WO2004054140A1 - 光通信のための方法及び光受信機 - Google Patents

光通信のための方法及び光受信機 Download PDF

Info

Publication number
WO2004054140A1
WO2004054140A1 PCT/JP2002/012986 JP0212986W WO2004054140A1 WO 2004054140 A1 WO2004054140 A1 WO 2004054140A1 JP 0212986 W JP0212986 W JP 0212986W WO 2004054140 A1 WO2004054140 A1 WO 2004054140A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
fiber
limiter
light
signal light
Prior art date
Application number
PCT/JP2002/012986
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Kunimatsu
Hiroya Egoshi
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2002/012986 priority Critical patent/WO2004054140A1/ja
Priority to JP2004558378A priority patent/JP3850857B2/ja
Publication of WO2004054140A1 publication Critical patent/WO2004054140A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • H04B10/671Optical arrangements in the receiver for controlling the input optical signal
    • H04B10/672Optical arrangements in the receiver for controlling the input optical signal for controlling the power of the input optical signal
    • H04B10/674Optical arrangements in the receiver for controlling the input optical signal for controlling the power of the input optical signal using a variable optical attenuator

Definitions

  • the present invention generally relates to a method and an optical receiver for optical communication, and more particularly, to a method for optical communication applicable to high power signal light and an optical receiver used for implementing the method.
  • a method for optical communication applicable to high power signal light and an optical receiver used for implementing the method.
  • optical amplifiers for amplifying optical signals or signal light have been put to practical use in order to enable long-distance transmission by compensating for losses in optical fibers.
  • the optical medium to which the signal light to be amplified is supplied and the optical amplifying medium are pumped (pumped) so that the optical medium provides a gain band including the wavelength of the signal light.
  • This is an optical amplifier composed of a bombing unit.
  • erbium-doped fiber amplifiers have been developed to amplify signal light in the 1.55- ⁇ m wavelength band with low loss in silica-based fibers.
  • the EDFA includes an erbium-doped fiber (EDF) as an optical amplifying medium, and a pump light source for supplying a pump light having a predetermined wavelength to the EDF.
  • pump light having a wavelength of 0.98 m band or 1.48 ⁇ m band, a gain band including a wavelength of 1.55 ⁇ tn can be obtained.
  • Wavelength division multiplexing is a technology for increasing the transmission capacity of optical fibers.
  • WDM Wavelength division multiplexing
  • a plurality of optical carriers having different wavelengths are used.
  • Multiple optical signals obtained by independently modulating each optical carrier are wavelength-division multiplexed by an optical multiplexer, and the resulting WDM signal light is transmitted to an optical fiber transmission line.
  • the received WDM signal light is separated into individual optical signals by an optical demultiplexer, and based on each optical signal, Thus, the transmission data is reproduced. Therefore, by applying WDM, the transmission capacity of one optical fiber can be increased according to the number of multiplexes.
  • the power of signal light propagating in an optical fiber transmission line has increased, and it is practically required to deal with this.
  • the optical input power to the optical receiver was at most several dBm, which did not destroy the components of the optical receiver.
  • the optical input power to the optical receiver exceeds 10 dBm due to the performance improvement of the WDM device and the optical amplifier due to the Raman width, the parts of the optical receiver It is necessary to consider heat resistance.
  • the upper limit of the optical input power that an avalanche photodiode used as an opto-electrical converter in an optical receiver can withstand is approximately 5 dBm, and therefore exceeds 10 dBm.
  • the optical receiver becomes unusable due to component destruction.
  • an optical receiver with an optical attenuator for attenuating a signal light having a large power to a predetermined level. And the dynamic range of the optical receiver is significantly degraded. Disclosure of the invention
  • an object of the present invention is to provide a method and an optical receiver for optical communication in which components such as an optical / electrical converter are not likely to be destroyed even with a large optical input power.
  • a step of providing an optical fiber transmission line for transmitting signal light, and a limiter fiber having a threshold value that causes Brillouin scattering when light having substantially higher power is input are provided. And inputting the signal light transmitted by the optical fiber transmission line to the limiter fiber, and converting the signal light output from the limiter fiber into an electric signal.
