WO2004053019A1 - Organic electroluminescent device material and organic electroluminescent device using same - Google Patents

Organic electroluminescent device material and organic electroluminescent device using same Download PDF

Info

Publication number
WO2004053019A1
WO2004053019A1 PCT/JP2003/015874 JP0315874W WO2004053019A1 WO 2004053019 A1 WO2004053019 A1 WO 2004053019A1 JP 0315874 W JP0315874 W JP 0315874W WO 2004053019 A1 WO2004053019 A1 WO 2004053019A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
substituted
carbon atoms
unsubstituted
Prior art date
Application number
PCT/JP2003/015874
Other languages
French (fr)
Japanese (ja)
Inventor
Toshihiro Iwakuma
Seiji Tomita
Takashi Arakane
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to US10/538,023 priority Critical patent/US20060251918A1/en
Priority to EP03778817A priority patent/EP1571193A4/en
Priority to JP2004558476A priority patent/JP4541152B2/en
Publication of WO2004053019A1 publication Critical patent/WO2004053019A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom

Definitions

  • the present invention relates to a material for an organic electroluminescence device and an organic electroluminescence device using the same.
  • the present invention relates to a material for an organic electroluminescence device and an organic electroluminescence device (organic bright EL device) using the same.
  • the invention relates to a material for an organic EL device which utilizes phosphorescent light emission and has a high luminous efficiency. It is related to organic EL devices
  • Organic EL devices are self-luminous devices that use the principle that a fluorescent substance emits light by the recombination energy of holes injected from the anode and electrons injected from the cathode when an electric field is applied.
  • Eastman Kodak's CW Tang et al. Report on low-voltage driven organic EL devices using stacked devices (CW Tang, SA Vanslyke, Applied Physics Letters, 51, 913, 1). 1987), organic EL devices using organic materials as constituent materials have been actively researched. Tang and colleagues use tris (8-hydroxyquinolinol aluminum) for the light-emitting layer and a triflenyldiamine derivative for the hole transport layer.
  • the advantages of the stacked structure include: increasing the efficiency of hole injection into the light-emitting layer; increasing the efficiency of exciton generation by blocking electrons injected from the cathode and recombining; Examples include confining excitons.
  • the element structure of the organic EL element includes a hole transport (injection) layer, a two-layer electron transport / emission layer, or a hole transport (injection) layer, an emission layer, and an electron transport (injection) layer.
  • the three-layer type is well known.
  • injected holes and electrons In order to increase the recombination efficiency, the device structure and the forming method have been devised.
  • luminescent materials for organic EL devices As luminescent materials for organic EL devices, luminescent materials such as chelate complexes such as tris (8-quinolinolato) aluminum complex, coumarin derivatives, tetraphenylbutadiene derivatives, bis (styrylaryl) ylene derivatives, and oxaziazole derivatives are known. Reports that light in the visible region from blue to red can be obtained, and the realization of a color display device is expected (for example, see JP-A-8-239655, In addition, in recent years, organic light emitting materials other than light emitting materials have been used for light emitting layers of organic EL elements in organic EL devices.
  • chelate complexes such as tris (8-quinolinolato) aluminum complex
  • coumarin derivatives such as coumarin derivatives, tetraphenylbutadiene derivatives, bis (styrylaryl) ylene derivatives, and oxaziazole derivatives
  • Japanese Patent Application Laid-Open No. 2002-010476 discloses a light blue light emitting device in which a light emitting layer contains a phosphorescent compound and the external quantum efficiency is 10%. ing.
  • Japanese Patent Application Laid-Open No. 2002-100476 describes the luminous efficiency and luminance of the device. It is not known whether or not it has practical performance, and there has been a demand for an organic EL device using neighboring light emission having a practical level of luminous efficiency and lifetime. Disclosure of the invention
  • the present invention has been made in order to solve the above-mentioned problems, and has an object to provide a material for an organic EL device having high luminous efficiency using phosphorescent light emission and an organic EL device using the same. I do.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by using a compound having a specific structure of a nitrogen-containing fused ring structure as a material for an organic EL device, utilizing phosphorescent light emission, The inventors have found that an organic EL device having high luminous efficiency can be obtained, and have solved the present invention.
  • the present invention provides a material for an organic electroluminescence device comprising a compound represented by the following general formula (1).
  • X, to X a each represent a carbon atom or a nitrogen atom, at least one is a nitrogen atom. If X, either ⁇ Kai 8 is a carbon atom, bonded to carbon atoms and are R, to R 8 represents a substituent. in this case, R, to R 8 in which adjacent is either Itokichi combined and may form a ring. X, to X 8 each other When R is a nitrogen atom, R and -R 8 bonded to the nitrogen atom are not shared Represents an electron pair. R 9 represents a substituent. )
  • the present invention provides an organic EL device in which one or more organic thin film layers are sandwiched between a cathode and an anode, wherein at least one of the organic thin film layers contains the organic EL device material. It is intended to provide an organic EL device.
  • the organic thin film layers the light emitting layer, the electron transport layer and / or the electron injection layer, or the hole transport layer and / or the hole injection layer preferably contain the organic EL element material.
  • the material for an organic EL device of the present invention comprises a compound represented by the following general formula (1).
  • X, to X 8 each represents a carbon atom or a nitrogen atom, at least one is a nitrogen atom. If X, either ⁇ Kai 8 is a carbon atom, to R 8 are bonded to the carbon atom, represent a substituent. In this case, adjacent R, to R 8 may be bonded to each other to form a ring. When any of X and X 8 is a nitrogen atom, R and R 8 bonded to the nitrogen atom respectively represent a lone pair. R 9 represents a substituent.
  • R, to R 3 can be represented by 1 L or 1 L to Y, respectively, and L is any of X, to X 8 (in the case of R, to R 9 ), Or N (for R 9 ) Directly.
  • L is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, a substituted or unsubstituted heterocyclic group having 2 to 40 carbon atoms, a substituted or unsubstituted carbon atom having 1 to 10 carbon atoms.
  • Y is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, a substituted or unsubstituted heterocyclic group having 2 to 40 carbon atoms, a substituted or unsubstituted carbon atom having 1 to 1 0 straight-chain or branched alkyl group, substituted or unsubstituted cycloalkyl group having 6 to 40 carbon atoms, substituted or unsubstituted amino group having 2 to 40 carbon atoms, substituted or unsubstituted carbon number of 1 to 40 40 straight-chain or branched alkoxy groups, halogen atoms or nitro groups.
  • aryl group of L examples include phenyl, 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, and 2-phenanthryl.
  • heterocyclic group represented by L examples include pyrrole, pyridine, pyrimidine, pyrazine, aziridine, azazidine, indlizine, imidazole, indole, isoindole, indazole, purine, pteridine, j3-carboline and the like.
  • alkyl group of L examples include a methyl group, a trifluoromethyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a t-butyl group, and an n-pentyl group , N-hexyl group, n-heptyl group, n-octyl group, hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 2-hydroxyisobutyl group, 1,2-dihydroxyethyl Group, 1,3-dihydroxyisopropyl group, 2,3-dihydroxy-t-butyl group, 1,2,3-trihydroxypropyl group, chloromethyl group, 1-chloroethyl group, 2-chloroethyl group 1,2-dichloroethyl, 1,3-dichloroethyl, 1,3-dichloro
  • substituted aryl group for example, when a phenyl group having 6 carbon atoms is substituted with a substituent of a phenyl group or a methyl group, the following structures are exemplified.
  • Examples of the cycloalkyl group of L include a cyclopentyl group, a cyclohexyl group, a 4-methylcyclohexyl, an adamantyl group, a norbornyl group, and the like.
  • Examples of the amino group represented by L include a dimethylamino group, a methylethylamino group, a diphenylamino group, a diisopropylamino group, a bis-diphenylamino group, a carbazolyl group, a getylamino group, a ditolylamino group, an indolyl group, and a pyridinyl group. And a pyrrolidinyl group.
  • Alkoxy groups of the L is a group represented by a OY 1
  • examples of Y 1 include a methyl group, triflate Ruo Russia methyl group, Echiru group, a propyl group, an isopropyl radical, n one-butyl group, s- Butyl, isobutyl, t-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, hydroxymethyl, 1-hydroxyxethyl, 2-hydroxyethyl, 2 —Hydroxyisobutyl group, 1,2-dihydroxyethyl group, 1,3-dihydroxyisopropyl group, 2,3-dihydroxy-t-butyl group, 1,2,3-trihydroxypropyl group, methyl group, 1, —Chloroethyl group, 2-Chloroethyl group, 2-Chloroisobutyl group 1,1,2-dichloroethyl
  • halogen atom for L examples include fluorine, chlorine, bromine, iodine and the like.
  • Examples of the arylene group of L include those obtained by converting the example of the aryl group to a divalent group.
  • substituted aryl group for example, when a phenylene group having 6 carbon atoms is substituted with a substituent of a phenyl group or a methyl group, the following structures are exemplified.
  • Examples of the divalent substituted or unsubstituted heterocyclic group having 2 to 40 carbon atoms of L include those obtained by converting the above examples of the heterocyclic group into divalent groups.
  • Examples of the alkylene group for L include those in which the examples of the alkyl group are divalent groups.
  • Examples of the cycloalkyl group of L include those in which the examples of the cycloalkyl group are divalent groups.
  • Examples of the aryl group, the heterocyclic group, the alkyl group, the cycloalkyl group, the amino group, the alkoxy group, and the halogen atom represented by Y include the same as those described above for L.
  • 1 to 3 of X, to X 8 are nitrogen atoms and the remainder is a carbon atom, and ⁇ 3 and / or ⁇ 6 are nitrogen atoms. More preferably, they are atoms, and the remainder are carbon atoms.
  • R at least one of to R 8, an carbolinyl group, ie, the L and / or Y is further preferably one carbolinyl group.
  • X, to X 8 and R is a group that substitutes a hydrogen atom of the substituent represented by to R 9, respectively, a halogen atom (fluorine, chlorine, bromine, etc.), Shiano group, a silyl group, an amino group And an aryl group, an aryloxy group, a heterocyclic group, an alkyl group, an alkoxy group, an aralkyl group, or a cycloalkyl group.
  • the material for an organic EL device comprising the compound represented by the general formula (1) in the present invention has a triplet energy gap of 2.5 to 3.3 eV, and a triplet energy gap of 2.6 to 3.2 eV. It is preferred that there is.
  • the material for an organic EL device comprising the compound represented by the general formula (1) in the present invention has a singlet energy gap of 2.8 to 3.8 eV, and a singlet energy gap of 2.9 to 3.6 eV. It is preferred that there is.
  • the organic EL device of the present invention is an organic EL device in which one or more organic thin film layers are sandwiched between a cathode and an anode, wherein at least one of the organic thin film layers is represented by the general formula (1).
  • the organic EL device of the present invention is an organic EL device comprising the compound of the general formula (1) in a light emitting layer, an electron transport layer and / or an electron injection layer, or a hole transport layer and / or a hole injection layer. It is preferable to contain an element material.
  • the organic thin film layer preferably contains a phosphorescent compound.
  • a phosphorescent compound a metal complex or the like which emits light by triplet excitation or higher multiplet excitation is preferable. For example, the following examples are given.
  • the material for an organic EL device of the present invention is preferably a host material for an organic EL device.
  • the host material is capable of injecting holes and electrons, has a function of transporting holes and electrons, and has a function of emitting fluorescence by recombination.
  • the compound of the general formula (1) according to the present invention has a singlet energy gap as high as 2.8 to 3.8 eV, and a triplet energy gap as 2.5 to 3.3 eV. Since it is high, it is also useful as an organic host material for a phosphorescent device.
  • a phosphorescent element is a substance whose emission intensity based on a transition from a triplet energy state to a ground singlet state is higher than that of another substance. It refers to an organic electroluminescent device using so-called phosphorescence, which includes a phosphorescent material such as an organometallic complex containing at least one metal selected from Groups 1 to 11.
  • the generated molecular excitons are a mixture of singlet excitons and triplet excitons, and singlet excitons and triplet excitons are generally It is said that more triplet excitons are generated in a ratio of 1: 3.
  • excitons that contribute to light emission are singlet excitons, and triplet excitons are non-emissive.
  • the triplet excitons are eventually consumed as heat, and light is emitted from the singlet excitons with a low generation rate. Therefore, in the organic EL device, of the energy generated by the recombination of holes and electrons, the energy transferred to the triplet exciton is a large loss.
  • the compound of the present invention for a phosphorescent device, the energy of triplet excitons can be used for light emission, so that it is considered that three times the luminous efficiency of the device using fluorescence can be obtained.
  • the compound of the present invention when used for a light-emitting layer of a phosphorescent element, the compound has an energy higher than the excited triplet level of a photoluminescent organometallic complex containing a metal selected from Groups 7 to 11 contained in the layer.
  • Excited state Has triplet level provides more stable thin film shape, has high glass transition temperature (Tg: 80-160 ° C), and efficiently holes and / or electrons Can be transported, electrochemically and chemically stable, Trough. It is considered that impurities that cause quenching or quenching of light emission are unlikely to occur during manufacturing or use.
  • the organic EL device of the present invention is a device in which one or more organic thin film layers are formed between the anode and the cathode as described above.
  • a light emitting layer is provided between an anode and a cathode.
  • the light-emitting layer contains a light-emitting material and may further contain a hole-injection material or an electron-injection material for transporting holes injected from an anode or electrons injected from a cathode to the light-emitting material. . Further, it is preferable that the light emitting material has extremely high fluorescence quantum efficiency, high hole transport ability and electron transport ability, and forms a uniform thin film.
  • Examples of the multilayer organic EL device include (anode / hole transport layer / light emitting layer / cathode), (anode / light emitting layer / electron transport layer / cathode), (anode / hole transport layer / light emitting layer / electron transport layer). (Cathode).
  • the organic EL device has a multi-layer structure, which can prevent reduction in brightness and life due to quenching.Other doping materials can improve light emission brightness and luminous efficiency, and other doping that contributes to phosphorescence. When used in combination with a material, conventional light emission luminance and light emission efficiency can be improved.
  • the hole transporting layer, the light emitting layer, and the electron transporting layer in the organic EL device of the present invention may each be formed in a layer configuration of two or more layers.
  • a layer that injects holes from the electrode is called a hole injection layer
  • a layer that receives holes from the hole injection layer and transports holes to the light emitting layer is called a hole transport layer.
  • an electron transport layer a layer that injects electrons from the electrode is called an electron injection layer
  • a layer that receives electrons from the electron transport layer and transports electrons to the light emitting layer is called an electron transport layer.
  • the electron transport layer / the hole transport layer may contain the organic EL device material of the present invention comprising the compound represented by the general formula (1).
  • the layer and the hole blocking layer may contain the material for an organic EL device of the present invention, and the phosphorescent compound and the material for an organic EL device of the present invention may be used as a mixture.
  • Examples of the luminescent material or the host material that can be used in the organic thin film layer together with the compound of the general formula (1) of the present invention include anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, chrysene, fluorescein, perylene, phthalene perylene, and naphthalene.
  • Perylene lidone perinone, lidone perinone, naphthalene perinone, diphenylbutanediene, tetraphenylbutadiene, coumarin, oxaziazolyl, aldazine, bisbenzoxazoline, bisstyryl, pyrazine, cyclopentagen, quinoline metal complex, Aminoquinoline metal complex, benzoquinoline metal complex, imine, diphenylethylene, vinylanthracene, diaminoanthracene, diaminoforce rubazole, virane, thiovirane, polymethine, merocyanine, imida Examples include, but are not limited to, cheloxylated oxinoide compounds, quinacridone, rubrene, stilbene derivatives, and fluorescent dyes.
  • the hole injecting material has the ability to transport holes, has the effect of injecting holes from the anode, has an excellent hole injecting effect on the light emitting layer or the light emitting material, and has a function of exciters generated in the light emitting layer.
  • a compound that prevents migration to an electron injection layer or an electron injection material and has excellent ability to form a thin film is preferable.
  • phthalocyanine derivatives naphthalocyanine derivatives, porphyrin derivatives, oxazoles, oxaziazoles, triazoles, imidazoles, imidazolones, imidazolylthiones, pyrazolines, pyrazolones, tetrahydroimidazols, oxazoles, oxazirazols, hydrazones, hydrazones.
  • more effective hole injection materials are aromatic tertiary amine derivatives or phthalocyanine derivatives.
  • aromatic tertiary amamine derivative include triphenylamine, tritolylamine, tolyldiphenylamine,
  • phthalocyanine (Pc) derivative H 2 Pc, CuPc, CoPc , N i Pc, ZnPc, PdPc, FePc, MnPc, C l Al Pc, C l GaP c, C l I nPc, C l SnPc, C phthalocyanine derivatives and naphthalocyanine derivatives such as l 2 S i Pc, (H ⁇ ) Al Pc, (HO) GaPc, VOPc, T i ⁇ Pc, MoOPc, GaPc-0-GaPc. It is not limited.
  • the electron injecting material has the ability to transport electrons, has the effect of injecting electrons from the cathode, has an excellent electron injecting effect on the light emitting layer or the light emitting material, and has the hole injecting layer of exciters generated in the light emitting layer
  • Compounds that prevent migration to the surface and have excellent thin film forming ability are preferred. Specifically, fluorenone, anthraquinodimethane, diphenoquinone, thiovirandoxide, oxazole, oxazine diazole, triazole, imidazole, perylenetetracarboxylic acid, quinoxaline, fluorenylidene methane, anthraquinodimethane, anthrone, etc. And their derivatives. It is not limited.
  • more effective electron injecting materials are metal complex compounds or nitrogen-containing five-membered ring derivatives.
  • the metal complex compound include lithium 8-hydroxyquinolinato, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8-hydroxyquinolinato) manganese, Tris (8-hydroxyquinolina) aluminum, tris (2-methyl_8-hydroxyquinolina) aluminum, tris (8-hydroxyquinolina) gallium, bis (10-hydroxybenzo [h] quinolina 1) Beryllium, bis (10-hydroxybenzo [h] quinolinate) zinc, bis (2-methyl-18-quinolinate) gallium chloride, bis (2-methyl-8-quinolinate)
  • the nitrogen-containing five-membered derivative is preferably an oxazole, thiazole, oxaziazole, thiadiazole or triazole derivative.
  • the charge injecting property can be improved by adding an electron accepting substance to the hole injecting material and an electron donating substance to the electron injecting material.
  • the conductive material used for the anode of the organic EL device of the present invention those having a work function of more than 4 eV are suitable, and carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver , Gold, platinum, palladium and their alloys; metal oxides such as tin oxide and indium oxide used for ITO and NESA substrates; and organic conductive resins such as polythiophene-polypyrrole.
  • the conductive material used for the cathode those having a work function of less than 4 eV are suitable, such as magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, aluminum, and the like.
  • alloys are used, but are not limited to these.
  • Representative examples of the alloy include magnesium / silver, magnesium / indium, lithium / aluminum, and the like, but are not limited thereto.
  • the ratio of the alloy is controlled by the temperature, atmosphere, degree of vacuum, and the like of the evaporation source, and is selected as an appropriate ratio.
  • the anode and the cathode may be formed of two or more layers if necessary.
  • the organic EL device of the present invention may have an inorganic compound layer between at least one of the electrodes and the organic thin film layer.
  • Preferred inorganic compounds used for the inorganic compound layer include alkali metal oxides. things, alkaline earth oxides, rare earth oxides, alkali metal halides, alkaline earth halides, rare earth halides, S i Ox, A 1 ⁇ x, S i Nx, S i ON, A 1 ON, G e ⁇ x, L i ⁇ x, L i ⁇ _N, T i O x, T i ON, T a O x, T A_ ⁇ _N, T a N x, C and various oxides, nitrides, oxide nitrides
  • Siox, A1 ⁇ , SiNx, SiON, A1ON, GeOx, and C form a stable injection interface layer. Preferred.
  • the components of the layer, in particular in contact Siox, A1 ⁇ , SiN
  • At least one surface of the organic EL device of the present invention is sufficiently transparent in an emission wavelength region of the device in order to efficiently emit light. It is also desirable that the substrate is transparent.
  • the transparent electrode is set so as to secure a predetermined translucency by a method such as vapor deposition or sputtering using the above conductive material. It is desirable that the electrode on the light emitting surface has a light transmittance of 10% or more.
  • the substrate is not limited as long as it has mechanical and thermal strengths and has transparency, and examples thereof include a glass substrate and a transparent resin film.
  • Transparent resin films include polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate, polychlorinated vinyl, polybutyl alcohol, polyvinyl butyral, and nylon.
  • a protective layer can be provided on the surface of the device, or the entire device can be protected with silicon oil, resin, or the like, in order to improve stability against temperature, humidity, atmosphere, and the like.
  • Each layer of the organic EL device of the present invention may be formed by any of dry film forming methods such as vacuum evaporation, sputtering, plasma, and ion plating, and wet film forming methods such as spin coating, dating, and flow coating. Can be.
  • the thickness of each layer is not particularly limited, but needs to be set to an appropriate thickness. If the film thickness is too large, a large applied voltage is required to obtain a constant light output, and the luminous efficiency deteriorates. If the film thickness is too thin, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied.
  • the normal film thickness is suitably in the range of 5 nm to 10 m, but is more preferably in the range of 10 nm to 0.2 m.
  • the material for forming each layer is dissolved or dispersed in an appropriate solvent such as ethanol, chloroform, tetrahydrofuran, dioxane or the like to form a thin film.
  • an appropriate resin or additive may be used to improve film forming properties, prevent pinholes in the film, and the like.
  • Resins that can be used include insulating resins such as polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethylmethacrylate, polymethylatalylate, and cellulose, and copolymers thereof, and polyisomers.
  • Examples include photoconductive resins such as N-vinylcarbazole and polysilane, and conductive resins such as polythiophene and polypyrrole.
  • Examples of the additive include an antioxidant, an ultraviolet absorber, and a plasticizer.
  • the organic EL device As described above, by using the material for an organic EL device comprising the compound of the general formula (1) of the present invention in the organic thin film layer of the organic EL device, the organic EL device having high color purity and emitting blue light can be obtained.
  • This organic EL element can be used as, for example, an electrophotographic photosensitive member, a flat light-emitting member such as a flat panel display for a wall-mounted television, a copier, a printer, a backlight of a liquid crystal display, or a light source such as an instrument. It is suitably used for, for example, display boards, marker lights, and accessories.
  • the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
  • the triplet energy and singlet energy of the compound were measured as follows.
  • Excitation Singlet energy values were measured. That is, a toluene solution of the sample - the absorbance was measured scan Bae spectrum using Hitachi UV-visible absorption analyzer using (1 0 5 mol / liters). A tangent was drawn to the rise on the long wavelength side of the spectrum, and the wavelength (absorption edge) at the intersection with the horizontal axis was determined. This wavelength was converted to an energy value.
  • Synthetic intermediate (A) 9. Og (31mraol), 1-Panacilpyridinium bromide 8.7e (31 brain 1), 19.3 g (250 mmol) of ammonium acetate was suspended in 27 mU of acetic acid, and the mixture was heated under reflux for 12 hours. The reaction solution was cooled to room temperature, toluene and water were added thereto, and after separating into two layers, the organic layer was washed successively with a 10% aqueous sodium hydroxide solution and a saturated saline solution, and dried over anhydrous sodium sulfate.
  • Synthetic intermediate (B) 3.0 g (8 mmol), —carboline 1.4 g (8 mraol), tris (dibenzylideneacetone) dipalladium 0.18 g (0.2 imol), 2-dicyclohexylphosphino-1,2, I (N, N-dimethylamino) biphenyl 0.23 g (0.6 reference ol), sodium tert-butoxide 1.
  • Og (l mmol) is suspended in 15 ml of toluene, and heated under an argon atmosphere for 20 hours under reflux. did. The reaction solution was cooled to room temperature, and methylene chloride and water were added.
  • the obtained crystal was confirmed to be the target compound by 90 MHz ' ⁇ -NMR and FD-MS (field desorption mass spectrum).
  • the FD-MS measurement results are shown below.
  • Synthetic intermediate (A) 10. Og (35 mmol) and benzamidine hydrochloride 5.5 g (35 mmol) were suspended in 75 ml of ethanol, 2.8 g (70 mraol) of sodium hydroxide was added, and the mixture was heated under reflux for 18 hours. The reaction solution was cooled to room temperature, 50 ml of water was added, and the mixture was stirred for i hours. The precipitated crystal was filtered and washed with ethanol to obtain 8.2 g of a synthetic intermediate (C) (yield: 61%). (2) Synthesis of compound (2)
  • Synthetic intermediate (D) 8. Dissolve lg (25 mmol) in 50 ral toluene and 50 ml of ether, add 21 ml of normal butyllithium hexane solution (1.6 M) (32 Mol) at -40 ° C under argon atmosphere, and add -40 The mixture was stirred at 0 ° C to 0 ° C for 1 hour. Next, the reaction solution was cooled to -70 ° C, a solution obtained by diluting 17 ml (74%) of triisopropyl borate in 25 ml of ether was added dropwise, and the mixture was stirred at -70 ° C for 1 hour, and then cooled to room temperature. The mixture was heated and stirred for 6 hours.
  • the obtained crystals were confirmed to be the target compound by 90 MHz-NMR and FD-MS.
  • the measurement results of FD-MS are shown below.
  • Synthetic intermediate (F) 10.0 g (40 mraol), 0.90 g (4.0 mmol) of palladium acetate, and 5.9 g (56 iranol) of sodium carbonate were suspended in 80 ml of N, N-dimethylformamide, and the suspension was stirred under an argon atmosphere. Reflux with heating for hours. Cool the reaction solution to room temperature, add ethyl acetate and water. Then, after separating into two layers, the mixture was washed with water and saturated saline in this order, and dried with anhydrous sodium sulfate. After evaporating the organic solvent under reduced pressure, the crystals recrystallized from toluene were separated by filtration and washed with toluene to obtain 4.4 g of a synthetic intermediate (G) (yield 66%).
  • the obtained crystal was confirmed to be the target compound by 90 MHz ' ⁇ -NMR and FD-MS.
  • the results of FD-MS measurement are shown below.
  • Compound (72) was prepared in the same manner as in (3) of Synthesis Example 1 except that synthetic intermediate (I) was used instead of synthetic intermediate (B) to obtain 1.8 g of crystals (yield). Rate 46%).
  • the obtained crystals were confirmed to be the target compound by 90 MHz 'H-NMR and FD-MS.
  • the results of FD-MS measurement are shown below.
  • Synthesis intermediate (J) synthesized in the same manner as in Synthesis Examples (1) and (2) except that 3,5-dibromobenzaldehyde was used in place of 4-bromobenzaldehyde in (1) of Synthesis Example 1 above.
  • 2.5 g (5 mmol) 2.5 g (5 mmol), ⁇ -carboline 1.0 g (6 mmol), tris (dibenzylideneacetone) dipalladium 0.18 g (0.2 country ol), 2-dicyclohexyl phosphinol 2,-(N, N-dimethylamino) biphenyl 0.23 g (0.6imnol), sodium tert-butoxide LOg (llmmol) in 15 ml of toluene Under an atmosphere, the mixture was heated under reflux for 20 hours.
  • the reaction solution was cooled to room temperature, methylene chloride and water were added, and the mixture was separated into two layers, washed with water and dried over anhydrous sodium sulfate. After the organic solvent was distilled off under reduced pressure, the distillation residue was suspended in 15 ml of toluene, and 0.18 g (0.2 mmol) of tris (dibenzylidene aceton) dipalladium, 2-dicyclohexylphosphino 2 ′-(N, N —Dimethylamino) biphenyl (0.23 g, 0.6 mmol) and sodium tert-butoxide (1.0 g, ll-ol) were added, and the mixture was heated to reflux under an argon atmosphere for 20 hours.
  • the reaction solution was cooled to room temperature, methylene chloride and water were added, and the mixture was separated into two layers, washed with water, and dried over anhydrous sodium sulfate. After evaporating the organic solvent under reduced pressure, the residue was purified by silica gel column chromatography to obtain crystal L7g (yield 53%).
  • the obtained crystals were confirmed to be the target compound by 90 MHz 'H-NMR and FD-MS.
  • the results of FD-MS measurement are shown below.
  • Example 1 (manufacture of organic EL device)
  • a 25 mm ⁇ 75 mm ⁇ 0.7 mm thick glass substrate with an ITO transparent electrode (manufactured by Geomatic) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then UV ozone cleaning for 30 minutes.
  • the glass substrate with the transparent electrode after cleaning is mounted on a substrate holder of a vacuum evaporation apparatus.
  • the following copper having a film thickness of 10 nm is coated on the surface where the transparent electrode is formed so as to cover the transparent electrode.
  • a phthalocyanine film hereinafter abbreviated as “CuPc film” was formed. This CuPc film functions as a hole injection layer.
  • a-NPD film 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl film (hereinafter abbreviated as “a-NPD film”) having a thickness of 3 Onm is formed on this CuPc film. did.
  • This ⁇ -NPD film functions as a hole transport layer.
  • the compound (1) having a thickness of 30 nm was deposited as a host material on the ⁇ -NPD film to form a light emitting layer.
  • the following tris (2-phenylpyridine) Ir hereinafter abbreviated as “I r (ppy) 3 ”) was added as a phosphorescent Ir metal complex dopant.
  • the concentration of I r (ppy) 3 in the light emitting layer was 5 wt 0/0.
  • This membrane Functions as a light emitting layer.
  • the following (1, ⁇ ⁇ -bisphenyl) -14-olato) bis (2-methyl-8-quino.linoleate) aluminum (hereinafter abbreviated as “BA1q film”) with a thickness of 10 nm ) was deposited.
  • BA1q film functions as a hole barrier layer.
  • This A 1 Q film functions as an electron injection layer.
  • LiF which is an alkali metal halide
  • aluminum was deposited to a thickness of 150 nm.
  • This A 1 / L i F acts as a cathode.
  • Table 1 shows the results obtained by measuring the triplet energy and singlet energy of the host material used in the light emitting layer by the above-mentioned measuring methods (1) and (2).
  • This device was subjected to a conduction test to find that the voltage was 5.2 V and the current density was 0.
  • Example 1 An organic EL device was prepared in the same manner as in Example 1 except that the compounds shown in Table 1 were used instead of the compound (1). Similarly, triplet energy and singlet energy, voltage, and current density were similarly measured. Table 1 shows the results of measuring the luminance, luminous efficiency, and chromaticity. Comparative Example 1
  • An organic EL device was prepared in the same manner as in Example 1 except that the following compound '(BCz) was used instead of the compound (1), and a triplet energy, a singlet energy, a voltage Table 1 shows the results of measuring the current density, luminance, luminous efficiency, and chromaticity.
  • Example 1 was repeated in the same manner as in Example 1 except that the following compound (A-10) described in U.S. Patent Publication No. 2002-283329 was used in place of compound (1).
  • An EL device was manufactured, and the characteristics were evaluated in the same manner as in Example 1. Table 1 shows the results.
  • Emission color Material (eV) (eV) (V) (mA / cm 2 ) (cd / m 2 ) (cd / A) (x, y)
  • Example 1 (1) 2.8 3.4 5.2 0.26 99 38.6 (0.32,0.62) Green Example 2 (61) 2.6 3.3 5.5 0.24 102 42.8 (0.32,0.61) Green Example 3 (68) 2.7 3.5 5.6 0.27 100 37.2 (0.32 , 0.61) Green Comparative Example 1 (BCz) 2.8 3.6 5.4 0.31 101 32.6 (0.32,0.61) Green Comparative Example 2 (A-10) 3.1 3.7 5.9 0.32 100 31.8 (0.32,0.61) Green As shown in Table 1, Compared with the conventionally known compounds (BCz, A-10) of Comparative Examples 1 and 1, the organic EL device using the material for an organic EL device of the present invention can provide highly efficient green light emission. Further, since the material for an organic EL device of the present invention has a wide energy gap, light-emitting molecules having a wide energy gap can be mixed into a light-emitting layer to emit light.
  • a 5 mm ⁇ 75 mm ⁇ 0.7 mm thick glass substrate with an ITO transparent electrode (manufactured by Geomatic Co., Ltd.) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes.
  • the washed glass substrate with a transparent electrode is mounted on a substrate holder of a vacuum evaporation apparatus.
  • the transparent electrode is formed on the surface on the side where the transparent electrode is formed so as to cover the transparent electrode.
  • This CuPc film functions as a hole injection layer.
  • the following 3 nm thick film is formed on the CuPc film.
  • TPAC film A 1,1,1-bis [4-N, N-di (paratolyl) aminophenyl] cyclohexane film (hereinafter abbreviated as “TPAC film”) was formed.
  • This TPAC membrane functions as a hole transport layer.
  • the compound (1) having a thickness of 3 O nm was deposited on the TPAC film to form a light emitting layer.
  • FI rpic (4,6-difluorophenyl) -pyridinato N, C 2 '] picolinate
  • Table 1 shows the results obtained by measuring the triplet energy and singlet energy of the host material used in the light emitting layer by the above-mentioned measuring methods (1) and (2).
  • An organic EL device was prepared in the same manner as in Example 4 except that the compound shown in Table 2 was used instead of the compound (1), and the triplet energy and singlet energy, voltage, and current were similarly measured.
  • Table 2 shows the measurement results of density, luminance, luminous efficiency, and chromaticity. Comparative Example 3
  • An organic EL device was prepared in the same manner as in Example 4 except that the above compound (BCz) was used instead of the compound (1), and a triplet energy and a singlet energy were similarly produced.
  • Table 2 shows the measurement results of voltage, current density, luminance, luminous efficiency, and chromaticity. Comparative Example 4
  • Comparative Example 3 the compound ( ⁇ -NPD) was used in place of the compound (TPAC) in the hole transport layer, and the compound (BA1) was used in place of the compound (Alq) in the electron injection layer.
  • An organic EL device was fabricated in the same manner except that q) was used, and the triplet energy and singlet energy, voltage, current density, luminance, luminous efficiency, and chromaticity were measured in the same manner as shown in Table 2. Was.
  • the organic EL device using the material for an organic EL device of the present invention was driven at a lower voltage and higher in efficiency than the conventionally known compound (BCz) of Comparative Examples 3 and 4. Blue light emission is obtained. Further, since the material for an organic EL device of the present invention has a wide energy gap, light-emitting molecules having a wide energy gap can be mixed into the light-emitting layer to emit light. Industrial applicability
  • the use of a material for an organic EL device comprising the compound represented by the general formula (1) of the present invention makes it possible to utilize luminescent light, achieve low voltage, and achieve luminous efficiency.
  • a high organic electroluminescent device can be obtained. Therefore, the organic electroluminescent device of the present invention is extremely useful as a light source for various electronic devices.

