WO2004054935A1 - Waste water treating device - Google Patents

Waste water treating device Download PDF

Info

Publication number
WO2004054935A1
WO2004054935A1 PCT/JP2003/015530 JP0315530W WO2004054935A1 WO 2004054935 A1 WO2004054935 A1 WO 2004054935A1 JP 0315530 W JP0315530 W JP 0315530W WO 2004054935 A1 WO2004054935 A1 WO 2004054935A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated sludge
sludge
separation means
magnetic
magnetic separation
Prior art date
Application number
PCT/JP2003/015530
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuzo Sakai
Susumu Ishida
Original Assignee
Maezawa Industries,Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Industries,Inc. filed Critical Maezawa Industries,Inc.
Priority to AU2003289175A priority Critical patent/AU2003289175A1/en
Priority to JP2004560607A priority patent/JPWO2004054935A1/en
Publication of WO2004054935A1 publication Critical patent/WO2004054935A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1221Particular type of activated sludge processes comprising treatment of the recirculated sludge
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a wastewater treatment device, and more particularly, to a wastewater treatment device that performs a water treatment of wastewater or sewage containing organic matter as a main pollutant component by an activated sludge method to which magnetic powder is added.
  • Activated sludge has been widely used as a treatment method for sewage and organic wastewater.
  • This method basically decomposes organic matter contained in sewage and the like into activated sludge in a treatment tank such as an aeration tank, and then sediments and separates the activated sludge by gravity in a final sedimentation tank. The sludge is returned to the treatment tank.
  • the activated sludge settles and separates in the final sedimentation tank due to the difference in density with water, so the settling property of the activated sludge is affected by the settling index and concentration of the activated sludge.
  • the activated sludge method removes organic matter in water, but has about half the growth of microorganisms in the removed organic matter.
  • the microorganisms of this growth are called excess sludge, and this excess sludge cannot be discarded as it is because it contains a large amount of water. Concentrates by consuming energy. Incineration after dehydration.
  • excess sludge is a major problem because it accounts for a large proportion of industrial waste.
  • a method has been reported in which a part of the microorganisms grown by adding ozone is solubilized and then re-input as an organic substance to the activated sludge process (see, for example, Yasui, H.).
  • the magnetic separation method is used alone or after the sedimentation separation and is used to completely separate the activated sludge from the treated water.
  • magnetic separation method For example, if MLVSS can separate up to 16 g / L of activated sludge, and if the concentration of activated sludge of MLVSS is set according to the load, the experiment using borepteptone / glucose mixed solution as a simulated drainage It has been reported that excess sludge can be reduced to almost zero by oxidization. Also, there has been proposed an invention of a device in which activated sludge provided with magnetization is magnetized by a permanent magnet and separated from treated water (see Japanese Patent Publication No. 3-57979).
  • the present invention can realize a significant reduction of excess sludge in the activated sludge method and a greatly simplified process control by effectively introducing the magnetic separation method.
  • the objective is to provide wastewater treatment equipment that can be applied to wastewater treatment facilities with small-scale improvements. Disclosure of the invention
  • the wastewater treatment apparatus of the present invention comprises a treatment tank for performing water treatment with activated sludge to which magnetic powder has been added, and a part of activated sludge contained in the activated sludge suspension flowing out of the treatment tank.
  • Magnetic separation means for separating from the liquid by force
  • solid-liquid separation means for separating the activated sludge in the activated sludge suspension flowing out of the magnetic separation means from the liquid
  • activated sludge separated by the magnetic separation means And a magnetic separation sludge return route for returning to the treatment tank.
  • the magnetic separation sludge return path includes a solubilization treatment unit that solubilizes at least a part of the activated sludge separated by the magnetic separation unit.
  • the solid-liquid separation means is a final sedimentation tank for separating activated sludge by sedimentation separation by gravity, and the MLVSS concentration in the activated sludge suspension flowing out of the magnetic separation means and flowing into the final sedimentation basin is low. 300 Omg ZL or less; the magnetic separation means is provided at an outflow portion of the treatment tank; and the magnetic separation means is provided at an inflow portion of the solid-liquid separation means.
  • the magnetic separation means separates 50 to 99.5% of the activated sludge in the effluent of the treatment tank, and the ratio between the activated sludge and the magnetic powder is such that the MLVSS of the activated sludge is 1 Magnetic powder at a concentration of 0.01 to 10 It is characterized. Further, in the above configuration, a settling separated sludge return path for returning at least a part of the activated sludge separated by the solid-liquid separation means to the treatment tank after treating it in a sterilization treatment section is provided.
  • a settling separation sludge return route for returning at least a part of the activated sludge separated by the solid-liquid separation means to the treatment tank after treating it in the solubilization treatment section;
  • Solid-liquid separation means methane fermentation means for performing methane fermentation using the initial settled sludge separated by the preliminary solid-liquid separation means, and solubilization and sterilization treatment of excess sludge after methane fermentation by the methane fermentation means.
  • a sterilization treatment means, and an excess sludge introduction path for introducing the excess sludge treated by the solubilization / sterilization treatment means into the treatment tank, wherein the magnetic powder has a size of 0.05 to 2X.
  • the coercive force is 0 to 200 eO3 iron oxide powder
  • the magnetic separation means includes a magnet having N poles and S poles alternately provided at an interval of 2 to 20 mm. It is characterized by having.
  • the water treatment by the activated sludge method in the present invention is not limited to the standard activated sludge method using an aeration tank as a treatment tank, but may be applied to various water treatment facilities that perform water treatment using activated sludge. it can.
  • the method can be applied to a long-time air-rate method, an OD method, an A ⁇ method, an A2 ⁇ method, and the like, and can also be applied to a water treatment for removing nitrogen and phosphorus.
  • a general sedimentation tank or sedimentation tank can be used as the solid-liquid separation means for finally separating the activated sludge.However, a filtration device, a membrane separation device, a flotation separation device, or a combination thereof must be used. You can also. Further, when a solid-liquid separation means for separating coarse solids or the like is provided at the preceding stage of the treatment tank, a floating separation device or a fine screen can be used in addition to a general first settling tank.
  • the activated sludge in the water treatment by the activated sludge method, is separated in two stages of magnetic separation by magnetic force and ordinary solid-liquid separation, and activated sludge in magnetic separation
  • the size of the magnetic separation means can be significantly reduced while reliably separating the activated sludge.
  • the activated sludge separation rate in the magnetic separation means is in the range of 50 to 99.5%, the required activated sludge can be separated in several seconds to several tens of seconds. Of the final sedimentation basin can be reduced to about 110 to 1/1000. Therefore, it can be easily applied to existing water treatment facilities.
  • the activated sludge method can achieve zero emission of excess sludge and eliminate the need for disposal of excess sludge as industrial waste. And greatly contribute to the global environment. Furthermore, since the activated sludge concentration is stabilized by the balance between the growth of the activated sludge itself and the auto-oxidation, the maintenance and management of the activated sludge process is simplified. Since the magnetic separation means has a simple principle, the management of the equipment is easy, and even non-experts can ask questions. Operation management can be performed without any problems. As a result, cost reduction and the spread of the activated sludge method can be expected, which can contribute to the improvement of the water environment.
  • FIG. 1 is a system diagram of a wastewater treatment apparatus showing one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating an example of the magnetic separation device.
  • FIG. 3 is a diagram showing the relationship between the suspension residence time in the magnetic separation device and the MLVSS concentration in the magnetic separation device effluent in Example 1.
  • FIG. 4 is a diagram showing the change over time of the MLVSS concentration in the aeration tank in Example 1.
  • FIG. 1 is a system diagram showing one embodiment of the wastewater treatment apparatus of the present invention.
  • This wastewater treatment system basically treats sewage by the standard activated sludge method that has been widely used in the past.
  • Preliminary solid-liquid separation means (first sedimentation basin 1 1) equipped with a screen for separating coarse solids, etc., from the activated sludge suspension mixed with activated sludge
  • a magnetic separation means 21 for separating activated sludge by magnetic separation treatment is provided between the aeration tank 12 and the final sedimentation tank 13.
  • the activated sludge in the activated sludge suspension that has been aerated in the aeration tank 12 is separated in two stages: the magnetic separation means 21 and the final sedimentation basin 13.
  • the magnetic separation means 21 magnetically separated activated sludge is supplied to the aeration tank 12
  • a magnetic separation sludge return route 14 for returning the sludge to the facility.
  • the final sedimentation tank 13 is provided with a sedimentation-separated sludge return path 15 for returning the settled-separated activated sludge to the aeration tank 12.
  • the settling separated sludge return path 15 is provided with a sterilization section 16 and a bypass path 17 bypassing the sterilization section 16, and at least a part of the activated sludge is provided to the sterilization section 16. And sterilized.
  • the magnetic separation sludge return path 14 is provided with a solubilization treatment means 18 and a bypass path 19 bypassing the solubilization treatment means 18 as necessary, and the activated sludge separated by the magnetic separation means is provided. At least part of the solution can be solubilized.
  • magnetic powder is added to the activated sludge in advance, and the activated sludge must be adsorbed and held on the activated sludge.
  • magnétique powder can be selected, but magnetic powder with a size of 10 m or more is too heavy for activated sludge, and is often separated from activated sludge by gravity. For this reason, smaller ones are preferable, and usually ones in the range of 0.05 to 2 / im are optimal. Although it is possible to use ultrafine magnetic powder, it is not preferable because the cost of the magnetic powder increases.
  • the coercive force of the magnetic powder is appropriately 0 to 200 Oe, and the magnetic powder having a large coercive force has a defect that it is aggregated by its own magnetic force, separated from the activated sludge, and settles. .
  • an oxide-based magnetic powder that hardly dissolves in water at room temperature or is hardly deteriorated.
  • Iron oxide powder of 1 to 1.0 m, for example, about 0.4 ⁇ m is most suitable. If the concentration (mixing amount) of the magnetic powder is too low, a strong magnet such as a superconducting magnet is required to separate the activated sludge. Conversely, if the concentration is too high, the cost of the magnetic powder increases.
  • the MLVSS of the activated sludge be in the concentration range of 0.01 to 10 with respect to 1.In general, if the concentration is set so as to be approximately the same as the MLVSS of the activated sludge. Good.
  • the activated sludge When such a magnetic powder is put into the activated sludge suspension at an appropriate position such as an aeration tank 12, the activated sludge is immediately adsorbed and held by the activated sludge, and is attracted to a magnet. It becomes. Since most or all of the activated sludge containing magnetic powder circulates together with the returned sludge, addition and mixing of the activated magnetic sludge into the activated sludge suspension is usually performed only once before starting magnetic separation. However, it can be added as appropriate according to the situation of the water treatment facility.
  • the magnetic separation means 21 does not need to magnetically separate the entire amount of the activated sludge containing the magnetic powder.
  • more than half of the activated sludge containing magnetic powder present in the liquid that is, 50 to 99.5%, can be separated. You should leave it.
  • the magnetic separation means 21 for separating the activated sludge containing magnetic powder from the suspension various types of methods proposed so far can be used.