  • this method when a high-power optical input is applied, Brillouin scattering occurs in the limiter fiber, and the power of light passing through the limiter fiber is reduced. Is prevented from being destroyed, and the object of the present invention is achieved.
  • an optical receiver for receiving signal light transmitted through an optical fiber transmission line.
  • This optical receiver has a threshold value that causes Brillouin scattering when light having substantially higher power is input, and a limiter fiber into which the signal light is input and an output light from a limiter fiber.
  • An optical Z-electric converter for converting signal light into an electric signal.
  • an optical fiber having an effective core area smaller than the effective core area of an optical fiber transmission line or a loss smaller than the loss of the fiber transmission line is used.
  • Optical fiber can be used.
  • Fig. 3 shows the scattering power (left vertical axis) and the U force of the optical fiber.
  • FIG. 4 is a block diagram showing a second embodiment of the optical receiver according to the present invention.
  • FIG. 5 is a block diagram showing a third preferred embodiment of the optical receiver according to the present invention.
  • FIG. 6 is a block diagram showing a fourth embodiment of the optical receiver according to the present invention
  • FIG. 7 is a block diagram showing a fifth embodiment of the optical receiver according to the present invention.
  • FIG. 1 there is shown an optical fiber transmission system to which the present invention can be applied.
  • the WDM device 2 on the transmitting side and the WDM device 4 on the receiving side are connected by an optical fiber transmission line 6, and the WDM device 4 on the receiving side is electrically processed by a plurality of optical fiber transmission lines 8. It is configured by connecting to the unit 10.
  • the WDM unit 2 on the transmitting side wavelength-division multiplexes the optical signals received via the plurality of optical fiber transmission lines 12 to obtain an optical multiplexer (MUX) 14 for obtaining WDM signal light.
  • An optical amplifier (AMP) 16 for amplifying the WDM signal light.
  • the WDM signal light amplified by the optical amplifier 16 is transmitted to the WDM device 4 on the receiving side via the optical fiber transmission line 6.
  • the WDM device on the receiving side amplifies the WDM signal light transmitted by the optical fiber transmission line 6 and attenuated WDM signal light, and the WDM signal light amplified by the optical amplifier 18 according to the wavelength.
  • Optical demultiplexer (DMU X) 20 that divides the optical signal into two optical signals.
  • the optical signal output from the optical demultiplexer 20 is sent to the electrical processing unit 10 by a plurality of optical fiber transmission lines 8.
  • the electrical processing unit 10 includes a plurality of optical / electrical (O / E) converters 22 for converting optical signals transmitted by the optical fiber transmission line 8 into electrical signals, respectively, A circuit (not shown) that performs a predetermined process on the electric signal converted by the converter 22 and a plurality of electric light (E / O) devices that respectively convert the processed electric signal into an optical signal. And a converter 24.
  • the optical signal converted by the electric / optical converter 24 is transmitted to a downstream device through a plurality of optical fiber transmission lines 26.
  • the power of the signal light in the optical fiber transmission line 6 may be more than 10 dB due to the application of the WDM and the optical amplification.
  • the optical Z There is a risk that the electrical converter 22 etc. may be destroyed. Therefore, by applying the present invention to a portion indicated by reference numeral 28 including the optical fiber transmission line 8 and the optical / electrical converter 22, it is possible to prevent such destruction of components. The details are as follows.
  • FIG. 2 there is shown a first preferred embodiment of the optical receiver according to the present invention.
  • the portion indicated by reference numeral 28 in FIG. 1 will be referred to as an optical receiver.
  • a limiter fiber 30 is connected downstream of the optical fiber transmission line 8, that is, between the optical fiber transmission line 8 and the optical receiving unit 28, and the optical fiber transmission line 8 and the limiter fiber 30 are connected.
  • the optical signal (signal light) that has passed through the The signal is attenuated to a predetermined level by 32 and is input to the optical / electrical converter 22.
  • FIG. 3 a limiter effect due to stimulated Brillouin scattering of a general single-mode fiber is shown.
  • the horizontal axis is the power of the signal light input to the fiber (dBm)
