevorzugt mindestens 90 % und ganz besonders bevorzugt zu 100 % übereinstimmt, zur Synthese der Aminosäuren Cystein und Methionin.Another object of the present invention is consequently the use of one of the abovementioned METases, in particular a METase, the amino acid sequence of which corresponds to that in Seq. 1 (METASE from Treponema denticola) specified amino acid sequence corresponds to at least 50%, preferably at least 70%, in particular at least 80%, particularly preferably at least 90% and very particularly preferably 100%, for the synthesis of the amino acids cysteine and methionine.
Um das METase-Protein zur Verwendung in technischen, kosmetischen oder pharmazeutischen Präparaten bereitzustellen, kommen alle Verfahren zur Herstellung rekombinanter Proteine in Betracht. Die folgenden Beispiele erläutern die Erfindung, ohne sie jedoch darauf einzuschränken:In order to provide the METase protein for use in technical, cosmetic or pharmaceutical preparations, all processes for the production of recombinant proteins can be considered. The following examples illustrate the invention without, however, restricting it thereto:
Beispiel 1: heterologe Expression des mgll-Gens aus T. denticolaExample 1: heterologous expression of the mgll gene from T. denticola
Die kodierende Sequenz des mgll-Gens (METase-Gens) aus T. denticola wurde mithilfe von Datenbankvergleichen über PCR amplifiziert und in einen kommerziell verfügbaren Vektor (pGEM-TEasy, Promega) kloniert. Die Expression in E. coli kann wie folgt zum Screening nach erfindungsgemäßen wirksamen Substanzen genutzt werden:The coding sequence of the mgll gene (METase gene) from T. denticola was amplified using PCR using database comparisons and cloned into a commercially available vector (pGEM-TEasy, Promega). Expression in E. coli can be used for screening for active substances according to the invention as follows:
Die mit dem das mgl1-Gen enthaltenden Vektor transformierten E. co//-Zellen werden auf festen Nährmedien (z.B. LB-Medium, 1% Trypton, 0,5% Hefeextrakt, 0,5% NaCI, 1-2% Agar) angezogen. Zum Nachweis der Bildung von schwefelhaltigen Verbindungen wird dem Medium eine Schwefelquelle (Methionin; bevorzugte Konzentration: 350 mg/l weiteste Konzentration: 50-1000 mg/l) und ein Schwermetallsalz zugegeben, das mit Sulfidionen als schwer lösliche Verbindung ausfällt. Im Beispiel wurde dem Medium Bleiacetat zugegeben (bevorzugte Konzentration: 4 mg/l weiteste Konzentration: 0,1-10 mg/l).The E. co // cells transformed with the vector containing the mgl1 gene are grown on solid nutrient media (for example LB medium, 1% tryptone, 0.5% yeast extract, 0.5% NaCl, 1-2% agar) , To detect the formation of sulfur-containing compounds, a sulfur source (methionine; preferred concentration: 350 mg / l, furthest concentration: 50-1000 mg / l) and a heavy metal salt, which precipitates as a poorly soluble compound with sulfide ions, are added to the medium. In the example, lead acetate was added to the medium (preferred concentration: 4 mg / l broadest concentration: 0.1-10 mg / l).
Die Anzucht der Bakterien erfolgt bei 37°C für 2-7 Tage (bevorzugt 3 Tage) unter anaeroben Bedingungen in Petrischalen oder Multiwell-Platten. Auch aerobe Inkubation ist möglich, erfordert aber Inkubationsdauern von 5-10 Tagen.The bacteria are grown at 37 ° C. for 2-7 days (preferably 3 days) under anaerobic conditions in petri dishes or multiwell plates. Aerobic incubation is also possible, but requires incubation periods of 5-10 days.
Die Hemmwirkung der zu testenden Substanz wird durch die fehlende Schwarzfärbung der Kolonien sichtbar. Dabei ist von Vorteil, dass gleichzeitig eine wachstumshemmende Eigenschaft der Substanz überprüft werden kann, da die Expression des mgll-Gens alleine keinen Einfluss auf das Wachstum hat.The inhibitory effect of the substance to be tested is evident from the lack of blackening of the colonies. The advantage here is that a growth-inhibiting property of the substance can be checked at the same time, since the expression of the mgll gene alone has no influence on the growth.
Beispiel 2: Enzymatische Tests mit aufgereinigten Mgl-ProteinenExample 2: Enzymatic tests with purified Mgl proteins
Das mgf/ -Gen aus T. denticola wird am 5'-Ende mit einer Sequenz versehen, die für sechs Histidin-Reste kodiert und in einen Expressionsvektor mit konstitutiv exprimiertem Promotor kloniert (pGEM). Die mit diesem Plasmid transformierten Zellen werden über Nacht in LB-Medium angezogen, anschließend wird eine weitere 50 ml Kultur mit einer OD6oo=0,05 aus der vorherigen Kultur angeimpft und bei 37°C bis zu einer OD6oo=0,2 angezogen. Die Kultur wird abzentrifugiert, in 1 ml Lysis-Puffer (50 mM NaH2P04; 300 mM NaCI; 10 mM Imidazol; pH 8) resuspendiert und mindestens über Nacht bei -70°C eingefroren. Der Aufschluss erfolgt nach Lysozym-Zugabe (Endkonz. 1 mg/ml) und einem Inkubationsschritt von 30 min. auf Eis unter nativen Bedingungen mittels Ultraschall (insgesamt 2 min. mit je 5 sek. Pulsen und 5 sek. Pause). Das Lysat wird für 20-30 min. bei 13.000 Upm zentrifugiert und 600 μl des Überstandes über eine Ni-NTA-Säule (Qiagen) nach Herstellerangaben aufgereinigt.The mgf / gene from T. denticola is provided at the 5 'end with a sequence which codes for six histidine residues and is constitutive in an expression vector expressed promoter cloned (pGEM). The cells transformed with this plasmid are grown overnight in LB medium, then a further 50 ml culture with an OD 6 oo = 0.05 from the previous culture is inoculated and at 37 ° C. up to an OD 6 oo = 0, 2 dressed. The culture is centrifuged off, resuspended in 1 ml of lysis buffer (50 mM NaH 2 PO 4 ; 300 mM NaCl; 10 mM imidazole; pH 8) and frozen at -70 ° C. at least overnight. The digestion takes place after addition of lysozyme (final concentration 1 mg / ml) and an incubation step of 30 min. on ice under native conditions using ultrasound (in total 2 min. with 5 sec. pulses and 5 sec. pause). The lysate is kept for 20-30 min. Centrifuged at 13,000 rpm and 600 μl of the supernatant purified on a Ni-NTA column (Qiagen) according to the manufacturer's instructions.
Der eigentliche Enzymassay zum Screening nach erfindungsgemäßen wirksamen Substanzen wird wie folgt durchgeführt:The actual enzyme assay for screening for active substances according to the invention is carried out as follows:
10-100 μg (1-1000μg) des aufgereinigten Enzyms werden in 50 mM Tris-HCI- Puffer (pH 7 (6-8)) zusammen mit 100 mM Methionin (10-1000 mM), 2 mM (1-10 mM) NADH, 100 μM Pyridoxalphosphat und 10U Lactatdehydrogenase ( Röche, bevorzugt aus Herzmuskelzellen, Isoenzym LDH-1) oder Hydroxybutyratdehydro- genase (TEso Diagnostics) bei 25°C inkubiert (in Eppendorf-Reaktionsgefäßen oder Mikrotiterplatten).10-100 μg (1-1000μg) of the purified enzyme are dissolved in 50 mM Tris-HCl buffer (pH 7 (6-8)) together with 100 mM methionine (10-1000 mM), 2 mM (1-10 mM) NADH, 100 μM pyridoxal phosphate and 10U lactate dehydrogenase (Röche, preferably from cardiac muscle cells, isoenzyme LDH-1) or hydroxybutyrate dehydrogenase (TEso Diagnostics) incubated at 25 ° C (in Eppendorf tubes or microtiter plates).
Die Enzymaktivität der METase kann indirekt über die Umsetzung von 2- Oxobutyrat und NADH2 zu 2-Hydroxybutyrat und NAD+ im Photometer bei 340 nm (Absorptionsmaximum des NADH2) über die Abnahme der Extinktion gemessen werden. Alternativ kann die Umsetzung in Küvetten auch unter direkter Beobachtung im Photometer gemessen werden. Inkubationsdauer 10-30 min bei 25°C.The enzyme activity of the METase can be measured indirectly by converting 2-oxobutyrate and NADH2 to 2-hydroxybutyrate and NAD + in a photometer at 340 nm (absorption maximum of NADH 2 ) by decreasing the absorbance. Alternatively, the conversion in cuvettes can also be measured under direct observation in the photometer. Incubation time 10-30 min at 25 ° C.