  • a magnetic separation tank 22 having an inflow portion 22a and an outflow portion 22b of the activated sludge suspension, and a rotating drum 2 having magnets arranged on the outer peripheral surface thereof.
  • a magnetic separation device 27 including the above 6 can be used.
  • the rotary drum 23 is connected to a not-shown driving motor or the like, and the sludge collection trough 26 is connected to the magnetic separation sludge return path 14.
  • a special magnet such as a superconducting magnet or an electromagnet can be employed, but since it is not necessary to separate all of the magnetic powder-containing activated sludge from the suspension, a general magnet is used.
  • permanent magnets that can be obtained at low cost, for example, ferrite magnets can be used.
  • the arrangement of magnetic poles on the drum peripheral surface is 2 to 20 mm. It is preferable that N poles and S poles are alternately arranged at intervals.
  • the size (diameter and length) of the rotating drum 23 and the number of rotations during magnetic separation processing are arbitrary, and can be selected according to the processing amount, taking into account installation space, manufacturing costs, operating costs, etc. And set it.
  • the activated sludge containing magnetic powder separated from the suspension by the magnetic force can be collected by any method according to the structure and shape of the magnet, and it can be collected in various shapes such as plate, disk, and rod.
  • the combination of the rotating drum 23 and the scraper 25 facilitates the continuous separation of the magnetically separated activated sludge 24 containing magnetic powder. Can be recovered.
  • the device configuration can be simplified, and not only can the manufacturing cost of the magnetic separator 27 be reduced, but also maintenance and inspection can be performed easily.
  • the wastewater that flows into the wastewater treatment system with such a structure first flows into the aeration tank 12 through the sedimentation basin 11, and returns through the magnetic separation sludge return route 14 and the sedimentation separation sludge return route 15. It is aerated when mixed with sludge (activated sludge containing magnetic powder).
  • the activated sludge suspension after the aeration treatment flows out of the aeration tank 12 and flows into the magnetic separation means 21, and a part of the activated sludge containing the magnetic powder in the suspension is magnetically separated.
  • the amount of activated sludge separated in the magnetic separation means 21 is set according to the balance between the amount of activated sludge multiplied in the aeration tank 12 and autoxidation, and the load on the final sedimentation tank 13.
  • the activated sludge concentration in the activated sludge suspension flowing into the final sedimentation basin 13 is 300 mg / L or less, preferably 200 mg / L or less, and especially 150 mg / L It is preferable to set L or less.
  • the activated sludge concentration should be 50 Omg / L or more.
  • the BOD concentration of sewage flowing into the aeration tank 12 of a sewage treatment plant is about 100 to 20 OmgZL.
  • the activated sludge concentration is in the range of 5000 to 1000 Omg / L, the amount of the activated sludge and the auto-oxidation are balanced and almost no excess sludge is generated. .
  • the concentration of the activated sludge flowing into the final sedimentation basin 13 can be made 1000 to 2000 mg / L. Within this activated sludge concentration range, it is possible to perform sufficient sedimentation and separation in the final sedimentation basin 13. At this time, even if the entire amount of the activated sludge separated in the magnetic separation means 21 and the final sedimentation basin 13 is returned to the aeration tank 12, the activated sludge concentration increases due to the balance between the proliferated amount of the activated sludge itself and the auto-oxidation. The automatic stop of the activated sludge makes it unnecessary to maintain the activated sludge concentration.
  • the activated sludge concentration in the equilibrium state naturally fluctuates with load fluctuation, but the activated sludge concentration in the magnetic separation means 21 does not exceed the allowable sludge concentration of the final sedimentation tank 13 even at the maximum load.
  • the amount of sludge separation water treatment can be continued regardless of load fluctuation.
  • the filamentous fungi and the dispersible microorganisms cannot retain magnetic powder by themselves, so most of them pass through the magnetic separation means 21 and flow into the final sedimentation basin 13 where they settle. Will be separated.
  • most of the floc-forming bacteria that easily hold the magnetic powder are separated by the magnetic separation means 21 and returned to the aeration tank 12 through the magnetic separation sludge return path 14. Therefore, by returning only the activated sludge separated and collected by the magnetic separation means 21 to the aeration tank 12, the activated sludge in the aeration tank 12 is returned.
  • the mud can be mainly composed of floc-forming bacteria, and the occurrence of bulking can be prevented.
  • the activated sludge separated in the final sedimentation basin 13 must also be returned to the aeration tank 12. There is.
  • the activated sludge containing the filamentous fungi and the dispersible microorganisms is returned to the aeration tank 12, the occurrence of bulking cannot be completely prevented. Therefore, the activated sludge is transferred from the final sedimentation tank 13 to the aeration tank 12. Until the wastewater is returned, for example, as shown in Fig.
  • a sterilization treatment unit 16 is installed in the sedimentation / separation sludge return route 15 where sterilization treatment is performed using ozone / chlorine and hydrogen peroxide. By doing so, it is possible to eliminate filamentous fungi and the like that cause bulking. Thereby, it is possible to prevent the generation of excess sludge from the final sedimentation basin 13 while suppressing the generation of bulking.
  • the sterilization treatment in the sterilization treatment section 16 may be performed continuously with an appropriate strength, but may be performed according to the occurrence of bulking.In general, when returning from a bulking dog state to a normal state, It is sufficient to perform the sterilization treatment for several times to about 10 times the residence time in the aeration tank.
  • a solubilization treatment section can be provided instead of, or together with, the sterilization treatment section 16 shown in FIG.
  • a mechanical processing device such as an ozone treatment device, an ultrasonic treatment device, a heat treatment device, an alkali treatment device, or a crusher and a ball mill is installed.
  • the main purpose of the solubilization treatment section is to improve the biodegradability of returned sludge that is difficult to biodegrade as it is.
  • the sterilization processing can be expected, and therefore, a single processing unit can also be used.
  • the solubilization treatment unit or the sterilization treatment unit 16 may be used. It is preferable that the bypass route 17 is provided in the route where is disposed. Further, as shown in FIG.
  • the magnetically separated sludge from the magnetically separated sludge return route 14 is returned to the upstream side of the aeration tank 12 with a high organic matter concentration, and the sedimentation separated sludge return route ⁇ 5
  • the sedimentation-separated activated sludge is returned to the downstream side of the aeration tank 12 having a low organic matter concentration, so that the floc-forming bacteria in the magnetic separation sludge can be preferentially grown in the aeration tank 12.
  • the solubilization treatment means 18 in the magnetic separation sludge return route 14 and performing the solubilization treatment as described above, an improvement in the biodegradability as described above can be expected.
  • the bypass 19 may be provided to process only a part of the returned sludge. Even when the amount of water flowing into the final sedimentation basin 13 increases due to the inflow of rainwater, the activated sludge capturing the magnetic powder has a higher specific gravity than normal activated sludge and has good sedimentation properties. However, since the floc-forming bacteria can be preferentially grown as described above, sufficient sedimentation and separation can be performed in the final sedimentation basin 13.
  • the capacity of the magnetic separation means 21 is set so that the MLVSS concentration flowing into the final sedimentation basin 13 becomes about 100 Omg / L even when the flow rate increases due to rainwater, usually 3 to 4 Even if the residence time of the final sedimentation basin 13 set to about the time is reduced to about half, the adverse effect on the sedimentation separation can be almost eliminated.
  • excess sludge extracted from the first sedimentation basin 11 and the final sedimentation basin 13 was used as a raw material, but the surplus sludge from the final sedimentation basin 13 Since sludge generation can be eliminated, only fermentable primary sludge can be used as a raw material for methane fermentation.
  • the methane fermentation means 31 using only the primary sediment sludge of the primary sedimentation basin 11 as a raw material, and the excess sludge generated by the methane fermentation means 31
  • a solubilization / sterilization treatment means 32 for performing reprocessing, etc.
  • an excess sludge introduction route 33 for introducing the excess sludge treated by the solubilization / sterilization treatment means 32 into the aeration tank 12 It is possible to eliminate the generation of excess sludge from the first settling tank This makes it possible to implement water treatment by the activated sludge method, which completely eliminates the generation of excess sludge from the entire water treatment facility.
  • the magnetic separation means 21 does not need to separate the entire amount of the activated sludge containing the magnetic powder, the required amount of the activated sludge can be separated in a very short time. Even when the rate is 99.5%, the magnetic separation can be performed in several seconds to several tens of seconds, so that the processing can be performed with a volume of about 1/100 to 1/10000 of the volume of the final sedimentation basin 13. Therefore, not only between the aeration tank 12 and the final sedimentation basin 13 in the existing water treatment facility, but also as shown in FIG. Since it is possible to install the magnetic separation means 21 in the inflow section 13a of 13 with a small modification, it can be applied not only to new water treatment facilities but also to existing water treatment facilities. Easy.
  • the final sedimentation tank 13 that sediments and separates activated sludge by gravity is exemplified as the solid-liquid separation means subsequent to the magnetic separation means, but even when membrane separation is adopted as this solid-liquid separation means, Since clogging of the membrane can be suppressed and the interval between cleaning operations can be made longer than before, the life of the membrane can be extended, and the cost for membrane separation can be reduced.
  • Example 1
  • a magnetic separator having the structure shown in FIG. 2 was prepared. That is, N poles and S poles are alternately provided at intervals of about 10 mm on the outer peripheral surface of a rotating drum having a diameter of 20 cm and a length of 35 cm, and a scraper for removing activated sludge adhering to the rotating drum.
  • the lower half of the rotating drum was inserted into a magnetic separation tank and rotated, and the activated sludge attached to the magnet of the rotating drum was scraped off with a scraper every rotation.
  • FIG. 1 shows the effective volume of the magnetic separation tank.
  • Figure 3 shows the relationship between the suspension residence time in the magnetic separator and the ML VSS concentration in the effluent of the magnetic separator. From these results, when the residence time was 14 seconds or more, the MLVSS concentration in the effluent was reduced to 5 mgZL or less, showing a sludge separation rate of nearly 100%.
  • the MLVS S in the effluent at a residence time of 7 seconds is about 5 Omg / L, but the sludge residual rate is only 0.8%.
  • the residence time is 2 seconds, the MLVS S concentration in the effluent is 1180 mgZL, and the sludge separation rate is approximately 80%.
  • This magnetic separation device is installed on the upper part of the aeration tank of a sewage treatment experimental plant using the ordinary activated sludge method, which treats 20 m3 per day, and the effluent from the aeration tank flows into the final sedimentation tank through this magnetic separation device.
  • the concentration of activated sludge in the aeration tank stopped increasing at MLVSS of 6000 mg / L, and a stable operating state was achieved without performing bow I removal of excess sludge.
  • Figure 4 shows the time-dependent changes in the MLVSS concentration in the aeration tank at this time. During the operation, activated sludge with MLVS S of 500-1500 mgZL flowed into the final sedimentation basin through the magnetic separator, and complete solid-liquid separation was achieved.
  • Example 2 The same sewage treatment experimental plant as in Example 1 was installed and operated with the same two magnetic separators as in Example 1.
  • the MLVSS concentration in the final sedimentation basin influent was 100-20 OmgZL.
  • the supernatant of the final sedimentation basin was returned 10 m3 / day, and the amount of inflow water into the aeration tank was increased 1.5 times.
  • the MLVSS concentration in the influent of the final sedimentation basin increased to about 300 to 400 mg / L, but due to the sufficiently low activated sludge concentration and the capture of magnetic powder, the sedimentation Therefore, solid-liquid separation in the final sedimentation basin was sufficiently performed, and no outflow of SS due to increased flow rate was observed.