  • the vertical axis is the power of the scattered light generated in the opposite direction to the input direction of the signal light (dBm) and passes in the same direction as the input direction of the signal light Is the power of the light output (dBm). It can be seen that when the power of the input signal light exceeds 5 dBm, the power of the output light becomes saturated and the power of the scattered light rapidly increases.
  • a limiter function of approximately 5 dBm can be obtained.
  • the threshold at which the limiter fiber 30 operates as a limiter will be considered.
  • the threshold P th for stimulated Brillouin scattering is approximated by the following equation.
  • K is a constant that depends on the degrees of freedom of the polarization state
  • a eff is effective core area of the fiber
  • g is the Brillouin gain coefficient
  • L ef f is the effective length of the fiber defined by the following equation.
  • a is the attenuation coefficient of the fiber
  • L is the length of the fiber
  • the threshold value can be reduced by reducing the effective core area Aeff of the fiber, reducing the attenuation coefficient a of the fiber, and increasing the length L of the fiber.
  • the desired threshold can be obtained.
  • the effective core area A eff and the attenuation coefficient a of the limiter filter 30 are set to be smaller than those of the optical fiber transmission line 8 so that the threshold for stimulated Brillouin scattering is reduced.
  • the maximum power of light passing through the limiter 30 is 5 dBm.
  • FIG. 4 is a block diagram showing a second embodiment of the optical receiver according to the present invention. This embodiment differs from the embodiment shown in FIG. 2 in that an optical isolator 34 is additionally provided between the optical fiber transmission line 8 and the limiter fiber 30. Attached. The optical isolator 34 functions to transmit light only in the illustrated direction, that is, in the direction from the optical fiber transmission line 8 to the limiter fiber 30.
  • FIG. 5 is a block diagram showing a third preferred embodiment of the optical receiver according to the present invention.
  • an optical circuit illuminator 36 is used instead of the optical isolator 34 in the embodiment shown in FIG.
  • the optical circulator 36 has three ports 36 A, 36 B, and 36 C.
  • the light supplied to the port 36 A is output from the port 36 B, and is output from the port 36 B. It functions to output the light supplied to 36 B from port 36 C and output the light supplied to port 36 C from port 36 A. Therefore, as shown in the figure, by connecting port 36A to the optical fiber transmission line 8 and connecting port 36B to the limiter fiber 30, as shown in FIG. The same effect as that of the embodiment can be obtained.
  • FIG. 6 is a block diagram showing a fourth preferred embodiment of the optical receiver according to the present invention.
  • an optical circulator 36 similar to the embodiment shown in FIG. 5 is used, and scattered light generated in the limiter fiber 30 is extracted by the optical circulator 36.
  • a variable optical attenuator (VATT) 38 is used instead of the optical attenuator 32.
  • the scattered light output from the port 36 C of the optical circulator 36 is
  • the detector (PD) 40 converts the electric signal into an electric signal corresponding to the power, and supplies the electric signal to the control circuit 42.
  • the control circuit 42 controls the variable optical attenuator 38 based on the supplied electric signal.
  • FIG. 7 is a block diagram showing a fifth preferred embodiment of the optical receiver according to the present invention.
  • a laser diode (LD) 4 is used as the light source. 4 is additionally provided.
  • the laser diode 44 is set to a wavelength such that, for example, the signal light input to the limiter fiber 30 from the optical fiber transmission line 8 is Raman amplified in the limiter fiber 30.
  • the reverse light output from the laser diode 44 is supplied to the limiter filter 30 via the optical power plug 46.
  • the Raman effect has a peak at a frequency shifted by +13 THz (approximately 100 nm in wavelength conversion), and extends over a band exceeding 40 THz. Wide effect can be obtained. Therefore, the signal light is subjected to Raman amplification in the limiter fiber 30 so that the apparent loss of the limiter fiber 30 can be made as close as possible to zero. Can be lowered.
  • the wavelength of the laser diode 44 is set to, for example, about 160 nm in the above-described embodiment, but may be made to coincide with the wavelength of light generated by stimulated Brillouin scattering. By doing so, the power shift from the signal light to the scattered light in the limiter fiber 30 increases, so that the threshold for stimulated Brillouin scattering can be similarly reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