Abstract

An organic electroluminescent (EL) device material composed of a compound having a specific nitrogen-containing fused ring structure is disclosed. An organic EL device wherein one or more organic thin-film layers are interposed between a cathode and an anode and at least one of the organic thin-film layers contains the organic EL device material is also disclosed. The organic EL device material enables to form a long-life organic EL device which utilizes phosphorescent emission and has a high luminous efficiency. The organic EL device is fabricated using this organic EL device material.

Description

有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミ ネッセンス素子 技術分野 TECHNICAL FIELD The present invention relates to a material for an organic electroluminescence device and an organic electroluminescence device using the same.
本発明は、 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機ェ レクトロルミネッセンス素子 (有機明 EL素子) に関し、 特に、 燐光性の発光を利 用し、 発光効率が高い有機 E L素子用材田料及び有機 E L素子に関するものである  The present invention relates to a material for an organic electroluminescence device and an organic electroluminescence device (organic bright EL device) using the same. In particular, the invention relates to a material for an organic EL device which utilizes phosphorescent light emission and has a high luminous efficiency. It is related to organic EL devices
^冃景. 技術 ^ 冃 景. Technology
有機 EL素子は、 電界を印加することより、 陽極より注入された正孔と陰極よ り注入された電子の再結合エネルギーにより蛍光性物質が発光する原理を利用し た自発光素子である。 イーストマン 'コダック社の C. W. Tangらによる積 層型素子による低電圧駆動有機 EL素子の報告 (C.W. Tang, S.A. Vanslyke, ァ プライドフィジックスレターズ(Applied Physics Letters), 5 1巻、 9 1 3頁、 1 9 8 7年等) がなされて以来、 有機材料を構成材料とする有機 EL素子に関す る研究が盛んに行われている。 Tangらは、 トリス (8—ヒドロキシキノリノ ールアルミニウム) を発光層に、 トリフヱニルジァミン誘導体を正孔輸送層に用 いている。 積層構造の利点としては、 発光層への正孔の注入効率を高めること、 陰極より注入された電子をブロックして再結合により生成する励起子の生成効率 を高めること、 発光層内で生成した励起子を閉じ込めること等が挙げられる。 こ の例のように有機 EL素子の素子構造としては、 正孔輸送 (注入)層、 電子輸送 発光層の 2層型、 又は正孔輸送 (注入) 層、 発光層、 電子輸送 (注入) 層の 3層 型等がよく知られている。 こうした積層型構造素子では注入された正孔と電子の 再結合効率を高めるため、 素子構造や形成方法の工夫がなされている。 Organic EL devices are self-luminous devices that use the principle that a fluorescent substance emits light by the recombination energy of holes injected from the anode and electrons injected from the cathode when an electric field is applied. Eastman Kodak's CW Tang et al. Report on low-voltage driven organic EL devices using stacked devices (CW Tang, SA Vanslyke, Applied Physics Letters, 51, 913, 1). 1987), organic EL devices using organic materials as constituent materials have been actively researched. Tang and colleagues use tris (8-hydroxyquinolinol aluminum) for the light-emitting layer and a triflenyldiamine derivative for the hole transport layer. The advantages of the stacked structure include: increasing the efficiency of hole injection into the light-emitting layer; increasing the efficiency of exciton generation by blocking electrons injected from the cathode and recombining; Examples include confining excitons. As shown in this example, the element structure of the organic EL element includes a hole transport (injection) layer, a two-layer electron transport / emission layer, or a hole transport (injection) layer, an emission layer, and an electron transport (injection) layer. The three-layer type is well known. In such a stacked structure element, injected holes and electrons In order to increase the recombination efficiency, the device structure and the forming method have been devised.
有機 E L素子の発光材料としてはトリス (8—キノリノラート) アルミニウム 錯体等のキレート錯体、 クマリン誘導体、 テトラフヱニルブタジエン誘導体、 ビ ススチリルァリ一レン誘導体、 ォキサジァゾール誘導体等の発光材料が知られて おり、 それらからは青色から赤色までの可視領域の発光が得られることが報告さ れており、 カラ一表示素子の実現が期待されている (例えば、 特開平 8— 2 3 9 6 5 5号公報、 特開平 7— 1 3 8 5 6 1号公報、 特開平 3— 2 0 0 2 8 9号公報 また、 近年、 有機 E L素子の発光層に、 発光材料の他に有機隣光材料を利用す ることも提案されている (例えば、 D. F. O' Brien and M. A. Baldo et al " Improve d energy transferin electrophosphorescent devices" Appl ied Phys ics lette rs Vol. 74 No. 3, pp442-444, January 18, 1999、 M. A. Baldo et al "Very high - eff iciencygreen organic 1 ight - emi tting devices based on electrophospho rescence" Appl ied Physics letters Vol. 75 No. 1, pp4 - 6, July 5, 1999参照) このように有機 E L素子の発光層において、 有機隣光材料の励起状態の 1重項 状態と 3重項状態とを利用することにより、 高い発光効率が達成されている。 有 機 E L素子内で電子と正孔が再結合する際にはスピン多重度の違いから 1重項励 起子と 3重項励起子とが 3 : 1の割合で生成すると考えられているので、 隣光性 の発光材料を用いれば蛍光のみを使った素子の 3〜 4倍の発光効率の達成が考え られる。  As luminescent materials for organic EL devices, luminescent materials such as chelate complexes such as tris (8-quinolinolato) aluminum complex, coumarin derivatives, tetraphenylbutadiene derivatives, bis (styrylaryl) ylene derivatives, and oxaziazole derivatives are known. Reports that light in the visible region from blue to red can be obtained, and the realization of a color display device is expected (for example, see JP-A-8-239655, In addition, in recent years, organic light emitting materials other than light emitting materials have been used for light emitting layers of organic EL elements in organic EL devices. (Eg, DF O 'Brien and MA Baldo et al "Improved energy transfer in electrophosphorescent devices" Applied Physics lette rs Vol. 74 No. 3, pp442-444, January 18, 1999, MA Baldo et al "Very high-ef f iciencygreen organic 1 ight-emitting devices based on electrophosphorescence "Applied Physics letters Vol. 75 No. 1, pp4-6, July 5, 1999) High luminous efficiency has been achieved by using the singlet state and triplet state of the excited state of the organic EL element. Due to the difference, singlet excitons and triplet excitons are considered to be generated in a ratio of 3: 1. Therefore, using an adjacent light-emitting material is 3 to 4 times that of a device using only fluorescence. Achieving luminous efficiency is considered.
このような隣光性の発光を利用した有機 E L素子は研究途上であり、 高発光効 率を有し、 長寿命な有機 E L素子についても研究されている。 その 1つとして、 例えば、 特開 2 0 0 2— 1 0 0 4 7 6号公報には、 発光層に燐光発光性化合物を 含有し、 外部量子効率が 1 0 %の水色発光素子が開示されている。 しかしながら 、 特開 2 0 0 2— 1 0 0 4 7 6号公報では、 その素子の発光効率や輝度等まで言 及されておらず、 実用性能を有しているかどうかは不明であり、 実用レベルの発 光効率や寿命を有する隣光性の発光を利用した有機 E L素子が求められていた。 発明の開示 An organic EL device utilizing such adjacent light emission is under study, and a long-life organic EL device having high luminous efficiency is also being studied. As one of them, for example, Japanese Patent Application Laid-Open No. 2002-010476 discloses a light blue light emitting device in which a light emitting layer contains a phosphorescent compound and the external quantum efficiency is 10%. ing. However, Japanese Patent Application Laid-Open No. 2002-100476 describes the luminous efficiency and luminance of the device. It is not known whether or not it has practical performance, and there has been a demand for an organic EL device using neighboring light emission having a practical level of luminous efficiency and lifetime. Disclosure of the invention
本発明は、前記の課題を解決するためになされたもので、 燐光性の発光を利用 し、 発光効率が高い有機 E L素子用材料及びそれを用いた有機 E L素子を提供す ることを目的とする。  The present invention has been made in order to solve the above-mentioned problems, and has an object to provide a material for an organic EL device having high luminous efficiency using phosphorescent light emission and an organic EL device using the same. I do.
本発明者らは、 前記課題を解決するために鋭意検討した結果、 特定構造の含窒 素縮合環構造を有する化合物を有機 E L素子用材料として用いることにより、 燐 光性の発光を利用し、 発光効率が高い有機 E L素子が得られることを見出し本発 明を解決するに至った。  The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by using a compound having a specific structure of a nitrogen-containing fused ring structure as a material for an organic EL device, utilizing phosphorescent light emission, The inventors have found that an organic EL device having high luminous efficiency can be obtained, and have solved the present invention.
すなわち、 本発明は、 下記一般式 (1) で表される化合物からなる有機エレク トロルミネッセンス素子用材料を提供するものである。  That is, the present invention provides a material for an organic electroluminescence device comprising a compound represented by the following general formula (1).
Figure imgf000004_0001
Figure imgf000004_0001
(式中、 X, 〜Xa は、 それぞれ炭素原子又は窒素原子を表し、 少なくとも 1つ は窒素原子である。 X, 〜χ8 のいずれかが炭素原子である場合、 その炭素原子 に結合している R, 〜R8 は、 それぞれ置換基を表す。 その場合、 隣り合った R , 〜R8 は、 互いに糸吉合して環を形成してもよい。 X, 〜X8 のいずれかかが窒 素原子である場合、 その窒素原子に結合している R, 〜R8 は、 それぞれ非共有 電子対を表す。 R9 は置換基を表す。 ) (Wherein, X, to X a each represent a carbon atom or a nitrogen atom, at least one is a nitrogen atom. If X, either ~Kai 8 is a carbon atom, bonded to carbon atoms and are R, to R 8 represents a substituent. in this case, R, to R 8 in which adjacent is either Itokichi combined and may form a ring. X, to X 8 each other When R is a nitrogen atom, R and -R 8 bonded to the nitrogen atom are not shared Represents an electron pair. R 9 represents a substituent. )
また、 本発明は、 陰極と陽極間に一層又は複数層からなる有機薄膜層が挟持さ れている有機 EL素子において、 該有機薄膜層の少なくとも 1層が、 前記有機 E L素子用材料を含有する有機 E L素子を提供するものである。 前期有機薄膜層の うち、 発光層、 電子輸送層及び/又は電子注入層、 もしくは正孔輸送層及び/又 は正孔注入層が前記有機 E L素子用材料を含有しているとよい。 発明を実施するための最良の形態  Further, the present invention provides an organic EL device in which one or more organic thin film layers are sandwiched between a cathode and an anode, wherein at least one of the organic thin film layers contains the organic EL device material. It is intended to provide an organic EL device. Of the organic thin film layers, the light emitting layer, the electron transport layer and / or the electron injection layer, or the hole transport layer and / or the hole injection layer preferably contain the organic EL element material. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の有機 EL素子用材料は、 下記一般式 (1) で表される化合物からなる  The material for an organic EL device of the present invention comprises a compound represented by the following general formula (1).
Figure imgf000005_0001
Figure imgf000005_0001
X, 〜X8 は、 それぞれ炭素原子又は窒素原子を表し、 少なくとも 1つは窒素 原子である。 X, 〜χ8 のいずれかが炭素原子である場合、 その炭素原子に結合 している 〜R8 は、 それぞれ置換基を表す。 その場合、 隣り合った R, 〜R 8 は、 互いに結合して環を形成してもよい。 X, 〜X8 のいずれかかが窒素原子 である場合、 その窒素原子に結合している R, 〜R8 は、 それぞれ非共有電子対 を表す。 R9 は置換基を表す。 X, to X 8 each represents a carbon atom or a nitrogen atom, at least one is a nitrogen atom. If X, either ~Kai 8 is a carbon atom, to R 8 are bonded to the carbon atom, represent a substituent. In this case, adjacent R, to R 8 may be bonded to each other to form a ring. When any of X and X 8 is a nitrogen atom, R and R 8 bonded to the nitrogen atom respectively represent a lone pair. R 9 represents a substituent.
R, 〜R3 で表される置換基は、 それぞれ、 一L又は一 L一 Yで表すことがで き、 Lは、 X, 〜X8 (R, 〜R9 の場合) のいずれか、 又は N (R9 の場合) に直接結合する。 The substituents represented by R, to R 3 can be represented by 1 L or 1 L to Y, respectively, and L is any of X, to X 8 (in the case of R, to R 9 ), Or N (for R 9 ) Directly.
Lは、 水素原子、 置換もしくは無置換の炭素数 6〜 4 0のァリール基、 置換も しくは無置換の炭素数 2〜 4 0の複素環基、 置換もしくは無置換の炭素数 1〜 1 0の直鎖又は分岐のアルキル基、 置換もしくは無置換の炭素数 6〜 4 0のシクロ アルキル基、 置換もしくは無置換の炭素数 2〜 4 0のァミノ基、 置換もしくは無 置換の炭素数 1〜4 0の直鎮又は分岐のアルコキシ基、 ハロゲン原子、 ニトロ基 、 又は置換もしくは無置換の炭素数 6〜 4 0のァリーレン基、 置換もしくは無置 換の炭素数 2〜 4 0の 2価の複素環基、 置換もしくは無置換の炭素数 1〜 2 0の 直鎖又は分岐のアルキレン基、 置換もしくは無置換の炭素数 6〜4 0のシクロア ルキレン基である。  L is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, a substituted or unsubstituted heterocyclic group having 2 to 40 carbon atoms, a substituted or unsubstituted carbon atom having 1 to 10 carbon atoms. Linear or branched alkyl group, substituted or unsubstituted cycloalkyl group having 6 to 40 carbon atoms, substituted or unsubstituted amino group having 2 to 40 carbon atoms, substituted or unsubstituted carbon number of 1 to 4 0 straight-chain or branched alkoxy group, halogen atom, nitro group, or substituted or unsubstituted arylene group having 6 to 40 carbon atoms, substituted or unsubstituted divalent heterocyclic ring having 2 to 40 carbon atoms A substituted or unsubstituted linear or branched alkylene group having 1 to 20 carbon atoms; and a substituted or unsubstituted cycloalkylene group having 6 to 40 carbon atoms.
Yは、 水素原子、 置換もしくは無置換の炭素数 6〜 4 0のァリール基、 置換も しくは無置換の炭素数 2 ·〜 4 0の複素環基、 置換もしくは無置換の炭素数 1〜 1 0の直鎖又は分岐のアルキル基、 置換もしくは無置換の炭素数 6〜4 0のシクロ アルキル基、 置換もしくは無置換の炭素数 2〜4 0のァミノ基、 置換もしくは無 置換の炭素数 1〜4 0の直鎖又は分岐のアルコキシ基、 ハロゲン原子又はニトロ 基である。  Y is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, a substituted or unsubstituted heterocyclic group having 2 to 40 carbon atoms, a substituted or unsubstituted carbon atom having 1 to 1 0 straight-chain or branched alkyl group, substituted or unsubstituted cycloalkyl group having 6 to 40 carbon atoms, substituted or unsubstituted amino group having 2 to 40 carbon atoms, substituted or unsubstituted carbon number of 1 to 40 40 straight-chain or branched alkoxy groups, halogen atoms or nitro groups.
前記 Lのァリール基の例としては、 フエニル基、 1 一ナフチル基、 2—ナフチ ル基、 1 一アントリル基、 2—アン卜リル基、 9一アントリル基、 1—フエナン トリル基、 2—フエナントリル基、 3—フヱナントリル基、 4ーフヱナントリル 基、 9—フエナントリル基、 1—ナフ夕セニル基、 2—ナフタセニル基、 9—ナ フタセニル基、 1ーピレニル基、 2—ピレニル基、 4—ピレニル基、 2—ビフエ 二ルイル基、 3—ビフヱ二ルイル基、 4—ビフヱ二ルイル基、 p—ターフェニル —4—ィル基、 p—夕一フヱニルー 3—ィル基、 p—夕ーフヱニル一 2—ィル基 、 m—タ一フエ二ルー 4—ィル基、 m—夕一フヱニルー 3—ィル基、 m—ターフ ェニル— 2—ィル基、 0—トリル基、 m—トリル基、 p—トリル基、 p— t—ブ チルフエニル基、 p— ( 2—フヱニルプロピル) フヱニル基、 3—メチルー 2— ナフチル基、 4—メチル一 1 —ナフチル基、 4一メチル— 1 一アントリル基、 4 , ーメチルビフエ二ルイル基、 4 " 一 t—ブチルー p—ターフヱニルー 4ーィル 基、 フルォレニル基、 パ一フルォロアリール基等が挙げられる。 Examples of the aryl group of L include phenyl, 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, and 2-phenanthryl. Group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthenyl senyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 2- Biphenylyl, 3-biphenylyl, 4-biphenylyl, p-terphenyl-4-yl, p-nitrophenyl-3-yl, p-phenyl-2-yl Group, m-taphenyl-2-yl group, m-vinyl group 3-yl, m-terphenyl-2-yl group, 0-tolyl group, m-tolyl group, p-tolyl Group, p-t-butylphenyl group, p- (2-phenylpropyl Le) phenyl group, 3-methyl-2- Naphthyl group, 4-methyl-11-naphthyl group, 4-methyl-1-anthryl group, 4-methylbiphenylyl group, 4 "-t-butyl-p-terphenyl-4-yl group, fluorenyl group, perfluoroaryl group No.
前記 Lの複素環基の例としては、 ピロ一ル、 ピリジン、 ピリミジン、 ピラジン 、 アジリジン、 ァザィンドリジン、 ィンドリジン、 ィミダゾール、 ィンドール、 イソインドール、 ィンダゾ一ル、 プリン、 プテリジン、 j3—カルボリン等が挙げ られる。  Examples of the heterocyclic group represented by L include pyrrole, pyridine, pyrimidine, pyrazine, aziridine, azazidine, indlizine, imidazole, indole, isoindole, indazole, purine, pteridine, j3-carboline and the like.
前記 Lのアルキル基の例としては、 メチル基、 トリフルォロメチル基、 ェチル 基、 プロピル基、 イソプロピル基、 n—ブチル基、 s—ブチル基、 イソブチル基 、 t—ブチル基、 n—ペンチル基、 n—へキシル基、 n—ヘプチル基、 n—ォク チル基、 ヒドロキシメチル基、 1ーヒドロキシェチル基、 2—ヒドロキシェチル 基、 2—ヒドロキシイソブチル基、 1 , 2—ジヒドロキシェチル基、 1 , 3—ジ ヒドロキシイソプロピル基、 2 , 3—ジヒドロキシ一 t—ブチル基、 1, 2 , 3 一トリヒドロキシプロピル基、 クロロメチル基、 1 一クロ口ェチル基、 2—クロ 口ェチル基、 2 _クロ口イソブチル基、 1, 2—ジクロロェチル基、 1 , 3—ジ クロ口イソプロピル基、 2 , 3—ジクロ口一 t一ブチル基、 1 , 2 , 3—卜リク ロロプロピル基、 ブロモメチル基、 1 _ブロモェチル基、 2—ブロモェチル基、 2—ブロモイソブチル基、 1 , 2—ジブロモェチル基、 1 , 3—ジブ口モイソプ 口ピル基、 2 , 3—ジブ口モー t—ブチル基、 1 , 2 , 3—トリブロモプロピル 基、 ョードメチル基、 1—ョードエチル基、 2—ョ一ドエチル基、 2—ョ一ドィ ソブチル基、 1, 2—ジョ一ドエチル基、 1, 3—ジョ一ドイソプロピル基、 2 , 3—ジョ一ド一 t—ブチル基、 1, 2 , 3—トリョ一ドプロピル基、 アミノメ チル基、 1 —アミノエチル基、 . 2—アミノエチル基、 2—ァミノイソブチル基、 1, 2—ジアミノエチル基、 1, 3—ジァミノイソプロピル基、 2 , 3—ジアミ ノー t一ブチル基、 1 , 2 , 3—トリアミノプロピル基、 シァノメチル基、 1— シァノエチル基、 2—シァノエチル基、 2—シァノイソブチル基、 1, 2—ジシ ァノエチル基、 1, 3—ジシァノイソプロピル基、 2, 3—ジシァノ一 t—プチ ル基、 1 , 2 , 3—トリシアノプロピル基、 ニトロメチル基、 1—ニトロェチル 基、 2—ニトロェチル基、 2 _ニトロイソブチル基、 1, 2—ジニトロェチル基 、 1, 3—ジニトロイソプロピル基、 2, 3—ジニトロ— t _ブチル基、 1, I , 3—トリニトロプロピル基等が挙げられる。 Examples of the alkyl group of L include a methyl group, a trifluoromethyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a t-butyl group, and an n-pentyl group , N-hexyl group, n-heptyl group, n-octyl group, hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 2-hydroxyisobutyl group, 1,2-dihydroxyethyl Group, 1,3-dihydroxyisopropyl group, 2,3-dihydroxy-t-butyl group, 1,2,3-trihydroxypropyl group, chloromethyl group, 1-chloroethyl group, 2-chloroethyl group 1,2-dichloroethyl, 1,3-dichloroethyl, 1,3-dichloro-1,2-butyl, 1,2,3-trichloropropyl, bromomethyl , 1_bu Lomoethyl group, 2-bromoethyl group, 2-bromoisobutyl group, 1,2-dibromoethyl group, 1,3-dibutyl moisop pill group, 2,3-dibutyl mo-butyl group, 1,2,3- Tribromopropyl group, lodomethyl group, 1-lodoethyl group, 2-lodoethyl group, 2-lodoisobutyl group, 1,2-jodoethyl group, 1,3-jodoethyl group, 2, 3-jodo-t-butyl group, 1,2,3-tolypropylpropyl group, aminomethyl group, 1-aminoethyl group, 2-aminoethyl group, 2-aminoisobutyl group, 1,2- Diaminoethyl group, 1,3-diaminoisopropyl group, 2,3-diaminot-butyl group, 1,2,3-triaminopropyl group, cyanomethyl group, 1-cyanoethyl group, 2-cyanoethyl group, 2 —Cyanisobutyl group, 1,2-disi Anoethyl, 1,3-dicyanoisopropyl, 2,3-dicyano-t-butyl, 1,2,3-tricyanopropyl, nitromethyl, 1-nitroethyl, 2-nitroethyl, 2 _Nitroisobutyl group, 1,2-dinitroethyl group, 1,3-dinitroisopropyl group, 2,3-dinitro-t_butyl group, 1, I, 3-trinitropropyl group and the like.
また、 置換ァリール基として、 例えば、 炭素数 6のフヱニル基がフヱニル基、 メチル基の置換基で置換されていた場合、 以下のような構造が挙げられる。  Further, as the substituted aryl group, for example, when a phenyl group having 6 carbon atoms is substituted with a substituent of a phenyl group or a methyl group, the following structures are exemplified.
Figure imgf000008_0001