Abstract

A waste water treating device that effectively introduces a magnetic separation method thereby making it possible to realize a great reduction of surplus sludge in an activated sludge method and a great simplification of process control and that can be applied, by small-scale improvement, to the existing waste water treating plant. This waste water treating device comprises a magnetic separation means (21), installed in the rear stage of an aeration tank (12) for water treatment by activated sludge having magnetic powder added thereto, for magnetically separating, from the liquid, part of the activated sludge contained in an activated sludge suspension flowing out of the treating tank, a final settling basin (13) installed in the rear stage of the magnetic separation means for separating, from the liquid, the activated sludge in the activated sludge suspension flowing out of the magnetic separation means, and a path (14) for sending the activated sludge separated by the magnetic separation means back to the treating tank.

Description

明 細 書 排水処理装置 技術分野  Description Wastewater treatment equipment Technical field
本発明は、 排水処理装置に関し、 詳しくは、 有機物を主な汚濁成分とする排水 や下水等の水処理を、 磁性粉を添加した活性汚泥法によって行う排水処理装置に 関する。 背景技術  The present invention relates to a wastewater treatment device, and more particularly, to a wastewater treatment device that performs a water treatment of wastewater or sewage containing organic matter as a main pollutant component by an activated sludge method to which magnetic powder is added. Background art
下水や有機排水の処理法として、 従来から活性汚泥法が広く行われている。 こ の方法は、 基本的に、 下水等に含まれる有機物を曝気槽等の処理槽で活性汚泥に より分解した後、 最終沈殿池で活性汚泥を重力により沈降分離し、 ここで分離し た活性汚泥を処理槽に返送するという型式となっている。 このような活性汚泥法 では、 最終沈殿池において、 活性汚泥は水との密度差により沈降分離するため、 活性汚泥の沈降性は、 活性汚泥の沈降性指標や濃度に影響される。 活性汚泥の沈 降性の維持管理では、 負荷条件、 溶存酸素濃度等の影響因子についてプロセス管 理者は細心の注意を払う必要があるため、 活性汚泥プラントの運転管理には、 化 学、 機械、 生物と多岐にわたる専門家が要求される。 また、 活性汚泥濃度が M L V S Sで 3 0 0 0 m g ZL (リットル) を超えると活性汚泥の沈降分離が不完全 になる可能性がある。 このようなことから、 活性汚泥の沈降性指標や濃度に影響 されずに固液分離を確実に行うため、 膜分離を用いる方法が提案されている (例 ま、 K. Yamamoto, M. Hiasa, T. Mahmood and T. Matsuo: Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank. Wat. Sci. Tech., 21, 43-54 (1989) ) 。 また、 活性汚泥法は、 水中の有機物を除去する一方で、 除去した有機物の半分 程度の微生物の増殖がある。 この増殖分の微生物は、 余剰汚泥と呼ばれており、 この余剰汚泥は、 大量の水分を含んでいるため、 そのまま廃棄できず、 大きなェ ネルギーを消費して濃縮 ·脱水後に焼却している。 さらに、 余剰汚泥は、 産業廃 棄物の大きな割合を占めているため、 大きな問題となっている。 余剰汚泥を削減 するためには、 オゾンを添加して増殖した微生物の一部を可溶化処理し、 有機物 として再度活性汚泥法に投入して処理する方法が報告されている (例えば、 Yasui,H.,Nakamura,K.,Iwasaki,M.,Sakai,Y,:A full-scale operating of a novel activated sludge process without excess sludge production. Wat.Sci.Tech.36 (ll) ,163-36 1 (1996 ) ) 。 一方、 磁気分離法を活性汚泥法に適用することも提案されている。 すなわち、_ 強磁性粉である四三酸化鉄やフェライト粒子を活性汚泥懸濁液に添加すると、 汚 泥フ口ックが直ちにこれらの強磁性粉を捕捉し、 汚泥フロックを磁力で集められ るようになることから、 沈降分離に頼らない活性汚泥法が可能であることが酒井 らにより報告されている (例えば、 Sakai,Y.,Fukase,T.,Yasui,H.,Shibata,M:An activated sludge process without excess sludge production. Wat.Sci.Tech.36 (11) ,163-1705 (1997)、 Y. Sakai, S. Kurakata and F. Takahashi, "Magnetic Forced Sedimentation of Floes in Activated Sludge Supplemented with Ferromagnetic Powder of Iron Oxide" , J. Ferment. Bioeng" 71 (3) , 208-210, (1991)、 Y. Sakai, K. Tani and F. Takahashi, "Sewage Treatment under Conditions of Balancing Microbial Growth and Cell Decay with a High Concentration of Activated Sludge Supplemented with Ferromagnetic0 Powder", J. Ferment. Bioeng., 74 (6) , 413-415 (1992) Y. Sakai, T. Terakado and F. Activated sludge has been widely used as a treatment method for sewage and organic wastewater. This method basically decomposes organic matter contained in sewage and the like into activated sludge in a treatment tank such as an aeration tank, and then sediments and separates the activated sludge by gravity in a final sedimentation tank. The sludge is returned to the treatment tank. In such an activated sludge method, the activated sludge settles and separates in the final sedimentation tank due to the difference in density with water, so the settling property of the activated sludge is affected by the settling index and concentration of the activated sludge. In maintaining and controlling the settleability of activated sludge, process managers need to pay close attention to influential factors such as load conditions and dissolved oxygen concentration. A wide variety of organisms and specialists are required. If the activated sludge concentration exceeds 300 mg ZL (liter) in MLVSS, sedimentation and separation of activated sludge may be incomplete. For this reason, a method using membrane separation has been proposed to ensure solid-liquid separation without being affected by the settling index and concentration of activated sludge (eg, K. Yamamoto, M. Hiasa, T. Mahmood and T. Matsuo: Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank. Wat. Sci. Tech., 21, 43-54 (1989)). In addition, the activated sludge method removes organic matter in water, but has about half the growth of microorganisms in the removed organic matter. The microorganisms of this growth are called excess sludge, and this excess sludge cannot be discarded as it is because it contains a large amount of water. Concentrates by consuming energy. Incineration after dehydration. In addition, excess sludge is a major problem because it accounts for a large proportion of industrial waste. In order to reduce excess sludge, a method has been reported in which a part of the microorganisms grown by adding ozone is solubilized and then re-input as an organic substance to the activated sludge process (see, for example, Yasui, H.). ., Nakamura, K., Iwasaki, M., Sakai, Y,: A full-scale operating of a novel activated sludge process without excess sludge production.Wat.Sci.Tech.36 (ll), 163-36 1 (1996) )). On the other hand, it has been proposed to apply the magnetic separation method to the activated sludge method. That is, the addition of triiron or ferrite particles is _ ferromagnetic powder activated sludge suspension, fouling Dorofu-locking is immediately captures these ferromagnetic powders that collected sludge flocs magnetically It has been reported by Sakai et al. That an activated sludge method that does not rely on sedimentation separation is possible (eg, Sakai, Y., Fukase, T., Yasui, H., Shibata, M: An activated sludge process without excess sludge production.Wat.Sci.Tech.36 (11), 163-1705 (1997), Y.Sakai, S. Kurakata and F. Takahashi, "Magnetic Forced Sedimentation of Floes in Activated Sludge Supplemented with Ferromagnetic Powder of Iron Oxide ", J. Ferment. Bioeng" 71 (3), 208-210, (1991), Y.Sakai, K. Tani and F. Takahashi, "Sewage Treatment under Conditions of Balancing Microbial Growth and Cell Decay with a High Concentration of Activated Sludge Supplemented with Ferromagnetic 0 Powder ", J. Ferment. Bioeng., 74 (6), 413-415 (1992) Y. Sakai, T. Terakado and F.
Takahashi, "A Sewage Treatment Process Using Highly Condensed Activated Sludge with an Apparatus for Magnetic Separation",J. Ferment. Bioeng., 78 (1) , 120-122, (1994 )、 Y.Sakai, T.Miama and Fujio Takahashi, "Simultaneous Removal of Organic and Nitrogen Compounds in Intermittently Aerated Activated Sludge Process Using Magnetic5 Separation" , Water Research, 31 (8) , 2113-2116, (1997)、 酒井保藏, 高橋不二雄, "磁気分離法による活性汚泥中の糸状菌とフロック形成菌の分離" , 水環境学会 , 22 (4) , 323-326, (1999)参照。 ) 。 Takahashi, "A Sewage Treatment Process Using Highly Condensed Activated Sludge with an Apparatus for Magnetic Separation", J. Ferment. Bioeng., 78 (1), 120-122, (1994), Y.Sakai, T. Miama and Fujio Takahashi , "Simultaneous Removal of Organic and Nitrogen Compounds in Intermittently Aerated Activated Sludge Process Using Magnetic 5 Separation", Water Research, 31 (8), 2113-2116, (1997), Hozo Sakai, Fujio Takahashi, "Activated sludge by magnetic separation method Separation of Filamentous Fungi and Flocculating Bacteria in Water ", Japan Society on Water Environment, 22 (4), 323-326, (1999). ).
これらの論文では, 磁気分離法は、 単独又は沈降分離の後段に用いられ、 処理 水から活性汚泥を完全に磁気分離するために利用されている。 磁気分離法によれ ば、 M L V S Sが 1 6 g / Lの活性汚泥まで分離可能であること、 さらに、 負荷 に応じて M L V S Sの活性汚泥濃度を設定すれば、 ボリペプトン/グルコース混 合溶液を模擬排水とした実験では、 自己酸化作用によつて余剰汚泥を略ゼロにで きることが報告されている。 また、 着磁性を付与された活性汚泥を永久磁石に着 磁させて処理水から分離する装置の発明も提案されている (特公平 3— 5 9 7 5 9号公報参照) 。 一般的な活性汚泥法で 1 0 0 k gの有機物を処理すれば、 およそ 4 0〜 7 0 k gの余剰汚泥が発生する。 水の浄化と引き換えに、 大量の余剰汚泥を社会に対し て放出していることになる。 また、 活性汚泥 (微生物) の沈降性が悪化すると成 立しないプロセスであるため、 多くのコストを払って活性汚泥の沈降性管理を行 つている。 一方、 前記磁気分離のみで活性汚泥を分離する方法では、 高い磁気分 離性能が要求されるため、 磁気分離装置の大型化やコストアップが避けられない 。 さらに、 磁気分離装置の故障時や停電時等には、 固液分離が全く行われなくな る不安も否定できない。 加えて、 雨天時の一時的な流量増加による最終沈殿池からの活性汚泥の漏出を 防止するため、 従来は沈殿池を大きくするなどの対策をとつているが、 一時的な 負荷に対処するためだけに普段は余剰となるスペースを沈殿槽ゃ一時貯留槽に割 かなければならない。 また、 どの程度の雨量まで対応するかによっては、 そのス ペースは大きなものになる。 さらに、 大規模な下水処理場等では、 メタン発酵処 理を併設している場合が多いが、 発酵性の劣る余剰汚泥と発酵性の良い生汚泥と を混合してメタン発酵を行っているため、 メタン発酵効率が低いという問題があ る。 そこで本発明は、 磁気分離法を効果的に導入することにより、 活性汚泥法にお ける余剰汚泥の大幅削減と、 プロセス管理の大幅な簡素化とを実現することがで き、 しかも、 既存の排水処理施設に対しても小規模な改良によって適用が可能な 排水処理装置を提供することを目的としている。 発明の開示 In these papers, the magnetic separation method is used alone or after the sedimentation separation and is used to completely separate the activated sludge from the treated water. By magnetic separation method For example, if MLVSS can separate up to 16 g / L of activated sludge, and if the concentration of activated sludge of MLVSS is set according to the load, the experiment using borepteptone / glucose mixed solution as a simulated drainage It has been reported that excess sludge can be reduced to almost zero by oxidization. Also, there has been proposed an invention of a device in which activated sludge provided with magnetization is magnetized by a permanent magnet and separated from treated water (see Japanese Patent Publication No. 3-57979). If 100 kg of organic matter is treated by a general activated sludge method, about 40 to 70 kg of excess sludge will be generated. In exchange for water purification, a large amount of excess sludge is released to society. In addition, since the process is not feasible if the sedimentation of activated sludge (microorganisms) deteriorates, the sedimentation of activated sludge is managed at a high cost. On the other hand, in the method of separating activated sludge by only the magnetic separation, high magnetic separation performance is required, so that the size and cost of the magnetic separation device cannot be avoided. Furthermore, there is no denying that solid-liquid separation will not be performed at all in the event of a magnetic separator failure or power outage. In addition, in order to prevent the activated sludge from leaking from the final sedimentation tank due to a temporary increase in the flow rate in rainy weather, measures such as increasing the size of the sedimentation tank have been taken in the past, but to cope with the temporary load However, the extra space that would normally be needed must be allocated to the sedimentation tank and temporary storage tank. Depending on the amount of rainfall, the space will be large. Furthermore, large-scale sewage treatment plants and the like often have methane fermentation treatment, but methane fermentation is performed by mixing surplus sludge with poor fermentability and raw sludge with good fermentability. However, there is a problem that methane fermentation efficiency is low. Therefore, the present invention can realize a significant reduction of excess sludge in the activated sludge method and a greatly simplified process control by effectively introducing the magnetic separation method. The objective is to provide wastewater treatment equipment that can be applied to wastewater treatment facilities with small-scale improvements. Disclosure of the invention