Eine weitere Methode zur Bestimmung der Enzymaktivität ist die Reaktion des entstandenen Methylmercaptans mit 5,5'-Dithio-bis-2-Nitrobenzoesäure (DTNB; Sigma Aldrich). Dazu wird der Ansatz des oben beschriebenen Enzymassays in der Küvette mit DTNB (Endkonzentration 0,1 mM) versetzt und die Umsetzung zu einem Arylmercaptan bei 412 nm photometrisch verfolgt. Mithilfe dieses Assays können Substanzen auf ihre Hemmwirkung gegenüber der METase getestet werden, wichtig ist eine Kontrolle, bei der die Substanz auf ihre Hemmwirkung auf LDH getestet wird. Dazu führt man obigen Versuch ohne Methionin und METase, jedoch in Anwesenheit von 2 mM Pyruvat durch. Etwaige Hemmwirkungen können durch Zugabe von Na23 beseitigt werden. Another method for determining the enzyme activity is the reaction of the methyl mercaptan formed with 5,5'-dithio-bis-2-nitrobenzoic acid (DTNB; Sigma Aldrich). For this purpose, the batch of the enzyme assay described above is mixed with DTNB (final concentration 0.1 mM) in the cuvette and the conversion to an aryl mercaptan is monitored photometrically at 412 nm. With the help of this assay, substances can be tested for their inhibitory effect on the METase. A control in which the substance is tested for its inhibitory effect on LDH is important. To do this, the above experiment is carried out without methionine and METase, but in the presence of 2 mM pyruvate. Any inhibitory effects can be eliminated by adding Na 23 .
Sequenzen:sequences:
Zu einigen der nachfolgend aufgeführten Gene bzw. Genprodukte ist auch eine Accession-Number angegeben. Unter ihrer UniGene-Accession-Number sind die jeweiligen Gene bzw. Genprodukte in der Datenbank des National Center for Bio- technology Information (NCBI) offenbart. Diese Datenbank ist im Internet unter folgender Adresse zugänglich: http://www.ncbi.nlm.nih.gov/. Die Gene bzw. Genprodukte sind außerdem unter den Internet-Adressen http://www.ncbi.nlm.nih.gov/UniGene/Hs.Home.html oder http://www.ncbi.nlm.nih.gov/genome/guide direkt zugänglich.An accession number is also given for some of the genes or gene products listed below. The respective genes or gene products are disclosed in the database of the National Center for Biotechnology Information (NCBI) under their UniGene Accession Number. This database is accessible on the Internet at the following address: http://www.ncbi.nlm.nih.gov/. The genes or gene products are also available at http://www.ncbi.nlm.nih.gov/UniGene/Hs.Home.html or http://www.ncbi.nlm.nih.gov/genome/ guide directly accessible.
Seq. 1 (METase, Treponema denticola):Seq. 1 (METase, Treponema denticola):
NRKELEKLGFASKQIHAGSIKNKYGALATPIYQTSTFAFDSAEQGGRRFALEEEGYIYTR LGNPTTTVVEEKLACLENGEAC SASSGIGAVTSCIWSIVNAGDHIVAGKTLYGCTFAFLN HGLSRFGVDVTFVDTRDPENVKKALKPNTKIVYLETPANPNMYLCDIAAVSKIAHAHNPEC KVIVDNTYMTPYLQRPLDLGADVVLHSATKYLNGHGDVIAGFVVGKKEFIDQVRFVGVKDM TGSTLGPFEAYLIGRGMKTLDIRMEKHCANAQKVAEFLEKHPAVESIAFPGLKSFPQYELA KKQMKLCGAMIAFTVKGGLEAGKTLINSVKFATIAVSLGDAETLIQHPASMTHSPYTPEER AASDIAEGLVRLSVGLEDAEDIIADLKQALDKLVKNRKELEKLGFASKQIHAGSIKNKYGALATPIYQTSTFAFDSAEQGGRRFALEEEGYIYTR LGNPTTTVVEEKLACLENGEAC SASSGIGAVTSCIWSIVNAGDHIVAGKTLYGCTFAFLN HGLSRFGVDVTFVDTRDPENVKKALKPNTKIVYLETPANPNMYLCDIAAVSKIAHAHNPEC KVIVDNTYMTPYLQRPLDLGADVVLHSATKYLNGHGDVIAGFVVGKKEFIDQVRFVGVKDM TGSTLGPFEAYLIGRGMKTLDIRMEKHCANAQKVAEFLEKHPAVESIAFPGLKSFPQYELA KKQMKLCGAMIAFTVKGGLEAGKTLINSVKFATIAVSLGDAETLIQHPASMTHSPYTPEER AASDIAEGLVRLSVGLEDAEDIIADLKQALDKLVK
Seq. 2 (METase, Fusobacterium nucleatum):Seq. 2 (METase, Fusobacterium nucleatum):
EMKKSGLGTTAIHAGTLKNLYGTLAMPIYQTSTFIFDSAEQGGRRFALEEAGYIYTRLGN PTTTVLENKIAALEEGEAGIÄ SSGMGAISSTL TVLKAGDHWTDKTLYGCTFALMNHGL TRFGVEVTFVDTSNLEEVKNAMKKNTRVVYLETPANPNLKIVDLEALSKIAHTNPNTLVIV DNTFATPYMQKPLKLGVDIVVHSATKYLNGHGDVIAGLWTRQELADQIRFVGLKDMTGAV LGPQEAYYIIRGLKTFEIRMERHCKNARTIVDFLNKHPKVEKVYYPGLETHPGYEIAKKQM KDFGAMISFELKGGFEAGKTLLNNLKLCSLAVSLGDTETLIQHPAS THSPYTKEEREVAG ITDGLVRLSVGLENVEDIIADLEQGLEKIEMKKSGLGTTAIHAGTLKNLYGTLAMPIYQTSTFIFDSAEQGGRRFALEEAGYIYTRLGN PTTTVLENKIAALEEGEAGIÄ SSGMGAISSTL TVLKAGDHWTDKTLYGCTFALMNHGL TRFGVEVTFVDTSNLEEVKNAMKKNTRVVYLETPANPNLKIVDLEALSKIAHTNPNTLVIV DNTFATPYMQKPLKLGVDIVVHSATKYLNGHGDVIAGLWTRQELADQIRFVGLKDMTGAV LGPQEAYYIIRGLKTFEIRMERHCKNARTIVDFLNKHPKVEKVYYPGLETHPGYEIAKKQM KDFGAMISFELKGGFEAGKTLLNNLKLCSLAVSLGDTETLIQHPAS THSPYTKEEREVAG ITDGLVRLSVGLENVEDIIADLEQGLEKI
Seq.3 (METase, Pseudomonas putida): MHGSNKLPGFATRAIHHGYDPQDHGGALVPPVYQTATFTFPTVEYGAACFAGEQAGHFYSR ISNPTLNLLEARMASLEGGEAGLALASGMGAITSTLWTLLRPGDEVLLGNTLYGCTFAFLH HGIGEFGVKLRHVDMADLQALEAAMTPATRVIYFESPANPNMHMADIAGVAKIARKHGATV VVDNTYCTPYLQRPLELGADLWHSATKYLSGHGDITAGIVVGSQALVDRIRLQGLKDMTG AVLSPHDAALLMRGIKTLNLRMDRHCANAQVLAEFLARQPQVELIHYPGLASFPQYTLARQ QMSQPGGMIAFELKGGIGAGRRFMNALQLFSRAVSLGDAESLAQHPASMTHSSYTPEERAH YGISEGLVRLSVGLEDIDDLLADVQQALKASASeq.3 (METase, Pseudomonas putida): MHGSNKLPGFATRAIHHGYDPQDHGGALVPPVYQTATFTFPTVEYGAACFAGEQAGHFYSR ISNPTLNLLEARMASLEGGEAGLALASGMGAITSTLWTLLRPGDEVLLGNTLYGCTFAFLH HGIGEFGVKLRHVDMADLQALEAAMTPATRVIYFESPANPNMHMADIAGVAKIARKHGATV VVDNTYCTPYLQRPLELGADLWHSATKYLSGHGDITAGIVVGSQALVDRIRLQGLKDMTG AVLSPHDAALLMRGIKTLNLRMDRHCANAQVLAEFLARQPQVELIHYPGLASFPQYTLARQ QMSQPGGMIAFELKGGIGAGRRFMNALQLFSRAVSLGDAESLAQHPASMTHSSYTPEERAH YGISEGLVRLSVGLEDIDDLLADVQQALKASA
Seq. 4 (Nukleinsäuresequenz, METase, Treponema denticola):Seq. 4 (nucleic acid sequence, METase, Treponema denticola):