前記 Lのシクロアルキル基の例としては、 シクロペンチル基、 シクロへキシル 基、 4—メチルシクロへキシル、 ァダマンチル基、 ノルボルニル基等が挙げられ る。
Figure imgf000008_0001
Examples of the cycloalkyl group of L include a cyclopentyl group, a cyclohexyl group, a 4-methylcyclohexyl, an adamantyl group, a norbornyl group, and the like.
前記 Lのァミノ基の例としては、 ジメチルァミノ基、 メチルェチルァミノ基、 ジフヱニルァミノ基、 ジイソプロピルアミノ基、 ビス一ジフヱニルァミノ基、 力 ルバゾィル基、 ジェチルァミノ基、 ジトリルァミノ基、 ィンドリル基、 ピぺリジ ニル基、 ピロリジニル基等が挙げられる。  Examples of the amino group represented by L include a dimethylamino group, a methylethylamino group, a diphenylamino group, a diisopropylamino group, a bis-diphenylamino group, a carbazolyl group, a getylamino group, a ditolylamino group, an indolyl group, and a pyridinyl group. And a pyrrolidinyl group.
前記 Lのアルコキシ基は、 一 O Y 1 で表される基であり、 Y 1 の例としては、 メチル基、 トリフルォロメチル基、 ェチル基、 プロピル基、 イソプロピル基、 n 一ブチル基、 s—ブチル基、 イソブチル基、 t—ブチル基、 n—ペンチル基、 n 一へキシル基、 n—ヘプチル基、 n—ォクチル基、 ヒドロキシメチル基、 1ーヒ ドロキシェチル基、 2—ヒドロキシェチル基、 2—ヒドロキシイソブチル基、 1 , 2—ジヒドロキシェチル基、 1 , 3—ジヒドロキシイソプロピル基、 2, 3 - ジヒドロキシ一 t—ブチル基、 1, 2 , 3—トリヒドロキシプロピル基、 クロ口 メチル基、 1—クロ口ェチル基、 2—クロ口ェチル基、 2—クロ口イソブチル基 、 1, 2—ジクロロェチル基、 1, 3—ジクロロイソプロピル基、 2, 3—ジク ロロ—t—ブチル基、 1, 2, 3—トリクロ口プロピル基、 ブロモメチル基、 1 —ブロモェチル基、 2—ブロ乇ェチル基、 2—ブロモイソブチル基、 1 , 2—ジ ブロモェチル基、 1 , 3 _ジブロモイソプロピル基、 2, 3—ジブロモ _t—ブ チル基、 1, 2, 3—トリブロモプロピル基、 ョ一ドメチル基、 1—ョードエチ ル基、 2—ョ一ドエチル基、 2—ョードイソブチル基、 1, 2—ジョ一ドエチル 基、 1, 3—ジョードイソプロピル基、 2, 3—ジョ一ド一 t一ブチル基、 1, 2 , 3—トリョードプロピル基、 アミノメチル基、 1—アミノエチル基、 2—ァ ミノェチル基、 2—ァミノイソブチル基、 1, 2—ジアミノエチル基、 1, 3— ジァミノイソプロピル基、 2, 3—ジァミノ一 t一ブチル基、 1, 2, 3—トリ ァミノプロピル基、 シァノメチル基、 1ーシァノエチル基、 2—シァノエチル基 、 2—シァノイソブチル基、 1, 2—ジシァノエチル基、 1 , 3—ジシァノイソ プロピル基、 2, 3—ジシァノー t—ブチル基、 1, 2, 3—トリシアノプロピ ル基、 ニトロメチル基、 1一二トロェチル基、 2—ニトロェチル基、 2—ニトロ イソブチル基、 1, 2—ジニトロェチル基、 1, 3—ジニトロイソプロピル基、 2, 3—ジニト口一 t一ブチル基、 1 , 1, 3—トリニトロプロピル基等が挙げ られる。 Alkoxy groups of the L is a group represented by a OY 1, examples of Y 1 include a methyl group, triflate Ruo Russia methyl group, Echiru group, a propyl group, an isopropyl radical, n one-butyl group, s- Butyl, isobutyl, t-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, hydroxymethyl, 1-hydroxyxethyl, 2-hydroxyethyl, 2 —Hydroxyisobutyl group, 1,2-dihydroxyethyl group, 1,3-dihydroxyisopropyl group, 2,3-dihydroxy-t-butyl group, 1,2,3-trihydroxypropyl group, methyl group, 1, —Chloroethyl group, 2-Chloroethyl group, 2-Chloroisobutyl group 1,1,2-dichloroethyl, 1,3-dichloroisopropyl, 2,3-dichloro-t-butyl, 1,2,3-trichloromethylpropyl, bromomethyl, 1-bromoethyl, 2-bromo Diethyl group, 2-bromoisobutyl group, 1,2-dibromoethyl group, 1,3-dibromoisopropyl group, 2,3-dibromo_t-butyl group, 1,2,3-tribromopropyl group, Methyl, 1-ethyl, 2-ethyl, 2-isobutyl, 1,2-jodoethyl, 1,3-iodoisopropyl, 2,3-jodo-t-butyl , 1,2,3-triodopropyl, aminomethyl, 1-aminoethyl, 2-aminoethyl, 2-aminoisobutyl, 1,2-diaminoethyl, 1,3-dia Minoisopropyl group, 2,3-diamino-t-butyl group, 1 , 2,3-triaminopropyl group, cyanomethyl group, 1-cyanoethyl group, 2-cyanoethyl group, 2-cyanoisobutyl group, 1,2-dicyanoethyl group, 1,3-dicyanoisopropyl group, 2,3-dicyanot- Butyl group, 1,2,3-tricyanopropyl group, nitromethyl group, 1,2-troethyl group, 2-nitroethyl group, 2-nitroisobutyl group, 1,2-dinitroethyl group, 1,3-dinitroisopropyl group, Examples include a 2,3-dinitrate mono-t-butyl group and a 1,1,3-trinitropropyl group.
前記 Lのハロゲン原子の例としては、 フッ素、 塩素、 臭素、 ヨウ素等が挙げら れ 。  Examples of the halogen atom for L include fluorine, chlorine, bromine, iodine and the like.
前記 Lのァリーレン基の例としては、 前記ァリ一ル基の例を 2価基にしたもの が挙げられる。  Examples of the arylene group of L include those obtained by converting the example of the aryl group to a divalent group.
また、 置換ァリール基として、 例えば、 炭素数 6のフヱニレン基がフヱニル基 、 メチル基の置換基で置換されていた場合、 以下のような構造が挙げられる。  Further, as the substituted aryl group, for example, when a phenylene group having 6 carbon atoms is substituted with a substituent of a phenyl group or a methyl group, the following structures are exemplified.
Figure imgf000009_0001
前記 Lの 2価の置換もしくは無置換の炭素数 2〜4 0の複素環基としては、 前 記複素環基の例を 2価の基にしたものが挙げられる。
Figure imgf000009_0001
Examples of the divalent substituted or unsubstituted heterocyclic group having 2 to 40 carbon atoms of L include those obtained by converting the above examples of the heterocyclic group into divalent groups.
前記 Lのアルキレン基としては、 前記アルキル基の例を 2価基にしたものが挙 【ずられる。  Examples of the alkylene group for L include those in which the examples of the alkyl group are divalent groups.
前記 Lのシクロアルキレン基としては、 前記シクロアルキル基の例を 2価基に したものが挙げられる。  Examples of the cycloalkyl group of L include those in which the examples of the cycloalkyl group are divalent groups.
Yの示すァリール基、 複素環基、 アルキル基、 シクロアルキル基、 アミノ基、 アルコキシ基及びハロゲン原子の例としては、 前記 Lで挙げたものと同様のもの が挙げられる。  Examples of the aryl group, the heterocyclic group, the alkyl group, the cycloalkyl group, the amino group, the alkoxy group, and the halogen atom represented by Y include the same as those described above for L.
前記一般式 ( 1 ) で表される化合物において、 X, 〜X8 のうち 1〜 3つが窒 素原子であり、 残りが炭素原子であるものが好ましく、 Χ3 及び/又は Χ6 が窒 素原子であり、 残りが炭素原子であるとさらに好ましい。 In the compound represented by the general formula (1), it is preferable that 1 to 3 of X, to X 8 are nitrogen atoms and the remainder is a carbon atom, and Χ 3 and / or Χ 6 are nitrogen atoms. More preferably, they are atoms, and the remainder are carbon atoms.
また、 前言己 R, 〜R8 の少なくとも 1つが、 一カルボリニル基である、 すな わち、 前記 L及び/又は Yが、 一カルボリニル基であるとさらに好ましい。 前記 X, 〜X8 及び R, 〜R9 で表される置換基の水素原子を置換する基とし ては、 それぞれ、 ハロゲン原子 (フッ素、 塩素、 臭素等) 、 シァノ基、 シリル基 、 アミノ基、 ァリール基、 ァリールォキシ基、 複素環基、 アルキル基、 アルコキ シ基、 ァラルキル基、 又はシクロアルキル基等が挙げられる。 Also, previous remarks himself R, at least one of to R 8, an carbolinyl group, ie, the L and / or Y is further preferably one carbolinyl group. Wherein X, to X 8 and R, is a group that substitutes a hydrogen atom of the substituent represented by to R 9, respectively, a halogen atom (fluorine, chlorine, bromine, etc.), Shiano group, a silyl group, an amino group And an aryl group, an aryloxy group, a heterocyclic group, an alkyl group, an alkoxy group, an aralkyl group, or a cycloalkyl group.
本発明の一般式 ( 1 ) で表される有機 EL素子用材料の具体例を以下に示すが 、 これら例示化合物に限定されるものではない。 Specific examples of the material for an organic EL device represented by the general formula (1) of the present invention are shown below, but it should not be construed that the invention is limited thereto.
Figure imgf000011_0001
L8Sl0/£00ZdT/13d 6I0£ 00Z OAV
Figure imgf000011_0001
L8Sl0 / £ 00ZdT / 13d 6I0 £ 00Z OAV
Figure imgf000012_0001
Figure imgf000012_0001
Figure imgf000012_0002
tL SlO/£OOZd£/∑Jd 6I0£ OOZ OAV
Figure imgf000012_0002
tL SlO / £ OOZd £ / ∑Jd 6I0 £ OOZ OAV
Figure imgf000013_0001
L8SlO/£OOZdT/13d 6ΐοε OOZ OAV
Figure imgf000014_0001
Figure imgf000013_0001
L8SlO / £ OOZdT / 13d 6ΐοε OOZ OAV
Figure imgf000014_0001
Figure imgf000015_0001
Figure imgf000015_0001
Figure imgf000015_0002
Figure imgf000015_0002
tL SlO/£OOZd£/∑Jd 6I0£ 00Ζ OAV tL SlO / £ OOZd £ / ∑Jd 6I0 £ 00Ζ OAV
Figure imgf000016_0001
Figure imgf000016_0001
L8SlO/£OOZdT/13d 6I0£ OOZ OAV L8SlO / £ OOZdT / 13d 6I0 £ OOZ OAV
Figure imgf000017_0001
Figure imgf000017_0001
Figure imgf000017_0002
Figure imgf000017_0002
.8SI0/C00Zdf/X3d 610£S0/1-00Z OAV .8SI0 / C00Zdf / X3d 610 £ S0 / 1-00Z OAV
Figure imgf000018_0001
L8SlO/£OOZdT/13d 6ΐοε OOZ OAV
Figure imgf000018_0001
L8SlO / £ OOZdT / 13d 6ΐοε OOZ OAV
Figure imgf000019_0001
Figure imgf000019_0001
tL SlO/£OOZd£/∑Jd 6I0£ OOZ OAV tL SlO / £ OOZd £ / ∑Jd 6I0 £ OOZ OAV
Figure imgf000020_0001
Figure imgf000020_0001
Figure imgf000020_0002
Figure imgf000020_0002
L8SlO/£OOZdT/13d 6I0£ OOZ OAV 本発明における一般式 ( 1 ) で表される化合物からなる有機 EL素子用材料は 、 3重項のエネルギーギヤップが 2. 5〜3. 3 eVであり、 2. 6〜3. 2 e Vであると好ましい。 L8SlO / £ OOZdT / 13d 6I0 £ OOZ OAV The material for an organic EL device comprising the compound represented by the general formula (1) in the present invention has a triplet energy gap of 2.5 to 3.3 eV, and a triplet energy gap of 2.6 to 3.2 eV. It is preferred that there is.
本発明における一般式 ( 1 ) で表される化合物からなる有機 EL素子用材料は 、 1重項のエネルギーギヤップが 2. 8〜3. 8 eVであり、 2. 9〜3. 6 e Vであると好ましい。  The material for an organic EL device comprising the compound represented by the general formula (1) in the present invention has a singlet energy gap of 2.8 to 3.8 eV, and a singlet energy gap of 2.9 to 3.6 eV. It is preferred that there is.
本発明の有機 E L素子は、 陰極と陽極間に一層又は複数層からなる有機薄膜層 が挟持されている有機 EL素子において、 該有機薄膜層の少なくとも 1層が、 前 記一般式 ( 1 ) の化合物からなる有機 EL素子用材料を含有する。  The organic EL device of the present invention is an organic EL device in which one or more organic thin film layers are sandwiched between a cathode and an anode, wherein at least one of the organic thin film layers is represented by the general formula (1). Contains a material for organic EL devices consisting of compounds.
また、 本発明の有機 EL素子は、 発光層、 電子輸送層及び/又は電子注入層、 もしくは正孔輸送層及び/又は正孔注入層に、 前記一般式 ( 1 )の化合物からな る有機 E L素子用材料を含有すると好ましい。  In addition, the organic EL device of the present invention is an organic EL device comprising the compound of the general formula (1) in a light emitting layer, an electron transport layer and / or an electron injection layer, or a hole transport layer and / or a hole injection layer. It is preferable to contain an element material.
本発明の有機 E L素子は、 前記有機薄膜層が燐光発光性化合物を含有すると好 ましく、 焼光発光性化合物としては 3重項励起又はそれ以上の多重項励起により 発光する金属錯体等が好ましく、 例えば、 以下のような例が挙げられる。  In the organic EL device of the present invention, the organic thin film layer preferably contains a phosphorescent compound. As the phosphorescent compound, a metal complex or the like which emits light by triplet excitation or higher multiplet excitation is preferable. For example, the following examples are given.
(K-1) (K-2) (K-3)  (K-1) (K-2) (K-3)
Figure imgf000021_0001
Figure imgf000021_0003
Figure imgf000021_0001
Figure imgf000021_0003
( -4) ( -5) ( -6) (-4) (-5) (-6)
Figure imgf000021_0002
Figure imgf000021_0002
Figure imgf000022_0001
Figure imgf000022_0001
(9k )  (9k)
in-yi) (ε ι·->ι)
Figure imgf000022_0002
in-yi) (ε ι
Figure imgf000022_0002
( - ) (14- ) (0 !■- !)
Figure imgf000022_0003
(-) (14-) (0! ■-!)
Figure imgf000022_0003
(6"¾)
Figure imgf000022_0004
(6 "¾)
Figure imgf000022_0004
(8-¾) (8-¾)
L8Sl0/£00ZdT/13d 6ΐοε 00Z OAV 本発明の有機 E L素子用材料は、 有機 E L素子のホスト材料であると好ましい 。 このホスト材料とは、 正孔と電子の注入が可能であって、 正孔と電子が輸送さ れ、 再結合して蛍光を発する機能を有するものである。 L8Sl0 / £ 00ZdT / 13d 6ΐοε 00Z OAV The material for an organic EL device of the present invention is preferably a host material for an organic EL device. The host material is capable of injecting holes and electrons, has a function of transporting holes and electrons, and has a function of emitting fluorescence by recombination.
また、 本発明における一般式 ( 1 ) の化合物は、 1重項のエネルギーギャップ が 2 . 8〜3 . 8 e Vと高く、 3重項のエネルギーギャップも 2 . 5〜3 . 3 e Vと高いため、 燐光素子用の有機ホス卜材料としても有用である。  The compound of the general formula (1) according to the present invention has a singlet energy gap as high as 2.8 to 3.8 eV, and a triplet energy gap as 2.5 to 3.3 eV. Since it is high, it is also useful as an organic host material for a phosphorescent device.
ここで、 燐光素子とは、 3重項準位のエネルギー状態から基底 1重項準位の状 態への遷移に基づく発光の強度が他の物質に比べて高い物質、 例えば、 周期律表 7〜 1 1族から選ばれる少なくとも 1つの金属を含む有機金属錯体などの燐光物 質を含む、 いわゆる燐光を利用した有機電界発光素子のことである。  Here, a phosphorescent element is a substance whose emission intensity based on a transition from a triplet energy state to a ground singlet state is higher than that of another substance. It refers to an organic electroluminescent device using so-called phosphorescence, which includes a phosphorescent material such as an organometallic complex containing at least one metal selected from Groups 1 to 11.
有機 E L素子の発光層において、 生成される分子励起子には、 1重項励起子と 3重項励起子とが混合していて、 1重項励起子及び 3重項励起子は、 一般的には 1 : 3の割合で、 3重項励起子の方が多く生成されていると言われている。 また 、 通常の蛍光を使った有機 E L素子では、 発光に寄与する励起子は 1重項励起子 であって、 3重項励起子は非発光性である。 このため、 3重項励起子は最終的に は熱として消費されてしまい、 生成率の低い 1重項励起子から発光が生じている 。 したがって、 有機 E L素子においては、 正孔と電子との再結合によって発生す るエネルギーのうち、 3重項励起子の方へ移動したエネルギーは大きい損失とな つている。  In the light-emitting layer of an organic EL device, the generated molecular excitons are a mixture of singlet excitons and triplet excitons, and singlet excitons and triplet excitons are generally It is said that more triplet excitons are generated in a ratio of 1: 3. In an organic EL device using ordinary fluorescence, excitons that contribute to light emission are singlet excitons, and triplet excitons are non-emissive. As a result, the triplet excitons are eventually consumed as heat, and light is emitted from the singlet excitons with a low generation rate. Therefore, in the organic EL device, of the energy generated by the recombination of holes and electrons, the energy transferred to the triplet exciton is a large loss.
このため、 本発明の化合物を燐光素子に利用することにより、 3重項励起子の エネルギーを発光に使用できるので、 蛍光を使った素子の 3倍の発光効率が得ら れると考えられる。 また、 本発明の化合物は、 燐光素子の発光層に用いると、 該 層に含まれる 7〜 1 1族から選ばれる金属を含有する憐光性有機金属錯体の励起 3重項準位より高いエネルギー状態の励起 3重項準位を有し、 さらに安定な薄膜 形状を与え、 高いガラス転移温度 (T g : 8 0〜 1 6 0 °C ) を有し、 正孔及び/ 又は電子を効率よく輸送することができ、 電気化学的かつ化学的に安定であり、 トラッフ。となったり発光を消光したりする不純物が製造時や使用時に発生しにく いと考えられる。 For this reason, by using the compound of the present invention for a phosphorescent device, the energy of triplet excitons can be used for light emission, so that it is considered that three times the luminous efficiency of the device using fluorescence can be obtained. Further, when the compound of the present invention is used for a light-emitting layer of a phosphorescent element, the compound has an energy higher than the excited triplet level of a photoluminescent organometallic complex containing a metal selected from Groups 7 to 11 contained in the layer. Excited state Has triplet level, provides more stable thin film shape, has high glass transition temperature (Tg: 80-160 ° C), and efficiently holes and / or electrons Can be transported, electrochemically and chemically stable, Trough. It is considered that impurities that cause quenching or quenching of light emission are unlikely to occur during manufacturing or use.
本発明の有機 E L素子は、 前記したように陽極と陰極間に一層もしくは多層の 有機薄膜層を形成した素子である。 一層型の場合、 陽極と陰極との間に発光層を 設けている。 発光層は、 発光材料を含有し、 それに加えて陽極から注入した正孔 、 もしくは陰極から注入した電子を発光材料まで輸送させるために、 正孔注入材 料もしくは電子注入材料を含有してもよい。 また、 発光材料は、 極めて高い蛍光 量子効率、 高い正孔輸送能力及び電子輸送能力を併せ持ち、 均一な薄膜を形成す ることが好ましい。 多層型の有機 E L素子としては、 (陽極/正孔輸送層/発光 層/陰極) 、 (陽極/発光層/電子輸送層/陰極) 、 (陽極/正孔輸送層/発光 層/電子輸送層 陰極) 等の多層構成で積層したものがある。  The organic EL device of the present invention is a device in which one or more organic thin film layers are formed between the anode and the cathode as described above. In the case of a single layer type, a light emitting layer is provided between an anode and a cathode. The light-emitting layer contains a light-emitting material and may further contain a hole-injection material or an electron-injection material for transporting holes injected from an anode or electrons injected from a cathode to the light-emitting material. . Further, it is preferable that the light emitting material has extremely high fluorescence quantum efficiency, high hole transport ability and electron transport ability, and forms a uniform thin film. Examples of the multilayer organic EL device include (anode / hole transport layer / light emitting layer / cathode), (anode / light emitting layer / electron transport layer / cathode), (anode / hole transport layer / light emitting layer / electron transport layer). (Cathode).
発光層には、 必要に応じて、本発明の一般式 ( 1 ) の化合物に加えてさらなる 公知のホスト材料、 発光材料、 ドーピング材料、 正孔輸送材料や電子輸送材料を 使用し、 組み合わせて使用することもできる。 有機 E L素子は、 多層構造にする ことにより、 クェンチングによる輝度や寿命の低下を防ぐことができ、 他のドー ビング材料により、 発光輝度や発光効率を向上させたり、 燐光発光に寄与する他 のドーピング材料と組み合わせて用いることにより、 従来の発光輝度や発光効率 を向上させることができる。  In the light emitting layer, if necessary, in addition to the compound of the general formula (1) of the present invention, further known host materials, light emitting materials, doping materials, hole transporting materials and electron transporting materials may be used and used in combination. You can also. The organic EL device has a multi-layer structure, which can prevent reduction in brightness and life due to quenching.Other doping materials can improve light emission brightness and luminous efficiency, and other doping that contributes to phosphorescence. When used in combination with a material, conventional light emission luminance and light emission efficiency can be improved.