P T/JP2002/012986
明 細 書 光通信のための方法及び光受信機 技 術 分 野
本発明は、 一般的に光通信のための方法及び光受信機に関し、 更に詳しく は高 いパワーの信号光に適用可能な光通信のための方法及びその方法の実施に使用す る光受信機に関する。 背 景 技 術
近年、 低損失 (例えば 0. 2 d BZk m) な石英系の光ファイバの製造技術及 び使用技術が確立され、 光ファイバを伝送路とする光通信システムが実用化され ている。 また、 光ファイバにおける損失を補償して長距離の伝送を可能にするた めに、 光信号又は信号光を増幅するための光増幅器が実用に供されている。 従来知られているのは、 増幅されるべき信号光が供給される光增幅媒体と、 光 ±曽幅媒体が信号光の波長を含む利得帯域を提供するよ うに光増幅媒体をボンピン グ (励起) するボンビングュニッ 卜 とから構成される光増幅器である。
例えば、 石英系ファイバで損失が小さい波長 1 . 5 5 μ m帯の信号光を増幅す るために、 エルビウム ドープファイバ増幅器 (E D F A) が開発されている。 E D F Aは、 光增幅媒体と してエルビウム ドープファイバ (E D F) と、 予め定め られた波長を有するポンプ光を E D Fに供給するためのポンプ光源とを備えてい る。 0. 9 8 m帯あるいは 1. 4 8 μ m帯の波長を有するポンプ光を用いるこ とによって、 波長 1. 5 5 μ tnを含む利得帯域が得られる。
光ファイバによる伝送容量を増大させるための技術と して、 波長分割多重 (W DM) がある。 WDMが適用されるシステムにおいては、 異なる波長を有する複 数の光キャ リ アが用いられる。 各光キャ リ アを独立に変調するこ とによって得ら れた複数の光信号が光マルチプレクサによ り波長分割多重され、 その結果得られ た WDM信号光が光ファイバ伝送路に送出される。 受信側では、 受けた WDM信 号光が光デマルチプレクサによって個々の光信号に分離され、 各光信号に基づい て伝送データが再生される。 従って、 W D Mを適用することによって、 多重数に 応じて 1本の光ファイバにおける伝送容量を増大させることができる。
光ファイバ通信システムへの光増幅及び W D Mの適用に伴い、 光ファイバ伝送 路を伝搬する信号光のパヮ一が大きく なり 、 これに対処することが実用上要求さ れる。 例えば、 光増幅や W D Mが適用されない従来タイプのシステムでは、 光受 信機への光入力パワーが最大でも数 d B mであり、 それによ り光受信機の部品が 破壊されることは無かったのであるが、 W D M用の装置やラマン增幅による光增 幅器の性能向上等に伴い光受信機への光入力パワーが 1 0数 d B mを超えるよ う になると、 光受信機の部品の耐カを考慮する必要がある。
具体的には、 光受信機において光 電気変換器と して用いられるアバランシ ェ · フォ 卜ダイオー ドが耐え得る光入力パワーの上限は概ね 5 d B mであるので、 1 0 d B mを超える信号光が入力すると、 部品破壊によ り光受信機が使用不能に なるのである。
この問題に対処するために、 大きなパワーを有する信号光を所定レベルまで減 衰させる光減衰器を光受信機に設けることが提案され得るが、 こ うする と小さな パワーの信号光を受信することができなく なり、 光受信機のダイナミ ック レンジ が著しく劣化する。 発明の開示
よって、 本発明の目的は、 大きな光入力パワーがあっても光/電気変換器等の 部品が破壊されるおそれのない光通信のための方法及び光受信機を提供すること である。
本発明の他の目的は以下の説明から明らかになる。
本発明によると、 信号光を伝送する光フアイバ伝送路を提供するステップと、 実質的にそれよ り も大きなパワーの光が入力したときにブリュアン散乱を生じさ せる閾値を有する リ ミ ッタファイバを提供するステップと、 光ファイバ伝送路に よ り伝送された信号光をリ ミ ッタファイバに入力するステップと、 リ ミ ッタファ ィパから出力された信号光を電気信号に変換するステップとを備えた方法が提供 される。 この方法による と、 大きなパワーの光入力があつたときに、 リ ミ ッタファイバ 内でブリュアン散乱が生じて、 リ ミ ッタファイバを通過する光のパワーが減少す るので、 光 Z電気変換器等の部品が破壊されることが防止され、 本発明の目的が 達成される。
本発明の他の側面による と、 光フアイバ伝送路によ り伝送された信号光を受信 する光受信機が提供される。 この光受信機は、 実質的にそれよ り も大きなパワー の光が入力したときにブリュアン散乱を生じさせる閾値を有し、 信号光が入力さ れる リ ミ ッタファイバと、 リ ミ ッタフアイパから出力された信号光を電気信号に 変換する光 Z電気変換器とを備えている。
例えば、 リ ミ ッタファイバと しては、 光ファイバ伝送路の実効コア面積よ り も 小さな実効コア面積を有している光ファイバや、 ファイバ伝送路の損失よ り も小 さな損失を有している光ファイバを用いることができる。 図面の簡単な説明
ソク図
クク図 ;
図 3は光ファイバにおける散乱パワー (左縦軸) 及 U 力 ヮ一
入力パワー (横軸) との関係の例を示すグラフ ;
図 4は本発明による光受信機の第 2実施形態を示すブロック図
図 5は本発明による光受信機の第 3実施形態を示すブロック図
