WO2004051184A1 - Shape measurement method, shape measurement device, tilt measurement method, stage device, exposure device, exposure method, and device manufacturing method - Google Patents

Shape measurement method, shape measurement device, tilt measurement method, stage device, exposure device, exposure method, and device manufacturing method Download PDF

Info

Publication number
WO2004051184A1
WO2004051184A1 PCT/JP2003/015491 JP0315491W WO2004051184A1 WO 2004051184 A1 WO2004051184 A1 WO 2004051184A1 JP 0315491 W JP0315491 W JP 0315491W WO 2004051184 A1 WO2004051184 A1 WO 2004051184A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis direction
axis
data
measurement
moving body
Prior art date
Application number
PCT/JP2003/015491
Other languages
French (fr)
Japanese (ja)
Inventor
Saburo Kamiya
Yutaka Kanakutsu
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to AU2003289146A priority Critical patent/AU2003289146A1/en
Priority to JP2004556903A priority patent/JPWO2004051184A1/en
Publication of WO2004051184A1 publication Critical patent/WO2004051184A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position

Definitions

  • Exposure apparatus Exposure apparatus, exposure method, and depiice manufacturing method
  • the present invention relates to a shape measuring method and a shape measuring device for a reflection surface provided on a moving body such as a stage, a tilt measuring method for measuring a posture of the moving body, a stage apparatus for moving the moving body, an exposure apparatus,
  • the present invention also relates to an exposure method and a device manufacturing method using the exposure method.
  • a pattern formed on a mask or a reticle (hereinafter, collectively referred to as a “reticle”) is formed by a resist or the like via a projection optical system.
  • a projection optical system There is used an exposure apparatus that transfers an image onto a substrate such as a wafer or a glass plate (hereinafter, referred to as “substrate” or “wafer” as appropriate).
  • a stationary exposure type projection exposure apparatus such as a so-called stepper and a scanning exposure type projection exposure apparatus such as a so-called scanning stepper are mainly used.
  • a wafer stage that can move two-dimensionally while holding the wafer is provided because it is necessary to sequentially transfer the pattern formed on the reticle to a plurality of shot areas on the wafer.
  • a reticle stage for holding a reticle is also movable in the scanning direction.
  • the two-dimensional position of the wafer stage and reticle stage is adjusted by irradiating the measuring mirror from the laser interferometer to the reflecting mirror provided on the wafer stage and reticle stage, and the reflected light and reference light. It is detected with high accuracy based on the fringe pattern or phase difference of the interference light with In the measurement of the positions of the wafer stage and the reticle stage, if the mirror surface of the reflecting mirror provided on the stage has undulations or twists, errors will occur in the measurement values obtained by the laser interferometer, resulting in highly accurate exposure. May not be possible. Therefore, the surface shape (two-dimensional shape) of the mirror surface of the reflecting mirror is measured, and the measurement result of the laser interferometer is corrected based on the measurement result.
  • a measurement wafer on which a plurality of reference marks arranged in a predetermined relationship is formed is placed on a wafer stage such that the arrangement direction of the reference marks and the axial direction of the wafer stage exactly match.
  • the position of the reference mark on the measurement wafer is measured with an off-axis alignment sensor. The above offset is determined from the positional deviation of.
  • a measurement wafer having a predetermined reference mark formed thereon is prepared, and is placed on a wafer stage in a predetermined posture, and then the positions of the plurality of reference marks are aligned with an alignment sensor.
  • an alignment sensor there is a problem that the number of work steps is large and measurement cannot be performed easily and quickly.
  • the measurement results necessarily include errors in the formation of fiducial marks on the measurement wafer, errors due to surface undulations when the stage is placed on the measurement wafer, and measurement errors in the fiducial marks. Is also low. Disclosure of the invention
  • the present invention has been made in view of such circumstances, and its purpose is to: It is an object of the present invention to make it possible to measure the reflection surface provided on a moving body such as a stage easily, quickly and with high accuracy, and to control the position of the stage etc. with high accuracy.
  • the shape of a reflecting surface provided on a movable body that moves along a reference plane orthogonal to a first axis and extending along a second axis direction orthogonal to the first axis direction is defined as A shape measurement method for measuring, wherein the one-dimensional shape of the reflection surface in the second axis direction is separated in the first axis direction while moving the moving body along the second axis direction.
  • Measurement for each of the two positions obtaining first data corresponding to the difference between the one-dimensional shape data for one of the two positions and the one-dimensional shape data for the other, and in the first axial direction of the reflection surface.
  • the moving body is moved in the second axial direction while the posture of the moving body is adjusted such that the measurement result based on the measurement beam radiated simultaneously to the two positions separated from the moving body becomes constant.
  • the first due to the posture adjustment of the moving body Directional displacement is measured at a plurality of locations to obtain second data corresponding to a change in the amount of rotation of the moving body about the second axis in the second axis direction, and the first data and the second data are obtained.
  • the shape of a reflecting surface provided on a moving body that moves along a reference plane orthogonal to the first axis and extending along a second axis direction orthogonal to the first axis direction is defined.
  • a shape measuring device for measuring wherein the one-dimensional shape measuring device for measuring a one-dimensional shape of the reflection surface in the second axis direction at each of two positions separated in the first axis direction;
  • a tilt measuring device for simultaneously irradiating a measurement beam to two positions of the reflecting surface separated in the first axis direction and measuring a rotation amount of the reflecting surface about the second axis; and For one-dimensional shape measurement equipment First data corresponding to the difference between the one-dimensional shape data for one of the two positions and the one-dimensional shape data for the other is obtained, and the posture is set so that the measurement result by the tilt measuring device is constant.
  • the moving body is moved in the second axis direction while controlling the adjusting device, and the displacement is measured by the displacement measuring device during the movement.
  • a reflecting surface extending along a second axis direction orthogonal to the first axis, and the reference of the moving body moving along a reference plane orthogonal to the first axis.
  • First data corresponding to the difference between one and the other of the one-dimensional shape data of the reflection surface in the second axis direction measured at each of the two positions, and that the measurement result based on the measurement beam is constant.
  • Second data corresponding to a change in the amount of rotation about the two axes is obtained, and the fourth data obtained by linearly approximating the third data corresponding to the difference between the first data and the second data is obtained.
  • a scanning device having a reflecting surface extending along a second axis direction orthogonal to the first axis, and having a moving body moving along a reference plane orthogonal to the first axis.
  • a tilt device for simultaneously irradiating a measurement beam to two positions of the reflection surface separated in the first axis direction and measuring a rotation amount of the reflection surface around the second axis.
  • a measuring device a one-dimensional shape measuring device that measures a one-dimensional shape of the reflection surface in the second axis direction at each of two positions separated in the first axis direction; and a moving body with respect to the reference plane.
  • the moving body is moved in the second axis direction while controlling the attitude adjusting device, and the second axis of the moving body in the second axis direction is measured based on a measurement result by the displacement measuring device at this time.
  • a stage device comprising: a control device that corrects a measurement result by the tilt measuring device based on fifth data obtained by adding the first data.
  • an exposure apparatus for projecting and exposing an image on a first surface onto a second surface, comprising: a mask stage for disposing a mask on the first surface; and a substrate on the second surface.
  • an exposure apparatus including a stage device according to the fourth aspect of the present invention, which moves at least one of the substrate stages to be moved as the movable body.
  • the fourth data obtained by the measurement and the calculation in the inventions according to the first to fifth aspects described above is one-dimensional shape data on one of two positions of the reflecting surface separated in the first axis direction.
  • the relative relationship between the one-dimensional shape data and the other is shown without using a measurement wafer on which a reference mark is formed in order to derive the relative relationship. You can ask. Therefore, the shape data of the reflecting surface can be obtained easily and quickly, and the accuracy associated with the measurement of the reference mark is not included, so that the accuracy can be improved.
  • an exposure method for transferring a mask pattern onto a photosensitive object held by a movable body along a reference plane orthogonal to a first axis comprising: The posture of the moving body is adjusted so that the measurement results obtained by the measurement beams applied to the two positions separated in the first axis direction on the reflecting surface of the moving body extending in the second orthogonal axis direction become constant. Moving the moving body in the second axis direction while measuring rotation data relating to a change in the amount of rotation of the moving body around the second axis;
  • the movement of the moving body is determined.
  • An exposure method is provided for controlling.
  • the exposure method in the exposure method, information on a displacement amount of the moving body in the first axis direction due to the posture adjustment during the movement is detected, and the information is detected based on the detected information.
  • the rotation data can be obtained.
  • measurement beams are respectively obtained at a plurality of positions on the reflection surface separated in the second axis direction, which are obtained by moving the moving body in the second axis direction.
  • the shape data can be obtained based on the measurement result of the interferometer system that irradiates the light.
  • the exposure method in the exposure method, at least one of the plurality of positions spaced apart in the second axis direction on the reflection surface from the interferometer system is located at a position separated in the first axis direction from at least one of the plurality of positions.
  • the attitude of the moving body can be adjusted using the interferometer system.
  • a device manufacturing method including an exposure step of transferring a pattern of a mask onto a photosensitive object using the exposure method according to the sixth aspect of the present invention.
  • the exposure apparatus holds the photosensitive object, is movable along a reference plane orthogonal to a first axis, and is movable with respect to the reference plane.
  • a stage system having a movable body in which a posture is adjustable and a reflecting surface parallel to a second axis orthogonal to the first axis is formed, and two stages separated in the first axis direction of the reflecting surface.
  • An interferometer system that irradiates a position with a measurement beam to at least measure rotation information about the second axis of the moving object; and a measurement beam at two positions of the reflection surface that are separated in the first axis direction.
  • a displacement measuring device for measuring displacement information of the moving body in the first axis direction by the posture adjustment, and measuring the moving body with the rotation information of the interferometer system. So that Based on the measurement result of the displacement measurement device obtained by moving the moving body in the second axis direction while adjusting the posture of the moving body, obtaining rotation data on a change in the amount of rotation of the moving body around the second axis, An exposure device comprising: a control device configured to control movement of the moving body by using shape data and the rotation data of the reflection surface in the second axis direction at each of the plurality of positions separated in the first axis direction. Equipment provided It is.
  • the interferometer system is separated in the second axis direction from at least one of two positions separated in the first axis direction on the reflection surface. Irradiating a position with a measurement beam to measure rotation information about the first axis of the moving body, wherein the control device is configured to move the moving body in the second axis direction.
  • the shape data can be obtained based on a measurement result regarding the rotation information about the first axis.
  • the stage system includes a plurality of actuators for adjusting a posture of the moving body, and the displacement measuring device includes a driving amount of the plurality of actuators as the displacement information. Can be measured.
  • FIG. 1 is a schematic configuration diagram of an exposure apparatus of one embodiment
  • Fig. 2 is a diagram for explaining the configuration of the substrate table and the arrangement of the laser interferometer for detecting the position of the substrate table.
  • Figure 3 is a schematic configuration diagram of a laser interferometer for detecting the two-dimensional position of the substrate table.
  • FIG. 4 is a diagram for explaining an optical path in the laser interferometer of FIG. 3,
  • FIG. 5 is a diagram for explaining an optical path in the laser interferometer of FIG. 3,
  • FIG. 6 is a diagram for explaining an optical path in the laser interferometer of FIG. 3,
  • FIG. 7 is a schematic configuration diagram of a laser interferometer for detecting tilt information of a reflection surface
  • FIG. 8 is a diagram illustrating an optical path in the laser interferometer of FIG. 7,
  • FIG. 9 is a diagram for explaining an optical path in the laser interferometer of FIG. 7,
  • FIG. 10 is a diagram for explaining an optical path in the laser interferometer of FIG. 7,
  • FIG. 11 is a diagram for explaining the configuration of the reticle fine movement stage and the arrangement of the laser interferometer for detecting the position of the reticle fine movement stage.
  • Fig. 12 is a diagram for explaining the movement of the substrate table and the fiducial marks during one-dimensional shape measurement.
  • Fig. 13 is a diagram for explaining the optical path in the laser interferometer when measuring the one-dimensional shape
  • Fig. 14 is a diagram for explaining the optical path in the laser interferometer when measuring the one-dimensional shape
  • Fig. 15 is the fiducial mark. Diagram for explaining the shape measurement result of the reflective surface before correction by position measurement,
  • Figure 16 is a diagram for explaining the result of measuring the shape of the reflective surface after correction by measuring the reference mark position.
  • FIG. 17 is a flowchart for explaining a device manufacturing method using the exposure apparatus shown in FIG. 1,
  • FIG. 18 is a flowchart of the processing in the wafer process step (step 204) of FIG.
  • FIG. 19 is a perspective view showing a configuration of a peripheral portion relating to attitude control of the substrate stage
  • FIG. 20A is a diagram showing an example of a difference between upper and lower stage shape data and an encoder measurement result
  • FIG. 21 is a diagram for explaining a modification in which the stage shape is a triangle.
  • FIG. 22 is a view for explaining a modification in which the shape of the reflecting surface is measured on the reticle stage.
  • FIG. 1 shows a schematic configuration of an optical device 100 according to one embodiment.
  • the exposure apparatus 100 is a so-called step-and-scan type scanning exposure apparatus.
  • the exposure apparatus 100 includes an illumination system (not shown) for uniformly illuminating a slit (rectangular or arc-shaped) illumination area on a reticle R as a mask, and a mask stage as a mask stage for holding the reticle.
  • a wafer stage including a reticle stage RST, a reticle layer R, and a projection optical system PL for projecting the pattern of the reticle layer onto a wafer W having a photoresist coated on its surface, and a substrate table 4 for holding the wafer W. It has equipment and these control systems.
  • the illumination system includes a light source unit, an optical It consists of an optical system, a beam splitter, a condenser lens system, a reticle blind (field stop), and an imaging lens system (all not shown).
  • the configuration and the like of this illumination system are disclosed in, for example, JP-A-6-349701 and US Patent No. 5,534,970 corresponding thereto.
  • K r F excimer laser light source (oscillation wavelength 2 4 8 nm), A r F excimer laser light source (oscillation wavelength 1 9 3 nm), or F 2 laser light source (oscillation wavelength 1 5 7 nm), Kr (Crypton dimer) Laser light source (Oscillation wavelength: 146 nm), Ar 2 (Argon timer) Laser light source (Oscillation wavelength: 126 nm), Harmonic of copper vapor laser light source and YAG laser A wave generator or an ultra-high pressure mercury lamp (g-line, i-line, etc.) is used.
  • the illumination system excluding the light source unit is also referred to as an illumination optical system.
  • the reticle stage RST moves in a predetermined scanning direction (here, FIG. 1) on the upper surface (reference plane) of a reticle support table (surface plate) 9 horizontally arranged below the illumination optical system.
  • a reticle scanning stage 10 that can be moved with a predetermined stroke in the Y direction that is a direction perpendicular to the paper surface), and is mounted on the reticle scanning stage 10 in the X direction with respect to the reticle scanning stage 10.
  • a reticle fine movement stage 11 that can be finely driven in each of the Y direction and the rotation direction (0 Z direction) around the Z axis is provided.
  • Reticle R is fixed on reticle fine movement stage 11 by vacuum suction or electrostatic suction.
  • the reticle R is held by the reticle stage RST such that the lower surface (pattern surface) of the reticle R at least substantially coincides with the first surface (object surface) of the projection optical system PL described later in the above-mentioned illumination area.
  • the positions of the reticle fine movement stage 11 in the X, Y, and 0 Z directions are constantly controlled by a reticle laser interferometer (hereinafter referred to as a “reticle interferometer”) 14 disposed on the reticle support 9. Being monitored.
  • Reticle stage RST incorporates a fine movement mechanism (actuator such as voice coil motor) for the reticle table that holds reticle R.
  • the movable body may be one-dimensionally driven in a scanning direction (Y direction) by, for example, a linear motor. Further, the end surface of reticle fine movement stage 11 (or reticle table) may be mirror-finished and used as a reflecting surface (corresponding to the reflecting surface of reflecting mirrors 21X, 21Y1, 21Y2 described above). Good.
  • the position information (or speed information) of the reticle fine movement stage 11 obtained by the reticle interferometer 14 is supplied to a main control system 22 that controls and controls the operation of the entire apparatus.
  • the main control system 22 includes a reticle scanning stage 10 and a reticle via a reticle driving device 25 including a linear motor for driving the reticle scanning stage 10 and a voice coil motor for driving the reticle fine movement stage 11.
  • the operation of the fine movement stage 1 1 is controlled.
  • the projection optical system PL a dioptric optical system having a predetermined reduction magnification ⁇ (j3 is, for example, 4, 1 ⁇ 5, etc.) in both-side telecentricity is used. 6: Refer to Fig. 11) and project a reduced image of the reticle R pattern into the exposure area (34: See Fig. 2).
  • the direction of the optical axis AX of the projection optical system PL is a Z direction orthogonal to the XY plane.
  • an image processing method for observing alignment marks (wafer marks) attached to each shot area SA (see FIG. 2) on the wafer W is turned off.
  • Axis sensors (hereinafter referred to as “alignment sensors”) 26 are arranged.
  • the optical axis FX of the optical system of the alignment sensor 26 is parallel to the optical axis AX of the projection optical system.
  • the detailed configuration of such an alignment sensor 26 is disclosed in, for example, Japanese Patent Application Laid-Open No. Heisei 9-219354 and U.S. Pat. No. 5,859,707 corresponding thereto.
  • the alignment sensor 26 forms a mark detection system.
  • the wafer stage device is disposed below the projection optical system PL, and is capable of moving in a Y direction on the upper surface (reference plane) of a wafer support (stool) 1 in the Y direction.
  • a wafer X-axis drive stage 3 that can move on the drive stage 2 in the X direction perpendicular to the Y direction (the horizontal direction in the drawing in FIG. 1), and is mounted on the wafer X-axis drive stage 3 and is placed in the Z direction. (Including rotation around the X axis and rotation around the Y axis) and a substrate table (moving body) 4 that can rotate around the Z axis.
  • the wafer W is held on the substrate table 4 by vacuum suction, electrostatic suction or the like.
  • the surface of the wafer W substantially coincides with the second surface (imaging surface) of the projection optical system PL at least within the above-described exposure area (that is, the focal depth of the projection optical system PL).
  • the wafer stage device may be configured to two-dimensionally drive a movable body incorporating a fine movement mechanism (an actuator such as a voice coil motor) of the substrate table 4 by, for example, a linear motor. May be finely movable in the X direction and the Y direction, respectively.
  • the substrate table 4 is mounted on the wafer X drive stage 3 via three actuators AC1 to AC3 (posture adjustment devices) that can be extended and contracted in the Z-axis direction. Have been.
  • the displacement of each of the actuators AC1 to AC3 is measured by the encoder EN1 to EN3 (posture measuring device) attached to each actuator.
  • Rectifiers AC 1 to AC 3 are configured using a method using a single tally motor and a cam, a laminated piezoelectric element (piezo element), or a voice coil motor (here, a voice coil motor). Is done.
  • the encoders EN 1 to EN 3 f are arranged near the actuators AC 1 to AC 3.
  • a linear encoder such as an optical encoder or a capacitance encoder can be used.
  • the sensors EN1 to EN3 for measuring the displacements (driving amounts) of the actuators AC1 to AC3 are not limited to encoders and may be arbitrary.
  • the three actuators AC 1 to AC 3 are controlled by the main control system 22.
  • the position (focal position) of the substrate stage 4 in the Z direction can be adjusted, and the amount of expansion and contraction of the three actuators AC 1 to AC 3 can be adjusted individually.
  • the tilt angles of the substrate stage 4 around the X axis and the Y axis can be adjusted.
  • the detected values (displacement) in the Z-axis direction obtained from the three encoders EN 1 to EN 3 are supplied to the main control system 22.
  • the main control system 22 determines the position of the wafer W in the Z-axis direction based on the detected values of the encoders EN 1 to EN 3 and the arrangement of the encoders EN 1 to EN 3 (the positional relationship in the XY plane). Find the position, tilt angle around the X axis and tilt angle around the Y axis.
  • a reflector 7 is provided on the side of the substrate table 4 and is located outside.
  • a laser interferometer (hereinafter referred to as a “wafer interferometer”) 13 monitors the position of the substrate table 4 (wafer W) in the X, Y, and rotation directions (Z direction) around the Z axis.
  • the position information obtained by the wafer interferometer 13 is also supplied to the main control system 22.
  • a reflecting mirror 7 X for the X axis and a reflecting mirror 7 Y for the Y axis are fixed to the side surface of the substrate table 4 (see FIG. 2) ', but in FIG. , 7 Y are representatively shown as reflector 7.
  • the side surface of the substrate table 4 may be mirror-finished and used as a reflecting surface (corresponding to the reflecting surface of the reflecting mirror 7 described above).
  • the wafer interferometer 13 is a laser interferometer as a two-dimensional position detection system that projects laser beams in two axes to the reflecting mirrors 7X and 7Y to detect the XY position of the substrate table 4.
  • Laser interferometer as a tilt detection system that projects two-axis laser beams to the reflecting mirrors 7X and 7Y to detect the tilt (rotation angle about the X axis) with respect to the laser. It consists of 3 YP, 13 FP (tilt measuring device) (see Fig. 2), but these laser interferometers are shown as a wafer interferometer 13 in Fig. 1 as a representative.
  • a reticle reference mirror (not shown) that the reticle interferometer 14 irradiates a reference light beam and the wafer interferometer are provided on the mirror of the projection optical system PL (or a mount on which the projection optical system PL is mounted).
  • the wafer reference mirror MRW 13 for irradiating the reference beam is fixed.
  • the wafer reference mirror MRW is composed of an X-axis wafer reference mirror MRWX (see FIG. 3) in which the laser interferometers 13 X 1 and 13 X 2 irradiate a reference beam, and the laser interferometers 13 Y 1 and 13 Y 2 is composed of a Y-axis wafer reference mirror (not shown) that irradiates a reference light beam.
  • the X-axis wafer reference mirror MR WX and the Y-axis wafer reference mirror are shown as wafer reference mirrors MRW. Have been.
  • the reticle reference mirror is an X-axis reticle reference mirror that irradiates the reference beam with the laser interferometers 14 X 1, 14 X 2 and the laser interferometers 14 Y 1, 14.
  • Y2 is configured with a Y-axis reticle reference mirror (all not shown) that irradiates a reference beam.
  • the alignment sensor 26 (or a mount to which the alignment sensor 26 is fixed) has a laser interferometer 13 FX which is used to irradiate the reference beam.
  • a mirror (not shown) is fixed.
  • the apparatus 100 shown in FIG. 1 includes a light transmitting system 28 and a light receiving system 29, and the inside of an exposure area 34 on a wafer W conjugated with an illumination area on the reticle R with respect to the projection optical system PL. It is one of the oblique incident light type focus detection systems (focus detection systems) for detecting the position in the Z direction (optical axis AX direction) of the wafer surface at each of a plurality of detection points set in the vicinity thereof.
  • a multipoint focus position detection system is provided as a leveling detection system. The detailed configuration and the like of this multi-point focus position detection system (28, 29) are described in, for example, Japanese Patent Application Laid-Open No. HEI 6-283043 and US Pat. , 332, etc.
  • a plurality of detection points may be set only in one of the inside and outside of the exposure area 34.
  • the plurality of detection points are at least detection points apart from the scanning direction (Y direction) in which the wafer W is moved during the scanning exposure and the non-scanning direction (X direction) orthogonal thereto. It is preferable to include
  • the Z-direction position information from the multi-point focus position detection system (28, 29) is supplied to the main control system 22.
  • the main control system 22 drives the wafer Y-axis drive stage 2 Via a wafer driving device 24 including a linear motor for driving the X-axis drive stage 3 for the wafer, an actuator for finely moving the substrate table 4 in the XY direction, and an actuator for adjusting the posture of the substrate table 4 AC:!
  • the position of the wafer W is controlled in each of the XYZ axis directions and the XYZ axis directions.
  • the wafer stage device may be configured by the wafer support table 1 and the substrate table 4, and the wafer driving device 24 may be configured to include a planar motor.
  • a reference mark plate 6 is fixed near the wafer W on the substrate table 4.
  • the surface of the reference mark plate 6 is set at the same height as the surface of the wafer W, and various reference marks such as alignment reference marks to be described later are formed on the surface.
  • reticle R in Fig. 1 shows a pair of reticle alignment systems. 9 and 20 are arranged. These reticle alignment systems 19 and 20 are not shown here, but each of them is an epi-illumination system for illuminating a mark to be detected with the exposure light EL or illumination light of the same wavelength, and its detection system. And an alignment microscope for capturing an image of the target mark.
  • the alignment microscope includes an imaging optical system and an image sensor.
  • deflection mirrors 15 and 16 for guiding the detection light from the reticle to the reticle alignment systems 19 and 20, respectively, are movably arranged. In response to a command from the control system 22, the deflection mirrors 15 and 16 are integrated with the reticle alignment systems 19 and 20, respectively, out of the optical path of the exposure light EL by the driving devices 17 and 18. Evacuated to
  • the apparatus shown in FIG. 1 is an optical path for changing the optical path of the light beam irradiated to the reflecting mirrors 7 X and 7 Y of the laser interferometers 13 X 1, 13 X 2, 13 Y 1 and 13 Y 2. It has change device 40. This optical path changing device 40 will be described later.
  • the main control system 22 is composed of a microcomputer, a workstation, or the like, and controls the entire apparatus. For example, at the time of scanning exposure, the main control system 22 controls the reticle driving device 25 and the wafer driving device 24, respectively, and controls the irradiating region (the illuminating region 36 and the exposing region 34) of the exposure light EL.
  • the reticle R is kept constant in one Y direction (or + Y direction) in synchronism with scanning the wafer W in the + Y direction (or one Y direction) perpendicular to the paper surface of Fig. 1 at a constant speed V. Control to scan at speed VZ j3.
  • the main control system 22 is connected to an input device 23 for the operator to input various commands and the like.
  • the main control system 22 includes the shape information of the reflecting mirrors 7 (actually, the reflecting mirrors 7X and 7Y: see FIG. 2) provided on the substrate table 4.
  • a storage device 27 in which operation parameters including data 27a are stored is provided.
  • FIG. 2 is a plan view showing the periphery of the substrate table 4.
  • a reference mark plate 6 is fixed near the wafer W on the substrate table 4.
  • a set of fiducial marks 30 A, 30 B, 30 C, 30 D, 30 E, 30 F and a mark for measuring a pace line are formed.
  • an X-axis reflecting mirror 7X extending in the Y direction and a Y-axis reflecting mirror 7Y extending in the X direction are fixed to end side surfaces of the substrate table 4 in the X and + Y directions, respectively.
  • an image of a part of the pattern of the reticle R is projected onto the slit-shaped exposure area 34 on the wafer w, and the reticle alignment system 1 shown in FIG. 9, 20 observation areas are set.
  • the reflecting mirror 7X is irradiated with laser beams LWX1 and LWX2 arranged in the Y-axis direction at a distance L11 and parallel to the X-axis.
  • a pair of laser beams LWXP parallel to the X-axis are irradiated at a distance DX (see Fig. 8) along the Z-axis.
  • the laser beams LWXl and LWX2 are distributed in the Y-axis direction with respect to an axis XWA parallel to the X-axis and passing through the optical axis AX of the projection optical system PL.
  • the reflecting mirror 7X is irradiated with a laser beam LFX parallel to the X-axis, and is arranged at a distance DX along the Z-axis direction in the same manner as the laser beam LWXP, and is parallel to the X-axis.
  • a pair of laser beams LFXP is irradiated.
  • the laser beam LFX is applied to the reflecting mirror 7X along an axis XFA parallel to the X-axis and passing through the optical axis FX of the alignment sensor 26.
  • Each of the laser beams LWX l, L WX 2, L WX P, LFX, L FXP is from the laser interferometers 13 X 1, 13 2, 13 XP, 13 FX, 13 FP shown in Figure 2. Supplied. These laser interferometers 13X1, 13X2, 13XP, 13FX, and 13FP will be described with reference to FIGS.
  • the laser interferometer 13 X 1 includes a light source 51 X 1, a light receiver 52 X 1, and a polarizing beam source. 5 3 X 1, 1 Z 2 wavelength plate 54 X 1, polarizing beam splitter 55 X 1, 1/4 wavelength plate 56 X 1, reflective prism (corner cube) 57 X 1, and It has 58 x 1 reflective prism, 59 x 1 polarizing beam splitter, 60 x 1/4 wavelength plate, and 61 x 1 reflective prism (corner cube).
  • the operation of the laser interferometer 13 X 1 will be described.
  • the laser interferometer 13 X 1 emits a light beam traveling in the + X direction from the light source 51 X 1. Is done.
  • the light source 51 X1 for example, a two-frequency laser utilizing the Zeeman effect is used, and the first polarization component and the second polarization component whose frequencies (that is, wavelengths) are slightly different and whose polarization directions are orthogonal to each other are used.
  • a laser beam composed of polarized light components is output, where the first polarized light component is a vertical polarized light component (V-polarized light) and the second polarized light component is a horizontal polarized light component (H-polarized light).
  • the light beam emitted from the light source 51 X1 enters the polarization beam splitter 53XI, and is split into two light beams according to the polarization direction. That is, the light beam LWX 1 composed of the first polarization component emitted from the light source 51 X 1 passes through the polarization beam splitter 53 X 1 as it is and travels in the + X direction, and the second polarization component The light beam LWXR 1 is deflected by the polarization beam splitter 53 X 1 and travels in the + Z direction.
  • the light beam LWX 1 that has passed through the polarizing beam splitter 5 3 X 1 as it is is rotated by 90 ° through the ⁇ wavelength plate 54 X 1 and the polarization direction is rotated 90 °, so that the polarizing beam splitter The light enters the splitter 55 X 1 and passes directly through the polarizing beam splitter 55 X 1.
  • the light beam L WX 1 that has passed through the polarizing beam splitter 55 X 1 as it is is converted into circularly polarized light by the quarter-wave plate 56 X 1, and then the Z position is ZW 1 and the Y position is near YW 1 Reflecting surface 7 A point on XS is incident and reflected.
  • the light beam LWX 1 reflected by the reflecting surface 7 XS is rotated by 90 ° from the polarization beam splitter 55 X 1 by the 1/4 wavelength plate 56 X 1, and the polarization direction is rotated by 90 °. Return to One Musplitter 5 5 X 1. Then, the light beam LWX 1 is deflected by the polarization beam splitter 55 X 1 and travels in one Y direction.
  • the light beam LWX 1 traveling in the one Y direction is reflected by the reflecting prism 57 X 1 serving as a corner cup, and re-enters the polarizing beam splitter 55 X 1.
  • the light beam LWX 1 re-entering the polarizing beam splitter 55 X 1 from the reflecting prism 57 X 1 is deflected by the polarizing beam splitter 55 X 1 and travels in the + X direction.
  • the wave plate 56X1 After being converted into circularly polarized light by the wave plate 56X1, the light is incident on a point on the reflecting surface 7XS where the Z position is ZW1 and the Y position is near YW1, and is reflected again.
  • the light beam LWX 1 reflected by the reflecting surface 7 XS again has a polarization direction of 9 from the polarization beam splitter 55 X 1 by the 1/4 wavelength plate 56 X 1.
  • the beam After being rotated by 0 °, the beam returns to the polarizing beam splitter 55 X 1 again, and passes through the polarizing beam splitter 55 X 1 as it is.
  • the light beam LWX 1 transmitted through the polarizing beam splitter 55 X 1 in this way is rotated by 90 ° through the 1 ⁇ 2 wave plate 54 X 1 and the polarization beam splitter 55 After being incident on X1, it passes through the polarization beam splitter 55X1 and travels as a measurement light beam to the receiver 52X1.
  • the light beam LWXR 1 deflected by the polarization beam splitter 53 X 1 and travels in the + Z direction is reflected by the reflection prism 58 X 1 and travels in the + X direction, and is deflected by the deflection beam splitter 59 It is incident on X1.
  • X is passed through the deflecting beam splitter 59 X1, the quarter-wave plate 60X1, and the reflecting prism 61X1. After being reflected twice by the axis wafer reference mirror MRWX, it is emitted from the polarizing beam splitter 59 X 1 and enters the reflecting prism 58 X 1.
  • the light beam LWXR 1 thus incident on the reflecting prism 58 X 1 is reflected by the reflecting prism 58 X 1, travels in the Z direction, is deflected by the polarization beam splitter 53 X 1, and is deflected by the polarizing beam splitter 53 X 1.
  • the light beam travels in the direction, and travels on the same optical path as the above-mentioned light beam LWX 1 as a reference light beam to the light receiver 52 2 X 1.
  • the light beam incident on the photodetector 52 X 1 is a combined light of the measurement light beam LWX 1 and the reference light beam LWXR 1.
  • the interference light reflecting the difference in the optical path length between the measurement light beam LWX 1 and the reference light beam LWXR 1 is caused by causing the measurement light beam LWX 1 and the reference light beam LWXR 1 to have the same polarization direction and causing interference.
  • the interference state is measured.
  • the X-axis wafer reference mirror MRWX is fixed to the projection optics PL, and the optical path length of the reference beam from the light source 51 X1 to the light receiver 52 X1 via the X-axis wafer reference mirror MRWX is By measuring the interference state between the measured light beam and the reference light beam, it is possible to determine the position of the irradiation point of the measurement light beam on the reflecting surface 7 XS in the length measurement direction (X-axis direction), that is, the X position. To detect.
  • the laser interferometer 13 X 1 is reset in a predetermined state (for example, the state at the time of reticle alignment), and the X-axis of the irradiation point of the measurement light beam on the reflecting surface 7 XS in the reset state is set. Position detection is performed using the direction position as the coordinate origin in the X-axis direction. The X position detected as described above is hereinafter referred to as “XW1”.
  • the laser interferometer 13 X 2 is provided adjacent to the laser interferometer 13 X 1, and has the same configuration as the laser interferometer 13 X 1. More specifically, as shown in FIG.
  • the laser interferometer 13 ⁇ 2 has the components 5 of the laser interferometer 13 ⁇ 1 based on the surface adjacent to the laser interferometer 13 ⁇ 1.
  • the constituent element 5 1 X 2 -61 X 2 corresponding to 1 X 1 -61 X 1 is arranged symmetrically with respect to the adjacent plane.
  • the laser interferometer 1 3 X 2 similarly to the laser interferometer 1 3 X 1, the light beam LWX 2 is irradiated on the opposite side 7 XS, and the measurement light beam is reflected and directed to the light receiver 5 2 X 2. (See Fig. 5) and the X-axis wafer reference mirror MRWX is irradiated with the light beam LWX R2, and the interference between the reflected light beam and the reference beam (see Fig. 6) directed to the receiver 52X2 is measured. , Detects the position of the irradiation point of the measurement light beam on the reflecting surface 7 XS in the measurement direction (X-axis direction).
  • the laser interferometer 13 XP includes a light source 51 XP, a light receiver 52 XP, a polarizing beam splitter 53 XP, a 1 X2 wavelength plate 54 XP, and a polarizing beam splitter 5.
  • 5 XP, 1/4 wavelength plate 5 6 XP, reflective prism (corner cube) 57 XP, and reflective prism 58 XP, polarizing beam splitter 59 XP, 1/4 wavelength plate 60 XP, reflective prism Corner cube) has 6 1 XP. That is, the laser interferometer 13 XP has the same components as the laser interferometer 13 X 1 described above, but the arrangement positions of the components in the Z-axis direction are different.
  • the operation of the laser interferometer 13 XP will be described.
  • the light source 51 XP uses, for example, a two-frequency laser utilizing the Zeeman effect, similar to the light source 51 X 1 in the laser interferometer 13 X 1, and has a frequency ( That is, it outputs a laser beam composed of a first polarization component and a second polarization component whose wavelengths are slightly different and whose polarization directions are orthogonal to each other.
  • the first polarized light component is a vertical polarized light component (V polarized light)
  • the second polarized light component is a horizontal polarized light component (H polarized light).
  • the light beam emitted from the light source 51 XP enters the polarization beam splitter 53 XP as shown in FIG. 8, and is split into two light beams according to the polarization direction. That is, light
  • the light beam LWXP 2 composed of the first polarization component of the light beam emitted from the source 51 XP passes through the polarization beam splitter 53 XP as it is and travels in the + X direction.
  • the resulting light beam LWX P 1 is deflected by the polarizing beam splitter 53 XP and travels in the + Z direction.
  • the light beam LWXP 2 re-reflected by the reflecting surface 7 XS consists of a 1/4 wavelength plate 56 XP, a polarizing beam splitter 55 XP, a 1/2 wavelength plate 54 XP, and a beam splitter 53 XP. After passing through, the light travels toward the light receiver 52 XP as the first measurement light flux.
  • the light beam LWX P 1 deflected by the polarization beam splitter 53 XP and traveling in the + Z direction is reflected by the reflection prism 58 XP and travels in the + X direction, and is transmitted to the deflection beam splitter 59 XP. Incident. Thereafter, as shown in FIG. 10, in the same manner as in FIG. 9 described above, the light is reflected while passing through the polarizing beam splitter 59 XP, the quarter-wave plate 60 XP, and the reflecting prism 61 XP.
  • the light beam LWXP 1 thus incident on the reflecting prism 58 XP is reflected by the reflecting prism 58 XP, travels in the Z direction, is deflected by the polarizing beam splitter 52 XP, and is deflected in the X direction. Then, the light travels on the same optical path as the first measurement light flux as the second measurement light flux toward the light receiver 52 XP.
  • the light beam incident on the light receiver 52 XP is a combined light of the first measurement light beam and the second measurement light beam. Then, in the light receiver 52 XP, the first measurement light beam and the second measurement light beam are caused to interfere with the same polarization direction, thereby causing interference light reflecting the optical path length difference between the first measurement light beam and the second measurement light beam. Generate and measure the interference state. By measuring the interference state, the amount of rotation of the reflecting surface 7XS about the Y axis is detected. Note that, similarly to the case of the laser interferometer 13 X 1 described above, the laser interferometer 13 XP is reset in a predetermined state (for example, the state at the time of reticle alignment), and the reset state is set.
  • a predetermined state for example, the state at the time of reticle alignment
  • the amount of rotation of the reflecting surface 7 XS around the Y axis (mouth-to-ring amount) is detected, with the amount of rotation of the reflecting surface 7 XS around the Y axis at zero.
  • the tilt information (the pitching amount, which is the amount of rotation around the Y axis) detected by the laser interferometer 13 XP is referred to as “ALWXP”.
  • the laser beam LWX1, laser beam LWX2, and laser beam LWXP1 are arranged in the Y-axis direction at the same Z position ZW1, and as shown in FIG. 2, the laser beam LWX1 and the laser beam LWXP The distance in the Y-axis direction from 1 is L12.
  • the laser interferometer 13F is configured in the same manner as the laser interferometer 13X1 described above. Then, in the laser interferometer 13 FX, similarly to the laser interferometer 13 X1, the measurement light flux irradiated on the reflecting surface 7XS and reflected toward the receiver is separated from the X-axis wafer reference mirror MRWX. By irradiating the above-mentioned alignment reference mirror (not shown) and measuring the state of interference with the reference light beam which is reflected and directed to the receiver, the irradiation point of the measurement light beam on the reflecting surface 7XS is determined. Detects the position in the measurement direction (X-axis direction).
  • the X position detected as described above is hereinafter referred to as “XF”.
  • the laser interferometer 13 FP has the same configuration as the laser interferometer 13 XP described above.
  • the state of interference between the first measurement light beam and the second measurement light beam that irradiate the reflecting surface 7 XS and is reflected and directed toward the light receiver is measured.
  • the rotation amount of the reflecting surface 7XS around the Y axis in the reset state is set to zero, and the rotation amount of the reflecting surface 7XS around the Y axis is detected.
  • ALFXP the tilt information detected by the laser interferometer 13 FP.
  • the laser interferometers 13 XP and 13 FP detect the above-mentioned tilt information by detecting the interference light of the first and second measurement light beams irradiated at different points on the reflecting surface 7 XS at different Z positions.
  • the measurement light beams from the two laser interferometers are applied to points at different Z positions on the reflecting surface 7 XS, and based on the X position of the reflecting surface 7 XS obtained by each laser interferometer. To obtain the tilt information described above. You may.
  • the laser interferometer 13 XP may use one of the two interferometers as the laser interferometer 13 X 1 or 13 X 2, or the laser interferometer 13 FP 2
  • the rotation amount (jowing amount) of the reflecting surface 7 XS about the Z axis may be obtained based on the X positions obtained by one of the two laser interferometers and the laser interferometer 13 FX.
  • the reflecting mirror 7Y is irradiated with laser beams LWY1 and LWY2 which are separated from each other at an interval L21 along the X-axis direction and are parallel to the Y-axis. Further, a pair of laser beams LWYP parallel to the X axis are irradiated at intervals of D Y (not shown) along the Z axis direction.
  • the laser beams LWY 1 and LWY 2 are distributed in the X direction with respect to an axis YWA which is parallel to the Y axis and passes through the optical axis AX of the projection optical system PL.
  • Each of the laser beams LWY 1, L WY 2, and LWYP is supplied from a laser interferometer 13 Yl, 13 Y 2, 13 YP shown in FIG. 2, and a laser interferometer 13 Y 1 , 13 Y 2, except that the measurement direction is the Y-axis direction, and the laser interferometer 13 X 1, described above, except that it is disposed to face the reflecting mirror 7 Y and the Y-axis wafer reference mirror. It has the same configuration as 1 3 X 2.
  • the Y positions detected by the laser interferometers 13Yl and 13Y2 are hereinafter referred to as "YW1" and "YW2".
  • the laser interferometer 13YP is configured in the same manner as the above-described laser interferometer 13XP, except that the measurement direction is the Y-axis direction and the laser interferometer 13YP is disposed so as to face the reflecting mirror 7Y. You.
  • the tilt information detected by the laser interferometer 13 YP (the pitching amount, which is the amount of rotation around the X axis) is hereinafter referred to as ⁇ LWYP ”.
  • the laser beams LWX 1, LWX 2, LWX P, LWY 1, LWY 2, and L WYP do not come off when controlling the position of the reflecting mirrors 7 X and 7 Y such as scanning exposure or stepping of the wafer W.
  • the laser beams LFX, LFXP, LWY1, LWY2, and LWYP are formed to be sufficiently long so as not to come off during alignment measurement of the wafer W by the alignment sensor 26.
  • the laser interferometer 13 Y 1, 13 Y 2, and 13 YP are used for both scanning exposure and alignment measurement.
  • the laser interferometer 13 FX A set of laser interferometers having the same configuration as the 13 FP may be provided for detecting the Y position and the amount of rotation around the X axis (and the amount of rotation) during alignment measurement.
  • the projection optical system without increasing the size of the wafer stage device (that is, without increasing the length of the reflecting surface 7), the projection optical system: the exposure position where the reticle pattern is transferred via the PL, and the alignment.
  • the measurement position (alignment position) at which mark detection is performed by the sensor 26 can be set at a large distance, and the exposure operation and the alignment operation can be performed almost in parallel as a wafer stage device.
  • a double wafer stage system having two independently movable wafer stages can be employed.
  • the XY position (XW, YW) of the substrate table 4 and thus the wafer at the time of position control such as scanning exposure or stepping are controlled by the above-mentioned laser interferometer 13 X 1, 13 X 2, 13 Y 1, 13 Y 2.
  • the XY position of W is detected. That is, based on the X position measurement results XW 1 and XW 2 by the laser interferometers 13 X 1 and 13 X 2, the X position X W of the board table 4 is
  • the Y position YW of the substrate table 4 is
  • the amount of rotation (the amount of rotation about the Z axis) 0 ZW of the board table 4 is
  • the substrate table from the reset state of the mirrors 7 X and 7 Y is determined by the difference between the reflection surface 7 YS and the local rotation angle of the YS around the Z-axis between the irradiation point of The orthogonality error fluctuation ⁇ coW in 4 is detected.
  • the coordinate system consisting of the X coordinate XW and the Y coordinate YW detected as described above is called the coordinate system (XW, YW) of the wafer stage.
  • This coordinate system (XW, YW) is a value from the reset state, and differs to some extent from the design orthogonal coordinate system consisting of the X-axis and the Y-axis.
  • the movement of the wafer W is performed based on the new coordinate system (XW, YW) of the calibrated wafer stage.
  • FIG. 11 shows a plan view around reticle fine movement stage 11.
  • reticle R is held on reticle fine movement stage 11.
  • the reflecting mirrors 2 1 Y 1 and 2 1 Y 2 are fixed respectively.
  • Reticle fine movement stage 11 is driven by actuators 38 L and 38 R using a voice coil motor as a drive source under the control of main control system 22. Note that an actuator that finely moves the reticle fine movement stage 11 in the X direction is also provided, but is not shown in FIG. 11.