また、 本発明の有機 E L素子における正孔輸送層、 発光層、 電子輸送層は、 そ れぞれ二層以上の層構成により形成されてもよい。 その際、 正孔輸送層の場合、 電極から正孔を注入する層を正孔注入層、 正孔注入層から正孔を受け取り発光層 まで正孔を輸送する層を正孔輸送層と言う。 同様に、 電子輸送層の場合、電極か ら電子を注入する層を電子注入層、 電子輸送層から電子を受け取り発光層まで電 子を輸送する層を電子輸送層と言う。 これらの各層は、 材料のエネルギー準位、 耐熱性、 有機薄膜層もしくは金属電極との密着性等の各要因により選択されて使 用される。 本発明の有機 E L素子は、 電子輸送層ゃ正孔輸送層が、 一般式 ( 1 ) の化合物 からなる本発明の有機 E L素子 材料を含有してもよく、 さらに、 正孔注入層、 電子注入層、 正孔障壁層が本発明の有機 E L素子用材料を含有してもよく、 燐光 発光性化合物と本発明の有機 E L素子用材料とを混合して用いてもよい。 Further, the hole transporting layer, the light emitting layer, and the electron transporting layer in the organic EL device of the present invention may each be formed in a layer configuration of two or more layers. In this case, in the case of a hole transport layer, a layer that injects holes from the electrode is called a hole injection layer, and a layer that receives holes from the hole injection layer and transports holes to the light emitting layer is called a hole transport layer. Similarly, in the case of an electron transport layer, a layer that injects electrons from the electrode is called an electron injection layer, and a layer that receives electrons from the electron transport layer and transports electrons to the light emitting layer is called an electron transport layer. Each of these layers is selected and used depending on factors such as the energy level of the material, heat resistance, and adhesion to the organic thin film layer or metal electrode. In the organic EL device of the present invention, the electron transport layer / the hole transport layer may contain the organic EL device material of the present invention comprising the compound represented by the general formula (1). The layer and the hole blocking layer may contain the material for an organic EL device of the present invention, and the phosphorescent compound and the material for an organic EL device of the present invention may be used as a mixture.
本発明の一般式 ( 1 ) の化合物と共に有機薄膜層に使用できる発光材料又はホ スト材料としては、 アントラセン、 ナフタレン、 フエナントレン、 ピレン、 テト ラセン、 コロネン、 クリセン、 フルォレセィン、 ペリレン、 フタ口ペリレン、 ナ フタ口ペリレン、 ペリノン、 フタ口ペリノン、 ナフタ口ペリノン、 ジフエニルブ 夕ジェン、 テトラフヱニルブタジエン、 クマリン、 ォキサジァゾ一ル、 アルダジ ン、 ビスべンゾキサゾリン、 ビススチリル、 ピラジン、 シクロペンタジェン、 キ ノリン金属錯体、 アミノキノリン金属錯体、 ベンゾキノリン金属錯体、 ィミン、 ジフエ二ルエチレン、 ビニルアントラセン、 ジァミノアントラセン、 ジァミノ力 ルバゾール、 ビラン、 チォビラン、 ポリメチン、 メロシアニン、 イミダゾ一ルキ レート化ォキシノィド化合物、 キナクリ ドン、 ルブレン、 スチルベン系誘導体及 び蛍光色素等が挙げられるが、 これらに限定されるものではない。  Examples of the luminescent material or the host material that can be used in the organic thin film layer together with the compound of the general formula (1) of the present invention include anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, chrysene, fluorescein, perylene, phthalene perylene, and naphthalene. Perylene, lidone perinone, lidone perinone, naphthalene perinone, diphenylbutanediene, tetraphenylbutadiene, coumarin, oxaziazolyl, aldazine, bisbenzoxazoline, bisstyryl, pyrazine, cyclopentagen, quinoline metal complex, Aminoquinoline metal complex, benzoquinoline metal complex, imine, diphenylethylene, vinylanthracene, diaminoanthracene, diaminoforce rubazole, virane, thiovirane, polymethine, merocyanine, imida Examples include, but are not limited to, cheloxylated oxinoide compounds, quinacridone, rubrene, stilbene derivatives, and fluorescent dyes.
正孔注入材料としては、 正孔を輸送する能力を持ち、 陽極からの正孔注入効果 、 発光層又は発光材料に対して優れた正孔注入効果を有し、 発光層で生成した励 起子の電子注入層又は電子注入材料への移動を防止し、 かつ薄膜形成能力の優れ た化合物が好ましい。 具体的には、 フタロシアニン誘導体、 ナフタロシアニン誘 導体、 ポルフィリン誘導体、 ォキサゾール、 ォキサジァゾール、 トリアゾール、 イミダゾール、 イミダゾロン、 イミダゾ一ルチオン、 ピラゾリン、 ピラゾロン、 テトラヒドロイミダゾ一ル、 ォキサゾール、 ォキサジァゾール、 ヒドラゾン、 ァ シルヒドラゾン、 ポリアリールアルカン、 スチルベン、 ブタジエン、 ベンジジン 型トリフヱニルァミン、 スチリルァミン型トリフエニルァミン、 ジァミン型トリ フヱニルァミン等と、 それらの誘導体、 及びボリビニルカルバゾール、 ポリシラ ン、 導電性高分子等の高分子材料が挙げられるが、 これらに限定されるものでは ない。 The hole injecting material has the ability to transport holes, has the effect of injecting holes from the anode, has an excellent hole injecting effect on the light emitting layer or the light emitting material, and has a function of exciters generated in the light emitting layer. A compound that prevents migration to an electron injection layer or an electron injection material and has excellent ability to form a thin film is preferable. Specifically, phthalocyanine derivatives, naphthalocyanine derivatives, porphyrin derivatives, oxazoles, oxaziazoles, triazoles, imidazoles, imidazolones, imidazolylthiones, pyrazolines, pyrazolones, tetrahydroimidazols, oxazoles, oxazirazols, hydrazones, hydrazones. Arylalkane, stilbene, butadiene, benzidine-type triphenylamine, styrylamine-type triphenylamine, diamine-type triphenylamine, and derivatives thereof, and polymer materials such as polyvinylcarbazole, polysilane, and conductive polymer But are not limited to these Absent.
これらの正孔注入材料の中で、 さらに効果的な正孔注入材料は、 芳香族三級ァ ミン誘導体又はフタロシア二ン誘導体である。 芳香族三級ァミン誘導体の具体例 としては、 トリフエニルァミン、 トリ トリルァミン、 トリルジフエニルァミン、 Among these hole injection materials, more effective hole injection materials are aromatic tertiary amine derivatives or phthalocyanine derivatives. Specific examples of the aromatic tertiary amamine derivative include triphenylamine, tritolylamine, tolyldiphenylamine,
N, N, 一ジフエニル一 N, N' ― (3—メチルフエニル) 一1, 一ビフエ ニル _4, 4 ' ージァミン、 N, N, N' , N' — (4—メチルフエニル) 一 1 , 1, 一フエ二ルー 4, 4 ' ージァミン、 N, N, N' , N' — (4ーメチルフ ェニル) — 1, Γ ービフエニル一 4, 4, ージァミン、 N, N' ージフエニル 一 N, N, 一ジナフチル一 1, Γ —ビフエ二ルー 4, 4 ' ージァミン、 N, N , 一 (メチルフヱニル) 一 N, N' 一 (4一 n—ブチルフヱニル) —フヱナント レン一 9 , 10—ジアミン、 N, N—ビス ( 4—ジー 4—トリルアミノフエニル ) —4—フヱニルーシクロへキサン等、 又はこれらの芳香族三級アミン骨格を有 したオリゴマーもしくはポリマーであるが、 これらに限定されるものではない。 フタロシアニン (Pc)誘導体の具体例は、 H2 Pc、 CuPc、 CoPc、 N i Pc、 ZnPc、 PdPc、 FePc、 MnPc、 C l Al Pc、 C l GaP c、 C l I nPc、 C l SnPc、 C l 2 S i Pc、 (H〇) Al Pc、 (HO ) GaPc、 VOPc、 T i〇Pc、 MoOPc、 GaPc— 0— GaPc等の フタロシア二ン誘導体及びナフタロシア二ン誘導体であるが、'これらに限定され るものではない。 N, N, diphenyl-1-N, N '-(3-methylphenyl) -11,1-biphenyl_4,4'diamine, N, N, N', N '-(4-methylphenyl) 1-1,1,1, one Phenyl 4, 4 'Jiamin, N, N, N', N '— (4-Methylphenyl) — 1, 4-biphenyl-1, 4, Jiamin, N, N' Jiphenyl 1 N, N, 1 Dinaphthyl 1 1 , Γ — biphenyl 2,4 'diamine, N, N, 1 (methylphenyl) 1 N, N' 1 (4 1 n-butylphenyl) — phenanthrene 1 9,10-diamine, N, N—bis (4 —Di-4-tolylaminophenyl) —4-phenyl-cyclohexane and the like, or an oligomer or polymer having an aromatic tertiary amine skeleton, but is not limited thereto. Specific examples of the phthalocyanine (Pc) derivative, H 2 Pc, CuPc, CoPc , N i Pc, ZnPc, PdPc, FePc, MnPc, C l Al Pc, C l GaP c, C l I nPc, C l SnPc, C phthalocyanine derivatives and naphthalocyanine derivatives such as l 2 S i Pc, (H〇) Al Pc, (HO) GaPc, VOPc, T i〇Pc, MoOPc, GaPc-0-GaPc. It is not limited.
電子注入材料としては、 電子を輸送する能力を持ち、 陰極からの電子注入効果 、 発光層又は発光材料に対して優れた電子注入効果を有し、 発光層で生成した励 起子の正孔注入層への移動を防止し、 かつ薄膜形成能力の優れた化合物が好まし い。 具体的には、 フルォレノン、 アントラキノジメタン、 ジフエノキノン、 チォ ビランジォキシド、 ォキサゾ一ル、 ォキサジァゾール、 トリアゾール、 ィミダゾ ール、 ペリレンテトラカルボン酸、 キノキサリン、 フレオレニリデンメタン、 ァ ントラキノジメタン、 アントロン等とそれらの誘導体が挙げられるが、 これらに 限定されるものではない。 The electron injecting material has the ability to transport electrons, has the effect of injecting electrons from the cathode, has an excellent electron injecting effect on the light emitting layer or the light emitting material, and has the hole injecting layer of exciters generated in the light emitting layer Compounds that prevent migration to the surface and have excellent thin film forming ability are preferred. Specifically, fluorenone, anthraquinodimethane, diphenoquinone, thiovirandoxide, oxazole, oxazine diazole, triazole, imidazole, perylenetetracarboxylic acid, quinoxaline, fluorenylidene methane, anthraquinodimethane, anthrone, etc. And their derivatives. It is not limited.
これらの電子注入材料の中で、 さらに効果的な電子注入材料は、 金属錯体化合 物又は含窒素五員環誘導体である。 金属錯体化合物の具体例は、 8—ヒドロキシ キノリナートリチウム、 ビス ( 8—ヒドロキシキノリナ一ト)亜鉛、 ビス (8— ヒドロキシキノリナート) 銅、 ビス (8—ヒドロキシキノリナ一ト) マンガン、 トリス ( 8—ヒドロキシキノリナ一ト) アルミニウム、 トリス (2—メチル _8 —ヒドロキシキノリナ一ト) アルミニウム、 トリス ( 8—ヒドロキシキノリナ一 ト) ガリゥム、 ビス ( 1 0—ヒドロキシベンゾ [h] キノリナ一ト) ベリ リゥム 、 ビス ( 1 0—ヒドロキシベンゾ [h] キノリナ一ト) 亜鉛、 ビス (2—メチル 一 8—キノリナート) クロ口ガリウム、 ビス ( 2ーメチルー 8—キノリナート) Among these electron injecting materials, more effective electron injecting materials are metal complex compounds or nitrogen-containing five-membered ring derivatives. Specific examples of the metal complex compound include lithium 8-hydroxyquinolinato, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8-hydroxyquinolinato) manganese, Tris (8-hydroxyquinolina) aluminum, tris (2-methyl_8-hydroxyquinolina) aluminum, tris (8-hydroxyquinolina) gallium, bis (10-hydroxybenzo [h] quinolina 1) Beryllium, bis (10-hydroxybenzo [h] quinolinate) zinc, bis (2-methyl-18-quinolinate) gallium chloride, bis (2-methyl-8-quinolinate)
( 0—クレゾラ一ト) ガリゥム、 ビス ( 2—メチル一 8—キノリナ一ト) ( 1一 ナフトラート) アルミニウム、 ビス ( 2—メチル一 8—キノリナート) (2—ナ フトラート) ガリウム等が挙げられるが、 これらに限定されるものではない。 また、 含窒素五員誘導体は、 ォキサゾ一ル、 チアゾール、 ォキサジァゾ一ル、 チアジアゾールもしくはトリァゾール誘導体が好ましい。 具体的には、 2, 5 - ビス ( 1—フヱニル) 一 1 , 3, 4—才キサゾール、 ジメチル POP OP、 2, 5—ビス ( 1一フエニル) 一 1, 3, 4—チアゾ一ル、 2, 5—ビス ( 1—フエ 二ル) — 1 , 3, 4—ォキサジァゾ一ル、 2— (4, 一 t e r t—ブチルフエ二 ル) 一 5—( 4" —ビフエニル) 1 , 3, 4—ォキサジァゾ一ル、 2, 5—ビス(0-cresolate) gallium, bis (2-methyl-18-quinolinato) (11-naphtholate) aluminum, bis (2-methyl-18-quinolinato) (2-naphtholate) gallium However, it is not limited to these. The nitrogen-containing five-membered derivative is preferably an oxazole, thiazole, oxaziazole, thiadiazole or triazole derivative. Specifically, 2,5-bis (1-phenyl) 1-1,3,4-xazole, dimethyl POP OP, 2,5-bis (1-phenyl) -1,3,4-thiazol, 2,5-bis (1-phenyl) — 1,3,4-oxaziazol, 2- (4,1-tert-butylphenyl) -5— (4 "—biphenyl) 1,3,4— Oxaziazol, 2, 5-bis
( 1一ナフチル) 一 1, 3, 4—ォキサジァゾ一ル、 1, 4一ビス [2_( 5 - フエニルォキサジァゾリル) ] ベンゼン、 1 , 4—ビス [2— ( 5—フヱニルォ キサジァゾリル) 一 4— t e r t—ブチルベンゼン] 、 1一 (4 ' - t e r t - ブチルフヱニル) 一 5— ( 4" —ビフヱニル) 一 1 , 3, 4ーチアジアゾール、 2, 5—ビス ( 1—ナフチル) 一 1 , 3, 4—チアジアゾ一ル、 1 , 4一ビス [ 2—( 5—フヱニルチアジァゾリル) ] ベンゼン、 2— (4, 一 t e r t—ブチ ルフヱ二ル) 一 5— ( 4,, 一ビフエ二ル) 一 1, 3, 4 _トリァゾール、 1 , 5 —ビス ( 1一ナフチル) _ 1, 3, 4—トリアゾール、 1, 4—ビス [ 2—( 5 —フエニルトリアゾリル) ] ベンゼン等が挙げられるが、 これらに限定されるも のではない。 (1-naphthyl) 1, 1, 3, 4-oxaziazole, 1, 4-bis [2_ (5-phenyloxaxazolyl)] benzene, 1, 4-bis [2-(5-phenylo) 1- (4'-tert-butylphenyl) -1-5- (4 "-biphenyl) 1-1,3,4-thiadiazole, 2,5-bis (1-naphthyl) -1 1,3,4-thiadiazol, 1,4-bis [2- (5-phenylthiadiazolyl)] benzene, 2- (4,1-tert-butylbutyl) 1-5- (4 ,, 1 biphenyl) 1,3,4_triazole, 1,5 —Bis (1-naphthyl) _1,3,4-triazole, 1,4-bis [2- (5-phenyltriazolyl)] benzene, etc., but not limited thereto .
また、 正孔注入材料に電子受容物質を、 電子注入材料に電子供与性物質を添加 することにより電荷注入性を向上させることもできる。  The charge injecting property can be improved by adding an electron accepting substance to the hole injecting material and an electron donating substance to the electron injecting material.
本発明の有機 E L素子の陽極に使用される導電性材料としては、 4 e Vより大 きな仕事関数を持つものが適しており、 炭素、 アルミニウム、 バナジウム、 鉄、 コバルト、 ニッケル、 タングステン、 銀、 金、 白金、 パラジウム等及びそれらの 合金、 I T O基板、 N E S A基板に使用される酸化スズ、 酸化インジウム等の酸 化金属、 さらにはポリチオフヱンゃポリピロール等の有機導電性樹脂が用いられ る。 陰極に使用される導電性物質としては、 4 e Vより小さな仕事関数を持つも のが適しており、 マグネシウム、 カルシウム、 錫、 鉛、 チタニウム、 イッ トリウ ム、 リチウム、 ルテニウム、 マンガン、 アルミニウム等及びそれらの合金が用い られるが、 これらに限定されるものではない。 合金としては、 マグネシウム/銀 、 マグネシウム/インジウム、 リチウム/アルミニウム等が代表例として挙げら れるが、 これらに限定されるものではない。 合金の比率は、 蒸着源の温度、 雰囲 気、 真空度等により制御され、 適切な比率に選択される。 陽極及び陰極は、 必要 があれば二層以上の層構成により形成されていてもよい。  As the conductive material used for the anode of the organic EL device of the present invention, those having a work function of more than 4 eV are suitable, and carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver , Gold, platinum, palladium and their alloys; metal oxides such as tin oxide and indium oxide used for ITO and NESA substrates; and organic conductive resins such as polythiophene-polypyrrole. As the conductive material used for the cathode, those having a work function of less than 4 eV are suitable, such as magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, aluminum, and the like. These alloys are used, but are not limited to these. Representative examples of the alloy include magnesium / silver, magnesium / indium, lithium / aluminum, and the like, but are not limited thereto. The ratio of the alloy is controlled by the temperature, atmosphere, degree of vacuum, and the like of the evaporation source, and is selected as an appropriate ratio. The anode and the cathode may be formed of two or more layers if necessary.
" 本発明の有機 E L素子は、 少なくとも一方の電極と前記有機薄膜層との間に無 機化合物層を有していてもよい。 無機化合物層に使用される好ましい無機化合物 としては、 アルカリ金属酸化物、 アルカリ土類酸化物、 希土類酸化物、 アルカリ 金属ハロゲン化物、 アルカリ土類ハロゲン化物、 希土類ハロゲン化物、 S i Ox 、 A 1 〇x、 S i Nx、 S i O N、 A 1 O N、 G e〇x、 L i 〇x 、 L i 〇N、 T i O x、 T i O N、 T a Ox、 T a〇N、 T a Nx 、 Cなど各種酸化物、 窒化 物、 酸化窒化物である。 特に陽極に接する層の成分としては、 S i Ox 、 A 1 〇 χ 、 S i Nx 、 S i O N、 A 1 O N、 G e Ox 、 Cが安定な注入界面層を形成し て好ましい。 また、 特に陰極に接する層の成分としては、 L i F、 M g F 2 、 C a F 2 、 M g F 2 、 N a Fが好ましい。 The organic EL device of the present invention may have an inorganic compound layer between at least one of the electrodes and the organic thin film layer. Preferred inorganic compounds used for the inorganic compound layer include alkali metal oxides. things, alkaline earth oxides, rare earth oxides, alkali metal halides, alkaline earth halides, rare earth halides, S i Ox, A 1 〇 x, S i Nx, S i ON, A 1 ON, G e 〇 x, L i 〇 x, L i 〇_N, T i O x, T i ON, T a O x, T A_〇_N, T a N x, C and various oxides, nitrides, oxide nitrides In particular, as components of the layer in contact with the anode, Siox, A1〇, SiNx, SiON, A1ON, GeOx, and C form a stable injection interface layer. Preferred. As the components of the layer, in particular in contact with the cathode, L i F, M g F 2, C a F 2, M g F 2, N a F are preferred.
本発明の有機 E L素子は、 効率良く発光させるために、 少なくとも一方の面は 素子の発光波長領域において充分透明にすることが望ましい。 また、 基板も透明 であることが望ましい。  It is desirable that at least one surface of the organic EL device of the present invention is sufficiently transparent in an emission wavelength region of the device in order to efficiently emit light. It is also desirable that the substrate is transparent.
透明電極は、 上記の導電性材料を使用して、 蒸着やスパッタリング等の方法で 所定の透光性が確保するように設定する。 発光面の電極は、 光透過率を 1 0 %以 上にすることが望ましい。 基板は、 機械的、 熱的強度を有し、 透明性を有するも のであれば限定されるものではないが、 ガラス基板及び透明性樹脂フィルムが挙 げられる。 透明性樹脂フィルムとしては、 ポリエチレン、 エチレン一酢酸ビュル 共重合体、 エチレン一ビュルァルコール共重合体、 ポリプロピレン、 ポリスチレ ン、 ポリメチルメタァクリレート、 ポリ塩化ビュル、 ポリビュルアルコール、 ポ リビニルブチラール、 ナイロン、 ポリエ一テルエーテルケトン、 ポリサルホン、 ポリエーテルサルフォン、 テトラフルォロエチレン一パーフルォロアルキルビ二 ルェ一テル共重合体、 ポリビニルフルオラィド、 テトラフルォロエチレン一ェチ レン共重合体、 テトラフルォロエチレン一へキサフルォロプロピレン共重合体、 ポリクロ口トリフルォロエチレン、 ポリビニリデンフルオライ ド、 ポリエステル 、 ポリ力一ボネート、 ポリウレタン、 ポリイミ ド、 ポリエーテルィミ ド、 ポリィ ミ ド、 ポリプロピレン等が挙げられる。  The transparent electrode is set so as to secure a predetermined translucency by a method such as vapor deposition or sputtering using the above conductive material. It is desirable that the electrode on the light emitting surface has a light transmittance of 10% or more. The substrate is not limited as long as it has mechanical and thermal strengths and has transparency, and examples thereof include a glass substrate and a transparent resin film. Transparent resin films include polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate, polychlorinated vinyl, polybutyl alcohol, polyvinyl butyral, and nylon. , Polyetheretherketone, Polysulfone, Polyethersulfone, Tetrafluoroethylene-perfluoroalkylvinylether copolymer, Polyvinylfluoride, Tetrafluoroethylene-ethylene copolymer Coalescence, Tetrafluoroethylene-hexafluoropropylene copolymer, Polychlorinated trifluoroethylene, Polyvinylidene fluoride, Polyester, Polycarbonate, Polyurethane, Polyimide, Polyetherimide, Polyimide Polypropylene.
本発明の有機 E L素子は、 温度、 湿度、 雰囲気等に対する安定性の向上のため に、 素子の表面に保護層を設けたり、 シリコンオイル、 樹脂等により素子全体を 保護することも可能である。  In the organic EL device of the present invention, a protective layer can be provided on the surface of the device, or the entire device can be protected with silicon oil, resin, or the like, in order to improve stability against temperature, humidity, atmosphere, and the like.
本発明の有機 E L素子の各層の形成は、 真空蒸着、 スパッタリング、 プラズマ 、 イオンプレーティング等の乾式成膜法やスピンコーティング、 デイツビング、 フローコーティング等の湿式成膜法のいずれの方法を適用することができる。 各 層の膜厚は特に限定されるものではないが、 適切な膜厚に設定する必要がある。 膜厚が厚すぎると、 一定の光出力を得るために大きな印加電圧が必要になり発光 効率が悪くなる。 膜厚が薄すぎるとピンホール等が発生して、 電界を印加しても 充分な発光輝度が得られない。 通常の膜厚は 5 n m〜l 0 mの範囲が適してい るが、 1 0 n m〜0 . 2 mの範囲がさらに好ましい。 Each layer of the organic EL device of the present invention may be formed by any of dry film forming methods such as vacuum evaporation, sputtering, plasma, and ion plating, and wet film forming methods such as spin coating, dating, and flow coating. Can be. The thickness of each layer is not particularly limited, but needs to be set to an appropriate thickness. If the film thickness is too large, a large applied voltage is required to obtain a constant light output, and the luminous efficiency deteriorates. If the film thickness is too thin, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied. The normal film thickness is suitably in the range of 5 nm to 10 m, but is more preferably in the range of 10 nm to 0.2 m.
湿式成膜法め場合、 各層を形成する材料を、 エタノール、 クロ口ホルム、 テト ラヒドロフラン、 ジォキサン等の適切な溶媒に溶解又は分散させて薄膜を形成す るが、 その溶媒はいずれであってもよい。 また、 いずれの層においても、 成膜性 向上、 膜のピンホール防止等のため適切な樹脂や添加剤を使用してもよい。 使用 の可能な樹脂としては、 ポリスチレン、 ポリカーボネート、 ポリアリレート、 ポ リエステル、 ポリアミド、 ポリウレタン、 ポリスルフォン、 ポリメチルメ夕クリ レート、 ポリメチルアタリレート、 セルロース等の絶縁性樹脂及びそれらの共重 合体、 ポリ—N—ビニルカルバゾ一ル、 ポリシラン等の光導電性樹脂、 ポリチォ フェン、 ポリピロール等の導電性樹脂が挙げられる。 また、 添加剤としては、 酸 化防止剤、 紫外線吸収剤、 可塑剤等が挙げられる。 i '  In the case of the wet film formation method, the material for forming each layer is dissolved or dispersed in an appropriate solvent such as ethanol, chloroform, tetrahydrofuran, dioxane or the like to form a thin film. Good. In any of the layers, an appropriate resin or additive may be used to improve film forming properties, prevent pinholes in the film, and the like. Resins that can be used include insulating resins such as polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethylmethacrylate, polymethylatalylate, and cellulose, and copolymers thereof, and polyisomers. Examples include photoconductive resins such as N-vinylcarbazole and polysilane, and conductive resins such as polythiophene and polypyrrole. Examples of the additive include an antioxidant, an ultraviolet absorber, and a plasticizer. i '