ATGAATAGAA AAGAATTGGA AAAGTTGGGA TTTGCTTCAA AACAGATTCA CGCAGGAAGC ATTAAGAACA AGTACGGTGC TTTAGCTACA CCTATTTATC AAACTTCAAC ATTTGCATTT GATTCGGCAG AACAAGGCGG CAGAAGATTT GCCTTAGAGG AAGAAGGTTA TATCTACACC CGTTTAGGTA ACCCTACGAC TACGGTTGTT GAAGAAAAAC TTGCCTGCCT TGAAAACGGG GAAGCCTGTA TGTCCGCGAG CTCCGGTATA GGTGCCGTTA CCTCATGCAT TTGGTCAATT GTAAATGCAG GAGACCATAT CGTTGCCGGA AAGACTCTTT ACGGCTGTAC ATTTGCGTTT TTAAATCACG GTCTGTCACG ATTCGGTGTT GATGTAACCT TCGTTGATAC CCGTGATCCT GAAAACGTTA AAAAAGCTTT AAAACCGAAT ACAAAAATCG TTTATTTGGA AACGCCAGCC AACCCGAACA TGTATCTTTG CGACATTGCA GCAGTAAGTA AAATTGCCCA TGCTCATAAT CCCGAATGTA AGGTAATAGT AGATAATACT TATATGACTC CCTATCTTCA AAGGCCTCTT GATTTAGGTG CAGACGTCGT TCTTCATTCT GCAACAAAAT ACCTAAACGG CCATGGAGAC GTTATTGCAG GTTTTGTTGT CGGGAAAAAA GAATTCATCG ATCAGGTACG CTTTGTAGGT GTTAAGGATA TGACAGGTTC TACATTAGGT CCATTTGAAG CTTACTTAAT AGGCCGAGGT ATGAAGACCC TCGATATCCG AATGGAAAAG CACTGCGCCA ATGCTCAAAA AGTTGCAGAG TTCTTGGAAA AACATCCGGC AGTTGAGTCC ATCGCCTTCC CCGGTCTTAA ATCCTTCCCG CAATATGAGC TTGCAAAAAA ACAGATGAAA CTTTGCGGAG CTATGATTGC CTTTACCGTT AAGGGCGGAT TGGAAGCCGG TAAAACCCTT ATAAACTCGG TTAAATTTGC AACCATTGCA GTAAGCTTAG GCGÄTGCCGA AACCCTTATT CAGCATCCTG CAAGTATGAC CCACTCTCCG TATACCCCTG AAGAAAGAGC CGCTTCGGAT ATTGCCGAAG GTTTGGTACG TCTTTCTGTC GGTCTTGAAG ATGCGGAAGA TATTATTGCC GATTTAAAAC AAGCCTTGGA TAAACTTGTT AAAATGAATAGAA AAGAATTGGA AAAGTTGGGA TTTGCTTCAA AACAGATTCA CGCAGGAAGC ATTAAGAACA AGTACGGTGC TTTAGCTACA CCTATTTATC AAACTTCAAC ATTTGCATTT GATTCGGCAG AACAAGGCGG CAGAAGATTT GCCTTAGAGG AAGAAGGTTA TATCTACACC CGTTTAGGTA ACCCTACGAC TACGGTTGTT GAAGAAAAAC TTGCCTGCCT TGAAAACGGG GAAGCCTGTA TGTCCGCGAG CTCCGGTATA GGTGCCGTTA CCTCATGCAT TTGGTCAATT GTAAATGCAG GAGACCATAT CGTTGCCGGA AAGACTCTTT ACGGCTGTAC ATTTGCGTTT TTAAATCACG GTCTGTCACG ATTCGGTGTT GATGTAACCT TCGTTGATAC CCGTGATCCT GAAAACGTTA AAAAAGCTTT AAAACCGAAT ACAAAAATCG TTTATTTGGA AACGCCAGCC AACCCGAACA TGTATCTTTG CGACATTGCA GCAGTAAGTA AAATTGCCCA TGCTCATAAT CCCGAATGTA AGGTAATAGT AGATAATACT TATATGACTC CCTATCTTCA AAGGCCTCTT GATTTAGGTG CAGACGTCGT TCTTCATTCT GCAACAAAAT ACCTAAACGG CCATGGAGAC GTTATTGCAG GTTTTGTTGT CGGGAAAAAA GAATTCATCG ATCAGGTACG CTTTGTAGGT GTTAAGGATA TGACAGGTTC TACATTAGGT CCATTTGAAG CTTACTTAAT AGGCCGAGGT ATGAAGACCC TCGATATCCG AATGGAAAAG CACTGCGCCA ATGCTCAAAA AGTTGCAGAG TTCTTGGAAA AACATCCGGC AGTTGAGTCC ATCGCCTTCC CCGGTCTTAA ATCCTTCCCG CAATATGAGC TTGCAAAAAA ACAGATGAAA CTTTGCGGAG CTATGATTGC CTTTACCGTT AAGGGCGGAT TGGAAGCCGG TAAAACCCTT ATAAACTCGG TTAAATTTGC AACCATTGCA GTAAGCTTAG GCGÄTGCCGA AACCCTTATT CAGCATCCTG CAAGTATGAC CCACTCTCCG TATACCCCTG AAGAAAGAGC CGCTTCGGAT ATTGCCGAAG GTTTGGTACG TCTTTCTGTC GGTCTTGAAG ATGCGGAAGA TATTATTGCC GATTTAAAAC AAGCCTTGGA TAAACTTGTT AAA
Seq. 5 (Nukleinsäuresequenz, METase, Fusobacterium nucleatum): (Accession: AE010647): atggaaatga aaaaatctgg tttaggaaca actgctatac atgcaggaac tttaaaaaat 61 ttatatggaa ctcttgcaat gcctatatat caaacttcta cttttatatt tgattcagca 121 gaacaaggag gaagaagatt tgcccttgaa gaagctggat atatttacac aagactaggc 181 aatcctacaa caacagtgtt agaaaataaa attgctgctc ttgaagaagg tgaagctgga 241 atagctatgt catctggtat gggagctatc tcttcaacat tgtggactgt attaaaagct 301 ggagatcatg ttgttacaga taaaacttta tatggttgta cttttgcttt gatgaatcat 361 ggacttacaa gatttggagt tgaagttact tttgttgata cttctaattt agaagaagtt 421 aaaaatgcta tgaaaaaaaa tacaagagtt gtttatcttg aaactcctgc caatccaaat 481 ttaaaaatag ttgatttaga agctttatct aaaattgctc acacaaatcc aaatactttg 541 gttatagtag ataatacttt tgcaactcca tatatgcaaa aacctttaaa attaggtgta 601 gatattgttg tacactctgc aactaaatat ttgaatggac atggagatgt aatagcaggt 661 cttgttgtaa caagacaaga acttgcagat caaatccgtt ttgttggatt aaaagatatg 721 acaggagctg ttttaggacc tcaagaagca tattacatta taagaggatt gaaaacattt 781 gaaattcgta tggaaagaca ctgtaaaaat gcaagaacta ttgtagattt cttaaataaa 841 catccaaaag ttgaaaaagt ttattatcct ggacttgaga ctcatcctgg ttatgaaata 901 gctaaaaaac aaatgaaaga ttttggagca atgatttcat ttgaattäaa aggtggcttt 961 gaagcaggta aaactttatt aaataattta aaactttgtt cattagcagt ttcattagga 1021 gatactgaaa ctcttattca acacccagca tctatgacac actctcctta tacaaaggaa 1081 gaaagagaag ttgctggaat cactgatggt ttagttagat tatcagttgg acttgaaaat 1141 gttgaagata ttatagctga tttagaacaa ggactagaaa aaatttaaSeq. 5 (nucleic acid sequence, METase, Fusobacterium nucleatum): (Accession: AE010647): atggaaatga aaaaatctgg tttaggaaca actgctatac atgcaggaac tttaaaaaat 61 ttatatggaa ctcttgcaat gcctatatat caaacttcta cttttatatt tgattcagca 121 gaacaaggag gaagaagatt tgcccttgaa gaagctggat atatttacac aagactaggc 181 aatcctacaa caacagtgtt agaaaataaa attgctgctc ttgaagaagg tgaagctgga 241 atagctatgt catctggtat gggagctatc tcttcaacat tgtggactgt attaaaagct 301 ggagatcatg ttgttacaga taaaacttta tatggttgta cttttgcttt gatgaatcat 361 ggacttacaa gatttggagt tgaagttact tttgttgata cttctaattt agaagaagtt 421 aaaaatgcta tgaaaaaaaa tacaagagtt gtttatcttg aaactcctgc caatccaaat 481 ttaaaaatag ttgatttaga agctttatct aaaattgctc acacaaatcc aaatactttg 541 gttatagtag ataatacttt tgcaactcca tatatgcaaa aacctttaaa attaggtgta 601 gatattgttg tacactctgc aactaaatat ttgaatggac atggagatgt aatagcaggt 661 cttgttgtaa caagacaaga acttgcagat caaatccgtt ttgttggatt aaaagatatg 721 acaggagctg ttttaggacc tcaagaagca tattacatta taagaggatt gaaaacattt 781 gaaattcgta tggaaagaca ctgtaaaaat gcaagaacta ttgtagattt cttaaataaa 841 catccaaaag ttgaaaaagt ttattatcct ggacttgaga ctcatcctgg ttatgaaata 901 gctaaaaaac aaatgaaaga ttttggagca atgatttcat ttgaattäaa aggtggcttt 961 gaagcaggta aaactttatt aaataattta aaactttgtt cattagcagt ttcattagga 1021 gatactgaaa ctcttattca acacccagca tctatgacac actctcctta tacaaaggaa 1081 gaaagagaag ttgctggaat cactgatggt ttagttagat tatcagttgg acttgaaaat 1141 gttgaagata ttatagctga tttagaacaa ggactagaaa aaatttaa