  • the reflecting mirror 2 IX is irradiated with laser beams LRX 1 and LRX 2 which are spaced at a distance L 3 along the Y-axis direction and parallel to the X-axis.
  • the laser beam LRX 1 The LRX 2 is distributed in the Y-axis direction with respect to an axis XRA which is parallel to the X-axis and passes through the optical axis AX of the projection optical system PL.
  • the reflecting mirrors 21Y1 and 21Y2 are irradiated with laser beams LRY1 and LRY2 that are separated from each other at intervals L3 along the X-axis direction and are parallel to the Y-axis.
  • the laser beams LRY 1 and LRY 2 are distributed in the X-axis direction with respect to an axis YRA which is parallel to the Y-axis and passes through the optical axis AX of the projection optical system: PL.
  • Each of the laser beams L RX 1, L R X 2, LRY 1, and LRY 2 is supplied from a reticle interferometer 14 X 1, 14 X 2, 14 Y 1, 14 Y 2 force. Then, the X position of the reticle fine movement stage 11 is detected based on the measurement values obtained by the reticle interferometers 14 X 1 and 14 X 2, and the Y position of the reticle fine movement stage 11 is detected by the reticle interferometer 14 Y It is detected based on the measurement value of 1,14Y2.
  • the reticle interferometers 14 X 1, 14 X 2 are the same as the laser interferometers 13 X 1, It has the same configuration as 1 3 X 2.
  • the X position detected by the reticle interferometers 14 X 1 and 14 X 2 is hereinafter referred to as “XR 1” and “XR 2”.
  • the reticle interferometers 14 Y 1 and 14 Y 2 are the same as the lasers described above except that they are disposed opposite the reflecting mirrors 21 Y 1, 21 Y 2 and the Y-axis reticle reference mirror. Interferometer
  • YR 1 and YR 2 The Y positions detected by the reticle interferometers 14 Y 1 and 14 Y 2 are hereinafter referred to as “YR 1” and “YR 2”.
  • the laser beams LRY 1 and LRY 2 reflected by the Y-direction reflecting mirror (corner cube) 2 1 Y 1 and 21 Y 2 are reflected by the reflecting mirrors 14 M 1 and 14 M 2, respectively, and returned. In addition, even if the reticle fine movement stage 11 rotates, the laser beam is not displaced. In addition, rectangular illumination area 3 on reticle R
  • Exposure light EL is applied to 6, and observation regions of reticle alignment systems 19 and 20 are set at both ends of an illumination region 36 in the X direction.
  • the illumination area 36 is shown in the figure.
  • a cross-shaped alignment mark 3 is provided on both sides of the reticle R pattern area.
  • each projected image when 30 F is projected on the reticle side is as follows: Approximately equals the mutual positional relationship of the criterion 32A to 32F.
  • the XY position (XR, YR) of reticle fine movement stage 11 and XY position of reticle R are detected by the above laser interferometers 14 X 1, 14 X 2, 14 Y 1, 14 Y 2 Is done. That is, based on the X position measurement results XR 1 and X R 2 by the laser interferometers 14 X I and 14 X 2, the X position XR of the fine movement stage 11 is
  • ⁇ R (YR 1 -YR 2) / L 4 (XR 1—XR 2) / L 3... (10)
  • reticle stage coordinate system (XR, YR).
  • reticle R is the reticle stage coordinate system (XR , YR).
  • the reflecting mirrors 7, 7 provided on the side surfaces of the substrate table 4 are used for correcting the ⁇ position (XW, YW) of the substrate table 4 and the Abbe error of the ⁇ position of the wafer W.
  • the measurement of the shape of the reflective surface of ⁇ will be described with reference to FIGS. 12 to 16, FIG. 19, FIG. 20 ⁇ , and FIG. 20 ⁇ .
  • the main control system 22, the laser interferometer 13 X 1, 13 X 2, 13 Y 1, 13 3 2, and the wafer A driving device 24, an optical path changing device 40, and the like are used. That is, the main control system 22, the laser interferometers 13 X 1, 13 X 2, 13 ⁇ 1, 13 ⁇ 2, the wafer driving device 24, the optical path changing device 40, etc. of A reflection surface shape measurement device (one-dimensional shape measurement device) is configured.
  • the optical path changing device 40 will be described. As shown representatively for the laser interferometer 13 X 1 in Figs. 12 and 14, the laser interferometers 13 X 1, 1
  • An optical path changing device 40 is disposed downstream of the quarter-wave plates 56 X 1 and 56 X 2 from which the 3 X 2 measurement light beams LWX 1 and LWX 2 are emitted.
  • the components of the laser interferometer 13X1 will be denoted by reference numerals, and the positional relationship and the like will be described.
  • the optical path changing device 40 includes a movable mirror 410 and a fixed mirror 420.
  • the movable mirror 4100 has a mirror surface with respect to the optical path of the measurement light beam LWX1 emitted from the 1/3 wavelength plate 56X1 of the laser interferometer 13X1 and directed to the reflection surface 7XS.
  • It is configured so that it can be selectively moved between a reflection position arranged at an angle of 45 ° and a retracted position arranged outside the optical path of the measurement light beam LWX1.
  • the movable mirror 4 10 is supported by the movable mirror support member 4 11, and the movable mirror support member 4 11 is within a predetermined angular range (here, 45 °) about the support shaft 4 12. It is rotatably supported by a frame (not shown) (for example, a frame on which the projection optical system PL is mounted).
  • the movable mirror support member 4 11 is driven by a driving device 4 13 such as an air cylinder, etc., and the driving device 4 13 is moved to the reflection position based on a control signal sent from the main control system 22. Or, it is controlled to be set at the retreat position.
  • the position of the movable mirror 410 shown by a solid line in FIG. 14 is the reflection position.
  • the measurement light beam LWX 1 emitted from 5 6 X 1 and traveling in the + X direction goes straight on, the Z direction position of the reflecting surface 7 XS is irradiated to the ZW 1 position, and the movable mirror 4 10 moves to the reflecting position.
  • the measurement light beam LWX1 emitted from the 1Z4 wave plate 56X1 and traveling in the + X direction is moved in the 1Z direction at an angle of 90 ° by the movable mirror 410. It is totally reflected toward.
  • the fixed mirror 4 (1) A frame (not shown) that is parallel to the movable mirror 4100 at the reflection position so that the light beam LWX1 reflected by 410 is reflected toward the reflection surface 7XS of the reflection mirror 7X. (For example, a mount on which the projection optical system PL is placed).
  • the measurement light beam LWX 1 reflected by the movable mirror 4 10 and traveling in one Z direction is totally reflected in the + X direction by the fixed mirror 4 20, and the reflection surface 7 XS is positioned at ZW 1 in the Z direction. Irradiates the position ZW2 shifted by the distance DX from the distance (see Fig. 14).
  • the shape measurement of the reflecting surfaces of the reflecting mirrors 7X and 7Y provided on the side surface of the substrate table 4 is performed by first controlling the substrate table 4 by the main control system 22 via the wafer driving device 24. Drive the substrate table 4 so that the surface of the substrate table 4 is substantially parallel to the XY plane. Then, the main control system 22 controls the driving device 4 13 of the optical path changing device 40, and as shown representatively for the wafer interference system 13 X 1 in FIG. 12, the movable mirror 4 10 The measurement is emitted from the laser interferometers 13 X 1 and 13 X 2. The light beams LWX 1 and LWX 2 are retracted from the optical path reaching the reflecting mirror 7 X.
  • the main control system 22 controls the wafer X-axis drive stage 2 and the wafer Y-axis drive stage 3 via the wafer drive device 24, and moves the substrate table 4 to the measurement start position indicated by a solid line in FIG. Move to When the substrate table 4 is at a predetermined position during the movement of the substrate table 4, the laser interferometers 13XI, 13X2, 13Y1, 13Y2 are reset. In the present embodiment, when the substrate table 4 reaches the measurement start position, the laser interferometers 13X1, 13X2, 13Y1, 13Y2 are reset.
  • the reset positions of the laser interferometers 13 X 1, 13 X 2, 13 Y 1, 13 Y 2 at the time of shape measurement, and the laser interferometers 13 X 1, 1 at the time of position control described later It has a predetermined positional relationship with the reset positions of 3X2, 13Y1, and 13Y2.
  • the main control system 22 controls the Y-axis wafer driving stage 2 via the wafer driving device 24 to move the substrate table 4 in one Y direction, and the laser interferometers 13 X 1, 13 X X position XW1 (t, ZW1), XW2 (t, ZW1) and Y position YW1 (t, ZW1), YW2 (t, ZW1) detected by 2, 1 3 Y1, 1 3 Y2 ) (t: time) is performed almost simultaneously.
  • the measurement light beams LWY 1 and LWY 2 emitted from the wafer interferometers 13 Y 1 and 13 Y 2 are substantially the same as the reflecting mirror 7 Y.
  • the position continues to be irradiated. Therefore, the local rotation amount 0 ZY (t, ZW 1) of the reflecting mirror 7Y around the Z axis does not include the contribution of the one-dimensional shape change of the reflecting mirror 7Y in the Y axis direction. Therefore, the rotation amount ⁇ ⁇ ⁇ (t, ZW 1) is the rotation amount of the tomb plate table 4 around the Z axis at the time t due to the movement of the substrate table 4, that is, the joing amount of the substrate table 4 itself. May be considered.
  • the local rotation amount 6 ZX (t, ZW 1) of the reflecting mirror 7 X around the Z axis is determined by the amount of jogging of the substrate table 4 at each collection and the reflecting surface 7 XS of the reflecting mirror 7 X. It is the sum of the one-dimensional shape change in the X-axis direction. Therefore, the local rotation amount 0 Z X (t, ZW 1) of the reflecting mirror 7 X about the Z axis due to the one-dimensional shape change of the reflecting surface 7 X S in the X-axis direction of the reflecting mirror 7 X is
  • ⁇ Z X (t, Z W 1) ⁇ Z X (t, Z W 1)
  • the local rotation amount 0 ZX (t, ZW 1) of the reflecting mirror 7 X about the Z axis is represented as the local rotation amount 0 ZX (YW, ZW 1) of the reflecting mirror 7 X around the Z axis.
  • the Y position (hereinafter referred to as “measurement reference Y position”) at the time of resetting the laser interferometers 13 X 1 and 13 X 2 is defined as YWS, and the Y axis of the reflecting mirror 7 X at the Z position ZW 1 is defined.
  • the one-dimensional shape DXW (YW, ZW1) is obtained by the following equation.
  • the main control system 2 2 collects the X position XW 1 (t, ZW 1), XW2 (t, ZW 1) and Y position YW1 (t , ZW 1), YW 2 (t, ZW 1), using the above equations (1 1) to (15), the reflection mirror 7 at the Z position ZW 1 with respect to the Y-axis direction Calculate the dimensional shape DXW (YW, ZW1).
  • the main control system 22 controls the wafer X-axis drive stage 2 and the wafer Y-axis drive stage 3 via the wafer drive device 24, and moves the substrate table to the measurement start position shown by the solid line in FIG. .
  • the main control system 22 controls the driving device 4 13 of the optical path changing device 40, and the laser interferometer 1 3 X 1, as typically shown in FIG.
  • the movable mirror 410 is moved on the optical path (reflection position) to the reflecting mirror 7X of the measurement light beam LWX1 and LWX2 emitted from 1, 13X2.
  • the measurement light beams LWX 1 and LWX 2 are applied to the Z position ZW 2 of the reflecting mirror 7X.
  • the main control system 22 controls the Y-axis wafer stage 3 via the wafer driving device 24 to move the substrate table 4 in one Y direction. While the X position XW 1 (t, ZW 2), XW 2 (t, ZW2) and Y position YW 1 detected by the laser interferometers 13 XI, 13 X 2, 13 Y 1 and 13 Y 2 The task of collecting (t, ZW2) and YW2 (t, ZW2) almost simultaneously is performed sequentially.
  • the main control system 22 receives the collected X position XW 1 (t, ZW 2), XW 2 (t, ⁇ W 2) and ⁇ position YW 1 (t, ZW 2), YW 2 (t, ZW Based on 2), the one-dimensional shape D XW (YW, YW, Y) of the reflecting mirror 7X at the Z position ZW2 in the Y-axis direction is obtained by using the same equations as the above equations (11) to (15). Z W2) is calculated.
  • the shape information [DXW (YW, ZW1), DXW (YW, ZW2)] of the reflecting surface 7XS of the reflecting mirror 7X is obtained.
  • the shape information [DYW (XW, ZW1), DYW (XW, ZW2)] of the reflecting surface 7 YS of the reflecting mirror 7 Y is stored in the main control system 2 in the same manner as the shape measurement of the reflecting surface 7 XS. 2.
  • Laser interferometers 13XI, 13X2, 13Y1, 13Y2, wafer driving device 24, optical path changing device 40, etc. are used. That is, the main control system 22, the laser interferometers 13 X 1,. 13 X 2, 13 Y 1, 13 ⁇ 2, the wafer driving device 24, the optical path changing device 40, etc. This is obtained by measuring the shape of the reflective surface 7YS.
  • the shape information of the reflecting surface 7 XS [DXW ( ⁇ W, ZW 1), DXW (YW, ZW 2)] and the reflecting surface 7 YS of the reflecting mirror 7 ⁇ ⁇ obtained as described above Information [DYW (XW, ZW 1), DYW (XW, ZW 2)] 1
  • DYW (XW, ZW 1), DYW (XW, ZW 2) 1
  • FIG. comparing the one-dimensional shape D XW (YW, Z W 1) with the one-dimensional shape D XW (YW, Z W 2), the measurement reference ⁇ position YWS
  • D XW (YWS, Z W 1) D XW (YWS, Z W2)
  • both the laser interferometers 13 X 1 and 13 X 2 are measured at the measurement reference Y position YWS for the one-dimensional shape DXW (YW, ZW1) and the one-dimensional shape DXW (YW, ZW2). This is because it is reset.
  • the rotation amount 0 Y (YW) about the Y axis at each Y position of the reflecting surface 7 XS is calculated as follows.
  • ⁇ Y (YW) (DXW (YW, Z W 1)
  • the rotation amount of the reflection surface 7 XS around the Y axis is always measured as “0”.
  • the one-dimensional shape measurement at the Z position ZW1 and the Z position ZW2 In the one-dimensional shape measurement in, the states of the laser interferometers 13 X 1 and 13 X 2 at the time of reset are not necessarily the same. Therefore, in general, the two-dimensional position detection values XW (ZW1) and YW (ZW1) at the Z position ZW1 and the two-dimensional position detection values XW (ZW2) and YW (ZW2) at the Z position ZW2 There will be an offset between them.
  • the amount of rotation 0 Y (YW) about the Y axis at each Y position of the reflecting surface 7 XS obtained by equation (16) is different from the actual amount of rotation of the reflecting surface 7 XS around the Y axis. I have. The same applies to the amount of rotation of the reflecting surface 7YS around the X axis.
  • the one-dimensional shape data D XW (YW, ZW 1), D YW at the Z position ZW 1 (hereinafter sometimes to be referred to as the upper stage) of the reflecting surfaces 7 XS, 7 YS of the reflecting mirrors 7 X, 7 Y Relative relationship (offset) between (XW, ZW 1) and one-dimensional shape data D XW (YW, ZW 2), D YW (XW, ZW 2) at Z position ZW 2 (hereinafter sometimes referred to as the lower row) Is determined as follows.
  • the reflecting surface 7XS of the reflecting mirror 7X along the Y-axis direction is as follows.
  • the main control system 22 sets the predetermined measurement start position (here, the measurement reference Y position) by controlling the substrate table 4 via the wafer driving device 24, as shown in FIG.
  • the actuators AC1 to AC3 are controlled so that the surface of the substrate table 4 is set to be substantially parallel to a predetermined surface, for example, an XY surface.
  • reset the laser interferometer 13 XP zero reset).
  • Table 4 is moved at a constant speed along the Y-axis direction.
  • the output (displacement in the Z-axis direction) of each of the encoders EN 1 to EN 3 is sequentially sampled in relation to the Y position (YW) of the board table 4.
  • the substrate table 4 is moved while performing these steps until reaching a predetermined measurement end position.
  • the main control system 22 based on the output (displacement in the Z-axis direction) of each encoder EN 1 to EN 3 and the arrangement (positional relationship) of each encoder EN 1 to EN 3 Change of rotation angle around Y axis 0 Calculate YEN (YW).
  • the change in the rotation angle about the Y axis in the direction along the Y axis of the substrate table 4 0 YEN (YW) is Equivalent to 2 data.
  • This 0 Y EN (YW) results, for example, as shown by the dotted line in FIG. 20A.
  • the vertical axis is the rotation angle (0Y) about the Y axis
  • the horizontal axis is the position (YW) in the Y axis direction.
  • the difference between the upper shape data DXW (YW, ZW1) and the lower shape data DXW (YW, ZW2) (hereinafter sometimes referred to as the difference between the upper and lower bends) is calculated and converted into an angle (Z
  • the difference between the upper and lower bends divided by the distance DX between the positions ZW1 and ZW2), that is, 0Y (YW) in the above equation (16) is obtained.
  • the difference 0 Y (YW) between the upper and lower bends corresponds to the first data of the present invention.
  • 0 Y (YW) is shown in Fig. 20A if the upper shape data DXW (YW, ZW1) and the lower shape data D XW (YW, ZW2) are as shown in Fig. 15. The result is as shown by the solid line.
  • DIF 0 Y (YW) is the upper shape data D XW (YWS, ZW 1) and the lower shape data DXW (Y WS, ZW 2) when the laser interferometers 13 X 1 and 13 X 2 are reset.
  • D I F the angle around the Y axis
  • ⁇ Y (YW) is not usually a straight line.
  • the main error in this case is that the influence of the undulation or twist on the upper surface of the wafer support table 1 constituting the reference plane for the movement of the substrate table 4 is based on the outputs of the encoders EN 1 to EN 3. Probably due to being included in Y EN (YW).
  • DIF 0 Y (YW) is not usually a straight line
  • a linear approximation is performed using the least squares method so that the sum of the squares of the error is minimized, and this is reflected along the Y-axis direction.
  • RE L 0 Y (YW) in this case is, for example, as shown by a solid line in FIG. 20B.
  • RE L 0 Y (YW) is a straight line parallel to the YW axis in Fig. 20B, and the relative values of the upper and lower tier shape data DXW (YW, ZW1) and DXW (YW, ZW2) that do not depend on the YW value. It will reflect the relationship.
  • RE L 0 Y (YW) when the linear approximation is performed so as to minimize the error, RE L 0 Y (YW) usually has a certain slope. This inclination is considered to reflect the influence of the overall undulation and deflection of the upper surface of the wafer support 1.
  • RELOY (YW) is obtained by including this as it is.
  • the value obtained by adding RE L 0 Y (YW) to the difference between the upper and lower bends 0 Y (YW) is the correction value XO F ⁇ Y (YW) for the measurement result ⁇ LWX P obtained by the laser interferometer 13 XP. And stored in the storage device 27.
  • the reflecting surface 7 YS of the reflecting mirror 7 Y along the X-axis direction is as follows.
  • the main control system 22 controls the substrate table 4 via the wafer driving device 24 to determine a predetermined measurement start position (here, the laser interferometers 13 Y 1 and 13 Y 2 in one-dimensional shape measurement).
  • the actuators AC1 to AC3 shown in FIG. 19 are controlled so that the surface of the substrate table 4 is substantially parallel to a predetermined surface, for example, the XY surface. In this state, reset the laser interferometer 13 YP (zero reset).
  • Table 4 is moved at a constant speed along the X-axis direction.
  • the outputs (displacements in the Z-axis direction) of the encoders EN 1 to EN 3 are sequentially sampled in relation to the X position (XW) of the board table 4.
  • the substrate table 4 is moved while performing these steps until reaching a predetermined measurement end position.
  • the main control system 22 is based on the output (displacement in the Z-axis direction) of each encoder EN 1 to EN 3 and the arrangement (positional relationship) of each encoder EN 1 to EN 3, in the direction along the X axis of the board table 4.
  • Change of rotation angle around X axis 0 Calculate X EN (XW).
  • PCB tape The change of the rotation angle about the X axis in the direction along the X axis of the rule 4 0 X EN (XW) corresponds to the second data of the present invention.
  • the difference between the upper shape data D YW (XW, ZW 1) and the lower shape data D YW (XW, ZW 2) (hereinafter, also referred to as the difference between the upper and lower bends) is calculated and converted into an angle. (Division by the distance DX between the Z positions ZW1 and ZW2) Obtain the difference 0X (XW) between the upper and lower bends. That is,
  • DIF 0 X (XW) is the upper shape data D YW (XWS, ZW 1) and the lower shape data D YW (XWS, ZW 2) when the laser interferometers 13 Y 1 and 13 Y 2 are reset.
  • DIF ⁇ X (XW) is not usually a straight line since such an ideal state cannot exist in reality.
  • the main error in this case is that the influence of the undulation or twisting of the upper surface of the wafer support 1 constituting the reference plane for the movement of the substrate table 4 is based on the outputs of the encoders EN 1 to EN 3 0 X EN (XW).
  • DIF 0 X (XW) is not usually a straight line, it is approximated by a straight line using the least squares method so that the sum of the squares of the error is minimized, and this is reflected along the X-axis.
  • REL ⁇ X (XW) be the relative relationship between the upper and lower shape data of mirror 7Y.
  • REL 0 X (XW) usually has a certain slope when a straight line is approximated so that the error is minimized. This inclination is considered to reflect the influence of the overall undulation and deflection of the upper surface of the wafer support 1.
  • REL 0 X (XW) is obtained by including this as it is.
  • Either of the one-dimensional shape measurement and the measurement using the encoders EN1 to EN3 may be performed first.
  • the measurement results ⁇ LWX P and A LWY P of the laser interferometers 13 XP and 13 YP are corrected.
  • the iu rotation amount 0 YW of the substrate table 4 around the Y axis and the rotation amount 0 XW around the X axis can be accurately obtained. .
  • the detected values ⁇ LWX P and ⁇ LWY P of the laser interferometers 13 XP and 13 YP include the Y axis of the substrate table 4 based on the reset state of the laser interferometers 13 XP and 13 YP.
  • the optical path difference ⁇ LWX P 1, ⁇ LWY P 1 caused by the amount of rotation around the X-axis and the waviness and torsion in the Y-axis and X-axis directions of the reflective surfaces 7 XS and 7 YS
  • the optical path differences ⁇ LWXP 2 and ⁇ LWX P 2 generated due to the above factors are included.
  • the reset position of the laser interferometers 13 X 1, 13 X 2, 13 Y 1, 13 Y 2 and the position detection of the substrate table 4 when measuring the shape of the reflective surfaces 7 XS and 7 YS described above The positional relationship between the laser interferometers 13 X 1, 13 X 2, 13 Y 1, and 13 Y 2 at the time of resetting is predetermined and known.
  • YWP YW- (L 1 1/2)-L 1 2
  • LWY P 1 ⁇ L WY P— ⁇ LWY P 2... (20)
  • the difference L between the Z position ZW1 of the XY position detection of the substrate table 4 and the Z position of the wafer W surface See Fig. 4
  • the Abbe error in the X-axis direction XA due to the rotation amount 0 YW of the substrate table 4 and the rotation amount around the X-axis ⁇ XW in the Y-axis direction The error ⁇ YA is
  • tilt information ⁇ LFXP detected by the laser interferometer 13FP is processed in the same manner as in the case of the laser interferometer 13XP described above, and a description thereof will be omitted.
  • REL 0 Y (YW) and EL REL 0 X (XW) indicating the relative relationship between the upper and lower shape data described above have a certain inclination due to the undulation and undulation of the upper surface of the wafer support 1.
  • XO F 0 Y (YW) and YO F ⁇ X (XW) were obtained as correction values in a form including this. Therefore, the laser interferometer 1 3 XP, If the measurement result of 13 YP is corrected with these correction values, an error corresponding to the inclination will be included.
  • the error due to the inclination is expressed as the orthogonality error of the arrangement of the circuit patterns formed on the wafer. Therefore, the effect can be eliminated by further executing the correction method which is usually performed to correct the orthogonality error of the pattern.
  • a wafer for orthogonality measurement in which a plurality of reference marks are formed in a grid pattern is mounted on the substrate table 4 in a predetermined state, and the main control system 22 drives the wafer.
  • the wafer X-axis drive stage 2 and the wafer ⁇ -axis drive stage 3 are controlled via the device 24, and the reference marks on the measurement wafer are sequentially measured by the alignment sensor 26 to determine the positions thereof.
  • the correction value is obtained from the relationship between the measurement result and the reference position where the reference mark should be, and the drive of the stage is controlled based on the correction value.
  • the wafer After measuring the reference mark of the orthogonality measurement wafer, the wafer is further placed on the substrate stage 4 with the orthogonality measurement rotated 90 degrees, and the reference mark is further measured.
  • the undulation of the surface of the orthogonality measurement wafer on which the fiducial mark is formed can be measured. The effect of errors due to torsion and the like can be reduced.
  • the man-hour for collecting the correction data is reduced. It is possible to improve the measurement accuracy because it can be reduced and errors due to measurement of the fiducial mark are not included. Can be.
  • the relative relationship between the upper and lower shape data RE L 0 Y (YW) and RE L 0 X (XW) can be corrected to obtain more accurate two-dimensional shape data of the reflecting surface 7 XS, 7 YS. Can be.
  • the corrected two-dimensional shape data of the reflecting surface 7 XS is dXW (YW, ZW1) and dXW (YW, ZW2)
  • the corrected two-dimensional shape data of the reflecting surface 7 YS is dYW (XW, XW, ZW 1), d YW (XW, ZW2), X position of substrate table 4 when measuring 1D shape of reflector 7 X, XWP, Y position of substrate table 4 when measuring 1D shape of reflector 7 Y As YWP,
  • d XW (YW, Z W 1) DXW (YW, Z W 1)
  • d YW (XW, ZW 2) D YW (XW, ZW 2) + REL ⁇ X (XW).
  • REL 0 Y (YW) and RE L 0 X (XW) are constant values AXOF, AYOF (when the inclination is zero)
  • the corrected shape data d XW (YW, ZW 1), d XW ( YW, ZW2), dYW (XW, ZW1), dYW (XW, ZW2) are shown in FIG.
  • a reticle is loaded on fine movement stage 11 of reticle stage R ST by a reticle loader (not shown). Then, reticle alignment is performed using the reference mark plate 6.
  • the operation of the reticle alignment is briefly described as follows. First, by controlling the main control system 22, the wafer Y-axis drive stage 2 and the wafer X-axis drive stage 3 are driven to form the reference mark plate 6.
  • the reference marks 30 A and 30 B are moved in the exposure area (projection area of the pattern image) 34 conjugate with the illumination area 36 on the reticle R with respect to the projection optical system PL and stopped, and the reticle scanning stage 1 Drive 0 to move the alignment marks 3 2A and 3 2B on the reticle 1 2 in Fig. 11 into the illumination area 36. Moving.
  • the reticle alignment system 19, 20 detects the amount of displacement between the reference marks 30A, 30B and the corresponding alignment marks 32A, 32B. Then, the main control system 22 drives the reticle scanning stage 10 and the reticle fine movement stage 11 on the basis of the detected positional deviation amount, and forms the images of the reference marks 30A and 30B. On the other hand, the alignment marks 32A and 32B are aligned so that the amount of displacement is symmetrical. As a result, the position and the rotation angle of the reticle R are aligned with the reference mark plate 6.
  • the measured values of the 4-axis reticle interferometers 14 X 1, 14 X 2, 14 Y 1, 14 Y 2 on the RST side of the reticle stage, and the 4-axis laser on the wafer stage side By resetting the interferometer 1 3 X 1, 1 3 X 2, 1 3 Y 1, 1 3 Y 2 measurement values, the coordinate system of the reticle stage (XR, YR) and the coordinate system of the wafer stage
  • the offset of the origin with (XW, YW) is corrected.
  • the offset may be stored without resetting the measured value of each laser interferometer, or the reticle stage may be moved (rotated, etc.) without correcting or storing the offset without moving the reticle stage.
  • the offset may be corrected or stored using the detection results of the alignment systems 19 and 20.
  • the scanning direction of the substrate table 4 at the time of the scanning exposure performed later is set to be parallel to the arrangement direction of the reference marks 30 A, 30 C, and 30 E of the reference mark plate 6.
  • the arrangement direction of the reference marks 30 A, 30 C, 30 E is mechanically set parallel to the reflection surface 7 XS of the reflection mirror 7 X.
  • the Y coordinate YW of the wafer stage changes by a predetermined step
  • the X coordinate XW is changed by a corresponding amount
  • the substrate test is performed in software.
  • the scanning direction of one bull 4 may be corrected.
  • the coordinate system in which the scanning direction corrected in this way is the Y axis is referred to as the wafer stage coordinate system (XW, YW).
  • the stage on the wafer stage side and the stage on the reticle stage side are moved in opposite directions to each other as in the case of scanning exposure, and the reference mark 30 C on the reference mark plate 6 is moved.
  • the relative displacement between .about.30 F and the corresponding alignment marks 32C to 32F on the reticle R is sequentially detected by the reticle alignment system 19,20. From the average of these relative displacements, The tilt angle between the scanning direction of the reticle R and the scanning direction of the wafer W, that is, the rotation angle of the axis in the scanning direction between the coordinate system (XR, YR) of the reticle stage and the coordinate system (XW, YW) of the wafer stage. Ask.
  • the reticle scanning stage 10 and the reticle fine movement stage 11 are used to shift the X coordinate XR by a corresponding amount while the Y coordinate YR changes by a predetermined interval. Then, the scanning direction of the reticle R is adjusted to the arrangement direction of the reference marks on the reference mark plate 6 in a soft-to-air manner.
  • the coordinate system in which the scanning direction corrected in this way is the Y axis is referred to as the coordinate system (XR, YR) of the reticle stage.
  • the axes in the scanning direction are parallel to each other with respect to the reference mark plate 6, and the reticle R during the scanning exposure. And the wafer W are scanned in parallel.
  • the guide surface of the reticle scanning stage 10 and the wafer Y-axis drive stage Mechanically adjust the parallelism with the guide surface of No. 2 to less than about 100 rad
  • the reticle stage and the wafer stage may both be guides.
  • a virtual guide surface may be defined, and a mirror or the like may be fixed to the virtual surface.
  • the alignment marks 32 A to 32 F of the reticle R and the reference marks 30 A to 30 F of the reference mark plate 6 are obtained. Relative to the reticle R and the reference mark plate 6 and a large rotation are recognized as having a large offset. In such a case, since the reference mark plate 6 is fixed to the reflecting mirrors 7X and 7Y, the correction is performed by rotating or shifting the reticle fine movement stage 11.
  • the reflecting mirror 21 X When the reticle fine movement stage 11 is rotated, the reflecting mirror 21 X also rotates in the same manner, so that the reflecting mirror 21 X is inclined with respect to the running direction of the reticle R.
  • the alignment marks 32A to 32F are parallel to the reference marks 30A to 30F on the reference mark plate 6, and the scanning direction of the reticle R and the scanning direction of the wafer W are parallel during scanning exposure. Is controlled so that
  • the interval (baseline amount) between the detection center of the alignment sensor 26 and the reference point in the exposure area 34 is obtained by a so-called baseline etching using the reference mark plate 6.
  • the wafer W is loaded on the substrate table 4 by a wafer loader (not shown), and is held by the substrate table 4.
  • a wafer alignment for obtaining an arrangement of each shot area on the wafer W on the coordinate system (XW, YW) of the wafer stage is performed.
  • an EGA Electronic Gas Gauge
  • a wafer mark (not shown) of a predetermined number of shot areas (sample shots) selected from the wafer W and processes this measurement result with a gun gauge
  • the array coordinates of the entire shot area on the wafer W are calculated by the method of “Enhanced-global alignment”.
  • FP Measured by ⁇ LFXP and laser interferometer 13 YP Detected based on ⁇ LWYP.
  • the arrangement coordinates of each shot area on the wafer W, the pace line amount of the alignment sensor 26, and the coordinate system of the wafer stage (XW, YW) and the coordinate system of the reticle stage (XR, YR) Based on the relationship, the shot area to be exposed on wafer W is positioned at the scanning start position, and reticle R is also positioned at the corresponding position. It is decided.
  • the reticle R and the wafer W are synchronized according to the coordinate system (XW, YW) of the wafer stage and the coordinate system (XR, YR) of the reticle stage determined at the time of the previous reticle alignment.
  • a scanning exposure operation is performed.
  • the coordinate system (XW, YW) and the coordinate system (XR, YR) are soft to air based on the reflecting surface of the reflecting mirror 7X, 7Y, 21X, 21Y1, 21Y2. If the position of each reflecting mirror is relatively shifted with respect to the reticle R or the wafer W, it will affect the shape of the shot area and the shot arrangement.
  • scanning exposure and stepping are performed by the following methods so that an accurate rectangular shot area and an orthogonal lattice shot arrangement are formed.
  • the coordinates of the reticle stage coordinate system (XR, YR) when the shot area to be exposed and the reticle are aligned by the wafer alignment are (XR0, YR0), and the coordinate system of the wafer stage. If the coordinates of (XW, YW) are (XW 0, YW0), the projection magnification of the projection optical system PL is j8, so the reticle micro-drive stage 11 (reticle R) and the substrate table 4 (wafer) W) and the synchronization error ⁇ X, ⁇ in the scanning direction and the non-scanning direction are
  • the projection optical system PL in FIG. 1 is a reverse projection system, but as shown in FIG. 2, the reticle interferometer 14 and the wafer interferometer 13 have the X-axis direction and the Y-axis direction Since it is reversed, the synchronization error can be obtained simply by taking the difference between the magnification correction values of the movement amount. Further, in the present embodiment, the difference between the jowing angle 0 ZW of the substrate table 4 expressed by the equation (5) and the joing angle 0 ZR of the reticle fine movement stage 11 expressed by the equation (9) is expressed by the following equation. As described above, it is assumed that the synchronization error in the rotation direction is ⁇ ⁇ .
  • the reticle scanning stage 10 of FIG. The moving stage 2 starts accelerating, and after each of them reaches a predetermined scanning speed, the reticle fine moving stage is adjusted so that the above-mentioned synchronization errors ⁇ , ⁇ , ⁇ are each zero or less than a predetermined allowable value.
  • Synchronous control is performed by driving 1. In this state, after a predetermined settling time has elapsed, irradiation of the exposure area EL on the reticle R with the exposure light EL is started, and exposure is performed. In the present embodiment, the reticle fine movement stage 11 is driven to set the synchronization errors ⁇ , ⁇ , ⁇ to zero or less than the allowable value, respectively.
  • the synchronization error may be corrected by driving a wafer stage device (for example, the substrate table 4).
  • a wafer stage device for example, the substrate table 4
  • the Z position, rotation angle around the X-axis, and rotation angle around the Y-axis of the wafer W are determined by the multipoint focus detection system (28). , 29).
  • the main control system 22 drives the substrate table 4 via the wafer driving device 22 to bring the surface of the wafer W into the image plane of the projection optical system PL in the exposure area 34 described above. Match within the depth of focus.
  • the tilt amounts of the reflecting surfaces 7 XS and 7 YS are detected by the laser interferometers 13 FP and 13 YP, and at the time of scanning exposure, the laser interferometers 13 XP and 13 XP are used. The tilt amount of the reflecting surfaces 7 XS and 7 YS is detected by 13 YP. Then, based on this detection result, the Abbe errors ⁇ XA, ⁇ YA are obtained as described above, and the XY position of the substrate table 4 (the wafer W) is corrected by the Abbe error ⁇ XA, ⁇ YA. .
  • the optical path changing device 40 including the movable mirror 410 and the fixed mirror 420 is used.
  • a dielectric multilayer film in which a plurality of dielectric films are stacked Alternatively, it is preferable to deposit a metal film or the like, and to provide the two mirrors with good reflection polarization characteristics for reflecting the measurement light beam as faithfully as possible without disturbing the polarization state.
  • the movable mirror 4 10 of the optical path changing device 40 is rotated to change the Z position of the measurement light beam on the reflection surface.
  • the mirror may be integrally held so that its surfaces are parallel to each other, and may be configured to slide in the Z direction.
  • the positions of the measurement light beams of the interferometers 13 X 1, 13 X 2, 13 Y 1, and 13 ⁇ 2 on the reflection surface are denoted by ZW1 and ZW2 by the optical path changing device 40. And the shape information of the reflection surface is measured, but the optical path changing device 40 is not necessarily provided.
  • the interferometers 13 X 1, 13 X 2, 1 3 ⁇ 1 and 13 Y 2 are separated from each other in the ⁇ direction by a pair of measurement beams (one is LWX 1, L WX 2, LWY 1, LWY 2) May be applied to the reflecting surface to independently measure the position information of the substrate table 4 at different positions ZW 1 and ZW 2.
  • the ⁇ positions of the pair of measurement beams on the reflection surface are respectively set to the pair of measurement beams (LWX ⁇ 1, LWX ⁇ 2), (LWY ⁇ 1,) of the interferometers 13 ⁇ and 13 3. It is preferable that LWY ⁇ 2) be made to substantially match.
  • the tilt measurement of the substrate table 4 can be performed by the pair of measurement light beams, it is not necessary to separately provide the interferometers 13 X 1 and 13 ⁇ ⁇ , and the encoder ⁇ ⁇ 1 In the measurement using ⁇ 3, instead of the interferometer 13 XP, 13 3, one of the interferometers 13 X 1 and 13 X 2 for the reflective surface 7 XS, and the interferometer 13 Y for the reflective surface 7 YS One of 1, 13 32 may be used.
  • the wafer stage is moved in one direction, for example, only one direction (one X direction) when measuring the shape information of the reflection surface described above.
  • the wafer stage is reciprocated, that is, moved in the earth direction ( ⁇ ⁇ direction), the shape information obtained on the outward path (movement in one X direction and the X direction) and the return path (+ ⁇ direction ⁇ + ⁇ direction) It is preferable to determine the final shape information by averaging the shape information obtained in (2) and (3).
  • the wafer stage may be continuously moved in one direction or may be step-moved at the time of measuring the shape information of the reflection surface described above.
  • the wafer stage is moved continuously, it is preferable to obtain the shape information using the interferometer measurement values obtained during the constant velocity period substantially excluding the acceleration / deceleration period. For this reason, continuous measurement can shorten the measurement time compared to step movement, but the measurement range of the reflective surface can be narrowed.
  • the wafer stage may be moved continuously or stepwise during measurement using the encoders 1 to 3 described above.
  • the measurement of the shape information of the reflection surface is performed periodically, for example, at a predetermined time or every time one lot is completed, and the shape information may be sequentially updated.
  • the shape information may be accumulated and the average value may be used.
  • 1 shape measurement of two reflective surfaces 7 XS, 7 YS, 2 shape measurement at different Z positions ZW 1, ZW 2, 3 outgoing at the same Z position At least one of the return path shape measurement, the shape measurement of the reflection surface, and the measurement using the encoder described above may be performed at different timings. In this case, it is possible to improve the throughput by shortening the stop time of the exposure apparatus by these measurements.
  • both the reticle interferometer and the wafer interferometer have the reference mirror provided on the mirror ⁇ of the projection optical system PL or its mount, but the arrangement of the reference mirror is not limited to this.
  • a reference mirror may be provided inside the interferometer.
  • the reference mirror of the interferometers 13 FX and 13 FP used when the mark is detected by the alignment sensor 26 may be provided inside the interferometer instead of the barrel of the alignment sensor 26 or its mount. Good ..
  • the measurement value of the interferometer is reset before the measurement of the shape information of the reflection surface or the measurement using the encoder described above.
  • the exposure apparatus 100 of the present embodiment includes the illumination system having a large number of mechanical components and optical components, the projection optical system PL having a plurality of lenses and the like, and the large number of mechanical components described in the above embodiment.
  • Reticle stage with RST and wafer stage device, and laser interferometer 13 X 1, 13 X 2, 13 XP, 13 Y 1, 13 Y 2, 13 YP, 13 FX, 1 3 FP, 14 X 1, 14 X 2, 14 X 2, 14 M 1, 14 M 2, optical path changing device 40 are assembled and connected mechanically and optically, and furthermore, main control system 22, and It can be manufactured by combining the storage device 27 and the like mechanically and electrically, and then performing overall adjustment (electrical adjustment, operation confirmation, etc.).
  • FIG. 17 shows a flowchart of the production of devices (semiconductor chips such as ICs and LSIs, liquid crystal panels, CCDs, thin-film magnetic heads, micromachines, etc.) according to the present embodiment.
  • steps 201 design step
  • functional design of a device for example, circuit design of a semiconductor device, etc.
  • pattern design for realizing the function is performed.
  • step 202 mask manufacturing step
  • step 203 wafer manufacturing step
  • a wafer is manufactured using a material such as silicon.
  • step 204 wafer process step
  • step 204 wafer process step
  • step 205 assembly step
  • chips are formed by using the wafer processed in step 204.
  • This step 205 includes processes such as an assembly process (dicing and bonding) and a packaging process (chip encapsulation).
  • step 206 (inspection step), an operation check test, a durability test, and the like of the device manufactured in step 205 are performed. After these steps, the device is completed and shipped.
  • FIG. 18 shows a detailed example of the step 204 in the case of a semiconductor device.
  • step 2 11 oxidation step
  • step 2 12 CVD step
  • step 2 13 electrode formation step
  • step 2 14 ion implantation step
  • ions are implanted into the wafer.
  • step 215 resist processing step
  • step 216 exposure step
  • step (2) the circuit pattern of the mask is printed and exposed on the wafer by the scanning exposure apparatus described above.
  • Step 217 development step
  • Step 218 etching step
  • step 219 register removing step
  • the shape of the wafer mounting surface of the substrate table is rectangular, but may be other shapes.
  • each of the reflecting surfaces 4 ′ a, 4 ′ b, and 4 ′ c formed on the three side surfaces of the substrate table 4 ′ Laser interferometer for 2D position detection 13 X 11, 13 X 12, 13 X 21, 13 X 22, 13 Y 1, 13 Y 2 and laser for tilt detection Interferometers 13 PI, 13 P 2, and 13 YP may be provided.
  • the laser interferometers 13 X 11, 13 X 12 and the laser interferometers 13 X 21, 13 X 22 are the same as the laser interferometers 13 X 1, 13 X 2, and the laser interferometers 13 XP 1 and 13 XP 2 may be configured in the same manner as the laser interferometer 13 XP of the above embodiment.
  • the optical path changing device has a configuration similar to that of the optical path changing device 40 described above, and the laser interferometers 13 X 11 and 13 X 12 and the laser interferometers 13 X 21 and 13 X 22 and the laser interferometers 13Y1 and 13Y2, respectively, ie, three sets are provided.
  • the Z-axis of the substrate table 4 ′ is moved by the laser interferometers 13Yl and 13Y2.
  • the laser interferometers 13 X 11 and 13 X 12 measure the local rotation of the reflection surface 4 ′ a around the Z axis.
  • the shape of the reflecting surface 4'a is measured in the same manner as in the above embodiment.
  • the triangular substrate stage 4 ′ shown in FIG. instead of disposing the laser interferometers facing each other, it is also possible to dispose the laser interferometers on two surfaces that intersect each other.
  • the shape of the reflecting surfaces 7 XS and 7 YS provided on the substrate table 4 was measured, and the position of the substrate table 4 was controlled using the shape information. It is also possible to measure the shape of the reflecting surface 21 XS provided on 11 and control the position of the reticle fine movement stage 11 using the shape information.
  • a laser interferometer 14 XP for tilt detection is newly arranged.
  • the optical path changing device one set having the same configuration as the optical path changing device 40 described above is provided for the laser interferometers 14X1 and 14X2. Then, similarly to the case of the substrate table 4, the shape of the reflecting surface 21 XS may be measured, and the position of the reticle fine movement stage 11 may be controlled using the shape information.
  • the detection result of the laser interferometer for tilt detection is used exclusively for correcting the Abpe error, but is used for correcting the rotation of the stage around the X axis or the Y axis. It is also possible to use.
  • the configurations of the reticle stage and the wafer stage are not limited to the above-described embodiment, and may have any configuration. That is, the reticle stage does not have to have a coarse / fine movement structure, and the wafer stage does not have to have a stacked stage structure or a flat motor as in the above embodiment.
  • the laser interferometer uses the Zeeman effect, but may be an interferometer having another configuration. Instead of the double-pass method, a simple-pass method may be used.
  • the above-mentioned reticle interferometer and wafer interferometer are not limited to the configuration of the above-described embodiment, but may be configured as long as they have a plurality of length measuring axes (interferometers) necessary for the shape measurement described above. Is optional.
  • an interferometer for measuring the relative positional relationship (interval) between the projection optical system PL or its mount and the substrate table 4 in the Z direction may be further provided.
  • the exposure apparatus of the above-described embodiment may employ, for example, a double wafer stage system including two independently movable wafer stages.
  • the shape measurement of each reflection surface is performed on each of the two wafer stages.
  • each wafer stage may be arranged at the exposure position where the pattern of the reticle R is transferred via the projection optical system PL, and the shape of each reflection surface may be measured by the same operation as in the above embodiment.
  • the shape of the reflection surface of each wafer stage is measured at the measurement position where the alignment sensor 26 measures the alignment mark of the wafer and the reference mark of the wafer stage. May be measured.
  • the shape information of the reflection surface on each wafer stage may be measured at the exposure position and the measurement position, and different shape information may be used at the two positions.
  • the measurement interferometer system has the same configuration as the exposure interferometer system or has a plurality of length measurement axes (interferometers) necessary for the shape measurement described above.
  • the double wafer stage type exposure apparatus is disclosed, for example, in Japanese Patent Application Laid-Open No. 10-214,833 and corresponding US Pat. No. 6,341,077, or in International Publication WO988. No. 4,079,91 and corresponding U.S. Patent Nos. 6,262,796.
  • the scanning exposure apparatus of the step and scan type has been described.
  • the shape of the reflecting surface provided on the stage is controlled. It can be applied to various types of exposure equipment that measures position and performs position control using the shape information.
  • the exposure light exposure beam
  • EUV light soft X-ray
  • a compact projection exposure apparatus using ultraviolet light as a light source a reduced projection exposure apparatus using soft X-rays having a wavelength of about 10 nm as a light source, an X-ray exposure apparatus using a light source with a wavelength of about 1 nm, EB (Electronics) It can be applied to all kinds of wafer exposure equipment such as an exposure equipment using a beam or an ion beam, and a liquid crystal exposure equipment.
  • the present invention can be applied to step and 'repeat machines, step and' scan 'machines, and step and stitching machines.
  • the present invention is applied to, for example, an immersion type exposure apparatus disclosed in International Publication No. WO 99/49504, a mirror projection aligner, or the like. be able to.
  • the projection optical system of the above embodiment is not limited to a refraction system, but may be a catadioptric system or a reflection system.
  • the projection optical system is not limited to a reduction system and may be an equal magnification system or an enlargement system.
  • the projection optical system projects an inverted image of the reticle pattern, but the projected image may be an erect image.
  • the present invention can be applied to, for example, a proximity type exposure apparatus having no projection optical system.
  • the exposure apparatus used for manufacturing a semiconductor element has been described.
  • a micro device (electronic device) other than the semiconductor element for example, a display device such as a liquid crystal display element, a plasma display, and an organic EL, an image pickup element
  • the present invention is also applied to an exposure apparatus used for manufacturing a thin film magnetic head, a micromachine, a DNA chip, and the like, and further to an exposure apparatus used for manufacturing a mask (reticle) used in the exposure apparatus. can do.
  • stage apparatus of the exposure apparatus and in controlling the position of the stage, it measures the shape of the reflecting surface provided on the stage and controls the position using the shape information.
  • shape information can also be applied.
  • position control of a sample table corresponding to a substrate table can be performed in the above embodiment. This can be performed in the same manner as the position control of the substrate table.
  • the shape of the reflecting surface provided on a moving body such as a stage can be measured easily and quickly, so that the number of work steps involved in the measurement can be reduced and the measurement can be performed with high accuracy.
  • the position of the stage or the like can be controlled with high accuracy, and as a result, a high-quality and high-precision device can be manufactured.