図 6は本発明による光受信機の第 4実施形態を示すブロック図 そして 図 7は本発明による光受信機の第 5実施形態を示すプロ ック図である。 発明を実施するための最良の形態
以下、 添付図面を参照して本発明の望ま しい実施形態を詳細に説明する。 図 1 を参照する と、 本発明を適用可能な光ファイバ伝送システムが示されてい る。 このシステムは、 送信側の W D M装置 2 と受信側の W D M装置 4の間を光フ アイバ伝送路 6で結び、 受信側の W D M装置 4を複数の光ファイバ伝送路 8 によ り電気的処理ュニッ 卜 1 0に接続して構成されている。 送信側の WDMュニッ ト 2は、 複数の光ファィバ伝送路 1 2を介して受けた光 信号を波長分割多重して WDM信号光を得るための光マルチプレクサ (MU X) 1 4 と、 得られた WDM信号光を増幅する光増幅器 (AMP ) 1 6 とを含む。 光 増幅器 1 6によ り増幅された WDM信号光は光ファィバ伝送路 6によ り受信側の WDM装置 4に伝送される。
受信側の WDM装置は、 光ファイバ伝送路 6によ り伝送されて減衰した WDM 信号光を増幅する光増幅器 1 8 と、 光増幅器 1 8 によ り増幅された W DM信号光 を波長に従って複数の光信号に分ける光デマルチプレクサ (DMU X) 2 0 とを 含む。 光デマルチプレクサ 2 0から出力された光信号は、 複数の光ファイバ伝送 路 8によ り電気的処理ュニッ ト 1 0に送られる。
電気的処理ュニッ ト 1 0は、 光ファイバ伝送路 8によ り伝送された光信号をそ れぞれ電気信号に変換する複数の光/電気 (O/E) 変換器 2 2 と、 光 電気変 換器 2 2によ り変換された電気信号に関して予め定められた処理を行う図示しな い回路と、 処理を完了した電気信号をそれぞれ光信号に変換する複数の電気 光 (E/O) 変換器 2 4 とを含む。 電気/光変換器 2 4によ り変換された光信号は 複数の光ファイバ伝送路 2 6によって下流側の装置に伝送される。
このよ うに構成されるシステムにおいては、 WD M及び光増幅の適用によ り、 光ファイバ伝送路 6での信号光のパワーは 1 0数 d B以上になることがある。 こ のよ うに大きなパワーの信号光が装置の立ち上げに際してやメ ンテナンス時の誤 接続等によ り各光ファイバ伝送路 8を通って電気的処理ュニッ 卜 1 0に供給され ると、 光 Z電気変換器 2 2等が破壊するおそれがある。 そこで、 光ファイバ伝送 路 8及び光/電気変換器 2 2を含む符号 2 8で示される部分に本発明を適用する ことで、 このよ う な部品の破壊を未然に防止することができる。 具体的には以下 の通りである。
図 2を参照すると、 本発明による光受信機の第 1実施形態が示されている。 以 下の説明では、 図 1 に符号 2 8で示される部分を光受信部と称することにする。 この実施形態では、 光ファイバ伝送路 8の下流側、 即ち光ファイバ伝送路 8 と光 受信部 2 8 との間にリ ミ ッタファイバ 3 0を接続し、 光フアイバ伝送路 8及びリ ミ ッタファイバ 3 0をこの順に通過した光信号 (信号光) を光減衰器 (AT T) 3 2によ り予め定められたレベルまで減衰して光/電気変換器 2 2に入力するよ う にしている。
図 3を参照する と、 一般的なシングルモー ドファイバの誘導ブリュアン散乱に よる リ ミ ッタ効果が示されている。 横軸はファイバに入力する信号光のパワー ( d B m ) 、 縦軸は信号光の入力方向と逆向きに生じる散乱光のパワー ( d B m) 及び信号光の入力方向と同じ向きに通過して出力される光のパワー ( d B m) である。 入力する信号光のパワーが 5 d B mを超えるあたりから出力光のパ ヮ一が飽和してく ると共に散乱光のパワーが急激に増大してきていることがわか る。
従って、 図 2に示されるよ うに リ ミ ッタファイバ 3 0を光ファイバ伝送路 8の 下流側に挿入することによって、 概ね 5 d B mのパヮ一での リ ミ ツタ機能が得ら れることになり、 過剰なパヮ一の信号光が光受信部 2 8 に入力することが防止さ れる。 また、 物理現象と しての誘導ブリュアン散乱効果の応答性は極めて高速で あるので、 光サージ等の急激な光パワーの変化にも容易に対応することができる。 次に、 リ ミ ッタファイバ 3 0がリ ミ ッタ と して作動する閾値について考察する。 誘導ブリュアン散乱の閾値 P t hは次の式で近似される。
P t h = 2 l K A e f f / g L e f £
ここで、 Kは偏波状態の自 由度に依存する定数、 A e f f はファイバの有効コア 面積、 gはブリュアン利得係数、 L e f f は次式で定義されるファイバの有効長 さである。
L e f f = ( 1 — e x p (— a L ) / a )
ここで、 aはファイバの減衰係数、 Lはファイバの長さである。