本発明の排水処理装置は、 磁性粉を添加じた活性汚泥によつて水処理を行う処 理槽と、 該処理槽から流出した活性汚泥懸濁液中に含まれる活性汚泥の一部を磁 力によって液中から分離する磁気分離手段と、 該磁気分離手段から流出した活性 汚泥懸濁液中の活性汚泥を液中から分離する固液分離手段と、 前記磁気分離手段 で分離した活性汚泥を前記処理槽に返送する磁気分離汚泥返送経路とを含んでい る。 また、 本発明の排水処理装置は、 上記構成において、 前記磁気分離汚泥返送経 路は、 磁気分離手段で分離した活性汚泥の少なくとも一部を可溶化処理する可溶 化処理手段を備えていること、 前記固液分離手段が重力による沈降分離によって 活性汚泥を分離する最終沈殿池であって、 前記磁気分離手段から流出して前記最 終沈殿池に流入する活性汚泥懸濁液中の M L V S S濃度が 3 0 0 O m g Z L以下 であること、 前記磁気分離手段は、 前記処理槽の流出部に設けられていること、 前記磁気分離手段は、 前記固液分離手段の流入部に設けられていること、 前記磁 気分離手段は、 処理槽流出液中の活性汚泥の 5 0〜 9 9 . 5 %を分離すること、 前記活性汚泥と前記磁性粉との割合は、 活性汚泥の M L V S Sが 1に対して磁性 粉が 0 . 0 1〜1 0の濃度であることを特徴としている。 さらに、 上記構成において、 前記固液分離手段で分離した活性汚泥の少なくと も一部を、 殺菌処理部で処理した後に前記処理槽に返送する沈降分離汚泥返送経 路を備えていること、 前記固液分離手段で分離した活性汚泥の少なくとも一部を 、 可溶化処理部で処理した後に前記処理槽に返送する沈降分離汚泥返送経路を備 えていること、 前記処理槽の前段に設けられた予備固液分離手段と、 該予備固液 分離手段で分離した初沈汚泥を原料としてメタン発酵を行うメタン発酵手段と、 該メタン発酵手段でメタン発酵後の余剰汚泥を可溶化 ·滅菌処理する可溶化 ·滅 菌処理手段と、 該可溶化 ·滅菌処理手段で処理した余剰汚泥を前記処理槽に投入 する余剰汚泥投入経路とを含むこと、 前記磁性粉は、 大きさが 0 . 0 5〜 2 X m であり、 保磁力が 0〜 2 0 0 0 eの四三酸化鉄粉であること、 前記磁気分離手段 は、 N極と S極とを 2〜2 0 mmの間隔で交互に設けた磁石を備えていることを 特徴としている。 なお、 本発明における活性汚泥法による水処理は、 曝気槽を処理槽とした標準 活性汚泥法に限らず、 活性汚泥を使用して水処理を行う様々な水処理施設にも適 用することができる。 例えば、 長時間エアレーシヨン法、 O D法、 A〇法、 A 2 〇法等にも適用可能で、 窒素やリンを除去する水処理にも適用可能である。 また 、 最終的に活性汚泥を分離する固液分離手段には、 一般的な沈殿槽、 沈殿池を使 用できるが、 濾過装置、 膜分離装置、 浮上分離装置、 あるいはそれらの組合せを 採用することもできる。 さらに、 処理槽の前段に粗大固形物等を分離する固液分 離手段を設ける場合は、 一般的な最初沈殿池の他、 浮上分離装置や微細目スクリ —ンを使用することができる。 本発明の排水処理装置によれば、 活性汚泥法による水処理において、 活性汚泥 の分離を、 磁力による磁気分離と通常の固液分離との二段階で行うようにすると ともに、 磁気分離における活性汚泥の分離率を 1 0 0 %を求めないことで、 最終 的な活性汚泥の分離を確実に行いながら、 磁気分離手段の大幅な小型化が図れる 。 すなわち、 磁気分離手段における活性汚泥分離率を 5 0〜 9 9 . '5 %の範囲と すれば、 数秒から数十秒で所要の活性汚泥を分離可能であることから、 磁気分離 手段の大きさを最終沈殿池の容積の 1 1 0 0〜 1 / 1 0 0 0 0程度に抑えるこ とができる。 したがって、 既存の水処理施設への適用も容易である。 また、 余剰汚泥をゼロにする有機物の完全酸化によつて活性汚泥法の余剰汚泥 ゼロエミッション化が実現でき、 産業廃棄物としての余剰汚泥の処理が不要とな ることから、 トータル的なコストダウンが図れ、 地球環境への寄与も大きい。 さ らに、 活性汚泥自身の増殖と自己酸化とのバランスによって活性汚泥濃度が安定 化するので、 活性汚泥プロセスの維持管理が簡略化される。 磁気分離手段は、 簡 単な原理の装置構成であるから、 装置の管理も容易であり、 専門家でなくても問 題なく運転管理ができる。 これにより、 コストダウンと活性汚泥法の普及とが期待できるため、 水環境の 改善に貢献できる。 しかも、 バルキング対策、 雨水対策等、 従来の活性汚泥法の 問題点も解消できる。 加えて、 メタン発酵の効率向上も期待できるため、 コンパ クトな装置でより多くのエネルギーを創成でき、 化石燃料の消費削減にも貢献で きる。 図面の簡単な説明 The wastewater treatment apparatus of the present invention comprises a treatment tank for performing water treatment with activated sludge to which magnetic powder has been added, and a part of activated sludge contained in the activated sludge suspension flowing out of the treatment tank. Magnetic separation means for separating from the liquid by force, solid-liquid separation means for separating the activated sludge in the activated sludge suspension flowing out of the magnetic separation means from the liquid, and activated sludge separated by the magnetic separation means And a magnetic separation sludge return route for returning to the treatment tank. Further, in the wastewater treatment apparatus of the present invention, in the above-described configuration, the magnetic separation sludge return path includes a solubilization treatment unit that solubilizes at least a part of the activated sludge separated by the magnetic separation unit. The solid-liquid separation means is a final sedimentation tank for separating activated sludge by sedimentation separation by gravity, and the MLVSS concentration in the activated sludge suspension flowing out of the magnetic separation means and flowing into the final sedimentation basin is low. 300 Omg ZL or less; the magnetic separation means is provided at an outflow portion of the treatment tank; and the magnetic separation means is provided at an inflow portion of the solid-liquid separation means. The magnetic separation means separates 50 to 99.5% of the activated sludge in the effluent of the treatment tank, and the ratio between the activated sludge and the magnetic powder is such that the MLVSS of the activated sludge is 1 Magnetic powder at a concentration of 0.01 to 10 It is characterized. Further, in the above configuration, a settling separated sludge return path for returning at least a part of the activated sludge separated by the solid-liquid separation means to the treatment tank after treating it in a sterilization treatment section is provided. A settling separation sludge return route for returning at least a part of the activated sludge separated by the solid-liquid separation means to the treatment tank after treating it in the solubilization treatment section; Solid-liquid separation means, methane fermentation means for performing methane fermentation using the initial settled sludge separated by the preliminary solid-liquid separation means, and solubilization and sterilization treatment of excess sludge after methane fermentation by the methane fermentation means. A sterilization treatment means, and an excess sludge introduction path for introducing the excess sludge treated by the solubilization / sterilization treatment means into the treatment tank, wherein the magnetic powder has a size of 0.05 to 2X. m Wherein the coercive force is 0 to 200 eO3 iron oxide powder, and the magnetic separation means includes a magnet having N poles and S poles alternately provided at an interval of 2 to 20 mm. It is characterized by having. The water treatment by the activated sludge method in the present invention is not limited to the standard activated sludge method using an aeration tank as a treatment tank, but may be applied to various water treatment facilities that perform water treatment using activated sludge. it can. For example, the method can be applied to a long-time air-rate method, an OD method, an A〇 method, an A2〇 method, and the like, and can also be applied to a water treatment for removing nitrogen and phosphorus. A general sedimentation tank or sedimentation tank can be used as the solid-liquid separation means for finally separating the activated sludge.However, a filtration device, a membrane separation device, a flotation separation device, or a combination thereof must be used. You can also. Further, when a solid-liquid separation means for separating coarse solids or the like is provided at the preceding stage of the treatment tank, a floating separation device or a fine screen can be used in addition to a general first settling tank. ADVANTAGE OF THE INVENTION According to the wastewater treatment apparatus of this invention, in the water treatment by the activated sludge method, the activated sludge is separated in two stages of magnetic separation by magnetic force and ordinary solid-liquid separation, and activated sludge in magnetic separation By not requiring a separation rate of 100%, the size of the magnetic separation means can be significantly reduced while reliably separating the activated sludge. In other words, if the activated sludge separation rate in the magnetic separation means is in the range of 50 to 99.5%, the required activated sludge can be separated in several seconds to several tens of seconds. Of the final sedimentation basin can be reduced to about 110 to 1/1000. Therefore, it can be easily applied to existing water treatment facilities. In addition, by completely oxidizing organic substances to reduce excess sludge to zero, the activated sludge method can achieve zero emission of excess sludge and eliminate the need for disposal of excess sludge as industrial waste. And greatly contribute to the global environment. Furthermore, since the activated sludge concentration is stabilized by the balance between the growth of the activated sludge itself and the auto-oxidation, the maintenance and management of the activated sludge process is simplified. Since the magnetic separation means has a simple principle, the management of the equipment is easy, and even non-experts can ask questions. Operation management can be performed without any problems. As a result, cost reduction and the spread of the activated sludge method can be expected, which can contribute to the improvement of the water environment. In addition, the problems of the conventional activated sludge method, such as measures against bulking and rainwater, can be solved. In addition, since the efficiency of methane fermentation can be expected to increase, more energy can be created with compact equipment, which can contribute to reducing fossil fuel consumption. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一形態例を示す排水処理装置の系統図である。  FIG. 1 is a system diagram of a wastewater treatment apparatus showing one embodiment of the present invention.
図 2は、 磁気分離装置の一例を示す断面図である。  FIG. 2 is a cross-sectional view illustrating an example of the magnetic separation device.
図 3は、 実施例 1における磁気分離装置中の懸濁液滞留時間と磁気分離装置流 出液中の M L V S S濃度との関係を示す図である。  FIG. 3 is a diagram showing the relationship between the suspension residence time in the magnetic separation device and the MLVSS concentration in the magnetic separation device effluent in Example 1.
図 4は、 実施例 1における曝気槽内の M L V S S濃度の経時変化を示す図であ る。 発明を実施するための最良の形態  FIG. 4 is a diagram showing the change over time of the MLVSS concentration in the aeration tank in Example 1. BEST MODE FOR CARRYING OUT THE INVENTION