Abstract

A shape measurement method for measuring the shape of reflection planes 7XS, 7YS of a stage (4) moving along a reference plane. While moving the stage (4) in the Y axis direction, the primary shape of the reflection plane 7XS associated with the Y axis direction is measured at two positions apart from each other in the Z axis direction, so as to obtain first data corresponding to a difference between one and the other primary shape data. The stage (4) is moved in the Y axis direction while adjusting the posture of the stage (4) so that the measurement result based on the measurement beam LWXP applied simultaneously to two positions apart from each other in the Z axis direction of the reflection plane 7XS is constant. During this movement, displacement of the stage (4) in the Z axis direction accompanying the posture adjustment is measured at a plurality of positions so as to obtain second data equivalent to a change of the rotation amount around the Y axis associated with the Y axis direction. Third data equivalent to a difference between the first data and the second data is subjected to linear approximation to obtain fourth data. According to the fourth data, the primary shape data is corrected.

Description

明 細 書 · 形状計測方法、 形状計測装置、 チルト計測方法、. ステージ装置、  Description · Shape measurement method, shape measurement device, tilt measurement method, stage device,
露光装置、 露光方法、 及ぴデパイス製造方法 技術分野  Exposure apparatus, exposure method, and depiice manufacturing method
本発明は、 ステージ等の移動体に設けられた反射面の形状計測方法及び形状計 測装置、 該移動体の姿勢を計測するチルト計測方法、 該移動体を移動するステー ジ装置、 露光装置、 並びに露光方法及ぴ該露光方法を用いるデバイス製造方法に 関する。 背景技術  The present invention relates to a shape measuring method and a shape measuring device for a reflection surface provided on a moving body such as a stage, a tilt measuring method for measuring a posture of the moving body, a stage apparatus for moving the moving body, an exposure apparatus, The present invention also relates to an exposure method and a device manufacturing method using the exposure method. Background art
従来より、 半導体素子、 液晶表示素子等を製造するためのリソグラフイエ程で は、 マスク又はレチクル (以下、 Γレチクル」 と総称する) に形成されたパター ンを投影光学系を介してレジス 卜等が塗布されたウェハ又はガラスプレート等の 基板 (以下、 適宜 「基板」 又は 「ウェハ」 という) 上に転写する露光装置が用い られている。 こう した露光装置としては、 いわゆるステツパ等の静止露光型の投 影露光装置や、 いわゆるスキャニング · ステツパ等の走査露光型の投影露光装置 が主として用いられている。 これらの種類の投影露光装置では、 レチクルに形成 されたパターンをウェハ上の複数のショッ ト領域に順次転写する必要から、 ゥェ ハを保持して 2次元移動可能なウェハステージが設けられている。 また、 走査露 光型の投影露光装置の場合には、 レチクルを保持するレチクルステージも走査方 向に移動可能となっている。  2. Description of the Related Art Conventionally, in a lithographic process for manufacturing a semiconductor element, a liquid crystal display element, or the like, a pattern formed on a mask or a reticle (hereinafter, collectively referred to as a “reticle”) is formed by a resist or the like via a projection optical system. There is used an exposure apparatus that transfers an image onto a substrate such as a wafer or a glass plate (hereinafter, referred to as “substrate” or “wafer” as appropriate). As such an exposure apparatus, a stationary exposure type projection exposure apparatus such as a so-called stepper and a scanning exposure type projection exposure apparatus such as a so-called scanning stepper are mainly used. In these types of projection exposure apparatuses, a wafer stage that can move two-dimensionally while holding the wafer is provided because it is necessary to sequentially transfer the pattern formed on the reticle to a plurality of shot areas on the wafer. . In the case of a scanning exposure type projection exposure apparatus, a reticle stage for holding a reticle is also movable in the scanning direction.
かかる投影露光装置においては、 非常に微細な構造を有する回路パターンをゥ ェハに転写するので、 ウェハゃレチクルの位置制御を高精度に行う必要がある。 この高精度な位置制御のため、 ウェハステージゃレチクルステージの 2次元位置 が、 ウェハステージゃレチクルステージに設けられた反射鏡にレーザ干渉計から の測長ビームを照射し、 その反射光と参照光との干渉光のフリンジパターンある いは位相差に基づいて高精度に検出されている„ ところで、 このようなウェハステージゃレチクルステージの位置の計測におい ては、 該ステージに設けられる反射鏡の鏡面にうねりやねじれがあると、 レーザ 干渉計による計測値に誤差を生じ、 精度の高い露光をなしえない場合がある。 そ こで、 反射鏡の鏡面の面形状 ( 2次元形状) を測定し、 その測定結果に基づいて、 レーザ干渉計の計測結果を補正することが行われる。 In such a projection exposure apparatus, since a circuit pattern having a very fine structure is transferred to a wafer, it is necessary to control the position of the wafer reticle with high accuracy. For this high-precision position control, the two-dimensional position of the wafer stage and reticle stage is adjusted by irradiating the measuring mirror from the laser interferometer to the reflecting mirror provided on the wafer stage and reticle stage, and the reflected light and reference light. It is detected with high accuracy based on the fringe pattern or phase difference of the interference light with In the measurement of the positions of the wafer stage and the reticle stage, if the mirror surface of the reflecting mirror provided on the stage has undulations or twists, errors will occur in the measurement values obtained by the laser interferometer, resulting in highly accurate exposure. May not be possible. Therefore, the surface shape (two-dimensional shape) of the mirror surface of the reflecting mirror is measured, and the measurement result of the laser interferometer is corrected based on the measurement result.
反射鏡の鏡面の面形状の測定技術としては、 例えば、 本願出願人による国際公 開第 W O 0 0 / 2 2 3 7 6号パンフレツ ト及ぴこれに対応する米国特許第 6 , 4 8 6 , 9 5 5号に記載された技術が知られている。 この技術では、 反射鏡の短手 方向 (高さ方向) の 2箇所 (以下、 上段、 下段という場合がある) のそれぞれに おいて、 該反射鏡の長手方向に沿う 1次元形状をそれぞれ適宜な基準に基づいて 測定するとともに、 上段の測定値と下段の測定値の相対関係 (ここでは反射面に 直交する方向のオフセッ ト) を以下のようにして求めることにより、 反射鏡の鏡 面の面形状を特定するようにしている。  Techniques for measuring the surface shape of the mirror surface of the reflecting mirror include, for example, International Publication No. WO 00/223736 published by the applicant of the present invention and U.S. Pat. The technology described in No. 955 is known. According to this technology, the two-dimensional shape along the longitudinal direction of the reflecting mirror in each of two positions (hereinafter, also referred to as an upper stage and a lower stage) in the lateral direction (height direction) of the reflecting mirror is appropriately adjusted. In addition to the measurement based on the reference, the relative relationship between the measured value in the upper row and the measured value in the lower row (here, the offset in the direction perpendicular to the reflecting surface) is determined as follows, and the surface of the mirror surface of the reflecting mirror is obtained. The shape is specified.
即ち、所定の関係で配列された複数の基準マークが形成された計測用ウェハを、 該基準マークの配列方向とウェハステージの軸方向が厳密に一致するようにゥェ ハステージ上に載置して、 前記上段 1次元形状測定と下段 1次元形状測定のそれ ぞれの前又は後に、 該計測用ウェハ上の基準マークの位置をオファクシス方式の ァライメントセンサでそれぞれ測定し、 このときの基準マークの位置ずれから上 記のオフセッ トを求めるようにしている。  That is, a measurement wafer on which a plurality of reference marks arranged in a predetermined relationship is formed is placed on a wafer stage such that the arrangement direction of the reference marks and the axial direction of the wafer stage exactly match. Before or after each of the upper one-dimensional shape measurement and the lower one-dimensional shape measurement, the position of the reference mark on the measurement wafer is measured with an off-axis alignment sensor. The above offset is determined from the positional deviation of.
しかしながら、 上述した従来技術では、 所定の基準マークを形成した計測用ゥ ェハを準備して、 これをウェハステージに所定の姿勢で載置した後に、 複数の基 準マークの位置をァライメントセンサで測定するので、 作業工数が多く、 簡単に かつ迅速に測定することができないという問題がある。  However, in the above-described conventional technology, a measurement wafer having a predetermined reference mark formed thereon is prepared, and is placed on a wafer stage in a predetermined posture, and then the positions of the plurality of reference marks are aligned with an alignment sensor. However, there is a problem that the number of work steps is large and measurement cannot be performed easily and quickly.
また、 測定結果には、 計測用ウェハの基準マークの形成誤差、 計測用ウェハの ステージ载置時の表面のうねり等による誤差、 基準マークの計測誤差などが必然 的に包含されるので、 測定精度が低いという問題もある。 発明の開示  In addition, the measurement results necessarily include errors in the formation of fiducial marks on the measurement wafer, errors due to surface undulations when the stage is placed on the measurement wafer, and measurement errors in the fiducial marks. Is also low. Disclosure of the invention
本発明は、かかる事情に鑑みてなされたものであり、その目的とするところは、 ステージ等の移動体に設けられた反射面を簡単、 迅速、 高精度で計測できるよう にし、 当該ステージ等の位置の制御を精度良く行えるようにすることである。 本発明の第 1の観点によると、 第 1軸と直交する基準平面に沿って移動する移 動体に設けられ、 前記第 1軸方向と直交する第 2軸方向に沿って延びる反射面の 形状を計測する形状計測方法であって、 前記移動体を前記第 2軸方向に沿って移 動しつつ、 前記第 2軸方向に関する前記反射面の 1次元形状を、 前記第 1軸方向 に離間した 2つの位置のそれぞれについて計測し、 前記 2つの位置の一方につい ての 1次元形状データと他方についての 1次元形状データとの差分に相当する第 1データを求め、 前記反射面の前記第 1軸方向に離間した 2つの位置に同時に照 射した計測ビームに基づく計測結果が一定となるように前記移動体を姿勢調整し つつ該移動体を前記第 2軸方向に移動するとともに、 この移動中に該移動体の姿 勢調整に伴う前記第 1軸方向の変位を複数箇所で計測して、 前記移動体の前記第 2軸方向に関する該第 2軸を中心とする回転量の変化に相当する第 2データを求 め、 前記第 1データと前記第 2データとの差分に相当する第 3データを直線近似 して得られた第 4データに基づいて前記 1次元形状データを補正するようにした 形状計測方法が提供される。 The present invention has been made in view of such circumstances, and its purpose is to: It is an object of the present invention to make it possible to measure the reflection surface provided on a moving body such as a stage easily, quickly and with high accuracy, and to control the position of the stage etc. with high accuracy. According to a first aspect of the present invention, the shape of a reflecting surface provided on a movable body that moves along a reference plane orthogonal to a first axis and extending along a second axis direction orthogonal to the first axis direction is defined as A shape measurement method for measuring, wherein the one-dimensional shape of the reflection surface in the second axis direction is separated in the first axis direction while moving the moving body along the second axis direction. Measurement for each of the two positions, obtaining first data corresponding to the difference between the one-dimensional shape data for one of the two positions and the one-dimensional shape data for the other, and in the first axial direction of the reflection surface. The moving body is moved in the second axial direction while the posture of the moving body is adjusted such that the measurement result based on the measurement beam radiated simultaneously to the two positions separated from the moving body becomes constant. The first due to the posture adjustment of the moving body Directional displacement is measured at a plurality of locations to obtain second data corresponding to a change in the amount of rotation of the moving body about the second axis in the second axis direction, and the first data and the second data are obtained. There is provided a shape measuring method for correcting the one-dimensional shape data based on fourth data obtained by linearly approximating third data corresponding to a difference between the two data.
本発明の第 2の観点によると、 第 1軸と直交する基準平面に沿って移動する移 動体に設けられ、 前記第 1軸方向と直交する第 2軸方向に沿って延びる反射面の 形状を計測する形状計測装置であって、 前記第 2軸方向に関する前記反射面の 1 次元形状を、 前記第 1軸方向に離間した 2つの位置のそれぞれについて計測する 1次元形状計測装置と、 前記移動体の前記基準平面に対する姿勢を調整する姿勢 調整装置と、 前記姿勢調整装置による前記移動体の姿勢調整に伴う、 該移動体の 前記第 1軸方向の変位を互いに異なる複数の位置で計測する変位計測装置と、 前 記反射面の前記第 1軸方向に離間した 2つの位置に計測ビームを同時に照射して 該反射面の前記第 2軸を中心とする回転量を計測するチルト計測装置と、 前記 1 次元形状計測装置による前記 2つの位置の一方についての 1次元形状データと他 方についての 1次元形状データとの差分に相当する第 1データを求め、 前記チル ト計測装置による計測結果が一定となるように前記姿勢調整装置を制御しつつ、 該移動体を前記第 2軸方向に移動し、 この移動中の前記変位計測装置による計測 結果に基づき前記移動体の前記第 2軸方向に関する該第 2軸を中心とする回転量 の変化に相当する第 2データを求め、 前記第 1データと前記第 2デ一タとの差分 に相当する第 3データを直線近似して得られた第 4データに基づいて、 前記 1次 元形状計測装置による計測結果としての前記 1次元形状データを補正する制御装 置とを備えた形状計測装置が提供される。 According to a second aspect of the present invention, the shape of a reflecting surface provided on a moving body that moves along a reference plane orthogonal to the first axis and extending along a second axis direction orthogonal to the first axis direction is defined. A shape measuring device for measuring, wherein the one-dimensional shape measuring device for measuring a one-dimensional shape of the reflection surface in the second axis direction at each of two positions separated in the first axis direction; A posture adjusting device for adjusting a posture of the moving body with respect to the reference plane, and a displacement measurement for measuring the displacement of the moving body in the first axial direction at a plurality of different positions with the posture adjustment of the moving body by the posture adjusting device. A tilt measuring device for simultaneously irradiating a measurement beam to two positions of the reflecting surface separated in the first axis direction and measuring a rotation amount of the reflecting surface about the second axis; and For one-dimensional shape measurement equipment First data corresponding to the difference between the one-dimensional shape data for one of the two positions and the one-dimensional shape data for the other is obtained, and the posture is set so that the measurement result by the tilt measuring device is constant. The moving body is moved in the second axis direction while controlling the adjusting device, and the displacement is measured by the displacement measuring device during the movement. Based on the result, second data corresponding to a change in the amount of rotation about the second axis in the direction of the second axis of the moving body is obtained, and the second data corresponding to the difference between the first data and the second data is obtained. And a control device for correcting the one-dimensional shape data as a measurement result by the one-dimensional shape measurement device based on fourth data obtained by linearly approximating the third data to be obtained. Provided.
本発明の第 3の観点によると、 第 1軸と直交する第 2軸方向に沿って延びる反 射面を有し、 前記第 1軸と直交する基準平面に沿って移動する移動体の該基準平 面に対する姿勢を、 前記反射面の前記第 1軸方向に離間した 2つの位置に同時に 照射した計測ビームにより計測するチルト計測方法であって、 前記反射面の前記 第 1軸方向に離間した 2つの位置のそれぞれについて計測された前記第 2軸方向 に関する前記反射面の 1次元形状データの一方と他方との差分に相当する第 1デ ータを求め、 前記計測ビームに基づく計測結果が一定となるように前記移動体を 姿勢調整しつつ、 かつ該移動体の姿勢調整に伴う前記第 1軸方向の変位を複数箇 所で計測しつつ、 該移動体を前記第 2軸方向に移動して、 前記移動体の前記第 2 軸方向に関する該第 2軸を中心とする回転量の変化に相当する第 2データを求 め、 前記第 1データと前記第 2データとの差分に相当する第 3データを直線近似 して得られた第 4データに前記第 1データを加算して求めた第 5データに基づ き、 前記計測ビ一ムによる計測結果を補正するようにしたチルト計測方法が提供 される。  According to a third aspect of the present invention, there is provided a reflecting surface extending along a second axis direction orthogonal to the first axis, and the reference of the moving body moving along a reference plane orthogonal to the first axis. A tilt measurement method for measuring an attitude with respect to a flat surface by a measurement beam that is simultaneously applied to two positions of the reflection surface separated in the first axis direction, wherein the tilted surface is separated from the reflection surface in the first axis direction. First data corresponding to the difference between one and the other of the one-dimensional shape data of the reflection surface in the second axis direction measured at each of the two positions, and that the measurement result based on the measurement beam is constant. Moving the moving body in the second axial direction while adjusting the posture of the moving body so that the displacement of the moving body in the first axial direction accompanying the posture adjustment of the moving body is measured at a plurality of locations. The moving body in the second axial direction. Second data corresponding to a change in the amount of rotation about the two axes is obtained, and the fourth data obtained by linearly approximating the third data corresponding to the difference between the first data and the second data is obtained. There is provided a tilt measuring method for correcting a measurement result by the measurement beam based on fifth data obtained by adding the first data.
本発明の第 4の観点によると、 第 1軸と直交する第 2軸方向に沿って延びる反 射面を有し、 前記第 1軸と直交する基準平面に沿って移動する移動体を有するス テ一ジ装置であって、 前記反射面の前記第 1軸方向に離間した 2つの位置に計測 ビームを同時に照射して該反射面の前記第 2軸を中心とする回転量を計測するチ ルト計測装置と、 前記第 2軸方向に関する前記反射面の 1次元形状を、 前記第 1 軸方向に離間した 2つの位置のそれぞれについて計測する 1次元形状計測装置 と、 前記移動体の前記基準平面に対する姿勢を調整するため、 該移動体を互いに 異なる複数の位置で前記第 1軸方向にそれぞれ変位させる姿勢調整装置と、 前記 姿勢調整装置による前記移動体の姿勢調整に伴う、 該移動体の前記第 1軸方向の 変位を互いに異なる複数の位置で計測する変位計測装置と、 前記 1次元形状計測 装置による前記 2つの位置の一方についての 1次元形状データと他方についての 1次元形状データとの差分に相当する第 1デ一タを求め、 前記チルト計測装置に よる計測結果が一定となるように前記姿勢調整装置を制御しつつ、 該移動体を前 記第 2軸方向に移動し、 このときの前記変位計測装置による計測結果に基づき前 記移動体の前記第 2軸方向に関する該第 2軸を中心とする回転量の変化に相当す る第 2データを求め、 前記第 1データと前記第 2データとの差分に相当する第 3 デ一タを直線近似して得られた第 4データに前記第 1データを加算して求めた第 5データに基づき、 前記チルト計測装置による計測結果を補正する制御装置とを 備えたステージ装置が提供される。 According to a fourth aspect of the present invention, there is provided a scanning device having a reflecting surface extending along a second axis direction orthogonal to the first axis, and having a moving body moving along a reference plane orthogonal to the first axis. A tilt device for simultaneously irradiating a measurement beam to two positions of the reflection surface separated in the first axis direction and measuring a rotation amount of the reflection surface around the second axis. A measuring device; a one-dimensional shape measuring device that measures a one-dimensional shape of the reflection surface in the second axis direction at each of two positions separated in the first axis direction; and a moving body with respect to the reference plane. A posture adjusting device for displacing the moving body in the first axial direction at a plurality of positions different from each other to adjust the posture; and Different displacements in one axis direction Displacement measuring device that measures at a number of positions, and the one-dimensional shape measurement First data corresponding to the difference between the one-dimensional shape data for one of the two positions and the one-dimensional shape data for the other of the two positions is obtained, and the measurement result by the tilt measuring device is made constant. The moving body is moved in the second axis direction while controlling the attitude adjusting device, and the second axis of the moving body in the second axis direction is measured based on a measurement result by the displacement measuring device at this time. Second data corresponding to the change in the amount of rotation about the center is obtained, and the fourth data obtained by linearly approximating the third data corresponding to the difference between the first data and the second data is obtained. A stage device comprising: a control device that corrects a measurement result by the tilt measuring device based on fifth data obtained by adding the first data.
本発明の第 5の観点によると、 第 1面の像を第 2面へ投影露光する露光装置で あって、 前記第 1面にマスクを配置するマスクステージ及ぴ前記第 2面に基板を 配置する基板ステージの少なく とも一方を前記移動体として移動する前記本発明 の第 4の観点に係るステージ装置を備えた露光装置が提供される。  According to a fifth aspect of the present invention, there is provided an exposure apparatus for projecting and exposing an image on a first surface onto a second surface, comprising: a mask stage for disposing a mask on the first surface; and a substrate on the second surface. There is provided an exposure apparatus including a stage device according to the fourth aspect of the present invention, which moves at least one of the substrate stages to be moved as the movable body.
上述した第 1〜第 5の観点に係る発明における前記計測や前記演算により求め られる前記第 4データは、 反射面の第 1軸方向に離間した 2つの位置の一方につ いての 1次元形状データと他方についての 1次元形状データの相対関係を示して おり、 本発明では、 従来技術のように、 当該相対関係の導出のために基準マーク を形成した計測用ウェハを用いることなく当該相対関係を求めることができる。 従って、 反射面の形状データを簡単かつ迅速に得ることができるとともに、 基準 マークの計測に伴う誤差が包含されることもないので、 精度を向上することがで きる。  The fourth data obtained by the measurement and the calculation in the inventions according to the first to fifth aspects described above is one-dimensional shape data on one of two positions of the reflecting surface separated in the first axis direction. In the present invention, the relative relationship between the one-dimensional shape data and the other is shown without using a measurement wafer on which a reference mark is formed in order to derive the relative relationship. You can ask. Therefore, the shape data of the reflecting surface can be obtained easily and quickly, and the accuracy associated with the measurement of the reference mark is not included, so that the accuracy can be improved.
本発明の第 6の観点によると、 第 1軸と直交する基準平面に沿って可動な移動 体に保持される感光物体上にマスクのパターンを転写する露光方法において、 前 記第 1軸方向と直交する第 2軸方向に延びる前記移動体の反射面で前記第 1軸方 向に離間した 2つの位置に照射される計測ビームによる計測結果が一定となるよ うに前記移動体の姿勢を調整しつつ前記移動体を前記第 2軸方向に移動して、 前 記移動体の前記第 2軸回りの回転量の変化に関する回転データを計測し、 前記第 According to a sixth aspect of the present invention, there is provided an exposure method for transferring a mask pattern onto a photosensitive object held by a movable body along a reference plane orthogonal to a first axis, the method comprising: The posture of the moving body is adjusted so that the measurement results obtained by the measurement beams applied to the two positions separated in the first axis direction on the reflecting surface of the moving body extending in the second orthogonal axis direction become constant. Moving the moving body in the second axis direction while measuring rotation data relating to a change in the amount of rotation of the moving body around the second axis;
1軸方向に離間した複数の位置の各々における前記反射面の前記第 2軸方向に関 する形状データと、 前記計測された回転データとを用いて、 前記移動体の移動を 制御するようにした露光方法が提供される。 Using the shape data of the reflection surface at each of a plurality of positions separated in the one-axis direction in the second-axis direction and the measured rotation data, the movement of the moving body is determined. An exposure method is provided for controlling.
本発明の第 6の観点に係る露光方法において、 前記移動中に前記姿勢調整によ る前記移動体の前記第 1軸方向の変位量に関する情報を検出し、 前記検出した情 報に基づいて前記回転デ一タを求めるようにできる。  In the exposure method according to a sixth aspect of the present invention, in the exposure method, information on a displacement amount of the moving body in the first axis direction due to the posture adjustment during the movement is detected, and the information is detected based on the detected information. The rotation data can be obtained.
本発明の第 6の観点に係る露光方法において、 前記移動体を前記第 2軸方向に 移動して得られる、 前記反射面の前記第 2軸方向に離間した複数の位置にそれぞ れ計測ビームを照射する干渉計システムの計測結果に基づいて前記形状データを 求めるようにできる。  In the exposure method according to a sixth aspect of the present invention, measurement beams are respectively obtained at a plurality of positions on the reflection surface separated in the second axis direction, which are obtained by moving the moving body in the second axis direction. The shape data can be obtained based on the measurement result of the interferometer system that irradiates the light.
本発明の第 6の観点に係る露光方法において、 前記反射面で前記第 2軸方向に 離間した複数の位置の少なく とも 1つに対して第 1軸方向に離間した位置に前記 干渉計システムからの計測ビームが照射され、 前記回転データの計測時、 前記干 渉計システムを用いて前記移動体の姿勢を調整するようにできる。  In the exposure method according to a sixth aspect of the present invention, in the exposure method, at least one of the plurality of positions spaced apart in the second axis direction on the reflection surface from the interferometer system is located at a position separated in the first axis direction from at least one of the plurality of positions. When the rotation data is measured, the attitude of the moving body can be adjusted using the interferometer system.
本発明の第 7の観点によると、 前記本発明の第 6の観点に係る露光方法を用い てマスクのパターンを感光物体上に転写する露光工程を含むデバイス製造方法が 提供される。  According to a seventh aspect of the present invention, there is provided a device manufacturing method including an exposure step of transferring a pattern of a mask onto a photosensitive object using the exposure method according to the sixth aspect of the present invention.
本発明の第 8の観点によると、 マスクのパターンを感光物体上に転写する露光 装置において、 前記感光物体を保持して第 1軸と直交する基準平面に沿って可動 で、 かつ該基準平面に対する姿勢が調整可能であるとともに、 前記第 1軸と直交 する第 2軸と平行な反射面が形成される移動体を有するステージシステムと、 前 記反射面の前記第 1軸方向に離間した 2つの位置に計測ビームを照射して、 前記 移動体の前記第 2軸回りの回転情報を少なく とも計測可能な干渉計システムと、 前記反射面の前記第 1軸方向に離間した 2つの位置に計測ビームを照射して、 前 記姿勢調整による前記移動体の前記第 1軸方向の変位情報を計測する変位計測装 置と、 前記移動体を、 前記干渉計システムの前記回転情報に関する計測結果が一 定となるようにその姿勢を調整しつつ前記第 2軸方向に移動して得られる前記変 位計測装置の計測結果に基づいて、 前記移動体の前記第 2軸回りの回転量の変化 に関する回転データを求めるとともに、 前記第 1軸方向に離間した複数の位置の 各々における前記反射面の前記第 2軸方向に関する形状データと前記回転データ とを用いて、 前記移動体の移動を制御する制御装置とを備えた露光装置が提供さ れる。 According to an eighth aspect of the present invention, in an exposure apparatus for transferring a pattern of a mask onto a photosensitive object, the exposure apparatus holds the photosensitive object, is movable along a reference plane orthogonal to a first axis, and is movable with respect to the reference plane. A stage system having a movable body in which a posture is adjustable and a reflecting surface parallel to a second axis orthogonal to the first axis is formed, and two stages separated in the first axis direction of the reflecting surface. An interferometer system that irradiates a position with a measurement beam to at least measure rotation information about the second axis of the moving object; and a measurement beam at two positions of the reflection surface that are separated in the first axis direction. A displacement measuring device for measuring displacement information of the moving body in the first axis direction by the posture adjustment, and measuring the moving body with the rotation information of the interferometer system. So that Based on the measurement result of the displacement measurement device obtained by moving the moving body in the second axis direction while adjusting the posture of the moving body, obtaining rotation data on a change in the amount of rotation of the moving body around the second axis, An exposure device comprising: a control device configured to control movement of the moving body by using shape data and the rotation data of the reflection surface in the second axis direction at each of the plurality of positions separated in the first axis direction. Equipment provided It is.
本発明の第 8の観点に係る露光装置において、 前記干渉計システムは、 前記反 射面で前記第 1軸方向に離間した 2つの位置の少なく とも一方に対して前記第 2 軸方向に離間した位置に計測ビームを照射して、 前記移動体の前記第 1軸回りの 回転情報を計測し、 前記制御装置は、 前記移動体を前記第 2軸方向に移動して得 られる前記干渉計システムの前記第 1軸回りの回転情報に関する計測結果に基づ いて前記形状データを求めるようにできる。  In the exposure apparatus according to an eighth aspect of the present invention, the interferometer system is separated in the second axis direction from at least one of two positions separated in the first axis direction on the reflection surface. Irradiating a position with a measurement beam to measure rotation information about the first axis of the moving body, wherein the control device is configured to move the moving body in the second axis direction. The shape data can be obtained based on a measurement result regarding the rotation information about the first axis.
本発明の第 8の観点に係る露光装置において、 前記ステージシステムは、 前記 移動体の姿勢を調整する複数のァクチユエータを含み、 前記変位計測装置は、 前 記変位情報として前記複数のァクチユエータの駆動量に関する情報を計測するよ うにできる。 図面の簡単な説明  In the exposure apparatus according to an eighth aspect of the present invention, the stage system includes a plurality of actuators for adjusting a posture of the moving body, and the displacement measuring device includes a driving amount of the plurality of actuators as the displacement information. Can be measured. BRIEF DESCRIPTION OF THE FIGURES
図 1は一実施形態の露光装置の概略的な構成図、  FIG. 1 is a schematic configuration diagram of an exposure apparatus of one embodiment,
図 2は基板テーブルの構成、 及び基板テーブルの位置検出のためのレー ザ干渉計の配置を説明するための図、  Fig. 2 is a diagram for explaining the configuration of the substrate table and the arrangement of the laser interferometer for detecting the position of the substrate table.
図 3は基板テーブルの 2次元位置を検出するためのレーザ干渉計の概略 的な構成図、  Figure 3 is a schematic configuration diagram of a laser interferometer for detecting the two-dimensional position of the substrate table.
図 4は図 3のレーザ干渉計における光路を説明するための図、  FIG. 4 is a diagram for explaining an optical path in the laser interferometer of FIG. 3,
図 5は図 3のレーザ干渉計における光路を説明するための図、  FIG. 5 is a diagram for explaining an optical path in the laser interferometer of FIG. 3,
図 6は図 3のレーザ干渉計における光路を説明するための図、  FIG. 6 is a diagram for explaining an optical path in the laser interferometer of FIG. 3,
図 7は反射面のチルト情報を検出するためのレーザ干渉計の概略的な構成図、 図 8は図 7のレーザ干渉計における光路を説明するための図、  FIG. 7 is a schematic configuration diagram of a laser interferometer for detecting tilt information of a reflection surface, FIG. 8 is a diagram illustrating an optical path in the laser interferometer of FIG. 7,
図 9は図 7のレーザ干渉計における光路を説明するための図、  FIG. 9 is a diagram for explaining an optical path in the laser interferometer of FIG. 7,
図 1 0は図 7のレーザ干渉計における光路を説明するための図、  FIG. 10 is a diagram for explaining an optical path in the laser interferometer of FIG. 7,
図 1 1はレチクル微動ステージの構成、 及びレチクル微動ステージの位置検出 のためのレーザ干渉計の配置を説明するための図、  FIG. 11 is a diagram for explaining the configuration of the reticle fine movement stage and the arrangement of the laser interferometer for detecting the position of the reticle fine movement stage.
図 1 2は 1次元形状計測時における基板テーブルの移動及び基準マークを説明 するための図、 図 1 3は 1次元形状計測時のレーザ干渉計における光路を説明するための図、 図 1 4は 1次元形状計測時のレーザ干渉計における光路を説明するための図、 図 1 5は基準マーク位置測定による補正前における反射面の形状計測結果を説 明するための図、 Fig. 12 is a diagram for explaining the movement of the substrate table and the fiducial marks during one-dimensional shape measurement. Fig. 13 is a diagram for explaining the optical path in the laser interferometer when measuring the one-dimensional shape, Fig. 14 is a diagram for explaining the optical path in the laser interferometer when measuring the one-dimensional shape, and Fig. 15 is the fiducial mark. Diagram for explaining the shape measurement result of the reflective surface before correction by position measurement,
図 1 6は基準マーク位置測定による補正後における反射面の形状計測結果を説 明するための図、  Figure 16 is a diagram for explaining the result of measuring the shape of the reflective surface after correction by measuring the reference mark position.
図 1 7は図 1に示された露光装置を用いたデバイス製造方法を説明するための フ口一チヤ一ト、  FIG. 17 is a flowchart for explaining a device manufacturing method using the exposure apparatus shown in FIG. 1,
図 1 8は図 1 7のウェハプロセスステップ (ステップ 2 0 4 ) における処理の フ口一チヤ一卜、  FIG. 18 is a flowchart of the processing in the wafer process step (step 204) of FIG.
図 1 9は基板ステージの姿勢制御に関する周辺部の構成を示す斜視図、 図 2 0 Aは上下段形状データの差分及びエンコーダ計測結果の一例を示す図、 図 2 0 Bは上下段形状データの差分とェンコーダ計測結果との差分及びその直 線近似の一例を示す図、  FIG. 19 is a perspective view showing a configuration of a peripheral portion relating to attitude control of the substrate stage, FIG. 20A is a diagram showing an example of a difference between upper and lower stage shape data and an encoder measurement result, and FIG. A diagram showing an example of the difference between the difference and the encoder measurement result and a linear approximation thereof,
図 2 1はステージの形状が三角形の変形例を説明するための図、  FIG. 21 is a diagram for explaining a modification in which the stage shape is a triangle.
図 2 2はレチクルステージにおいて反射面の形状計測を行う変形例を説明する ための図である。 発明を実施するための最良の形態  FIG. 22 is a view for explaining a modification in which the shape of the reflecting surface is measured on the reticle stage. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の一実施形態を、 図面を参照しつつ説明する。  Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
図 1には、 一実施形態に係る 光装置 1 0 0の概略構成が示されている。 この 露光装置 1 0 0は、 いわゆるステップ ' アンド . スキャン方式の走査型露光装置 である。 この露光装置 1 0 0は、 マスクとしてのレチクル R上のスリ ツ ト状 (矩 形状又は円弧状) の照明領域を均一に照明する不図示の照明系と、 レチクルを保 持するマスクステージとしてのレチクノレステージ R S Tと、 レチクノレ Rのパター ンをその表面にフォ トレジス 卜が塗布された基板としてのウェハ W上に投影する 投影光学系 P Lと、 ウェハ Wを保持する基板テーブル 4を含むウェハステージ装 置及ぴこれらの制御系とを備えている。  FIG. 1 shows a schematic configuration of an optical device 100 according to one embodiment. The exposure apparatus 100 is a so-called step-and-scan type scanning exposure apparatus. The exposure apparatus 100 includes an illumination system (not shown) for uniformly illuminating a slit (rectangular or arc-shaped) illumination area on a reticle R as a mask, and a mask stage as a mask stage for holding the reticle. A wafer stage including a reticle stage RST, a reticle layer R, and a projection optical system PL for projecting the pattern of the reticle layer onto a wafer W having a photoresist coated on its surface, and a substrate table 4 for holding the wafer W. It has equipment and these control systems.
前記照明系は、 光源ユニッ ト、 オプティカル .インテグレ一タを含む照度均一 化光学系、 ビームスプリ ッタ、 集光レンズ系、 レチクルブラインド (視野絞り)、 及び結像レンズ系等 (いずれも不図示) から構成されている。 この照明系の構成 等については、 例えば特開平 6 - 3 4 9 7 0 1号公報及びこれに対応する米国特 許第 5 , 5 34, 9 7 0号に開示されている。 ここで、 光源ユニッ トとしては、 K r Fエキシマレーザ光源 (発振波長 2 4 8 nm)、 A r Fエキシマレーザ光源 (発振波長 1 9 3 n m)、 若しくは F2レーザ光源 (発振波長 1 5 7 nm)、 K r (ク リプ トンダイマ) レーザ光源 (発振波長 1 4 6 nm)、 A r 2 (アルゴンダ イマ) レーザ光源 (発振波長 1 2 6 nm)、 銅蒸気レーザ光源や Y A Gレ一ザの 高調波発生装置、 又は超高圧水銀ランプ ( g線、 i線等) 等が用いられる。 なお、 以下では光源ュニッ トを除く照明系を照明光学系とも呼ぶものとする。 The illumination system includes a light source unit, an optical It consists of an optical system, a beam splitter, a condenser lens system, a reticle blind (field stop), and an imaging lens system (all not shown). The configuration and the like of this illumination system are disclosed in, for example, JP-A-6-349701 and US Patent No. 5,534,970 corresponding thereto. Here, as the light source unit, K r F excimer laser light source (oscillation wavelength 2 4 8 nm), A r F excimer laser light source (oscillation wavelength 1 9 3 nm), or F 2 laser light source (oscillation wavelength 1 5 7 nm), Kr (Crypton dimer) Laser light source (Oscillation wavelength: 146 nm), Ar 2 (Argon timer) Laser light source (Oscillation wavelength: 126 nm), Harmonic of copper vapor laser light source and YAG laser A wave generator or an ultra-high pressure mercury lamp (g-line, i-line, etc.) is used. Hereinafter, the illumination system excluding the light source unit is also referred to as an illumination optical system.
前記レチクルステージ R S T (移動体) は、 照明光学系の下方に水平に配置さ れたレチクル支持台 (定盤) 9の上面 (基準平面) 上を所定の走査方向 (ここで は、 図 1における紙面直交方向である Y方向とする) に所定ス トロークで移動可 能なレチクル走査ステージ 1 0と、このレチクル走査ステージ 1 0上に载置され、 該レチクル走査ステージ 1 0に対して X方向、 Y方向及ぴ Z軸回りの回転方向( 0 Z方向) にそれぞれ微小駆動可能なレチクル微動ステージ 1 1 とを備えている。 このレチクル微動ステージ 1 1上にレチクル Rが真空吸着又は静電吸着等により 固定されている。 なお、 レチクル Rはその下面 (パターン面) が少なく とも前述 の照明領域内で後述する投影光学系 P Lの第 1面 (物体面) と実質的に一致する ようにレチクルステージ R S Tによって保持される。 また、 レチクル微動ステー ジ 1 1の X方向、 Y方向及び 0 Z方向の位置は、 レチクル支持台 9上に配置され たレチクルレーザ干渉計 (以下、 「レチクル干渉計」 と呼ぶ) 1 4によって常時 モニタされている。 なお、 レチクル微動ステージ 1 1上には、 後述するように、 X軸の反射鏡 2 1 X及び 2個の Y軸の反射鏡 (コーナーキューブ、 レ トロ リ フレ クタ) 2 1 Y 1 , 2 1 Y 2が固定され、 これに対応してレチクル干渉計 1 4もレ 一ザ干渉計 1 4 X 1 , 1 4 X 2, 1 4 Y 1 , 1 4 Y 2から構成されている力 S (図 1 1参照)、 図 1では、 これらが代表して反射鏡 2 1、 レチクル干渉計 1 4と し て示されている。 なお、 レチクルステージ R S Tは、 レチクル Rを保持するレチ クルテーブルの微動機構 (ボイスコイルモータなどのァクチユエータ) が組み込 まれた可動体を、 例えばリニアモータで走査方向 (Y方向) に一次元駆動する構 成でもよい。 また、 レチクル微動ステージ 1 1 (またはレチクルテーブル) の端 面を鏡面加工して反射面 (前述の反射鏡 2 1 X , 2 1 Y 1 , 2 1 Y 2の反射面に 相当) として用いてもよい。 The reticle stage RST (moving body) moves in a predetermined scanning direction (here, FIG. 1) on the upper surface (reference plane) of a reticle support table (surface plate) 9 horizontally arranged below the illumination optical system. A reticle scanning stage 10 that can be moved with a predetermined stroke in the Y direction that is a direction perpendicular to the paper surface), and is mounted on the reticle scanning stage 10 in the X direction with respect to the reticle scanning stage 10. A reticle fine movement stage 11 that can be finely driven in each of the Y direction and the rotation direction (0 Z direction) around the Z axis is provided. Reticle R is fixed on reticle fine movement stage 11 by vacuum suction or electrostatic suction. The reticle R is held by the reticle stage RST such that the lower surface (pattern surface) of the reticle R at least substantially coincides with the first surface (object surface) of the projection optical system PL described later in the above-mentioned illumination area. The positions of the reticle fine movement stage 11 in the X, Y, and 0 Z directions are constantly controlled by a reticle laser interferometer (hereinafter referred to as a “reticle interferometer”) 14 disposed on the reticle support 9. Being monitored. On the reticle fine movement stage 11, as described later, an X-axis reflecting mirror 21 X and two Y-axis reflecting mirrors (corner cube, retro-reflector) 21 Y 1, 21 Y 2 is fixed, and the reticle interferometer 14 correspondingly has a force S composed of the laser interferometers 14 X 1, 14 X 2, 14 Y 1, 14 Y 2 (Fig. 11), these are shown as a reflector 21 and a reticle interferometer 14 as representatives in FIG. Reticle stage RST incorporates a fine movement mechanism (actuator such as voice coil motor) for the reticle table that holds reticle R. The movable body may be one-dimensionally driven in a scanning direction (Y direction) by, for example, a linear motor. Further, the end surface of reticle fine movement stage 11 (or reticle table) may be mirror-finished and used as a reflecting surface (corresponding to the reflecting surface of reflecting mirrors 21X, 21Y1, 21Y2 described above). Good.
そして、 このレチクル干渉計 1 4によ り得られたレチクル微動ステージ 1 1の 位置情報 (又は速度情報) は、 装置全体の動作を統轄制御する主制御系 2 2に供 給されている。 主制御系 2 2は、 レチクル走査ステージ 1 0駆動用のリニアモー タ、 レチクル微動ステージ 1 1駆動用のボイスコイルモータ等を含むレチクル駆 動装置 2 5を介してレチクル走査ステージ 1 0、 及ぴレチクル微動ステージ 1 1 の動作を制御する。  The position information (or speed information) of the reticle fine movement stage 11 obtained by the reticle interferometer 14 is supplied to a main control system 22 that controls and controls the operation of the entire apparatus. The main control system 22 includes a reticle scanning stage 10 and a reticle via a reticle driving device 25 including a linear motor for driving the reticle scanning stage 10 and a voice coil motor for driving the reticle fine movement stage 11. The operation of the fine movement stage 1 1 is controlled.
前記投影光学系 P Lとしては、 ここでは両側テレセントリ ックで所定の縮小倍 率 β ( j3は例えば 1 / 4 , 1ノ5等) を有する屈折光学系が使用され、 前述の照 明領域 (3 6 : 図 1 1参照) と共役な露光領域 (3 4 : 図 2参照) 内にレチクル Rのパターンの縮小像を投影する。 この投影光学系 P Lの光軸 A Xの方向は、 X Y平面に直交する Z方向とされている。 また、 投影光学系 P Lの Y方向の側面部 には、 ウェハ W上の各ショ ッ ト領域 S A (図 2参照) に付設されたァライメント マーク (ウェハマーク) を観察するための画像処理方式のオフ . ァクシス ' ァラ ィメントセンサ (以下、 「ァライメントセンサ」 という) 2 6が配置されている。 このァライメントセンサ 2 6の光学系の光軸 F Xは、 投影光学系の光軸 A Xと平 行とされている。 かかるァライメン トセンサ 2 6の詳細な構成は、 例えば特開平 9一 2 1 9 3 5 4号公報及びこれに対応する米国特許第 5, 8 5 9, 7 0 7号等 に開示されている。 なお、 ァライメン トセンサ 2 6によってマーク検出系が構成 されている。  Here, as the projection optical system PL, a dioptric optical system having a predetermined reduction magnification β (j3 is, for example, 4, 1 ノ 5, etc.) in both-side telecentricity is used. 6: Refer to Fig. 11) and project a reduced image of the reticle R pattern into the exposure area (34: See Fig. 2). The direction of the optical axis AX of the projection optical system PL is a Z direction orthogonal to the XY plane. Also, on the side surface of the projection optical system PL in the Y direction, an image processing method for observing alignment marks (wafer marks) attached to each shot area SA (see FIG. 2) on the wafer W is turned off. Axis sensors (hereinafter referred to as “alignment sensors”) 26 are arranged. The optical axis FX of the optical system of the alignment sensor 26 is parallel to the optical axis AX of the projection optical system. The detailed configuration of such an alignment sensor 26 is disclosed in, for example, Japanese Patent Application Laid-Open No. Heisei 9-219354 and U.S. Pat. No. 5,859,707 corresponding thereto. The alignment sensor 26 forms a mark detection system.