従って、 ファイバの有効コア面積 A e f f を小さくする力、、 ファイバの減衰係 数 aを小さくする力 、 ファイバ長さ Lを長くすることによって、 閾値を小さ くす ることができる。 換言すれば、 これらのパラメータを適切に設定することで、 所 望の閾値を得るこ とができるのである。 例えば、 リ ミ ッタファイ ノく 3 0の有効コ ァ面積 A e f f 及び減衰係数 aは光ファイバ伝送路 8のそれよ りそれぞれ小さ く 設定され、 それによ り誘導ブリュアン散乱の閾値が小さく なるよ うにされる。 図 2の実施形態では、 リ ミ ッタファイバ 3 0に入力する光のパワーが誘導プリ ュアン散乱の閾値を越えると、 通過する光はそれ以上パワーが増大しなく なり、 約 1 0 G H z周波数シフ トした散乱光 (反射光) が生じる。 光 Z電気変換器 2 2 のダイナミ ック レンジが一 5 d B m 1 0 d B mであるとする と、 リ ミ ッタフ アイバ 3 0 を通過する光の最大パワーは 5 d B mであるので、 光減衰器 3 2での 減衰を 1 0 d B程度に設定しておく ことによって、 アバランシェフォ 卜ダイォ一 ド等を用いて構成される光 電気変換器 3 2が過大入力で破壊されるこ とを未然 に防止することができる。
図 4は本発明による光受信機の第 2実施形態を示すプロ ック図である。 この実 施形態は、 図 2に示される実施形態と対比して、 光フアイバ伝送路 8 と リ ミ ッタ ファイバ 3 0の間に光アイ ソ レータ 3 4を付加的に設けている点で特徴付けられ る。 光アイ ソレータ 3 4は図示された向き、 即ち光ファイバ伝送路 8から リ ミ ツ タファイバ 3 0に向かう方向にのみ光を通すよ うに機能する。
この構成による と、 リ ミ ッ トファイバ 3 0で信号光伝搬方向と反対向きに導波 された散乱光が光ファィバ伝送路 8を通って上流側に伝わらなく なるので、 上流 側に設けられている他の装置に対する散乱光の悪影響を排除することができる。 図 5は本発明による光受信機の第 3実施形態を示すブロ ック図である。 ここで は、 図 4に示される実施形態における光アイ ソ レータ 3 4に代えて光サーキユ レ ータ 3 6が用いられている。 光サーキユ レータ 3 6は 3つのポー 卜 3 6 A、 3 6 B及び 3 6 Cを有しており、 ポー ト 3 6 Aに供給された光をポー 卜 3 6 Bから出 力し、 ポー ト 3 6 Bに供給された光をポー ト 3 6 Cから出力し、 ポー ト 3 6 Cに 供給された光をポー ト 3 6 Aから出力するよ うに機能する。 従って、 図示される よ う に、 ポー 卜 3 6 Aを光フアイバ伝送路 8に接続し、 ポー ト 3 6 Bをリ ミ ッタ ファイバ 3 0に接続しておく こ とによって、 図 4に示される実施形態と同様の効 果を得ることができる。
図 6は本発明による光受信機の第 4実施形態を示すブロ ック図である。 ここで は、 図 5に示される実施形態と同様の光サーキユ レータ 3 6 を用い、 リ ミ ッタフ アイバ 3 0内で生じた散乱光を光サーキユ レータ 3 6 によ り取り 出すよ う にして いる。 また、 光減衰器 3 2 に代えて、 可変光減衰器 (VAT T) 3 8が用いられ ている。 光サーキユレータ 3 6のポー ト 3 6 Cから出力された散乱光は、 フォ 卜 ディテクタ (P D ) 4 0によ りそのパワーに応じた電気信号に変換され、 制御回 路 4 2に供給される。 制御回路 4 2は、 供給された電気信号に基いて可変光減衰 器 3 8を制御する。 例えば、 散乱光のパワーが小さいときには可変光減衰器 3 8 の減衰が零に又は小さく され、 散乱光のパワーが大きいときには同減衰が大きく される。 この制御によ り、 光受信機の耐力が更に向上すると共に、 可変光減衰器 3 8による減衰の変化の分だけ光受信機のダイナミ ック レンジが拡大される。 図 7は本発明による光受信機の第 5実施形態を示すブロ ック図である。 この実 施形態では、 信号光の波長と異なる波長を有する リバース光をリ ミ ッタファイバ 3 0に信号光伝搬方向と逆の向きに供給するために、 その光源と してレーザダイ オー ド (L D ) 4 4を付加的に設けられている。 レーザダイオー ド 4 4は、 例え ば、 光フアイバ伝送路 8から リ ミ ッタファイバ 3 0に入力した信号光がリ ミ ッタ ファイバ 3 0内でラマン増幅されるよ うな波長に設定されている。 レーザダイォ ー ド 4 4から出力されたリバース光は光力プラ 4 6を介して リ ミ ッタファイ ノく 3 0に供給される。
一般的に、 1 5 5 0 n mの帯域では、 ラマン効果は + 1 3 T H z (波長換算で は約 l O O n m ) シフ トした周波数にピークがあり、 4 0 T H z を超える帯域に 渡って広く增幅効果が得られる。 従って、 信号光がリ ミ ッタファイバ 3 0内でラ マン増幅されることにより 、 リ ミ ッタファイバ 3 0の見かけ上の損失を限り なく 零に近づけることができ、 前述した原理に従って誘導ブリュアン散乱の閾値を下 げることができる。
レーザダイォー ド 4 4の波長は、 上述の実施形態では例えば約 1 6 5 0 n mに 設定されるが、 誘導ブリュアン散乱で生じる光の波長に一致させてもよい。 こ う しておく と、 リ ミ ッタファイバ 3 0内で信号光から散乱光へのパワーシフ トが大 きく なるので、 同じく誘導ブリュアン散乱の閾値を下げるこ とができる。 産業上の利用可能性
以上詳述したよ うに、 本発明によると、 大きな光入力パワーがあっても光 電 気変換器等の部品が破壊されるおそれのない光通信のための方法及び光受信機の 提供が可能になる という効果が生じる。 これによ り高性能で寿命の長い光通信シ ステム及び光受信機の提供が可能になり、 光ファイバ通信の分野の発展に寄与す ると ころが大きい。