Seq. 6 (Nukleinsäuresequenz, METase, Pseudomonas putida): (Accession: L43133):Seq. 6 (nucleic acid sequence, METase, Pseudomonas putida): (Accession: L43133):
ataggatggc ctggtagcca gtgatatagc cgttgtcttc cagcagcttg acccggcgcc 61 agcaggggcg aggtggtcaa tgccacctgg tcggcaagtt cggcgacggt taggcgggcg 121 ttgtcctgca aggcggcgag cagggcgcgg tcggtgcggt cgaggcttga aggcatgttt 181 tgccctcctg gtccgttaat tattgttttt gttccagcaa gcacgcagat gcgtgggcaa 241 ttttggaaaa aatcgggcag ctcggtggca taagcttata acaaaccaca agaggctgtt 301 gccatgcgcg actcccataa caacaccggt ttttccacac gggccattca ccacggctac 361 gacccgcttt cccacggtgg tgccttggtg ccaccggtgt accagaccgc gacctatgcc 421 ttcccgactg tcgaatacgg cgctgcgtgc ttcgccgggg aggaggcggg gcacttctac 481 agccgcatct ccaaccccac cctggccttg ctcgagcaac gcatggcctc gttggagggt 541 ggtgaggcgg gattggcgct ggcgtcgggg atgggagcca ttacttcgac cctctggacc 601 ctgctgcggc ctggtgatga gctgatcgtg gggcgcacct tgtatggctg cacctttgcg 661 ttcctgcacc atggcattgg cgagttcggg gtcaagatcc accatgtcga ccttaacgat 721 gccaaggccc tgaaagcggc gatcaacagc aaaacgcgga tgatctactt cgaaacaccg 781 gccaacccca acatgcaact ggtggatata gcggcggtcg tcgaggcagt gcgggggagt 841 gatgtgcttg tggtggtcga caacacctac tgcacgccct acctgcagcg gccactggaa 901 ctgggggcag acctggtggt gcattcggca accaagtacc tcagtggcca tggcgacatc 961 actgcgggcc tggtggtggg gcgcaaggct ttggtcgacc gcattcggct ggaagggctg 1021 aaagacatga ccggggcagc cttgtcaccg catgacgctg cgttgttgat gcgcggcatc 1081 aagaccctgg cgctgcgcat ggaccggcat tgcgccaacg ccctggaggt cgcgcagttc 1141 ctggccgggc agccccaggt ggagctgatc cactacccgg gcttgccgtc gtttgcccag 1201 tacgaactgg cacagcggca gatgcgtttg ccgggcggga tgattgcctt tgagctcaag 1261 ggcggtatcg aggccgggcg cggcttcatg aatgccctgc agctttttgc ccgtgcggtg 1321 agcctggggg atgccgagtc gctggcacag cacccggcga gcatgacgca ctccagttac 1381 acgccacaag agcgggcgca tcacgggata tcagaggggc tggtgaggtt gtcagtgggg 1441 ctggaggatg tggaggacct gctggcagat atcgagttgg cgttggaggc gtgtgcatga 1501 acttgccttg caggatcggg aacacttgcc caatgcctca cgggatcagg cgatggcact 1561 ttggatgagc tggtgaattg gccggcttat ccaagaggag tttaaaatga ccgtaataggatggc ctggtagcca gtgatatagc cgttgtcttc cagcagcttg acccggcgcc 61 agcaggggcg aggtggtcaa tgccacctgg tcggcaagtt cggcgacggt taggcgggcg 121 ttgtcctgca aggcggcgag cagggcgcgg tcggtgcggt cgaggcttga aggcatgttt 181 tgccctcctg gtccgttaat tattgttttt gttccagcaa gcacgcagat gcgtgggcaa 241 ttttggaaaa aatcgggcag ctcggtggca taagcttata acaaaccaca agaggctgtt 301 gccatgcgcg actcccataa caacaccggt ttttccacac gggccattca ccacggctac 361 gacccgcttt cccacggtgg tgccttggtg ccaccggtgt accagaccgc gacctatgcc 421 ttcccgactg tcgaatacgg cgctgcgtgc ttcgccgggg aggaggcggg gcacttctac 481 agccgcatct ccaaccccac cctggccttg ctcgagcaac gcatggcctc gttggagggt 541 ggtgaggcgg gattggcgct ggcgtcgggg atgggagcca ttacttcgac cctctggacc 601 ctgctgcggc ctggtgatga gctgatcgtg gggcgcacct tgtatggctg cacctttgcg 661 ttcctgcacc atggcattgg cgagttcggg gtcaagatcc accatgtcga ccttaacgat 721 gccaaggccc tgaaagcggc gatcaacagc aaaacgcgga tgatctactt cgaaacaccg 781 gccaacccca acatgcaact ggtggatata gcggcggtcg tcgaggcagt gcgggggagt 841 gatgtgcttg tggtggtcga caacacctac tgcacgccct acctgcagcg gccactggaa 901 ctgggggcag acctggtggt gcattcggca accaagtacc tcagtggcca tggcgacatc 961 actgcgggcc tggtggtggg gcgcaaggct ttggtcgacc gcattcggct ggaagggctg 1021 aaagacatga ccggggcagc cttgtcaccg catgacgctg cgttgttgat gcgcggcatc 1081 aagaccctgg cgctgcgcat ggaccggcat tgcgccaacg ccctggaggt cgcgcagttc 1141 ctggccgggc agccccaggt ggagctgatc cactacccgg gcttgccgtc gtttgcccag 1201 tacgaactgg cacagcggca gatgcgtttg ccgggcggga tgattgcctt tgagctcaag 1261 ggcggtatcg aggccgggcg cggcttcatg aatgccctgc agctttttgc ccgtgcggtg 1321 agcctggggg atgccgagtc gctggcacag cacccggcga gcatgacgca ctccagttac 1381 acgccacaag agcgggcgca tcacgggata tcagaggggc tggtgaggtt gtcagtgggg 1441 ctggaggatg tggaggacct gctggcagat atcgagttgg cgttggaggc gtgtgcatga 1501 acttgccttg caggatcggg aacacttgcc caatgcctca cgggatcagg cgatggcact 1561 ttggatgagc tggtgaattg gccggcttat ccaagaggag tttaaaatga ccgta
Seq. 7 (METase Konsensussequenz)Seq. 7 (METase consensus sequence)
[DQ]-[LIMNF]-X(3)-[STAGC]-[STAGCI]-T-K-[FYWQ]-[LIVMF]-X-G-[HQ]-[SGNH][DQ] - [LIMNF] -X (3) - [STAGC] - [STAGCI] -T-K- [FYWQ] - [LIVMF] -X-G- [HQ] - [SGNH]
CLUSTALW-Sequence-Alignment: t.denticola MSTRKE:--EKLGFASKQI-^GS-IKNKYG p . gingivalis MRSGFATRAIHGGA-IENAFGCLATPIYQTSTFVFDTAEQGGRRFAGEEDGYIY f.nucleatum MEMKKSGLGTTAIHAGT-LKNLYGTLAMPIYQTSTFIFDSAEQGGRRFALEEAGYIY p. utida -MHGSNKLPGFATRAIHHGYDPQDHGGALVPPVYQTATFTFPTVEYGAACFAGEQAGHFY t.denticola TI .GNPTTTVVEEK--ACI-ENGEACMSASSGIGAVTSCI SIVNAGDHIVAGKTLYGCTFA p . gingivalis TRLGNPNCTQVEEKLAMLEGGEAAASASSGIGAISSAI VCVKAGDHIVAGKTLYGCTFA f.nucleatum TRLGNPTTTVLENKIAALEEGEAGIAMSSGMGAISSTL TVLKAGDHWTDKTLYGCTFA p.putida SRISNPTLNLLEAR ASLEGGEAGLALASGMGAITSTL TLLRPGDEVLLGNTLYGCTFA t. denticola F---SmGLSR Gv-- tTFVDTRDPE ^VKK-- ^ p. gingivalis FLTHGLSRYGVEVTLVDTRHPEEVEAAIRPNTKLVYLETPANPNMYLTDIKAVCDIAHKH f.nucleatum LMNHGLTRFGVEVTFVDTSNLEEVKNAMKKNTRVVYLETPANPNLKIVDLEALSKIAHTN p.putida FLHHGIGEFGVKLRHVDMADLQALEAAMTPATRVIYFESPANPNMHMADIAGVAKIARKH .denticola NPECKVIVDNTYMTPY QRP--D GADVV HSATKYI-ISIGHGDVIAGFVVGIKEFIDQVI-FV p. gingivalis -EGVRVMVDNTYCTPYICRPLELGADIWHSATKYLNGHGDVIAGFWGKEDYIKEVKLV f.nucleatum -PNTLVIVDNTFATPY QKPLKLGVDIWHSATKYLNGHGDVIAGLWTRQELADQIRFV p .putida —GATVWDNTYCTPYLQRPLELGADLWHSATKYLSGHGDITAGIWGSQALVDRIRLQ .denticola GvT GST GPFEAYLIGRG-^TI-DIRMEK^^ p. gingivalis GVKDLTGANMSPFDAYLISRGMKTLQIRMEQHCRNAQTVAEFLEKHPAVEAVYFPGLPSF f.nucleatum GLKDMTGAVLGPQEAYYIIRGLKTFEIRMERHCKNARTIVDFLNKHPKVEKVYYPGLETH p.putida GLKD