図 1は、 本発明の排水処理装置の一形態例を示す系統図である。 この排水処理 装置は、 基本的には、 従来から広く採用されている標準活性汚泥法によって下排 水の処理を行うものであって、 まず、 従来と同様の設備として、 流入排水や流入 下水中の粗大固形物等を分離するためのスクリーンを具備した予備固液分離手段 (最初沈殿池 1 1 ) と、 活性汚泥が混合した状態の活性汚泥懸濁液に対して散気 管 1 2 aから散気することによって曝気処理するための処理槽 (曝気槽) 1 2と 、 活性汚泥を重力によって沈降分離させて処理水を流出させるための固液分離手 段 (最終沈殿池) 1 3とを備えており、 これらに加えて、 曝気槽 1 2と最終沈殿 池 1 3との間に、 磁気分離処理によって活性汚泥を分離するための磁気分離手段 2 1が設けられている。 すなわち、 曝気槽 1 2で曝気処理された活性汚泥懸濁液 中の活性汚泥は、 磁気分離手段 2 1と最終沈殿池 1 3との二段階で分離されるこ とになる。 前記磁気分離手段 2 1には、 磁気分離した活性汚泥を前記曝気槽 1 2 に返送するための磁気分離汚泥返送経路 1 4が設けられている。 前記最終沈殿池 1 3には、 沈降分離した活性汚泥を前記曝気槽 1 2に返送するための沈降分離汚 泥返送経路 1 5が設けられている。 該沈降分離汚泥返送経路 1 5には、 殺菌処理 部 1 6と該殺菌処理部 1 6を迂回するバイパス経路 1 7とが設けられ、 活性汚泥 の少なくとも一部が、 前記殺菌処理部 1 6にて殺菌処理される。 前記磁気分離汚 泥返送経路 1 4には、 必要に応じて、 可溶化処理手段 1 8と該可溶化処理手段 1 8を迂回するバイパス経路 1 9とを設け、 磁気分離手段で分離した活性汚泥の少 なくとも一部を可溶化処理することができる。 前記磁気分離手段 2 1で活性汚泥を磁気分離可能な状態とするため、 活性汚泥 には、 あらかじめ磁性粉が添加混合されており、 磁性粉を活性汚泥に吸着保持さ せた状態にしておく必要がある。 使用する磁性粉には、 適当なものを選定できる が、 1 0 m以上の大きさの磁性粉は活性汚泥に対して重すぎるため、 重力によ つて活性汚泥から分離してしまうことが多い。 このため、 これよりも小さなもの が好ましく、 通常は 0 . 0 5〜2 /i mの範囲のものが最適である。 超微粒子状の 磁性粉を使用することも可能であるが、 磁性粉のコストが上昇するので好ましく ない。 また、 磁性粉の保磁力は、 0〜2 0 0 O eが適当であり、 保磁力の大きな 磁性粉は、 自身の磁力によって凝集し、 活性汚泥から分離して沈降してしまう欠 点がある。 さらに、 長期の使用を考慮すると、 常温の水中で溶解したり、 変質し たりすることがほとんどない酸化物系の磁性粉を使用することが好ましく、 特に 、 コスト等を考慮すると粒径が 0 . 1〜1 . 0 m、 例えば 0 . 4 ^ m程度の四 三酸化鉄粉が最適である。 磁性粉の濃度 (混合量) は、 低すぎると活性汚泥を分離するために超電導磁石 のような強力な磁石が必要となり、 逆に濃度が高すぎると磁性粉のコストが上昇 することになるので、 活性汚泥の M L V S Sが 1に対して 0 . 0 1から 1 0の濃 度範囲になるようにすることが好ましく、 通常は、 活性汚泥の M L V S Sと同程 度の濃度となるように設定すればよい。 このような磁性粉は、 曝気槽 1 2等の適当な位置で活性汚泥懸濁液中に投入さ れると、 直ちに活性汚泥に吸着保持された状態となり、 磁石に引き寄せられる磁 性粉含有活性汚泥となる。 この磁性粉含有活性汚泥は、 そのほとんどあるいは全 量が返送汚泥と共に循環するので、 活性汚泥懸濁液への磁性粉の添加混合は、 通 常は、 磁気分離を開始する前に 1回だけ行えばよいが、 水処理施設の状況に応じ て適宜追加することもできる。 また、 系内を循環する活性汚泥の全体に満遍なく 磁性粉が吸着するように、 活性汚泥を循環させながら適当な量の磁性粉を適当な 間隔で添加することが好ましい。 処理水と活性汚泥との分離は、 磁気分離手段 2 1と最終沈殿池 1 3とで行われ るため、 磁気分離手段 2 1では、 磁性粉含有活性汚泥の全量を磁気分離する必要 はなく、 磁性粉含有活性汚泥の濃度と最終沈殿池 1 3の負荷とに応じて、 液中に 存在する磁性粉含有活性汚泥の半分以上、 すなわち、 5 0〜9 9 . 5 %を分離で きるようにしておけばよい。 磁性粉含有活性汚泥を懸濁液中から分離するための磁気分離手段 2 1には、 今 までに提案されている様々な方式のものを利用することができる。 例えば、 図 2 の断面図に示すように、 活性汚泥懸濁液の流入部 2 2 a及び流出部 2 2 bを有す る磁気分離槽 2 2と、 外周面に磁石を配置した回転ドラム 2 3と、 回転ドラム 2 3に付着した磁性粉含有活性汚泥 2 4を搔き落とすスクレーパー 2 5と、 スクレ 一パー 2 5で接き落とした磁性粉含有活性汚泥 2 4を回収する汚泥回収トラフ 2 6とを含む磁気分離装置 2 7を使用することができる。 なお、 前記回転ドラム 2 3には、 図示しない駆動用のモータ一等が接続され、 前記汚泥回収トラフ 2 6に は、 前記磁気分離汚泥返送経路 1 4が接続されている。 前記回転ドラム 2 3に設けられる磁石は、 超電導磁石や電磁石等の特殊な磁石 を採用することもできるが、 磁性粉含有活性汚泥の全てを懸濁液から分離する必 要がないため、 一般的で、 安価に入手が可能な永久磁石、 例えばフェライト磁石 を用いることができる。 ドラム周面における磁極の配列は、 2〜2 0 mmの着磁 間隔で N極と S極とを交互に配列した状態とすることが好ましい。 この着磁間隔 が狭くなると磁性粉含有活性汚泥の飽和付着量が減少し、 着磁間隔が広くなると 磁性粉含有活性汚泥の付着力が弱くなる。 回転ドラム 2 3の大きさ (直径及び長 さ) や磁気分離処理時の回転数は任意であり、 処理量に応じて選定することが可 能で、 設置スペースや製造コスト、 運転コスト等を考慮して設定すればよい。 磁力により懸濁液から分離した磁性粉含有活性汚泥の回収は、 磁石の構造や形 状に応じて任意の方法で行うことができ、 板状、 円盤状、 棒状等の様々な形状の 磁石と、 これらの磁石の形状等に合わせた汚泥回収手段とを組み合わせることが できるが、 前記回転ドラム 2 3とスクレーパー 2 5との組み合わせにより、 磁気 分離した磁性粉含有活性汚泥 2 4を連続状態で容易に回収することができる。 ま た、 回転ドラム形状の磁石を使用することにより、 装置構成も単純化でき、 磁気 分離装置 2 7の製作コストが削減できるだけでなく、 保守点検も容易に行うこと ができる。 このような構造の排水処理装置に流入する下排水は、 最初沈殿池 1 1を経て曝 気槽 1 2に流入し、 磁気分離汚泥返送経路 1 4や沈降分離汚泥返送経路 1 5から 循環する返送汚泥 (磁性粉含有活性汚泥) と混合した状態で曝気処理される。 曝 気処理後の活性汚泥懸濁液は、 曝気槽 1 2から流出して磁気分離手段 2 1に流入 し、 懸濁液中の磁性粉含有活性汚泥の一部が磁気分離される。 磁気分離手段 2 1における活性汚泥の分離量は、 曝気槽 1 2における活性汚泥 の増殖分と自己酸化とのバランス、 及び、 最終沈殿池 1 3の負荷に応じて設定さ れるものであるが、 通常は、 最終沈殿池 1 3に流入する活性汚泥懸濁液中の活性 汚泥濃度が 3 0 0 O m g /L以下、 好ましくは 2 0 0 O m g / L以下、 特に、 1 5 0 O m g /L以下になるように設定することが好ましい。 一方、 活性汚泥濃度 が低すぎた場合は、 最終沈澱池 1 3においてスラッジブランケットが生成し難く なり、 処理水の清澄度が低下する恐れがある。 そのため、 活性汚泥濃度は、 5 0 O m g /L以上である方が良い。 一般的に、 下水処理場の曝気槽 12に流入する下水の BOD濃度は、 100〜 20 OmgZL程度である。 この負荷条件における曝気槽 12では、 活性汚泥濃 度が 5000〜1000 Omg/Lの範囲となったときに、 活性汚泥の増殖分と 自己酸化とがバランスして余剰汚泥がほとんど発生しない状態となる。 したがつ て、 磁気分離手段 21によって活性汚泥の 80%を分離することにより、 最終沈 殿池 13に流入する活性汚泥濃度を 1000〜2000mg/Lとすることがで きる。 この活性汚泥濃度範囲ならば、 最終沈殿池 13において十分な沈降分離を 行うことが可能となる。 このとき、 磁気分離手段 21及び最終沈殿池 13で分離した活性汚泥の全量を 曝気槽 12に返送しても、 活性汚泥自身の増殖分と自己酸化とのバランスによつ て活性汚泥濃度の上昇が自動的に停止するので、 活性汚泥濃度の維持管理を不要 なものとすることができる。 このとき、 平衡状態にある活性汚泥濃度は、 負荷変 動に伴って自然に変動するが、 最大負荷のときでも最終沈殿池 13の許容汚泥濃 度を超えないように磁気分離手段 21での活性汚泥分離量を設定しておくことに より、 負荷変動に関係なく水処理を継続することができる。 さらに、 磁気分離手段 21によって活性汚泥の大部分を分離することにより、 曝気槽 12における活性汚泥濃度がある程度高くなつても最終沈殿池 13が許容 汚泥濃度以上になることを防止できるので、 外部からの余剰汚泥を曝気槽 12に 投入して自己酸化させるマイナスエミッションも可能である。 活性汚泥を構成する微生物の中で、 糸状菌ゃ分散性の微生物は、 単独では磁性 粉を保持できないため、 その多くが磁気分離手段 21を通過して最終沈殿池 13 に流入し、 ここで沈降分離することになる。 一方、 磁性粉を保持しやすいフロッ ク形成菌は、 そのほとんどが磁気分離手段 21で分離し、 磁気分離汚泥返送経路 14を通って曝気槽 12に返送される。 したがって、 磁気分離手段 21で分離回 収した活性汚泥のみを曝気槽 12に返送することにより、 曝気槽 12内の活性汚 泥をフロック形成菌を主としたものとすることができ、 バルキングの発生を防止 することができる。 但し、 この場合は、 最終沈殿池 1 3から余剰汚泥が発生する ことになるので、 余剰汚泥を発生させないためには、 最終沈殿池 1 3で分離した 活性汚泥も曝気槽 1 2に返送する必要がある。 このように糸状菌ゃ分散性の微生物を含む活性汚泥を曝気槽 1 2に返送すると 、 バルキングの発生を完全に防止することができなくなるので、 最終沈殿池 1 3 から曝気槽 1 2に活性汚泥を返送するまでの間で、 例えば、 図 1に示すように、 沈降分離汚泥返送経路 1 5に殺菌処理部 1 6を設置し、 ここでオゾン ·塩素 '過 酸化水素等を用いて殺菌処理を行うことにより、 バルキングの原因菌となる糸状 菌等を駆除することができる。 これにより、 バルキングの発生を抑制しながら最 終沈殿池 1 3から余剰汚泥が発生することを防止できる。 殺菌処理部 1 6での殺 菌処理は、 適度な強度で連続して行ってもよいが、 バルキングの発生状況に応じ て行えばよく、 通常は、 バルキンク犬態から通常状態への復帰に、 曝気槽滞留時 間の数倍〜 1 0倍程度の時間、 前記殺菌処理を行えば十分である。 また、 図 1に示す、 殺菌処理部 1 6に代えて、 あるいは、 殺菌処理部 1 6と共 に、 可溶化処理部を設置することもできる。 この可溶化処理部には、 オゾン処理 装置、 超音波処理装置、 熱処理装置、 アルカリ処理装置、 あるいは、 破砕機ゃボ ールミル等の機械的処理装置を設置する。 前記可溶化処理部は、 そのままでは生 物分解が困難である返送汚泥に対し、 生物分解性を向上させることを主目的とす る。 ただし、 処理装置の態様 (例えば、 オゾン処理装置) によっては、 前記殺菌 処理も期待できるため、 単一の処理部で兼用させることもできる。 なお、 曝気槽 1 2へ微生物を返送する必要があるため、 返送汚泥の全量では無く、 一部のみ処 理した方が良い場合もあるから、 前記可溶化処理部、 あるいは前記殺菌処理部 1 6を配設した経路に、 前記バイパス経路 1 7を設けておくことが好ましい。 さらに、 図 1に示すように、 磁気分離汚泥返送経路 1 4からの磁気分離汚泥は 、 有機物濃度の高い曝気槽 1 2の上流側に返送し、 沈降分離汚泥返送経路 Γ 5か らの沈降分離活性汚泥は有機物濃度の低い曝気槽 1 2の下流側に返送することに より、 曝気槽 1 2において、 磁気分離汚泥中のフロック形成菌を優先的に増殖さ せることができる。 なお、 この磁気分離汚泥返送経路 1 4に、 前記可溶化処理手 段 1 8を設け、 前述のような可溶化処理を行うことにより、 前述のような生物分 解性の向上を期待できる。 また、 この場合にも、 前記バイパス 1 9を設け、 返送 汚泥の一部のみを処理する態様とすることもできる。 また、 雨水の流入によって最終沈殿池 1 3に流入する水量が増加するような場 合でも、 磁性粉を捕捉した活性汚泥は、 通常の活性汚泥よりも比重が大きく沈降 性が良好なため、 さらに、 前述のようにフロック形成菌を優先的に増殖させるこ とができるため、 最終沈殿池 1 3で十分な沈降分離を行うことができる。 例えば 、 磁気分離手段 2 1の能力を、 雨水による流量増加時でも最終沈殿池 1 3に流入 する M L V S S濃度が 1 0 0 O m g / L程度になるように設定しておけば、 通常 3〜 4時間程度に設定されている最終沈殿池 1 3の滞留時間が半分程度になって も、 沈降分離への悪影響をほとんどなくすことができる。 このような排水処理施設においてメタン発酵を行う場合、 従来は、 最初沈殿池 1 1及び最終沈殿池 1 3から抜き取った余剰汚泥を原料として用いていたが、 最 終沈殿池 1 3等からの余剰汚泥の発生を無くすことができるので、 メタン発酵に は、 発酵性のよい初沈汚泥のみを原料とすることができる。 これにより、 メタン 発酵の効率を向上できるとともに、 メタン発酵後の余剰汚泥量も減量できる。 さ らに、 この余剰汚泥に対して可溶化及び滅菌処理を施した後、 曝気槽 1 2に投入 することにより、 最初沈殿池 1 1からの余剰汚泥の発生も無くすことができる。 すなわち、 図 1に示すように、 最初沈殿池 1 1の初沈汚泥のみを原料とするメ タン発酵手段 3 1と、 該メタン発酵手段 3 1で発生した余剰汚泥に対してオゾン 処理やアル力リ処理等を施す可溶化 ·滅菌処理手段 3 2と、 可溶化 ·滅菌処理手 段 3 2で処理した余剰汚泥を曝気槽 1 2に投入する余剰汚泥投入経路 3 3とを設 けることにより、 最初沈殿池 1 1からの余剰汚泥の発生も無くすことができるの で、 水処理施設全体から余剰汚泥の発生を完全に無くした活性汚泥法による水処 理が実現可能となる。 加えて、 磁気分離手段 21は、 磁性粉含有活性汚泥の全量を分離する必要がな いため、 極めて短時間で所要量の活性汚泥を分離することができ、 例えば、 磁性 粉含有活性汚泥の分離除去率が 99. 5%の場合でも、 数秒から数十秒で磁気分 離処理ができるから、 最終沈殿池 13の容積の 1/100〜 1/10000程度 の容積で処理可能となる。 したがって、 既存の水処理施設における曝気槽 12と 最終沈殿池 13との間だけでなく、 図 1に符号 21 a、 2 l bで示すように、 曝 気槽 12の流出部 12 bや最終沈殿池 13の流入部 13 aにも小規模な改造で磁 気分離手段 21を設置することが可能であるから、 新設の水処理施設への適用だ けでなく、 既存の水処理施設への適用も容易である。 また、 本形態例では、 磁気分離手段後段の固液分離手段として、 活性汚泥を重 力により沈降分離する最終沈殿池 13を例示したが、 この固液分離手段として膜 分離を採用した場合でも、 膜の目詰まりを抑制し、 洗浄操作の間隔を従来より広 くとることが可能となるので、 膜の長寿命化等が図れ、 膜分離におけるコストを 削減することができる。 実施例 1 FIG. 1 is a system diagram showing one embodiment of the wastewater treatment apparatus of the present invention. This wastewater treatment system basically treats sewage by the standard activated sludge method that has been widely used in the past. Preliminary solid-liquid separation means (first sedimentation basin 1 1) equipped with a screen for separating coarse solids, etc., from the activated sludge suspension mixed with activated sludge A treatment tank (aeration tank) 12 for aeration by aeration and a solid-liquid separation means (final sedimentation tank) 13 for sedimentation and separation of activated sludge by gravity and discharge of treated water In addition to these, a magnetic separation means 21 for separating activated sludge by magnetic separation treatment is provided between the aeration tank 12 and the final sedimentation tank 13. That is, the activated sludge in the activated sludge suspension that has been aerated in the aeration tank 12 is separated in two stages: the magnetic separation means 21 and the final sedimentation basin 13. In the magnetic separation means 21, magnetically separated activated sludge is supplied to the aeration tank 12 There is provided a magnetic separation sludge return route 14 for returning the sludge to the facility. The final sedimentation tank 13 is provided with a sedimentation-separated sludge return path 15 for returning the settled-separated activated sludge to the aeration tank 12. The settling separated sludge return path 15 is provided with a sterilization section 16 and a bypass path 17 bypassing the sterilization section 16, and at least a part of the activated sludge is provided to the sterilization section 16. And sterilized. The magnetic separation sludge return path 14 is provided with a solubilization treatment means 18 and a bypass path 19 bypassing the solubilization treatment means 18 as necessary, and the activated sludge separated by the magnetic separation means is provided. At least part of the solution can be solubilized. In order to make the activated sludge magnetically separable by the magnetic separation means 21, magnetic powder is added to the activated sludge in advance, and the activated sludge must be adsorbed and held on the activated sludge. There is. Appropriate magnetic powder can be selected, but magnetic powder with a size of 10 m or more is too heavy for activated sludge, and is often separated from activated sludge by gravity. For this reason, smaller ones are preferable, and usually ones in the range of 0.05 to 2 / im are optimal. Although it is possible to use ultrafine magnetic powder, it is not preferable because the cost of the magnetic powder increases. In addition, the coercive force of the magnetic powder is appropriately 0 to 200 Oe, and the magnetic powder having a large coercive force has a defect that it is aggregated by its own magnetic force, separated from the activated sludge, and settles. . Further, in consideration of long-term use, it is preferable to use an oxide-based magnetic powder that hardly dissolves in water at room temperature or is hardly deteriorated. Iron oxide powder of 1 to 1.0 m, for example, about 0.4 ^ m is most suitable. If the concentration (mixing