前記ウェハステージ装置は、 投影光学系 P Lの下方に配置され、 ウェハ支持台 (定盤) 1 の上面 (基準平面) 上を Y方向に移動可能なウェハ Y軸駆動ステージ 2 と、 このウェハ Y軸駆動ステージ 2上を Y方向に直交する X方向 (図 1におけ る紙面左右方向) に移動可能なウェハ X軸駆動ステージ 3と、 このウェハ X軸駆 動ステージ 3上に载置され、 Z方向の微動 (X軸回りの回転及び Y軸回りの回転 を含む) 及び Z軸回りの回転が可能な基板テ一ブル(移動体) 4 とを備えている。 この基板テーブル 4上にウェハ Wが真空吸着、 静電吸着等によつて保持されてい る。 なお、 ウェハ Wはその表面 (感応面) が少なく とも前述の露光領域内で投影 光学系 P Lの第 2面 (結像面) と実質的に一致する (即ち、 投影光学系 P Lの焦 点深度内に設定される) ようにウェハステージ装置によって保持される。 また、 ウェハステージ装置は基板テーブル 4の微動機構 (ボイスコイルモータなどのァ クチユエータ) が組み込まれた可動体を、 例えばリニアモータなどで二次元駆動 する構成でもよいし、 その微動機構によって基板テーブル 4を X方向及ぴ Y方向 にそれぞれ微動可能としてもよい。 The wafer stage device is disposed below the projection optical system PL, and is capable of moving in a Y direction on the upper surface (reference plane) of a wafer support (stool) 1 in the Y direction. A wafer X-axis drive stage 3 that can move on the drive stage 2 in the X direction perpendicular to the Y direction (the horizontal direction in the drawing in FIG. 1), and is mounted on the wafer X-axis drive stage 3 and is placed in the Z direction. (Including rotation around the X axis and rotation around the Y axis) and a substrate table (moving body) 4 that can rotate around the Z axis. The wafer W is held on the substrate table 4 by vacuum suction, electrostatic suction or the like. Note that the surface of the wafer W (sensitive surface) substantially coincides with the second surface (imaging surface) of the projection optical system PL at least within the above-described exposure area (that is, the focal depth of the projection optical system PL). Is set by the wafer stage device. Further, the wafer stage device may be configured to two-dimensionally drive a movable body incorporating a fine movement mechanism (an actuator such as a voice coil motor) of the substrate table 4 by, for example, a linear motor. May be finely movable in the X direction and the Y direction, respectively.
基板テーブル 4は、 図 1 9に示されているように、 3個の Z軸方向に伸縮可能 なァクチユエータ AC 1〜AC 3 (姿勢調整装置) を介してウェハ X駆動ステー ジ 3上に載置されている。 各ァクチユエータ AC 1〜AC 3の変位は、 それぞれ に付随したエンコーダ EN 1〜EN 3 (姿勢計測装置) によって計測される。 了 クチユエータ AC 1〜AC 3は、 口一タリーモータ及ぴカムを使用する方式、 積 層型圧電素子 (ピエゾ素子)、 又はボイスコイルモータ (ここではボイスコイル モータとする) 等を使用して構成される。 エンコーダ EN l〜EN 3 fま、 各ァク チユエータ AC 1〜AC 3の近傍に配置され、 エンコーダ EN 1〜EN 3 として は光学式又は静電容量式等のリニアエンコーダを用いることができる。 なお、 ァ クチユエータ AC 1〜AC 3の変位 (駆動量) を計測するセンサ E N 1〜E N 3 はエンコーダに限られるものでなく任意で構わない。  As shown in Fig. 19, the substrate table 4 is mounted on the wafer X drive stage 3 via three actuators AC1 to AC3 (posture adjustment devices) that can be extended and contracted in the Z-axis direction. Have been. The displacement of each of the actuators AC1 to AC3 is measured by the encoder EN1 to EN3 (posture measuring device) attached to each actuator. Rectifiers AC 1 to AC 3 are configured using a method using a single tally motor and a cam, a laminated piezoelectric element (piezo element), or a voice coil motor (here, a voice coil motor). Is done. The encoders EN 1 to EN 3 f are arranged near the actuators AC 1 to AC 3. As the encoders EN 1 to EN 3, a linear encoder such as an optical encoder or a capacitance encoder can be used. The sensors EN1 to EN3 for measuring the displacements (driving amounts) of the actuators AC1 to AC3 are not limited to encoders and may be arbitrary.
3個のァクチユエ一タ A C 1〜AC 3は主制御系 2 2により制御される。 ァク チュエータ AC 1〜AC 3を均等に伸縮させることにより、 基板ステージ 4の Z 方向の位置 (焦点位置) を調整することができ、 3個のァクチユエータ AC 1〜 AC 3の伸縮量を個別に調整することにより、 基板ステージ 4の X軸及び Y軸の 回りの傾斜角を調整することができる。 3個のエンコーダ EN 1〜EN 3から得 られた Z軸方向の検出値 (変位量) は主制御系 2 2に供給される。 主制御系 2 2 は、 各エンコーダ EN 1〜EN 3の検出値及ぴ各エンコーダ EN 1〜EN 3の配 置 (X— Y平面内での位置関係) に基づき、 ウェハ Wの Z軸方向の位置、 X軸回 りの傾斜角及ぴ Y軸回りの傾斜角を求める。  The three actuators AC 1 to AC 3 are controlled by the main control system 22. By making the actuators AC 1 to AC 3 expand and contract evenly, the position (focal position) of the substrate stage 4 in the Z direction can be adjusted, and the amount of expansion and contraction of the three actuators AC 1 to AC 3 can be adjusted individually. By adjusting, the tilt angles of the substrate stage 4 around the X axis and the Y axis can be adjusted. The detected values (displacement) in the Z-axis direction obtained from the three encoders EN 1 to EN 3 are supplied to the main control system 22. The main control system 22 determines the position of the wafer W in the Z-axis direction based on the detected values of the encoders EN 1 to EN 3 and the arrangement of the encoders EN 1 to EN 3 (the positional relationship in the XY plane). Find the position, tilt angle around the X axis and tilt angle around the Y axis.
基板テーブル 4側面には反射鏡 7が設けられており、 外部に配置されたゥ. レーザ干渉計 (以下、 「ウェハ干渉計」 と呼ぶ) 1 3により、 基板テーブル 4 (ゥ ェハ W) の X方向、 Y方向及び Z軸回りの回転方向 ( 0 Z方向) の位置がモニタ され、 ウェハ干渉計 1 3により得られた位置情報も主制御系 2 2に供給されてい る。 なお、 基板テーブル 4側面には、 後述するように、 X軸の反射鏡 7 Xと Y軸 の反射鏡 7 Yとが固定されているが (図 2参照)'、 図 1では反射鏡 7 X, 7 Yが 代表して反射鏡 7 として示されている。 さらに、 反射鏡 7を設ける代わりに、 例 えば基板テーブル 4の側面を鏡面加工して反射面 (前述の反射鏡 7の反射面に相 当) として用いてもよい。 また、 ウェハ干渉計 1 3は、 基板テーブル 4の XY位 置を検出するために反射鏡 7 X、 7 Yに対して各 2軸のレーザビームを投射する 2次元位置検出系としてのレーザ干渉計 1 3 X 1, 1 3 X 2 , 1 3 Y 1 , 1 3 Y 2 , 1 3 F X、 並びに基板テ一ブル 4の X軸に対する傾き (Y軸回りの回転角) 及び基板テーブル 4の Y軸に対する傾き (X軸回りの回転角) を検出するために 反射鏡 7 X、 7 Yに対して各 2軸のレーザビームを投射するチル卜検出系と して のレーザ干渉計 1 3 XP, 1 3 Y P, 1 3 F P (チルト計測装置) から構成され ているが (図 2参照)、 これらのレーザ干渉計が図 1では代表してウェハ干渉計 1 3 として示されている。 A reflector 7 is provided on the side of the substrate table 4 and is located outside. A laser interferometer (hereinafter referred to as a “wafer interferometer”) 13 monitors the position of the substrate table 4 (wafer W) in the X, Y, and rotation directions (Z direction) around the Z axis. The position information obtained by the wafer interferometer 13 is also supplied to the main control system 22. As will be described later, a reflecting mirror 7 X for the X axis and a reflecting mirror 7 Y for the Y axis are fixed to the side surface of the substrate table 4 (see FIG. 2) ', but in FIG. , 7 Y are representatively shown as reflector 7. Further, instead of providing the reflecting mirror 7, for example, the side surface of the substrate table 4 may be mirror-finished and used as a reflecting surface (corresponding to the reflecting surface of the reflecting mirror 7 described above). The wafer interferometer 13 is a laser interferometer as a two-dimensional position detection system that projects laser beams in two axes to the reflecting mirrors 7X and 7Y to detect the XY position of the substrate table 4. 1 3 X 1, 1 3 X 2, 1 3 Y 1, 1 3 Y 2, 1 3 FX, tilt of board table 4 with respect to X axis (rotation angle around Y axis), and Y axis of board table 4 Laser interferometer as a tilt detection system that projects two-axis laser beams to the reflecting mirrors 7X and 7Y to detect the tilt (rotation angle about the X axis) with respect to the laser. It consists of 3 YP, 13 FP (tilt measuring device) (see Fig. 2), but these laser interferometers are shown as a wafer interferometer 13 in Fig. 1 as a representative.
なお、 投影光学系 P Lの鏡简 (または投影光学系 P Lが載置される架台など) には、 前記レチクル干渉計 1 4が参照光束を照射するレチクル参照鏡 (不図示) 及び前記ウェハ干渉計 1 3が参照光束を照射するウェハ参照鏡 MRWが固定され ている。 なお、 ウェハ参照鏡 MRWは、 前記レーザ干渉計 1 3 X 1 , 1 3 X 2が 参照光束を照射する X軸ウェハ参照鏡 MRWX (図 3参照) 及び前記レーザ干渉 計 1 3 Y 1 , 1 3 Y 2が参照光束を照射する Y軸ウェハ参照鏡 (不図示) から構 成されているが、 図 1では X軸ウェハ参照鏡 MR WX及び Y軸ウェハ参照鏡がゥ ェハ参照鏡 MRWとして示されている。 また、 レチクル参照鏡もウェハ参照鏡と 同様に、 前記レーザ干渉計 1 4 X 1 , 1 4 X 2が參照光束を照射する X軸レチク ル参照鏡及ぴ前記レーザ干渉計 1 4Y 1 , 1 4 Y 2が参照光束を照射する Y軸レ チクル参照鏡 (いずれも不図示) から構成されている。  Note that a reticle reference mirror (not shown) that the reticle interferometer 14 irradiates a reference light beam and the wafer interferometer are provided on the mirror of the projection optical system PL (or a mount on which the projection optical system PL is mounted). The wafer reference mirror MRW 13 for irradiating the reference beam is fixed. The wafer reference mirror MRW is composed of an X-axis wafer reference mirror MRWX (see FIG. 3) in which the laser interferometers 13 X 1 and 13 X 2 irradiate a reference beam, and the laser interferometers 13 Y 1 and 13 Y 2 is composed of a Y-axis wafer reference mirror (not shown) that irradiates a reference light beam. In FIG. 1, the X-axis wafer reference mirror MR WX and the Y-axis wafer reference mirror are shown as wafer reference mirrors MRW. Have been. Similarly to the wafer reference mirror, the reticle reference mirror is an X-axis reticle reference mirror that irradiates the reference beam with the laser interferometers 14 X 1, 14 X 2 and the laser interferometers 14 Y 1, 14. Y2 is configured with a Y-axis reticle reference mirror (all not shown) that irradiates a reference beam.
また、 ァライメントセンサ 2 6 (またはァライメン トセンサ 2 6が固定される 架台など) には、 レーザ干渉計 1 3 F Xが参照光束を照射するァライメン ト参照 鏡 (不図示) が固定されている。 In addition, the alignment sensor 26 (or a mount to which the alignment sensor 26 is fixed) has a laser interferometer 13 FX which is used to irradiate the reference beam. A mirror (not shown) is fixed.
更に、 図 1の装置 1 0 0には、 送光系 2 8及び受光系 2 9から構成され、 投影 光学系 P Lに関してレチクル R上の照明領域と共役なウェハ W上の露光領域 3 4 の内部及ぴその近傍に設定される複数の検出点でそれぞれウェハ表面の Z方向 (光軸 A X方向) 位置を検出するための斜入射光式のフォーカス検出系 (焦点検 出系) の一つであるレべリング検出系としての多点フォーカス位置検出系が設け られている。 この多点フォーカス位置検出系 ( 2 8 , 2 9 ) の詳細な構成等につ いては、例えば特開平 6 - 2 8 3 4 0 3号公報及びこれに対応する米国特許第 5 , 4 4 8 , 3 3 2号等に開示されている。 なお、 多点フォーカス位置検出系は露光 領域 3 4の内部及び外部の一方のみに複数の検出点が設定されているだけでもよ い。 また、 その複数の検出点は、 走査露光時にウェハ Wが移動される走査方向 (Y 方向) 及びこれと直交する非走査方向 (X方向) のうち少なく とも非走査方向に 関して離れた検出点を含むことが好ましい。  Further, the apparatus 100 shown in FIG. 1 includes a light transmitting system 28 and a light receiving system 29, and the inside of an exposure area 34 on a wafer W conjugated with an illumination area on the reticle R with respect to the projection optical system PL. It is one of the oblique incident light type focus detection systems (focus detection systems) for detecting the position in the Z direction (optical axis AX direction) of the wafer surface at each of a plurality of detection points set in the vicinity thereof. A multipoint focus position detection system is provided as a leveling detection system. The detailed configuration and the like of this multi-point focus position detection system (28, 29) are described in, for example, Japanese Patent Application Laid-Open No. HEI 6-283043 and US Pat. , 332, etc. In the multi-point focus position detection system, a plurality of detection points may be set only in one of the inside and outside of the exposure area 34. In addition, the plurality of detection points are at least detection points apart from the scanning direction (Y direction) in which the wafer W is moved during the scanning exposure and the non-scanning direction (X direction) orthogonal thereto. It is preferable to include
上記の多点フォーカス位置検出系 ( 2 8 , 2 9 ) からの Z方向位置情報は、 主 制御系 2 2に供給される。 そして、 主制御系 2 2は、 ウェハ干渉系 1. 3及び多点 フォーカス位置検出系 ( 2 8 , 2 9 ) から供給された位置情報に基づいて、 ゥェ ハ Y軸駆動ステージ 2駆動用のリユアモータ、 ウェハ X軸駆動ステージ 3駆動用 のリニアモータ、 基板テーブル 4の X Y微動用のァクチユエータ、 基板テーブル 4の姿勢調整用のァクチユエータ A C:!〜 A C 3等を含むウェハ駆動装置 2 4を 介してウェハ Y軸駆動ステージ 2、 ウェハ X軸駆動ステージ 3、 及ぴ基板テープ ル 4の動作を制御することにより、 ウェハ Wを X Y Zの各軸方向及び X Y Zの各 軸回り方向に位置制御する。  The Z-direction position information from the multi-point focus position detection system (28, 29) is supplied to the main control system 22. Based on the position information supplied from the wafer interference system 1.3 and the multi-point focus position detection system (28, 29), the main control system 22 drives the wafer Y-axis drive stage 2 Via a wafer driving device 24 including a linear motor for driving the X-axis drive stage 3 for the wafer, an actuator for finely moving the substrate table 4 in the XY direction, and an actuator for adjusting the posture of the substrate table 4 AC:! By controlling the operations of the wafer Y-axis drive stage 2, the wafer X-axis drive stage 3, and the substrate table 4, the position of the wafer W is controlled in each of the XYZ axis directions and the XYZ axis directions.
なお、 ウェハステージ装置をウェハ支持台 1 と基板テーブル 4とから構成し、 ウェハ駆動装置 2 4が平面型モータを含む構成とすることも可能である。  Note that the wafer stage device may be configured by the wafer support table 1 and the substrate table 4, and the wafer driving device 24 may be configured to include a planar motor.
また、 基板テーブル 4上のウェハ Wの近傍には、 基準マーク板 6が固定されてい る。 この基準マーク板 6の表面は、 ウェハ Wの表面と同じ高さに設定され、 この 表面には後述するァライメント用の基準マーク等の各種の基準マークが形成され ている。 A reference mark plate 6 is fixed near the wafer W on the substrate table 4. The surface of the reference mark plate 6 is set at the same height as the surface of the wafer W, and various reference marks such as alignment reference marks to be described later are formed on the surface.
また、 レチクル Rの図 1における上方には、 1対のレチクルァライメン ト系 1 9及ぴ 2 0が配置されている。 これらのレチクルァライメント系 1 9 , 2 0は、 ここでは図示を省略したが、 それぞれ露光光 E Lまたはそれと同じ波長の照明光 にて検出対象のマークを照明するための落射照明系と、 その検出対象のマークの 像を撮像するためのァラィメント顕微鏡とを含んで構成されている。 ァライメン ト顕微鏡は、 結像光学系と撮像素子とを含んでいる。 この場合、 レチクル から の検出光をそれぞれレチクルァライメント系 1 9及び 2 0に導くための偏向ミラ 一 1 5及ぴ 1 6が移動自在に配置されており、 露光シーケンスが開始されると、 主制御系 2 2からの指令により、 駆動装置 1 7及ぴ 1 8により偏向ミラー 1 5及 ぴ 1 6はそれぞれレチクルァライメン卜系 1 9 , 2 0と一体的に露光光 E Lの光 路外に退避される。 In addition, the upper part of reticle R in Fig. 1 shows a pair of reticle alignment systems. 9 and 20 are arranged. These reticle alignment systems 19 and 20 are not shown here, but each of them is an epi-illumination system for illuminating a mark to be detected with the exposure light EL or illumination light of the same wavelength, and its detection system. And an alignment microscope for capturing an image of the target mark. The alignment microscope includes an imaging optical system and an image sensor. In this case, deflection mirrors 15 and 16 for guiding the detection light from the reticle to the reticle alignment systems 19 and 20, respectively, are movably arranged. In response to a command from the control system 22, the deflection mirrors 15 and 16 are integrated with the reticle alignment systems 19 and 20, respectively, out of the optical path of the exposure light EL by the driving devices 17 and 18. Evacuated to
更に、 図 1の装置は、 レーザ干渉計 1 3 X 1, 1 3 X 2 , 1 3 Y 1 , 1 3 Y 2 の反射鏡 7 X , 7 Yへの照射光束の光路を変更するための光路変更装置 4 0を有 している。 この光路変更装置 4 0については後述する。  Further, the apparatus shown in FIG. 1 is an optical path for changing the optical path of the light beam irradiated to the reflecting mirrors 7 X and 7 Y of the laser interferometers 13 X 1, 13 X 2, 13 Y 1 and 13 Y 2. It has change device 40. This optical path changing device 40 will be described later.
また、 前記主制御系 2 2は、 マイクロコンピュータ又はワークステーショ ン等 から構成されており、 装置全体を統括的に制御する。 例えば、 走査露光時には、 この主制御系 2 2は、 レチクル駆動装置 2 5、 ウェハ駆動装置 2 4をそれぞれ制 御し、 露光光 E Lの照射領域 (照明領域 3 6及び露光領域 3 4 ) に対して、 ゥェ ハ Wを図 1 の紙面と直交する + Y方向 (又は一 Y方向) に一定速度 Vで走査する のと同期して、 レチクル Rを一 Y方向 (又は + Y方向) に一定速度 V Z j3で走査 するように制御する。 この主制御系 2 2には、 オペレータが各種コマンド等を入 力するための入力装置 2 3が接続されている。 また、 本実施形態では、 この主制 御系 2 2には、 基板テーブル 4に設けられた反射鏡 7 (実際には、 反射鏡 7 X及 び反射鏡 7 Y : 図 2参照) の形状情報データ 2 7 aを含む動作パラメータが記憶 された記憶装置 2 7が併設されている。  The main control system 22 is composed of a microcomputer, a workstation, or the like, and controls the entire apparatus. For example, at the time of scanning exposure, the main control system 22 controls the reticle driving device 25 and the wafer driving device 24, respectively, and controls the irradiating region (the illuminating region 36 and the exposing region 34) of the exposure light EL. The reticle R is kept constant in one Y direction (or + Y direction) in synchronism with scanning the wafer W in the + Y direction (or one Y direction) perpendicular to the paper surface of Fig. 1 at a constant speed V. Control to scan at speed VZ j3. The main control system 22 is connected to an input device 23 for the operator to input various commands and the like. In the present embodiment, the main control system 22 includes the shape information of the reflecting mirrors 7 (actually, the reflecting mirrors 7X and 7Y: see FIG. 2) provided on the substrate table 4. A storage device 27 in which operation parameters including data 27a are stored is provided.
次に、 図 2〜図 1 1を参照してレチクルステージ R S T側のレチクル干渉計 1 4、 及びウェハステージ装置側のウェハ干渉計 1 3の構成等について説明する。 図 2には基板テーブル 4周辺の平面図が示されている。 この図 2に示されるよ うに、 基板テーブル 4上のウェハ Wの近傍に基準マーク板 6が固定されている。 基準マーク板 6上には、レチクル Rのァライメント用の 1組の基準マーク 3 0 A , 3 0 B , 3 0 C, 3 0 D, 3 0 E , 3 0 F及び不図示のペースライン計測用マー クが形成されている。 Next, the configuration and the like of the reticle interferometer 14 on the reticle stage RST side and the wafer interferometer 13 on the wafer stage apparatus side will be described with reference to FIGS. FIG. 2 is a plan view showing the periphery of the substrate table 4. As shown in FIG. 2, a reference mark plate 6 is fixed near the wafer W on the substrate table 4. On the fiducial mark plate 6, a set of fiducial marks 30 A, 30 B, 30 C, 30 D, 30 E, 30 F and a mark for measuring a pace line (not shown) are formed.
また、 基板テーブル 4の一 X方向、 +Y方向の端部側面に Y方向に延びた X軸 の反射鏡 7 X、 X方向に延びた Y軸の反射鏡 7 Yがそれぞれ固定されている。 ま た、 ウェハ w上のスリ ッ ト状の露光領域 34にレチクル Rのパターンの一部の像 が投影され、 X方向に関する露光領域 3 4の両端部に所定間隔で図 1のレチクル ァライメント系 1 9 , 2 0の観察領域が設定されている。  Further, an X-axis reflecting mirror 7X extending in the Y direction and a Y-axis reflecting mirror 7Y extending in the X direction are fixed to end side surfaces of the substrate table 4 in the X and + Y directions, respectively. In addition, an image of a part of the pattern of the reticle R is projected onto the slit-shaped exposure area 34 on the wafer w, and the reticle alignment system 1 shown in FIG. 9, 20 observation areas are set.
反射鏡 7 Xには、 Y軸方向に沿って距離 L 1 1を隔てて並べられ、 X軸に平行 なレーザビーム L WX 1及ぴ LWX 2が照射されている。 また、 Z軸方向に沿つ て距離 DX (図 8参照) を隔てて並べられ、 X軸に平行な 1対のレーザビーム L WXPが照射されている。 なお、 レーザビーム LWX l , LWX 2は、 X軸に平 行で且つ投影光学系 P Lの光軸 A Xを通る軸 XW Aに対して Y軸方向に振り分け られている。  The reflecting mirror 7X is irradiated with laser beams LWX1 and LWX2 arranged in the Y-axis direction at a distance L11 and parallel to the X-axis. In addition, a pair of laser beams LWXP parallel to the X-axis are irradiated at a distance DX (see Fig. 8) along the Z-axis. The laser beams LWXl and LWX2 are distributed in the Y-axis direction with respect to an axis XWA parallel to the X-axis and passing through the optical axis AX of the projection optical system PL.
さらに、 反射鏡 7 Xには、 X軸に平行なレーザビーム L F Xが照射され、 また、 上記のレーザビーム LWXPと同様に Z軸方向に沿って距離 DXを隔てて並べら れ、 X軸に平行な 1対のレーザビーム L F X Pが照射されている。 なお、 レーザ ビーム L F Xは、 X軸に平行で且つァライメントセンサ 2 6の光軸 F Xを通る軸 X F Aに沿って反射鏡 7 Xに照射されている。  Further, the reflecting mirror 7X is irradiated with a laser beam LFX parallel to the X-axis, and is arranged at a distance DX along the Z-axis direction in the same manner as the laser beam LWXP, and is parallel to the X-axis. A pair of laser beams LFXP is irradiated. The laser beam LFX is applied to the reflecting mirror 7X along an axis XFA parallel to the X-axis and passing through the optical axis FX of the alignment sensor 26.
レーザビーム LWX l , L WX 2 , L WX P , L F X, L FXPのそれぞれは、 図 2に示されるレーザ干渉計 1 3 X 1 , 1 3 2, 1 3 X P , 1 3 F X, 1 3 F Pから供給される。 これらのレーザ干渉計 1 3 X 1 , 1 3 X 2, 1 3 X P , 1 3 FX, 1 3 F Pについて、 図 3〜図 1 0を参照して説明する。  Each of the laser beams LWX l, L WX 2, L WX P, LFX, L FXP is from the laser interferometers 13 X 1, 13 2, 13 XP, 13 FX, 13 FP shown in Figure 2. Supplied. These laser interferometers 13X1, 13X2, 13XP, 13FX, and 13FP will be described with reference to FIGS.
前記レーザ干渉計 1 3 X 1は、 図 3に示されるように、 光源 5 1 X 1、 受光器 5 2 X 1、 偏光ビームスフ。リ ッタ 5 3 X 1、 1 Z 2波長板 5 4 X 1、 偏光ビーム スプリ ッタ 5 5 X 1、 1 /4波長板 5 6 X 1、反射プリズム (コーナーキューブ) 5 7 X 1、 並びに反射プリズム 5 8 X 1、 偏光ビ一ムスプリ ツタ 5 9 X 1、 1 / 4波長板 6 0 X 1、 反射プリズム (コーナーキュ一ブ) 6 1 X 1を有している。 ここで、 レーザ干渉計 1 3 X 1の作用を説明する。 前記レーザ干渉計 1 3 X 1 では、 図 3に示されるように、 光源 5 1 X 1から + X方向へ進行する光束が射出 される。 ここで、 光源 5 1 X 1は、 例えばゼーマン効果を利用した 2周波レーザ が用いられ、 周波数 (すなわち、 波長〉 が僅かに異なり、 かつ、 偏光方向が互い に直交する第 1偏光成分と第 2偏光成分とからなるレーザ光束を出力する。なお、 第 1偏光成分が垂直偏光成分 (V偏光) であり、 第 2偏光成分が水平偏光成分 (H 偏光) であるとする。 As shown in FIG. 3, the laser interferometer 13 X 1 includes a light source 51 X 1, a light receiver 52 X 1, and a polarizing beam source. 5 3 X 1, 1 Z 2 wavelength plate 54 X 1, polarizing beam splitter 55 X 1, 1/4 wavelength plate 56 X 1, reflective prism (corner cube) 57 X 1, and It has 58 x 1 reflective prism, 59 x 1 polarizing beam splitter, 60 x 1/4 wavelength plate, and 61 x 1 reflective prism (corner cube). Here, the operation of the laser interferometer 13 X 1 will be described. As shown in FIG. 3, the laser interferometer 13 X 1 emits a light beam traveling in the + X direction from the light source 51 X 1. Is done. Here, as the light source 51 X1, for example, a two-frequency laser utilizing the Zeeman effect is used, and the first polarization component and the second polarization component whose frequencies (that is, wavelengths) are slightly different and whose polarization directions are orthogonal to each other are used. A laser beam composed of polarized light components is output, where the first polarized light component is a vertical polarized light component (V-polarized light) and the second polarized light component is a horizontal polarized light component (H-polarized light).
光源 5 1 X 1から射出された光束は、 図 4に示されるように、 偏光ビームスプ リ ツタ 5 3 X Iに入射し、 偏光方向に応じて 2光束に分割される。 すなわち、 光 源 5 1 X 1から射出された第 1偏光成分から成る光束 LWX 1は、 偏光ビームス プリ ッタ 5 3 X 1をそのまま透過して + X方向に進行し、 また、 第 2偏光成分か ら成る光束 LWXR 1は、 偏光ビームスプリ ッタ 5 3 X 1によって偏向されて + Z方向に進行する。  As shown in FIG. 4, the light beam emitted from the light source 51 X1 enters the polarization beam splitter 53XI, and is split into two light beams according to the polarization direction. That is, the light beam LWX 1 composed of the first polarization component emitted from the light source 51 X 1 passes through the polarization beam splitter 53 X 1 as it is and travels in the + X direction, and the second polarization component The light beam LWXR 1 is deflected by the polarization beam splitter 53 X 1 and travels in the + Z direction.
偏光ビームスプリ ッタ 5 3 X 1をそのまま透過した光束 LWX 1は、 図 5に示 されるように、 1 /2波長板 54 X 1を介することにより偏光方向が 9 0° 回転 されて偏光ビームスプリ ッタ 5 5 X 1に入射し、 偏光ビームスプリ ッタ 5 5 X 1 をそのまま透過する。 偏光ビームスプリ ッタ 5 5 X 1をそのまま透過した光束 L WX 1は、 1 /4波長板 5 6 X 1によって円偏光に変換された後、 Z位置が ZW 1で Y位置が YW1近傍である反射面 7 X S上の点に入射して反射される。 反射 面 7 X Sで反射された光束 LWX 1は、 1ノ 4波長板 5 6 X 1によって先の偏光 ビームスプリ ッタ 5 5 X 1からの射出時から偏光方向が 9 0° 回転されて偏光ビ 一ムスプリ ッタ 5 5 X 1に戻る。 そして、 光束 LWX 1は、 偏光ビームスプリ ッ タ 5 5 X 1によって偏向されて、 一Y方向に進行する。  As shown in FIG. 5, the light beam LWX 1 that has passed through the polarizing beam splitter 5 3 X 1 as it is is rotated by 90 ° through the 波長 wavelength plate 54 X 1 and the polarization direction is rotated 90 °, so that the polarizing beam splitter The light enters the splitter 55 X 1 and passes directly through the polarizing beam splitter 55 X 1. The light beam L WX 1 that has passed through the polarizing beam splitter 55 X 1 as it is is converted into circularly polarized light by the quarter-wave plate 56 X 1, and then the Z position is ZW 1 and the Y position is near YW 1 Reflecting surface 7 A point on XS is incident and reflected. The light beam LWX 1 reflected by the reflecting surface 7 XS is rotated by 90 ° from the polarization beam splitter 55 X 1 by the 1/4 wavelength plate 56 X 1, and the polarization direction is rotated by 90 °. Return to One Musplitter 5 5 X 1. Then, the light beam LWX 1 is deflected by the polarization beam splitter 55 X 1 and travels in one Y direction.
こう して、 一 Y方向に進行した光束 LWX 1は、 コーナーキュープの機能を杲 たす反射プリズム 5 7 X 1によって反射され、 偏光ビームスプリ ッタ 5 5 X 1に 再ぴ入射する。 そして、 反射プリズム 5 7 X 1から偏光ビームスプリ ッタ 5 5 X 1に再入射した光束 LWX 1は、 偏光ビームスプリ ッタ 5 5 X 1によって偏向さ れて + X方向に進行し、 1 4波長板 5 6 X 1によって円偏光に変換された後、 Z位置が ZW1で Y位置が YW 1近傍である反射面 7 X S上の点に入射して再度 反射される。 反射面 7 X Sで再度反射された光束 LWX 1は、 1ノ 4波長板 5 6 X 1によって先の偏光ビームスプリ ッタ 5 5 X 1からの射出時から偏光方向が 9 PC蘭画 15491 In this way, the light beam LWX 1 traveling in the one Y direction is reflected by the reflecting prism 57 X 1 serving as a corner cup, and re-enters the polarizing beam splitter 55 X 1. The light beam LWX 1 re-entering the polarizing beam splitter 55 X 1 from the reflecting prism 57 X 1 is deflected by the polarizing beam splitter 55 X 1 and travels in the + X direction. After being converted into circularly polarized light by the wave plate 56X1, the light is incident on a point on the reflecting surface 7XS where the Z position is ZW1 and the Y position is near YW1, and is reflected again. The light beam LWX 1 reflected by the reflecting surface 7 XS again has a polarization direction of 9 from the polarization beam splitter 55 X 1 by the 1/4 wavelength plate 56 X 1. PC orchid painting 15491
0° 回転されて偏光ビームスプリ ッタ 5 5 X 1に再度戻り、 偏光ビームスプリ ッ タ 5 5 X 1をそのまま透過する。 After being rotated by 0 °, the beam returns to the polarizing beam splitter 55 X 1 again, and passes through the polarizing beam splitter 55 X 1 as it is.
こう して偏光ビームスプリ ッタ 5 5 X 1を透過した光束 LWX 1は、 1ノ 2波 長板 5 4 X 1を介することにより偏光方向が 9 0° 回転されて偏光ビームスプリ ッタ 5 5 X 1に入射した後、 偏光ビームスプリ ッタ 5 5 X 1を透過し、 測定光束 として受光器 5 2 X 1へ向けて進行する。  The light beam LWX 1 transmitted through the polarizing beam splitter 55 X 1 in this way is rotated by 90 ° through the 1 × 2 wave plate 54 X 1 and the polarization beam splitter 55 After being incident on X1, it passes through the polarization beam splitter 55X1 and travels as a measurement light beam to the receiver 52X1.
一方、 偏光ビームスプリ ッタ 5 3 X 1によって偏向され、 + Z方向に進行した 光束 LWXR 1は、反射プリズム 5 8 X 1によって反射されて +X方向に進行し、 偏向ビームスプリ ッタ 5 9 X 1に入射する。 以後、 図 6に示されるように、 上記 の図 5の場合と同様にして、 偏向ビームスプリッタ 5 9 X 1、 1 / 4波長板 6 0 X 1、 及び反射プリズム 6 1 X 1を介しつつ X軸ウェハ参照鏡 MRWXで 2度反 射された後に、 偏光ビームスプリ ッタ 5 9 X 1から射出されて反射プリズム 5 8 X 1に入射する。 こう して反射プリズム 5 8 X 1に入射した光束 LWXR 1は、 反射プリズム 5 8 X 1で反射されて一 Z方向に進行した後、 偏光'ビームスプリッ タ 5 3 X 1によって偏向されて一 X方向に進行し、 上記の光束 LWX 1 とほぼ同 一の光路上を参照光束として受光器 5 2 X 1へ向かう。  On the other hand, the light beam LWXR 1 deflected by the polarization beam splitter 53 X 1 and travels in the + Z direction is reflected by the reflection prism 58 X 1 and travels in the + X direction, and is deflected by the deflection beam splitter 59 It is incident on X1. Thereafter, as shown in FIG. 6, in the same manner as in the case of FIG. 5 described above, X is passed through the deflecting beam splitter 59 X1, the quarter-wave plate 60X1, and the reflecting prism 61X1. After being reflected twice by the axis wafer reference mirror MRWX, it is emitted from the polarizing beam splitter 59 X 1 and enters the reflecting prism 58 X 1. The light beam LWXR 1 thus incident on the reflecting prism 58 X 1 is reflected by the reflecting prism 58 X 1, travels in the Z direction, is deflected by the polarization beam splitter 53 X 1, and is deflected by the polarizing beam splitter 53 X 1. The light beam travels in the direction, and travels on the same optical path as the above-mentioned light beam LWX 1 as a reference light beam to the light receiver 52 2 X 1.
すなわち、 受光器 5 2 X 1への入射光束は、 上記の測定光束 LWX 1 と参照光 束 LWXR 1 との合成光となっている。 そして、 受光器 5 2 X 1では.、 測定光束 LWX 1 と参照光束 LWXR 1の偏光方向を同一として干渉させることにより、 測定光束 LWX 1 と参照光束 LWXR 1 との光路長差を反映した干渉光を癸生さ せ、 その干渉状態を測定する。 ところで、 X軸ウェハ参照鏡 MRWXは、 投影光 学系 P Lに固定されており、 光源 5 1 X 1から X軸ウェハ参照鏡 MRWXを介し て受光器 5 2 X 1に至る参照光束の光路長は不変とみなしてよいので、 被測定光 束と参照光束との干渉状態を測定することにより、 反射面 7 X S上における測定 光束の照射点の測長方向 (X軸方向) 位置、 すなわち X位置を検出する。 なお、 実際には、 所定状態 (例えば、 レチクルァライメント時の状態) においてレーザ 干渉計 1 3 X 1をリセッ トし、 そのリセッ ト状態における反射面 7 X S上の測定 光束の照射点の X軸方向位置を X軸方向の座標原点と して、位置検出が行われる。 以上のようにして検出された X位置を、 以下 「XW1」 と表す。 図 3に戻り、 前記レーザ干渉計 1 3 X 2は、 上記のレーザ干渉計 1 3 X 1に隣 接して設けられており、 レーザ干渉計 1 3 X 1 と同様に構成されている。 より具 体的には、 レーザ干渉計 1 3 X 2では、 図 3に示されるように、 レーザ干渉計 1 3 X 1 との隣接面を基準として、 レーザ干渉計 1 3 X 1の構成要素 5 1 X 1 - 6 1 X 1に対応する構成要素 5 1 X 2 - 6 1 X 2が、 前記隣接面に対して面対称に 配置されている。 That is, the light beam incident on the photodetector 52 X 1 is a combined light of the measurement light beam LWX 1 and the reference light beam LWXR 1. Then, in the receiver 5 2 X 1, the interference light reflecting the difference in the optical path length between the measurement light beam LWX 1 and the reference light beam LWXR 1 is caused by causing the measurement light beam LWX 1 and the reference light beam LWXR 1 to have the same polarization direction and causing interference. And the interference state is measured. By the way, the X-axis wafer reference mirror MRWX is fixed to the projection optics PL, and the optical path length of the reference beam from the light source 51 X1 to the light receiver 52 X1 via the X-axis wafer reference mirror MRWX is By measuring the interference state between the measured light beam and the reference light beam, it is possible to determine the position of the irradiation point of the measurement light beam on the reflecting surface 7 XS in the length measurement direction (X-axis direction), that is, the X position. To detect. Actually, the laser interferometer 13 X 1 is reset in a predetermined state (for example, the state at the time of reticle alignment), and the X-axis of the irradiation point of the measurement light beam on the reflecting surface 7 XS in the reset state is set. Position detection is performed using the direction position as the coordinate origin in the X-axis direction. The X position detected as described above is hereinafter referred to as “XW1”. Referring back to FIG. 3, the laser interferometer 13 X 2 is provided adjacent to the laser interferometer 13 X 1, and has the same configuration as the laser interferometer 13 X 1. More specifically, as shown in FIG. 3, the laser interferometer 13 × 2 has the components 5 of the laser interferometer 13 × 1 based on the surface adjacent to the laser interferometer 13 × 1. The constituent element 5 1 X 2 -61 X 2 corresponding to 1 X 1 -61 X 1 is arranged symmetrically with respect to the adjacent plane.
すなわち、 レーザ干渉計 1 3 X 2では、 レーザ干渉計 1 3 X 1 と同様にして、 反^面 7 X Sに光束 LWX 2が照射され、 反射されて受光器 5 2 X 2へ向かう測 定光束 (図 5参照) と、 X軸ウェハ参照鏡 MRWXに光束 LWX R 2が照射され、 反射されて受光器 5 2 X 2へ向かう参照光束 (図 6参照) との干渉状態を測定す ることにより、反射面 7 X S上における測定光束の照射点の測長方向 (X軸方向) 位置を検出する。 以上のようにして検出された X位置を、 以下 「XW2」 と表す。 前記レーザ干渉計 1 3 X Pは、 図 7に示されるように、 光源 5 1 X P、 受光器 5 2 X P、 偏光ビームスプリ ツタ 5 3 X P、 1 X2波長板 5 4 X P、 偏光ビーム スプリ ッタ 5 5 X P、 1ノ 4波長板 5 6 X P、 反射プリズム (コーナーキューブ) 5 7 X P、 並びに反射プリズム 5 8 X P、 偏光ビームスプリ ッタ 5 9 X P、 1 / 4波長板 6 0 X P、 反射プリズム (コーナーキューブ) 6 1 X Pを有している。 すなわち、 レーザ干渉計 1 3 X Pは、 上記のレーザ干渉計 1 3 X 1 と同様の構成 要素を有しているが、 各構成要素の Z軸方向の配置位置が異なっている。  That is, in the laser interferometer 1 3 X 2, similarly to the laser interferometer 1 3 X 1, the light beam LWX 2 is irradiated on the opposite side 7 XS, and the measurement light beam is reflected and directed to the light receiver 5 2 X 2. (See Fig. 5) and the X-axis wafer reference mirror MRWX is irradiated with the light beam LWX R2, and the interference between the reflected light beam and the reference beam (see Fig. 6) directed to the receiver 52X2 is measured. , Detects the position of the irradiation point of the measurement light beam on the reflecting surface 7 XS in the measurement direction (X-axis direction). The X position detected as described above is hereinafter referred to as “XW2”. As shown in FIG. 7, the laser interferometer 13 XP includes a light source 51 XP, a light receiver 52 XP, a polarizing beam splitter 53 XP, a 1 X2 wavelength plate 54 XP, and a polarizing beam splitter 5. 5 XP, 1/4 wavelength plate 5 6 XP, reflective prism (corner cube) 57 XP, and reflective prism 58 XP, polarizing beam splitter 59 XP, 1/4 wavelength plate 60 XP, reflective prism Corner cube) has 6 1 XP. That is, the laser interferometer 13 XP has the same components as the laser interferometer 13 X 1 described above, but the arrangement positions of the components in the Z-axis direction are different.
ここで、 レーザ干渉計 1 3 X Pの作用を説明する。 レーザ干渉計 1 3 X Pでは、 図 7に示されるように、光源 5 1 X Pから + X方向へ進行する光束が射出される。 ここで、光源 5 1 X Pは、 レーザ干渉計 1 3 X 1における光源 5 1 X 1 と同様に、 例えばゼーマン効果を利用した 2周波レーザが用いられており、' 光束 LWX Pと して周波数 (すなわち、 波長) が僅かに異なり、 かつ、 偏光方向が互いに直交す る第 1偏光成分と第 2偏光成分とからなるレーザ光束を出力する。 なお、 第 1偏 光成分が垂直偏光成分 (V偏光) であり、 第 2偏光成分が水平偏光成分 (H偏光) であるとする。  Here, the operation of the laser interferometer 13 XP will be described. In the laser interferometer 13 XP, a light beam traveling in the + X direction is emitted from the light source 51 XP as shown in FIG. Here, the light source 51 XP uses, for example, a two-frequency laser utilizing the Zeeman effect, similar to the light source 51 X 1 in the laser interferometer 13 X 1, and has a frequency ( That is, it outputs a laser beam composed of a first polarization component and a second polarization component whose wavelengths are slightly different and whose polarization directions are orthogonal to each other. It is assumed that the first polarized light component is a vertical polarized light component (V polarized light) and the second polarized light component is a horizontal polarized light component (H polarized light).
光源 5 1 X Pから射出された光束は、 図 8に示されるように、 偏光ビームスプ リ ツタ 5 3 X Pに入射し、 偏光方向に応じて 2光束に分割される。 すなわち、 光 源 5 1 XPから射出された光束の第 1偏光成分から成る光束 LWXP 2は、 偏光 ビームスプリ ツ.タ 5 3 XPをそのまま透過して + X方向に進行し、 また、 第 2偏 光成分から成る光束 LWX P 1は、 偏光ビームスプリ ッタ 5 3 XPによって偏向 されて + Z方向に進行する。 The light beam emitted from the light source 51 XP enters the polarization beam splitter 53 XP as shown in FIG. 8, and is split into two light beams according to the polarization direction. That is, light The light beam LWXP 2 composed of the first polarization component of the light beam emitted from the source 51 XP passes through the polarization beam splitter 53 XP as it is and travels in the + X direction. The resulting light beam LWX P 1 is deflected by the polarizing beam splitter 53 XP and travels in the + Z direction.
偏光ビームスプリツタ 5 3 X Pをそのまま透過した光束 L WX P 2は、 図 9に 示されるように、 レーザ干渉計 1 3 X 1の場合と同様に、 1 / 2波長板 5 4 X P、 偏光ビームスプリ ッタ 5 5 XP、 1ノ 4波長板 5 6 XPを順次介した後、 Z位置 が ZW2 (= ZW 1— DX)、 Y位置が YWP近傍である反射面 7 X S上の点に 入射して反射される。 反射面 7 X Sで反射された光束 LWX P 2は、 1Z4波長 板 5 6 X P、 偏光ビ一ムスプリ ッタ 5 5 X P、 反射プリズム 5 7 X P、 1 /4波 長板 5 6 X Pを順次介した後、 Z位置が ZW2 (= ZW1 -DX), Y位置が Y WP近傍である反射面 7 X S上の点に入射して再反射される。 反射面 7 X Sで再 反射された光束 LWXP 2は、 1ノ 4波長板 5 6 XP、 偏光ビ一ムスプリ ッタ 5 5 XP、 1 /2波長板 54 XP、 ビームスプリ ッタ 5 3 XPを順次介した後、 第 1測定光束として受光器 5 2 XPへ向けて進行する。  As shown in FIG. 9, the light beam L WX P 2 transmitted through the polarizing beam splitter 53 XP as it is, as in the case of the laser interferometer 13 X 1, is a half-wave plate 54 XP, a polarizing beam splitter. After passing through the splitter 55 XP and the 1/4 wavelength plate 56 XP sequentially, it is incident on a point on the reflection surface 7 XS where the Z position is ZW2 (= ZW 1—DX) and the Y position is near YWP. Reflected. The light beam LWX P 2 reflected by the reflecting surface 7 XS passes through a 1Z4 wavelength plate 56 XP, a polarizing beam splitter 55 XP, a reflecting prism 57 XP, and a 1/4 wavelength plate 56 XP sequentially. Thereafter, the light is incident on a point on the reflecting surface 7XS where the Z position is ZW2 (= ZW1 -DX) and the Y position is near YWP, and is reflected again. The light beam LWXP 2 re-reflected by the reflecting surface 7 XS consists of a 1/4 wavelength plate 56 XP, a polarizing beam splitter 55 XP, a 1/2 wavelength plate 54 XP, and a beam splitter 53 XP. After passing through, the light travels toward the light receiver 52 XP as the first measurement light flux.
一方、 偏光ビームスプリ ッタ 5 3 XPによって偏向され、 +Z方向に進行した 光束 LWX P 1は、反射プリズム 5 8 X Pによって反射されて + X方向に進行し、 偏向ビームスプリ ツタ 5 9 X Pに入射する。 以後、 図 1 0に示されるように、 上 記の図 9の場合と同様にして、 偏向ビームスプリッタ 5 9 XP、 1 /4波長板 6 0 X P、及ぴ反射プリズム 6 1 X Pを介しつつ反射面 7 X Sの Y Z座標(YWP , Z W 1 ) 近傍で 2度反射された後に、 偏光ビームスプリッタ 5 9 X Pから射出さ れて反射プリズム 5 8 X Pに入射する。 こう して反射プリズム 5 8 X Pに入射し た光束 LWXP 1は、反射プリズム 5 8 XPで反射されて一 Z方向に進行した後、 偏光ビームスプリ ッタ 5 2 XPによって偏向されて一 X方向に進行し、 上記の第 1測定光束とほぼ同一の光路上を第 2測定光束として受光器 5 2 XPへ向かう。 すなわち、 受光器 5 2 X Pへの入射光束は、 上記の第 1測定光束と第 2測定光 束との合成光となっている。 そして、 受光器 5 2 XPでは、 第 1測定光束と第 2 測定光束との偏光方向を同一として干渉させることにより、 第 1測定光束と第 2 測定光束との光路長差を反映した干渉光を発生させ、 その干渉状態を測定する。 この干渉状態の測定により、 反射面 7 X Sの Y軸回りの回転量が検出される。 な お、 上記のレーザ干渉計 1 3 X 1の場合と同様に、 実際には、 所定状態 (例えば、 レチクルァライメント時の状態) においてレーザ干渉計 1 3 XPをリセッ 卜し、 そのリセッ ト状態における反射面 7 XSの Y軸回りの回転量を零として、 反射面 7 X Sの Y軸回りの回転量 (口一リング量) 検出が行われる。 以下、 レーザ干渉 計 1 3 XPによって検出されたチルト情報 (Y軸回りの回転量であるピッチング 量) を、 以下 「A LWXP」 と表す。 On the other hand, the light beam LWX P 1 deflected by the polarization beam splitter 53 XP and traveling in the + Z direction is reflected by the reflection prism 58 XP and travels in the + X direction, and is transmitted to the deflection beam splitter 59 XP. Incident. Thereafter, as shown in FIG. 10, in the same manner as in FIG. 9 described above, the light is reflected while passing through the polarizing beam splitter 59 XP, the quarter-wave plate 60 XP, and the reflecting prism 61 XP. After being reflected twice near the YZ coordinates (YWP, ZW1) of the surface 7 XS, it is emitted from the polarizing beam splitter 59 XP and enters the reflecting prism 58 XP. The light beam LWXP 1 thus incident on the reflecting prism 58 XP is reflected by the reflecting prism 58 XP, travels in the Z direction, is deflected by the polarizing beam splitter 52 XP, and is deflected in the X direction. Then, the light travels on the same optical path as the first measurement light flux as the second measurement light flux toward the light receiver 52 XP. That is, the light beam incident on the light receiver 52 XP is a combined light of the first measurement light beam and the second measurement light beam. Then, in the light receiver 52 XP, the first measurement light beam and the second measurement light beam are caused to interfere with the same polarization direction, thereby causing interference light reflecting the optical path length difference between the first measurement light beam and the second measurement light beam. Generate and measure the interference state. By measuring the interference state, the amount of rotation of the reflecting surface 7XS about the Y axis is detected. Note that, similarly to the case of the laser interferometer 13 X 1 described above, the laser interferometer 13 XP is reset in a predetermined state (for example, the state at the time of reticle alignment), and the reset state is set. The amount of rotation of the reflecting surface 7 XS around the Y axis (mouth-to-ring amount) is detected, with the amount of rotation of the reflecting surface 7 XS around the Y axis at zero. Hereinafter, the tilt information (the pitching amount, which is the amount of rotation around the Y axis) detected by the laser interferometer 13 XP is referred to as “ALWXP”.