TGAVLSPHDAALLMRGIKTLNLRMDRHCANAQVLAEFLARQPQVELIHYPGLASF t. denticola PQYE--AKKQM-OiCG-^I-^-7VKGGI-EAGKT INSVKFA-?IAVS GDAET IQHPASMTHS p. gingivalis PQYELAKKQMALPGAMIAFEVKGGCEAGKKLMNNLHLCSLAVSLGDTETLIQHPASMTHS f.nucleatum PGYEIAKKQMKDFGAMISFELKGGFEAGKTLLNNLKLCSLAVSLGDTETLIQHPASMTHS p.putida PQYTLARQQMSQPGGMIAFELKGGIGAGRRF NALQLFSRAVSLGDAESLAQHPASMTHS . denticola PYTPEERAASDIAEGLVR--1SVGLEDAEDIIADLKQAI-DKLVK p. gingivalis PYTPEERAASDISEGLVRLSVGLENVEDIIADLKHGLDSLI- f .nucleatum PYTKEEREVAGITDGLVRLSVGLENVEDIIADLEQGLEKI— p.putida SYTPEERAHYGISEGLVRLSVGLEDIDDLLADVQQALKASA- CLUSTALW sequence alignment: t.denticola MSTRKE: - EKLGFASKQI- ^ GS-IKNKYG p. gingivalis MRSGFATRAIHGGA-IENAFGCLATPIYQTSTFVFDTAEQGGRRFAGEEDGYIY f.nucleatum MEMKKSGLGTTAIHAGT-LKNLYGTLAMPIYQTSTFIFDSAEQGGRRFALEEAGYIY p. utida -MHGSNKLPGFATRAIHHGYDPQDHGGALVPPVYQTATFTFPTVEYGAACFAGEQAGHFY t.denticola TI .GNPTTTVVEEK - ACI-ENGEACMSASSGIGAVTSCI SIVNAGDHIVAGKTLYGCTFA p. gingivalis TRLGNPNCTQVEEKLAMLEGGEAAASASSGIGAISSAI VCVKAGDHIVAGKTLYGCTFA f.nucleatum TRLGNPTTTVLENKIAALEEGEAGIAMSSGMGAISSTL TVLKAGDHWTDKTLYGCTFA p.putida SRISNPTLGLCTLLASASGGLGGLLLASG denticola F --- SmGLSR Gv-- tTFVDTRDPE ^ VKK-- ^ p. gingivalis FLTHGLSRYGVEVTLVDTRHPEEVEAAIRPNTKLVYLETPANPNMYLTDIKAVCDIAHKH f.nucleatum LMNHGLTRFGVEVTFVDTSNLEEVKNAMKKNTRVVYLETPANPNLKIVDLEALSKIAHTN P.putida FLHHGIGEFGVKLRHVDMADLQALEAAMTPATRVIYFESPANPNMHMADIAGVAKIARKH .denticola NPECKVIVDNTYMTPY QRP - D-GADVV HSATKYI ISIGHGDVIAGFVVGIKEFIDQVI-FV p. gingivalis -EGVRVMVDNTYCTPYICRPLELGADIWHSATKYLNGHGDVIAGFWGKEDYIKEVKLV f.nucleatum -PNTLVIVDNTFATPY QKPLKLGVDIWHSATKYLNGHGDVIAGLWTRQELADQIRFV p .putida - GATVWDNTYCTPYLQRPLELGADLWHSATKYLSGHGDITAGIWGSQALVDRIRLQ .denticola GvT GST GPFEAYLIGRG- ^ TI-DIRMEK ^^ p. gingivalis GVKDLTGANMSPFDAYLISRGMKTLQIRMEQHCRNAQTVAEFLEKHPAVEAVYFPGLPSF f.nucleatum GLKDMTGAVLGPQEAYYIIRGLKTFEIRMERHCKNARTIVDFLNKHPKVEKVYYPGLDRHLLPHVKHG denticola PQYE - AKKQM-OiCG- ^ I - ^ - 7VKGGI-EAGKT INSVKFA-? IAVS GDAET IQHPASMTHS p. gingivalis PQYELAKKQMALPGAMIAFEVKGGCEAGKKLMNNLHLCSLAVSLGDTETLIQHPASMTHS f.nucleatum PGYEIAKKQMKDFGAMISFELKGGFEAGKTLLNNLKLCSLAVSLGDTETLIQHPASMTHS P. putida PQYTLARQQMSQPGGMIAFELKGGIGAGRRF NALQLFSRAVSLGDAESLAQHPASMTHS , denticola PYTPEERAASDIAEGLVR - 1SVGLEDAEDIIADLKQAI-DKLVK p. gingivalis PYTPEERAASDISEGLVRLSVGLENVEDIIADLKHGLDSLI- f .nucleatum PYTKEEREVAGITDGLVRLSVGLENVEDIIADLEQGLEKI— p.putida SYTPEERAHYGISEGLVRLSVGLEDIDDLLADVQQALKAS

Claims

Patentansprüche claims
1. Screening-Verfahren zur Identifikation wirksamer Substanzen gegen Halitosis, Gingivitis oder Parodontitis, dadurch gekennzeichnet, daß man a) eine für eine Methionin-Gamma-Lyase codierende Nukleinsäure aus einem pro- oder eukaryotischen Organismus isoliert oder in vitro synthetisiert, b) die für eine Methionin-Gamma-Lyase codierende Nukleinsäure kloniert und in geeigneten Wirtszellen exprimiert oder die Methionin-Gamma-Lyase in vitro synthetisiert, c) die Methionin-Gamma-Lyase exprimierenden Wirtszellen in voneinander räumlich getrennten Ansätzen in Gegenwart einer Schwefelquelle und eines geeigneten Nachweisagens für Reaktionsprodukte durch Methionin- Gamma-Lyase katalysierter Reaktionen kultiviert; oder die Methionin- Gamma-Lyase in voneinander räumlich getrennten Ansätzen in Gegenwart von Methionin, Cystein oder Glutathion in ein in vitro Testsystem einbringt, d) die Ansätze mit möglicherweise die Funktion der Methionin-Gamma-Lyase hemmenden Substanzen versetzt, e) für jeden der voneinander räumlich getrennten Ansätze die Bildung von Reaktionsprodukten durch Methionin-Gamma-Lyase katalysierter Reaktionen bestimmt und so wirksame Substanzen gegen Halitosis, Gingivitis oder Parodontitis identifiziert1. Screening method for identifying active substances against halitosis, gingivitis or periodontitis, characterized in that a) a nucleic acid coding for a methionine gamma lyase is isolated from a pro- or eukaryotic organism or synthesized in vitro, b) the for a nucleic acid encoding a methionine-gamma-lyase is cloned and expressed in suitable host cells or the methionine-gamma-lyase is synthesized in vitro, c) the host cells expressing methionine-gamma-lyase in spatially separated approaches in the presence of a sulfur source and a suitable detection agent for reaction products reactions catalyzed by methionine gamma lyase; or the methionine-gamma-lyase in spatially separated batches in the presence of methionine, cysteine or glutathione in an in vitro test system, d) the batches with possibly the function of the methionine-gamma-lyase inhibiting substances, e) for each of the spatially separated approaches determine the formation of reaction products by reactions catalyzed by methionine-gamma-lyase and thus identify active substances against halitosis, gingivitis or periodontitis
2. Screening-Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man in Schritt a) eine für eine Methionin-Gamma-Lyase codierende Nukleinsäure isoliert oder synthetisiert, die ausgewählt ist unter METase-Genen aus dem Pro- tozoon Trichomonas vaginalis und den Bakterien Treponema denticola, Pseudomonas putida, Fusobacterium nucleatum, besonders bevorzugt Treponema denticola.2. Screening method according to claim 1, characterized in that in step a) a nucleic acid coding for a methionine gamma lyase is isolated or synthesized, which is selected from METase genes from the protozoan Trichomonas vaginalis and the bacteria Treponema denticola, Pseudomonas putida, Fusobacterium nucleatum, particularly preferably Treponema denticola.