以上のように、 有機 E L素子の有機薄膜層に本発明の一般式 ( 1 ) の化合物か らなる有機 E L素子用材料を用いることにより、 色純度が高く、 青色系に発光す る有機 E L素子を得ることができ、 この有機 E L素子は、 例えば、 電子写真感光 体、 壁掛けテレビ用フラットパネルディスプレイ等の平面発光体、 複写機、 プリ ン夕一、液晶ディスプレイのバックライト又は計器類等の光源、 表示板、 標識灯 、 アクセサリ一等に好適に用いられる。 次に、 実施例を用いて本発明をさらに詳しく説明するが、 本発明はこれらの実 施例に限定されるものではない。  As described above, by using the material for an organic EL device comprising the compound of the general formula (1) of the present invention in the organic thin film layer of the organic EL device, the organic EL device having high color purity and emitting blue light can be obtained. This organic EL element can be used as, for example, an electrophotographic photosensitive member, a flat light-emitting member such as a flat panel display for a wall-mounted television, a copier, a printer, a backlight of a liquid crystal display, or a light source such as an instrument. It is suitably used for, for example, display boards, marker lights, and accessories. Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
なお、 化合物の 3重項エネルギー及び 1重項エネルギーは、 以下のようにして 測定した。  The triplet energy and singlet energy of the compound were measured as follows.
( 1 ) 3重項エネルギーの測定 最低励起 3重項エネルギー準位 Tl を測定した。 すなわち、 試料の隣光スぺク トルを測定し ( l Owmo l/リットル EPA (ジェチルエーテル:イソペン タン:エタノール =5 : 5 : 2容積比)溶液、 77K、 石英セル、 3?8乂社? LUOROLOGII) 、 隣光スペクトルの短波長側の立ち上がりに対して接線を 引き横軸との交点である波長 (発光端) を求めた。 この波長をエネルギー値に換 算した。 (1) Measurement of triplet energy The lowest excited triplet energy level Tl was measured. That is, the light spectrum adjacent to the sample was measured (l Owmol / liter EPA (getyl ether: isopentane: ethanol = 5: 5: 2 volume ratio) solution, 77K, quartz cell, 3-8A LUOROLOGII), a tangent was drawn to the rise on the short wavelength side of the adjacent light spectrum, and the wavelength (light emitting end) at the intersection with the horizontal axis was determined. This wavelength was converted to an energy value.
(2) 1重項エネルギー (エネルギーギャップ) の測定  (2) Measurement of singlet energy (energy gap)
励起 1重項エネルギーの値を測定した。 すなわち、 試料のトルエン溶液 ( 1 0 -5モル/リツトル) を用い日立社製紫外可視吸光計を用い吸収スぺクトルを測定 した。 スぺクトルの長波長側の立ち上りに対し接線を引き横軸との交点である波 長 (吸収端) を求めた。 この波長をエネルギー値に換算した。 Excitation Singlet energy values were measured. That is, a toluene solution of the sample - the absorbance was measured scan Bae spectrum using Hitachi UV-visible absorption analyzer using (1 0 5 mol / liters). A tangent was drawn to the rise on the long wavelength side of the spectrum, and the wavelength (absorption edge) at the intersection with the horizontal axis was determined. This wavelength was converted to an energy value.
合成例 1 (化合物 ( 1 ) の合成) Synthesis Example 1 (Synthesis of Compound (1))
化合物 ( 1 ) の合成経路を以下に示す。  The synthetic route of compound (1) is shown below.
Figure imgf000031_0001
Figure imgf000031_0001
(1)  (1)
(1 ) 合成中間体 (A) の合成 (1) Synthesis of synthetic intermediate (A)
4 ブロモベンズアルデヒド 15.0g(81mraol) 、 ァセトフヱノン 9.7g (81隱 ol)を エタノール 300ml に溶解し、 28%ナトリウムメ トキシドメタノール溶液 16.6ml( 8kiraoI) を加え、 室温で 9時間撹拌した。 反応終了後、 析出した結晶を濾過して エタノールで洗浄し、 合成中間体 (A) 19.6g (収率 84%) を得た。  4 15.0 g (81 mraol) of bromobenzaldehyde and 9.7 g (81 ol) of acetophenone were dissolved in 300 ml of ethanol, and 16.6 ml (8kiraoI) of a 28% sodium methoxide methanol solution was added, followed by stirring at room temperature for 9 hours. After the completion of the reaction, the precipitated crystals were filtered and washed with ethanol to obtain 19.6 g (yield 84%) of a synthetic intermediate (A).
(2)合成中間体 (B) の合成  (2) Synthesis of synthetic intermediate (B)
合成中間体 (A) 9. Og (31mraol) 、 1ーフヱナシルピリジニゥムブロミ ド 8.7e (31腦 1)、 酢酸アンモニゥム 19. 3g (250mmol)を酢酸 27mUこ懸濁し、 12時間加熱環 流した。 反応溶液を室温まで冷却し、 トルエン、 水を加え、 二層分離した後、 有 機層を 10%水酸化ナトリゥム水溶液、 飽和食塩水で順次洗浄し、 無水硫酸ナ卜リ ゥムで乾燥した。 有機溶媒を減圧留去後、 エタノール 27mlを加え、 析出した結晶 を濾過し、 エタノールで洗浄し、 合成中間体 (B ) 10. 6g (収率 88%) を得た。 ( 3 ) 化合物 ( 1 ) の合成 Synthetic intermediate (A) 9. Og (31mraol), 1-Panacilpyridinium bromide 8.7e (31 brain 1), 19.3 g (250 mmol) of ammonium acetate was suspended in 27 mU of acetic acid, and the mixture was heated under reflux for 12 hours. The reaction solution was cooled to room temperature, toluene and water were added thereto, and after separating into two layers, the organic layer was washed successively with a 10% aqueous sodium hydroxide solution and a saturated saline solution, and dried over anhydrous sodium sulfate. After evaporating the organic solvent under reduced pressure, 27 ml of ethanol was added, and the precipitated crystals were filtered and washed with ethanol to obtain 10.6 g (yield: 88%) of a synthetic intermediate (B). (3) Synthesis of compound (1)
合成中間体 (B ) 3. 0g (8mmol) 、 —カルボリン 1. 4g (8mraol) 、 トリス (ジべ ンジリデンアセトン) ジパラジウム 0. 18g(0. 2imol)、 2—ジシクロへキシルホス フイノ一 2, 一 ( N , N—ジメチルァミノ) ビフエニル 0. 23g (0. 6誦 ol)、 ナトリ ゥム t e r t—ブトキシド 1. Og (l lmmol)をトルエン 15mlに懸濁し、 アルゴン雰囲 気下、 20時間加熱環流した。 反応溶液を室温まで冷却し、 塩化メチレン、 水を加 え、 二層分離した後、 水で洗浄し、 無水硫酸ナ卜リゥムで乾燥した。 有機溶媒を 減圧留去後、 シリ力ゲル力ラムクロマトグラフィ一で精製し、 結晶 1. 7g (収率 46 %) を得た。  Synthetic intermediate (B) 3.0 g (8 mmol), —carboline 1.4 g (8 mraol), tris (dibenzylideneacetone) dipalladium 0.18 g (0.2 imol), 2-dicyclohexylphosphino-1,2, I (N, N-dimethylamino) biphenyl 0.23 g (0.6 reference ol), sodium tert-butoxide 1. Og (l mmol) is suspended in 15 ml of toluene, and heated under an argon atmosphere for 20 hours under reflux. did. The reaction solution was cooled to room temperature, and methylene chloride and water were added. After separating into two layers, the mixture was washed with water and dried over anhydrous sodium sulfate. After evaporating the organic solvent under reduced pressure, the residue was purified by silica gel gel chromatography to obtain 1.7 g of crystals (yield 46%).
得られた結晶は、 90MHz 'Η- NMR及び FD- MS (フィールドディソープションマス スペクトル) により目的物であることを確認した。 また、 FD- MS の測定結果を以 下に示す。  The obtained crystal was confirmed to be the target compound by 90 MHz 'Η-NMR and FD-MS (field desorption mass spectrum). The FD-MS measurement results are shown below.
FD- S, calcd for C3 =473, found, ra/z=473 (M+ , 100) FD-S, calcd for C 3 = 473, found, ra / z = 473 (M + , 100)
合成例 1 (化合物 ( 2 ) の合成) Synthesis Example 1 (Synthesis of Compound (2))
化合物 (2 ) の合成経路を以下に示す。  The synthetic route of compound (2) is shown below.
Figure imgf000032_0001
( 1 ) 合成中間体 (C) の合成
Figure imgf000032_0001
(1) Synthesis of synthetic intermediate (C)
合成中間体 (A) 10. Og (35mmol)、 ベンズアミジン塩酸塩 5.5g(35mmol)をェ夕 ノール 75mlに懸濁し、 水酸化ナトリウム 2.8g(70mraol)を加え、 18時間加熱環流し た。 反応溶液を室温まで冷却し、 水 50mlを加え、 i時間攪拌した後、 析出した結 晶を濾過してエタノールで洗浄し、 合成中間体 (C) 8.2g (収率 61%) を得た。 ( 2 ) 化合物 ( 2 ) の合成  Synthetic intermediate (A) 10. Og (35 mmol) and benzamidine hydrochloride 5.5 g (35 mmol) were suspended in 75 ml of ethanol, 2.8 g (70 mraol) of sodium hydroxide was added, and the mixture was heated under reflux for 18 hours. The reaction solution was cooled to room temperature, 50 ml of water was added, and the mixture was stirred for i hours. The precipitated crystal was filtered and washed with ethanol to obtain 8.2 g of a synthetic intermediate (C) (yield: 61%). (2) Synthesis of compound (2)
化合物 (2) は、 合成中間体 (B) の代わりに合成中間体 (C) を用いた以外 は、 上記合成例 1と同様の操作を行うことにより結晶 1.8g (収率 45%) を得た。 得られた結晶は、 90MHz 'Η- NMR及び FD-MS により目的物であることを確認した 。 また、 FD- MS の測定結果を以下に示す。  Compound (2) was obtained in the same manner as in Synthesis Example 1 except that the synthetic intermediate (C) was used instead of the synthetic intermediate (B) to obtain 1.8 g of crystals (yield: 45%). Was. The obtained crystal was confirmed to be the target compound by 90 MHz 'Η-NMR and FD-MS. The measurement results of FD-MS are shown below.
FD-MS, calcd for C33H22N4=474, found, ra/z=474 (M+, 100) FD-MS, calcd for C 33 H 22 N 4 = 474, found, ra / z = 474 (M + , 100)
合成例 3 (化合物 (6 1 ) の合成) Synthesis Example 3 (Synthesis of Compound (61))
化合物 (6 1 ) の合成経路を以下に示す。  The synthetic route of the compound (61) is shown below.
Figure imgf000033_0001
Figure imgf000033_0001
( 1 ) 合成中間体 (D) の合成  (1) Synthesis of synthetic intermediate (D)
4ーブロモヨ一ドベンゼン 25.4g(90mmol) 、 —カルボリン 10. lg(60imol) 、 トリス (ジベンジリデンアセトン) ジパラジウム 0.55g(0.6rnmol)、 2—ジシクロ へキシルホスフィノー 2' — (N, N—ジメチルァミノ) ビフエニル 0.71g(1.8ra mol)、 ナトリウム t e r t—ブトキシド 8. lg(84mraoI)をトルェン 60mlに懸濁し、 アルゴン雰囲気下、 20時間加熱環流した。 反応溶液を室温まで冷却し、 水を加え 、 二層分離した後、 水で洗浄し、 無水硫酸ナトリゥムで乾燥した。 有機溶媒を減 圧留去後、 シリカゲルカラムクロマトグラフィ一で精製し、 結晶 11.4g (収率 59 %) を得た。 4-bromoiodobenzene 25.4g (90mmol), —Carboline 10. lg (60imol), Tris (dibenzylideneacetone) dipalladium 0.55g (0.6rnmol), 2-dicyclohexylphosphino 2 ′ — (N, N— Dimethylamino) biphenyl 0.71 g (1.8 ramol) and sodium tert-butoxide 8. lg (84 mraoI) were suspended in toluene (60 ml), and the mixture was heated to reflux under an argon atmosphere for 20 hours. Cool the reaction solution to room temperature, add water After separating the two layers, the mixture was washed with water and dried over anhydrous sodium sulfate. After evaporating the organic solvent under reduced pressure, the residue was purified by silica gel column chromatography to obtain 11.4 g of crystals (yield: 59%).
( 2 ) 合成中間体 (E) の合成  (2) Synthesis of synthetic intermediate (E)
合成中間体 (D) 8. lg(25mmol)をトルエン 50ral、 エーテル 50mlに溶解し、 アル ゴン雰囲気下 - 40°Cでノルマルブチルリチウムへキサン溶液(1.6M) 21ml(32mmoI ) を加え、 -40 °Cから 0°Cで 1時間撹拌した。 次に反応溶液を - 70°Cまで冷却し 、 ホウ酸トリイソプロピル 17ml (74讓 ol)をェ一テル 25mlに希釈した溶液を滴下し 、 -70°Cで 1時間撹袢した後、室温まで昇温して 6時間攪拌した。 更に反応溶液 に 5%塩酸 70mlを滴下した後、室温で 45分間攪拌した。 反応溶液を二層分離した 後、 有機層を飽和食塩水で洗浄し、 無水硫酸ナトリゥムで乾燥した。 有機溶媒を 5分の 1程度まで減圧留去後、析出した結晶を濾過し、 トルエン一ノルマルべキ サン混合溶媒、 ノルマルへキサンで順次洗浄し、 合成中間体 (E) 3.2g (収率 45 %) を得た。  Synthetic intermediate (D) 8. Dissolve lg (25 mmol) in 50 ral toluene and 50 ml of ether, add 21 ml of normal butyllithium hexane solution (1.6 M) (32 Mol) at -40 ° C under argon atmosphere, and add -40 The mixture was stirred at 0 ° C to 0 ° C for 1 hour. Next, the reaction solution was cooled to -70 ° C, a solution obtained by diluting 17 ml (74%) of triisopropyl borate in 25 ml of ether was added dropwise, and the mixture was stirred at -70 ° C for 1 hour, and then cooled to room temperature. The mixture was heated and stirred for 6 hours. Further, 70 ml of 5% hydrochloric acid was added dropwise to the reaction solution, and the mixture was stirred at room temperature for 45 minutes. After separating the reaction solution into two layers, the organic layer was washed with saturated saline and dried over anhydrous sodium sulfate. After evaporating the organic solvent under reduced pressure to about 1/5, the precipitated crystals were filtered, washed with a mixed solvent of toluene-normalxane and normal hexane in that order, and 3.2 g of synthetic intermediate (E) (yield 45 %).
( 3 ) 化合物 (6 1 ) の合成  (3) Synthesis of compound (61)
合成中間体 (C) 2.7g(6.9腿 ol) 、 合成中間体 (E) 2.0g(6.9raraol) 、 テトラ キス (トリフエニルホスフィン) パラジウム 0.16g(0.14minol) を Γ, 2—ジメ ト キシェタン 21mlに懸濁し、 炭酸ナトリゥム 2.2g(21匪 ol)を水 11mlに溶解した溶液 を加え、 9時間加熱環流した。 反応溶液を二層分離した後、 有機層を飽和食塩水 で洗浄し、 無水硫酸ナトリゥムで乾燥した。 有機溶媒を減圧留去後、 酢酸ェチル 12mlを加え、 析出した結晶を濾過し、 酢酸ェチルで洗浄し、 結晶 2.7g (収率 72% ) を得た。  Synthetic intermediate (C) 2.7 g (6.9 t ol), synthetic intermediate (E) 2.0 g (6.9 raraol), tetrakis (triphenylphosphine) palladium 0.16 g (0.14 minol) Γ, 2-dimethoxetane 21 ml And a solution prepared by dissolving 2.2 g (21 marl ol) of sodium carbonate in 11 ml of water was added thereto, and the mixture was refluxed for 9 hours. After separating the reaction solution into two layers, the organic layer was washed with saturated saline and dried over anhydrous sodium sulfate. After evaporating the organic solvent under reduced pressure, 12 ml of ethyl acetate was added, and the precipitated crystals were filtered and washed with ethyl acetate to obtain 2.7 g of crystals (yield: 72%).
得られた結晶は、 90MHz -NMR及び FD-MS により目的物であることを確認した 。 また、 FD- MS の測定結果を以下に示す。  The obtained crystals were confirmed to be the target compound by 90 MHz-NMR and FD-MS. The measurement results of FD-MS are shown below.
FD-MS, calcd for C39H 550, found, ra/z=550 (M+, 100) FD-MS, calcd for C 39 H 550, found, ra / z = 550 (M +, 100)
合成例 4 (化合物 (68) の合成) 化合物 (68) の合成経路を以下に示す。 Synthesis Example 4 (Synthesis of Compound (68)) The synthetic route of compound (68) is shown below.
Figure imgf000035_0001
Figure imgf000035_0001
Toluene (F) DMF (G)  Toluene (F) DMF (G)
Figure imgf000035_0002
Figure imgf000035_0002
(68)  (68)
( 1 ) 合成中間体 (F) の合成 (1) Synthesis of synthetic intermediate (F)
4—アミノビリジン 7.9g(8½mol)、 2ーブロモヨ一ドベンゼン 25.0g(88mmol) 、 トリス (ジベンジリデンアセトン) ジパラジウム 1.5g(L6瞧 ol) 、 1 , 1, 一 ビス (ジフエニルホスフィノ) フエ口セン 1.8g(3.2mmol) 、 ナトリウム t e r t 一ブトキシド 11.3g(118mmol)をトルエン 210ml に懸濁し、 アルゴン雰囲気下、 19 時間加熱環流した。 反応溶液を室温まで冷却し、 水を加え、 二層分離した後、 水 で洗浄し、 無水硫酸ナトリウムで乾燥した。 有機溶媒を減圧留去後、 エタノール 50ralを加え、 析出した結晶を濾過し、 エタノールで洗浄し、 合成中間体 (F) 20 .5g (収率 98%) を得た。  4-aminoviridine 7.9 g (8 mol), 2-bromoiodobenzene 25.0 g (88 mmol), tris (dibenzylideneacetone) dipalladium 1.5 g (L6 ol), 1,1,1-bis (diphenylphosphino) 1.8 g (3.2 mmol) of cene and 11.3 g (118 mmol) of sodium tert-butoxide were suspended in 210 ml of toluene, and the mixture was heated and refluxed under an argon atmosphere for 19 hours. The reaction solution was cooled to room temperature, water was added, and two layers were separated, washed with water and dried over anhydrous sodium sulfate. After evaporating the organic solvent under reduced pressure, 50ral of ethanol was added, and the precipitated crystals were filtered and washed with ethanol to obtain 20.5 g (yield 98%) of a synthetic intermediate (F).
(2) 合成中間体 (G) の合成  (2) Synthesis of synthetic intermediate (G)
合成中間体 (F) 10.0g(40mraol) 、 酢酸パラジウム 0.90g(4.0画 ol)、 炭酸ナト リウム 5.9g(56iranol)を N, N—ジメチルホルムアミ ド 80mlに懸濁し、 アルゴン雰 囲気下、 18時間加熱環流した。 反応溶液を室温まで冷却し、 酢酸ェチル、 水を加 え、 二層分離した後、 水、 飽和食塩水で順次洗浄し、 無水硫酸ナトリウムで卓燥 した。 有機溶媒を減圧留去後、 トルエンから再結晶して析出した結晶を濾過し、 トルエンで洗浄し、 合成中間体 (G) 4.4g (収率 66%) を得た。 Synthetic intermediate (F) 10.0 g (40 mraol), 0.90 g (4.0 mmol) of palladium acetate, and 5.9 g (56 iranol) of sodium carbonate were suspended in 80 ml of N, N-dimethylformamide, and the suspension was stirred under an argon atmosphere. Reflux with heating for hours. Cool the reaction solution to room temperature, add ethyl acetate and water. Then, after separating into two layers, the mixture was washed with water and saturated saline in this order, and dried with anhydrous sodium sulfate. After evaporating the organic solvent under reduced pressure, the crystals recrystallized from toluene were separated by filtration and washed with toluene to obtain 4.4 g of a synthetic intermediate (G) (yield 66%).
(3)合成中間体 (H) の合成  (3) Synthesis of synthetic intermediate (H)
2, 4 ' —ジブ口モアセトフエノン 15.0g(54翻 ol)、 2-アミノビリジン 5.2g ( 55麵 ol) をエタノール 100ml に懸濁し、 炭酸水素ナトリゥム 7. Og (83mraol)を加え 、 9時間加熱還流した。 反応溶液を室温まで冷却し、 析出した結晶を濾過し、 水 、 エタノールで順次洗浄し、 合成中間体 (H) を 12.5 g (収率 85%) を得た。 2,4'-Jib mouth moacetophenone 15.0 g (54 olol), 2-aminoviridine 5.2 g (55 麵 ol) were suspended in ethanol 100 ml, sodium hydrogencarbonate 7. Og (83 mraol) was added, and the mixture was heated under reflux for 9 hours. did. The reaction solution was cooled to room temperature, and the precipitated crystals were filtered and washed sequentially with water and ethanol to obtain 12.5 g of a synthetic intermediate (H) (yield: 85%).
( 4 ) 化合物 (68) の合成 (4) Synthesis of compound (68)
化合物 (68) は、 合成中間体 (B) の代わりに合成中間体 (H) 、 β—カル ボリンの代わりに合成中間体 (G) を用いた以外は、 上記合成例 1の (3) と同 様の操作を行うことにより、 結晶 L8g (収率 49%) を得た。  Compound (68) was prepared in the same manner as in Synthesis Example 1 (3) except that synthetic intermediate (H) was used instead of synthetic intermediate (B), and synthetic intermediate (G) was used instead of β-carboline. By performing the same operation, 8 g of crystal L (yield 49%) was obtained.
得られた結晶は、 90MHz 'Η- NMR及び FD-MS により目的物であることを確認した 。 また、 FD- MSの測定結果を以下に示す。  The obtained crystal was confirmed to be the target compound by 90 MHz 'Η-NMR and FD-MS. The results of FD-MS measurement are shown below.
FD-MS, calcd for C24H, 6N4=360, found, m/z=360 (M+, 100) FD-MS, calcd for C 24 H, 6 N 4 = 360, found, m / z = 360 (M + , 100)
合成例 5 (化合物 (72) の合成)  Synthesis Example 5 (Synthesis of Compound (72))
化合物 (72) の合成経路を以下に示す。  The synthetic route of compound (72) is shown below.
Figure imgf000036_0001
Figure imgf000036_0001
( 1 )合成中間体 ( I ) の合成 (1) Synthesis of synthetic intermediate (I)