Claims

請 求 の 範 囲
1 . 信号光を伝送する光ファイバ伝送路を提供するステップと、
実質的にそれよ り も大きなパワーの光が入力したときにブリュアン散乱を生じ させる閾値を有する リ ミ ッタファィバを提供するステップと、
前記光ファイバ伝送路によ り伝送された信号光を前記リ ミ ッタファイバに入力 するステップと、
前記リ ミ ッタファイバから出力された信号光を電気信号に変換するステップと を備えた方法。
2 . 前記光ファイバ伝送路と前記リ ミ ッタフアイパの間に接続される光ァイ ソ レータを提供するステップを更に備えた請求の範囲第 1項記載の方法。
3 . 前記リ ミ ッタファイバから出力された信号光を減衰させるステップを更に 備えた請求の範囲第 1項記載の方法。
4 . 前記光ファイバ伝送路と前記リ ミ ッタファイバの間に光サーキユレータを 接続するステップと、
前記光サーキユ レータを介して前記ブリュアン散乱によ り生じた散乱光を取り 出すステップと、
前記散乱光のパワーに応じて前記信号光の減衰を制御するステップとを更に備 えた請求の範囲第 3項記載の方法。
5 . 前記リ ミ ッタフアイバに前記信号光の波長と異なる波長を有する リバース 光を前記信号光の伝搬方向と逆の方向に供給するステップを更に備えた請求の範 囲第 1項記載の方法。
6 . 前記リバ一ス光は前記信号光が前記リ ミ ッタファイバ内でラマン增幅され るよ うに設定される波長を有している請求の範囲第 5項記載の方法。
7 . 前記リバース光は前記ブリュアン散乱によ り生じる散乱光の波長と同じ波 長を有している請求の範囲第 5項記載の方法。
8 . 光ファイバ伝送路によ り伝送された信号光を受信する光受信機であって、 実質的にそれよ り も大きなパワーの光が入力したときにブリュアン散乱を生じ させる閾値を有し、 前記信号光が入力される リ ミ ッタファイバと、 前記リ ミ ッタファイバから出力された信号光を電気信号に変換する光 電気変 換器とを備えた光受信機。
9 . 前記光ファイバ伝送路と前記リ ミ ッタファイバの間に接続される光アイ ソ レ一タを更に備えた請求の範囲第 8項記載の光受信機。
1 0 . 前記リ ミ ッタファイバから出力された信号光を減衰させる光減衰器を更 に備えた請求の範囲第 8項記載の光受信機。
1 1 . 前記光ファイバ伝送路と前記リ ミ ッタファイバの間に接続される光サ一 キュ レータ と、
前記光サ一キユ レ一タを介して取り 出された前記ブリュアン散乱による散乱光 を電気信号に変換するフォ トディテクタと、
前記フォ トディテクタの出力に基いて前記光減衰器を制御する制御回路とを更 に備えた請求の範囲第 1 0項記載の光受信機。
1 2 . 前記リ ミ ッタファイバに前記信号光の波長と異なる波長を有する リバ一 ス光を前記信号光の伝搬方向と逆の方向に供給する光源を更に備えた請求の範囲 第 8項記載の光受信機。
1 3 . 前記リバース光は前記信号光が前記リ ミ ッタファイバ内でラマン増幅さ れるよ うに設定される波長を有している請求の範囲第 1 2項記載の光受信機。
1 4 . 前記リバース光は前記ブリュアン散乱によ り生じる散乱光の波長と同じ 波長を有している請求の範囲第 1 2項記載の光受信機。
1 5 . 前記リ ミ ッタファイバは前記光ファイバ伝送路の実効コア面積よ り も小 さな実効コァ面積を有している請求の範囲第 8項記載の光受信機。
1 6 . 前記リ ミ ッタファイバは前記光ファイバ伝送路の損失よ り も小さな損失 を有している請求の範囲第 8項記載の光受信機。
PCT/JP2002/012986 2002-12-11 2002-12-11 光通信のための方法及び光受信機 WO2004054140A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2002/012986 WO2004054140A1 (ja) 2002-12-11 2002-12-11 光通信のための方法及び光受信機
JP2004558378A JP3850857B2 (ja) 2002-12-11 2002-12-11 光通信のための方法及び光受信機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/012986 WO2004054140A1 (ja) 2002-12-11 2002-12-11 光通信のための方法及び光受信機