3. Screening-Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man in Schritt a) eine für eine Methionin-Gamma-Lyase codierende Nukleinsäure isoliert oder synthetisiert, deren Nukleotidsequenz mit der in Seq. 6 (METase-Gen aus Pseudomonas putida) angegebenen Nukleotidsequenz zu mindestens 50 %, zu mindestens 75 %, zu mindestens 80 %, vorzugsweise mindestens 85 %, insbesondere mindestens 90 %, besonders bevorzugt mindestens 95 % und ganz besonders bevorzugt zu 100 % übereinstimmt.3. Screening method according to claim 1 or 2, characterized in that in step a) a nucleic acid coding for a methionine gamma lyase is isolated or synthesized, the nucleotide sequence of which in Seq. 6 (METase gene from Pseudomonas putida) given nucleotide sequence at least 50%, at least 75%, at least 80%, preferably at least 85%, in particular at least 90%, particularly preferably at least 95% and very particularly preferably 100%.
4. Screening-Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man in Schritt a) eine für eine Methionin-Gamma-Lyase codierende Nukleinsäure isoliert oder synthetisiert, deren Nukleotidsequenz mit der in Seq. 5 (METase-Gen aus Fusobacterium nucleatum) angegebenen Nukleotidsequenz zu mindestens 50 %, zu mindestens 75 %, zu mindestens 80 %, vorzugsweise mindestens 85 %, insbesondere mindestens 90 %, besonders bevorzugt mindestens 95 % und ganz besonders bevorzugt zu 100 % übereinstimmt.4. Screening method according to one of the preceding claims, characterized in that in step a) a nucleic acid coding for a methionine gamma-lyase is isolated or synthesized, the nucleotide sequence of which in Seq. 5 (METase gene from Fusobacterium nucleatum) specified nucleotide sequence corresponds to at least 50%, at least 75%, at least 80%, preferably at least 85%, in particular at least 90%, particularly preferably at least 95% and very particularly preferably 100%.
5. Screening-Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man in Schritt a) eine für eine Methionin-Gamma-Lyase codierende Nukleinsäure isoliert oder synthetisiert, deren Nukleotidsequenz mit der in Seq. 4 (METase-Gen aus Treponema denticola) angegebenen Nukleotidsequenz zu mindestens 50 %, zu mindestens 75 %, zu mindestens 80 %, vorzugsweise mindestens 85 %, insbesondere mindestens 90 %, besonders bevorzugt mindestens 95 % und ganz besonders bevorzugt zu 100 % übereinstimmt.5. Screening method according to one of the preceding claims, characterized in that in step a) a nucleic acid coding for a methionine gamma-lyase is isolated or synthesized, the nucleotide sequence of which in Seq. 4 (METase gene from Treponema denticola) specified nucleotide sequence corresponds to at least 50%, at least 75%, at least 80%, preferably at least 85%, in particular at least 90%, particularly preferably at least 95% and very particularly preferably 100%.
6. Screening-Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man in Schritt a) eine Nukleinsäure isoliert oder synthetisiert, die für eine Methionin-Gamma-Lyase codiert, deren Aminosäuresequenz mit einer der in Seq. 1 bis 3 angegebenen Aminosäuresequenzen zu mindestens 70 %, vorzugsweise mindestens 80 %, insbesondere mindestens 90 %, besonders bevorzugt mindestens 95 % und ganz besonders bevorzugt zu 100 % identisch ist, oder deren Aminosäuresequenz einen Teil enthält, der mit einer der in Seq. 1 bis 3 angegebenen Aminosäuresequenzen zu mindestens 70 %, vorzugsweise mindestens 80 %, insbesondere mindestens 90 %, besonders bevorzugt mindestens 95 % und ganz besonders bevorzugt zu 100 % i- dentisch ist. 6. Screening method according to one of the preceding claims, characterized in that in step a) a nucleic acid is isolated or synthesized, which codes for a methionine gamma lyase, the amino acid sequence with one of those in Seq. 1 to 3 specified amino acid sequences are at least 70%, preferably at least 80%, in particular at least 90%, particularly preferably at least 95% and very particularly preferably 100% identical, or the amino acid sequence of which contains a part which corresponds to one of those described in Seq. 1 to 3 amino acid sequences given are at least 70%, preferably at least 80%, in particular at least 90%, particularly preferably at least 95% and very particularly preferably 100% identical.
. Screening-Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man in Schritt a) eine Nukleinsäure isoliert oder synthetisiert, die für eine Methionin-Gamma-Lyase codiert, deren Aminosäuresequenz mit einer der in Seq. 1 bis 3 angegebenen Aminosäuresequenzen zu mindestens 70 %, vorzugsweise mindestens 80 %, insbesondere mindestens 90 %, besonders bevorzugt mindestens 95 % und ganz besonders bevorzugt zu 100 % identisch ist, oder deren Aminosäuresequenz einen Teil enthält, der mit einer der in Seq. 1 bis 3 angegebenen Aminosäuresequenzen zu mindestens 70 %, vorzugsweise mindestens 80 %, insbesondere mindestens 90 %, besonders bevorzugt mindestens 95 % und ganz besonders bevorzugt zu 100 % i- dentisch ist., Screening method according to one of the preceding claims, characterized in that in step a) a nucleic acid is isolated or synthesized which codes for a methionine gamma lyase, the amino acid sequence of which is one of those described in Seq. 1 to 3 specified amino acid sequences are at least 70%, preferably at least 80%, in particular at least 90%, particularly preferably at least 95% and very particularly preferably 100% identical, or the amino acid sequence of which contains a part which corresponds to one of those described in Seq. 1 to 3 specified amino acid sequences is at least 70%, preferably at least 80%, in particular at least 90%, particularly preferably at least 95% and very particularly preferably 100% identical.
8. Screening-Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man in Schritt a) eine Nukleinsäure isoliert oder synthetisiert, die für eine Methionin-Gamma-Lyase codiert, deren Aminosäuresequenz einen Teil enthält, der mit der Konsensus-Sequenz [DQ]-[LIMVF]-X(3)- [STAGC]-[STAGCI]-T-K-[FYWQ]-[LIVMF]-X-G-[HQ]-[SGNH] (Seq. ID 7) zu mindestens 96 %, insbesondere zu mindestens 97 %, vorzugsweise zu mindestens 98 %, bevorzugt zu mindestens 99 %, besonders bevorzugt zu 100 % identisch ist.8. Screening method according to one of the preceding claims, characterized in that in step a) a nucleic acid is isolated or synthesized which codes for a methionine gamma lyase, the amino acid sequence of which contains a part which corresponds to the consensus sequence [DQ ] - [LIMVF] -X (3) - [STAGC] - [STAGCI] -TK- [FYWQ] - [LIVMF] -XG- [HQ] - [SGNH] (Seq. ID 7) at least 96%, in particular is at least 97%, preferably at least 98%, preferably at least 99%, particularly preferably 100% identical.
9. Screening-Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man in Schritt c) des Verfahrens eine Methionin-Gamma- Lyase exprimieren läßt oder einsetzt, deren Aminosäuresequenz mit der in Seq. 3 (METase aus Pseudomonas putida) angegebenen Aminosäuresequenz zu mindestens 50 %, vorzugsweise mindestens 70 %, insbesondere mindestens 80 %, besonders bevorzugt mindestens 90 % und ganz besonders bevorzugt zu 100 % übereinstimmt.9. Screening method according to one of the preceding claims, characterized in that in step c) of the method a methionine gamma lyase is expressed or used, the amino acid sequence of which in Seq. 3 (METase from Pseudomonas putida) specified amino acid sequence corresponds to at least 50%, preferably at least 70%, in particular at least 80%, particularly preferably at least 90% and very particularly preferably 100%.