4—プロモフヱニルヒドラジン塩酸塩 5. Og (22議 ol)、 炭酸水素ナトリゥム 1.9g (22画 ol)をェタノール 100ml に懸濁し、 1時間攪拌した後、 ジべンゾィルメ夕ン 5.0g(22画 ol)を加え、 8時間加熱還流した。 次に濃塩酸 2m 1(23匪 ol) を加え、 12 時間加熱還流した。 反応溶液を室温まで冷却し、 30%水酸化ナトリウム水溶液 2. 3ml(23mraol) 、 水 50mlを加え、 1時間攪拌して析出した結晶を濾過し、 エタノー ルで洗浄し、 合成中間体 (L) を 7.6g (収率 定量的) を得た。 4-Promophenylhydrazine hydrochloride 5. Og (22 ol), sodium hydrogen carbonate 1.9 g (22 ol) was suspended in 100 ml of ethanol, stirred for 1 hour, 5.0 g (22 ol) of dibenzilmeine was added, and the mixture was heated under reflux for 8 hours. Next, 2 ml of concentrated hydrochloric acid (23 marl ol) was added, and the mixture was heated under reflux for 12 hours. The reaction solution was cooled to room temperature, and 2.3 ml (23 mraol) of 30% aqueous sodium hydroxide and 50 ml of water were added. The mixture was stirred for 1 hour, and the precipitated crystals were filtered, washed with ethanol, and synthesized intermediate (L) 7.6 g (quantitative yield) was obtained.
( 2 ) 化合物 (72) の合成  (2) Synthesis of compound (72)
化合物 (72) は、 合成中間体 (B) の代わりに合成中間体 ( I ) を用いた以 外は、 上記合成例 1の ( 3) と同様の操作を行うことにより、 結晶 1.8g (収率 46 %) を得た。  Compound (72) was prepared in the same manner as in (3) of Synthesis Example 1 except that synthetic intermediate (I) was used instead of synthetic intermediate (B) to obtain 1.8 g of crystals (yield). Rate 46%).
得られた結晶は、 90MHz 'H-NMR及び FD- MS により目的物であることを確 した 。 また、 FD-MS の測定結果を以下に示す。  The obtained crystals were confirmed to be the target compound by 90 MHz 'H-NMR and FD-MS. The results of FD-MS measurement are shown below.
FD-MS, calcd for C32H22N4=462, found, m/z-462 (M+ , 100) FD-MS, calcd for C 32 H 22 N 4 = 462, found, m / z-462 (M +, 100)
合成例 6 (化合物 (2 3) の合成) Synthesis Example 6 (Synthesis of Compound (2 3))
化合物 (2 3) の合成経路を以下に示す。  The synthesis route of compound (23) is shown below.
Figure imgf000037_0001
上記合成例 1の ( 1 ) で、 4一ブロモベンズアルデヒドの代わりに、 3, 5— ジブロモベンズアルデヒドを用いた以外は合成例 (1 ) 、 (2) と同様にして合 成した合成中間体 (J) 2.5g(5mmol) 、 ^—カルボリン 1.0g(6mmol) 、 トリス ( ジベンジリデンアセトン) ジパラジウム 0.18g (0.2國 ol)、 2—ジシクロへキシル ホスフィノー 2, - (N, N—ジメチルァミノ) ビフエニル 0.23g(0.6imnol)、 ナ トリウム t e r t—ブトキシド LOg(llmmol)をトルエン 15mlに懸濁し、 アルゴン 雰囲気下、 20時間加熱環流した。 反応溶液を室温まで冷却し、 塩化メチレン、 水 を加え、 二層分離した後、 水で洗浄し、 無水硫酸ナトリウムで乾燥した。 有機溶 媒を減圧留去後、 蒸留残滓をトルエン 15mlに懸濁し、 卜リス (ジベンジリデンァ セトン) ジパラジウム 0.18g(0.2mmol)、 2—ジシクロへキシルホスフィノー 2 ' - (N, N—ジメチルアミノ) ビフエニル 0.23g(0.6mmol)、 ナトリウム t e r t 一ブトキシド 1.0g(ll瞧 ol)を加え、 アルゴン雰囲気下、 20時間加熱環流した。 反 応溶液を室温まで冷却し、 塩化メチレン、 水を加え、 二層分離した後、 水で洗浄 し、 無水硫酸ナトリウムで乾燥した。 有機溶媒を減圧留去後、 シリカゲルカラム クロマトグラフィーで精製し、 結晶 L7g (収率 53%) を得た。
Figure imgf000037_0001
Synthesis intermediate (J) synthesized in the same manner as in Synthesis Examples (1) and (2) except that 3,5-dibromobenzaldehyde was used in place of 4-bromobenzaldehyde in (1) of Synthesis Example 1 above. ) 2.5 g (5 mmol), ^ -carboline 1.0 g (6 mmol), tris (dibenzylideneacetone) dipalladium 0.18 g (0.2 country ol), 2-dicyclohexyl phosphinol 2,-(N, N-dimethylamino) biphenyl 0.23 g (0.6imnol), sodium tert-butoxide LOg (llmmol) in 15 ml of toluene Under an atmosphere, the mixture was heated under reflux for 20 hours. The reaction solution was cooled to room temperature, methylene chloride and water were added, and the mixture was separated into two layers, washed with water and dried over anhydrous sodium sulfate. After the organic solvent was distilled off under reduced pressure, the distillation residue was suspended in 15 ml of toluene, and 0.18 g (0.2 mmol) of tris (dibenzylidene aceton) dipalladium, 2-dicyclohexylphosphino 2 ′-(N, N —Dimethylamino) biphenyl (0.23 g, 0.6 mmol) and sodium tert-butoxide (1.0 g, ll-ol) were added, and the mixture was heated to reflux under an argon atmosphere for 20 hours. The reaction solution was cooled to room temperature, methylene chloride and water were added, and the mixture was separated into two layers, washed with water, and dried over anhydrous sodium sulfate. After evaporating the organic solvent under reduced pressure, the residue was purified by silica gel column chromatography to obtain crystal L7g (yield 53%).
得られた結晶は、 90MHz 'H-NMR及び FD- MS により目的物であることを確認した 。 また、 FD- MSの測定結果を以下に示す。  The obtained crystals were confirmed to be the target compound by 90 MHz 'H-NMR and FD-MS. The results of FD-MS measurement are shown below.
FD-MS, calcd for C45H29N5=639, found, m/z=639 (M+, 100) FD-MS, calcd for C 45 H 29 N 5 = 639, found, m / z = 639 (M + , 100)
実施例 1 (有機 EL素子の製造) Example 1 (manufacture of organic EL device)
25mmx 75 mmX 0. 7 mm厚の I T O透明電極付きガラス基板 (ジォマ ティック社製) をィソプロピルアルコール中で超音波洗浄を 5分間行なった後、 UVオゾン洗浄を 30分間行なった。 洗浄後の透明電極付きガラス基板を真空蒸 着装置の基板ホルダーに装着し、 まず、 透明電極が形成されている側の面上に前 記透明電極を覆うようにして膜厚 10 nmの下記銅フタロシアニン膜 (以下 「C uPc膜」 と略記する。 ) を成膜した。 この CuPc膜は、 正孔注入層として機 能する。 この CuPc膜上に膜厚 3 Onmの下記 4, 4' —ビス [N— ( 1—ナ フチル) 一N—フヱニルァミノ] ビフヱニル膜 (以下 「a— NPD膜」 と略記す る。 ) を成膜した。 この α— NPD膜は正孔輸送層として機能する。 さらに、 α — NPD膜上に膜厚 30 nmの上記化合物 ( 1 ) をホスト材料として蒸着し発光 層を成膜した。 同時に燐光発光性の I r金属錯体ド一パントとして下記トリス ( 2—フヱニルビリジン) I r (以下 「I r (ppy) 3 」 と略記する。 ) を添加 した。 発光層中における I r (ppy) 3 の濃度は 5重量0 /0とした。 この膜は、 発光層として機能する。 この膜上に膜厚 1 0 nmの下記 ( 1 , Γ —ビスフヱニ ル) 一 4—オラ一ト) ビス ( 2—メチルー 8—キノ.リノラート) アルミニウム ( 以下、 「BA 1 q膜」 と略記する。 ) を成膜した。 この BA 1 q膜は正孔障壁層 として機能する。 さらにこの膜上に膜厚 40 nmの下記 8—ヒドロキシキノリン のアルミニウム錯体 (以下、 「A 1 q膜」 と略記する。 ) を成膜した。 この A 1 Q膜は電子注入層として機能する。 この後、 ハロゲン化アルカリ金属である L i Fを 0. 1 nmの厚さに蒸着し、 次いでアルミニウムを 1 5 0 nmの厚さに蒸着 した。 この A 1 /L i Fは陰極として働く。 このようにして有機 EL素子を作製 した。 A 25 mm × 75 mm × 0.7 mm thick glass substrate with an ITO transparent electrode (manufactured by Geomatic) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then UV ozone cleaning for 30 minutes. The glass substrate with the transparent electrode after cleaning is mounted on a substrate holder of a vacuum evaporation apparatus. First, the following copper having a film thickness of 10 nm is coated on the surface where the transparent electrode is formed so as to cover the transparent electrode. A phthalocyanine film (hereinafter abbreviated as “CuPc film”) was formed. This CuPc film functions as a hole injection layer. The following 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl film (hereinafter abbreviated as "a-NPD film") having a thickness of 3 Onm is formed on this CuPc film. did. This α-NPD film functions as a hole transport layer. Further, the compound (1) having a thickness of 30 nm was deposited as a host material on the α-NPD film to form a light emitting layer. At the same time, the following tris (2-phenylpyridine) Ir (hereinafter abbreviated as “I r (ppy) 3 ”) was added as a phosphorescent Ir metal complex dopant. The concentration of I r (ppy) 3 in the light emitting layer was 5 wt 0/0. This membrane Functions as a light emitting layer. On this film, the following (1, 下 記 -bisphenyl) -14-olato) bis (2-methyl-8-quino.linoleate) aluminum (hereinafter abbreviated as “BA1q film”) with a thickness of 10 nm ) Was deposited. This BA1q film functions as a hole barrier layer. Further, an aluminum complex of the following 8-hydroxyquinoline (hereinafter abbreviated as “A1q film”) having a thickness of 40 nm was formed on this film. This A 1 Q film functions as an electron injection layer. Thereafter, LiF, which is an alkali metal halide, was deposited to a thickness of 0.1 nm, and then aluminum was deposited to a thickness of 150 nm. This A 1 / L i F acts as a cathode. Thus, an organic EL device was manufactured.
発光層で使用したホスト材料の 3重項エネルギー及び 1重項エネルギーを上記 ( 1 ) 及び( 2 ) の測定方法により測定した結果を表 1に示す。  Table 1 shows the results obtained by measuring the triplet energy and singlet energy of the host material used in the light emitting layer by the above-mentioned measuring methods (1) and (2).
この素子について、 通電試験を行なったところ、 電圧 5. 2 V, 電流密度 0. This device was subjected to a conduction test to find that the voltage was 5.2 V and the current density was 0.
26mA/cm2 にて、 9 9 c d/m2 の緑色発光が得られ、 色度座標は ( 0.At 26 mA / cm 2 , a green emission of 99 cd / m 2 was obtained, and the chromaticity coordinates were (0.
32, 0. 6 2) 、 効率は 3 8. 6 c d/Aであった。 これらの結果を表 1に示 す。 32, 0.62), the efficiency was 38.6 cd / A. Table 1 shows these results.
Figure imgf000039_0001
Figure imgf000039_0001
ir(ppy)3 実施例 1及び 3 ir (ppy) 3 Examples 1 and 3
実施例 1において、 化合物 ( 1 ) の代わりに表 1に記載の化合物を用いた以外 は同様にして有機 E L素子を作製し、 同様に 3重項ェネルギー及び 1重項ェネル ギー、 電圧、 電流密度、 輝度、 発光効率、 色度を測定した結果を表 1に示す。 比較例 1  An organic EL device was prepared in the same manner as in Example 1 except that the compounds shown in Table 1 were used instead of the compound (1). Similarly, triplet energy and singlet energy, voltage, and current density were similarly measured. Table 1 shows the results of measuring the luminance, luminous efficiency, and chromaticity. Comparative Example 1
実施例 1において、 化合物 ( 1 ) の代わりに下記化合物'(B C z ) を用いた以 外は同様にして有機 E L素子を作製し、 同様に 3重項エネルギー及び 1重項エネ ルギ一、電圧、 電流密度、 輝度、 発光効率、 色度を測定した結果を表 1に示す。  An organic EL device was prepared in the same manner as in Example 1 except that the following compound '(BCz) was used instead of the compound (1), and a triplet energy, a singlet energy, a voltage Table 1 shows the results of measuring the current density, luminance, luminous efficiency, and chromaticity.
Figure imgf000040_0001
比較例 2
Figure imgf000040_0001
Comparative Example 2
実施例 1において、 化合物 ( 1 ) の代わりに、 米国特許公開公報 2 0 0 2 - 2 8 3 2 9号明細書に記載の下記化合物 (A— 1 0 ) を用いた以外は同様にして有 機 E L素子を作製し、 実施例 1と同様にして特性を評価した。 それらの結果を表 1に示す。  Example 1 was repeated in the same manner as in Example 1 except that the following compound (A-10) described in U.S. Patent Publication No. 2002-283329 was used in place of compound (1). An EL device was manufactured, and the characteristics were evaluated in the same manner as in Example 1. Table 1 shows the results.
Figure imgf000040_0002
Figure imgf000040_0002
A-10 発光層 3直項ェ 1直項ェ A-10 Emitting layer 3
電流密度発光輝度 発光効率色度座標  Current density Luminance Luminous efficiency Chromaticity coordinates
のホス卜 ネルキ'一 ネルキ ·- 電圧  Nerqui's host
発光色 材料 (eV) (eV) (V) (mA/cm2) (cd/m2) (cd/A) (x,y) Emission color Material (eV) (eV) (V) (mA / cm 2 ) (cd / m 2 ) (cd / A) (x, y)
実施例 1 (1) 2.8 3.4 5.2 0.26 99 38.6 (0.32,0.62) 緑 実施例 2 (61) 2.6 3.3 5.5 0.24 102 42.8 (0.32,0.61) 緑 実施例 3 (68) 2.7 3.5 5.6 0.27 100 37.2 (0.32,0.61) 緑 比較例 1 (BCz) 2.8 3.6 5.4 0.31 101 32.6 (0.32,0.61) 緑 比較例 2 (A- 10) 3.1 3.7 5.9 0.32 100 31.8 (0.32,0.61) 緑 表 1に示したように、 比較例 1 , 1の従来公知の化合物 (BC z, A— 1 0) に対して、 本発明の有機 EL素子用材料を用いた有機 EL素子は、 高効率の緑色 発光が得られる。 また、 本発明の有機 EL素子用材料は、 エネルギーギャップが 広いので、 エネルギーギヤップの広い発光性分子を発光層に混合し発光させるこ とができる。 Example 1 (1) 2.8 3.4 5.2 0.26 99 38.6 (0.32,0.62) Green Example 2 (61) 2.6 3.3 5.5 0.24 102 42.8 (0.32,0.61) Green Example 3 (68) 2.7 3.5 5.6 0.27 100 37.2 (0.32 , 0.61) Green Comparative Example 1 (BCz) 2.8 3.6 5.4 0.31 101 32.6 (0.32,0.61) Green Comparative Example 2 (A-10) 3.1 3.7 5.9 0.32 100 31.8 (0.32,0.61) Green As shown in Table 1, Compared with the conventionally known compounds (BCz, A-10) of Comparative Examples 1 and 1, the organic EL device using the material for an organic EL device of the present invention can provide highly efficient green light emission. Further, since the material for an organic EL device of the present invention has a wide energy gap, light-emitting molecules having a wide energy gap can be mixed into a light-emitting layer to emit light.
実施例 4 Example 4
2 5mmx 75 mmX 0. 7 mm厚の I TO透明電極付きガラス基板 (ジォマ ティック社製) をィソプロピルアルコール中で超音波洗浄を 5分間行なった後、 UVオゾン洗浄を 3 0分間行なった。 洗浄後の透明電極付きガラス基板を真空蒸 着装置の基板ホルダーに装着し、 まず、 透明電極が形成されている側の面上に前 記透明電極を覆うようにして膜厚 1 011111の( 1 (膜を成膜した。 この CuP c膜は、 正孔注入層として機能する。 次に、 CuPc膜上に膜厚 3 O nmの下記 A 5 mm × 75 mm × 0.7 mm thick glass substrate with an ITO transparent electrode (manufactured by Geomatic Co., Ltd.) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes. The washed glass substrate with a transparent electrode is mounted on a substrate holder of a vacuum evaporation apparatus. First, the transparent electrode is formed on the surface on the side where the transparent electrode is formed so as to cover the transparent electrode. (The film was formed. This CuPc film functions as a hole injection layer. Next, the following 3 nm thick film is formed on the CuPc film.
1 , 1, 一ビス [4一 N, N—ジ (パラトリル) アミノフエ二ル] シクロへキサ ン膜 (以下 「TPAC膜」 と略記する。 ) を成膜した。 この TPAC膜は正孔輸 送層として機能する。 さらに、 TP AC膜上に膜厚 3 O nmの上記化合物 ( 1 ) を蒸着し発光層を成膜した。 同時に燐光発光性の I r金属錯体として I rビス [A 1,1,1-bis [4-N, N-di (paratolyl) aminophenyl] cyclohexane film (hereinafter abbreviated as “TPAC film”) was formed. This TPAC membrane functions as a hole transport layer. Further, the compound (1) having a thickness of 3 O nm was deposited on the TPAC film to form a light emitting layer. At the same time, Ir bis [
(4, 6—ジフルオロフヱニル) 一ピリジナートー N, C2' ] ピコリナート (以 下 「F I rp i c」 と略記する。 ) を添加した。 発光層中における F I r p i c の濃度は 7重量%とした。 この膜は、 発光層として機能する。 この膜上に膜厚 3 O nmの A 1 q膜を成膜した。 この A 1 q膜は電子注入層として機能する。 この 後、 ハロゲン化アルカリ金属である L i Fを 0. 2 nmの厚さに蒸着し、 次いで アルミニウムを 1 50 nmの厚さに蒸着した。 この A 1 /L i Fは陰極として働 く。 このようにして有機 EL素子を作製した。 (4,6-difluorophenyl) -pyridinato N, C 2 '] picolinate (hereinafter abbreviated as "FI rpic") was added. The concentration of FI rpic in the light emitting layer was 7% by weight. This film functions as a light emitting layer. An A1q film having a thickness of 3 O nm was formed on this film. This A 1 q film functions as an electron injection layer. this Thereafter, an alkali metal halide, LiF, was deposited to a thickness of 0.2 nm, and then aluminum was deposited to a thickness of 150 nm. This A 1 / L i F acts as a cathode. Thus, an organic EL device was produced.
発光層で使用したホスト材料の 3重項エネルギー及び 1重項エネルギーを上記 ( 1 ) 及び( 2 ) の測定方法により測定した結果を表 1に示す。  Table 1 shows the results obtained by measuring the triplet energy and singlet energy of the host material used in the light emitting layer by the above-mentioned measuring methods (1) and (2).
この素子について、 通電試験を行なったところ、 電圧 6. 4 V, 電流密度 0. 65mA/cm2 にて、 1 0 1 c d/m2 の青色発光が得られ、 色度座標は (0 . 1 7, 0. 3 9 ) 、 効率は 1 5. 6 c d/Aであった。 When a current test was performed on this device, a blue emission of 101 cd / m 2 was obtained at a voltage of 6.4 V and a current density of 0.65 mA / cm 2 , and the chromaticity coordinates were (0.1 7, 0.39), and the efficiency was 15.6 cd / A.
Figure imgf000042_0001
Figure imgf000042_0001
Figure imgf000042_0002
Figure imgf000042_0002
Flrpic  Flrpic
実施例 5及び 6 Examples 5 and 6
実施例 4において、 化合物 ( 1 ) の代わりに表 2に記載の化合物を用いた以外 は同様にして有機 E L素子を作製し、 同様に 3重項エネルギー及び 1重項ェネル ギ一、 電圧、 電流密度、 輝度、 発光効率、 色度を測定した結果を表 2に示す。 比較例 3  An organic EL device was prepared in the same manner as in Example 4 except that the compound shown in Table 2 was used instead of the compound (1), and the triplet energy and singlet energy, voltage, and current were similarly measured. Table 2 shows the measurement results of density, luminance, luminous efficiency, and chromaticity. Comparative Example 3
実施例 4において、 化合物 ( 1 ) の代わりに上記化合物 (BC z) を用いた以 外は同様にして有機 E L素子を作製し、 同様に 3重項エネルギ一及び 1重項ェネ ルギ一、電圧、 電流密度、 輝度、 発光効率、 色度を測定した結果を表 2に示す。 比較例 4 An organic EL device was prepared in the same manner as in Example 4 except that the above compound (BCz) was used instead of the compound (1), and a triplet energy and a singlet energy were similarly produced. Table 2 shows the measurement results of voltage, current density, luminance, luminous efficiency, and chromaticity. Comparative Example 4
比較例 3において、 正孔輸送層の化合物 (TP AC) に代えて、 上記化合物 ( α-NPD) を使用し、 さらに電子注入層の化合物 (Al q) に代えて、 上記化 合物 (BA1 q) を用いた以外は同様にして有機 EL素子を作製し、 同様に 3重 項エネルギー及び 1重項エネルギー、 電圧、 電流密度、 輝度、 発光効率、 色度を 測定した結果を表 2に示した。  In Comparative Example 3, the compound (α-NPD) was used in place of the compound (TPAC) in the hole transport layer, and the compound (BA1) was used in place of the compound (Alq) in the electron injection layer. An organic EL device was fabricated in the same manner except that q) was used, and the triplet energy and singlet energy, voltage, current density, luminance, luminous efficiency, and chromaticity were measured in the same manner as shown in Table 2. Was.
Figure imgf000043_0001
表 2に示したように、 比較例 3, 4の従来公知の化合物 (BCz) に対して、 本発明の有機 EL素子用材料を用いた有機 EL素子は、 低電圧駆動であり、 かつ 高効率の青色発光が得られる。 また、 本発明の有機 EL素子用材料は、 エネルギ 一ギヤップが広いので、 エネルギーギヤップの広い発光性分子を発光層に混合し 発光させることができる。 産業上の利用可能性
Figure imgf000043_0001
As shown in Table 2, the organic EL device using the material for an organic EL device of the present invention was driven at a lower voltage and higher in efficiency than the conventionally known compound (BCz) of Comparative Examples 3 and 4. Blue light emission is obtained. Further, since the material for an organic EL device of the present invention has a wide energy gap, light-emitting molecules having a wide energy gap can be mixed into the light-emitting layer to emit light. Industrial applicability
以上詳細に説明したように、 本発明の一般式 ( 1 ) で表される化合物からなる 有機ェレクト口ルミネッセンス素子用材料を利用すると、 憐光性の発光を利用し 、 低電圧で、 発光効率が高い有機エレクト口ルミネッセンス素子が得られる。 こ のため、 本発明の有機エレクト口ルミネッセンス素子は、 各種電子機器の光源等 として極めて有用である。  As described above in detail, the use of a material for an organic EL device comprising the compound represented by the general formula (1) of the present invention makes it possible to utilize luminescent light, achieve low voltage, and achieve luminous efficiency. A high organic electroluminescent device can be obtained. Therefore, the organic electroluminescent device of the present invention is extremely useful as a light source for various electronic devices.