amount) of the magnetic powder is too low, a strong magnet such as a superconducting magnet is required to separate the activated sludge. Conversely, if the concentration is too high, the cost of the magnetic powder increases. However, it is preferable that the MLVSS of the activated sludge be in the concentration range of 0.01 to 10 with respect to 1.In general, if the concentration is set so as to be approximately the same as the MLVSS of the activated sludge. Good. When such a magnetic powder is put into the activated sludge suspension at an appropriate position such as an aeration tank 12, the activated sludge is immediately adsorbed and held by the activated sludge, and is attracted to a magnet. It becomes. Since most or all of the activated sludge containing magnetic powder circulates together with the returned sludge, addition and mixing of the activated magnetic sludge into the activated sludge suspension is usually performed only once before starting magnetic separation. However, it can be added as appropriate according to the situation of the water treatment facility. Also, it is preferable to add an appropriate amount of magnetic powder at appropriate intervals while circulating the activated sludge so that the magnetic powder is evenly adsorbed on the entire activated sludge circulating in the system. Since the separation of the treated water and the activated sludge is performed by the magnetic separation means 21 and the final sedimentation tank 13, the magnetic separation means 21 does not need to magnetically separate the entire amount of the activated sludge containing the magnetic powder. Depending on the concentration of the activated sludge containing magnetic powder and the load on the final sedimentation basin 13, more than half of the activated sludge containing magnetic powder present in the liquid, that is, 50 to 99.5%, can be separated. You should leave it. As the magnetic separation means 21 for separating the activated sludge containing magnetic powder from the suspension, various types of methods proposed so far can be used. For example, as shown in the cross-sectional view of FIG. 2, a magnetic separation tank 22 having an inflow portion 22a and an outflow portion 22b of the activated sludge suspension, and a rotating drum 2 having magnets arranged on the outer peripheral surface thereof. 3, a scraper 25 for scraping off activated sludge containing magnetic powder 24 attached to the rotating drum 23, and a sludge collection trough 2 for collecting activated sludge containing magnetic powder 24 scraped off by the scraper 25 A magnetic separation device 27 including the above 6 can be used. The rotary drum 23 is connected to a not-shown driving motor or the like, and the sludge collection trough 26 is connected to the magnetic separation sludge return path 14. As the magnet provided on the rotating drum 23, a special magnet such as a superconducting magnet or an electromagnet can be employed, but since it is not necessary to separate all of the magnetic powder-containing activated sludge from the suspension, a general magnet is used. Thus, permanent magnets that can be obtained at low cost, for example, ferrite magnets can be used. The arrangement of magnetic poles on the drum peripheral surface is 2 to 20 mm. It is preferable that N poles and S poles are alternately arranged at intervals. When the magnetization interval is narrow, the amount of the activated sludge containing the magnetic powder becomes saturated, and when the magnetization interval is wide, the adhesion of the activated sludge containing the magnetic powder is weakened. The size (diameter and length) of the rotating drum 23 and the number of rotations during magnetic separation processing are arbitrary, and can be selected according to the processing amount, taking into account installation space, manufacturing costs, operating costs, etc. And set it. The activated sludge containing magnetic powder separated from the suspension by the magnetic force can be collected by any method according to the structure and shape of the magnet, and it can be collected in various shapes such as plate, disk, and rod. Although it is possible to combine sludge collecting means according to the shape of these magnets and the like, the combination of the rotating drum 23 and the scraper 25 facilitates the continuous separation of the magnetically separated activated sludge 24 containing magnetic powder. Can be recovered. In addition, by using a rotating drum-shaped magnet, the device configuration can be simplified, and not only can the manufacturing cost of the magnetic separator 27 be reduced, but also maintenance and inspection can be performed easily. The wastewater that flows into the wastewater treatment system with such a structure first flows into the aeration tank 12 through the sedimentation basin 11, and returns through the magnetic separation sludge return route 14 and the sedimentation separation sludge return route 15. It is aerated when mixed with sludge (activated sludge containing magnetic powder). The activated sludge suspension after the aeration treatment flows out of the aeration tank 12 and flows into the magnetic separation means 21, and a part of the activated sludge containing the magnetic powder in the suspension is magnetically separated. The amount of activated sludge separated in the magnetic separation means 21 is set according to the balance between the amount of activated sludge multiplied in the aeration tank 12 and autoxidation, and the load on the final sedimentation tank 13. Usually, the activated sludge concentration in the activated sludge suspension flowing into the final sedimentation basin 13 is 300 mg / L or less, preferably 200 mg / L or less, and especially 150 mg / L It is preferable to set L or less. On the other hand, if the activated sludge concentration is too low, sludge blanket is less likely to be generated in the final sedimentation basin 13 and the clarity of the treated water may be reduced. Therefore, the activated sludge concentration should be 50 Omg / L or more. Generally, the BOD concentration of sewage flowing into the aeration tank 12 of a sewage treatment plant is about 100 to 20 OmgZL. In the aeration tank 12 under these load conditions, when the activated sludge concentration is in the range of 5000 to 1000 Omg / L, the amount of the activated sludge and the auto-oxidation are balanced and almost no excess sludge is generated. . Therefore, by separating 80% of the activated sludge by the magnetic separation means 21, the concentration of the activated sludge flowing into the final sedimentation basin 13 can be made 1000 to 2000 mg / L. Within this activated sludge concentration range, it is possible to perform sufficient sedimentation and separation in the final sedimentation basin 13. At this time, even if the entire amount of the activated sludge separated in the magnetic separation means 21 and the final sedimentation basin 13 is returned to the aeration tank 12, the activated sludge concentration increases due to the balance between the proliferated amount of the activated sludge itself and the auto-oxidation. The automatic stop of the activated sludge makes it unnecessary to maintain the activated sludge concentration. At this time, the activated sludge concentration in the equilibrium state naturally fluctuates with load fluctuation, but the activated sludge concentration in the magnetic separation means 21 does not exceed the allowable sludge concentration of the final sedimentation tank 13 even at the maximum load. By setting the amount of sludge separation, water treatment can be continued regardless of load fluctuation. Furthermore, by separating most of the activated sludge by the magnetic separation means 21, even if the activated sludge concentration in the aeration tank 12 is increased to some extent, it is possible to prevent the final sedimentation tank 13 from exceeding the allowable sludge concentration. Negative emission is also possible in which the excess sludge is injected into the aeration tank 12 and autooxidized. Among the microorganisms that make up the activated sludge, the filamentous fungi and the dispersible microorganisms cannot retain magnetic powder by themselves, so most of them pass through the magnetic separation means 21 and flow into the final sedimentation basin 13 where they settle. Will be separated. On the other hand, most of the floc-forming bacteria that easily hold the magnetic powder are separated by the magnetic separation means 21 and returned to the aeration tank 12 through the magnetic separation sludge return path 14. Therefore, by returning only the activated sludge separated and collected by the magnetic separation means 21 to the aeration tank 12, the activated sludge in the aeration tank 12 is returned. The mud can be mainly composed of floc-forming bacteria, and the occurrence of bulking can be prevented. However, in this case, excess sludge will be generated from the final sedimentation basin 13, so in order to prevent excess sludge from being generated, the activated sludge separated in the final sedimentation basin 13 must also be returned to the aeration tank 12. There is. When the activated sludge containing the filamentous fungi and the dispersible microorganisms is returned to the aeration tank 12, the occurrence of bulking cannot be completely prevented. Therefore, the activated sludge is transferred from the final sedimentation tank 13 to the aeration tank 12. Until the wastewater is returned, for example, as shown in Fig. 1, a sterilization treatment unit 16 is installed in the sedimentation / separation sludge return route 15 where sterilization treatment is performed using ozone / chlorine and hydrogen peroxide. By doing so, it is possible to eliminate filamentous fungi and the like that cause bulking. Thereby, it is possible to prevent the generation of excess sludge from the final sedimentation basin 13 while suppressing the generation of bulking. The sterilization treatment in the sterilization treatment section 16 may be performed continuously with an appropriate strength, but may be performed according to the occurrence of bulking.In general, when returning from a bulking dog state to a normal state, It is sufficient to