10. Screening-Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man in Schritt c) des Verfahrens eine Methionin-Gamma- Lyase exprimieren läßt oder einsetzt, deren Aminosäuresequenz mit der in Seq. 2 (METase aus Fusobacterium nucleatum) angegebenen Aminosäuresequenz zu mindestens 50 %, vorzugsweise mindestens 70 %, insbesondere mindestens 80 %, besonders bevorzugt mindestens 90 % und ganz besonders bevorzugt zu 100 % übereinstimmt.10. Screening method according to one of the preceding claims, characterized in that in step c) of the method a methionine gamma-lyase is expressed or used, the amino acid sequence of which in Seq. 2 (METase from Fusobacterium nucleatum) specified amino acid sequence corresponds to at least 50%, preferably at least 70%, in particular at least 80%, particularly preferably at least 90% and very particularly preferably 100%.
11. Screening-Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man in Schritt c) des Verfahrens eine Methionin-Gamma- Lyase exprimieren läßt oder einsetzt, deren Aminosäuresequenz mit der in Seq. 1 (METase aus Treponema denticola) angegebenen Aminosäuresequenz zu mindestens 50 %, vorzugsweise mindestens 70 %, insbesondere mindestens 80 %, besonders bevorzugt mindestens 90 % und ganz besonders bevorzugt zu 100 % übereinstimmt.11. Screening method according to one of the preceding claims, characterized in that in step c) of the method a methionine gamma lyase is expressed or used, the amino acid sequence of which in Seq. 1 (METase from Treponema denticola) specified amino acid sequence corresponds to at least 50%, preferably at least 70%, in particular at least 80%, particularly preferably at least 90% and very particularly preferably 100%.
12. Screening-Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man in Schritt b) des Verfahrens Wirtszellen für die Expression einsetzt, die ausgewählt sind unter Mikroorganismen, insbesondere Bakterien, besonders bevorzugt E. coli.12. Screening method according to one of the preceding claims, characterized in that in step b) of the method, host cells are used for the expression, which are selected from microorganisms, in particular bacteria, particularly preferably E. coli.
13. Screening-Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man in Schritt c) des Verfahrens als Nachweisagenzien für Reaktionsprodukte durch Methionin-Gamma-Lyase katalysierter Reaktionen Bleiacetat sowie Salze von Hg, Ni, Sb, Sn, Zn, Ag, Cu, Co und Cd, einsetzt, vorzugsweise Salze von Pb, Ag und Cu.13. Screening method according to one of the preceding claims, characterized in that in step c) of the method as detection agents for reaction products catalyzed by methionine-gamma-lyase reactions, lead acetate and salts of Hg, Ni, Sb, Sn, Zn, Ag, Cu, Co and Cd, preferably uses salts of Pb, Ag and Cu.
14. Screening-Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man in Schritt c) des Verfahrens als Schwefelquelle Methionin, Cystein oder Glutathion einsetzt.14. Screening method according to one of the preceding claims, characterized in that methionine, cysteine or glutathione is used as the sulfur source in step c) of the method.
15. Screening-Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß man in Schritt c) die Bestimmung von Reaktionsprodukten durch Methionin-Gamma-Lyase katalysierter Reaktionen durch Nachweis des gebildeten Produktes α-Ketobutyrat vornimmt. 15. Screening method according to one of claims 1 to 12, characterized in that in step c) the determination of reaction products by methionine-gamma-lyase-catalyzed reactions is carried out by detecting the product formed α-ketobutyrate.
16. Klonierungsvektoren oder Expressionsvektoren, die gemäß Schritt a) aus einem der vorhergehenden Ansprüche isolierte oder synthetisierte Nukleinsäuren enthalten.16. Cloning vectors or expression vectors which, according to step a), contain nucleic acids isolated or synthesized from one of the preceding claims.
17. Wirtszellen, die Klonierungsvektoren oder Expressionsvektoren gemäß Anspruch 16 enthalten.17. Host cells containing cloning vectors or expression vectors according to claim 16.
18. Test-Kit zum Auffinden wirksamer Substanzen gegen Halitosis, Gingivitis oder Parodontitis, das Mittel zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 15 umfaßt.18. Test kit for finding effective substances against halitosis, gingivitis or periodontitis, which comprises means for performing the method according to any one of claims 1 to 15.
19. Verwendung von Methionin-Gamma-Lyasen (METase) zum Auffinden wirksamer Substanzen gegen Halitosis, Gingivitis oder Parodontitis.19. Use of methionine gamma lyases (METase) to find effective substances against halitosis, gingivitis or periodontitis.
20. Testverfahren zum Nachweis der Wirksamkeit von Substanzen gegen Halitosis Gingivitis oder Parodontitis, dadurch gekennzeichnet, daß man a) eine für eine Methionin-Gamma-Lyase codierende Nukleinsäure aus einem pro- oder eukaryotischen Organismus isoliert oder in vitro synthetisiert, b) die für eine Methionin-Gamma-Lyase codierende Nukleinsäure kloniert und in geeigneten Wirtszellen exprimiert oder die Methionin-Gamma-Lyase in vitro synthetisiert, c) die Methionin-Gamma-Lyase exprimierenden Wirtszellen in voneinander räumlich getrennten Ansätzen in Gegenwart einer Schwefelquelle und eines geeigneten Nachweisagens für Reaktionsprodukte durch Methionin- Gamma-Lyase katalysierter Reaktionen kultiviert oder; die Methionin- Gamma-Lyase in voneinander räumlich getrennten Ansätzen in Gegenwart von Methionin, Cystein oder Glutathion in ein in vitro Testsystem einbringt, d) die Ansätze mit möglicherweise die Funktion der Methionin-Gamma-Lyase hemmenden Substanzen versetzt, e) für jeden der voneinander räumlich getrennten Ansätze die Bildung von Reaktionsprodukten durch Methionin-Gamma-Lyase katalysierter Reaktionen bestimmt und so den Nachweis der Wirksamkeit von Substanzen gegen Halitosis Gingivitis oder Parodontitis führt.20. Test method for detecting the efficacy of substances against halitosis gingivitis or periodontitis, characterized in that a) a nucleic acid coding for a methionine gamma-lyase is isolated from a pro- or eukaryotic organism or synthesized in vitro, b) that for a Nucleic acid encoding methionine-gamma-lyase is cloned and expressed in suitable host cells or the methionine-gamma-lyase is synthesized in vitro, c) the host cells expressing methionine-gamma-lyase in spatially separated approaches in the presence of a sulfur source and a suitable detection agent for reaction products Cultured methionine-gamma-lyase catalyzed reactions or; the methionine-gamma-lyase is introduced into an in vitro test system in spatially separate batches in the presence of methionine, cysteine or glutathione, d) the batches are mixed with substances which possibly inhibit the function of methionine-gamma-lyase, e) for each of the two spatially separated approaches determined the formation of reaction products by reactions catalyzed by methionine-gamma-lyase and so proves the effectiveness of substances against halitosis gingivitis or periodontitis.
21. Verfahren zur Herstellung einer pharmazeutischen Zubereitung gegen Halitosis, Gingivitis oder Parodontitis, das dadurch gekennzeichnet ist, daß man a) wirksame Wirkstoffe (Hemmstoffe der METase) mit Hilfe des Screening- Verfahrens nach einem der Ansprüche 1 bis 15, oder der erfindungsgemäßen Verwendung nach Anspruch 19 bestimmt und b) als wirksam befundene Wirkstoffe (Hemmstoffe der METase) mit pharma- kologisch geeigneten und verträglichen Trägern vermischt.21. A method for producing a pharmaceutical preparation against halitosis, gingivitis or periodontitis, which is characterized in that a) active ingredients (inhibitors of METase) using the screening method according to any one of claims 1 to 15, or the use according to the invention Claim 19 determines and b) active ingredients found to be effective (inhibitors of METase) mixed with pharmacologically suitable and compatible carriers.
22. Verwendung einer METase gemäß der Definition in einem der Ansprüche 1 bis 15, insbesondere einer METase, deren Aminosäuresequenz mit der in Seq. 1 (METase aus Treponema denticola) angegebenen Aminosäuresequenz zu mindestens 50 %, vorzugsweise mindestens 70 %, insbesondere mindestens 80 %, besonders bevorzugt mindestens 90 % und ganz besonders bevorzugt zu 100 % übereinstimmt, zur strukturgebenden Behandlung von schwefelhaltigen Fasern, wie z.B. Haaren, Federn und Wolle.22. Use of a METase as defined in one of claims 1 to 15, in particular a METase, the amino acid sequence of which in Seq. 1 (METASE from Treponema denticola) specified amino acid sequence corresponds to at least 50%, preferably at least 70%, in particular at least 80%, particularly preferably at least 90% and very particularly preferably 100%, for the structuring treatment of sulfur-containing fibers, such as e.g. Hair, feathers and wool.