Claims

請求の範囲 The scope of the claims
1. 下記一般式 ( 1 ) で表される化合物からなる有機エレクトロルミネッセン ス素子用材料。 1. A material for an organic electroluminescence device comprising a compound represented by the following general formula (1).
Figure imgf000044_0001
Figure imgf000044_0001
(式中、 X, 〜χ8 は、 それぞれ炭素原子又は窒素原子を表し、 少なくとも 1つ は窒素原子である。 X, ~χ8 のいずれかが炭素原子である場合、 その炭素原子 に結合している R, 〜R8 は、 それぞれ置換基を表す。 その場合、 隣り合った R , 〜R8 は、 互いに結合して環を形成してもよい。 X, 〜X8 のいずれかかが窒 素原子である場合、 その窒素原子に結合している 〜R8 は、 それぞれ非共有 電子対を表す。 R9 は置換基を表す。 ) (Wherein, X, ~Kai 8 each represent a carbon atom or a nitrogen atom, at least one is a nitrogen atom. If X, one of ~ chi 8 is a carbon atom, bonded to carbon atoms and are R, to R 8 represents a substituent. in this case, R, to R 8 in which adjacent are joined may form a ring. X of one another either to X 8 is When it is a nitrogen atom, 〜R 8 bonded to the nitrogen atom each represents an unshared electron pair, and R 9 represents a substituent.
2. R, 〜R9 が、 それぞれ、 —L又は一 L— Y 2. R and -R 9 are each —L or one L— Y
(Lは、 水素原子、 置換もしくは無置換の炭素数 6〜 4 0のァリール基、 置換も しくは無置換の炭素数 2〜 4 0の複素環基、 置換もしくは無置換の炭素数 1〜 2 0の直鎖又は分岐のアルキル基、 置換もしくは無置換の炭素数 6〜 4 0のシクロ アルキル基、 置換もしくは無置換の炭素数 2〜 4 0のァミノ基、 置換もしくは無 置換の炭素数 1〜4 0の直鎖又は分岐のアルコキシ基、 ハロゲン原子、 ニトロ基 、 又は置換もしくは無置換の炭素数 6〜4 0のァリーレン基、 置換もしくは無置 換の炭素数 2〜 4 0の 2価の複素環基、 置換もしくは無置換の炭素数 1〜 2 0の 直鎖又は分岐のアルキレン基、 置換もしくは無置換の炭素数 6〜 4 0のシクロア (L is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, a substituted or unsubstituted heterocyclic group having 2 to 40 carbon atoms, a substituted or unsubstituted carbon atom having 1 to 2 carbon atoms. 0 linear or branched alkyl group, substituted or unsubstituted cycloalkyl group having 6 to 40 carbon atoms, substituted or unsubstituted amino group having 2 to 40 carbon atoms, substituted or unsubstituted carbon number of 1 to 40 40 straight-chain or branched alkoxy groups, halogen atoms, nitro groups, or substituted or unsubstituted arylene groups having 6 to 40 carbon atoms, substituted or unsubstituted divalent complexes having 2 to 40 carbon atoms Ring group, substituted or unsubstituted C 1 -C 20 Linear or branched alkylene group, substituted or unsubstituted cycloalkyl having 6 to 40 carbon atoms
Yは、 水素原子、 置換もしくは無置換の炭素数 6〜 4 0のァリール基、 置換も しくは無置換の炭素数 2〜 4 0の複素環基、 置換もしくは無置換の炭素数 1〜 2 0の直鎖又は分岐のアルキル基、 置換もしくは無置換の炭素数 6〜 4 0のシクロ アルキル基、 置換もしくは無置換の炭素数 2〜 4 0のァミノ基、 置換もしくは無 置換の炭素数 1〜4 0の直鎖又は分岐のアルコキシ基、 ハロゲン原子又はニトロ 基) で表される請求項 1に記載の有機エレクトロルミネッセンス素子用材料。Y is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, a substituted or unsubstituted heterocyclic group having 2 to 40 carbon atoms, a substituted or unsubstituted carbon atom having 1 to 20 carbon atoms. Linear or branched alkyl group, substituted or unsubstituted cycloalkyl group having 6 to 40 carbon atoms, substituted or unsubstituted amino group having 2 to 40 carbon atoms, substituted or unsubstituted carbon number of 1 to 4 2. The material for an organic electroluminescent device according to claim 1, wherein the material is represented by 0 linear or branched alkoxy group, halogen atom or nitro group.
3. X, 〜X8 のうち 1〜 3つが窒素原子であり、 残りが炭素原子である請求 項 1に記載の有機エレクトロルミネッセンス素子用材料。 3. The material for an organic electroluminescence device according to claim 1, wherein 1 to 3 of X and X 8 are nitrogen atoms and the remaining are carbon atoms.
4. X, 〜Χ8 のうち、 Χ3 及び/又は X 6 が窒素原子であり、 残りが炭素原 子である請求項 1に記載の有機エレクトロルミネッセンス素子用材料。 4. X, among ~Kai 8, a chi 3 and / or X 6 is a nitrogen atom, an organic electroluminescence device material according to claim 1 remainder are carbon atom.
5. R, 〜R8 の少なくとも 1つが、 S—カルボリニル基である請求項 1に記 載の有機エレクトロルミネッセンス素子用材料。 5. The material for an organic electroluminescent device according to claim 1, wherein at least one of R, to R 8 is an S-carbolinyl group.
6. L及び/又は Yが、 iS—カルボリニル基である請求項 2に記載の有機エレ クトロルミネッセンス素子用材料。  6. The material for an organic electroluminescence device according to claim 2, wherein L and / or Y is an iS-carbolinyl group.
7. 3重項のエネルギーギャップが 2. 5〜3. 3 eVである請求項 1に記載 の有機エレクトロルミネッセンス素子用材料。  7. The material for an organic electroluminescence device according to claim 1, wherein an energy gap of a triplet is 2.5 to 3.3 eV.
8. 1重項のエネルギーギャップが 2. 8〜3. 8 eVである請求項 1に記載 の有機エレクトロルミネッセンス素子用材料。  8. The material for an organic electroluminescent device according to claim 1, wherein the singlet has an energy gap of 2.8 to 3.8 eV.
9. 陰極と陽極間に一層又は複数層からなる有機薄膜層が挟持 されている有 機エレクトロルミネッセンス素子において、 該有機薄膜層の少なくとも 1層が、 請求項 1に記載の有機エレクトロルミネッセンス素子用材料を含有する有機エレ クトロルミネッセンス素子。  9. An organic electroluminescence device in which one or more organic thin film layers are sandwiched between a cathode and an anode, wherein at least one of the organic thin film layers is the material for an organic electroluminescence device according to claim 1. An organic electroluminescence device containing:
1 0. 陰極と陽極間に一層又は複数層からなる有機薄膜層が挟持されている有 機エレクトロルミネッセンス素子において、 発光層が、 請求項 1に記載の有機ェ レク トロルミネッセンス素子用材料を含有する有機エレク トロルミネッセンス素 子。 10. An organic electroluminescent device in which one or more organic thin film layers are sandwiched between a cathode and an anode, wherein the light emitting layer is the organic light emitting device according to claim 1. An organic electroluminescent element containing a material for an electroluminescent element.
1 1 . 陰極と陽極間に一層又は複数層からなる有機薄膜層が挟持されている有 機エレクトロルミネッセンス素子において、 電子輸送層及び/又は電子注入層が 11 1. In an organic electroluminescent device in which one or more organic thin film layers are sandwiched between a cathode and an anode, the electron transport layer and / or the electron injection layer
、 請求項 1に記載の有機エレクトロルミネッセンス素子用材料を含有する有機ェ レク トロルミネッセンス素子。 An organic electroluminescence device comprising the organic electroluminescence device material according to claim 1.
1 2 . 陰極と陽極間に一層又は複数層からなる有機薄膜層が挟持されている有 機エレクトロルミネッセンス素子において、 正孔輸送層及び/又は正孔注入層が 12 2. In an organic electroluminescence device in which one or more organic thin film layers are sandwiched between a cathode and an anode, the hole transport layer and / or the hole injection layer
、 請求項 1に記載の有機エレクトロルミネッセンス素子用材料を含有する有機ェ レクトロルミネッセンス素子。 An organic electroluminescence device comprising the material for an organic electroluminescence device according to claim 1.
1 3 . 前記有機エレク トロルミネッセンス素子用材料が、 有機ホスト材料であ る請求項 9〜 1 2のいずれかに記載の有機エレクトロルミネッセンス素子。 13. The organic electroluminescent device according to any one of claims 9 to 12, wherein the material for an organic electroluminescent device is an organic host material.
1 4 . 少なくとも一方の電極と前記有機薄膜層との間に無機化合物層を有する 請求項 9〜1 2のいずれかに記載の有機エレクトロルミネッセンス素子。 14. The organic electroluminescent device according to claim 9, further comprising an inorganic compound layer between at least one electrode and the organic thin film layer.
1 5 . 前記有機薄膜層が燐光発光性化合物を含有する請求項 9〜 1 2のいずれ かに記載の有機エレクトロルミネッセンス素子。  15. The organic electroluminescence device according to any one of claims 9 to 12, wherein the organic thin film layer contains a phosphorescent compound.
1 6 . 青色系発光する請求項 9〜 1 2のいずれかに記載の有機エレクトロノレミ ネッセンス素子。  16. The organic electroluminescence device according to any one of claims 9 to 12, which emits blue light.
PCT/JP2003/015874 2002-12-12 2003-12-11 Organic electroluminescent device material and organic electroluminescent device using same WO2004053019A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/538,023 US20060251918A1 (en) 2003-12-11 2003-12-11 Organic electroluminescent device material and organic electroluminescent device using same
EP03778817A EP1571193A4 (en) 2002-12-12 2003-12-11 Organic electroluminescent device material and organic electroluminescent device using same
JP2004558476A JP4541152B2 (en) 2002-12-12 2003-12-11 Material for organic electroluminescence device and organic electroluminescence device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002360134 2002-12-12
JP2002-360134 2002-12-12

Publications (1)

Publication Number Publication Date
WO2004053019A1 true WO2004053019A1 (en) 2004-06-24

Family

ID=32500975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015874 WO2004053019A1 (en) 2002-12-12 2003-12-11 Organic electroluminescent device material and organic electroluminescent device using same

Country Status (6)

Country Link
EP (1) EP1571193A4 (en)
JP (1) JP4541152B2 (en)
KR (1) KR101035780B1 (en)
CN (1) CN100338172C (en)
TW (1) TW200414821A (en)
WO (1) WO2004053019A1 (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281087A (en) * 2003-03-12 2004-10-07 Nippon Hoso Kyokai <Nhk> Organic el device and organic el display
WO2004095891A1 (en) * 2003-04-23 2004-11-04 Konica Minolta Holdings, Inc. Material for organic electroluminescent device, organic electroluminescent device, illuminating device and display
WO2005039246A1 (en) * 2003-09-30 2005-04-28 Konica Minolta Holdings, Inc. Organic electroluminescent device, illuminating device, and display
JP2005340123A (en) * 2004-05-31 2005-12-08 Konica Minolta Holdings Inc Organic electroluminescent element, lighting system, and display
JP2005347160A (en) * 2004-06-04 2005-12-15 Konica Minolta Holdings Inc Organic electroluminescent element, lighting device, and display device
JP2006032599A (en) * 2004-07-15 2006-02-02 Konica Minolta Holdings Inc Organic electroluminescence element, illuminator and display device
WO2006013739A1 (en) * 2004-08-04 2006-02-09 Konica Minolta Holdings, Inc. Organic electroluminescent device, illuminating device and display
JP2006060198A (en) * 2004-07-23 2006-03-02 Konica Minolta Holdings Inc Organic electroluminescent element, display and illuminating device
JP2006066580A (en) * 2004-08-26 2006-03-09 Konica Minolta Holdings Inc Organic electroluminescent element, material therefor lighting system and display device
WO2006043440A1 (en) * 2004-10-19 2006-04-27 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
JP2006120762A (en) * 2004-10-20 2006-05-11 Konica Minolta Holdings Inc Organic electroluminescent element, display and lighting device
JP2006120821A (en) * 2004-10-21 2006-05-11 Konica Minolta Holdings Inc Organic electroluminescent element, lighting device and indication device
JP2006120906A (en) * 2004-10-22 2006-05-11 Konica Minolta Holdings Inc Organic electroluminescence element, indicator and lighting device
JP2006120689A (en) * 2004-10-19 2006-05-11 Konica Minolta Holdings Inc Organic electroluminescence element, display device and illumination device
JP2006120763A (en) * 2004-10-20 2006-05-11 Konica Minolta Holdings Inc Organic electroluminescence element, lighting device, and display device
JP2006128257A (en) * 2004-10-27 2006-05-18 Konica Minolta Holdings Inc Organic el element, its manufacturing method, and illumination or displaying element using the element
WO2006070619A1 (en) * 2004-12-28 2006-07-06 Konica Minolta Holdings, Inc. Organic electroluminescent device, display, and illuminating device
WO2006100888A1 (en) * 2005-03-22 2006-09-28 Konica Minolta Holdings, Inc. Material for organic el device, organic el device, display and illuminating device
WO2006126389A1 (en) * 2005-05-25 2006-11-30 Konica Minolta Holdings, Inc. Organic electroluminescent device material, organic electroluminescent device, display and illuminating device
WO2007004380A1 (en) * 2005-07-01 2007-01-11 Konica Minolta Holdings, Inc. Organic electroluminescent element material, organic electroluminescent element, display device, and lighting equipment
WO2007023659A1 (en) * 2005-08-25 2007-03-01 Konica Minolta Holdings, Inc. Organic electroluminescence device material, organic electroluminescence device, display device, and lighting device
JPWO2006008976A1 (en) * 2004-07-16 2008-05-01 コニカミノルタホールディングス株式会社 White light-emitting organic electroluminescence element, display device, and illumination device
WO2008114690A1 (en) * 2007-03-15 2008-09-25 Hodogaya Chemical Co., Ltd. Compound wherein substituted bipyridyl group is connected with pyridoindole ring structure through phenylene group, and organic electroluminescent device
US20080303415A1 (en) * 2004-08-05 2008-12-11 Yoshiyuki Suzuri Organic Electroluminescence Element, Display and Illuminator
WO2009096549A1 (en) * 2008-01-31 2009-08-06 Hodogaya Chemical Co., Ltd. Compound having substituted pyridyl group and pyridoindole ring structure linked through phenylene group, and organic electroluminescent device
WO2009102016A1 (en) * 2008-02-14 2009-08-20 Hodogaya Chemical Co., Ltd. Compound having pyridoindole ring structure bonded with substituted pyridyl group, and organic electroluminescent device
WO2009139475A1 (en) * 2008-05-16 2009-11-19 保土谷化学工業株式会社 Organic electroluminescent device
JP2010031248A (en) * 2008-06-23 2010-02-12 Sumitomo Chemical Co Ltd Composition and light-emitting element using the composition
JPWO2008056746A1 (en) * 2006-11-09 2010-02-25 新日鐵化学株式会社 Compound for organic electroluminescent device and organic electroluminescent device
WO2010035723A1 (en) * 2008-09-24 2010-04-01 保土谷化学工業株式会社 Compound having substituted anthracene ring structure and pyridoindole ring structure and organic electroluminescence device
WO2011016202A1 (en) * 2009-08-05 2011-02-10 保土谷化学工業株式会社 Compound having substituted anthracene ring structure and pyridoindole ring structure and organic electroluminescence device
US7902196B2 (en) 2005-03-17 2011-03-08 President And Fellows Of Harvard College Synthesis of avrainvillamide, strephacidin B, and analogues thereof
JP2011093825A (en) * 2009-10-28 2011-05-12 Hodogaya Chem Co Ltd Compound including 2,2-diphenyladamantyl structure, and organic electroluminescent element
JP2011146726A (en) * 2011-02-22 2011-07-28 Konica Minolta Holdings Inc Organic electroluminescent element, lighting device and display device
JP2011228723A (en) * 2004-07-23 2011-11-10 Konica Minolta Holdings Inc Organic electroluminescent element, display device and illuminating device
JP2012138585A (en) * 2005-04-18 2012-07-19 Konica Minolta Holdings Inc Organic electroluminescent element, display device, and lighting device
WO2012098849A1 (en) * 2011-01-18 2012-07-26 保土谷化学工業株式会社 Compound having pyridoindole ring structure and substituted bipyridyl group, and organic electroluminescent element
JP2012256910A (en) * 2006-02-20 2012-12-27 Konica Minolta Holdings Inc Organic electroluminescent element, white light-emitting element, display device, and lighting device
WO2014007287A1 (en) 2012-07-05 2014-01-09 東レ株式会社 Light emitting elment material and light emitting element
JP2014027289A (en) * 2013-09-02 2014-02-06 Konica Minolta Inc Organic electroluminescent element
JP2015010092A (en) * 2013-06-28 2015-01-19 ユニバーサル ディスプレイ コーポレイション Novel host materials for pholed
US9318711B2 (en) 2012-11-20 2016-04-19 Samsung Display Co., Ltd. Organic electroluminescence materials comprising substituted carbazoles and organic electroluminescence devices having the same
WO2018181370A1 (en) * 2017-03-28 2018-10-04 保土谷化学工業株式会社 Compound having azacarbazole structure, and organic electroluminescence device
CN112724136A (en) * 2020-12-28 2021-04-30 上海天马有机发光显示技术有限公司 Organic compound, electroluminescent material and application thereof