なお、 レーザビーム LWX 1、 レーザビーム LWX 2、 及びレーザビーム LW X P 1 とは、 同一の Z位置 Z W 1で Y軸方向に配列され、 図 2に示されるように レーザビーム LWX 1 とレーザビーム LWXP 1 との Y軸方向の間隔が L 1 2と されている。  The laser beam LWX1, laser beam LWX2, and laser beam LWXP1 are arranged in the Y-axis direction at the same Z position ZW1, and as shown in FIG. 2, the laser beam LWX1 and the laser beam LWXP The distance in the Y-axis direction from 1 is L12.
図 2に戻り、 前記レーザ干渉計 1 3 F は、 上述のレーザ干渉計 1 3 X 1 と同 様に構成されている。 そして、 レーザ干渉計 1 3 F Xでは、 レーザ干渉計 1 3 X 1 と同様にして、 反射面 7 X Sに照射され、 反射されて受光器へ向かう測定光束 と、 X軸ウェハ参照鏡 MRWXとは別設される前述のァライメン ト参照鏡 (不図 示) に照射され、 反射されて受光器へ向かう参照光束との干渉状態を測定するこ とにより、 反射面 7 X S上における測定光束の照射点の測長方向 (X軸方向) 位 置を検出する。 以上のようにして検出された X位置を、 以下 「XF」 と表す。 また、 前記レーザ干渉計 1 3 F Pは、 上述のレーザ干渉計 1 3 X Pと同様に構 成されている。 そして、 レーザ干渉計 1 3 F Pでは、 レーザ干渉計 1 3 XPと同 様にして、 反射面 7 X Sに照射され、 反射されて受光器へ向かう第 1測定光束と 第 2測定光束との干渉状態を測定することにより、 リセッ ト状態における反射面 7 X Sの Y軸回りの回転量を零として、 反射面 7 XSの Y軸回りの回転量検出が 行われる。 以下、 レーザ干渉計 1 3 F Pによって検出されたチルト情報を、 以下 「A L F X P」 と表す。 なお、 レーザ干渉計 1 3 XP, 1 3 F Pはそれぞれ反射 面 7 X S上で Z位置が異なる点に照射される第 1及び第 2測定光束の干渉光を検 出することで前述のチルト情報を得るものとしたが、 例えば 2つのレーザ干渉計 からの測定光束を、 反射面 7 X S上で Z位置が異なる点に照射し、 各レーザ干渉 計で得られる反射面 7 X Sの X位置に基づいて前述のチルト情報を得るようにし てもよい。 このとき、 レーザ干渉計 1 3 X Pではその 2つの干渉計の一方を、 レ 一ザ干渉計 1 3 X 1又は 1 3 X 2で兼用させてもよいし、 レーザ干渉計 1 3 F P ではその 2つのレーザ干渉計の一方とレーザ干渉計 1 3 F Xとでそれぞれ得られ る X位置に基づいて反射面 7 X Sの Z軸回りの回転量 (ョーイング量) を求めて もよい。 Returning to FIG. 2, the laser interferometer 13F is configured in the same manner as the laser interferometer 13X1 described above. Then, in the laser interferometer 13 FX, similarly to the laser interferometer 13 X1, the measurement light flux irradiated on the reflecting surface 7XS and reflected toward the receiver is separated from the X-axis wafer reference mirror MRWX. By irradiating the above-mentioned alignment reference mirror (not shown) and measuring the state of interference with the reference light beam which is reflected and directed to the receiver, the irradiation point of the measurement light beam on the reflecting surface 7XS is determined. Detects the position in the measurement direction (X-axis direction). The X position detected as described above is hereinafter referred to as “XF”. The laser interferometer 13 FP has the same configuration as the laser interferometer 13 XP described above. In the laser interferometer 13 FP, similarly to the laser interferometer 13 XP, the state of interference between the first measurement light beam and the second measurement light beam that irradiate the reflecting surface 7 XS and is reflected and directed toward the light receiver is measured. By measuring the rotation amount, the rotation amount of the reflecting surface 7XS around the Y axis in the reset state is set to zero, and the rotation amount of the reflecting surface 7XS around the Y axis is detected. Hereinafter, the tilt information detected by the laser interferometer 13 FP is referred to as “ALFXP”. The laser interferometers 13 XP and 13 FP detect the above-mentioned tilt information by detecting the interference light of the first and second measurement light beams irradiated at different points on the reflecting surface 7 XS at different Z positions. However, for example, the measurement light beams from the two laser interferometers are applied to points at different Z positions on the reflecting surface 7 XS, and based on the X position of the reflecting surface 7 XS obtained by each laser interferometer. To obtain the tilt information described above. You may. At this time, the laser interferometer 13 XP may use one of the two interferometers as the laser interferometer 13 X 1 or 13 X 2, or the laser interferometer 13 FP 2 The rotation amount (jowing amount) of the reflecting surface 7 XS about the Z axis may be obtained based on the X positions obtained by one of the two laser interferometers and the laser interferometer 13 FX.
反射鏡 7 Yには、 X軸方向に沿って間隔 L 2 1で隔てられ、 Y軸に平行なレー ザビーム LWY 1及ぴ LWY 2が照射されている。 また、 Z軸方向に沿って間隔 D Y (不図示) で隔てられ、 X軸に平行な 1対のレーザビーム LWYPが照射さ れている。 なお、 レーザビーム LWY 1 , LWY 2は、 Y軸に平行で且つ投影光 学系 P Lの光軸 AXを通る軸 YW Aに対して X方向に振り分けられている。  The reflecting mirror 7Y is irradiated with laser beams LWY1 and LWY2 which are separated from each other at an interval L21 along the X-axis direction and are parallel to the Y-axis. Further, a pair of laser beams LWYP parallel to the X axis are irradiated at intervals of D Y (not shown) along the Z axis direction. The laser beams LWY 1 and LWY 2 are distributed in the X direction with respect to an axis YWA which is parallel to the Y axis and passes through the optical axis AX of the projection optical system PL.
レーザビーム LWY 1 , L WY 2 , LWYPのそれぞれは、 図 2に示されるレ 一ザ干渉計 1 3 Y l , 1 3 Y 2, 1 3 YPから供給されており、 レーザ干渉計 1 3 Y 1 , 1 3 Y 2は、 測長方向が Y軸方向であり、 反射鏡 7 Y及び Y軸ウェハ参 照鏡に対向して配置される点を除いて、 上述のレーザ干渉計 1 3 X 1 , 1 3 X 2 と同様に構成される。 なお、 レーザ干渉計 1 3 Y l , 1 3 Y 2によって検出され た Y位置を、 以下 「YW 1」、 「YW2」 と表す。 また、 前記レーザ干渉計 1 3 YPは、 測長方向が Y軸方向であり、 反射鏡 7 Yに対向して配置される点を除い て、 上述のレーザ干渉計 1 3 X Pと同様に構成される。 なお、 レ一ザ干渉計 1 3 Y Pによって検出されたチルト情報(X軸回りの回転量であるピッチング量) を、 以下 ΓΔ LWY P」 と表す。  Each of the laser beams LWY 1, L WY 2, and LWYP is supplied from a laser interferometer 13 Yl, 13 Y 2, 13 YP shown in FIG. 2, and a laser interferometer 13 Y 1 , 13 Y 2, except that the measurement direction is the Y-axis direction, and the laser interferometer 13 X 1, described above, except that it is disposed to face the reflecting mirror 7 Y and the Y-axis wafer reference mirror. It has the same configuration as 1 3 X 2. The Y positions detected by the laser interferometers 13Yl and 13Y2 are hereinafter referred to as "YW1" and "YW2". The laser interferometer 13YP is configured in the same manner as the above-described laser interferometer 13XP, except that the measurement direction is the Y-axis direction and the laser interferometer 13YP is disposed so as to face the reflecting mirror 7Y. You. The tilt information detected by the laser interferometer 13 YP (the pitching amount, which is the amount of rotation around the X axis) is hereinafter referred to as ΓΔLWYP ”.
以上の反射鏡 7 X, 7 Yは、 ウェハ Wの走査露光又はステッピング等の位置制 御時に、 レーザビーム LWX 1 , LWX 2 , L WX P , LWY 1 , LWY 2 , L WYPが外れることが無いように、 また、 ウェハ Wのァライメントセンサ 2 6に よるァライメン ト計測時に、 レーザビーム L F X, L F X P , LWY 1 , LWY 2 , LWY Pが外れることが無いように十分長く形成されている。 なお、 本実施 形態の露光装置では走査露光時とァライメント計測時とでレーザ干渉計 1 3 Y 1 , 1 3 Y 2, 1 3 Y Pを兼用するものとしたが、 例えばレーザ干渉計 1 3 F X, 1 3 F Pと同一構成の 1組のレーザ干渉計を、 ァライメン卜計測時における Y位 置及ぴ X軸回りの回転量(さらにはョ一^ Tング量) の検出用として設けてもよい。 この構成では、 ウェハステージ装置を大型化することなく (即ち、 反射面 7を長 くすることなく)、 投影光学系: P Lを介してレチクルのパターンの転写が行われ る露光位置と、ァライメントセンサ 2 6によるマーク検出が行われる計測位置(ァ ライメ ン ト位置) とを大きく離して設定することができ、 ウェハステージ装置と して、 露光動作とァライメント動作とをほぼ並行して実行可能とするように、 そ れぞれ独立に可動な 2つのウェハステージを備えるダブルウェハステージ方式を 採用することもできる。 The laser beams LWX 1, LWX 2, LWX P, LWY 1, LWY 2, and L WYP do not come off when controlling the position of the reflecting mirrors 7 X and 7 Y such as scanning exposure or stepping of the wafer W. As described above, the laser beams LFX, LFXP, LWY1, LWY2, and LWYP are formed to be sufficiently long so as not to come off during alignment measurement of the wafer W by the alignment sensor 26. In the exposure apparatus of the present embodiment, the laser interferometer 13 Y 1, 13 Y 2, and 13 YP are used for both scanning exposure and alignment measurement. For example, the laser interferometer 13 FX, A set of laser interferometers having the same configuration as the 13 FP may be provided for detecting the Y position and the amount of rotation around the X axis (and the amount of rotation) during alignment measurement. In this configuration, without increasing the size of the wafer stage device (that is, without increasing the length of the reflecting surface 7), the projection optical system: the exposure position where the reticle pattern is transferred via the PL, and the alignment. The measurement position (alignment position) at which mark detection is performed by the sensor 26 can be set at a large distance, and the exposure operation and the alignment operation can be performed almost in parallel as a wafer stage device. As a result, a double wafer stage system having two independently movable wafer stages can be employed.
上記のレーザ干渉計 1 3 X 1 , 1 3 X 2, 1 3 Y 1 , 1 3 Y 2によって、 走査 露光又はステツビング等の位置制御時における基板テーブル 4の XY位置(XW, YW)、 ひいてはウェハ Wの XY位置が検出される。 すなわち、 レーザ干渉計 1 3 X 1 , 1 3 X 2による X位置測定結果 XW 1 , XW 2に基づいて、 基板テープ ル 4の X位置 XWが、  The XY position (XW, YW) of the substrate table 4 and thus the wafer at the time of position control such as scanning exposure or stepping are controlled by the above-mentioned laser interferometer 13 X 1, 13 X 2, 13 Y 1, 13 Y 2. The XY position of W is detected. That is, based on the X position measurement results XW 1 and XW 2 by the laser interferometers 13 X 1 and 13 X 2, the X position X W of the board table 4 is
XW= (XW 1 + XW 2 ) / 2 … (3)  XW = (XW 1 + XW 2) / 2… (3)
によって検出される。 また、 レーザ干渉計 1 3 Y l , 1 3 Y 2による Y位置測定 結果 YW1, YW2に基づいて、 基板テーブル 4の Y位置 YWが、 Is detected by Also, based on the Y position measurement results YW1 and YW2 using the laser interferometers 13Yl and 13Y2, the Y position YW of the substrate table 4 is
YW= (YW 1 + YW 2 ) / 2 … (4)  YW = (YW 1 + YW 2) / 2… (4)
によって検出される。 Is detected by
また、 レーザ干渉計 1 3 FX, 1 3 Y 1 , 1,3 Y 2によって、 ァライメン卜計 測時における基板テーブル 4の ΧΥ位置 (XW (=X F) , YW)、 ひいてはゥ ヱハ Wの XY位置が検出される。 すなわち、 レーザ干渉計 1 3 FXによる X位置 測定結果 X Fが、 基板テーブル 4の X位置 XWとして検出される。 また、 レーザ 干渉計 1 3 Y 1 , 1 3 Y 2による Y位置測定結果 YW 1 , YW 2に基づいて、 基 板テーブル 4の Y位置 YWが検出される。  Further, the laser interferometers 13 FX, 13 Y 1, 1, 3 Y 2 are used to adjust the position (XW (= XF), YW) of the substrate table 4 at the time of alignment measurement, and thus the XY of W The position is detected. That is, the X position measurement result XF by the laser interferometer 13 FX is detected as the X position XW of the substrate table 4. The Y position YW of the substrate table 4 is detected based on the Y position measurement results YW 1 and YW 2 by the laser interferometers 13 Y 1 and 13 Y 2.
また、 測定値 XW1 , XW2又は測定値 YW 1 , YW 2に基づいて、 基板テー ブル 4のョーイング量 (Z軸回りの回転量) 0 ZWが、  In addition, based on the measured values XW1 and XW2 or the measured values YW1 and YW2, the amount of rotation (the amount of rotation about the Z axis) 0 ZW of the board table 4 is
Θ ZW= (XW1 -XW2) /L 1 1 … (5)  Θ ZW = (XW1 -XW2) / L 1 1… (5)
または、 Or
Θ ZW= (YW 1 - YW 2 ) /L 2 1 - (5 ')  Θ ZW = (YW 1-YW 2) / L 2 1-(5 ')
によって検出される。 すなわち、 反射面 7 X Sにおける測定光束 LWX 1の照射 点と測定光束 LWX 2の照射点との間における反射面 7 3の2軸回りの局所的 な回転角、 または、 反射面 7 Y Sにおける測定光束 LWY 1の照射点と測定光束 L WY 2の照射点との間における反射面 7 Y Sの Z軸回りの局所的な回転角か ら、 基板テーブル 4のョーィング量 0 ZWが検出される。 Is detected by That is, irradiation of the measurement light beam LWX 1 on the reflecting surface 7 XS Local rotation angle of reflection surface 73 around two axes between point and irradiation point of measurement light beam LWX 2, or irradiation of measurement light beam LWY 1 and measurement light beam LWY 2 at reflection surface 7 YS The jogging amount 0 ZW of the substrate table 4 is detected from the local rotation angle of the reflecting surface 7YS around the Z-axis between the point and the point.
さらに、 測定値 XW 1 , XW2 , YW 1 , YW 2に基づいて、 反射鏡 7 X, 7 Yのリセッ ト状態からの基板テーブル 4における直交度誤差変動 Δ coWが、 厶 ω W= (YW 1 - YW 2 ) /L 2 1 ― (XW 1 - XW 2 ) /L I 1 - (6) によって検出される。 すなわち、 反射面 7 X Sにおける測定光束 LWX 1の照射 点と測定光束 LWX の照射点との間における反射面 7 XSの Z軸回りの局所的 な回転角と、 反射面 7 Y Sにおける測定光束 LWY 1の照射点と測定光束 LWY 2の照射点との間における反射面 7 Y Sの Z軸回りの局所的な回転角との差か ら、 反射鏡 7 X, 7 Yのリセッ ト状態からの基板テーブル 4における直交度誤差 変動 Δ coWが検出される。  Further, based on the measured values XW 1, XW 2, YW 1, and YW 2, the orthogonality error variation Δ coW in the substrate table 4 from the reset state of the reflecting mirrors 7 X and 7 Y is expressed as ω W = (YW 1 -YW 2) / L 2 1-Detected by (XW 1-XW 2) / LI 1-(6). That is, the local rotation angle of the reflecting surface 7 XS around the Z axis between the irradiation point of the measuring light beam LWX 1 on the reflecting surface 7 XS and the irradiation point of the measuring light beam LWX, and the measuring light beam LWY 1 on the reflecting surface 7 YS. The substrate table from the reset state of the mirrors 7 X and 7 Y is determined by the difference between the reflection surface 7 YS and the local rotation angle of the YS around the Z-axis between the irradiation point of The orthogonality error fluctuation ΔcoW in 4 is detected.
以上のようにして検出される X座標 XW及ぴ Y座標 YWよりなる座標系を、 ゥ ェハステ一ジの座標系 (XW, YW) と呼ぶ。 この座標系 (XW, YW) は、 リ セッ ト状態からの値であり、 X軸及ぴ Y軸よりなる設計上の理想的な直交座標系 とは或る程度異なっているが、 所定の条件に較正された後、 ウェハ Wの移動は較 正されたウェハステージの新座標系 (XW, YW) に基づいて行われる。  The coordinate system consisting of the X coordinate XW and the Y coordinate YW detected as described above is called the coordinate system (XW, YW) of the wafer stage. This coordinate system (XW, YW) is a value from the reset state, and differs to some extent from the design orthogonal coordinate system consisting of the X-axis and the Y-axis. After the calibration, the movement of the wafer W is performed based on the new coordinate system (XW, YW) of the calibrated wafer stage.
図 1 1には、 レチクル微動ステージ 1 1周辺の平面図が示されている。 この図 1 1に示されるように、 レチクル微動ステージ 1 1上にレチクル Rが保持されて いる。 また、 レチクル微動ステージ 1 1の + X方向の端部、 及ぴー Y方向の端部 には Y方向に延びた X軸の反射鏡 2 1 X、 コーナ一キューブょりなる 2個の Y軸 の反射鏡 2 1 Y 1 , 2 1 Y 2がそれぞれ固定されている。 また、 レチクル微動ス テージ 1 1は、 主制御系 2 2の制御の下で、 ボイスコイルモータを駆動源とする ァクチユエータ 3 8 L, 3 8 Rによって駆動される。 なお、 レチクル微動ステー ジ 1 1を X方向に微動するァクチユエータも設けられているが、 図 1 1では図示 省略している。  FIG. 11 shows a plan view around reticle fine movement stage 11. As shown in FIG. 11, reticle R is held on reticle fine movement stage 11. At the end of the reticle fine movement stage 11 in the + X direction and at the end in the −Y direction, there are an X-axis reflecting mirror 2 1X extending in the Y direction, and two Y-axes including a corner and a cube. The reflecting mirrors 2 1 Y 1 and 2 1 Y 2 are fixed respectively. Reticle fine movement stage 11 is driven by actuators 38 L and 38 R using a voice coil motor as a drive source under the control of main control system 22. Note that an actuator that finely moves the reticle fine movement stage 11 in the X direction is also provided, but is not shown in FIG. 11.
反射鏡 2 I Xには、 Y軸方向に沿って間隔 L 3で隔てられ、 X軸に平行なレー ザビーム L R X 1及び L R X 2が照射されている。 なお、 レーザビーム L R X 1, LRX 2は、 X軸に平行で且つそれぞれ投影光学系 P Lの光軸 AXを通る軸 XR Aに対して Y軸方向に振り分けられている。 また、 反射鏡 2 1 Y 1 , 2 1 Y 2に は、 X軸方向に沿って間隔 L 3で隔てられ、 Y軸に平行なレーザビーム L R Y 1 及ぴ L RY 2が照射されている。 なお、 レーザビーム LRY 1 , LRY 2は、 Y 軸に平行で且つそれぞれ投影光学系: P Lの光軸 AXを通る軸 Y R Aに対して X軸 方向に振り分けられている。 The reflecting mirror 2 IX is irradiated with laser beams LRX 1 and LRX 2 which are spaced at a distance L 3 along the Y-axis direction and parallel to the X-axis. The laser beam LRX 1, The LRX 2 is distributed in the Y-axis direction with respect to an axis XRA which is parallel to the X-axis and passes through the optical axis AX of the projection optical system PL. Further, the reflecting mirrors 21Y1 and 21Y2 are irradiated with laser beams LRY1 and LRY2 that are separated from each other at intervals L3 along the X-axis direction and are parallel to the Y-axis. The laser beams LRY 1 and LRY 2 are distributed in the X-axis direction with respect to an axis YRA which is parallel to the Y-axis and passes through the optical axis AX of the projection optical system: PL.
レーザビーム L RX 1 , L R X 2 , LRY 1 , LRY 2のそれぞれは、 レチク ル干渉計 1 4 X 1 , 1 4 X 2, 1 4Y 1 , 1 4 Y 2力 ら供給されている。 そして、 レチクル微動ステージ 1 1の X位置がレチクル干渉計 1 4 X 1 , 1 4 X 2による 測定値に基づいて検出され、 また、 レチクル微動ステージ 1 1の Y位置がレチク ル干渉計 1 4 Y 1 , 1 4 Y 2による測定値に基づいて検出される。  Each of the laser beams L RX 1, L R X 2, LRY 1, and LRY 2 is supplied from a reticle interferometer 14 X 1, 14 X 2, 14 Y 1, 14 Y 2 force. Then, the X position of the reticle fine movement stage 11 is detected based on the measurement values obtained by the reticle interferometers 14 X 1 and 14 X 2, and the Y position of the reticle fine movement stage 11 is detected by the reticle interferometer 14 Y It is detected based on the measurement value of 1,14Y2.
前記レチクル干渉計 1 4 X 1, 1 4 X 2は、 反射鏡 2 1 X及ぴ X軸レチクル参 照鏡に対向して配置される点を除いて、 上述のレーザ干渉計 1 3 X 1, 1 3 X 2 と同様に構成される。 なお、 レチクル干渉計 1 4 X 1 , 1 4 X 2によって検出さ れた X位置を、 以下 「XR 1」、 「XR 2」 と表す。  The reticle interferometers 14 X 1, 14 X 2 are the same as the laser interferometers 13 X 1, It has the same configuration as 1 3 X 2. The X position detected by the reticle interferometers 14 X 1 and 14 X 2 is hereinafter referred to as “XR 1” and “XR 2”.
また、 前記レチクル干渉計 1 4 Y 1, 1 4 Y 2は、 反射鏡 2 1 Y 1 , 2 1 Y 2 及ぴ Y軸レチクル参照鏡に対向して配置される点を除いて、 上述のレーザ干渉計 The reticle interferometers 14 Y 1 and 14 Y 2 are the same as the lasers described above except that they are disposed opposite the reflecting mirrors 21 Y 1, 21 Y 2 and the Y-axis reticle reference mirror. Interferometer
1 3 Y 1 , 1 3 Y 2と同様に構成される。 なお、 レチクル干渉計 1 4 Y 1 , 1 4 Y 2によって検出された Y位置を、 以下 「YR 1」、 「YR 2」 と表す。 It has the same configuration as 13 Y 1 and 13 Y 2. The Y positions detected by the reticle interferometers 14 Y 1 and 14 Y 2 are hereinafter referred to as “YR 1” and “YR 2”.
なお、 Y方向の反射鏡 (コーナーキューブ) 2 1 Y 1 , 2 1 Y 2で反射された レーザビーム LRY 1 , L R Y 2はそれぞれ反射ミラー 1 4M 1 , 1 4M2で反 射されて戻されており、 レチクル微動ステージ 1 1が回転してもレーザビームの 位置ずれが生じない構成になっている。 また、 レチクル R上の矩形の照明領域 3 The laser beams LRY 1 and LRY 2 reflected by the Y-direction reflecting mirror (corner cube) 2 1 Y 1 and 21 Y 2 are reflected by the reflecting mirrors 14 M 1 and 14 M 2, respectively, and returned. In addition, even if the reticle fine movement stage 11 rotates, the laser beam is not displaced. In addition, rectangular illumination area 3 on reticle R
6に露光光 E Lが照射され、 X方向に関する照明領域 3 6の両端にレチクルァラ ィメント系 1 9, 2 0の観察領域が設定されている。 なお、 照明領域 3 6は、 図Exposure light EL is applied to 6, and observation regions of reticle alignment systems 19 and 20 are set at both ends of an illumination region 36 in the X direction. The illumination area 36 is shown in the figure.
2のウェハ W上の露光領域 34と共役である。 また、 図 1 1に示されるように、 一例としてレチクル Rのパターン領域の両側には十字型のァライメントマーク 3It is conjugate to the exposure area 34 on the second wafer W. In addition, as shown in FIG. 11, as an example, a cross-shaped alignment mark 3 is provided on both sides of the reticle R pattern area.
2 A〜 3 2 Fが形成されている。 図 2の基準マーク板 6上の基準マーク 3 0 A〜2 A to 32 F are formed. Reference mark 30 on reference mark plate 6 in Fig. 2
3 0 Fをレチクル側に投影したときの各投影像の位置関係は、 ァライメントマ一 ク 3 2 A〜 3 2 Fの相互の位置関係とほぼ等しい。 The positional relationship between each projected image when 30 F is projected on the reticle side is as follows: Approximately equals the mutual positional relationship of the criterion 32A to 32F.
上記のレーザ干渉計 1 4 X 1 , 1 4 X 2, 1 4 Y 1 , 1 4 Y 2によって、 レチ クル微動ステージ 1 1の XY位置 (XR, YR)、 ひいてはレチクル Rの XY位 置が検出される。 すなわち、 レーザ干渉計 1 4 X I, 1 4 X 2による X位置測定 結果 XR 1 , X R 2に基づいて、 微動ステージ 1 1の X位置 XRが、  The XY position (XR, YR) of reticle fine movement stage 11 and XY position of reticle R are detected by the above laser interferometers 14 X 1, 14 X 2, 14 Y 1, 14 Y 2 Is done. That is, based on the X position measurement results XR 1 and X R 2 by the laser interferometers 14 X I and 14 X 2, the X position XR of the fine movement stage 11 is
X R = (X R 1 + XR 2 ) / 2 … (7)  X R = (X R 1 + XR 2) / 2… (7)
によって検出される。 また、 レチクル干渉計 1 4Y 1 , 1 4 Y 2による Y位置測 定結果 YR 1 , YR 2に基づいて、 微動ステージ 1 1の Y位置 YRが、 Is detected by Also, based on Y position measurement results YR 1 and YR 2 using reticle interferometers 14Y 1 and 14 Y 2, the Y position YR of fine movement stage 11 is
Y R = (YR 1 +YR 2) / 2 … (8)  Y R = (YR 1 + YR 2) / 2… (8)
によって検出される。 Is detected by
また、測定値 XR 1 , XR 2に基づいて、 レチクル Rのョーイング量 0 Z Rが、 Also, based on the measured values XR 1 and XR 2, the amount of reticle R joing 0 Z R is
Θ Z R= (XR 1 -XR 2) /L 3 … ( 9) Θ Z R = (XR 1 -XR 2) / L 3… (9)
によって検出される。 さらに、 測定値 XR 1 , XR 2 , YR 1 , YR 2に基づい て、 反射鏡 2 1 Xと反射鏡 2 1 Y 1 , 2 1 Y 2 との直交度誤差変動 Δ ω Rが、Is detected by Further, based on the measured values XR 1, XR 2, YR 1, and YR 2, the orthogonality error variation Δ ω R between the reflecting mirror 21 X and the reflecting mirrors 21 Y 1 and 21 Y 2 becomes
Δ ω R = (YR 1 -YR 2) /L 4 一 (XR 1— XR 2) /L 3 … ( 1 0) によって検出される。 ΔωR = (YR 1 -YR 2) / L 4 (XR 1—XR 2) / L 3... (10)
以上のように検出される X座標 XR及び Υ座標 YRよりなる座標系がレチクル ステージの座標系 (XR, YR) と呼ばれる。 この座標系 (XR, YR) は、 X 軸及ぴ Υ軸よりなる設計上の理想的な直交座標系とは或る程度異なっている場合 があるが、 レチクル Rはレチクルステージの座標系 (XR, YR) に基づいて駆 動される。  The coordinate system consisting of the X coordinate XR and the Υ coordinate YR detected as described above is called the reticle stage coordinate system (XR, YR). Although this coordinate system (XR, YR) may differ to some extent from the design ideal rectangular coordinate system consisting of the X-axis and the Υ-axis, reticle R is the reticle stage coordinate system (XR , YR).
次に、 上述の基板テーブル 4の ΧΥ位置 (XW, YW) の補正及ぴウェハ Wの ΧΥ位置のアッベ誤差の補正に使用される、 基板テーブル 4の側面に設けられた 反射鏡 7 Χ, 7 Υの反射面の形状計測について、 図 1 2〜図 1 6、 図 1 9及ぴ図 2 0 Α、 図 2 0 Βを参照して説明する。 かかる形状計測にあたっては、 上述の露 光装置 1 0 0の構成要素の内、 主制御系 2 2、 レーザ干渉計 1 3 X 1 , 1 3 X 2, 1 3 Y 1 , 1 3 Υ 2、 ウェハ駆動装置 24、 及び光路変更装置 4 0等が使用され る。 すなわち、 主制御系 2 2、 レーザ干渉計 1 3 X 1 , 1 3 X 2, 1 3 Υ 1 , 1 3 Υ 2、 ウェハ駆動装置 24、 及び光路変更装置 4 0等から反射鏡 7 X, 7Υの 反射面の形状計測装置 ( 1次元形状計測装置) が構成されている。 Next, the reflecting mirrors 7, 7 provided on the side surfaces of the substrate table 4 are used for correcting the ΧΥ position (XW, YW) of the substrate table 4 and the Abbe error of the ΧΥ position of the wafer W. The measurement of the shape of the reflective surface of Υ will be described with reference to FIGS. 12 to 16, FIG. 19, FIG. 20 Α, and FIG. 20 Β. For such shape measurement, the main control system 22, the laser interferometer 13 X 1, 13 X 2, 13 Y 1, 13 3 2, and the wafer A driving device 24, an optical path changing device 40, and the like are used. That is, the main control system 22, the laser interferometers 13 X 1, 13 X 2, 13 Υ 1, 13 Υ 2, the wafer driving device 24, the optical path changing device 40, etc. of A reflection surface shape measurement device (one-dimensional shape measurement device) is configured.
ここで、 光路変更装置 4 0について説明する。 図 1 2及び図 1 4においてレー ザ干渉計 1 3 X 1について代表的に示されるように、 レーザ干渉計 1 3 X 1, 1 Here, the optical path changing device 40 will be described. As shown representatively for the laser interferometer 13 X 1 in Figs. 12 and 14, the laser interferometers 13 X 1, 1
3 X 2の測定光束 LWX 1 , LWX 2が射出される 1 /4波長板 5 6 X 1 , 5 6 X 2の後段には、 光路変更装置 4 0が配置されている。 なお、 同図を参照した以 下の説明では、 代表的にレーザ干渉計 1 3 X 1の各構成要素についての符号を付 して位置関係等を説明する。 An optical path changing device 40 is disposed downstream of the quarter-wave plates 56 X 1 and 56 X 2 from which the 3 X 2 measurement light beams LWX 1 and LWX 2 are emitted. In the following description with reference to the figure, the components of the laser interferometer 13X1 will be denoted by reference numerals, and the positional relationship and the like will be described.
光路変更装置 4 0は、 可動ミラー 4 1 0及ぴ固定ミラー 4 2 0を備えて構成さ れる。 可動ミラー 4 1 0は、 レーザ干渉計 1 3 X 1の 1/4波長板 5 6 X 1から 射出されて反射面 7 X Sに向かう測定光束 LWX 1の光路に対して、 その鏡面が The optical path changing device 40 includes a movable mirror 410 and a fixed mirror 420. The movable mirror 4100 has a mirror surface with respect to the optical path of the measurement light beam LWX1 emitted from the 1/3 wavelength plate 56X1 of the laser interferometer 13X1 and directed to the reflection surface 7XS.
4 5° の角度をなすように配置される反射位置と、 測定光束 LWX 1の光路外に 配置される退避位置とで選択的に移動できるように構成されている。 It is configured so that it can be selectively moved between a reflection position arranged at an angle of 45 ° and a retracted position arranged outside the optical path of the measurement light beam LWX1.
すなわち、可動ミラー 4 1 0は、可動ミラー支持部材 4 1 1に支持されており、 可動ミラー支持部材 4 1 1は支持軸 4 1 2を中心に所定の角度範囲 (ここでは 4 5° ) で回動可能な状態で不図示のフレーム (例えば、 投影光学系 P Lが載置さ れる架台) 等に支持されている。 可動ミラー支持部材 4 1 1は、 エアシリンダ等 の駆動装置 4 1 3により駆動され、 駆動装置 4 1 3は主制御系 2 2から送られる 制御信号に基づいて、 可動ミラー 4 1 0が反射位置又は退避位置に設定されるよ うに制御される。 なお、 図 1 2で実線で示す可動ミラ一 4 1 0の位置、 図 1 4で 点線で示す可動ミラー 4 1 0の位置が退避位置であり、 図 1 2で点線で示す可動 ミラー 4 1 0の位置、 図 1 4で実線で示す可動ミラー 4 1 0の位置が反射位置で ある。  That is, the movable mirror 4 10 is supported by the movable mirror support member 4 11, and the movable mirror support member 4 11 is within a predetermined angular range (here, 45 °) about the support shaft 4 12. It is rotatably supported by a frame (not shown) (for example, a frame on which the projection optical system PL is mounted). The movable mirror support member 4 11 is driven by a driving device 4 13 such as an air cylinder, etc., and the driving device 4 13 is moved to the reflection position based on a control signal sent from the main control system 22. Or, it is controlled to be set at the retreat position. The position of the movable mirror 410 shown by the solid line in FIG. 12 and the position of the movable mirror 410 shown by the dotted line in FIG. 14 are the retracted positions, and the movable mirror 4 100 shown by the dotted line in FIG. The position of the movable mirror 410 shown by a solid line in FIG. 14 is the reflection position.
可動ミラー 4 1 0が退避位置に設定された状態 (図 1 2) では、 1 Z4波長板 With the movable mirror 410 set to the retracted position (Fig. 12), the 1 Z4 wave plate
5 6 X 1から射出され、 +X方向に向かう測定光束 LWX 1は、 そのまま直進し て、 反射面 7 X Sの Z方向位置が ZW 1の位置に照射され、 可動ミラー 4 1 0が 反射位置に設定された状態 (図 1 4) では、 1 Z4波長板 5 6 X 1から射出され、 + X方向に向かう測定光束 LWX 1は、 可動ミラー 4 1 0により 9 0° の角度で 一 Z方向に向けて全反射される。 The measurement light beam LWX 1 emitted from 5 6 X 1 and traveling in the + X direction goes straight on, the Z direction position of the reflecting surface 7 XS is irradiated to the ZW 1 position, and the movable mirror 4 10 moves to the reflecting position. In the set state (Fig. 14), the measurement light beam LWX1 emitted from the 1Z4 wave plate 56X1 and traveling in the + X direction is moved in the 1Z direction at an angle of 90 ° by the movable mirror 410. It is totally reflected toward.
固定ミラー 4 2 0は、 可動ミラー 4 1 0が反射位置にあるときに、 該可動ミラ 一 4 1 0により反射された光束 LWX 1を反射鏡 7 Xの反射面 7 X Sに向けて反 射するように、 反射位置にある可動ミラー 4 1 0に対して平行な状態で不図示の フレーム (例えば、 投影光学系 P Lが载置される架台) 等に固定されている。 可 動ミラー 4 1 0により反射されて、 一 Z方向に進行する測定光束 LWX 1は、 固 定ミラー' 4 2 0により +X方向に全反射され、 反射面 7 X Sの Z方向位置が Z W 1から距離 D Xだけシフ トした位置 ZW 2に照射される (図 1 4参照)。 When the movable mirror 4100 is at the reflection position, the fixed mirror 4 (1) A frame (not shown) that is parallel to the movable mirror 4100 at the reflection position so that the light beam LWX1 reflected by 410 is reflected toward the reflection surface 7XS of the reflection mirror 7X. (For example, a mount on which the projection optical system PL is placed). The measurement light beam LWX 1 reflected by the movable mirror 4 10 and traveling in one Z direction is totally reflected in the + X direction by the fixed mirror 4 20, and the reflection surface 7 XS is positioned at ZW 1 in the Z direction. Irradiates the position ZW2 shifted by the distance DX from the distance (see Fig. 14).
さて、 基板テーブル 4の側面に設けられた反射鏡 7 X, 7 Yの反射面の形状計 測は、 まず、 主制御系 2 2がウェハ駆動装置 2 4を介して基板テーブル 4を制御 し、 基板テーブル 4表面が XY面とほぼ平行になるように、 基板テーブル 4を駆 動する。そして、主制御系 2 2が光路変更装置 4 0の駆動装置 4 1 3を制御して、 図 1 2においてウェハ干渉系 1 3 X 1について代表的に示されるように、 可動ミ ラー 4 1 0を、 レーザ干渉計 1 3 X 1 , 1 3 X 2から射出された測定.光束 LWX 1 , LWX 2の反射鏡 7 Xに至る光路上から退避させる。 この結果、 測定光束 L WX 1 , LWX 2は、 反射鏡 7 Xの Z位置 ZW 1に照射されることになる。 引き 続き、 主制御系 2 2がウェハ駆動装置 2 4を介してウェハ X軸駆動ステージ 2及 ぴウェハ Y軸駆動ステージ 3を制御し、 基板テーブル 4を図 1 3において実線で 示される計測開始位置に移動させる。 以上の基板テーブル 4の移動中において基 板テーブル 4が所定位置となったときに、 レ一ザ干渉計 1 3 X I , 1 3 X 2, 1 3 Y 1 , 1 3 Y 2をリセッ トする。 なお、 本実施形態では、 基板テーブル 4が計 測開始位置にきたときに、 レーザ干渉計 1 3 X 1, 1 3 X 2, 1 3 Y 1 , 1 3Y 2をリセッ トしている。 また、 形状計測時におけるレーザ干渉計 1 3 X 1 , 1 3 X 2 , 1 3 Y 1 , 1 3 Y 2のリセッ ト位置と、 後述する位置制御時におけるレー ザ干渉計 1 3 X 1 , 1 3 X 2, 1 3 Y 1 , 1 3 Y 2のリセッ ト位置とは所定の位 置関係となっている。  Now, the shape measurement of the reflecting surfaces of the reflecting mirrors 7X and 7Y provided on the side surface of the substrate table 4 is performed by first controlling the substrate table 4 by the main control system 22 via the wafer driving device 24. Drive the substrate table 4 so that the surface of the substrate table 4 is substantially parallel to the XY plane. Then, the main control system 22 controls the driving device 4 13 of the optical path changing device 40, and as shown representatively for the wafer interference system 13 X 1 in FIG. 12, the movable mirror 4 10 The measurement is emitted from the laser interferometers 13 X 1 and 13 X 2. The light beams LWX 1 and LWX 2 are retracted from the optical path reaching the reflecting mirror 7 X. As a result, the measurement light beams L WX 1 and LWX 2 are irradiated to the Z position ZW 1 of the reflecting mirror 7X. Subsequently, the main control system 22 controls the wafer X-axis drive stage 2 and the wafer Y-axis drive stage 3 via the wafer drive device 24, and moves the substrate table 4 to the measurement start position indicated by a solid line in FIG. Move to When the substrate table 4 is at a predetermined position during the movement of the substrate table 4, the laser interferometers 13XI, 13X2, 13Y1, 13Y2 are reset. In the present embodiment, when the substrate table 4 reaches the measurement start position, the laser interferometers 13X1, 13X2, 13Y1, 13Y2 are reset. The reset positions of the laser interferometers 13 X 1, 13 X 2, 13 Y 1, 13 Y 2 at the time of shape measurement, and the laser interferometers 13 X 1, 1 at the time of position control described later It has a predetermined positional relationship with the reset positions of 3X2, 13Y1, and 13Y2.
次に、 主制御系 2 2がウェハ駆動装置 24を介して、 Y軸ウェハ駆動ステージ 2を制御し、基板テーブル 4を一Y方向に移動させつつ、 レーザ干渉計 1 3 X 1 , 1 3 X 2, 1 3 Y 1 , 1 3 Y 2によって検出された X位置 XW1 ( t , Z W 1 ) , XW 2 ( t , Z W 1 ) 及び Y位置 YW1 ( t , ZW1 ), YW 2 ( t , Z W 1 ) ( t : 時刻) をほぼ同時に収集する作業を逐次実行する。 ところで、 各収集時における反射面 7 X Sの Z軸回りの局所的な回転量 Θ Z X ( t , Z W 1 ) 及び反射面 7 Y Sの Z軸回りの局所的な回転量 Θ Z Y ( t , ZW 1 ) は、 Next, the main control system 22 controls the Y-axis wafer driving stage 2 via the wafer driving device 24 to move the substrate table 4 in one Y direction, and the laser interferometers 13 X 1, 13 X X position XW1 (t, ZW1), XW2 (t, ZW1) and Y position YW1 (t, ZW1), YW2 (t, ZW1) detected by 2, 1 3 Y1, 1 3 Y2 ) (t: time) is performed almost simultaneously. By the way, the local rotation amount 反射 ZX (t, ZW 1) of the reflecting surface 7 XS around the Z axis and the local rotation amount Θ ZY (t, ZW 1) of the reflecting surface 7 YS around the Z axis at each collection. )
Θ Z X ( t , Z W 1 ) = (XW 1 ( t , Z W 1 )  Θ Z X (t, Z W 1) = (XW 1 (t, Z W 1)
-XW2 ( t , ZW 1 )) /L l l ·■· ( 1 1 )  -XW2 (t, ZW 1)) / L l l ■ (1 1)
Θ Z Y ( t , Z W 1 ) = (YW 1 ( t , Z W 1 )  Θ Z Y (t, Z W 1) = (YW 1 (t, Z W 1)
- YW 2 ( t, ZW 1 )) /L 2 1 … (1 2)  -YW 2 (t, ZW 1)) / L 2 1… (1 2)
によつて求められる。 Is required by
ここで、 基板テーブル 4は一Y方向に移動するので、 ウェハ干渉計 1 3 Y 1 , 1 3 Y 2から射出された測定光束 LWY 1 , LWY 2は、 実質的には反射鏡 7 Y の同一位置に照射され続ける。 したがって、 反射鏡 7 Yの Z軸回りの局所的な回 転量 0 ZY ( t , ZW 1 ) には、 Y軸方向に関する反射鏡 7 Yの 1次元的な形状 変化の寄与は含まれていないので、 回転量 Θ Ζ Υ ( t , Z W 1 ) は、 基板テープ ル 4の移動に伴う墓板テーブル 4の時刻 tにおける Z軸回りの回転量、 すなわち 基板テーブル 4のョーィング量そのものとなっているとみなしてよい。  Here, since the substrate table 4 moves in one Y direction, the measurement light beams LWY 1 and LWY 2 emitted from the wafer interferometers 13 Y 1 and 13 Y 2 are substantially the same as the reflecting mirror 7 Y. The position continues to be irradiated. Therefore, the local rotation amount 0 ZY (t, ZW 1) of the reflecting mirror 7Y around the Z axis does not include the contribution of the one-dimensional shape change of the reflecting mirror 7Y in the Y axis direction. Therefore, the rotation amount Θ Ζ Υ (t, ZW 1) is the rotation amount of the tomb plate table 4 around the Z axis at the time t due to the movement of the substrate table 4, that is, the joing amount of the substrate table 4 itself. May be considered.
一方、 反射鏡 7 Xの Z軸回りの局所的な回転量 6 Z X ( t , Z W 1 ) は、 各収 集時における基板テーブル 4のョ一イング量と反射鏡 7 Xの反射面 7 X Sの X軸 方向に関する 1次元的な形状変化との和となっている。 したがって、 反射鏡 7 X の反射面 7 X Sの X軸方向に関する 1次元的な形状変化による、 反射鏡 7 Xの Z 軸回りの局所的な回転量 0 Z X ( t , ZW 1 ) は、  On the other hand, the local rotation amount 6 ZX (t, ZW 1) of the reflecting mirror 7 X around the Z axis is determined by the amount of jogging of the substrate table 4 at each collection and the reflecting surface 7 XS of the reflecting mirror 7 X. It is the sum of the one-dimensional shape change in the X-axis direction. Therefore, the local rotation amount 0 Z X (t, ZW 1) of the reflecting mirror 7 X about the Z axis due to the one-dimensional shape change of the reflecting surface 7 X S in the X-axis direction of the reflecting mirror 7 X is
Θ Z X ( t , Z W 1 ) = θ Z X ( t , Z W 1 )  Θ Z X (t, Z W 1) = θ Z X (t, Z W 1)
- Θ ZY ( t , Z W 1 ) ·■· ( 1 3)  -Θ ZY (t, Z W 1)
によって求められる。 Required by
ところで、 各収集時における基板テーブル 4の Y位置 YW ( t , ZW 1 ) は、 By the way, the Y position YW (t, ZW1) of the substrate table 4 at each collection is
YW ( t , Ζ W 1 ) = (YW 1 ( t , ZW 1 ) YW (t, Ζ W 1) = (YW 1 (t, ZW 1)
+ YW2 ( t, Z W 1 )) / 2 … ( 1 4)  + YW2 (t, Z W 1)) / 2… (1 4)
によって求められ、 時刻 tに対して一義的に決まる。 And is uniquely determined for time t.
すなわち、 反射鏡 7 Xの Z軸回りの局所的な回転量 0 Z X ( t , Z W 1 ) を、 反射鏡 7 Xの Z軸回りの局所的な回転量 0 Z X (YW, Z W 1 ) と表すことがで きる。 したがって、 レーザ干渉計 1 3 X 1 , 1 3 X 2のリセッ ト時における Y位 置 (以下、 「計測基準 Y位置」 という) を YWS として、 Z位置 ZW1における 反射鏡 7 Xの Y軸方向に関する 1次元形状 DXW (YW, ZW1 ) は、 次式によ つて求められる。 β顏 聊 1;:,,;0 ft棚 崎 · 1 そこで、 主制御系 2 2は、 収集した X位置 XW 1 ( t , Z W 1 ) , XW2 ( t , Z W 1 ) 及び Y位置 YW1 ( t , Z W 1 ) , YW 2 ( t , Z W 1 ) に基づいて、 上記の ( 1 1 ) 式から ( 1 5) 式までを使用して、 Z位置 ZW1における反射鏡 7 Xの Y軸方向に関する 1次元形状 DXW (YW, ZW1 ) を算出する。 In other words, the local rotation amount 0 ZX (t, ZW 1) of the reflecting mirror 7 X about the Z axis is represented as the local rotation amount 0 ZX (YW, ZW 1) of the reflecting mirror 7 X around the Z axis. With Wear. Therefore, the Y position (hereinafter referred to as “measurement reference Y position”) at the time of resetting the laser interferometers 13 X 1 and 13 X 2 is defined as YWS, and the Y axis of the reflecting mirror 7 X at the Z position ZW 1 is defined. The one-dimensional shape DXW (YW, ZW1) is obtained by the following equation. β face lia 1::,; 0 ft Tanazaki · 1 The main control system 2 2 collects the X position XW 1 (t, ZW 1), XW2 (t, ZW 1) and Y position YW1 (t , ZW 1), YW 2 (t, ZW 1), using the above equations (1 1) to (15), the reflection mirror 7 at the Z position ZW 1 with respect to the Y-axis direction Calculate the dimensional shape DXW (YW, ZW1).
次に、 主制御系 2 2がウェハ駆動装置 24を介してウェハ X軸駆動ステージ 2 及びウェハ Y軸駆動ステージ 3を制御し、 基板テーブルを図 1 3において実線で 示される計測開始位置に移動させる。 引き続き、 主制御系 2 2が光路変更装置 4 0の駆動装置 4 1 3を制御して、 図 1 4においてウェハ干渉計 1 3 X 1について 代表的に示されるように、 レーザ干渉計 1 3 X 1 , 1 3 X 2から射出された測定 光束 LWX 1 , LWX 2の反射鏡 7 Xに至る光路上 (反射位置) に可動ミラー 4 1 0を移動させる。 この結果、 測定光束 LWX 1 , LWX 2は、 反射鏡 7 Xの Z 位置 ZW 2に照射されることになる。 この後、 レーザ干渉計 1 3 X I , 1 3 X 2 をリセッ トする。  Next, the main control system 22 controls the wafer X-axis drive stage 2 and the wafer Y-axis drive stage 3 via the wafer drive device 24, and moves the substrate table to the measurement start position shown by the solid line in FIG. . Subsequently, the main control system 22 controls the driving device 4 13 of the optical path changing device 40, and the laser interferometer 1 3 X 1, as typically shown in FIG. The movable mirror 410 is moved on the optical path (reflection position) to the reflecting mirror 7X of the measurement light beam LWX1 and LWX2 emitted from 1, 13X2. As a result, the measurement light beams LWX 1 and LWX 2 are applied to the Z position ZW 2 of the reflecting mirror 7X. After that, reset the laser interferometers 13 XI and 13 X 2.
次いで、 Z位置 ZW 1における 1次元形状計測と同様にして、 主制御系 2 2が ウェハ駆動装置 2 4を介して、 Y軸ウェハステージ 3を制御し、 基板テーブル 4 を一 Y方向に移動させつつ、 レーザ干渉計 1 3 X I , 1 3 X 2, 1 3Y 1 , 1 3 Y 2によって検出された X位置 XW 1 ( t , Z W 2 ) , XW 2 ( t, ZW2 ) 及 ぴ Y位置 YW 1 ( t , Z W 2 ) , YW 2 ( t , ZW2) をほぼ同時に収集する作 業を逐次実行する。 そして、 主制御系 2 2が、 収集した X位置 XW 1 ( t , Z W 2), XW 2 ( t , Ζ W 2 ) 及ぴ Υ位置 YW 1 ( t , Z W 2 ) , YW 2 ( t , Z W 2 ) に基づいて、 上記の ( 1 1 ) 式から ( 1 5) 式と同様の式を利用して、 Z 位置 Z W 2における反射鏡 7 Xの Y軸方向に関する 1次元形状 D XW (YW, Z W2 ) が算出される。 こう して、 反射鏡 7 Xの反射面 7 X Sの形状情報 [DXW (YW, ZW1 ), D XW (YW, Z W 2 ) ] が得られる。 Next, in the same manner as in the one-dimensional shape measurement at the Z position ZW1, the main control system 22 controls the Y-axis wafer stage 3 via the wafer driving device 24 to move the substrate table 4 in one Y direction. While the X position XW 1 (t, ZW 2), XW 2 (t, ZW2) and Y position YW 1 detected by the laser interferometers 13 XI, 13 X 2, 13 Y 1 and 13 Y 2 The task of collecting (t, ZW2) and YW2 (t, ZW2) almost simultaneously is performed sequentially. Then, the main control system 22 receives the collected X position XW 1 (t, ZW 2), XW 2 (t, ΖW 2) and ぴ position YW 1 (t, ZW 2), YW 2 (t, ZW Based on 2), the one-dimensional shape D XW (YW, YW, Y) of the reflecting mirror 7X at the Z position ZW2 in the Y-axis direction is obtained by using the same equations as the above equations (11) to (15). Z W2) is calculated. Thus, the shape information [DXW (YW, ZW1), DXW (YW, ZW2)] of the reflecting surface 7XS of the reflecting mirror 7X is obtained.
また、 反射鏡 7 Yの反射面 7 Y Sの形状情報 [DYW (XW, ZW1 ), DY W (XW, ZW2)] は、 上記の反射面 7 X Sの形状計測と同様にして、 主制御 系 2 2、 レーザ干渉計 1 3 X I , 1 3 X 2, 1 3 Y 1 , 1 3 Y 2、 ウェハ駆動装 置 24、 及び光路変更装置 4 0等が使用される。 すなわち、 主制御系 2 2、 レー ザ干渉計 1 3 X 1 , . 1 3 X 2, 1 3Y 1 , 1 3 Υ 2、 ウェハ駆動装置 24、 及び 光路変更装置 4 0等によって、 反射鏡 7 Υの反射面 7 Y Sの形状計測を行うこと によって得られる。  The shape information [DYW (XW, ZW1), DYW (XW, ZW2)] of the reflecting surface 7 YS of the reflecting mirror 7 Y is stored in the main control system 2 in the same manner as the shape measurement of the reflecting surface 7 XS. 2. Laser interferometers 13XI, 13X2, 13Y1, 13Y2, wafer driving device 24, optical path changing device 40, etc. are used. That is, the main control system 22, the laser interferometers 13 X 1,. 13 X 2, 13 Y 1, 13 Υ 2, the wafer driving device 24, the optical path changing device 40, etc. This is obtained by measuring the shape of the reflective surface 7YS.