perform the sterilization treatment for several times to about 10 times the residence time in the aeration tank. In addition, a solubilization treatment section can be provided instead of, or together with, the sterilization treatment section 16 shown in FIG. In the solubilization processing unit, a mechanical processing device such as an ozone treatment device, an ultrasonic treatment device, a heat treatment device, an alkali treatment device, or a crusher and a ball mill is installed. The main purpose of the solubilization treatment section is to improve the biodegradability of returned sludge that is difficult to biodegrade as it is. However, depending on the mode of the processing apparatus (for example, an ozone processing apparatus), the sterilization processing can be expected, and therefore, a single processing unit can also be used. Since it is necessary to return the microorganisms to the aeration tank 12, it may be better to treat only a part of the returned sludge instead of the entire amount. Therefore, the solubilization treatment unit or the sterilization treatment unit 16 may be used. It is preferable that the bypass route 17 is provided in the route where is disposed. Further, as shown in FIG. 1, the magnetically separated sludge from the magnetically separated sludge return route 14 is returned to the upstream side of the aeration tank 12 with a high organic matter concentration, and the sedimentation separated sludge return route Γ5 The sedimentation-separated activated sludge is returned to the downstream side of the aeration tank 12 having a low organic matter concentration, so that the floc-forming bacteria in the magnetic separation sludge can be preferentially grown in the aeration tank 12. In addition, by providing the solubilization treatment means 18 in the magnetic separation sludge return route 14 and performing the solubilization treatment as described above, an improvement in the biodegradability as described above can be expected. Also in this case, the bypass 19 may be provided to process only a part of the returned sludge. Even when the amount of water flowing into the final sedimentation basin 13 increases due to the inflow of rainwater, the activated sludge capturing the magnetic powder has a higher specific gravity than normal activated sludge and has good sedimentation properties. However, since the floc-forming bacteria can be preferentially grown as described above, sufficient sedimentation and separation can be performed in the final sedimentation basin 13. For example, if the capacity of the magnetic separation means 21 is set so that the MLVSS concentration flowing into the final sedimentation basin 13 becomes about 100 Omg / L even when the flow rate increases due to rainwater, usually 3 to 4 Even if the residence time of the final sedimentation basin 13 set to about the time is reduced to about half, the adverse effect on the sedimentation separation can be almost eliminated. Conventionally, when performing methane fermentation in such a wastewater treatment facility, excess sludge extracted from the first sedimentation basin 11 and the final sedimentation basin 13 was used as a raw material, but the surplus sludge from the final sedimentation basin 13 Since sludge generation can be eliminated, only fermentable primary sludge can be used as a raw material for methane fermentation. This can improve the efficiency of methane fermentation and reduce the amount of excess sludge after methane fermentation. Further, after the excess sludge is subjected to solubilization and sterilization treatment, and then charged into the aeration tank 12, the generation of excess sludge from the first sedimentation basin 11 can be eliminated. That is, as shown in Fig. 1, the methane fermentation means 31 using only the primary sediment sludge of the primary sedimentation basin 11 as a raw material, and the excess sludge generated by the methane fermentation means 31 By providing a solubilization / sterilization treatment means 32 for performing reprocessing, etc., and an excess sludge introduction route 33 for introducing the excess sludge treated by the solubilization / sterilization treatment means 32 into the aeration tank 12 It is possible to eliminate the generation of excess sludge from the first settling tank This makes it possible to implement water treatment by the activated sludge method, which completely eliminates the generation of excess sludge from the entire water treatment facility. In addition, since the magnetic separation means 21 does not need to separate the entire amount of the activated sludge containing the magnetic powder, the required amount of the activated sludge can be separated in a very short time. Even when the rate is 99.5%, the magnetic separation can be performed in several seconds to several tens of seconds, so that the processing can be performed with a volume of about 1/100 to 1/10000 of the volume of the final sedimentation basin 13. Therefore, not only between the aeration tank 12 and the final sedimentation basin 13 in the existing water treatment facility, but also as shown in FIG. Since it is possible to install the magnetic separation means 21 in the inflow section 13a of 13 with a small modification, it can be applied not only to new water treatment facilities but also to existing water treatment facilities. Easy. Further, in the present embodiment, the final sedimentation tank 13 that sediments and separates activated sludge by gravity is exemplified as the solid-liquid separation means subsequent to the magnetic separation means, but even when membrane separation is adopted as this solid-liquid separation means, Since clogging of the membrane can be suppressed and the interval between cleaning operations can be made longer than before, the life of the membrane can be extended, and the cost for membrane separation can be reduced. Example 1
磁気分離装置として、 前記図 2に示した構造のものを用意した。 すなわち、 直 径 20 cm、 長さ 35 cmの回転ドラムの外周面に約 10mm間隔で N極と S極 とを交互に設けるとともに、 回転ドラムに付着した活性汚泥を接き取るためのス クレーパ一を設け、 回転ドラムの下半部を磁気分離槽内に挿入して回転させ、 1 回転毎に回転ドラムの磁石に付着した活性汚泥をスクレーパーで接き取るように した。 活性汚泥懸濁液として、 MLVSS : 600 Omg/L, 四三酸化鉄: 600 Omg/Lの磁性粉含有活性汚泥懸濁液を用意し、 回転ドラムを 10 r pmで回 転させて磁気分離を行った。 なお、 磁気分離槽の実効容積は 580mlである。 磁気分離装置中の懸濁液滞留時間と磁気分離装置流出液中の ML V S S濃度との 関係を図 3に示す。 この結果から、 滞留時間が 14秒以上のときには、 流出液中の MLVS S濃度 が 5mgZL以下に低下しており、 100%近い汚泥分離率を示した。 滞留時間 7秒で流出液中の MLVS Sは約 5 Omg/Lであるが、 汚泥残留率では 0. 8 %に過ぎない。 滞留時間が 2秒のときで、 流出液中の MLVS S濃度が 1 180 mgZLとなり、 略 80%の汚泥分離率となる。 この磁気分離装置の処理能力は 80 %汚泥分離率で約 lm3/hであった。 この磁気分離装置を、 1日 20m3処理している通常の活性汚泥法による下水 処理実験プラントの曝気槽上部に取り付け、 曝気槽からの流出液を、 この磁気分 離装置を通して最終沈殿池に流入させた。 その結果、 曝気槽の活性汚泥濃度は M LVS Sが 6000mg/Lで増加が停止し、 余剰汚泥の弓 Iき抜きを行わなくて も安定した運転状態となった。 このときの曝気槽内の MLVS S濃度の経時変化 を図 4に示す。 運転中における最終沈殿池には、 MLVS Sが 500〜1 500 mgZLの活性汚泥が磁気分離装置を通して流入し、 完全な固液分離ができた。 実施例 2 A magnetic separator having the structure shown in FIG. 2 was prepared. That is, N poles and S poles are alternately provided at intervals of about 10 mm on the outer peripheral surface of a rotating drum having a diameter of 20 cm and a length of 35 cm, and a scraper for removing activated sludge adhering to the rotating drum. The lower half of the rotating drum was inserted into a magnetic separation tank and rotated, and the activated sludge attached to the magnet of the rotating drum was scraped off with a scraper every rotation. Prepare an activated sludge suspension containing magnetic powder of MLVSS: 600 Omg / L and triiron tetroxide: 600 Omg / L as the activated sludge, and rotate the rotating drum at 10 rpm. And magnetic separation was performed. The effective volume of the magnetic separation tank is 580ml. Figure 3 shows the relationship between the suspension residence time in the magnetic separator and the ML VSS concentration in the effluent of the magnetic separator. From these results, when the residence time was 14 seconds or more, the MLVSS concentration in the effluent was reduced to 5 mgZL or less, showing a sludge separation rate of nearly 100%. The MLVS S in the effluent at a residence time of 7 seconds is about 5 Omg / L, but the sludge residual rate is only 0.8%. When the residence time is 2 seconds, the MLVS S concentration in the effluent is 1180 mgZL, and the sludge separation rate is approximately 80%. The throughput of this magnetic separator was about lm3 / h at 80% sludge separation rate. This magnetic separation device is installed on the upper part of the aeration tank of a sewage treatment experimental plant using the ordinary activated sludge method, which treats 20 m3 per day, and the effluent from the aeration tank flows into the final sedimentation tank through this magnetic separation device. Was. As a result, the concentration of activated sludge in the aeration tank stopped increasing at MLVSS of 6000 mg / L, and a stable operating state was achieved without performing bow I removal of excess sludge. Figure 4 shows the time-dependent changes in the MLVSS concentration in the aeration tank at this time. During the operation, activated sludge with MLVS S of 500-1500 mgZL flowed into the final sedimentation basin through the magnetic separator, and complete solid-liquid separation was achieved. Example 2
実施例 1と同じ下水処理実験プラントに、 実施例 1と同じ磁気分離装置を 2基 設置して運転を行った。 通常負荷では、 最終沈殿池流入液の MLVS S濃度は 1 00〜20 OmgZLであった。 雨水の流入を想定し、 最終沈殿池の上澄み液を 1日 10m3戻し、 曝気槽への流入水量を 1. 5倍にした。 その結果、 最終沈殿 池流入液の MLVS S濃度は約 300〜400 mg/Lまで増加したが、 活性汚 泥濃度が十分に低いこと及び磁性粉を捕捉していることにより、 活性汚泥の沈降 性が良いため、 最終沈殿池での固液分離は十分に行われ、 流量増加による S Sの 流出は認められなかった。  The same sewage treatment experimental plant as in Example 1 was installed and operated with the same two magnetic separators as in Example 1. At normal loading, the MLVSS concentration in the final sedimentation basin influent was 100-20 OmgZL. Assuming rainwater inflow, the supernatant of the final sedimentation basin was returned 10 m3 / day, and the amount of inflow water into the aeration tank was increased 1.5 times. As a result, the MLVSS concentration in the influent of the final sedimentation basin increased to about 300 to 400 mg / L, but due to the sufficiently low activated sludge concentration and the capture of magnetic powder, the sedimentation Therefore, solid-liquid separation in the final sedimentation basin was sufficiently performed, and no outflow of SS due to increased flow rate was observed.