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1589789B1 (en) * 2003-01-24 2015-07-01 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
CN101414667B (en) * 2003-04-23 2010-06-09 柯尼卡美能达控股株式会社 Organic electroluminescent element and display
US20090091253A1 (en) 2006-03-17 2009-04-09 Konica Minolta Holdings, Inc. Organic electroluminescent element, display device and lighting device
WO2007108459A1 (en) 2006-03-23 2007-09-27 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
US20080090834A1 (en) * 2006-07-06 2008-04-17 Pfizer Inc Selective azole pde10a inhibitor compounds
WO2008020611A1 (en) 2006-08-18 2008-02-21 Hodogaya Chemical Co., Ltd. Compound having pyridoindole ring structure having substituted pyridyl group attached thereto, and organic electroluminescence element
KR20110063583A (en) 2008-10-02 2011-06-10 바스프 에스이 Complex salts
KR101233375B1 (en) * 2008-12-24 2013-02-15 제일모직주식회사 Novel compound for organic photoelectric device and organic photoelectric device including the same
KR101288557B1 (en) * 2008-12-24 2013-07-22 제일모직주식회사 Novel compound for organic photoelectric device and organic photoelectric device including the same
KR101872407B1 (en) 2011-06-22 2018-08-01 삼성디스플레이 주식회사 Heterocyclic compound, organic light-emitting diode comprising the same and flat display device
KR102192001B1 (en) * 2014-03-31 2020-12-16 엘지디스플레이 주식회사 Carbazole compound and organic light emitting diode including the same
KR101706659B1 (en) * 2014-05-22 2017-02-17 (주)아이티켐 Noble Organic Light-Emitting Compound and Organic Light-Emitting Device Using the Same
CN105085551B (en) * 2015-06-04 2017-09-22 北京拓彩光电科技有限公司 Aromatic heterocycle derivative and the organic light emitting diode device using the compound
KR101965928B1 (en) * 2015-06-29 2019-04-04 주식회사 두산 Organic light-emitting compound and organic electroluminescent device using the same
CN105118918B (en) * 2015-07-21 2017-06-20 苏州大学 A kind of preparation method of organic inorganic hybridization electric charge injection layer
CN105384759B (en) * 2015-10-22 2017-12-15 北京拓彩光电科技有限公司 Aromatic heterocycle derivative and the organic light emitting diode device using the compound
KR102587382B1 (en) * 2016-04-29 2023-10-12 솔루스첨단소재 주식회사 Organic light-emitting compound and organic electroluminescent device using the same
CN109309163B (en) * 2017-07-26 2019-12-17 清华大学 Organic electroluminescent device
CN111247145B (en) * 2018-09-28 2023-04-18 Lt素材株式会社 Heterocyclic compound and organic light-emitting device comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411736A (en) * 1977-06-28 1979-01-29 Ricoh Co Ltd Photoreceptor for electrophotography
JPS63293550A (en) * 1987-05-27 1988-11-30 Canon Inc Electrophotographic sensitive body
JPH02108058A (en) * 1988-10-18 1990-04-19 Canon Inc Electrophotographic sensitive body
JP2001160488A (en) * 1999-12-01 2001-06-12 Konica Corp Organic electroluminescent element
EP1246510A1 (en) * 2000-11-27 2002-10-02 Idemitsu Kosan Co., Ltd. Organic electroluminescence device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3415831A (en) * 1965-07-16 1968-12-10 Smith Kline French Lab 2-isoquinolinyl(and carbolinyl) alkyloctahydroindolo [2,3-a]-quinolizines
JPS5291893A (en) * 1976-01-23 1977-08-02 Sumitomo Chem Co Ltd Preparation of indroquinoline derivatives
JPH07110940B2 (en) * 1991-06-05 1995-11-29 住友化学工業株式会社 Organic electroluminescent device
DE19502753A1 (en) * 1995-01-23 1996-07-25 Schering Ag New 9H-pyrido [3,4-b] indole derivatives
US6660410B2 (en) * 2000-03-27 2003-12-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence element
JP4061840B2 (en) * 2000-12-28 2008-03-19 凸版印刷株式会社 Hole transporting compound and organic thin film light emitting device for organic thin film light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411736A (en) * 1977-06-28 1979-01-29 Ricoh Co Ltd Photoreceptor for electrophotography
JPS63293550A (en) * 1987-05-27 1988-11-30 Canon Inc Electrophotographic sensitive body
JPH02108058A (en) * 1988-10-18 1990-04-19 Canon Inc Electrophotographic sensitive body
JP2001160488A (en) * 1999-12-01 2001-06-12 Konica Corp Organic electroluminescent element
EP1246510A1 (en) * 2000-11-27 2002-10-02 Idemitsu Kosan Co., Ltd. Organic electroluminescence device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1571193A4 *

Cited By (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281087A (en) * 2003-03-12 2004-10-07 Nippon Hoso Kyokai <Nhk> Organic el device and organic el display
US7749619B2 (en) 2003-04-23 2010-07-06 Konica Minolta Holdings, Inc. Organic electroluminescent element and display
WO2004095891A1 (en) * 2003-04-23 2004-11-04 Konica Minolta Holdings, Inc. Material for organic electroluminescent device, organic electroluminescent device, illuminating device and display
WO2004095889A1 (en) * 2003-04-23 2004-11-04 Konica Minolta Holdings, Inc. Organic electroluminescent device and display
WO2004095890A1 (en) * 2003-04-23 2004-11-04 Konica Minolta Holdings, Inc. Material for organic electroluminescent device, organic electroluminescent device, illuminating device and display
JPWO2004095890A1 (en) * 2003-04-23 2006-07-13 コニカミノルタホールディングス株式会社 Materials for organic electroluminescence elements, organic electroluminescence elements, lighting devices, display devices
US7326475B2 (en) 2003-04-23 2008-02-05 Konica Minolta Holdings, Inc. Material for organic electroluminescent device, organic electroluminescent device, illuminating device and display
JP4635869B2 (en) * 2003-04-23 2011-02-23 コニカミノルタホールディングス株式会社 Organic electroluminescence element, lighting device, display device
US7740955B2 (en) 2003-04-23 2010-06-22 Konica Minolta Holdings, Inc. Organic electroluminescent device and display
WO2005039246A1 (en) * 2003-09-30 2005-04-28 Konica Minolta Holdings, Inc. Organic electroluminescent device, illuminating device, and display
JP2005340123A (en) * 2004-05-31 2005-12-08 Konica Minolta Holdings Inc Organic electroluminescent element, lighting system, and display
JP2005347160A (en) * 2004-06-04 2005-12-15 Konica Minolta Holdings Inc Organic electroluminescent element, lighting device, and display device
JP2006032599A (en) * 2004-07-15 2006-02-02 Konica Minolta Holdings Inc Organic electroluminescence element, illuminator and display device
JPWO2006008976A1 (en) * 2004-07-16 2008-05-01 コニカミノルタホールディングス株式会社 White light-emitting organic electroluminescence element, display device, and illumination device
US8329317B2 (en) 2004-07-16 2012-12-11 Konica Minolta Holdings, Inc. White light emitting organic electroluminescence element, display and illuminator
JP2006060198A (en) * 2004-07-23 2006-03-02 Konica Minolta Holdings Inc Organic electroluminescent element, display and illuminating device
JP2011228723A (en) * 2004-07-23 2011-11-10 Konica Minolta Holdings Inc Organic electroluminescent element, display device and illuminating device
WO2006013739A1 (en) * 2004-08-04 2006-02-09 Konica Minolta Holdings, Inc. Organic electroluminescent device, illuminating device and display
JPWO2006013739A1 (en) * 2004-08-04 2008-05-01 コニカミノルタホールディングス株式会社 Organic electroluminescence element, lighting device and display device
JP4626613B2 (en) * 2004-08-04 2011-02-09 コニカミノルタホールディングス株式会社 Organic electroluminescence device
US20080303415A1 (en) * 2004-08-05 2008-12-11 Yoshiyuki Suzuri Organic Electroluminescence Element, Display and Illuminator
JP2006066580A (en) * 2004-08-26 2006-03-09 Konica Minolta Holdings Inc Organic electroluminescent element, material therefor lighting system and display device
JP2006120689A (en) * 2004-10-19 2006-05-11 Konica Minolta Holdings Inc Organic electroluminescence element, display device and illumination device
JP5309446B2 (en) * 2004-10-19 2013-10-09 コニカミノルタ株式会社 Organic electroluminescence element, display device and lighting device
JPWO2006043440A1 (en) * 2004-10-19 2008-05-22 コニカミノルタホールディングス株式会社 Organic electroluminescence element, display device and lighting device
WO2006043440A1 (en) * 2004-10-19 2006-04-27 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
JP2006120762A (en) * 2004-10-20 2006-05-11 Konica Minolta Holdings Inc Organic electroluminescent element, display and lighting device
JP2006120763A (en) * 2004-10-20 2006-05-11 Konica Minolta Holdings Inc Organic electroluminescence element, lighting device, and display device
JP2006120821A (en) * 2004-10-21 2006-05-11 Konica Minolta Holdings Inc Organic electroluminescent element, lighting device and indication device
JP2006120906A (en) * 2004-10-22 2006-05-11 Konica Minolta Holdings Inc Organic electroluminescence element, indicator and lighting device
JP2006128257A (en) * 2004-10-27 2006-05-18 Konica Minolta Holdings Inc Organic el element, its manufacturing method, and illumination or displaying element using the element
WO2006070619A1 (en) * 2004-12-28 2006-07-06 Konica Minolta Holdings, Inc. Organic electroluminescent device, display, and illuminating device
JPWO2006070619A1 (en) * 2004-12-28 2008-06-12 コニカミノルタホールディングス株式会社 Organic electroluminescence element, display device and lighting device
JP5056016B2 (en) * 2004-12-28 2012-10-24 コニカミノルタホールディングス株式会社 Organic electroluminescence element, display device and lighting device
US7902196B2 (en) 2005-03-17 2011-03-08 President And Fellows Of Harvard College Synthesis of avrainvillamide, strephacidin B, and analogues thereof
WO2006100888A1 (en) * 2005-03-22 2006-09-28 Konica Minolta Holdings, Inc. Material for organic el device, organic el device, display and illuminating device
JP2012138585A (en) * 2005-04-18 2012-07-19 Konica Minolta Holdings Inc Organic electroluminescent element, display device, and lighting device
WO2006126389A1 (en) * 2005-05-25 2006-11-30 Konica Minolta Holdings, Inc. Organic electroluminescent device material, organic electroluminescent device, display and illuminating device
US9099659B2 (en) 2005-07-01 2015-08-04 Konica Minolta, Inc. Organic electroluminescent element material, organic electroluminescent element, display device, and lighting device
WO2007004380A1 (en) * 2005-07-01 2007-01-11 Konica Minolta Holdings, Inc. Organic electroluminescent element material, organic electroluminescent element, display device, and lighting equipment
JP5076891B2 (en) * 2005-07-01 2012-11-21 コニカミノルタホールディングス株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
US9379337B2 (en) 2005-07-01 2016-06-28 Konica Minolta, Inc. Organic electroluminescent element material, organic electroluminescent element, display device, and lighting device
WO2007023659A1 (en) * 2005-08-25 2007-03-01 Konica Minolta Holdings, Inc. Organic electroluminescence device material, organic electroluminescence device, display device, and lighting device
JP2012256910A (en) * 2006-02-20 2012-12-27 Konica Minolta Holdings Inc Organic electroluminescent element, white light-emitting element, display device, and lighting device
JPWO2008056746A1 (en) * 2006-11-09 2010-02-25 新日鐵化学株式会社 Compound for organic electroluminescent device and organic electroluminescent device
WO2008114690A1 (en) * 2007-03-15 2008-09-25 Hodogaya Chemical Co., Ltd. Compound wherein substituted bipyridyl group is connected with pyridoindole ring structure through phenylene group, and organic electroluminescent device
JP5352447B2 (en) * 2007-03-15 2013-11-27 保土谷化学工業株式会社 Compound and organic electroluminescence device in which substituted bipyridyl group and pyridoindole ring structure are linked via phenylene group
KR101487567B1 (en) 2007-03-15 2015-01-29 호도가야 가가쿠 고교 가부시키가이샤 Compound wherein substituted bipyridyl group is connected with pyridoindole ring structure through phenylene group, and organic electroluminescent device
US8252431B2 (en) 2007-03-15 2012-08-28 Hodogaya Chemical Co., Ltd. Compound wherein substituted bipyridyl group is connected with pyridoindole ring structure through phenylene group, and organic electroluminescent device
JPWO2009096549A1 (en) * 2008-01-31 2011-05-26 保土谷化学工業株式会社 Compound and organic electroluminescence device in which substituted pyridyl group and pyridoindole ring structure are linked via phenylene group
WO2009096549A1 (en) * 2008-01-31 2009-08-06 Hodogaya Chemical Co., Ltd. Compound having substituted pyridyl group and pyridoindole ring structure linked through phenylene group, and organic electroluminescent device
US8377573B2 (en) 2008-01-31 2013-02-19 Hodogaya Chemical Co., Ltd. Compound having substituted pyridyl group and pyridoindole ring structure linked through phenylene group, and organic electroluminescent device
JP2014114287A (en) * 2008-02-14 2014-06-26 Hodogaya Chem Co Ltd Compound having pyridoindole ring structure to which substituted pyridyl group is bonded and organic electroluminescent element
JP5467873B2 (en) * 2008-02-14 2014-04-09 保土谷化学工業株式会社 Compound having pyridoindole ring structure in which substituted pyridyl group is linked and organic electroluminescence device
WO2009102016A1 (en) * 2008-02-14 2009-08-20 Hodogaya Chemical Co., Ltd. Compound having pyridoindole ring structure bonded with substituted pyridyl group, and organic electroluminescent device
JPWO2009102016A1 (en) * 2008-02-14 2011-06-16 保土谷化学工業株式会社 Compound having pyridoindole ring structure in which substituted pyridyl group is linked and organic electroluminescence device
US8624228B2 (en) 2008-02-14 2014-01-07 Hodogaya Chemical Co., Ltd. Compound having pyridoindole ring structure bonded with substituted pyridyl group, and organic electroluminescent device
US9525140B2 (en) 2008-05-16 2016-12-20 Hodogaya Chemical Co., Ltd. Arylamine compound useful in an organic electroluminescent device
US8771841B2 (en) 2008-05-16 2014-07-08 Hodogaya Chemical Co., Ltd. Organic electroluminescent device
WO2009139475A1 (en) * 2008-05-16 2009-11-19 保土谷化学工業株式会社 Organic electroluminescent device
JPWO2009139475A1 (en) * 2008-05-16 2011-09-22 保土谷化学工業株式会社 Organic electroluminescence device
JP2010031248A (en) * 2008-06-23 2010-02-12 Sumitomo Chemical Co Ltd Composition and light-emitting element using the composition
US8586210B2 (en) 2008-09-24 2013-11-19 Hodogaya Chemical Co., Ltd. Compound having substituted anthracene ring structure and pyridoindole ring structure and organic electroluminescence device
WO2010035723A1 (en) * 2008-09-24 2010-04-01 保土谷化学工業株式会社 Compound having substituted anthracene ring structure and pyridoindole ring structure and organic electroluminescence device
JP5832746B2 (en) * 2008-09-24 2015-12-16 保土谷化学工業株式会社 Compounds having substituted anthracene ring structure and pyridoindole ring structure and organic electroluminescence device
WO2011016202A1 (en) * 2009-08-05 2011-02-10 保土谷化学工業株式会社 Compound having substituted anthracene ring structure and pyridoindole ring structure and organic electroluminescence device
US9755152B2 (en) 2009-08-05 2017-09-05 Hodogaya Chemical Co., Ltd. Compound having substituted anthracene ring structure and pyridoindole ring structure, and organic electroluminescent device
US8927119B2 (en) 2009-08-05 2015-01-06 Hodogaya Chemical Co., Ltd. Compound having substituted anthracene ring structure and pyridoindole ring structure, and organic electroluminescent device
JP2011093825A (en) * 2009-10-28 2011-05-12 Hodogaya Chem Co Ltd Compound including 2,2-diphenyladamantyl structure, and organic electroluminescent element
US10541369B2 (en) 2011-01-18 2020-01-21 Hodogaya Chemical Co., Ltd. Compound having substituted bipyridyl group and pyridoinodole ring structure, and organic electroluminescent device
WO2012098849A1 (en) * 2011-01-18 2012-07-26 保土谷化学工業株式会社 Compound having pyridoindole ring structure and substituted bipyridyl group, and organic electroluminescent element
JP5955228B2 (en) * 2011-01-18 2016-07-20 保土谷化学工業株式会社 Compound having substituted bipyridyl group and pyridoindole ring structure and organic electroluminescence device
JP2011146726A (en) * 2011-02-22 2011-07-28 Konica Minolta Holdings Inc Organic electroluminescent element, lighting device and display device
KR20150035706A (en) 2012-07-05 2015-04-07 도레이 카부시키가이샤 Light emitting elment material and light emitting element
WO2014007287A1 (en) 2012-07-05 2014-01-09 東レ株式会社 Light emitting elment material and light emitting element
US9318711B2 (en) 2012-11-20 2016-04-19 Samsung Display Co., Ltd. Organic electroluminescence materials comprising substituted carbazoles and organic electroluminescence devices having the same
JP2015010092A (en) * 2013-06-28 2015-01-19 ユニバーサル ディスプレイ コーポレイション Novel host materials for pholed
JP2014027289A (en) * 2013-09-02 2014-02-06 Konica Minolta Inc Organic electroluminescent element
WO2018181370A1 (en) * 2017-03-28 2018-10-04 保土谷化学工業株式会社 Compound having azacarbazole structure, and organic electroluminescence device
CN112724136A (en) * 2020-12-28 2021-04-30 上海天马有机发光显示技术有限公司 Organic compound, electroluminescent material and application thereof
CN112724136B (en) * 2020-12-28 2023-04-18 武汉天马微电子有限公司 Organic compound, electroluminescent material and application thereof

Also Published As

Publication number Publication date
JP4541152B2 (en) 2010-09-08
TW200414821A (en) 2004-08-01
JPWO2004053019A1 (en) 2006-04-13
EP1571193A1 (en) 2005-09-07
KR101035780B1 (en) 2011-05-20
EP1571193A4 (en) 2008-05-07
KR20050085550A (en) 2005-08-29
CN1723258A (en) 2006-01-18
CN100338172C (en) 2007-09-19
TWI359182B (en) 2012-03-01

Similar Documents

Publication Publication Date Title
WO2004053019A1 (en) Organic electroluminescent device material and organic electroluminescent device using same
TWI376404B (en)
WO2003080761A1 (en) Material for organic electroluminescent element and organic electroluminescent element employing the same
KR20080027332A (en) Pyrene derivative and organic electroluminescence device making use of the same
WO2004083162A1 (en) Aromatic amine derivative and organic electroluminescent element made with the same
WO2004044088A1 (en) Material for organic electroluminescent device and organic electroluminescent device using same
TW200305353A (en) Material for organic electroluminescent devices and organic electroluminescent devices made by using the same
JP4002040B2 (en) Organic electroluminescence device
WO2004092111A1 (en) Aromatic amine derivative and organic electroluminescent element employing the same
WO2004101491A1 (en) Arylamine compound and organic electroluminescence device containing the same
JPH06132080A (en) Organic electroluminescence element
JP2003238516A (en) New condensed aromatic compound and organic electroluminescent element produced by using the same
JP2003201472A (en) Material for organic electroluminescent element and organic electroluminescent element using the same
WO2002020459A1 (en) Novel styryl compounds and organic electroluminescent devices
JP4322457B2 (en) Novel azaaromatic compound having amino group and organic electroluminescence device using the same
KR20060134987A (en) Material for organic electroluminescent element and organic electroluminescent element employing the same
JP2003129043A (en) Material for organic electroluminescent element and organic electroluminescent element using the same
JP3842156B2 (en) Organic electroluminescence device
US20060251918A1 (en) Organic electroluminescent device material and organic electroluminescent device using same
JP4568114B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP4259264B2 (en) Material for organic electroluminescence device and organic electroluminescence device
JP3985895B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP4028996B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP2007284684A (en) Material for organic electroluminescent element and organic electroluminescent element using the same
KR20120110234A (en) Binaphthalene derivatives, material for organic electroluminescent device and organic eletroluminescent device utilizing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN IN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004558476

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003778817

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006251918

Country of ref document: US

Ref document number: 10538023

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057010613

Country of ref document: KR

Ref document number: 20038A57064

Country of ref document: CN

Ref document number: 1208/CHENP/2005

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 1020057010613

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003778817

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10538023

Country of ref document: US