以上のようにして得られた反射鏡 7 Xの反射面 7 X Sの形状情報 [DXW (Υ W, Z W 1 ) , D X W (YW, Z W 2 ) ] 及び反射鏡 7 Υの反射面 7 Y Sの形状 情報 [DYW (XW, Z W 1 ) , D YW (XW, Z W 2 ) ] 1 図 1 5に示され ている。 ここで、 1次元形状 D XW (YW, Z W 1 ) と 1次元形状 D XW (YW, Z W 2 ) とを比較してみると、 計測基準 Υ位置 YWSにおいて、  The shape information of the reflecting surface 7 XS [DXW (Υ W, ZW 1), DXW (YW, ZW 2)] and the reflecting surface 7 YS of the reflecting mirror 7 ら れ obtained as described above Information [DYW (XW, ZW 1), DYW (XW, ZW 2)] 1 This is shown in FIG. Here, comparing the one-dimensional shape D XW (YW, Z W 1) with the one-dimensional shape D XW (YW, Z W 2), the measurement reference Υ position YWS
D XW (YWS , Z W 1 ) =D XW (YWS, Z W2 )  D XW (YWS, Z W 1) = D XW (YWS, Z W2)
となっている。 これは、 1次元形状 DXW (YW, ZW1 ) 及び 1次元形状 DX W (YW, ZW2 ) の計測それぞれの計測基準 Y位置 YWSにおいて、 レーザ干 渉計 1 3 X 1, 1 3 X 2の双方をリセッ 卜するからである。 It has become. This is because both the laser interferometers 13 X 1 and 13 X 2 are measured at the measurement reference Y position YWS for the one-dimensional shape DXW (YW, ZW1) and the one-dimensional shape DXW (YW, ZW2). This is because it is reset.
したがって、 1次元形状 DXW (YW, Z W 1 ) と 1次元形状 D XW (YW, Z W 2 ) とに基づいて、 反射面 7 X Sの各 Y位置における Y軸回りの回転量 0 Y (YW) を、  Therefore, based on the one-dimensional shape DXW (YW, ZW 1) and the one-dimensional shape D XW (YW, ZW 2), the rotation amount 0 Y (YW) about the Y axis at each Y position of the reflecting surface 7 XS is calculated as follows. ,
Θ Y (YW) = (DXW (YW, Z W 1 )  Θ Y (YW) = (DXW (YW, Z W 1)
-DXW (YW, ZW2)) /DX … ( 1 6)  -DXW (YW, ZW2)) / DX… (1 6)
で求めると、 必ず、 If you ask for
Θ Y (YWS) = 0 … ( 1 7 )  Θ Y (YWS) = 0… (1 7)
となることになる。 It will be.
すなわち、 上記の ( 1 7) 式によると、 反射面 7 X Sの計測基準 Y位置 YWS. では、 反射面 7 X Sの Y軸回りの回転量が必ず 「0」 として計測されることにな る。 しかし、 実際には、 Z位置 ZW1における 1次元形状計測及ぴ Z位置 ZW2 における 1次元形状計測でそれぞれ、 レーザ干渉計 1 3 X 1 , 1 3 X 2のリセッ ト時における状態が同一であるとは限らない。 したがって、 一般には、 Z位置 Z W 1における 2次元位置検出値 XW ( Z W 1 ) , YW ( Z W 1 ) と、 Z位置 Z W 2における 2次元位置検出値 XW ( Z W 2 ) , YW ( Z W 2 ) との間にはオフセ ッ トが存在することになる。 このため、 ( 1 6 ) 式によって求められる反射面 7 X Sの各 Y位置における Y軸回りの回転量 0 Y (YW) は、 実際の反射面 7 X S の Y軸回りの回転量とは異なっている。 かかる事情は、 反射面 7 Y Sの X軸回り の回転量についても同様である。 That is, according to the above equation (17), at the measurement reference Y position YWS. Of the reflection surface 7 XS, the rotation amount of the reflection surface 7 XS around the Y axis is always measured as “0”. However, actually, the one-dimensional shape measurement at the Z position ZW1 and the Z position ZW2 In the one-dimensional shape measurement in, the states of the laser interferometers 13 X 1 and 13 X 2 at the time of reset are not necessarily the same. Therefore, in general, the two-dimensional position detection values XW (ZW1) and YW (ZW1) at the Z position ZW1 and the two-dimensional position detection values XW (ZW2) and YW (ZW2) at the Z position ZW2 There will be an offset between them. Therefore, the amount of rotation 0 Y (YW) about the Y axis at each Y position of the reflecting surface 7 XS obtained by equation (16) is different from the actual amount of rotation of the reflecting surface 7 XS around the Y axis. I have. The same applies to the amount of rotation of the reflecting surface 7YS around the X axis.
この実施形態では、 反射鏡 7 X, 7 Yの反射面 7 X S , 7 Y Sの Z位置 Z W 1 (以下、 上段ということがある) における 1次元形状データ D XW (YW, ZW 1 ) , D YW (XW, Z W 1 ) と Z位置 Z W 2 (以下、 下段ということがある) における 1次元形状データ D XW (YW, Z W 2 ) , D YW ( XW, Z W 2 ) と の相対関係 (オフセッ ト) を以下のようにして求める。  In this embodiment, the one-dimensional shape data D XW (YW, ZW 1), D YW at the Z position ZW 1 (hereinafter sometimes to be referred to as the upper stage) of the reflecting surfaces 7 XS, 7 YS of the reflecting mirrors 7 X, 7 Y Relative relationship (offset) between (XW, ZW 1) and one-dimensional shape data D XW (YW, ZW 2), D YW (XW, ZW 2) at Z position ZW 2 (hereinafter sometimes referred to as the lower row) Is determined as follows.
Y軸方向に沿う反射鏡 7 Xの反射面 7 X Sについては以下の通りである。まず、 主制御系 2 2はウェハ駆動装置 2 4を介して基板テーブル 4を制御して所定の計 測開始位置 (ここでは、 前記計測基準 Y位置) に設定するとともに、 図 1 9に示 したァクチユエータ A C 1〜A C 3を制御して、 基板テーブル 4表面が所定面、 例えば XY面とほぼ平行となるように設定する。 この状態で、 レーザ干渉計 1 3 X Pをリセッ ト (零リセッ ト) する。  The reflecting surface 7XS of the reflecting mirror 7X along the Y-axis direction is as follows. First, the main control system 22 sets the predetermined measurement start position (here, the measurement reference Y position) by controlling the substrate table 4 via the wafer driving device 24, as shown in FIG. The actuators AC1 to AC3 are controlled so that the surface of the substrate table 4 is set to be substantially parallel to a predetermined surface, for example, an XY surface. In this state, reset the laser interferometer 13 XP (zero reset).
その後、 レーザ干渉計 1 3 X Pの計測結果としてのチルト情報 Δ LWX Pがー 定 (ここでは零) の状態を保つように、 ァクチユエータ A C 1〜A C 3の変位量 を適宜に制御しつつ、 基板テーブル 4を Y軸方向に沿って一定の速度で移動させ る。 このとき、 各エンコーダ E N 1 ~E N 3の出力 (Z軸方向の変位) を基板テ 一ブル 4の Y位置 (YW) との関係で逐次サンプリングする。 基板テーブル 4は 所定の計測終了位置に至るまでこれらを行いつつ移動される。  Then, while appropriately controlling the displacement amounts of the actuators AC1 to AC3 so that the tilt information ΔLWXP as a measurement result of the laser interferometer 13XP keeps a constant (here, zero) state, Table 4 is moved at a constant speed along the Y-axis direction. At this time, the output (displacement in the Z-axis direction) of each of the encoders EN 1 to EN 3 is sequentially sampled in relation to the Y position (YW) of the board table 4. The substrate table 4 is moved while performing these steps until reaching a predetermined measurement end position.
主制御系 2 2は、 各エンコーダ E N 1〜E N 3の出力 (Z軸方向の変位) 及び 各エンコーダ E N 1〜E N 3の配置 (位置関係) に基づき、 基板テーブル 4の Y 軸に沿う方向の Y軸回りの回転角の変化 0 YEN (YW) を算出する。 基板テ一ブ ル 4の Y軸に沿う方向の Y軸回りの回転角の変化 0 YEN (YW) は、 本発明の第 2データに相当する。 この 0 YEN (YW) は、 例えば図 20 Aに点線で示したよ うな結果となる。 なお、 図 2 0 A及ぴ図 20 Bにおいて、 縦軸は Y軸回りの回転 角 ( 0 Y) であり、 横軸は Y軸方向の位置 (YW) である。 The main control system 22 based on the output (displacement in the Z-axis direction) of each encoder EN 1 to EN 3 and the arrangement (positional relationship) of each encoder EN 1 to EN 3 Change of rotation angle around Y axis 0 Calculate YEN (YW). The change in the rotation angle about the Y axis in the direction along the Y axis of the substrate table 4 0 YEN (YW) is Equivalent to 2 data. This 0 Y EN (YW) results, for example, as shown by the dotted line in FIG. 20A. In FIGS. 20A and 20B, the vertical axis is the rotation angle (0Y) about the Y axis, and the horizontal axis is the position (YW) in the Y axis direction.
次いで、 上段形状データ DXW (YW, ZW 1 ) と下段形状データ DXW (Y W, Z W2 ) との差 (以下、 上下段の曲がりの差ということがある) を求め、 こ れを角度換算 (Z位置 ZW 1 と Z W2との距離 DXで除算) した上下段曲がりの 差、 即ち、 上記 ( 1 6 ) 式の 0 Y (YW) を求める。 この上下段の曲がりの差 0 Y (YW) は本発明の第 1データに相当する。 0 Y (YW) は、 上段形状データ DXW (YW, ZW 1 ) 及ぴ下段形状データ D XW (YW, ZW2) が図 1 5に 示したような結果である場合には、 図 2 0 Aに実線で示したようなものとなる。 その後、 この Θ Y (YW) と 0 YEN (YW) との差を求める。 即ち、 この差を D I F Θ Y (YW) として、 Next, the difference between the upper shape data DXW (YW, ZW1) and the lower shape data DXW (YW, ZW2) (hereinafter sometimes referred to as the difference between the upper and lower bends) is calculated and converted into an angle (Z The difference between the upper and lower bends divided by the distance DX between the positions ZW1 and ZW2), that is, 0Y (YW) in the above equation (16) is obtained. The difference 0 Y (YW) between the upper and lower bends corresponds to the first data of the present invention. 0 Y (YW) is shown in Fig. 20A if the upper shape data DXW (YW, ZW1) and the lower shape data D XW (YW, ZW2) are as shown in Fig. 15. The result is as shown by the solid line. Then, find the difference between こ の Y (YW) and 0 Y EN (YW). That is, this difference is defined as DIF Θ Y (YW),
D I F Θ Y (YW) = Θ YEN (YW) - Θ Y (YW)  D I F Θ Y (YW) = Θ YEN (YW)-Θ Y (YW)
を求める。 D I F 0 Y (YW) は、 例えば図 2 0 Bに点線で示したような結果と なる。 Ask for. D IF 0 Y (YW) results, for example, as shown by the dotted line in FIG. 20B.
ここで、 D I F 0 Y (YW) はレーザ干渉計 1 3 X 1, 1 3 X 2のリセッ ト時 における上段形状データ D XW (YWS , Z W 1 ) と下段形状データ DXW (Y WS , Z W 2 ) の相対関係 (ここでは Y軸回りの角度) を反映することになるの で、 理想状態' (各部の誤差が無いと仮定した場合) においては傾きが零の直線と なる箸である。 しかし、 そのような理想状態は現実にはあり得ないため、 D I F Here, DIF 0 Y (YW) is the upper shape data D XW (YWS, ZW 1) and the lower shape data DXW (Y WS, ZW 2) when the laser interferometers 13 X 1 and 13 X 2 are reset. (Here, the angle around the Y axis), so in the ideal state (assuming that there is no error in each part), the chopsticks have a slope of zero. However, since such an ideal state cannot exist in reality, D I F
Θ Y (YW) は通常は直線とはならない。 この場合の誤差の主要なものと しては、 基板テーブル 4の移動の基準平面を構成するウェハ支持台 1の上面のうねりやね じれ等の影響がエンコーダ EN 1〜EN 3の出力に基づく 0 YEN (YW) に含ま れてしまうことによるものと考えられる。 Θ Y (YW) is not usually a straight line. The main error in this case is that the influence of the undulation or twist on the upper surface of the wafer support table 1 constituting the reference plane for the movement of the substrate table 4 is based on the outputs of the encoders EN 1 to EN 3. Probably due to being included in Y EN (YW).
このように、 D I F 0 Y (YW) は通常は直線とはならないので、 例えば最小 二乗法を用いて誤差の二乗の総和が最小となるように直線近似して、 これを Y軸 方向に沿う反射鏡 7 Xについての上下段の形状データの相対関係 R EL θ Y (Y W) とする。 この場合の RE L 0 Y (YW) は、 例えば図 2 0 Bに実線で示すよ うなものとなる。 D I F 0 Y (YW) をこのように直線近似することにより、 ゥ ェハ支持台 1の上面の局所的なうねりやねじれ等の影響をある程度軽減すること ができる。 なお、 このとき、 傾き零の直線で直線近似する、 即ち、 0 Y軸方向の 誤差の二乗の総和が最小となるように直線近俊するようにしてもよい。この場合、As described above, since DIF 0 Y (YW) is not usually a straight line, for example, a linear approximation is performed using the least squares method so that the sum of the squares of the error is minimized, and this is reflected along the Y-axis direction. Let RELθY (YW) be the relative relationship between the upper and lower shape data of mirror 7X. RE L 0 Y (YW) in this case is, for example, as shown by a solid line in FIG. 20B. By linearly approximating DIF 0 Y (YW) in this way, ゥ The influence of local undulation and twist on the upper surface of the wafer support 1 can be reduced to some extent. At this time, a straight line may be approximated with a straight line having a slope of zero, that is, the straight line may be approximated so that the sum of the squares of the error in the Y-axis direction is minimized. in this case,
RE L 0 Y (YW) は図 2 0 Bの YW軸に平行な直線となり、 YWの値によらな い上下段形状データ DXW (YW, ZW 1 ), D XW (YW, Z W 2 ) の相対関 係を反映することになる。 RE L 0 Y (YW) is a straight line parallel to the YW axis in Fig. 20B, and the relative values of the upper and lower tier shape data DXW (YW, ZW1) and DXW (YW, ZW2) that do not depend on the YW value. It will reflect the relationship.
このように、最も誤差が小さくなるように直線近似すると、 RE L 0 Y (YW) は通常はある傾きを持つことになる。 この傾きは、 ウェハ支持台 1の上面の全体 的なうねりやたわみの影響を反映していると考えられる。 本実施形態では、 これ をそのまま含めたかたちで R E L 0 Y (YW) を求める。  As described above, when the linear approximation is performed so as to minimize the error, RE L 0 Y (YW) usually has a certain slope. This inclination is considered to reflect the influence of the overall undulation and deflection of the upper surface of the wafer support 1. In the present embodiment, RELOY (YW) is obtained by including this as it is.
次いで、 上下段の曲がりの差 0 Y (YW) に RE L 0 Y (YW) を加算したも のを、 レーザ干渉計 1 3 X Pによる計測結果 Δ LWX Pに対する補正値 XO F Θ Y (YW) と して、 記憶装置 2 7に格納する。  Next, the value obtained by adding RE L 0 Y (YW) to the difference between the upper and lower bends 0 Y (YW) is the correction value XO F Θ Y (YW) for the measurement result Δ LWX P obtained by the laser interferometer 13 XP. And stored in the storage device 27.
X軸方向に沿う反射鏡 7 Yの反射面 7 Y Sについては以下の通りである。まず、 主制御系 2 2はウェハ駆動装置 2 4を介して基板テーブル 4を制御して所定の計 測開始位置 (ここでは、 1次元形状計測におけるレーザ干渉計 1 3 Y 1 , 1 3 Y 2のリセッ ト位置) に設定するとともに、 図 1 9に示したァクチユエータ AC 1 〜AC 3を制御して、 基板テーブル 4表面が所定面、 例えば XY面とほぼ平行と なるように設定する。 この状態で、 レーザ干渉計 1 3 YPをリセッ ト (零リセッ ト) する。  The reflecting surface 7 YS of the reflecting mirror 7 Y along the X-axis direction is as follows. First, the main control system 22 controls the substrate table 4 via the wafer driving device 24 to determine a predetermined measurement start position (here, the laser interferometers 13 Y 1 and 13 Y 2 in one-dimensional shape measurement). And the actuators AC1 to AC3 shown in FIG. 19 are controlled so that the surface of the substrate table 4 is substantially parallel to a predetermined surface, for example, the XY surface. In this state, reset the laser interferometer 13 YP (zero reset).
その後、 レーザ干渉計 1 3 Y Pの計測結果としてのチルト情報 Δ LWY Pがー 定 (ここでは零) の状態を保つように、 ァクチユエータ AC 1〜AC 3の変位量 を適宜に制御しつつ、 基板テーブル 4を X軸方向に沿って一定の速度で移動させ る。 このとき、 各エンコーダ E N 1〜E N 3の出力 (Z軸方向の変位) を基板テ 一ブル 4の X位置 (XW) との関係で逐次サンプリングする。 基板テーブル 4は 所定の計測終了位置に至るまでこれらを行いつつ移動される。  Then, while appropriately controlling the displacement amounts of the actuators AC1 to AC3 so that the tilt information ΔLWYP as the measurement result of the laser interferometer 13YP remains constant (here, zero), Table 4 is moved at a constant speed along the X-axis direction. At this time, the outputs (displacements in the Z-axis direction) of the encoders EN 1 to EN 3 are sequentially sampled in relation to the X position (XW) of the board table 4. The substrate table 4 is moved while performing these steps until reaching a predetermined measurement end position.
主制御系 2 2は、 各エンコーダ EN 1〜EN 3の出力 (Z軸方向の変位) 及び 各エンコーダ EN 1〜EN 3の配置 (位置関係) に基づき、 基板テーブル 4の X 軸に沿う方向の X軸回りの回転角の変化 0 XEN (XW) を算出する。 基板テープ ル 4の X軸に沿う方向の X軸回りの回転角の変化 0 XEN (XW) は、 本発明の第 2データに相当する。 The main control system 22 is based on the output (displacement in the Z-axis direction) of each encoder EN 1 to EN 3 and the arrangement (positional relationship) of each encoder EN 1 to EN 3, in the direction along the X axis of the board table 4. Change of rotation angle around X axis 0 Calculate X EN (XW). PCB tape The change of the rotation angle about the X axis in the direction along the X axis of the rule 4 0 X EN (XW) corresponds to the second data of the present invention.
次いで、 上段形状データ D YW (XW, ZW 1 ) と下段形状データ D YW (X W, Z W 2 ) との差 (以下、 上下段の曲がりの差ということがある) を求め、 こ れを角度換算 (Z位置 ZW 1 と Z W 2との距離 D Xで除算) した上下段曲がりの 差 0 X (XW) を求める。 即ち、  Next, the difference between the upper shape data D YW (XW, ZW 1) and the lower shape data D YW (XW, ZW 2) (hereinafter, also referred to as the difference between the upper and lower bends) is calculated and converted into an angle. (Division by the distance DX between the Z positions ZW1 and ZW2) Obtain the difference 0X (XW) between the upper and lower bends. That is,
Θ X (XW) = (D YW (XW, Z W 1 ) - D YW (XW, Z W 2 ) ) /D X を求める。 この上下段の曲がりの差 0 X (XW) は本発明の第 1データに相当す る。  Θ Calculate X (XW) = (D YW (XW, ZW 1)-D YW (XW, ZW 2)) / D X. The difference 0X (XW) between the upper and lower bends corresponds to the first data of the present invention.
その後、 この (XW) と 0 X EN (XW) との差を求める。 即ち、 この差を D I F Θ X (XW) として、 Then, find the difference between (XW) and 0 X EN (XW). That is, this difference is defined as DIF Θ X (XW),
D I F Θ X (XW) = Θ XEN (XW) - Θ X (XW)  D I F Θ X (XW) = Θ XEN (XW)-Θ X (XW)
を求める。 Ask for.
ここで、 D I F 0 X (XW) はレーザ干渉計 1 3 Y 1 , 1 3 Y 2のリセッ ト時 における上段形状データ D YW (XWS , Z W 1 ) と下段形状データ D YW (X W S , ZW 2 ) の相対関係 (ここでは X軸回りの角度) を反映することになるの で、 理想状態 (各部の誤差が無いと仮定した場合) においては傾きが零の直線と なる答である。 しかし、 そのような理想状態は現実にはあり得ないため、 D I F Θ X (XW) は通常は直線とはならない。 この場合の誤差の主要なものとしては、 基板テーブル 4の移動の基準平面を構成するウェハ支持台 1の上面のうねりやね じれ等の影響がエンコーダ E N 1〜E N 3の出力に基づく 0 XEN (XW) に含ま れてしまうことによるものと考えられる。 Here, DIF 0 X (XW) is the upper shape data D YW (XWS, ZW 1) and the lower shape data D YW (XWS, ZW 2) when the laser interferometers 13 Y 1 and 13 Y 2 are reset. (In this case, the angle around the X-axis), so in an ideal state (assuming that there is no error in each part), the answer is a straight line with a slope of zero. However, DIF Θ X (XW) is not usually a straight line since such an ideal state cannot exist in reality. The main error in this case is that the influence of the undulation or twisting of the upper surface of the wafer support 1 constituting the reference plane for the movement of the substrate table 4 is based on the outputs of the encoders EN 1 to EN 3 0 X EN (XW).
このように、 D I F 0 X (XW) は通常は直線とはならないので、 例えば最小 二乗法を用いて誤差の二乗の総和が最小となるように直線近似して、 これを X軸 方向に沿う反射鏡 7 Yについての上下段の形状データの相対関係 R E L Θ X (X W) とする。 D I F 0 X (XW) をこのように直線近似することにより、 ウェハ 支持台 1の上面の局所的なうねりやねじれ等の影響をある程度軽減することがで きる。 なお、 このとき、 傾き零の直線で直線近似するようにしてもよいことは上 述した X軸方向に沿う反射鏡 7 Yの場合と同様である。 このように、 最も誤差が小さくなるように直線近似すると、 R E L 0 X (XW) は通常はある傾きを持つことになる。 この傾きは、 ウェハ支持台 1の上面の全体 的なうねりやたわみの影響を反映していると考えられる。 本実施形態では、 これ をそのまま含めたかたちで R E L 0 X (XW) を求める。 In this way, since DIF 0 X (XW) is not usually a straight line, it is approximated by a straight line using the least squares method so that the sum of the squares of the error is minimized, and this is reflected along the X-axis. Let REL 形状 X (XW) be the relative relationship between the upper and lower shape data of mirror 7Y. By linearly approximating DIF 0 X (XW) in this way, the effects of local undulation and twist on the upper surface of the wafer support 1 can be reduced to some extent. Note that, at this time, the linear approximation may be performed with a straight line having a slope of zero as in the case of the above-described reflecting mirror 7Y along the X-axis direction. Thus, REL 0 X (XW) usually has a certain slope when a straight line is approximated so that the error is minimized. This inclination is considered to reflect the influence of the overall undulation and deflection of the upper surface of the wafer support 1. In the present embodiment, REL 0 X (XW) is obtained by including this as it is.
次いで、 上下段の曲がりの差 0 X (XW) に R E L 0 X (XW) を加算したも のを、 レーザ干渉計 1 3 Y Pによる計測結果 Δ LWY Pに対する補正値 Y O F Θ X (XW) として、 記憶装置 2 7に格納する。  Next, the value obtained by adding REL 0 X (XW) to the difference between the upper and lower bends 0 X (XW) as a correction value YOF Θ X (XW) for the measurement result ΔLWYP by the laser interferometer 13 YP is given as Store in storage device 27.
なお、 上記の 1次元形状計測とエンコーダ E N 1〜E N 3を用いた計測とは、 どちらを先に行ってもよい。  Either of the one-dimensional shape measurement and the measurement using the encoders EN1 to EN3 may be performed first.
上記のようにして求めた補正値 X O F 0 Y (YW) , YO F 0 X (XW) に基 づいて、 レーザ干渉計 1 3 X P , 1 3 Y Pの計測結果 Δ LWX P , A LWY Pを 補正することにより、 基板テーブル 4の Y軸回りの iu転量 0 YW及び X軸回りの 回転量 0 XWを正確に求めることができる。 .  Based on the correction values XOF 0 Y (YW) and YO F 0 X (XW) obtained as described above, the measurement results Δ LWX P and A LWY P of the laser interferometers 13 XP and 13 YP are corrected. By doing so, the iu rotation amount 0 YW of the substrate table 4 around the Y axis and the rotation amount 0 XW around the X axis can be accurately obtained. .
即ち、 レーザ干渉計 1 3 X P , 1 3 Y Pによる検出値 Δ LWX P , Δ LWY P には、 レーザ干渉計 1 3 X P, 1 3 Y Pのリセッ ト状態を基準とした基板テープ ル 4の Y軸回りの回転量、 X軸回りの回転量に起因して発生した光路差 Δ LWX P 1 , Δ LWY P 1 と、 反射面 7 X S , 7 Y Sの Y軸方向、 X軸方向に関するう ねりやねじれ等に起因して発生した光路差 Δ LWXP 2 , Δ LWX P 2とが含ま れている。 なお、 上述の反射面 7 X S , 7 Y Sの形状計測時におけるレーザ干渉 計 1 3 X 1 , 1 3 X 2 , 1 3 Y 1 , 1 3 Y 2のリセッ ト位置と、 基板テーブル 4 の位置検出時のレーザ干渉計 1 3 X 1 , 1 3 X 2 , 1 3 Y 1 , 1 3 Y 2のリセッ ト位置との位置関係は予め定められており、 既知である。  That is, the detected values ΔLWX P and ΔLWY P of the laser interferometers 13 XP and 13 YP include the Y axis of the substrate table 4 based on the reset state of the laser interferometers 13 XP and 13 YP. The optical path difference Δ LWX P 1, Δ LWY P 1 caused by the amount of rotation around the X-axis and the waviness and torsion in the Y-axis and X-axis directions of the reflective surfaces 7 XS and 7 YS The optical path differences Δ LWXP 2 and Δ LWX P 2 generated due to the above factors are included. The reset position of the laser interferometers 13 X 1, 13 X 2, 13 Y 1, 13 Y 2 and the position detection of the substrate table 4 when measuring the shape of the reflective surfaces 7 XS and 7 YS described above The positional relationship between the laser interferometers 13 X 1, 13 X 2, 13 Y 1, and 13 Y 2 at the time of resetting is predetermined and known.
レ一ザ干渉計 1 3 X P, 1 3 Y Pから射出された測定光束 LWX P, LWY P の照射点の Y位置 YWP , X位置 XWPは、  The Y position YWP, X position XWP of the irradiation point of the measurement light beam LWX P, LWY P emitted from the laser interferometer 13 XP, 13 Y P
YWP = YW- ( L 1 1 / 2 ) - L 1 2  YWP = YW- (L 1 1/2)-L 1 2
XWP = XW- (L 2 1 / 2 ) - L 2 2 … ( 1 8 )  XWP = XW- (L 2 1/2)-L 2 2… (1 8)
によって求められる。 また、 レーザ干渉計 1 3 X P, 1 3 Y Pのリセッ ト時にお ける測定光束 LWX P , LWY Pの照射点の Y位置 YWP 0 , X位置 XWOは、 上述のように既知である。 従って、 光路差 A LWX P 2 , A LWY P 2は、 Δ LWX P 2 = Required by Further, the Y position YWP 0 and the X position XWO of the irradiation point of the measurement light beams LWX P and LWY P at the time of resetting the laser interferometers 13 XP and 13 YP are known as described above. Therefore, the optical path differences A LWX P 2 and A LWY P 2 are Δ LWX P 2 =
{XO F Θ Y (YWP ) -XO F Θ Y (YWP 0 ) } · D X  {XO F Θ Y (YWP) -XO F Θ Y (YWP 0)}
厶 LWY P 2 =  LWY P 2 =
{ YO F Θ X (XWP ) - YO F Θ X (XWP 0 ) } - D X … ( 1 9 ) によって求めることができる。  {YO F Θ X (XWP)-YO F Θ X (XWP 0)}-D X… (1 9)
したがって、 光路差 Δ LWX P 1 , A LWY P lは、  Therefore, the optical path difference Δ LWX P 1, A LWY P l is
Δ LWX P 1 = A LWX P - A LWX P 2  Δ LWX P 1 = A LWX P-A LWX P 2
厶 LWY P 1 = Δ L WY P— Δ LWY P 2 … (2 0 )  LWY P 1 = Δ L WY P— Δ LWY P 2… (20)
によって求めることができる。 この結果、 基板テーブル 4の Y軸回りの回転量 0 YW、 X軸回りの回転量 Θ XWは、 Can be determined by: As a result, the rotation amount of the substrate table 4 around the Y axis 0 YW, the rotation amount around the X axis Θ XW is
Θ YW= Δ LWX P 1 /DX  Θ YW = Δ LWX P 1 / DX
Θ XW= Δ LWY P 1 /D X … ( 2 1 )  Θ XW = Δ LWY P 1 / D X… (2 1)
によって求めることができる。 Can be determined by:
基板テーブル 4の X軸又は Y軸回りの回転量に基づいて、 アッペ誤差を補正す る場合には、 基板テーブル 4の X Y位置検出の Z位置 Z W 1 とウェハ W表面の Z 位置との差 L (図 4参照) が既知であるものとして、 基板テーブル 4の Y軸回り の回転量 0 YWによる X軸方向のアッベ誤差 Δ XA、 及ぴ X軸回りの回転量 θ X Wによる Y軸方向のアッペ誤差 Δ Y Aは、  To correct the Abpe error based on the rotation amount of the substrate table 4 around the X axis or Y axis, the difference L between the Z position ZW1 of the XY position detection of the substrate table 4 and the Z position of the wafer W surface (See Fig. 4), the Abbe error in the X-axis direction XA due to the rotation amount 0 YW of the substrate table 4 and the rotation amount around the X-axis θ XW in the Y-axis direction The error ΔYA is
, Δ X A= L . Θ YW , Δ X A = L. Θ YW
厶 Y A= L · Θ XW … ( 2 2 )  MM Y A = L · Θ XW… (2 2)
によって求められる。 なお、 以上の ( 1 8 ) 〜 (2 2 ) 式の計算は主制御系 2 2 によって行われる。 Required by The calculations of the above equations (18) to (22) are performed by the main control system 22.
なお、 前記レーザ干渉計 1 3 F Pによって検出されるチルト情報 Δ L F X Pに ついては、 上述のレーザ干渉計 1 3 X Pの場合と同様に処理されるので、 その説 明は省略する。  Note that the tilt information ΔLFXP detected by the laser interferometer 13FP is processed in the same manner as in the case of the laser interferometer 13XP described above, and a description thereof will be omitted.
ところで、 上述した上下段形状データの相対関係を示す R E L 0 Y (YW) 及 ぴ R E L 0 X (XW) は、 ウェハ支持台 1の上面のうねりやねれじ等の影響によ り、 ある傾きを持っており、 これを含めたかたちで、 補正値としての XO F 0 Y (YW) 及び YO F Θ X (XW) を求めていた。 従って、 レーザ干渉計 1 3 X P, 1 3 Y Pの計測結果をこれらの補正値で補正すると、 当該傾きに相当する誤差が 含まれてしまうことになる。 By the way, REL 0 Y (YW) and EL REL 0 X (XW) indicating the relative relationship between the upper and lower shape data described above have a certain inclination due to the undulation and undulation of the upper surface of the wafer support 1. XO F 0 Y (YW) and YO F Θ X (XW) were obtained as correction values in a form including this. Therefore, the laser interferometer 1 3 XP, If the measurement result of 13 YP is corrected with these correction values, an error corresponding to the inclination will be included.
この傾きによる誤差は、 実際にウェハを露光した場合には、 ウェハ上に形成さ れる回路パターンの配列の直交度誤差となって表出することになる。 従って、 ノ ターン配列の直交度誤差を補正するために通常行われている補正方法をさ に実 行することによりその影響を排除することができる。  When the wafer is actually exposed, the error due to the inclination is expressed as the orthogonality error of the arrangement of the circuit patterns formed on the wafer. Therefore, the effect can be eliminated by further executing the correction method which is usually performed to correct the orthogonality error of the pattern.
この直交度誤差の補正方法としては、 複数の基準マークが格子状に配列的に形 成された直交度計測用ウェハを基板テーブル 4に所定の状態で搭載し、 主制御系 2 2がウェハ駆動装置 2 4を介してウェハ X軸駆動ステージ 2及びウェハ Υ軸駆 動ステージ 3を制御し、 計測用ウェハ上の基準マークを順次、 ァライメン トセン サ 2 6で計測し、 その Χ Υ位置を求める。 この計測結果と基準マークが本来ある べき基準位置との関係からその補正値を求め、 この補正値に基づきステージの駆 動を制御する。 なお、 直交度計測用ウェハの基準マークの計測を行った後、 さら に直交度計測用ウェハを 9 0度回転させた状態で基板ステージ 4上に載置して、 さらに基準マークの計測を行い、 これらの計測結果を統計的に処理する等して反 射面 7 Xと反射面 7 Υとの直交度を求めることにより、 直交度計測用ウェハの基 準マークが形成された表面のうねりやねじれ等に基づく誤差の影響を小さくする ことができる。 なお、 ウェハを 9 0度回転させて前述の補正値を求める方法では、 計測専用のウェハを用いないで、 例えばレチクルパターンと一緖にァライメント マークが形成されたデバイス製造用のウェハを用いてもよい。  As a method of correcting the orthogonality error, a wafer for orthogonality measurement in which a plurality of reference marks are formed in a grid pattern is mounted on the substrate table 4 in a predetermined state, and the main control system 22 drives the wafer. The wafer X-axis drive stage 2 and the wafer Υ-axis drive stage 3 are controlled via the device 24, and the reference marks on the measurement wafer are sequentially measured by the alignment sensor 26 to determine the positions thereof. The correction value is obtained from the relationship between the measurement result and the reference position where the reference mark should be, and the drive of the stage is controlled based on the correction value. After measuring the reference mark of the orthogonality measurement wafer, the wafer is further placed on the substrate stage 4 with the orthogonality measurement rotated 90 degrees, and the reference mark is further measured. By calculating the orthogonality between the reflective surface 7X and the reflective surface 7mm by statistically processing these measurement results, etc., the undulation of the surface of the orthogonality measurement wafer on which the fiducial mark is formed can be measured. The effect of errors due to torsion and the like can be reduced. In the method of rotating the wafer by 90 degrees to obtain the above-described correction value, it is possible to use a device manufacturing wafer having alignment marks formed integrally with a reticle pattern without using a wafer dedicated to measurement. Good.
なお、 このような直交度誤差の補正は、 通常行われる工程であ.り、 レーザ干渉 計 1 3 X P , 1 3 Υ Ρについての補正値としての X O F 0 Y ( Y W) 及び Y O F Θ X ( X W) に含まれるウェハ支持台 1のうねりやねじれの影響による誤差を排 除するために特別に行うものではないので、 特に工数が増大するようなことはな い。  Note that such correction of the orthogonality error is a process that is usually performed, and that XOF 0 Y (YW) and YOF Θ X (XW) are used as correction values for the laser interferometers 13 XP and 13 Υ Ρ. ) Is not specifically performed to eliminate errors due to the effects of the undulations and torsion of the wafer support table 1 included in), so that the man-hour is not particularly increased.
上述したように、 上段形状データと下段形状データの相対関係を、 従来技術の ような基準マークを形成した計測用ウェハを用いることなく求めることができる ので、 補正データの収集のための作業工数を減少することができるとともに、 基 準マークの計測に伴う誤差が包含されることもないので、 計測精度を向上するこ とができる。 As described above, since the relative relationship between the upper shape data and the lower shape data can be obtained without using a measurement wafer having a fiducial mark as in the conventional technology, the man-hour for collecting the correction data is reduced. It is possible to improve the measurement accuracy because it can be reduced and errors due to measurement of the fiducial mark are not included. Can be.
なお、 反射面 7 X Sの形状情報 D XW (YW, ZW 1 ), D XW (YW, Z W 2)、 反射面 7 Y Sの形状情報 D YW (XW, ZW1 ), D YW (XW, ZW2) を、 上下段の形状データの相対関係 RE L 0 Y (YW) 及ぴ RE L 0 X (XW) により補正することにより、 反射面 7 X S,7 Y Sのより正確な 2次元形状デー タを得ることができる。 即ち、 反射面 7 X Sの補正後の 2次元形状データを d X W ( YW, Z W 1 ) , d XW (YW, ZW2)、 反射面 7 Y Sの補正後の 2次元 形状データを d YW (XW, Z W 1 ) , d YW (XW, ZW2 )、 反射鏡 7 Xの 1次元形状計測時の基板テーブル 4の X位置を XWP、 反射鏡 7 Yの 1次元形状 計測時の基板テーブル 4の Y位置を YWPとして、  In addition, the shape information D XW (YW, ZW 1) and D XW (YW, ZW 2) of the reflecting surface 7 XS, and the shape information D YW (XW, ZW1) and D YW (XW, ZW2) of the reflecting surface 7 YS. The relative relationship between the upper and lower shape data RE L 0 Y (YW) and RE L 0 X (XW) can be corrected to obtain more accurate two-dimensional shape data of the reflecting surface 7 XS, 7 YS. Can be. That is, the corrected two-dimensional shape data of the reflecting surface 7 XS is dXW (YW, ZW1) and dXW (YW, ZW2), and the corrected two-dimensional shape data of the reflecting surface 7 YS is dYW (XW, XW, ZW 1), d YW (XW, ZW2), X position of substrate table 4 when measuring 1D shape of reflector 7 X, XWP, Y position of substrate table 4 when measuring 1D shape of reflector 7 Y As YWP,
d XW (YW, Z W 1 ) =DXW (YW, Z W 1 )  d XW (YW, Z W 1) = DXW (YW, Z W 1)
d XW (YW, ZW2 ) =D XW (YW, Z W 2 ) +REL 0 Y (YW) d YW (XW, Z W 1 ) =D YW (XW, Z W 1 )  d XW (YW, ZW2) = D XW (YW, ZW 2) + REL 0 Y (YW) d YW (XW, ZW 1) = D YW (XW, ZW 1)
d YW (XW, Z W 2 ) =D YW (XW, Z W 2 ) + R E L Θ X (XW) によって求めることができる。 R E L 0 Y (YW) 及ぴ RE L 0 X (XW) が一 定の値 AXOF, AYOFである場合 (傾き零の場合) の補正後の形状データ d XW (YW, Z W 1 ) , d XW (YW, ZW2), d YW (XW, Z W 1 ) , d Y W (XW, Z W 2 ) が図 1 6に示されている。  d YW (XW, ZW 2) = D YW (XW, ZW 2) + RELΘX (XW). When REL 0 Y (YW) and RE L 0 X (XW) are constant values AXOF, AYOF (when the inclination is zero), the corrected shape data d XW (YW, ZW 1), d XW ( YW, ZW2), dYW (XW, ZW1), dYW (XW, ZW2) are shown in FIG.
次に、 本実施形態の露光装置 1 0 0による、 レチクル Rに形成されたパターン をウェハ Wに転写する露光動作について説明する。  Next, an exposure operation for transferring the pattern formed on the reticle R to the wafer W by the exposure apparatus 100 of the present embodiment will be described.
まず、 不図示のレチクルローダによって、 レチクルがレチクルステージ R S T の微動ステージ 1 1上にロードされる。 そして、 基準マーク板 6を用いてレチク ルァライメントが行われる。  First, a reticle is loaded on fine movement stage 11 of reticle stage R ST by a reticle loader (not shown). Then, reticle alignment is performed using the reference mark plate 6.
このレチクルァライメントの'動作を簡単に説明すると、 まず、 主制御系 2 2の 制御により、 ウェハ Y軸駆動ステージ 2及ぴウェハ X軸駆動ステージ 3を駆動す ることによって、 基準マーク板 6の基準マーク 3 0 A, 3 0 Bを投影光学系 P L に関してレチクル R上の照明領域 3 6 と共役な露光領域(パターン像の投影領域) 3 4内に移動して静止させるとともに、 レチクル走査ステージ 1 0を駆動して図 1 1のレチクル 1 2上のァライメントマーク 3 2A, 3 2 Bを照明領域 3 6内に 移動する。 The operation of the reticle alignment is briefly described as follows. First, by controlling the main control system 22, the wafer Y-axis drive stage 2 and the wafer X-axis drive stage 3 are driven to form the reference mark plate 6. The reference marks 30 A and 30 B are moved in the exposure area (projection area of the pattern image) 34 conjugate with the illumination area 36 on the reticle R with respect to the projection optical system PL and stopped, and the reticle scanning stage 1 Drive 0 to move the alignment marks 3 2A and 3 2B on the reticle 1 2 in Fig. 11 into the illumination area 36. Moving.
次に、 レチクルァライメント系 1 9, 2 0によって、 基準マーク 3 0 A, 3 0 Bと対応するァライメン トマーク 3 2 A, 3 2 Bとの位置ずれ量を検出する。 そ して、 主制御系 2 2は、 検出された位置ずれ量に基づいて、 レチクル走査ステー ジ 1 0及びレチクル微動ステージ 1 1を駆動して、 基準マーク 3 0 A及び 3 0 B の像に対してァライメントマーク 3 2 A及び 3 2 Bの位置ずれ量が対称になるよ ' うに合わせ込む。 これによつて、 レチクル Rの位置及び回転角が基準マーク板 6 に対して合わせ込まれる。 また、 この状態で例えば、 レチクルステージ R S T側 の 4軸のレチクル干渉計 1 4 X 1 , 1 4 X 2, 1 4Y 1 , 1 4 Y 2の計測値、 及 ぴウェハステージ側の 4軸のレーザ干渉計 1 3 X 1 , 1 3 X 2, 1 3 Y 1 , 1 3 Y 2の計測値をリセッ トすることによって、上述のレチクルステージの座標系(X R, YR) と、 ウェハステージの座標系 (XW, YW) との原点のオフセッ トが 補正される。 このとき、 各レーザ干渉計の計測値をリセッ トすることなくオフセ ッ トを記憶するだけでもよいし、 オフセッ トの補正又は記憶に先立ってレチクル ステージを移動 (回転など) させることなく、 レチクルァライメント系 1 9 , 2 0の検出結果を用いてオフセッ トの補正又は記憶を行ってもよい。  Next, the reticle alignment system 19, 20 detects the amount of displacement between the reference marks 30A, 30B and the corresponding alignment marks 32A, 32B. Then, the main control system 22 drives the reticle scanning stage 10 and the reticle fine movement stage 11 on the basis of the detected positional deviation amount, and forms the images of the reference marks 30A and 30B. On the other hand, the alignment marks 32A and 32B are aligned so that the amount of displacement is symmetrical. As a result, the position and the rotation angle of the reticle R are aligned with the reference mark plate 6. In this state, for example, the measured values of the 4-axis reticle interferometers 14 X 1, 14 X 2, 14 Y 1, 14 Y 2 on the RST side of the reticle stage, and the 4-axis laser on the wafer stage side By resetting the interferometer 1 3 X 1, 1 3 X 2, 1 3 Y 1, 1 3 Y 2 measurement values, the coordinate system of the reticle stage (XR, YR) and the coordinate system of the wafer stage The offset of the origin with (XW, YW) is corrected. At this time, the offset may be stored without resetting the measured value of each laser interferometer, or the reticle stage may be moved (rotated, etc.) without correcting or storing the offset without moving the reticle stage. The offset may be corrected or stored using the detection results of the alignment systems 19 and 20.
次いで、 後に行われる走査露光時における基板テーブル 4の走査方向が、 基準 マーク板 6の基準マーク 3 0 A, 3 0 C , 3 0 Eの配列方向に平行となるように する。 このためには、 例えば、 機械的に基準マーク 3 0 A, 3 0 C, 3 0 Eの配 列方向が反射鏡 7 Xの反射面 7 X Sと平行に設定される。 但し、 機械的な調整誤 差が残存する際には、ウェハステージの Y座標 YWが所定ステップ変化する毎に、 その X座標 XWが対応する量だけ変化するようにして、 ソフ トウェア的に基板テ 一ブル 4の走査方向を補正してもよい。 以下では、 このように補正された走査方 向を Y軸とする座標系をウェハステージの座標系 (XW, YW) と呼ぶ。  Next, the scanning direction of the substrate table 4 at the time of the scanning exposure performed later is set to be parallel to the arrangement direction of the reference marks 30 A, 30 C, and 30 E of the reference mark plate 6. For this purpose, for example, the arrangement direction of the reference marks 30 A, 30 C, 30 E is mechanically set parallel to the reflection surface 7 XS of the reflection mirror 7 X. However, when a mechanical adjustment error remains, each time the Y coordinate YW of the wafer stage changes by a predetermined step, the X coordinate XW is changed by a corresponding amount, and the substrate test is performed in software. The scanning direction of one bull 4 may be corrected. In the following, the coordinate system in which the scanning direction corrected in this way is the Y axis is referred to as the wafer stage coordinate system (XW, YW).
次に、 露光光 E Lを照射することなく、 走査露光時と同様にウェハステージ側 のステージとレチクルステージ側のステージとを互いに反対向き移動させて、 基 準マーク板 6上の基準マーク 3 0 C〜3 0 Fと対応するレチクル R上のァライメ ン 卜マーク 3 2 C〜3 2 Fとの相対的な位置ずれ量をレチクルァライメント系 1 9 , 2 0によって順次検出する。 これらの相対的な位置ずれ量の平均値より、 レ チクル Rの走査方向とウェハ Wの走査方向との傾き角、 すなわちレチクルステー ジの座標系 (X R , Y R ) と、 ウェハステージの座標系 (X W, Y W) との走査 方向の軸の回転角を求める。 その後、 レチクル Rを走査する際には、 レチクル走 査ステージ 1 0及ぴレチクル微動ステージ 1 1を介して、 Y座標 Y Rが所定間隔 変化する間に X座標 X Rを対応する量だけ横ずれさせることによって、 ソフ トゥ エア的にレチクル Rの走査方向を基準マーク板 6の基準マークの配列方向に合わ せ込む。 以下では、 このように補正された走査方向を Y軸とする座標系をレチク ルステージの座標系 (X R , Y R ) と呼ぶ。 Next, without irradiating the exposure light EL, the stage on the wafer stage side and the stage on the reticle stage side are moved in opposite directions to each other as in the case of scanning exposure, and the reference mark 30 C on the reference mark plate 6 is moved. The relative displacement between .about.30 F and the corresponding alignment marks 32C to 32F on the reticle R is sequentially detected by the reticle alignment system 19,20. From the average of these relative displacements, The tilt angle between the scanning direction of the reticle R and the scanning direction of the wafer W, that is, the rotation angle of the axis in the scanning direction between the coordinate system (XR, YR) of the reticle stage and the coordinate system (XW, YW) of the wafer stage. Ask. Thereafter, when scanning the reticle R, the reticle scanning stage 10 and the reticle fine movement stage 11 are used to shift the X coordinate XR by a corresponding amount while the Y coordinate YR changes by a predetermined interval. Then, the scanning direction of the reticle R is adjusted to the arrangement direction of the reference marks on the reference mark plate 6 in a soft-to-air manner. Hereinafter, the coordinate system in which the scanning direction corrected in this way is the Y axis is referred to as the coordinate system (XR, YR) of the reticle stage.
この結果、 ウェハステージの座標系 (X W, Y W) 及ぴレチクルステージの座 標系 (X R , Y R ) は、 基準マーク板 6を基準として走査方向の軸が互いに平行 になり、 走査露光時にレチクル Rとウェハ Wとは平行に走査される。 この場合、 各ステージの移動は各ステージのガイ ド面基準であるので、 露光装置 1 0 0の組 立調整時に、 例えばレチクル走査ステ一ジ 1 0のガイ ド面とウェハ Y軸駆動ステ ージ 2のガイ ド面との平行度を数 1 0 0 r a d程度以下に機械的に合わせてお く  As a result, in the coordinate system (XW, YW) of the wafer stage and the coordinate system (XR, YR) of the reticle stage, the axes in the scanning direction are parallel to each other with respect to the reference mark plate 6, and the reticle R during the scanning exposure. And the wafer W are scanned in parallel. In this case, since the movement of each stage is based on the guide surface of each stage, when adjusting the assembly of the exposure apparatus 100, for example, the guide surface of the reticle scanning stage 10 and the wafer Y-axis drive stage Mechanically adjust the parallelism with the guide surface of No. 2 to less than about 100 rad
更に、 それらのガイ ド面に対して反射鏡及び基準マーク板 6を合わせて固定す ることで、 走査露光時に各ステージを非走査方向へも駆動することによるソフ ト ウェア的な補正量を小さく し、 制御精度を向上させている。 なお、 レチクルステ ージとウェハステージは共にガイ ドレスであってもよく、 この場合には仮想的な ガイ ド面を規定し、 その仮想面に対して反射鏡などを合わせて固定すればよい。 このように調整されたレチクル微動ステージ 1 1に対し、 実際にレチクル Rを载 置した場合、 レチクル Rが外形基準等で設けられると、 各反射鏡 2 1 X , 2 1 Y 1 , 2 1 Y 2及ぴ基準マーク板 6に対しレチクル Rのァライメントマーク 3 2 A 〜 3 2 Fのみが大きく回転している可能性がある。 これは、 レチクル Rの外形と 転写用パターンとの間の位置ずれ量は大きいときには 0 . 5 m m程度あるからで ある。  Further, by fixing the reflecting mirror and the reference mark plate 6 to the guide surfaces, the amount of software correction by driving each stage in the non-scanning direction during scanning exposure is reduced. And control accuracy has been improved. Note that the reticle stage and the wafer stage may both be guides. In this case, a virtual guide surface may be defined, and a mirror or the like may be fixed to the virtual surface. When the reticle R is actually placed on the reticle fine movement stage 11 adjusted in this way, if the reticle R is provided on the basis of the outer shape or the like, each of the reflecting mirrors 21 X, 21 Y 1, 21 Y There is a possibility that only the alignment marks 32 A to 32 F of the reticle R are largely rotated with respect to the reference mark plate 6. This is because the displacement between the outer shape of the reticle R and the transfer pattern is about 0.5 mm when the displacement is large.
図 1 1のレチクル Rの外形と転写用パターンとの位置ずれ量が大きいと、 レチ クル Rのァライメントマーク 3 2 A〜3 2 Fと基準マーク板 6の基準マーク 3 0 A〜 3 0 Fとの位置ずれ量を計測した場合、 相対的にレチクル Rと基準マーク板 6 とが大きく回転しているカ 大きなオフセッ トを持っていると認識される。 かる場合には、 基準マーク板 6は反射鏡 7 X, 7 Yに合わせて固定されているこ とから、 レチクル微動ステージ 1 1を回転又はシフ 卜させることで補正が行われ る。 If the amount of misalignment between the outer shape of the reticle R in FIG. 11 and the transfer pattern is large, the alignment marks 32 A to 32 F of the reticle R and the reference marks 30 A to 30 F of the reference mark plate 6 are obtained. Relative to the reticle R and the reference mark plate 6 and a large rotation are recognized as having a large offset. In such a case, since the reference mark plate 6 is fixed to the reflecting mirrors 7X and 7Y, the correction is performed by rotating or shifting the reticle fine movement stage 11.