Claims

請求の範囲 The scope of the claims
1 . 磁性粉を添加した活性汚泥によって水処理を行う処理槽と、 該処理槽から 流出した活性汚泥懸濁液中に含まれる活性汚泥の一部を磁力によつて液中から分 離する磁気分離手段と、 該磁気分離手段から流出した活性汚泥懸濁液中の活性汚 泥を液中から分離する固液分離手段と、 前記磁気分離手段で分離した活性汚泥を 前記処理槽に返送する磁気分離汚泥返送経路とを含む排水処理装置。 1. A treatment tank that performs water treatment with activated sludge to which magnetic powder has been added, and a magnet that separates a part of the activated sludge contained in the activated sludge suspension flowing out of the treatment tank from the liquid by magnetic force Separation means, solid-liquid separation means for separating activated sludge in the activated sludge suspension flowing out of the magnetic separation means from the liquid, and magnetism for returning the activated sludge separated by the magnetic separation means to the treatment tank. Wastewater treatment equipment including a separated sludge return route.
2 . 前記磁気分離汚泥返送経路は、 磁気分離手段で分離した活性汚泥の少なく とも一部を可溶化処理する可溶化処理手段を備えている請求項 1に記載の排水処 理装置。 2. The wastewater treatment apparatus according to claim 1, wherein the magnetic separation sludge return path includes a solubilization treatment means for solubilizing at least a part of the activated sludge separated by the magnetic separation means.
3 . 前記固液分離手段が重力による沈降分離によって活性汚泥を分離する最終 沈殿池であって、 前記磁気分離手段から流出して前記最終沈殿池に流入する活性 汚泥懸濁液中の M L V S S濃度が 3 0 0 O m g /L以下である請求項 1又は 2に 記載の排水処理装置。 3. The solid-liquid separation means is a final sedimentation tank for separating activated sludge by gravity sedimentation separation, and the MLVSS concentration in the activated sludge suspension flowing out of the magnetic separation means and flowing into the final sedimentation basin is reduced. 3. The wastewater treatment device according to claim 1, wherein the concentration is not more than 300 Omg / L.
4 . 前記磁気分離手段は、 前記処理槽の流出部に設けられている請求項 1に記 載の排水処理装置。 4. The wastewater treatment apparatus according to claim 1, wherein the magnetic separation means is provided at an outlet of the treatment tank.
5 . 前記磁気分離手段は、 前記固液分離手段の流入部に設けられている請求項 1に記載の排水処理装置。 5. The wastewater treatment apparatus according to claim 1, wherein the magnetic separation unit is provided at an inflow portion of the solid-liquid separation unit.
6 . 前記磁気分離手段は、 処理槽流出液中の活性汚泥の 5 0〜 9 9 . 5 %を分 離する請求項 1に記載の排水処理装置。 6. The wastewater treatment apparatus according to claim 1, wherein the magnetic separation means separates 50 to 99.5% of the activated sludge in the effluent of the treatment tank.
7 . 前記活性汚泥と前記磁性粉との割合は、 活性汚泥の M L V S Sが 1に対し て磁性粉が 0 . 0 1〜 1 0の濃度である請求項 1に記載の排水処理装置。 7. The wastewater treatment apparatus according to claim 1, wherein the ratio of the activated sludge to the magnetic powder is such that the MLVSS of the activated sludge is 1 and the magnetic powder has a concentration of 0.01 to 10%.
8 . 前記固 ί夜分離手段で分離した活性汚泥の少なくとも一部を、 殺菌処理部で 処理した後に前記処理槽に返送する沈降分離汚泥返送経路を備えている請求項 1 に記載の排水処理装置。 8. The wastewater treatment apparatus according to claim 1, further comprising a sedimentation separation sludge return path for returning at least a part of the activated sludge separated by the solid / night separation means to the treatment tank after treating it in a sterilization treatment section. .
9 . 前記固液分離手段で分離した活性汚泥の少なくとも一部を、 可溶化処理部 で処理した後に前記処理槽に返送する沈降分離汚泥返送経路を備えている請求項 1に記載の排水処理装置。 9. The wastewater treatment apparatus according to claim 1, further comprising a sedimentation separation sludge return path for returning at least a part of the activated sludge separated by the solid-liquid separation means to the treatment tank after treating in the solubilization treatment section. .
1 0 . 前記処理槽の前段に設けられた予備固液分離手段と、 該予備固液分離手 段で分離した初沈汚泥を原料としてメタン発酵を行うメタン発酵手段と、 該メタ ン発酵手段でメタン発酵後の余剰汚泥を可溶化 ·滅菌処理する可溶化 ·滅菌処理 手段と、 該可溶化 ·滅菌処理手段で処理した余剰汚泥を前記処理槽に投入する余 剰汚泥投入経路とを含む請求項 1に記載の排水処理装置。 10. Preliminary solid-liquid separation means provided in the preceding stage of the treatment tank, methane fermentation means for performing methane fermentation using the primary sludge separated by the preliminary solid-liquid separation means as a raw material, and methane fermentation means Solubilization and sterilization means for solubilizing and sterilizing surplus sludge after methane fermentation; 2. The wastewater treatment device according to 1.
1 1 . 前記磁性粉は、 大きさが 0 . 0 5〜 2 mであり、 保磁力が 0〜 2 0 0 O eの四三酸化鉄粉である請求項 1に記載の排水処理装置。 11. The wastewater treatment apparatus according to claim 1, wherein the magnetic powder is iron trioxide powder having a size of 0.05 to 2 m and a coercive force of 0 to 200 Oe.
1 2 . 前記磁気分離手段は、 N極と S極とを 2〜2 0 mmの間隔で交互に設け た磁石を備えている請求項 1に記載の排水処理装置。 12. The wastewater treatment apparatus according to claim 1, wherein the magnetic separation unit includes a magnet in which N poles and S poles are alternately provided at an interval of 2 to 20 mm.
PCT/JP2003/015530 2002-12-05 2003-12-04 Waste water treating device WO2004054935A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003289175A AU2003289175A1 (en) 2002-12-05 2003-12-04 Waste water treating device
JP2004560607A JPWO2004054935A1 (en) 2002-12-05 2003-12-04 Wastewater treatment equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002354177 2002-12-05
JP2002-354177 2002-12-05

Publications (1)

Publication Number Publication Date
WO2004054935A1 true WO2004054935A1 (en) 2004-07-01

Family

ID=32588093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015530 WO2004054935A1 (en) 2002-12-05 2003-12-04 Waste water treating device

Country Status (3)

Country Link
JP (1) JPWO2004054935A1 (en)
AU (1) AU2003289175A1 (en)
WO (1) WO2004054935A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103265110A (en) * 2013-05-10 2013-08-28 李继香 Water treatment method using magnetically biologically enhanced membrane bioreactor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780491A (en) * 1993-09-13 1995-03-28 Ishikawajima Harima Heavy Ind Co Ltd Biological treatment of waste water or the like
JPH08155481A (en) * 1994-12-08 1996-06-18 Kurita Water Ind Ltd Aerobic treatment method for organic drainage
EP0877001A1 (en) * 1997-03-14 1998-11-11 Kurita Water Industries Ltd. Sedimentation acceleration agent for activated sludge and method for using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3172965B2 (en) * 1995-10-30 2001-06-04 株式会社荏原製作所 Sewage treatment method
JP2002210482A (en) * 2001-01-19 2002-07-30 Hitachi Plant Eng & Constr Co Ltd Method for treating waste water
JP2002282898A (en) * 2001-03-26 2002-10-02 Sumitomo Heavy Ind Ltd Drainage treatment system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780491A (en) * 1993-09-13 1995-03-28 Ishikawajima Harima Heavy Ind Co Ltd Biological treatment of waste water or the like
JPH08155481A (en) * 1994-12-08 1996-06-18 Kurita Water Ind Ltd Aerobic treatment method for organic drainage
EP0877001A1 (en) * 1997-03-14 1998-11-11 Kurita Water Industries Ltd. Sedimentation acceleration agent for activated sludge and method for using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103265110A (en) * 2013-05-10 2013-08-28 李继香 Water treatment method using magnetically biologically enhanced membrane bioreactor

Also Published As

Publication number Publication date
JPWO2004054935A1 (en) 2006-04-20
AU2003289175A1 (en) 2004-07-09

Similar Documents

Publication Publication Date Title
US7625490B2 (en) Use of a magnetic separator to biologically clean water
CN101891336B (en) System and method for leachate treatment in sanitary landfill
US7473356B2 (en) Wastewater treatment system by superconducting magnetic separation
CN108373238A (en) A kind of landfill leachate concentration liquid zero-discharge treatment system and technique
JP2010125361A (en) Wastewater treatment system and purification system
WO2013187979A1 (en) Treatment using fixed film processes and ballasted settling
JP2002273261A (en) Membrane magnetic separation device
CN111115950A (en) double-MBR (membrane bioreactor) method sewage treatment process combined with ozone oxidation
CN1478737A (en) Garbage percolation liquid treatment process
Xing et al. Performance of an inclined-plate membrane bioreactor at zero excess sludge discharge
CN104703927B (en) Waste water outflow system and method
CN101723537A (en) Novel process for urban sewage reutilization and treatment
JP2005161161A (en) Wastewater treatment apparatus and magnetic separation apparatus
JP3478321B2 (en) Activated sludge settling promoter and activated sludge treatment method for wastewater using the same
CN208292808U (en) A kind of purifying equipment for running water
KR100364359B1 (en) Method and Apparatus for Advanced Treatment of Sewage and Industrial Wastewater Using Magnetic Force and Biological Film
JP2005137991A (en) Drainage treatment apparatus
WO2004054935A1 (en) Waste water treating device
JP4313647B2 (en) Wastewater treatment equipment
JPH09150180A (en) Activated sludge recovering device and method thereof
JP2002224504A (en) Wastewater treatment apparatus and wastewater treatment method
KR100385417B1 (en) Apparatus for Advanced Treatment of BOD in Sewage and Dirty Water
JP2005111342A (en) Sludge treatment apparatus
JP4551650B2 (en) Biological treatment equipment
CN208454730U (en) A kind of river sewage processing system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004560607

Country of ref document: JP

122 Ep: pct application non-entry in european phase