Publications (1)

Publication Number Publication Date
WO2004054140A1 true WO2004054140A1 (ja) 2004-06-24

Family

ID=32500619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012986 WO2004054140A1 (ja) 2002-12-11 2002-12-11 光通信のための方法及び光受信機

Country Status (2)

Country Link
JP (1) JP3850857B2 (ja)
WO (1) WO2004054140A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276043A (ja) * 2007-05-02 2008-11-13 Nippon Telegr & Teleph Corp <Ntt> 可変光減衰器、可変光減衰器内蔵受信器および光減衰方法
JP2010278542A (ja) * 2009-05-26 2010-12-09 Mitsubishi Electric Corp 受信装置
WO2013027068A3 (en) * 2011-08-25 2013-08-01 Optasense Holdings Limited A fibre optic distributed sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9835478B2 (en) 2013-10-07 2017-12-05 Halliburton Energy Services, Inc. Optical power limiting method using stimulated Brillouin scattering in fiber optic waveguides

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837499A (ja) * 1994-07-25 1996-02-06 Anritsu Corp 光信号受信装置
JPH1164901A (ja) * 1997-08-13 1999-03-05 Nec Corp 光通信送信装置
JPH1184433A (ja) * 1997-06-05 1999-03-26 Northern Telecom Ltd 光増幅型波長分割多重伝送システム
JP2001308790A (ja) * 2000-04-19 2001-11-02 Kdd Submarine Cable Systems Inc 光伝送システム及び光伝送路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837499A (ja) * 1994-07-25 1996-02-06 Anritsu Corp 光信号受信装置
JPH1184433A (ja) * 1997-06-05 1999-03-26 Northern Telecom Ltd 光増幅型波長分割多重伝送システム
JPH1164901A (ja) * 1997-08-13 1999-03-05 Nec Corp 光通信送信装置
JP2001308790A (ja) * 2000-04-19 2001-11-02 Kdd Submarine Cable Systems Inc 光伝送システム及び光伝送路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276043A (ja) * 2007-05-02 2008-11-13 Nippon Telegr & Teleph Corp <Ntt> 可変光減衰器、可変光減衰器内蔵受信器および光減衰方法
JP2010278542A (ja) * 2009-05-26 2010-12-09 Mitsubishi Electric Corp 受信装置
WO2013027068A3 (en) * 2011-08-25 2013-08-01 Optasense Holdings Limited A fibre optic distributed sensor

Also Published As

Publication number Publication date
JPWO2004054140A1 (ja) 2006-04-13
JP3850857B2 (ja) 2006-11-29

Similar Documents

Publication Publication Date Title
EP0859480B1 (en) Broadband flat gain optical amplifier
CA2267775C (en) A multi-wavelength optical pump
US6104848A (en) WDM optical transmitter
US8774635B2 (en) Fiber-optic automatic gain control systems and methods
US9641242B2 (en) Optical communication system, device and method for data processing in an optical network
EP1643666A1 (en) System and method for a compact optical receiver with wide dynamic range
CA2423397A1 (en) Amplifier system with distributed and discrete raman fiber amplifiers
US8055130B2 (en) Optical transceiver amplifier
KR100810859B1 (ko) 엘밴드 광신호의 효율적 광증폭 이득향상 장치
EP1788731B1 (en) Optical transmission system and optical filter assembly for submarine applications
US6396624B1 (en) Extended band erbium doped fiber amplifier
US20020167716A1 (en) Optical amplifier and optical transmission system
JP3850857B2 (ja) 光通信のための方法及び光受信機
US7443575B1 (en) Discrete hybrid SOA-Raman amplifier with broad gain bandwidth
KR100276756B1 (ko) 이득 평탄화 광섬유증폭기
JP2009164565A (ja) 利得等化器、光増幅器および光増幅方法
EP1137129A2 (en) Optical gain equalizer and optical gain equalizing method
US6456425B1 (en) Method and apparatus to perform lumped raman amplification
JP2008153558A (ja) 光伝送システム及びその信号スペクトラム補正方法
KR100250615B1 (ko) 이득 평탄화 광섬유증폭기
JP2000077757A (ja) 光増幅器、光伝送装置および光伝送システム
JP2012043934A (ja) 増幅装置、通信システムおよび増幅方法
KR100266808B1 (ko) 분산보상광섬유를내장하는광섬유증폭장치에서비선형현상방지장치
KR100355153B1 (ko) 광통신 시스템의 이득고정평탄 광증폭기
KR20030089278A (ko) 파장 분할 다중화 시스템용 다단 광섬유 증폭기

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

WWE Wipo information: entry into national phase

Ref document number: 2004558378

Country of ref document: JP