レチクル微動ステージ 1 1を回転させた場合には、 反射鏡 2 1 Xも同様に回転 するので、 レチクル Rの走り方向に対し反射鏡 2 1 Xが傾く こととなるが、 レチ クル R上のァライメントマーク 3 2A〜3 2 Fは基準マーク板 6上の基準マーク 3 0 A〜3 0 Fに平行になっており、 走査露光時にはレチクル Rの走り方向とゥ ェハ Wの走り方向とが平行となるように制御される。  When the reticle fine movement stage 11 is rotated, the reflecting mirror 21 X also rotates in the same manner, so that the reflecting mirror 21 X is inclined with respect to the running direction of the reticle R. The alignment marks 32A to 32F are parallel to the reference marks 30A to 30F on the reference mark plate 6, and the scanning direction of the reticle R and the scanning direction of the wafer W are parallel during scanning exposure. Is controlled so that
以上のレチクルァライメント時に、 基準マーク板 6を用いたいわゆるベースラ インチエックによって、 ァライメン トセンサ 2 6の検出中心と、 露光領域 34内 の基準点との間隔 (ベースライン量) が求められて記憶装置 2 7に記憶される。 次に、 不図示のウェハローダによってウェハ Wが基板テーブル 4上にロードさ れ、 基板テープル 4によって保持される。 そして、 ウェハ W上における各ショ ッ ト領域のウェハステージの座標系 (XW, YW) 上での配列を求めるためのゥェ ハァライメントが行われる。 かかるウェハァライメン トでは、 図 1のァライメン トセンサ 2 6を用いて、 例えば特開昭 6 1— 4 44 2 9号公報及びこれに対応す る米国特許第 4, 7 8 0 , 6 1 7号等に開示されているように、 ウェハ W上から 選択された所定個数のショッ ト領域 (サンプルショッ ト) のウェハマーク (不図 示) の座標位置を検出し、 この計測結果を銃計処理する E G A (ェンハンス ト - グロ一パル ' ァライメント) 方式でウェハ W上の全部のショッ ト領域に関する配 列座標が算出される。 なお、 ウェハマーク座標位置は、 上述のレーザ干渉計 1 3 F X, 1 3 Y 1 , 1 3 Y 2による計測結果 (XW (= X F ) , YW)、 レーザ干 渉計 1 3. F Pによる計測結果 Δ L F X P、 及びレーザ干渉計 1 3 Y Pによる計測 結果 Δ LWY Pに基づいて検出される。  At the time of the reticle alignment described above, the interval (baseline amount) between the detection center of the alignment sensor 26 and the reference point in the exposure area 34 is obtained by a so-called baseline etching using the reference mark plate 6. Stored in 27. Next, the wafer W is loaded on the substrate table 4 by a wafer loader (not shown), and is held by the substrate table 4. Then, a wafer alignment for obtaining an arrangement of each shot area on the wafer W on the coordinate system (XW, YW) of the wafer stage is performed. In such a wafer alignment, for example, Japanese Patent Application Laid-Open No. 61-44429 and corresponding US Pat. Nos. 4,780,617 using the alignment sensor 26 shown in FIG. As disclosed, an EGA (Electro Gas Gauge) that detects the coordinate position of a wafer mark (not shown) of a predetermined number of shot areas (sample shots) selected from the wafer W and processes this measurement result with a gun gauge The array coordinates of the entire shot area on the wafer W are calculated by the method of “Enhanced-global alignment”. Note that the wafer mark coordinate position is the measurement result (XW (= XF), YW) using the laser interferometers 13 FX, 13 Y 1, and 13 Y 2 described above, and the measurement result using the laser interferometer 13. FP. Measured by ΔLFXP and laser interferometer 13 YP Detected based on ΔLWYP.
そして、 ウェハ W上の各ショッ ト領域の配列座標、 ァライメントセンサ 2 6の ペースライン量、 及ぴウェハステージの座標系 (XW, YW) とレチクルステー ジの座標系 (XR, YR) との関係に基づいて、 ウェハ W上の露光対象のショ ッ ト領域が走査開始位置に位置決めされると共に、 レチクル Rも対応する位置に位 置決めされる。 Then, the arrangement coordinates of each shot area on the wafer W, the pace line amount of the alignment sensor 26, and the coordinate system of the wafer stage (XW, YW) and the coordinate system of the reticle stage (XR, YR) Based on the relationship, the shot area to be exposed on wafer W is positioned at the scanning start position, and reticle R is also positioned at the corresponding position. It is decided.
次に、 露光光 E.Lを照射しつつ、 先のレチクルァライメント時に定められたゥ ェハステージの座標系 (XW, YW) 及びレチクルステージの座標系 (XR, Y R) に従ってレチクル Rとウェハ Wとを同期移動させることにより、 走査露光動 作が行われる。 この場合の座標系 (XW, YW) 及び座標系 (XR, YR) は、 反射鏡 7 X, 7 Y, 2 1 X, 2 1 Y 1 , 2 1 Y 2の反射面を基準としてソフ トゥ エア的に補正されたものであり、 各反射鏡の位置がレチクル Rやウェハ Wに対し て相対的にずれた場合、 ショ ッ ト領域の形状ゃショッ ト配列に影響を及ぼすこと となる。 本実施形態では、 このようなときでも正確な矩形のショッ ト領域、 及ぴ 直交格子状のショ ッ ト配列が形成されるように、 以下の方法により走査露光及ぴ ステツビングを行っている。  Next, while irradiating the exposure light EL, the reticle R and the wafer W are synchronized according to the coordinate system (XW, YW) of the wafer stage and the coordinate system (XR, YR) of the reticle stage determined at the time of the previous reticle alignment. By moving, a scanning exposure operation is performed. In this case, the coordinate system (XW, YW) and the coordinate system (XR, YR) are soft to air based on the reflecting surface of the reflecting mirror 7X, 7Y, 21X, 21Y1, 21Y2. If the position of each reflecting mirror is relatively shifted with respect to the reticle R or the wafer W, it will affect the shape of the shot area and the shot arrangement. In the present embodiment, even in such a case, scanning exposure and stepping are performed by the following methods so that an accurate rectangular shot area and an orthogonal lattice shot arrangement are formed.
すなわち、 ウェハァライメントによって、 露光対象のショ ッ ト領域とレチクル とが位置合わせされたときのレチクルステージの座標系 (X R, YR) の座標を (XR 0 , YR 0)、 ウェハステージの座標系 (XW, YW) の座標を (XW 0 , YW0 ) とすると、 投影光学系 P Lの投影倍率は j8であるため、 それ以後のレチ クル微小駆動ステージ 1 1 (レチクル R) と基板テーブル 4 (ウェハ W) との走 查方向、 及ぴ非走査方向の同期誤差 Δ X, Δ Υは、  That is, the coordinates of the reticle stage coordinate system (XR, YR) when the shot area to be exposed and the reticle are aligned by the wafer alignment are (XR0, YR0), and the coordinate system of the wafer stage. If the coordinates of (XW, YW) are (XW 0, YW0), the projection magnification of the projection optical system PL is j8, so the reticle micro-drive stage 11 (reticle R) and the substrate table 4 (wafer) W) and the synchronization error ΔX, ΔΥ in the scanning direction and the non-scanning direction are
厶 X= (XW-XWO ) / /3 - (XR -X R 0 ) … ( 2 3)  X = (XW-XWO) / / 3-(XR -X R 0)… (2 3)
Δ Υ= (YW- YWO ) / β - (YR— YR O ) … ( 2 4)  Δ Υ = (YW- YWO) / β-(YR— YR O)… (24)
となる。 但し、 これらの同期誤差はレチクル 1 2上に換算した誤差である。 また、 図 1の投影光学系 P Lは反転投影系であるが、 図 2に示すように、 レチクル干渉 計 1 4 とウェハ干渉計 1 3 とは X軸方向及ぴ Y軸方向について測長方向が反転し ているため、同期誤差は単に移動量の倍率補正値の差分を取るだけで求められる。 また、 本実施形態では、 (5 ) 式で表される基板テーブル 4のョーイング角 0 ZWと、 ( 9 ) 式で表されるレチクル微動ステージ 1 1のョーイング角 0 Z Rと の差分を次式のように回転方向の同期誤差 Δ Θ とする。 It becomes. However, these synchronization errors are errors converted on reticle 12. The projection optical system PL in FIG. 1 is a reverse projection system, but as shown in FIG. 2, the reticle interferometer 14 and the wafer interferometer 13 have the X-axis direction and the Y-axis direction Since it is reversed, the synchronization error can be obtained simply by taking the difference between the magnification correction values of the movement amount. Further, in the present embodiment, the difference between the jowing angle 0 ZW of the substrate table 4 expressed by the equation (5) and the joing angle 0 ZR of the reticle fine movement stage 11 expressed by the equation (9) is expressed by the following equation. As described above, it is assumed that the synchronization error in the rotation direction is Δ 方向.
厶 0 = 0 ZW— 6 Z R= (XW 1 - XW 2 ) /L 1 1  0 = 0 ZW— 6 Z R = (XW 1-XW 2) / L 1 1
一 (X R 1 - X R 2 ) /L 3 ··· ( 2 5 )  (X R 1-X R 2) / L 3 (25)
そして、 走査露光時には、 図 1 のレチクル走査ステージ 1 0及びウェハ Y軸駆 動ステージ 2が加速を開始し、 これらがそれぞれ所定の走査速度に達した後、 上 記の同期誤差 Δ Χ, ΔΥ, Δ Θがそれぞれ零、 又は所定の許容値以下となるよう にレチクル微動ステージ 1 1を駆動して同期制御を行う。 この状態で所定の整定 時間が経過した後、 レチクル R上の照明領域 3 6への露光光 E Lの照射が開始さ れて露光が行われる。 なお、 本実施形態ではレチクル微動ステージ 1 1を駆動し て同期誤差 Δ Χ, ΔΥ, Δ Θをそれぞれ零または許容値以下とするものとしたが、 レチクル微動ステージ 1 1の代わりに、 あるいはそれと組み合わせてウェハステ ージ装置(例えば基板テーブル 4) を駆動して前述の同期誤差を補正してもよい。 また、 走査露光時には、 ウェハ W (レチクルのパターンが転写されるショ ッ ト 領域) の Z位置、 X軸回りの回転角、 及ぴ Y軸回りの回転角は、 多点フォーカス 検出系 (2 8, 2 9) によって検出されている。 そして、 この検出結果に基づい て、 主制御系 2 2がウェハ駆動装置 2 2を介して基板テーブル 4を駆動し、 前述 の露光領域 34内でウェハ Wの表面を投影光学系 P Lの像面と焦点深度の範囲内 で一致させている。 At the time of scanning exposure, the reticle scanning stage 10 of FIG. The moving stage 2 starts accelerating, and after each of them reaches a predetermined scanning speed, the reticle fine moving stage is adjusted so that the above-mentioned synchronization errors ΔΧ, ΔΥ, ΔΘ are each zero or less than a predetermined allowable value. 1 Synchronous control is performed by driving 1. In this state, after a predetermined settling time has elapsed, irradiation of the exposure area EL on the reticle R with the exposure light EL is started, and exposure is performed. In the present embodiment, the reticle fine movement stage 11 is driven to set the synchronization errors ΔΧ, ΔΥ, ΔΘ to zero or less than the allowable value, respectively. However, instead of the reticle fine movement stage 11 or in combination therewith. The synchronization error may be corrected by driving a wafer stage device (for example, the substrate table 4). During scanning exposure, the Z position, rotation angle around the X-axis, and rotation angle around the Y-axis of the wafer W (the shot area where the reticle pattern is transferred) are determined by the multipoint focus detection system (28). , 29). Then, based on the detection result, the main control system 22 drives the substrate table 4 via the wafer driving device 22 to bring the surface of the wafer W into the image plane of the projection optical system PL in the exposure area 34 described above. Match within the depth of focus.
更に、 ウェハァライメント時には、 レーザ干渉計 1 3 F P, 1 3 YPによって、 反射面 7 X S, 7 Y Sのチルト量が検出されており、 また、 走査露光時には、 レ 一ザ干渉計 1 3 XP, 1 3 YPによって、 反射面 7 X S, 7 Y Sのチルト量が検 出されている。 そして、 この検出結果に基づいて、 前述のようにしてアッペ誤差 Δ X A, Δ Y Aが求められ、 アッベ誤差 Δ X A, Δ Y A分だけ基板テーブル 4 (ゥ ェハ W) の XY位置が補正される。  Further, at the time of wafer alignment, the tilt amounts of the reflecting surfaces 7 XS and 7 YS are detected by the laser interferometers 13 FP and 13 YP, and at the time of scanning exposure, the laser interferometers 13 XP and 13 XP are used. The tilt amount of the reflecting surfaces 7 XS and 7 YS is detected by 13 YP. Then, based on this detection result, the Abbe errors ΔXA, ΔYA are obtained as described above, and the XY position of the substrate table 4 (the wafer W) is corrected by the Abbe error ΔXA, ΔYA. .
なお、 上記実施形態では可動ミラー 4 1 0 と固定ミラー 4 2 0 とを含む光路変 更装置 4 0を用いているが、 その表面に、 例えば複数の誘電体膜を積層した誘電 体多層膜、 あるいは金属膜などを蒸着して、 その 2つのミラーにそれぞれ測定光 束の偏光状態を崩さないで極力忠実に反射させる良好な反射偏光特性を持たせる ことが好ましい。 また、 上記実施形態では光路変更装置 4 0の可動ミラー 4 1 0 を回転させて反射面上での測定光束の Z位置を変更するものとしたが、 例えば可 動ミラー 4 1 0のみ、 あるいは一対のミラーをその表面が平行となるように一体 に保持して、 Z方向にスライ ドさせるように構成してもよいし、 ミラー以外、 例 えばプリズムなどの他の光学部材を用いても良い。 さらに、 上記実施形態では光路変更装置 4 0によって干渉計 1 3 X 1 , 1 3 X 2 , 1 3 Y 1 , 1 3 Υ 2の各測定光束の反射面上での Ζ位置を ZW1 と ZW2と に切り替えてそれぞれ反射面の形状情報を計測するものとしたが、 必ずしも光路 変更装置 4 0を設けなくてもよい。 例えば、 干渉計 1 3 X 1 , 1 3 X 2, 1 3 Υ 1 , 1 3Y 2をそれぞれ、 Ζ方向に離れた一対の測定光束 (一方は LWX 1 , L WX 2 , LWY 1 , LWY 2) を反射面に照射して異なる Ζ位置 Z W 1 , ZW2 でそれぞれ基板テーブル 4の位置情報を独立に計測する構成としてもよい。 この 構成では、その一対の測定光束の反射面上での Ζ位置をそれぞれ干渉計 1 3 ΧΡ, 1 3 Υ Ρの一対の測定光束 (L WX Ρ 1 , LWX Ρ 2 ) , (LWY Ρ 1 , LWY Ρ 2 ) とほぼ一致させておく ことが好ましい。 また、 この構成ではその一対の測 定光束によって基板テーブル 4のチルト計測が可能となることから、 干渉計 1 3 X Ρ, 1 3 Υ Ρを別途設けなくてもよく、 前述のエンコーダ Ε Ν 1〜ΕΝ 3を用 いた計測では干渉計 1 3 XP, 1 3 ΥΡの代わりに、 反射面 7 X Sでは干渉計 1 3 X 1 , 1 3 X 2の一方、 反射面 7 Y Sでは干渉計 1 3 Y 1 , 1 3 Υ 2の一方を 用いればよい。 In the above embodiment, the optical path changing device 40 including the movable mirror 410 and the fixed mirror 420 is used. On the surface thereof, for example, a dielectric multilayer film in which a plurality of dielectric films are stacked, Alternatively, it is preferable to deposit a metal film or the like, and to provide the two mirrors with good reflection polarization characteristics for reflecting the measurement light beam as faithfully as possible without disturbing the polarization state. In the above embodiment, the movable mirror 4 10 of the optical path changing device 40 is rotated to change the Z position of the measurement light beam on the reflection surface. For example, only the movable mirror 4 10 The mirror may be integrally held so that its surfaces are parallel to each other, and may be configured to slide in the Z direction. Alternatively, other optical members such as a prism other than the mirror may be used. Further, in the above embodiment, the positions of the measurement light beams of the interferometers 13 X 1, 13 X 2, 13 Y 1, and 13 Υ 2 on the reflection surface are denoted by ZW1 and ZW2 by the optical path changing device 40. And the shape information of the reflection surface is measured, but the optical path changing device 40 is not necessarily provided. For example, the interferometers 13 X 1, 13 X 2, 1 3 Υ 1 and 13 Y 2 are separated from each other in the Ζ direction by a pair of measurement beams (one is LWX 1, L WX 2, LWY 1, LWY 2) May be applied to the reflecting surface to independently measure the position information of the substrate table 4 at different positions ZW 1 and ZW 2. In this configuration, the Ζ positions of the pair of measurement beams on the reflection surface are respectively set to the pair of measurement beams (LWXΡ1, LWXΡ2), (LWYΡ1,) of the interferometers 13ΧΡ and 13 3. It is preferable that LWY Ρ 2) be made to substantially match. Further, in this configuration, since the tilt measurement of the substrate table 4 can be performed by the pair of measurement light beams, it is not necessary to separately provide the interferometers 13 X 1 and 13 Υ 、, and the encoder の Ν 1 In the measurement using ~ 3, instead of the interferometer 13 XP, 13 3, one of the interferometers 13 X 1 and 13 X 2 for the reflective surface 7 XS, and the interferometer 13 Y for the reflective surface 7 YS One of 1, 13 32 may be used.
また、 上記実施形態では前述した反射面の形状情報の計測時にウェハステージ を一方向、 例えば一 Υ方向 (一 X方向) のみに移動するものとしたが、 Ζ位置 Ζ W 1 , ZW 2でそれぞれウェハステージを往復移動させる、 即ち土 Υ方向 (±Χ 方向) に移動し、 往路 (一 Υ方向ノ一 X方向への移動) で得られる形状情報と、 復路 (+ Υ方向 Ζ + χ方向への移動) で得られる形状情報とを平均化して最終的 な形状情報を決定することが好ましい。  In the above-described embodiment, the wafer stage is moved in one direction, for example, only one direction (one X direction) when measuring the shape information of the reflection surface described above. The wafer stage is reciprocated, that is, moved in the earth direction (± Χ direction), the shape information obtained on the outward path (movement in one X direction and the X direction) and the return path (+ Υ direction Ζ + χ direction) It is preferable to determine the final shape information by averaging the shape information obtained in (2) and (3).
さらに、 上記実施形態では前述した反射面の形状情報の計測時にウェハステー ジを一方向に連続移動させてもよいし、 あるいはステップ移動させてもよい。 な お、 ウェハステージを連続移動させるときは、 実質的にその加減速期間を除く等 速期間に得られる干渉計の計測値を用いて形状情報を求めることが好ましい。 こ のため、 連続移動ではステップ移動に比べて計測時間を短縮できるものの、 反射 面の計測範囲が狭くなり得る。 また、 前述のエンコーダ Ε Ν 1〜Ε Ν 3を用いた 計測時にもウェハステージを連続移動させても、 あるいはステップ移動させても よい。 また、 上記実施形態では前述した反射面の形状情報の計測を定期的、 例えば所 定時間毎、 または 1 ロッ トの処理が終わるたびに行うようにし、 その形状情報を 逐次更新するようにしてもよいし、 あるいはその形状情報を蓄積してその平均値 を用いるようにしてもよい。 このとき、 2回目以降の形状情報の計測では、 例え ば① 2つの反射面 7 X S, 7 Y Sの形状計測、 ②異なる Z位置 Z W 1 , ZW2で の形状計測、 ③同じ Z位置での往路と復路の形状計測、 及び④反射面の形状計測 と前述のエンコーダを用いた計測の少なく とも 1つで、 その計測を異なるタイミ ングで行う ようにしてもよい。 この場合、 それら計測による露光装置の停止時間 を短く してスループッ トの向上を図ることが可能となる。 Further, in the above-described embodiment, the wafer stage may be continuously moved in one direction or may be step-moved at the time of measuring the shape information of the reflection surface described above. When the wafer stage is moved continuously, it is preferable to obtain the shape information using the interferometer measurement values obtained during the constant velocity period substantially excluding the acceleration / deceleration period. For this reason, continuous measurement can shorten the measurement time compared to step movement, but the measurement range of the reflective surface can be narrowed. Also, the wafer stage may be moved continuously or stepwise during measurement using the encoders 1 to 3 described above. In the above embodiment, the measurement of the shape information of the reflection surface is performed periodically, for example, at a predetermined time or every time one lot is completed, and the shape information may be sequentially updated. Alternatively, the shape information may be accumulated and the average value may be used. At this time, in the measurement of the shape information from the second time onwards, for example, ① shape measurement of two reflective surfaces 7 XS, 7 YS, ② shape measurement at different Z positions ZW 1, ZW 2, ③ outgoing at the same Z position At least one of the return path shape measurement, the shape measurement of the reflection surface, and the measurement using the encoder described above may be performed at different timings. In this case, it is possible to improve the throughput by shortening the stop time of the exposure apparatus by these measurements.
さらに、 上記実施形態ではレチクル干渉計とウェハ干渉計は共に参照鏡が投影 光学系 P Lの鏡简又はその架台などに設けられるものとしたが、 参照鏡の配置は これに限定されるものでなく、 例えば干渉計の内部に参照鏡を設けてもよい。 ま た、 ァライメントセンサ 2 6によるマーク検出時に用いられる干渉計 1 3 FX, 1 3 F Pの参照鏡も、 ァライメン トセンサ 2 6の鏡筒又はその架台でなく、 干渉 計の内部などに設けてもよい.。  Further, in the above-described embodiment, both the reticle interferometer and the wafer interferometer have the reference mirror provided on the mirror の of the projection optical system PL or its mount, but the arrangement of the reference mirror is not limited to this. For example, a reference mirror may be provided inside the interferometer. In addition, the reference mirror of the interferometers 13 FX and 13 FP used when the mark is detected by the alignment sensor 26 may be provided inside the interferometer instead of the barrel of the alignment sensor 26 or its mount. Good ..
また、 上記実施形態では前述した反射面の形状情報の計測やエンコーダを用い た計測の前に干渉計の計測値をリセッ 卜するものとしたが、 零以外の所定値にプ リセッ トするだけでもよいし、 必ずしもそのリセッ ト (又はプリセッ ト) を行わ なくてもよレヽ。  Further, in the above embodiment, the measurement value of the interferometer is reset before the measurement of the shape information of the reflection surface or the measurement using the encoder described above. However, it is also possible to reset the measurement value of the interferometer to a predetermined value other than zero. Yes, it is not always necessary to reset (or reset).
なお、 本実施形態の露光装置 1 0 0は、 上記実施形態で説明した、 多数の機械 部品及ぴ光学部品等を有する照明系、 複数のレンズ等を有する投影光学系 P L、 並びに多数の機械部品等を有するレチクルステージ R S T及ぴウェハステージ装 置、 並びにレーザ干渉計 1 3 X 1 , 1 3 X 2, 1 3 X P , 1 3 Y 1 , 1 3 Y 2 , 1 3 Y P , 1 3 F X, 1 3 F P , 1 4 X 1 , 1 4 X 2, 1 4 M 1 , 1 4M2、 光 路変更装置 4 0をそれぞれ組み立てて機械的及び光学的に連結し、 さらに、 主制 御系 2 2、 及び記憶装置 2 7等と機械的及ぴ電気的に組み合わせた後に、 総合調 整 (電気調整、 動作確認等) をすることにより製造することができる。  Note that the exposure apparatus 100 of the present embodiment includes the illumination system having a large number of mechanical components and optical components, the projection optical system PL having a plurality of lenses and the like, and the large number of mechanical components described in the above embodiment. Reticle stage with RST and wafer stage device, and laser interferometer 13 X 1, 13 X 2, 13 XP, 13 Y 1, 13 Y 2, 13 YP, 13 FX, 1 3 FP, 14 X 1, 14 X 2, 14 X 2, 14 M 1, 14 M 2, optical path changing device 40 are assembled and connected mechanically and optically, and furthermore, main control system 22, and It can be manufactured by combining the storage device 27 and the like mechanically and electrically, and then performing overall adjustment (electrical adjustment, operation confirmation, etc.).
なお、 露光装置 1 0 0の製造は温度及びクリーン度等が管理されたクリーンル ームで行うことが望ましい。 次に、 本実施形態の露光装置を使用したデバイスの製造について説明する。 図 1 7には、 本実施形態におけるデバイス ( I Cや L S I等の半導体チップ、 液晶パネル、 C C D、 薄膜磁気ヘッ ド、 マイクロマシン等) の生産のフローチヤ ートが示されている。 図 1 7に示されるように、 まず、 ステップ 2 0 1 (設計ス テツプ) において、 デバイスの機能設計 (例えば、 半導体デバイスの回路設計等) を行い、 その機能を実現するためのパターン設計を行う。 引き続き、 ステップ 2 0 2 (マスク製作ステップ) において、 設計した回路パターンを形成したマスク を製作する。 一方、 ステップ 2 0 3 (ウェハ製造ステップ) において、 シリ コン 等の材料を用いてウェハを製造する。 It is desirable that the exposure apparatus 100 be manufactured in a clean room where the temperature, cleanliness, etc. are controlled. Next, the manufacture of a device using the exposure apparatus of the present embodiment will be described. FIG. 17 shows a flowchart of the production of devices (semiconductor chips such as ICs and LSIs, liquid crystal panels, CCDs, thin-film magnetic heads, micromachines, etc.) according to the present embodiment. As shown in Fig. 17, first, in step 201 (design step), functional design of a device (for example, circuit design of a semiconductor device, etc.) is performed, and pattern design for realizing the function is performed. . Subsequently, in step 202 (mask manufacturing step), a mask on which the designed circuit pattern is formed is manufactured. On the other hand, in step 203 (wafer manufacturing step), a wafer is manufactured using a material such as silicon.
次に、 ステップ 2 0 4 (ウェハプロセスステップ) において、 ステップ 2 0 1 〜ステップ 2 0 3で用意したマスクとウェハを使用して、 後述するように、 リ ソ グラフィ技術によってウェハ上に実際の回路等を形成する。 次いで、 ステップ 2 0 5 (組立ステップ) において、 ステップ 2 0 4において処理されたウェハを用 いてチップ化する。 このステップ 2 0 5には、 アッセンブリ工程 (ダイシング、 ボンディング)、 パッケージング工程 (チップ封入) 等の工程が含まれる。  Next, in step 204 (wafer process step), using the mask and wafer prepared in steps 201 to 203, as described later, an actual circuit is formed on the wafer by lithography technology. Etc. are formed. Next, in step 205 (assembly step), chips are formed by using the wafer processed in step 204. This step 205 includes processes such as an assembly process (dicing and bonding) and a packaging process (chip encapsulation).
最後に、 ステップ 2 0 6 (検査ステップ) において、 ステップ 2 0 5で作製さ れたデバイスの動作確認テス ト、 耐久性テス ト等の検査を行う。 こうした工程を 経た後にデバイスが完成し、 これが出荷される。  Finally, in step 206 (inspection step), an operation check test, a durability test, and the like of the device manufactured in step 205 are performed. After these steps, the device is completed and shipped.
図 1 8には、 半導体デバイスの場合における、 上記ステップ 2 0 4の詳細なフ 口一例が示されている。 図 1 8において、 ステップ 2 1 1 (酸化ステップ) にお いてはウェハの表面を酸化させる。 ステップ 2 1 2 ( C V Dステップ) において はウェハ表面に絶縁膜を形成する。 ステップ 2 1 3 (電極形成ステップ) におい てはウェハ上に電極を蒸着によって形成する。 ステップ 2 1 4 (イオン打込みス テツプ) においてはウェハにイオンを打ち込む。 以上のステップ 2 1 1〜ステツ プ 2 1 4のそれぞれは、 ウェハプロセスの各段階の前工程を構成しており、 各段 階において必要な処理に応じて選択されて実行される。  FIG. 18 shows a detailed example of the step 204 in the case of a semiconductor device. In FIG. 18, in step 2 11 (oxidation step), the surface of the wafer is oxidized. In step 2 12 (CVD step), an insulating film is formed on the wafer surface. In step 2 13 (electrode formation step), electrodes are formed on the wafer by vapor deposition. In step 2 14 (ion implantation step), ions are implanted into the wafer. Each of the above steps 211 to 214 constitutes a pre-process of each stage of the wafer process, and is selected and executed according to a necessary process in each stage.
ウェハプロセスの各段階において、 前工程が終了すると、 以下のようにして後 工程が実行される。 この後工程では、 まず、 ステップ 2 1 5 (レジス ト処理ステ ップ) において、 ウェハに感光剤を塗布し、 引き続き、 ステップ 2 1 6 (露光ス テツプ) において、 上記で説明した走査型露光装置によってマスクの回路パター ンをウェハに焼付露光する。 次に、 ステップ 2 1 7 (現像ステップ) においては 露光されたウェハを現像し、 引き続き、 ステップ 2 1 8 (エッチングステップ) において、 レジス 卜が残存している部分以外の部分の露出部材をエッチングによ り取り去る。 そして、 ステップ 2 1 9 (レジス ト除去ステップ) において、 エツ チングが済んで不要となったレジス トを取り除く。 At each stage of the wafer process, when the pre-process is completed, the post-process is executed as follows. In the subsequent process, first, in step 215 (resist processing step), a photosensitive agent is applied to the wafer, and then in step 216 (exposure step). In step (2), the circuit pattern of the mask is printed and exposed on the wafer by the scanning exposure apparatus described above. Next, in Step 217 (development step), the exposed wafer is developed, and then in Step 218 (etching step), the exposed members other than the portion where the resist remains are etched. Remove more. Then, in step 2 19 (register removing step), unnecessary resists after etching are removed.
これらの前工程と後工程とを繰り返し行うことによって、 ウェハ上に多重に回 路パターンが形成される。  By repeating these pre-process and post-process, multiple circuit patterns are formed on the wafer.
以上のようにして、 精度良く微細なパターンが形成されたデバイスが、 高い量 産性で製造される。  As described above, a device on which a fine pattern is accurately formed is manufactured with high mass productivity.
上記の実施形態においては、 基板テーブルのウェハ搭載面の形状を矩形状とし たが、 他の形状とすることができる。 例えば、 三角形状とした場合には、 図 2 1 に示されるように、 基板テーブル 4 ' の 3側面に形成された反射面 4 ' a , 4 ' b , 4 ' cのそれぞれに対向して、 2次元位置検出用のレーザ干渉計 1 3 X 1 1 , 1 3 X 1 2 , 1 3 X 2 1 , 1 3 X 2 2, 1 3 Y 1 , 1 3 Y 2 とチルト検出用のレ 一ザ干渉計 1 3 P I , 1 3 P 2, 1 3 Y Pを配置すればよい。  In the above embodiment, the shape of the wafer mounting surface of the substrate table is rectangular, but may be other shapes. For example, in the case of a triangular shape, as shown in FIG. 21, each of the reflecting surfaces 4 ′ a, 4 ′ b, and 4 ′ c formed on the three side surfaces of the substrate table 4 ′, Laser interferometer for 2D position detection 13 X 11, 13 X 12, 13 X 21, 13 X 22, 13 Y 1, 13 Y 2 and laser for tilt detection Interferometers 13 PI, 13 P 2, and 13 YP may be provided.
なお、 レーザ干渉計 1 3 X 1 1 , 1 3 X 1 2及びレーザ干渉計 1 3 X 2 1 , 1 3 X 2 2については、 上記の実施形態のレーザ干渉計 1 3 X 1 , 1 3 X 2 と同様 に構成すればよく、 また、 レーザ干渉計 1 3 XP 1 , 1 3 XP 2については、 上 記の実施形態のレーザ干渉計 1 3 XPと同様に構成すればよい。 この場合、 光路 変更装置は、 上述した光路変更装置 4 0 と同様の構成のものを、 レーザ干渉計 1 3 X 1 1 と 1 3 X 1 2、 レーザ干渉計 1 3 X 2 1 と 1 3 X 2 2、 及びレーザ干渉 計 1 3 Y 1 と 1 3 Y 2についてそれぞれ、 すなわち 3組設ける。  The laser interferometers 13 X 11, 13 X 12 and the laser interferometers 13 X 21, 13 X 22 are the same as the laser interferometers 13 X 1, 13 X 2, and the laser interferometers 13 XP 1 and 13 XP 2 may be configured in the same manner as the laser interferometer 13 XP of the above embodiment. In this case, the optical path changing device has a configuration similar to that of the optical path changing device 40 described above, and the laser interferometers 13 X 11 and 13 X 12 and the laser interferometers 13 X 21 and 13 X 22 and the laser interferometers 13Y1 and 13Y2, respectively, ie, three sets are provided.
かかる場合における、 例えば反射面 4 ' aの形状計測では、 例えば基板テープ ル 4 ' を Y軸方向へ移動しつつ、 レーザ干渉計 1 3 Y l , 1 3 Y 2によって基板 テーブル 4 ' の Z軸回りの回転量を測定するとほぼ同時に、 レーザ干渉計 1 3 X 1 1 , 1 3 X 1 2によって反射面 4 ' aの Z軸回りの局所的な回転量を測定する。 これにより、 上記の実施形態と同様にして、 反射面 4 ' aの形状が計測される。 なお、 図 2 1に示される三角形状の基板ステージ 4 ' の場合には、 3側面全てに 対向してレーザ干渉計を配置せず、 互いに交差する 2面についてレーザ干渉計を 配置することも可能である。 In such a case, for example, in measuring the shape of the reflection surface 4′a, for example, while moving the substrate table 4 ′ in the Y-axis direction, the Z-axis of the substrate table 4 ′ is moved by the laser interferometers 13Yl and 13Y2. At about the same time as measuring the amount of rotation around, the laser interferometers 13 X 11 and 13 X 12 measure the local rotation of the reflection surface 4 ′ a around the Z axis. Thus, the shape of the reflecting surface 4'a is measured in the same manner as in the above embodiment. In the case of the triangular substrate stage 4 ′ shown in FIG. Instead of disposing the laser interferometers facing each other, it is also possible to dispose the laser interferometers on two surfaces that intersect each other.
また、上記の実施形態においては、基板テーブル 4に設けられた反射面 7 X S , 7 Y Sの形状を計測し、 その形状情報を使用して基板テーブル 4の位置制御を行 つたが、レチクル微動ステージ 1 1に設けられた反射面 2 1 X Sの形状を計測し、 その形状情報を使用してレチクル微動ステージ 1 1の位置制御を行うことも可能 である。 かかる場合には、 図 2 2に示されるように、 上記の実施形態である図 1 1 に示されたレーザ干渉計 1 4 X 1 , 1 4 X 2 , 1 4 M 1 , 1 4 M 2に加えて、 図 2 2に示されるように、 チルト検出用のレーザ干渉計 1 4 X Pを新たに配置す る。 この場合、 光路変更装置は、 上述した光路変更装置 4 0 と同様の構成のもの を、 レーザ干渉計 1 4 X 1 と 1 4 X 2について 1組設ける。 そして、 基板テープ ル 4の場合と同様にして、 反射面 2 1 X Sの形状を計測し、 その形状情報を使用 してレチクル微動ステージ 1 1の位置制御を行えばよい。  In the above embodiment, the shape of the reflecting surfaces 7 XS and 7 YS provided on the substrate table 4 was measured, and the position of the substrate table 4 was controlled using the shape information. It is also possible to measure the shape of the reflecting surface 21 XS provided on 11 and control the position of the reticle fine movement stage 11 using the shape information. In such a case, as shown in FIG. 22, the laser interferometers 14 X 1, 14 X 2, 14 M 1, and 14 M 2 shown in FIG. In addition, as shown in FIG. 22, a laser interferometer 14 XP for tilt detection is newly arranged. In this case, as the optical path changing device, one set having the same configuration as the optical path changing device 40 described above is provided for the laser interferometers 14X1 and 14X2. Then, similarly to the case of the substrate table 4, the shape of the reflecting surface 21 XS may be measured, and the position of the reticle fine movement stage 11 may be controlled using the shape information.
また、上記の実施形態においては、チルト検出用のレーザ干渉計の検出結果は、 専らアッペ誤差の補正のために使用されたが、 ステージの X軸回りの回転や Y軸 回りの回転の補正に使用することも可能である。  Further, in the above embodiment, the detection result of the laser interferometer for tilt detection is used exclusively for correcting the Abpe error, but is used for correcting the rotation of the stage around the X axis or the Y axis. It is also possible to use.
また、 レチクルステージ及びウェハステージの構成は、 上記の実施形態に限ら れるものではなく、 いかなる構成でもよい。 すなわち、 レチクルステージは粗微 動構造でなく ともよいし、 また、 ウェハステージは上記実施形態のようにステ一 ジを積み上げた構成や平面モータ等でなく ともよい。  Further, the configurations of the reticle stage and the wafer stage are not limited to the above-described embodiment, and may have any configuration. That is, the reticle stage does not have to have a coarse / fine movement structure, and the wafer stage does not have to have a stacked stage structure or a flat motor as in the above embodiment.
また、 上記の実施形態では、 レーザ干渉計をゼーマン効果を利用したものとし たが、 他の構成の干渉計であってもよい。 また、 ダブルパス方式ではなく、 シン ダルパス方式であってもよい。 さらに、 前述のレチクル干渉計及びウェハ干渉計 は共に上記実施形態の構成に限定されるものでなく、 前述した形状計測に必要な 複数の測長軸 (干渉計) を備えていれば、 その構成は任意で構わない。 例えば、 投影光学系 P L又はその架台と基板テーブル 4との Z方向の相対位置関係(間隔) を計測する干渉計を更に備えていてもよい。  In the above embodiment, the laser interferometer uses the Zeeman effect, but may be an interferometer having another configuration. Instead of the double-pass method, a simple-pass method may be used. Further, the above-mentioned reticle interferometer and wafer interferometer are not limited to the configuration of the above-described embodiment, but may be configured as long as they have a plurality of length measuring axes (interferometers) necessary for the shape measurement described above. Is optional. For example, an interferometer for measuring the relative positional relationship (interval) between the projection optical system PL or its mount and the substrate table 4 in the Z direction may be further provided.
さらに、 上記実施形態の露光装置は、 例えばそれぞれ独立に可動な 2つのゥェ ハステージを備えるダブルウェハステージ方式を採用してもよく、 この場合には 2つのウェハステージでそれぞれ各反射面の形状計測が行われることになる。 こ のとき、 投影光学系 P Lを介してレチクル Rのパターンが転写される露光位置に 各ウェハステージを配置して、 上記実施形態と全く同様の動作で各反射面の形状 を計測してもよいし、 その露光位置におけるウェハの露光動作と並行して、 ァラ ィメン トセンサ 2 6によるウェハのァライメン トマークやウェハステージの基準 マークの位置計測が行われる計測位置で各ウェハステ一ジの反射面の形状を計測 してもよい。 また、 各ウェハステージにっき反射面の形状情報を露光位置と計測 位置とでそれぞれ計測しておき、 その 2つの位置で異なる形状情報を用いるよう にしてもよい。 なお、計測用干渉計システムは露光用干渉計システムと同一構成、 あるいは前述の形状計測に必要な複数の測長軸 (干渉計) を備えたものであるこ とが好ましい。 なお、 ダブルウェハステージ方式の露光装置は、 例えば特開平 1 0— 2 1 4 7 8 3号公報及び対応する米国特許第 6 , 3 4 1 , 0 0 7号、 あるい は国際公開 W O 9 8 / 4 0 7 9 1号及び対応する米国特許第 6 , 2 6 2 , 7 9 6 号などに開示されている。 Further, the exposure apparatus of the above-described embodiment may employ, for example, a double wafer stage system including two independently movable wafer stages. The shape measurement of each reflection surface is performed on each of the two wafer stages. At this time, each wafer stage may be arranged at the exposure position where the pattern of the reticle R is transferred via the projection optical system PL, and the shape of each reflection surface may be measured by the same operation as in the above embodiment. In parallel with the exposure operation of the wafer at the exposure position, the shape of the reflection surface of each wafer stage is measured at the measurement position where the alignment sensor 26 measures the alignment mark of the wafer and the reference mark of the wafer stage. May be measured. Alternatively, the shape information of the reflection surface on each wafer stage may be measured at the exposure position and the measurement position, and different shape information may be used at the two positions. It is preferable that the measurement interferometer system has the same configuration as the exposure interferometer system or has a plurality of length measurement axes (interferometers) necessary for the shape measurement described above. The double wafer stage type exposure apparatus is disclosed, for example, in Japanese Patent Application Laid-Open No. 10-214,833 and corresponding US Pat. No. 6,341,077, or in International Publication WO988. No. 4,079,91 and corresponding U.S. Patent Nos. 6,262,796.
上記の実施形態では、 ステップ . アンド · スキャン方式の走査型露光装置につ いて説明したが、 ステージ (ひいてはステージに搭載された試料) の位置制御に あたって、 ステージに設けられた反射面の形状を計測し、 その形状情報を用いて 位置制御を行う各種の露光装置に適用が可能である。露光用照明光(露光ビーム) として、 前述の紫外光、遠紫外光、 又は真空紫外光を用いる露光装置だけでなく、 例えば波長 1 0 n m程度の軟 X線 (E U V光) を用いる露光装置、 波長 1 n m程 度の X線を用いる露光装置、 E B (電子ビーム) やイオンビームなどの荷電粒子 線を用いる露光装置などにも適用できる。 また、 例えば、 紫外線を光源にする縮 小投影露光装置、 波長 1 0 n m前後の軟 X線を光源にする縮小投影露光装置、 波 長 1 n m前後を光源にする X線露光装置、 E B (電子ビーム) やイオンビームに よる露光装置などあらゆるウェハ露光装置、液晶露光装置等に適応できる。 また、 ステップ ' アンド ' リ ピー ト機、 ステップ ' アンド ' スキヤン機、 ステップ ' ァ ンド · スティ ツチング機を問わず、 適用が可能である。  In the above embodiment, the scanning exposure apparatus of the step and scan type has been described. However, in controlling the position of the stage (and, consequently, the sample mounted on the stage), the shape of the reflecting surface provided on the stage is controlled. It can be applied to various types of exposure equipment that measures position and performs position control using the shape information. As the exposure light (exposure beam), not only the above-described exposure apparatus using ultraviolet light, far ultraviolet light, or vacuum ultraviolet light, but also, for example, an exposure apparatus using soft X-ray (EUV light) having a wavelength of about 10 nm, It can also be applied to exposure equipment that uses X-rays with a wavelength of about 1 nm, and exposure equipment that uses charged particle beams such as EB (electron beam) and ion beams. Also, for example, a compact projection exposure apparatus using ultraviolet light as a light source, a reduced projection exposure apparatus using soft X-rays having a wavelength of about 10 nm as a light source, an X-ray exposure apparatus using a light source with a wavelength of about 1 nm, EB (Electronics) It can be applied to all kinds of wafer exposure equipment such as an exposure equipment using a beam or an ion beam, and a liquid crystal exposure equipment. In addition, the present invention can be applied to step and 'repeat machines, step and' scan 'machines, and step and stitching machines.
さらに、 例えば国際公開 (W〇) 9 9 / 4 9 5 0 4号に開示される液浸型露光 装置、 あるいはミラープロジェクシヨン . ァライナーなどにも本発明を適用する ことができる。 なお、 上記実施形態の投影光学系は屈折系に限られるものでなく 反射屈折系または反射系でもよいし、 縮小系に限られるものでなく等倍系または 拡大系でもよい。 また、 投影光学系はレチクルパターンの倒立像を投影するもの としたが、 その投影像は正立像でもよい。 また、 投影光学系を持たない、 例えば プロキシミティ方式の露光装置などにも本発明を適用することができる。 Further, the present invention is applied to, for example, an immersion type exposure apparatus disclosed in International Publication No. WO 99/49504, a mirror projection aligner, or the like. be able to. The projection optical system of the above embodiment is not limited to a refraction system, but may be a catadioptric system or a reflection system. The projection optical system is not limited to a reduction system and may be an equal magnification system or an enlargement system. Also, the projection optical system projects an inverted image of the reticle pattern, but the projected image may be an erect image. Further, the present invention can be applied to, for example, a proximity type exposure apparatus having no projection optical system.
また、 上記実施形態では半導体素子の製造に用いられる露光装置について説明 したが、 半導体素子以外のマイクロデバイス (電子デバイス)、 例えば液晶表示 素子、 プラズマディスプレイ、 及ぴ有機 E Lなどの表示装置、 撮像素子 (C C D など)、 薄膜磁気ヘッ ド、 マイク ロマシン、 D N Aチップなどの製造に用いられ る露光装置、 さらには露光装置で使用するマスク (レチクル) の製造に用いられ る露光装置にも本発明を適用することができる。  In the above embodiments, the exposure apparatus used for manufacturing a semiconductor element has been described. However, a micro device (electronic device) other than the semiconductor element, for example, a display device such as a liquid crystal display element, a plasma display, and an organic EL, an image pickup element The present invention is also applied to an exposure apparatus used for manufacturing a thin film magnetic head, a micromachine, a DNA chip, and the like, and further to an exposure apparatus used for manufacturing a mask (reticle) used in the exposure apparatus. can do.
また、 露光装置のステージ装置に限定されることもなく、 ステージの位置制御 にあたって、 ステージに設けられた反射面の形状を計測し、 その形状情報を用い て位置制御を行う各種の装置のステージ装置にも適用することができる。例えば、 上記の実施形態における前記形状計測装置と前記ウェハステージ装置とに対応す る構成要素によってステージ装置を構成することにより、 基板テーブルに相当す る試料テーブルの位置制御を、 上記の実施形態における基板テーブルの位置制御 と同様に行うことができる。  In addition, it is not limited to the stage apparatus of the exposure apparatus, and in controlling the position of the stage, it measures the shape of the reflecting surface provided on the stage and controls the position using the shape information. Can also be applied. For example, by configuring a stage device with components corresponding to the shape measuring device and the wafer stage device in the above embodiment, position control of a sample table corresponding to a substrate table can be performed in the above embodiment. This can be performed in the same manner as the position control of the substrate table.
なお、 本発明は、 上述した実施形態に限定されるものではなく、 本発明の範囲 内で種々に改変することができることは言うまでもない。 また、 本国際出願で指 定した指定国又は選択した選択国の国内法令が許す限りにおいて、 前述した全て の公報や米国特許の開示を援用して本明細書の記載の一部とする。  It is needless to say that the present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the present invention. In addition, to the extent permitted by the national laws of the designated country or selected elected country specified in this international application, the disclosures of all the aforementioned gazettes and US patents shall be incorporated herein by reference.
本発明によると、 ステージ等の移動体に設けられた反射面の形状を簡単、 迅速 に計測することができるようになるので、 計測に伴う作業工数を減少させること ができるとともに、 高精度で計測できるようになるので、 当該ステージ等の位置 の制御を精度良く行うことができるようになり、 ひいては高品質で高精度なデバ イス等を製造することができるようになるという効果がある。  According to the present invention, the shape of the reflecting surface provided on a moving body such as a stage can be measured easily and quickly, so that the number of work steps involved in the measurement can be reduced and the measurement can be performed with high accuracy. As a result, the position of the stage or the like can be controlled with high accuracy, and as a result, a high-quality and high-precision device can be manufactured.
本開示は、 2 0 0 2年 1 2月 3 日に提出された日本国特許出願第 2 0 0 2— 3 5 1 6 5 0号に含まれた主題に関連し、 その開示の全てはここに参照事項として 明白に組み込まれる。 This disclosure relates to the subject matter included in Japanese Patent Application No. 200-350 3650 filed on Feb. 3, 2002, the entire disclosure of which is hereby incorporated by reference. As a reference Explicitly incorporated.

Claims

請 求 の 範 囲 The scope of the claims
1 . 第 1軸と直交する基準平面に沿って移動する移動体に設けられ、 前記第 1軸方向と直交する第 2軸方向に沿って延びる反射面の形状を計測する形 状計測方法であって、 1. A shape measuring method provided on a moving body that moves along a reference plane orthogonal to a first axis and that measures a shape of a reflecting surface extending along a second axis direction orthogonal to the first axis direction. hand,
前記移動体を前記第 2軸方向に沿って移動しつつ、 前記第 2軸方向に関する前 記反射面の 1次元形状を、 前記第 1軸方向に離間した 2つの位置のそれぞれにつ いて計測し、  While moving the moving body along the second axis direction, the one-dimensional shape of the reflection surface in the second axis direction is measured at each of the two positions separated in the first axis direction. ,
前記 2つの位置の一方についての 1次元形状データと他方についての 1次元形 状データとの差分に相当する第 1データを求め、  First data corresponding to the difference between the one-dimensional shape data for one of the two positions and the one-dimensional shape data for the other is obtained;
前記反射面の前記第 1軸方向に離間した 2つの位置に同時に照射した計測ビー ムに基づく計測結果が一定となるように前記移動体を姿勢調整しつつ該移動体を 前記第 2軸方向に移動するとともに、 この移動中に該移動体の姿勢調整に伴う前 記第 1軸方向の変位を複数箇所で計測して、 前記移動体の前記第 2軸方向に関す る該第 2軸を中心とする回転量の変化に相当する第 2データを求め、  The moving body is moved in the second axis direction while the posture of the moving body is adjusted so that the measurement result based on the measurement beam simultaneously irradiated on the two positions of the reflecting surface separated in the first axis direction becomes constant. While moving, the displacement in the first axis direction accompanying the posture adjustment of the moving body during this movement is measured at a plurality of locations, and the movement of the moving body is centered on the second axis in the second axis direction. Find the second data corresponding to the change in the rotation amount
前記第 1データと前記第 2データとの差分に相当する第 3データを直線近似し て得られた第 4データに基づいて前記 1次元形状データを補正するようにした形 状計測方法。  A shape measurement method wherein the one-dimensional shape data is corrected based on fourth data obtained by linearly approximating third data corresponding to a difference between the first data and the second data.
2 . 第 1軸と直交する基準平面に沿って移動する移動体に設けられ、 前記第 1軸方向と直交する第 2軸方向に沿って延びる反射面の形状を計測する形 状計測装置であって、  2. A shape measuring device provided on a moving body that moves along a reference plane orthogonal to the first axis and that measures a shape of a reflecting surface extending along a second axis direction orthogonal to the first axis direction. hand,
前記第 2軸方向に関する前記反射面の 1次元形状を、 前記第 1軸方向に離間し た 2つの位置のそれぞれについて計測する 1次元形状計測装置と、  A one-dimensional shape measurement device that measures a one-dimensional shape of the reflection surface in the second axis direction at each of two positions separated in the first axis direction;
前記移動体の前記基準平面に対する姿勢を調整する姿勢調整装置と、.  An attitude adjustment device that adjusts the attitude of the moving body with respect to the reference plane,
前記姿勢調整装置による前記移動体の姿勢調整に伴う、 該移動体の前記第 1軸 方向の変位を互いに異なる複数の位置で計測する変位計測装置と、  A displacement measuring device that measures displacement of the moving body in the first axis direction at a plurality of different positions, with the posture of the moving body being adjusted by the posture adjusting device,
前記反射面の前記第 1軸方向に離間した 2つの位置に計測ビームを同時に照射 して該反射面の前記第 2軸を中心とする回転量を計測するチルト計測装置と、 前記 1次元形状計測装置による前記 2つの位置の一方についての 1次元形状デ ータと他方についての 1次元形状データとの差分に相当する第 1データを求め、 前記チルト計測装置による計測結果が一定となるように前記姿勢調整装置を制 御しつつ、 該移動体を前記第 2軸方向に移動し、 この移動中の前記変位計測装置 による計測結果に基づき前記移動体の前記第 2軸方向に関する該第 2軸を中心と する回転量の変化に相当する第 2データを求め、 A tilt measuring device that simultaneously irradiates a measurement beam to two positions of the reflection surface separated in the first axis direction and measures a rotation amount of the reflection surface about the second axis; and the one-dimensional shape measurement. One-dimensional shape data of one of the two positions by the device The first data corresponding to the difference between the data and the one-dimensional shape data of the other is obtained, and while controlling the attitude adjustment device so that the measurement result by the tilt measurement device becomes constant, Moves in the second axis direction, and generates second data corresponding to a change in the amount of rotation of the moving body about the second axis in the second axis direction based on the measurement result by the displacement measuring device during the movement. Asked,
前記第 1データと前記第 2データとの差分に相当する第 3データを直線近似し て得られた第 4データに基づいて、 前記 1次元形状計測装置による計測結果とし ての前記 1次元形状データを補正する制御装置とを備える形状計測装置。  Based on the fourth data obtained by linearly approximating the third data corresponding to the difference between the first data and the second data, the one-dimensional shape data as a measurement result by the one-dimensional shape measurement device is obtained. And a control device that corrects the shape.
3 . 第 1軸と直交する第 2軸方向に沿って延びる反射面を有し、 前記 第 1軸と直交する基準平面に沿って移動する移動体の該基準平面に対する姿勢 を、 前記反射面の前記第 1軸方向に離間した 2つの位置に同時に照射した計測ビ ームにより計測するチルト計測方法であって、  3. It has a reflecting surface extending along a second axis direction orthogonal to the first axis, and the posture of the moving body moving along the reference plane orthogonal to the first axis with respect to the reference plane is expressed by A tilt measurement method for measuring by a measurement beam simultaneously irradiating two positions separated in the first axis direction,
前記反射面の前記第 1軸方向に離間した 2つの位置のそれぞれについて計測さ れた前記第 2軸方向に関する前記反射面の 1次元形状データの一方と他方との差 分に相当する第 1データを求め、  First data corresponding to the difference between one and the other of the one-dimensional shape data of the reflection surface in the second axis direction measured at each of the two positions of the reflection surface separated in the first axis direction. ,
前記計測ビームに基づく計測結果が一定となるように前記移動体を姿勢調整し つつ、 かつ該移動体の姿勢調整に伴う前記第 1軸方向の変位を複数箇所で計測し つつ、 該移動体を前記第 2軸方向に移動して、 前記移動体の前記第 2軸方向に関 する該第 2軸を中心とする回転量の変化に相当する第 2データを求め、  While adjusting the posture of the moving body so that the measurement result based on the measurement beam is constant, and measuring the displacement in the first axial direction accompanying the posture adjustment of the moving body at a plurality of positions, Moving in the second axis direction to obtain second data corresponding to a change in the amount of rotation of the moving body about the second axis in the second axis direction;
前記第 1データと前記第 2データとの差分に相当する第 3データを直線近似し て得られた第 4データに前記第 1データを加算して求めた第 5データに基づき、 前記計測ビームによる計測結果を補正するようにしたチルト計測方法。  Based on fifth data obtained by adding the first data to fourth data obtained by linearly approximating third data corresponding to the difference between the first data and the second data, A tilt measurement method that corrects the measurement results.
4 . 第 1軸と直交する第 2軸方向に沿って延びる反射面を有し、 前記 第 1軸と直交する基準平面に沿って移動する移動体を有するステージ装置であつ て、  4. A stage device having a reflecting surface extending along a second axis direction orthogonal to the first axis, and having a moving body moving along a reference plane orthogonal to the first axis,
前記反射面の前記第 1軸方向に離間した 2つの位置に計測ビームを同時に照射 して該反射面の前記第 2軸を中心とする回転量を計測するチルト計測装置と、 前記第 2軸方向に関する前記反射面の 1次元形状を、 前記第 1軸方向に離間し た 2つの位置のそれぞれについて計測する 1次元形状計測装置と、 前記移動体の前記基準平面に対する姿勢を調整するため、 該移動体を互いに異 なる複数の位置で前記第 1軸方向にそれぞれ変位させる姿勢調整装置と、 前記姿勢調整装置による前記移動体の姿勢調整に伴う、 該移動体の前記第 1軸 方向の変位を互いに異なる複数の位置で計測する変位計測装置と、 A tilt measuring device that simultaneously irradiates a measurement beam to two positions of the reflection surface separated in the first axis direction and measures a rotation amount of the reflection surface around the second axis; A one-dimensional shape measuring device that measures a one-dimensional shape of the reflecting surface with respect to each of two positions separated in the first axis direction; A posture adjusting device that displaces the moving body in the first axial direction at a plurality of different positions from each other to adjust a posture of the moving body with respect to the reference plane; and a posture adjustment of the moving body by the posture adjusting device. A displacement measurement device that measures displacement of the moving body in the first axis direction at a plurality of different positions.
前記 1次元形状計測装置による前記 2つの位置の一方についての 1次元形状デ ータと他方についての 1次元形状データとの差分に相当する第 1データを求め、 前記チルト計測装置による計測結果が一定となるように前記姿勢調整装置を制 御しつつ、 該移動体を前記第 2軸方向に移動し、 このときの前記変位計測装置に よる計測結果に基づき前記移動体の前記第 2軸方向に関する該第 2軸を中心とす る回転量の変化に相当する第 2データを求め、  First data corresponding to the difference between the one-dimensional shape data for one of the two positions and the one-dimensional shape data for the other is obtained by the one-dimensional shape measurement device, and the measurement result by the tilt measurement device is constant. The movable body is moved in the second axis direction while controlling the posture adjusting device so that the position of the movable body is related to the second axis direction based on the measurement result by the displacement measuring device at this time. Second data corresponding to a change in the amount of rotation about the second axis is obtained,
前記第 1データと前記第 2データとの差分に相当する第 3データを直線近似し て得られた第 4データに前記第 1データを加算して求めた第 5データに基づき、 前記チルト計測装置による計測結果を補正する制御装置とを備えるステージ装  The tilt measuring device based on fifth data obtained by adding the first data to fourth data obtained by linearly approximating third data corresponding to a difference between the first data and the second data; Device with a control device for correcting the measurement result by
5 . 第 1面の像を第 2面に転写する露光装置であって、 5. An exposure apparatus for transferring an image on a first surface onto a second surface,
前記第 1面にマスクを配置するマスクステージ及び前記第 2面に基板を配置す る基板ステージの少なく とも一方を前記移動体として移動する請求項 4に記載の ステージ装置を備える露光装置。  5. The exposure apparatus according to claim 4, wherein at least one of a mask stage for disposing a mask on the first surface and a substrate stage for disposing a substrate on the second surface moves as the movable body.
6 . 第 1軸と直交する基準平面に沿って可動な移動体に保持される感 光物体上にマスクのパターンを転写する露光方法であって、  6. An exposure method for transferring a pattern of a mask onto a light-sensitive object held by a movable body along a reference plane orthogonal to the first axis,
前記第 1軸方向と直交する第 2軸方向に延びる前記移動体の反射面で前記第 1 軸方向に離間した 2つの位置に照射される計測ビームによる計測結果が一定とな るように前記移動体の姿勢を調整しつつ前記移動体を前記第 2軸方向に移動し て、 前記移動体の前記第 2軸回りの回転量の変化に関する回転データを計測し、 前記第 1軸方向に離間した複数の位置の各々における前記反射面の前記第 2軸 方向に関する形状データと、 前記計測された回転データとを用いて、 前記移動体 の移動を制御するようにした露光方法。  The movement is performed so that the measurement result by the measurement beam irradiated to the two positions separated in the first axis direction on the reflecting surface of the moving body extending in the second axis direction orthogonal to the first axis direction is constant. Moving the moving body in the second axis direction while adjusting the posture of the body, measuring rotation data on a change in the amount of rotation of the moving body about the second axis, and moving the moving body in the first axis direction An exposure method wherein the movement of the movable body is controlled using shape data of the reflection surface in the second axis direction at each of a plurality of positions and the measured rotation data.
7 . 前記移動中に前記姿勢調整による前記移動体の前記第 1軸方向の 変位量に関する情報を検出し、 前記検出した情報に基づいて前記回転データを求 めるようにした請求項 6に記載の露光方法。 7. During the movement, information on a displacement amount of the moving body in the first axis direction due to the posture adjustment is detected, and the rotation data is obtained based on the detected information. 7. The exposure method according to claim 6, wherein the exposure method comprises:
8 . 前記移動体を前記第 2軸方向に移動して得られる、 前記反射面の 前記第 2軸方向に離間した複数の位置にそれぞれ計測ビームを照射する干渉計シ ステムの計測結果に基づいて前記形状データを求めるようにした請求項 6又は 7 に記載の露光方法。  8. Based on measurement results of an interferometer system that irradiates a measurement beam to a plurality of positions on the reflection surface that are separated in the second axis direction and that is obtained by moving the moving body in the second axis direction. 8. The exposure method according to claim 6, wherein the shape data is obtained.
9 . 前記反射面で前記第 2軸方向に離間した複数の位置の少なく とも 1つに対して前記第 1軸方向に離間した位置に前記干渉計システムからの計測ビ ームが照射され、 前記回転データの計測時、 前記干渉計システムを用いて前記移 動体の姿勢を調整するようにした請求項 8に記載の露光方法。  9. At least one of the plurality of positions spaced apart in the second axis direction on the reflection surface is irradiated with a measurement beam from the interferometer system at a position spaced apart in the first axis direction. 9. The exposure method according to claim 8, wherein, when measuring the rotation data, the attitude of the moving body is adjusted using the interferometer system.
1 0 . 請求項 6〜 9のいずれか一項に記載の露光方法を用いてマスク のパターンを感光物体上に転写する露光工程を含むデバイス製造方法。  10. A device manufacturing method including an exposure step of transferring a mask pattern onto a photosensitive object using the exposure method according to any one of claims 6 to 9.
1 1 . マスクのパターンを感光物体上に転写する露光装置であって、 前記感光物体を保持して第 1軸と直交する基準平面に沿って可動で、 かつ該基 準平面に対する姿勢が調整可能であると ともに、 前記第 1軸と直交する第 2軸と 平行な反射面が形成される移動体を有するステージシステムと、  1 1. An exposure apparatus for transferring a mask pattern onto a photosensitive object, wherein the exposure apparatus holds the photosensitive object, is movable along a reference plane orthogonal to a first axis, and has an adjustable posture with respect to the reference plane. And a stage system having a moving body on which a reflection surface parallel to a second axis orthogonal to the first axis is formed;
前記反射面の前記第 1軸方向に離間した 2つの位置に計測ビームを照射して、 前記移動体の前記第 2軸回りの回転情報を少なく とも計測可能な干渉計システム と、  An interferometer system that irradiates a measurement beam to two positions of the reflection surface that are separated in the first axis direction, and at least can measure rotation information about the second axis of the moving body,
前記姿勢調整による前記移動体の前記第 1軸方向の変位情報を計測する変位計 測装置と、  A displacement measuring device that measures displacement information of the moving body in the first axis direction due to the posture adjustment;
前記移動体を、 前記干渉計システムの前記回転情報に関する計測結果が一定と なるようにその姿勢を調整しつつ前記第 2軸方向に移動して得られる前記変位計 測装置の計測結果に基づいて、 前記移動体の前記第 2軸回りの回転量の変化に関 する回転データを求めると ともに、 前記第 1軸方向に離間した複数の位置の各々 における前記反射面の前記第 2軸方向に関する形状データと前記回転データとを 用いて、 前記移動体の移動を制御する制御装置とを備える露光装置。  Based on the measurement result of the displacement measurement device obtained by moving the moving body in the second axis direction while adjusting its posture so that the measurement result related to the rotation information of the interferometer system becomes constant. And obtaining rotation data relating to a change in the amount of rotation of the moving body about the second axis, and the shape of the reflecting surface in the second axis direction at each of the plurality of positions separated in the first axis direction. An exposure apparatus, comprising: a control device that controls movement of the moving body using data and the rotation data.
1 2 . 前記干渉計システムは、 前記反射面で前記第 1軸方向に離間し た 2つの位置の少なく とも一方に対して前記第 2軸方向に離間した位置に計測ビ ームを照射して、 前記移動体の前記第 1軸回りの回転情報を計測し、 前記制御装 置は、 前記移動体を前記第 2軸方向に移動して得られる前記干渉計システムの前 記第 1軸回りの回転情報に関する計測結果に基づいて前記形状データを求めるよ うにした請求項 1 1に記載の露光装置。 12. The interferometer system irradiates a measurement beam to at least one of the two positions separated in the first axis direction on the reflection surface at a position separated in the second axis direction. Measuring rotation information about the first axis of the moving body, and 11. The apparatus according to claim 11, wherein the shape data is obtained based on a measurement result regarding rotation information about the first axis of the interferometer system obtained by moving the moving body in the second axis direction. 12. Exposure apparatus according to 1.
1 3 . 前記ステージシステムは、 前記移動体の姿勢を調整する複数の ァクチユエータを含み、 前記変位計測装置は、 前記変位情報として前記複数のァ クチユエータの駆動量に関する情報を計測するようにした請求項 1 1又は 1 2に 記載の露光装置。  13. The stage system includes a plurality of actuators for adjusting a posture of the moving body, and the displacement measuring device measures information on drive amounts of the plurality of actuators as the displacement information. The exposure apparatus according to 11 or 12.
PCT/JP2003/015491 2002-12-03 2003-12-03 Shape measurement method, shape measurement device, tilt measurement method, stage device, exposure device, exposure method, and device manufacturing method WO2004051184A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003289146A AU2003289146A1 (en) 2002-12-03 2003-12-03 Shape measurement method, shape measurement device, tilt measurement method, stage device, exposure device, exposure method, and device manufacturing method
JP2004556903A JPWO2004051184A1 (en) 2002-12-03 2003-12-03 Shape measuring method, shape measuring apparatus, tilt measuring method, stage apparatus, exposure apparatus, exposure method, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002351650 2002-12-03
JP2002-351650 2002-12-03

Publications (1)

Publication Number Publication Date
WO2004051184A1 true WO2004051184A1 (en) 2004-06-17

Family

ID=32463162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015491 WO2004051184A1 (en) 2002-12-03 2003-12-03 Shape measurement method, shape measurement device, tilt measurement method, stage device, exposure device, exposure method, and device manufacturing method

Country Status (3)

Country Link
JP (1) JPWO2004051184A1 (en)
AU (1) AU2003289146A1 (en)
WO (1) WO2004051184A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003056A (en) * 2006-06-26 2008-01-10 Yokogawa Electric Corp Xy-stage
JP2011119303A (en) * 2009-11-30 2011-06-16 Nikon Corp Interferometer system, stage device and exposure device
JP2012138621A (en) * 2006-08-31 2012-07-19 Nikon Corp Mobile entity drive method and mobile entity drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382013A (en) * 1989-08-24 1991-04-08 Canon Inc Control method of positioning of stage
JPH11186129A (en) * 1997-12-19 1999-07-09 Nikon Corp Scanning exposure method and device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382013A (en) * 1989-08-24 1991-04-08 Canon Inc Control method of positioning of stage
JPH11186129A (en) * 1997-12-19 1999-07-09 Nikon Corp Scanning exposure method and device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003056A (en) * 2006-06-26 2008-01-10 Yokogawa Electric Corp Xy-stage
JP2012138621A (en) * 2006-08-31 2012-07-19 Nikon Corp Mobile entity drive method and mobile entity drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
JP2012147026A (en) * 2006-08-31 2012-08-02 Nikon Corp Movable body driving method and movable body driving system, method and apparatus of forming pattern, exposure method and exposure apparatus, and device manufacturing method
JP2011119303A (en) * 2009-11-30 2011-06-16 Nikon Corp Interferometer system, stage device and exposure device

Also Published As

Publication number Publication date
AU2003289146A1 (en) 2004-06-23
JPWO2004051184A1 (en) 2006-04-06

Similar Documents

Publication Publication Date Title
US6486955B1 (en) Shape measuring method and shape measuring device, position control method, stage device, exposure apparatus and method for producing exposure apparatus, and device and method for manufacturing device
US10133195B2 (en) Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
JP4029183B2 (en) Projection exposure apparatus and projection exposure method
US6122036A (en) Projection exposure apparatus and method
JP2004072076A (en) Exposure device, stage unit and method for manufacturing device
WO1999016113A1 (en) Stage device, a scanning aligner and a scanning exposure method, and a device manufactured thereby
WO1999031462A1 (en) Stage device and exposure apparatus
WO2007123189A1 (en) Exposure apparatus, exposure method, and device production method
US6483571B1 (en) Exposure apparatus and method for transferring a pattern from a plurality of masks onto at least one substrate
JP6740370B2 (en) Lithographic apparatus
JP2004014876A (en) Adjustment method, method for measuring spatial image, method for measuring image surface, and exposure device
JPH10223528A (en) Projection aligner and aligning method
WO1999066543A1 (en) Position sensing method, position sensor, exposure method, exposure apparatus, and production process thereof, and device and device manufacturing method
JPWO2004012245A1 (en) Position measurement method, position control method, exposure method and exposure apparatus, and device manufacturing method
JP2006226719A (en) Surface shape measuring method, attitude measuring method, and exposure method
JP2003156322A (en) Method and apparatus for position measurement, positioning method, aligner as well as method of manufacturing microdevice
JP2004241666A (en) Measuring method and exposure method
WO2004051184A1 (en) Shape measurement method, shape measurement device, tilt measurement method, stage device, exposure device, exposure method, and device manufacturing method
JPH09246168A (en) Method and apparatus for scanning exposure and manufacture of device by use of this apparatus
JP2004138554A (en) Measuring device and exposure device
JP2006228890A (en) Alignment method and exposure device
JP2005005329A (en) Stage apparatus, aligner, and method for manufacturing device
JPWO2005001913A1 (en) Stage control apparatus and method, and exposure apparatus and method
JP2009258391A (en) Stage device, exposure method and device, and device manufacturing method
JP2006032807A (en) Exposure device and device manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004556903

Country of ref document: JP

122 Ep: pct application non-entry in european phase