23. Verwendung einer METase gemäß der Definition in einem der Ansprüche 1 bis 15, insbesondere einer METase, deren Aminosäuresequenz mit der in Seq. 1 (METase aus Treponema denticola) angegebenen Aminosäuresequenz zu mindestens 50 %, vorzugsweise mindestens 70 %, insbesondere mindestens 80 %, besonders bevorzugt mindestens 90 % und ganz besonders bevorzugt zu 100 % übereinstimmt, zur Entschwefelung eines schwefelhaltigen Proteins, vorzugsweise eines kosmetischen Rohstoffs.23. Use of a METase as defined in one of claims 1 to 15, in particular a METase, the amino acid sequence of which in Seq. 1 (METASE from Treponema denticola) specified amino acid sequence corresponds to at least 50%, preferably at least 70%, in particular at least 80%, particularly preferably at least 90% and very particularly preferably 100%, for the desulfurization of a sulfur-containing protein, preferably a cosmetic raw material.
24. Verwendung einer METase gemäß der Definition in einem der Ansprüche 1 bis 15, insbesondere einer METase, deren Aminosäuresequenz mit der in Seq. 1 (METase aus Treponema denticola) angegebenen Aminosäuresequenz zu mindestens 50 %, vorzugsweise mindestens 70 %, insbesondere mindestens 80 %, besonders bevorzugt mindestens 90 % und ganz besonders bevorzugt zu 100 % übereinstimmt, zur Synthese der Aminosäuren Cystein und Methionin. 24. Use of a METase as defined in one of claims 1 to 15, in particular a METase, the amino acid sequence of which in Seq. 1 (METASE from Treponema denticola) specified amino acid sequence to at least 50%, preferably at least 70%, in particular at least 80%, particularly preferably at least 90% and very particularly preferably 100% matches, for the synthesis of the amino acids cysteine and methionine.
PCT/EP2003/013814 2002-12-17 2003-12-06 Screening method for identifying substances active against halitosis, gingivitis or parodontitis WO2004055202A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003296620A AU2003296620A1 (en) 2002-12-17 2003-12-06 Screening method for identifying substances active against halitosis, gingivitis or parodontitis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2002160891 DE10260891A1 (en) 2002-12-17 2002-12-17 Screening procedure for the identification of effective substances against halitosis, gingivitis or periodontitis
DE10260891.1 2002-12-17

Publications (2)

Publication Number Publication Date
WO2004055202A2 true WO2004055202A2 (en) 2004-07-01
WO2004055202A3 WO2004055202A3 (en) 2004-11-11

Family

ID=32477969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/013814 WO2004055202A2 (en) 2002-12-17 2003-12-06 Screening method for identifying substances active against halitosis, gingivitis or parodontitis

Country Status (3)

Country Link
AU (1) AU2003296620A1 (en)
DE (1) DE10260891A1 (en)
WO (1) WO2004055202A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8568986B2 (en) 2009-04-24 2013-10-29 Kao Corporation Method of selecting an agent that improves periodontal disease
WO2023235846A3 (en) * 2022-06-03 2024-01-18 Petri Bio, Inc. Methods and compositions for methionine restriction

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005019653A1 (en) * 2005-04-26 2006-11-02 Henkel Kgaa Plant extracts for halitosis, gingivitis or periodontitis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861154A (en) * 1995-10-30 1999-01-19 Shionogi & Co., Ltd. Recombinant L-methionine γ-lyase
US5885767A (en) * 1998-05-22 1999-03-23 Biocatalytics, Inc. Methods and compositions for quantitating L-homocysteine and/or l-methionine in a solution
JP2002003369A (en) * 2000-06-19 2002-01-09 Kansai Koso Kk Methionase and/or protease inhibitor and composition for oral cavity application

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861154A (en) * 1995-10-30 1999-01-19 Shionogi & Co., Ltd. Recombinant L-methionine γ-lyase
US5885767A (en) * 1998-05-22 1999-03-23 Biocatalytics, Inc. Methods and compositions for quantitating L-homocysteine and/or l-methionine in a solution
JP2002003369A (en) * 2000-06-19 2002-01-09 Kansai Koso Kk Methionase and/or protease inhibitor and composition for oral cavity application

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
COOMBS G H ET AL: "TRIFLUOROMETHIONINE, A PRODRUG DESIGNED AGAINST METHIONINE GAMMA-LYASE-CONTAINING PATHOGENS, HAS EFFICACY IN VITRO AND IN VIVO AGAINST TRICHOMONAS VAGINALIS" ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, AMERICAN SOCIETY FOR MICROBIOLOGY, WASHINGTON, DC, US, Bd. 45, Nr. 6, Juni 2001 (2001-06), Seiten 1743-1745, XP002908547 ISSN: 0066-4804 *
HIROYUKI INOUE ET AL: "Structural analysis of the L-methionine gamma-lyase gene from Pseudomonas putida" JOURNAL OF BIOCHEMISTRY, JAPANESE BIOCHEMICAL SOCIETY, TOKYO, JP, Bd. 117, 1995, Seiten 1120-1125, XP002092004 ISSN: 0021-924X *
YOSHIMURA M ET AL: "3-Chloro-DL-alanine resistance by L-methionine-alpha-deamino-gamma-me rcaptomethane-lyase activity" FEBS LETTERS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, Bd. 523, Nr. 1-3, 17. Juli 2002 (2002-07-17), Seiten 119-122, XP004371158 ISSN: 0014-5793 *
YOSHIMURA M ET AL: "Formation of methyl mercaptan from L-methionine by Porphyromonas gingivalis." INFECTION AND IMMUNITY. DEC 2000, Bd. 68, Nr. 12, Dezember 2000 (2000-12), Seiten 6912-6916, XP002280988 ISSN: 0019-9567 in der Anmeldung erw{hnt *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8568986B2 (en) 2009-04-24 2013-10-29 Kao Corporation Method of selecting an agent that improves periodontal disease
EP2631648A3 (en) * 2009-04-24 2013-12-18 Kao Corporation Therapeutic target for periodontal disease.
WO2023235846A3 (en) * 2022-06-03 2024-01-18 Petri Bio, Inc. Methods and compositions for methionine restriction

Also Published As

Publication number Publication date
AU2003296620A1 (en) 2004-07-09
AU2003296620A8 (en) 2004-07-09
DE10260891A1 (en) 2004-07-08
WO2004055202A3 (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP2992010B2 (en) Microbial strains, genes, plasmids and methods for preparing L-cysteine, L-cystine, N-acetylserine or thiazolidine derivatives and the use of efflux genes
DE69534801T2 (en) NEW LYSINE DECARBOXYLASES AND METHOD FOR THE PRODUCTION OF L-LYSINE
Schmitz et al. A tungsten‐containing active formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei
EP1700864A1 (en) Method for the production of S-adenosylmethionine by fermentation
EP1916308A1 (en) Use of vitamins in fermentation processes for the production of amino acids
EP1570066A2 (en) Feedback-resistant homoserine transsuccinylases with a modified c-terminal
EP1205542B1 (en) L-amino acid oxidase from Rhodococcus
WO1995011296A1 (en) Method for controlled modification of enzymes, enzymes modified in this way and the use of such enzymes
DE102008063234A1 (en) Biotechnological production of riboflavin in high yield
WO2004055202A2 (en) Screening method for identifying substances active against halitosis, gingivitis or parodontitis
DE19752700A1 (en) 1-Deoxy-D-xylulose-5-phosphate synthase protein and modulators
WO2010094587A1 (en) Microbial siderophore synthesis
DE60211135T2 (en) D-CARBAMOYLASE FROM ARTHROBACTER CRYSTALLOPOIETES DSM 20117
JP4516712B2 (en) Biological production method of L-pipecolic acid
JP3154348B2 (en) Microorganisms with Skatole Degradability and Microbial Degradation of Skatole
DE69938427T2 (en) Genome involved in the production of homo-glutamic acid and its use
JP2007513636A (en) Electrochemical assay for identification of microorganisms
EP1608746A1 (en) Thermally stable amidases
DE10335447B4 (en) amino oxidase
Mallett et al. The use of continuous flow systems for studying the metabolic activity of the hindgut microflora in vitro
DE102010035702A1 (en) Whole-cell biocatalyst
JP2007089538A (en) Method for producing new escherichia coli and tauropine dehydrogenase
Frommeyer Analytical-chemical quantification of sulfolipids in algae and a novel biochemical pathway for degradation of its polar headgroup by Gram-positive bacteria
KR0147890B1 (en) Eliminating method for fermentation ordor from yoghurt
DE4402127A1 (en) New carnitine racemase from E.coli and related plasmids

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AU BR BY CA CN DZ EG ID IL IN JP KR MX NO NZ PL RU SG UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP