WO2004048282A1 - Biological treatment method and biological treatment device - Google Patents

Biological treatment method and biological treatment device Download PDF

Info

Publication number
WO2004048282A1
WO2004048282A1 PCT/JP2003/015156 JP0315156W WO2004048282A1 WO 2004048282 A1 WO2004048282 A1 WO 2004048282A1 JP 0315156 W JP0315156 W JP 0315156W WO 2004048282 A1 WO2004048282 A1 WO 2004048282A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological treatment
dimensional network
network structure
sewage
air
Prior art date
Application number
PCT/JP2003/015156
Other languages
French (fr)
Japanese (ja)
Inventor
Yuichi Fuchu
Hiroshi Sakuma
Noriko Ikeda
Hitomi Suzuki
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002343400A external-priority patent/JP2006130354A/en
Priority claimed from JP2003280910A external-priority patent/JP2006095344A/en
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to AU2003284461A priority Critical patent/AU2003284461A1/en
Publication of WO2004048282A1 publication Critical patent/WO2004048282A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • C02F3/082Rotating biological contactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/103Textile-type packing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1278Provisions for mixing or aeration of the mixed liquor
    • C02F3/1284Mixing devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a biological treatment method and a biological treatment device for treating sewage, and in particular, to transfer sewage such as sewage, organic wastewater, inorganic wastewater containing nitrogen, highly polluted river water, and lake water. Use biofilm floor! / The present invention relates to a biological treatment method and a biological treatment device for treating. Background art
  • a method of biologically treating organic wastewater As a method of biologically treating organic wastewater, a method called a rotating disk method is known. With the rotating disk method, multiple disks are rotated while the lower half is immersed in wastewater to form a biofilm on the surface of the disk, and the organisms in the wastewater are decomposed in the presence of oxygen Things. This method enables simultaneous agitation of wastewater as a liquid to be treated and biofilm treatment, and is a technology that has been widely used in Japan since about 30 years ago.
  • the activated sludge method is the activated sludge method.
  • the reaction tank used for this activated sludge method is also called an aeration tank.
  • biological treatment is generally performed by diffusing air into the sewage to agitate and supply oxygen to the sewage to promote metabolism of the activated sludge.
  • the conventional activated sludge method is a method called a standard method, which mainly removes BOD (Biochemical Oxygen Demand) and SS (Suspended solid).
  • BOD Biochemical Oxygen Demand
  • SS Smallpended solid.
  • advanced treatment has been used to remove nitrogen and phosphorus in addition to BOD and SS.
  • the biological reaction time is generally 6 to 8 hours, but in the case of the advanced treatment method, the biological reaction time is about twice as long as that of the standard method. In this case, it is common to add a reaction tank to shorten the processing time, but if there is no site area, a microorganism-adhered carrier may be charged into the reaction tank.
  • the biofilm is too thick on the disk, causing torque overrun.
  • the space between the discs is buried with microorganisms, and proper agitation cannot be achieved.
  • the depth of the reactor cannot be fully utilized, which is not reasonable.
  • the activated sludge method poses a problem especially when the function is upgraded from the standard method to the advanced treatment method. Adding more reactors not only requires a lot of land area, but also has the disadvantage of huge construction costs.
  • the microorganism-adhering carrier in the method of charging the microorganism-adhering carrier, the microorganism-adhering carrier must be flowed through the entire reaction tank, and the outflow of the microorganism-adhering carrier from the reaction tank must be prevented. For this purpose, it is indispensable to pay careful attention to equipment, such as appropriately combining a stirrer and a screen (filter). Disclosure of the invention
  • the present invention has been made in view of the above conventional technology, and can drastically solve the clogging of the conventional rotating disk method, and can effectively use the existing reaction tank as it is, and It is an object of the present invention to provide a biological treatment method and a biological treatment device capable of performing a stable treatment without installing a special stirrer and a screen when the function is upgraded from the conventional method to the advanced treatment method.
  • one embodiment of the present invention is a biological treatment method characterized by moving a cloth material up and down in a water tank for treating wastewater to perform agitation and biological treatment of the wastewater. is there.
  • a part of the cloth material is led into the air, whereby oxygen is supplied into the water tank.
  • Another embodiment of the present invention is a biological treatment apparatus including: a water tank for treating sewage; and a cloth-like material provided to move up and down in the water tank.
  • Another embodiment of the present invention is a biological treatment method for biologically treating wastewater, wherein the biological treatment is performed using a sheet-like three-dimensional network structure.
  • Another embodiment of the present invention is a biological treatment method for biologically treating sewage, wherein a sheet-like three-dimensional network structure is moved up and down in the sewage to perform sewage agitation and biological treatment.
  • Biological treatment method is a biological treatment method for biologically treating sewage, wherein a sheet-like three-dimensional network structure is moved up and down in the sewage to perform sewage agitation and biological treatment.
  • a part of the three-dimensional network structure is continuously or intermittently formed. It is characterized by being guided into the air.
  • the air taken into the three-dimensional network structure is discharged in sewage.
  • the wastewater taken into the three-dimensional network structure is discharged in the air.
  • Another embodiment of the present invention is a biological treatment apparatus including a water tank for treating sewage, and a sheet-like three-dimensional mesh structure installed to move up and down in the water tank.
  • FIG. 1 is a schematic diagram showing a biological treatment apparatus according to a first embodiment of the present invention.
  • FIG. 2A is a schematic plan view showing the biological treatment apparatus used in Example 1.
  • FIG. 2B is a schematic front view of the biological treatment apparatus shown in FIG. 2A.
  • FIG. 2C is a sectional view taken along the line II-II of FIG. 2A.
  • FIG. 3A is a schematic plan view showing the biological treatment apparatus used in Example 2.
  • FIG. 3B is a schematic front view of the biological treatment apparatus shown in FIG. 3A.
  • FIG. 4 is a schematic diagram showing a biological treatment apparatus according to a second embodiment of the present invention.
  • FIG. 5 is a partially enlarged view showing a three-dimensional network structure incorporated in the biological treatment apparatus shown in FIG.
  • 6A to 6C are configuration diagrams showing processed products of the three-dimensional network structure.
  • FIG. 7 is a perspective view showing a moving mechanism of the three-dimensional network structure.
  • FIG. 8A and 8B are partial enlarged views for explaining the attachment of the three-dimensional network structure of FIG. 7 to a roller.
  • FIG. 8C is a side view showing the three-dimensional network structure attached to the roller.
  • FIG. 9 is a schematic view showing another example of the biological treatment device according to the second embodiment of the present invention.
  • FIG. 10 is a schematic view showing another example of the moving mechanism to which the three-dimensional network structure is attached.
  • FIG. 11A is a schematic plan view showing the biological treatment apparatus used in the third embodiment.
  • FIG. 11B is a schematic front view showing the biological treatment apparatus shown in FIG. 11A.
  • FIG. 11A is a cross-sectional view taken along line XI-XI of FIG. 11A.
  • FIG. 1 is a schematic diagram showing a biological treatment apparatus according to a first embodiment of the present invention.
  • raw water 1 as sewage is introduced into a biological reaction tank (water tank) 2.
  • the sludge 4 settled in the sedimentation tank 3 returns to the biological reaction tank 2 as return sludge 5, and the activated sludge 6 is present in the biological reaction tank 2.
  • Activated sludge 6 consisting of returned sludge 5 can be omitted if necessary.
  • rollers 7a and 7b and a biofilm bed (cloth material) 8 are attached to the biological reaction tank 2 as shown in the drawing.
  • the biofilm bed 8 is attached to rollers 7a and 7b, and the biofilm bed 8 moves up and down according to the rotation of the rollers 7a and 7b.
  • the biofilm bed 8 is preferably a cloth material such as a woven fabric or a nonwoven fabric, which is resistant to water and is resistant to bending, and may be a fabric material processed so that a biofilm is easily attached thereto.
  • the weaving method of the cloth material itself may be devised, and long hair may be planted on the cloth material, or a contact material used in a contact oxidation device may be planted. .
  • the nonwoven fabric may be a synthetic fiber such as vinylon, polyester, rayon, or polypropylene, and in some cases, a glass fiber, and is not particularly limited.
  • woven fabric a nonwoven fabric such as synthetic fibers such as polypropylene, polyester, nylon, and polyvinylidene chloride is suitable.
  • synthetic fibers such as polypropylene, polyester, nylon, and polyvinylidene chloride.
  • woven fabrics are not limited to this. If the biofilm bed has water absorption, not only is the power required to move the biofilm bed excessively necessary, but it also causes the biofilm bed to extend and drip, which is undesirable.
  • biofilm bed 8 moves up and down, a biofilm is formed on the surface of the biofilm bed 8.
  • oxygen in the atmosphere can be taken into the liquid in the biological reaction tank 2 when the biofilm bed 8 is submerged in the liquid from an air state.
  • the liquid itself can be stirred by moving the biofilm bed 8, and activated sludge 6 and biological Since the microorganisms separated from the membrane bed 8 can be sufficiently mixed, they can be guided to the sedimentation tank 3 without sedimentation in the biological reaction tank 2. In this way, biofilm treatment (biological treatment) is performed.
  • the excessive adhesion of the biofilm which has been a problem with the rotating disk method, is a problem because the excessively attached biofilm is peeled off by the deflection of the biofilm bed 8 between the rollers 7a and 7b. Hateful.
  • a scraping mechanism 12 for scraping the biofilm from the biofilm bed 8 may be provided. If you do not want to dissolve oxygen in the liquid as in the case of an anaerobic tank or anoxic tank, all rollers 7a and 7b may be submerged.
  • FIG. 2A to 2C show an example of the biological treatment apparatus used in the first embodiment.
  • 2A is a plan view
  • FIG. 2B is a front view
  • FIG. 2C is a cross-sectional view taken along the line II-II of FIG. 2A.
  • two sets of biofilm bed moving units 9 are used.
  • the biofilm bed transfer hood 9 includes a plurality of rollers 7a located in the air and a plurality of rollers 7b located in the liquid.
  • the roller 7b is connected by a single biofilm bed 8.
  • the biofilm bed moving unit 9 has a configuration in which one biofilm bed 8 and a plurality of rollers 7a and 7b are combined, but a pair of rollers 7a and 7b as shown in FIG. A plurality of mechanisms each having one biofilm bed 8 attached thereto may be combined. In this case, if the upper rollers 7a are connected to each other by a chain or the like, these rollers 7a can be driven by one drive source, which is economical.
  • the flow direction of the raw water 1 and the biofilm bed 8 (the extending direction of the rollers 7a and 7b) be parallel. If both are in a vertical positional relationship, a short circuit flow is likely to occur in the biological reaction tank 2. Even in the case of a parallel positional relationship, short-circuit flow can be prevented by providing the partition wall 10 extending perpendicular to the flow direction of the raw water 1. In this case, it is preferable that the partition walls 10 are arranged on both sides of the biofilm bed moving unit 9 and before and after the biological unit unit 9.
  • air is diffused by a diffuser such as a blower.
  • a diffuser such as a blower.
  • the BOD.280 mg / L and SS65 mg / L can be reduced by 2O for both BOD and SS. mg / L or less.
  • Example 2 Example of updating from standard method to advanced treatment method
  • FIGS. 3A and 3B show an example of the apparatus used in the second embodiment.
  • FIG. 3A is a plan view
  • FIG. 3B is a front view.
  • Raw water 1 is led to the anaerobic tank 2a.
  • a biofilm bed moving unit 9a is placed in a submerged state.
  • the returned sludge 5 also flows into the anaerobic tank 2a, and the phosphorus contained in the returned sludge (activated sludge) 5 is discharged into the raw water 1.
  • the biofilm bed transfer unit 9a may not be installed, and only a stirrer (not shown) may be installed so that the returned sludge 5 does not settle.
  • the raw water 1 is guided to the oxygen-free tank 2b.
  • the biofilm bed moving unit 9b is also placed in the water.
  • the nitric acid tank 2c is disposed downstream of the oxygen-free tank 2b, and the nitric acid 11 is supplied from the nitric acid tank 2c to the oxygen-free tank 2b.
  • the biofilm bed transfer unit 9b may not be installed in the anoxic tank 2b, and a stirrer may be installed in the anoxic tank 2b so that the returned sludge 5 does not settle.
  • the biofilm bed 8 of the biofilm bed transfer unit 9d has a larger contact portion with air than the biofilm bed transfer unit 9c. If the contact area with air is large, such as the biofilm bed transfer unit 9d, the nitrifying bacteria attached to the biofilm bed 8 will be left under aerobic conditions for a long time, and nitrification will occur efficiently. .
  • the amount of BOD oxidizing bacteria attached is large in the first stage of the nitric acid tank 2c, and the ratio of nitrifying bacteria increases in the second stage.
  • a diffuser such as a blower may be provided to supplement the oxygen content.
  • the air diffuser can be installed in the biofilm bed transfer unit, but maintenance is required between each biofilm bed transfer unit and the bioreactor, and between the biofilm bed transfer unit and the biofilm bed transfer unit. Turbulence in the liquid flow in the biological reaction tank Therefore, mixing is preferred.
  • the biofilm By moving the biofilm bed, the biofilm can be effectively attached to the biofilm bed, and the sewage in the reaction tank can be stirred. Furthermore, by introducing a part of the biofilm bed to air, it becomes possible to supply oxygen to the sewage in the reactor.
  • the present invention is not limited to the aspect ratio of the reaction tank, the present invention can be applied to all existing biological reaction tanks.
  • the amount of organisms attached to the biofilm bed increases, it is possible to upgrade from the standard method to the advanced treatment method without increasing the number of reactors.
  • FIG. 4 is a schematic diagram showing a biological treatment device according to a second embodiment of the present invention.
  • the sheet-like three-dimensional network structure 27 as a biofilm bed moves vertically in the biological reaction tank 2, and a biofilm is formed on the surface of the three-dimensional network structure 27.
  • oxygen in the air can be taken into the liquid in the biological reaction tank 2 when the three-dimensional network structure 27 is submerged in the liquid from the air.
  • the liquid itself can be stirred by the three-dimensional network structure 27, and the activated sludge 6 and the three-dimensional network Since the microorganisms released from the structure 27 can be sufficiently mixed, they can be guided to the sedimentation tank 3 without causing the microorganisms to sediment in the biological reaction tank 2.
  • An aeration device 28 is arranged at the bottom of the biological reaction tank 2, and air is diffused into the raw water 1 from the aeration device 28.
  • the sludge 4 settled in the settling tank 3 returns to the biological reaction tank 2 as returned sludge 5, and the activated sludge 6 is present in the biological reaction tank 2.
  • the returned sludge 5 may be omitted, and the aeration device 28 may be omitted. Further, when it is not necessary to remove the detached biofilm, the settling tank 3 can be omitted.
  • FIG. 5 is a schematic diagram conceptually showing the appearance of a three-dimensional network structure, a so-called sponge-like structure of the biological treatment apparatus shown in FIG.
  • the mesh structure may be a rib structure, a wall structure, or any other structure, but air or liquid is easily leaked and easily permeated. In other words, the structure is such that liquid and air can be exchanged smoothly. is important.
  • the size of the hole 27a can be used without any problem as long as the diameter is in the range of 0.2 to 3 mm, and is preferably 0.5 to 2 mm.
  • the material of the three-dimensional network structure 27 preferably has sufficient strength, elasticity and abrasion resistance, and is excellent in hydrophilicity and biocompatibility.
  • the main materials of the three-dimensional network structure 27 include polyurethane, polyethylene glycol / le, senorelose, polystyrene, and vinylon, but other materials are added to improve hydrophilicity and strength. I'm sorry.
  • the thickness of the sheet-shaped three-dimensional network structure 27 can be used if it is 2 to 50 mm, but is preferably 3 to 3 O mm.
  • the three-dimensional network structure 27 is released from contraction due to compression, if it has a compression recovery property of returning to the original thickness, it can be used without any problem, so it is extremely high No elasticity is required. Rather, it is important that the compression recovery rate is kept above a certain level for a long time. Considering maintenance, it is desirable that elasticity be maintained for at least one year.
  • the sheet-like three-dimensional network structure 27 is subjected to physical processing mainly for the purpose of reinforcement, operability, and improvement of functionality, and can be used as a processed product.
  • the processing method of the three-dimensional network structure 27 may be any method as long as the three-dimensional network structure 27 is not kinked, pulled, damaged, stuck, or subjected to extreme friction.
  • processed material 29a a cloth material 30 such as a filter cloth, non-woven cloth, or a mesh is attached to the three-dimensional net structure 27 by bonding, pressing, sewing, or the like. You may.
  • the net-shaped holding material 31 may be attached to the three-dimensional net self-structure 27 by processing such as bonding, crimping, scissoring, and wrapping. .
  • the cloth-like material 30 or the net-like holding material 31 is sandwiched by two or more three-dimensional mesh structures 27 by bonding, crimping, sewing, etc. It may be.
  • These processed products are examples, and the present invention is not limited thereto. As a matter of course, it is not always necessary to process the entire surface of the three-dimensional network structure 27.
  • FIG. 7 As a moving mechanism for moving the sheet-shaped three-dimensional network structure 27 up and down, a configuration shown in FIG. 7 is exemplified. That is, both ends of one sheet-shaped three-dimensional network structure 27 are connected to form an endless, and the three-dimensional network structure 27 is rotated in an annular shape by the rollers 22a and 22b.
  • This configuration is an example, and the moving mechanism is not limited to this.
  • the sheet-like three-dimensional network structure 27 may be changed to processed products 29 a to 29 c shown in FIGS. 6A to 6C. Further, as shown in FIGS. 8A to 8C, the belt 13 is directly attached to the inner peripheral surface of the sheet-shaped three-dimensional network structure 27, and the guide 14 is attached to the roller 22a.
  • FIG. 9 shows an example of a multi-stage biofilm bed transfer unit installed in a biological reaction layer. If you do not want to dissolve oxygen in the liquid as in anaerobic tanks or anoxic tanks, it is recommended that all rollers 22a and 22b be submerged. It should be noted that a part or the whole of the sheet-like three-dimensional network structure 27 may be the processed product 29 a to 29 c as a matter of course.
  • a compression structure 15 for compressing the three-dimensional network structure 27 can be provided at an arbitrary point.
  • the three-dimensional network structure 27 compressed by the compression structure 15 discharges the sewage and air taken in, thereby promoting the supply of oxygen.
  • the number of the compression structures 15 may be one or two or more.
  • the compression structure 15 can be installed in the air, the liquid, or both.
  • the compressed three-dimensional network structure 27 contains air with the recovery of thickness,
  • the oxygen supply in the liquid is better: Further, the weight of the liquid can be removed from the three-dimensional network structure 27, and the required power can be reduced.
  • the compression structure 15b is provided so that the compression point is in the liquid, oxygen is diffused into the biological reaction tank 2 by diffusing air from the three-dimensional network structure 27 that has taken in air. Supplied. Further, the standing mesh structure 27 newly contains sewage in the biological reaction tank 2 and moves into the air again. This promotes oxygen supply and sewage agitation. If the compression structure 15c is installed under the roller 22b, which is the lowermost part of the three-dimensional network structure 27, air can be exhausted at the deepest point, which is preferable from the viewpoint of oxygen supply.
  • the shape of the compression structure 15 may be a polygonal prism or a cylinder.
  • the space between the three-dimensional network structure 27 and the compression structure 15 can also be freely adjusted, and the depth at which the three-dimensional network structure 27 is pressed can be adjusted.
  • the compression structure 15 does not necessarily have to have a size and a shape to compress the entire three-dimensional network structure 27. If the compression structure 15 is a rotary compression structure 16, the compression structure 15 can be freely rotated in accordance with the movement of the three-dimensional network structure 27, thereby preventing the three-dimensional network structure 27 from moving up and down. Without increasing the required power and operating costs. Also in this case, it is preferable that the distance between the three-dimensional network structure 27 and the rotary compression structure 16 can be adjusted.
  • the shape of the rotary compression structure 16 may be a polygonal prism or a cylinder as long as it can rotate around its axis.
  • the cylindrical shape does not damage the biofilm, hinders the movement of the three-dimensional network structure 27 and does not cause trouble, and the same degree of compression can be stably obtained at any point. It is easy to be desirable.
  • the excessively attached biofilm was peeled off by the deflection of the three-dimensional network structure 27 at the rollers 22a and 22b, and the compression structure 1 5 is less likely to be a problem as the over-adherent biofilm is scraped off. Fluid and air can be expelled not only by compression but also by vibration.
  • FIGS. 11A to 11C show examples in which the biological treatment apparatus according to the second embodiment of the present invention is applied to a reaction tank such as an aeration tank, an oxygen-free tank, or an aerobic tank.
  • FIG. 11A is a plan view
  • FIG. 11B is a front view
  • FIG. I s a cross-sectional view taken along the line XI-XI in Fig. 11A. is there.
  • the configuration of the present embodiment, which is not particularly described, is the same as that of the above-described second embodiment, and a duplicate description thereof will be omitted.
  • the biofilm bed moving unit 9 includes a plurality of rollers 22a located in the air and a plurality of rollers 22b located in the liquid, and the roller 22a and the roller 22b are a single three-dimensional network structure 27.
  • the partition walls 18 extend perpendicularly to the flow direction of the raw water 1, are disposed on both sides of each biofilm bed moving unit 9, and are arranged before and after each of the biological moving units 9.
  • a plurality of (three in this embodiment) compression structures 15a are arranged so as to be located in the air.
  • a compression structure 15c or a rotary compression structure (not shown) is provided.
  • the three-dimensional network structure 27 is temporarily compressed by the compression structure 15c, oxidation and nitrification of BOD further progress by aeration in a liquid.
  • a part or the whole of the sheet-like three-dimensional network structure 27 may be the processed products 29a to 29c.
  • the present invention is not limited by the aspect ratio of the reaction tank, the present invention can be applied to all existing biological reaction tanks.
  • the amount of organisms attached to the biofilm bed increases, it is possible to upgrade from the standard method to the advanced treatment method without increasing the number of bioreactors.
  • oxygen supply can be promoted, and the amount of air diffused by the air diffuser can be reduced, thereby reducing operating costs.
  • the present invention is applicable to a biological treatment method and a biological treatment apparatus for treating sewage, and in particular, sewage such as sewage, organic wastewater, inorganic wastewater containing nitrogen, highly polluted river water, and lakes and marshes.
  • sewage such as sewage, organic wastewater, inorganic wastewater containing nitrogen, highly polluted river water, and lakes and marshes.
  • the present invention can be applied to a biological treatment method and a biological treatment apparatus for treating a plant with a mobile biofilm bed.

Abstract

A biological treatment method and a biological treatment device, the method comprising the steps of vertically moving a cloth-like material (8) in a water tank (2) for treating sewage (1) to perform the agitation and biological treatment of the sewage (1). A part of the cloth-like material (8) is led into the air to supply oxygen into the water tank (2), the biological treatment of the sewage (1) is performed by using a sheet-like three-dimensional network structure (27), the agitation and biological treatment of the sewage (1) are performed by vertically moving the three-dimensional network structure (27) in the sewage (1), a part of the three-dimensional network structure (27) is continuously or intermittently led into the air, the air taken in the three-dimensional network structure (27) is temporarily discharged into the sewage (1) and/or the sewage (1) taken in the three-dimensional network structure (27) is discharged into the air. The biological treatment device comprises the water tank (2) for treating the sewage (1) and the cloth-like material (8) installed so as to vertically move in the water tank (2).

Description

明 細 書 生物処理方法及ぴ生物処理装置 技術分野  Description Biological treatment method and biological treatment equipment Technical field
本発明は、 汚水を処理する生物処理方法及ぴ生物処理装置に係り、 特に、 下 水、 有機性排水、 窒素を含んだ無機性排水、 汚濁の進んだ河川水、 湖沼水等の 汚水を移動式生物膜床を用!/、て処理する生物処理方法及び生物処理装置に関す る。 背景技術  The present invention relates to a biological treatment method and a biological treatment device for treating sewage, and in particular, to transfer sewage such as sewage, organic wastewater, inorganic wastewater containing nitrogen, highly polluted river water, and lake water. Use biofilm floor! / The present invention relates to a biological treatment method and a biological treatment device for treating. Background art
有機性汚水を生物学的に処理する方法として、 回転円板法と呼ばれるものが 知られている。 回転円板法とは、 複数の円板を、 下半分が汚水中に浸漬された 状態で回転させて円板の表面に生物膜を形成させ、 汚水中の生物を酸素の存在 下で分解するものである。 この方法は、 被処理液としての汚水の攪拌と生物膜 処理とを同時に行うことができ、 約 3 0年前から日本国内でも普及している技 術である。  As a method of biologically treating organic wastewater, a method called a rotating disk method is known. With the rotating disk method, multiple disks are rotated while the lower half is immersed in wastewater to form a biofilm on the surface of the disk, and the organisms in the wastewater are decomposed in the presence of oxygen Things. This method enables simultaneous agitation of wastewater as a liquid to be treated and biofilm treatment, and is a technology that has been widely used in Japan since about 30 years ago.
一方、 最も広く普及している方法は、 活性汚泥法である。 この活性汚泥法に 用いられる反応槽は、 曝気槽とも呼ばれている。 活性汚泥法では、 一般的には 空気を汚水中に散気することによって、 汚水の攪拌と酸素供給を行い、 活性汚 泥の代謝を促すことによって生物処理が行われている。 従来の活性汚泥法は、 標準法と呼ばれる方式であり、 B O D (Biochemical Oxygen Demand) と S S ( Suspended solid) の除去が主体であった。 しかし、 近年では、 富栄養塩類をも 除去する必要性が増し、 高度処理法と呼ばれる方式を用いて、 B O D、 S Sに 加えて窒素やリンを除去することが行われてきている。 標準法の場合、 生物反 応時間は、 6〜8時間が一般的であるが、 高度処理法の場合では、 生物反応時 間が標準法の 2倍程度多くなる。 この場合、 処理時間を短くするためには反応 槽を増設するのが一般的であるが、 敷地面積がない場合では、 微生物付着担体 を反応槽に投入する場合もある。  On the other hand, the most widespread method is the activated sludge method. The reaction tank used for this activated sludge method is also called an aeration tank. In the activated sludge method, biological treatment is generally performed by diffusing air into the sewage to agitate and supply oxygen to the sewage to promote metabolism of the activated sludge. The conventional activated sludge method is a method called a standard method, which mainly removes BOD (Biochemical Oxygen Demand) and SS (Suspended solid). However, in recent years, the necessity of removing eutrophic salts has increased, and a method called advanced treatment has been used to remove nitrogen and phosphorus in addition to BOD and SS. In the case of the standard method, the biological reaction time is generally 6 to 8 hours, but in the case of the advanced treatment method, the biological reaction time is about twice as long as that of the standard method. In this case, it is common to add a reaction tank to shorten the processing time, but if there is no site area, a microorganism-adhered carrier may be charged into the reaction tank.
回転円板法では、 円板上に生物膜が厚く付き過ぎて、 トルクオーバーになつ たり、 時には、 円板と円板の間が微生物で埋まり、 適切な攪拌ができない場合 がある。 さらに、 既設の反応槽に回転円板を取り付けようとすると、 反応槽の 深さを十分に利用できず、 合理的ではない。 In the rotating disk method, the biofilm is too thick on the disk, causing torque overrun. In some cases, the space between the discs is buried with microorganisms, and proper agitation cannot be achieved. Furthermore, if a rotating disk is to be attached to an existing reactor, the depth of the reactor cannot be fully utilized, which is not reasonable.
一方、 活性汚泥法では、 特に、 標準法から高度処理法に機能アップする場合 に問題が生じる。 反応槽を増設することは敷地面積が必要になるだけではなく、 建設コス トが膨大にかかる欠点がある。 また、 微生物付着担体を投入する方法 では、 微生物付着担体を反応槽全体に流動させ、 かつ、 反応槽から微生物付着 担体の流出を防止しなければならない。 そのために、 撹拌機とスクリーン (フ ィルター) を適切に組合せるなど、 設備的に細かな配慮が不可欠になる。 発明の開示  On the other hand, the activated sludge method poses a problem especially when the function is upgraded from the standard method to the advanced treatment method. Adding more reactors not only requires a lot of land area, but also has the disadvantage of huge construction costs. In addition, in the method of charging the microorganism-adhering carrier, the microorganism-adhering carrier must be flowed through the entire reaction tank, and the outflow of the microorganism-adhering carrier from the reaction tank must be prevented. For this purpose, it is indispensable to pay careful attention to equipment, such as appropriately combining a stirrer and a screen (filter). Disclosure of the invention
本発明では、 上記従来技術に鑑みてなされたもので、 従来の回転円板法の目 詰まりを抜本的に解決すると共に、 既設の反応槽をそのまま有効に利用するこ とができ、 かつ、 標準法から高度処理法に機能アップする際に、 特殊な撹拌機 ゃスクリーンを設置しなくとも安定した処理ができる生物処理方法及ぴ生物処 理装置を提供することを課題とする。  The present invention has been made in view of the above conventional technology, and can drastically solve the clogging of the conventional rotating disk method, and can effectively use the existing reaction tank as it is, and It is an object of the present invention to provide a biological treatment method and a biological treatment device capable of performing a stable treatment without installing a special stirrer and a screen when the function is upgraded from the conventional method to the advanced treatment method.
上記課題を解決するために、 本発明の一態様は、 汚水を処理する水槽中で、 布状材を上下に移動して汚水の攪拌と生物処理とを行うことを特徴とする生物 処理方法である。  In order to solve the above-described problems, one embodiment of the present invention is a biological treatment method characterized by moving a cloth material up and down in a water tank for treating wastewater to perform agitation and biological treatment of the wastewater. is there.
本発明の好ましい態様は、 前記布状材の一部を空気中に導き、 それによつて 前記水槽内に酸素を供給することを特徴とする。  In a preferred aspect of the present invention, a part of the cloth material is led into the air, whereby oxygen is supplied into the water tank.
本発明の他の態様は、 汚水を処理する水槽と、 該水槽中を上下に移動するよ うに設置した布状材とを備えることを特徴とする生物処理装置である。  Another embodiment of the present invention is a biological treatment apparatus including: a water tank for treating sewage; and a cloth-like material provided to move up and down in the water tank.
本発明の他の態様は、 汚水を生物処理する生物処理方法において、 該生物処 理をシ一ト状の立体網目構造体を用いて行うことを特徴とする生物処理方法で ある。  Another embodiment of the present invention is a biological treatment method for biologically treating wastewater, wherein the biological treatment is performed using a sheet-like three-dimensional network structure.
本発明の他の態様は、 汚水を生物処理する生物処理方法において、 該汚水中 でシート状の立体網目構造体を上下に移動して、 汚水の攪拌と生物処理とを行 うことを特徴とする生物処理方法である。  Another embodiment of the present invention is a biological treatment method for biologically treating sewage, wherein a sheet-like three-dimensional network structure is moved up and down in the sewage to perform sewage agitation and biological treatment. Biological treatment method.
本発明の好ましい態様は、 前記立体網目構造体の一部を連続的又は間欠的に 空気中に導くことを特徴とする。 In a preferred aspect of the present invention, a part of the three-dimensional network structure is continuously or intermittently formed. It is characterized by being guided into the air.
本発明の好ましい態様は、 前記立体網目構造体内に取り込まれた空気を汚水 中で吐き出させることを特徴とする。  In a preferred aspect of the present invention, the air taken into the three-dimensional network structure is discharged in sewage.
本発明の好ましい態様は、 前記立体網目構造体内に取り込まれた汚水を空気 中で吐き出させることを特徴とする。  In a preferred aspect of the present invention, the wastewater taken into the three-dimensional network structure is discharged in the air.
本発明の他の態様は、 汚水を処理する水槽と、 該水槽中を上下に移動するよ うに設置したシート状の立体網目構造体とを備えることを特徴とする生物処理 装置である。 図面の簡単な説明  Another embodiment of the present invention is a biological treatment apparatus including a water tank for treating sewage, and a sheet-like three-dimensional mesh structure installed to move up and down in the water tank. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の第 1の実施形態に係る生物処理装置を示す概略図である。  FIG. 1 is a schematic diagram showing a biological treatment apparatus according to a first embodiment of the present invention.
図 2 Aは実施例 1に用いた生物処理装置を示す概略平面図である。  FIG. 2A is a schematic plan view showing the biological treatment apparatus used in Example 1.
図 2 Bは図 2 Aに示す生物処理装置の概略正面図である。  FIG. 2B is a schematic front view of the biological treatment apparatus shown in FIG. 2A.
図 2 Cは図 2 Aの II一 II線断面図である。  FIG. 2C is a sectional view taken along the line II-II of FIG. 2A.
図 3 Aは実施例 2に用いた生物処理装置を示す概略平面図である。  FIG. 3A is a schematic plan view showing the biological treatment apparatus used in Example 2.
図 3 Bは図 3 Aに示す生物処理装置の概略正面図である。  FIG. 3B is a schematic front view of the biological treatment apparatus shown in FIG. 3A.
図 4は本発明の第 2の実施形態に係る生物処理装置を示す概略図である。  FIG. 4 is a schematic diagram showing a biological treatment apparatus according to a second embodiment of the present invention.
図 5は図 4に示す生物処理装置に組み込まれる立体網目構造体を示す部分拡 大図である。  FIG. 5 is a partially enlarged view showing a three-dimensional network structure incorporated in the biological treatment apparatus shown in FIG.
図 6 A乃至図 6 Cは立体網目構造体の加工品を示す構成図である。  6A to 6C are configuration diagrams showing processed products of the three-dimensional network structure.
図 7は立体網目構造体の移動機構を示す斜視図である。  FIG. 7 is a perspective view showing a moving mechanism of the three-dimensional network structure.
図 8 A及ぴ図 8 Bは図 7の立体網目構造体のローラへの取り付けを説明する ための部分拡大図である。  8A and 8B are partial enlarged views for explaining the attachment of the three-dimensional network structure of FIG. 7 to a roller.
図 8 Cはローラに取り付けられた立体網目構造体を示す側面図である。  FIG. 8C is a side view showing the three-dimensional network structure attached to the roller.
図 9は本発明の第 2の実施形態に係る生物処理装置の他の例を示す概略図で める。  FIG. 9 is a schematic view showing another example of the biological treatment device according to the second embodiment of the present invention.
図 1 0は立体網目構造体を取り付けた移動機構の他の例を示す概略図である, 図 1 1 Aは実施例 3に用いた生物処理装置を示す概略平面図である。  FIG. 10 is a schematic view showing another example of the moving mechanism to which the three-dimensional network structure is attached. FIG. 11A is a schematic plan view showing the biological treatment apparatus used in the third embodiment.
図 1 1 Bは図 1 1 Aに示す生物処理装置を示す概略正面図である。  FIG. 11B is a schematic front view showing the biological treatment apparatus shown in FIG. 11A.
図 1 1〇は図1 1 Aの XI— XI線断面図である。 発明を実施するための最良の形態 FIG. 11A is a cross-sectional view taken along line XI-XI of FIG. 11A. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施形態に係る生物処理装置について図面を用いて詳細に説 明する。  Hereinafter, a biological treatment apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings.
図 1は、 本発明の第 1の実施形態に係る生物処理装置を示す概略図である。 図 1において、 汚水 (被処理水) としての原水 1は、 生物反応槽 (水槽) 2に 導入される。 沈殿槽 3で沈殿した汚泥 4は、 返送汚泥 5として生物反応槽 2に 戻り、 生物反応槽 2には活性汚泥 6が存在している。 返送汚泥 5からなる活性 汚泥 6は、 必要に応じて省略することもできる。 さらに、 生物反応槽 2には、 ローラ 7 a, 7 bと生物膜床 (布状材) 8が図面のように取り付けられている。 すなわち、 ローラ 7 a , 7 bは互いに平行に配置され、 一方のローラ 7 aは空 気中に位置し、 他方のローラ 7 bは液 (原水 1 ) 中に位置している。 生物膜床 8はローラ 7 a , 7 bに取り付けられ、 ローラ 7 a , 7 bの回転に従って生物 膜床 8が上下に移動する。 生物膜床 8は水濡れに強く、 たわみにも強い織布や 不織布などの布状材がよく、 さらには、 生物膜が付着しやすいように加工され た布状材でも良い。 布状材の加工方法として、 布状材自身の織り方を工夫して もよく、 布状材に長毛を植付けたり、 接触酸化装置で用いられる接触材を植付 けたりすることもある。 .  FIG. 1 is a schematic diagram showing a biological treatment apparatus according to a first embodiment of the present invention. In FIG. 1, raw water 1 as sewage (water to be treated) is introduced into a biological reaction tank (water tank) 2. The sludge 4 settled in the sedimentation tank 3 returns to the biological reaction tank 2 as return sludge 5, and the activated sludge 6 is present in the biological reaction tank 2. Activated sludge 6 consisting of returned sludge 5 can be omitted if necessary. Further, rollers 7a and 7b and a biofilm bed (cloth material) 8 are attached to the biological reaction tank 2 as shown in the drawing. That is, the rollers 7a and 7b are arranged parallel to each other, one roller 7a is located in the air, and the other roller 7b is located in the liquid (raw water 1). The biofilm bed 8 is attached to rollers 7a and 7b, and the biofilm bed 8 moves up and down according to the rotation of the rollers 7a and 7b. The biofilm bed 8 is preferably a cloth material such as a woven fabric or a nonwoven fabric, which is resistant to water and is resistant to bending, and may be a fabric material processed so that a biofilm is easily attached thereto. As a processing method of the cloth material, the weaving method of the cloth material itself may be devised, and long hair may be planted on the cloth material, or a contact material used in a contact oxidation device may be planted. .
不織布としては、 ビニロン、 ポリエステル、 レーヨン、 ポリプロピレン等の 合成繊維、 場合によっては、 ガラス繊維でもよく、 特に限定されるものではな い。  The nonwoven fabric may be a synthetic fiber such as vinylon, polyester, rayon, or polypropylene, and in some cases, a glass fiber, and is not particularly limited.
織布としては、 ポリプロピレン、 ポリエステル、 ナイロン、 ポリ塩化ビニリ デン等の合成繊維等の吸水性のないものが適している。 しかし、 織布はこれに 限定されるものでない。 生物膜床が吸水性を有すると、 生物膜床を動かすため の所要動力が過剰に必要になるだけでなく、 生物膜床の延びや液だれの原因と なり好ましくなレ、。  As the woven fabric, a nonwoven fabric such as synthetic fibers such as polypropylene, polyester, nylon, and polyvinylidene chloride is suitable. However, woven fabrics are not limited to this. If the biofilm bed has water absorption, not only is the power required to move the biofilm bed excessively necessary, but it also causes the biofilm bed to extend and drip, which is undesirable.
生物膜床 8が上下方向に移動すると、 生物膜床 8の表面に生物膜が形成され る。 また、 生物膜床 8が上下方向に移動すると、 気中にある状態から液中に没 するときに、 大気中の酸素を生物反応槽 2の液中に取込むことができる。 液中 に没した後も生物膜床 8の移動によって液自体を撹拌でき、 活性汚泥 6や生物 膜床 8から剥離した微生物を十分に混合できるので、 これらを生物反応槽 2に 沈殿させることなく沈殿槽 3に導くことができる。 このようにして生物膜処理 (生物処理) が行われる。 When the biofilm bed 8 moves up and down, a biofilm is formed on the surface of the biofilm bed 8. In addition, when the biofilm bed 8 moves in the vertical direction, oxygen in the atmosphere can be taken into the liquid in the biological reaction tank 2 when the biofilm bed 8 is submerged in the liquid from an air state. Even after submersion in the liquid, the liquid itself can be stirred by moving the biofilm bed 8, and activated sludge 6 and biological Since the microorganisms separated from the membrane bed 8 can be sufficiently mixed, they can be guided to the sedimentation tank 3 without sedimentation in the biological reaction tank 2. In this way, biofilm treatment (biological treatment) is performed.
回転円板法で問題となった生物膜の過剰付着に対しては、 ローラ 7 a , 7 b での生物膜床 8のたわみによつて過剰付着生物膜が剥離されるので、 問題にな りにくい。 生物膜が生物膜床 8に強固に付着する場合には、 生物膜床 8から生 物膜をかき取るかき取り機構 1 2を設けてもよい。 なお、 嫌気槽ゃ無酸素槽の 場合のように液中に酸素を溶解させたくない場合は、 ローラ 7 a, 7 bをすベ て水没させればよい。  The excessive adhesion of the biofilm, which has been a problem with the rotating disk method, is a problem because the excessively attached biofilm is peeled off by the deflection of the biofilm bed 8 between the rollers 7a and 7b. Hateful. When the biofilm is firmly attached to the biofilm bed 8, a scraping mechanism 12 for scraping the biofilm from the biofilm bed 8 may be provided. If you do not want to dissolve oxygen in the liquid as in the case of an anaerobic tank or anoxic tank, all rollers 7a and 7b may be submerged.
以下、 本発明を実施例により具体的に説明する。  Hereinafter, the present invention will be described specifically with reference to examples.
[実施例 1 ] : B O D— S S除去例  [Example 1]: Example of BOD-SS removal
図 2 A乃至図 2 Cに実施例 1に用いた生物処理装置の一例を示す。 図 2 Aは 平面図、 図 2 Bは正面図、 図 2 Cは図 2 Aの II一 II線断面図である。 本例は、 生物膜床移動ユニット 9を二組利用している。 図 2 Cに示すように、 生物膜床 移動ュ-ット 9は、 空気中に位置する複数のローラ 7 aと液中に位置する複数 のローラ 7 bとを備え、 これらのローラ 7 aとローラ 7 bとは一枚の生物膜床 8で連結されている。  2A to 2C show an example of the biological treatment apparatus used in the first embodiment. 2A is a plan view, FIG. 2B is a front view, and FIG. 2C is a cross-sectional view taken along the line II-II of FIG. 2A. In this example, two sets of biofilm bed moving units 9 are used. As shown in FIG. 2C, the biofilm bed transfer hood 9 includes a plurality of rollers 7a located in the air and a plurality of rollers 7b located in the liquid. The roller 7b is connected by a single biofilm bed 8.
生物膜床移動ユニット 9は、 1枚の生物膜床 8と複数のローラ 7 a , 7 bと を組合せた構成になっているが、 図 1に示すような 1組のローラ 7 a, 7 bに 1つの生物膜床 8を取り付けた機構を複数組み合わせてもよい。 その場合、 上 側のローラ 7 a同士をチェーンなどで連結すれば、 1つの駆動源でこれらの口 ーラ 7 aを駆動することができ、 経済的である。  The biofilm bed moving unit 9 has a configuration in which one biofilm bed 8 and a plurality of rollers 7a and 7b are combined, but a pair of rollers 7a and 7b as shown in FIG. A plurality of mechanisms each having one biofilm bed 8 attached thereto may be combined. In this case, if the upper rollers 7a are connected to each other by a chain or the like, these rollers 7a can be driven by one drive source, which is economical.
生物膜床移動ュニット 9の配置方法として、 原水 1の流れ方向と生物膜床 8 (ローラ 7 a, 7 bの延 'びる方向) とが平行になることが望ましい。 両者が垂 直の位置関係であると、 生物反応槽 2において短絡流が生じやすい。 また、 平 行の位置関係にある場合でも、 原水 1の流れ方向に対して垂直に延びる隔壁 1 0を設けることで短絡流を防止することができる。 この場合、 隔壁 1 0を、 生 物膜床移動ュ-ット 9の両側であって、 かつ生物移動ュニット 9の前後に配置 することが好ましい。  As a method of arranging the biofilm bed moving unit 9, it is desirable that the flow direction of the raw water 1 and the biofilm bed 8 (the extending direction of the rollers 7a and 7b) be parallel. If both are in a vertical positional relationship, a short circuit flow is likely to occur in the biological reaction tank 2. Even in the case of a parallel positional relationship, short-circuit flow can be prevented by providing the partition wall 10 extending perpendicular to the flow direction of the raw water 1. In this case, it is preferable that the partition walls 10 are arranged on both sides of the biofilm bed moving unit 9 and before and after the biological unit unit 9.
図 2 A乃至図 2 Cに示す実施例では、 ブロワなどの散気装置による散気を施 さなくとも、 生物膜床移動ユニット 9の下流側に沈殿槽 (図示せず) を設置す ることによって、 B O D .2 8 0 m g / L、 S S 6 5 m g / Lが B O D及び S S とも 2 O m g / L以下に低減させることができた。 In the embodiment shown in FIGS. 2A to 2C, air is diffused by a diffuser such as a blower. At least, by installing a sedimentation tank (not shown) downstream of the biofilm bed transfer unit 9, the BOD.280 mg / L and SS65 mg / L can be reduced by 2O for both BOD and SS. mg / L or less.
[実施例 2 ] : 標準法から高度処理法への更新事例 [Example 2]: Example of updating from standard method to advanced treatment method
図 3 A及び図 3 Bに実施例 2に用いた装置の一例を示す。 図 3 Aは平面図で あり、 図 3 Bは正面図である。 原水 1は、 嫌気槽 2 aに導かれる。 嫌気槽 2 a には、 生物膜床移動ユニット 9 aが水没した状態で置かれている。 また、 返送 汚泥 5も嫌気槽 2 aに流入し、 返送汚泥 (活性汚泥) 5に含まれているリンが 原水 1中に吐き出される。 ここでは、 場合により生物膜床移動ユニット 9 aを 設置せず、 返送汚泥 5が沈降しないように撹拌機 (図示せず) のみを設置して もよい。 次に、 原水 1は無酸素槽 2 bに導かれる。 ここでも生物膜床移動ユエ ット 9 bが水没した状態で置かれている。 硝酸槽 2 cは無酸素槽 2 bの下流側 に配置され、 硝酸槽 2 cから無酸素槽 2 bには硝化液 1 1が供給される。 嫌気 槽 2 aと同様に、 無酸素槽 2 bに生物膜床移動ュニット 9 bを設置せず、 返送 汚泥 5が沈降しないように撹拌機を無酸素槽 2 bに設置してもよい。  FIGS. 3A and 3B show an example of the apparatus used in the second embodiment. FIG. 3A is a plan view, and FIG. 3B is a front view. Raw water 1 is led to the anaerobic tank 2a. In the anaerobic tank 2a, a biofilm bed moving unit 9a is placed in a submerged state. The returned sludge 5 also flows into the anaerobic tank 2a, and the phosphorus contained in the returned sludge (activated sludge) 5 is discharged into the raw water 1. Here, in some cases, the biofilm bed transfer unit 9a may not be installed, and only a stirrer (not shown) may be installed so that the returned sludge 5 does not settle. Next, the raw water 1 is guided to the oxygen-free tank 2b. Here, the biofilm bed moving unit 9b is also placed in the water. The nitric acid tank 2c is disposed downstream of the oxygen-free tank 2b, and the nitric acid 11 is supplied from the nitric acid tank 2c to the oxygen-free tank 2b. Similar to the anaerobic tank 2a, the biofilm bed transfer unit 9b may not be installed in the anoxic tank 2b, and a stirrer may be installed in the anoxic tank 2b so that the returned sludge 5 does not settle.
次の硝酸槽 2 cでは ^好気条件を得るために生物膜床 8 (図 2 C参照) の一 部が空気と接触しなければならない。 さらに、 生物膜床移動ュニット 9 dの生 物膜床 8は生物膜床移動ュニット 9 cに比べて空気との接触部分が大きい。 生 物膜床移動ュニット 9 dのように空気との接触部分が大きいと、 生物膜床 8に 付着した硝酸化菌が好気条件下に置かれる時間が長くなり、 硝酸化が効率的に 起こる。 硝酸槽 2 cの前段では B O D酸化菌の付着量が多く、 後段に行くに従 つて硝酸化菌の比率が増してくる。 つまり、 硝酸槽 2 cの前段にくらべて後段 では生物膜床 8の空気との接触部分を増やすことが合理的である。 また、 硝酸 槽 2 cの前段でのローラ 7 a , 7 b (図 2 C参照) の回転速度に比べて、 硝酸 槽 2 cの後段でのローラ 7 a, 7 bの回転速度を速めることによって、 溶存酸 素濃度をコントローノレすることもできる。  In the next nitric acid tank 2c, a part of the biofilm bed 8 (see Figure 2C) must be in contact with air in order to achieve aerobic conditions. Furthermore, the biofilm bed 8 of the biofilm bed transfer unit 9d has a larger contact portion with air than the biofilm bed transfer unit 9c. If the contact area with air is large, such as the biofilm bed transfer unit 9d, the nitrifying bacteria attached to the biofilm bed 8 will be left under aerobic conditions for a long time, and nitrification will occur efficiently. . The amount of BOD oxidizing bacteria attached is large in the first stage of the nitric acid tank 2c, and the ratio of nitrifying bacteria increases in the second stage. In other words, it is reasonable to increase the portion of the biofilm bed 8 that comes into contact with the air in the latter stage compared to the former stage of the nitric acid tank 2c. Also, by increasing the rotation speed of the rollers 7a and 7b after the nitric acid tank 2c compared with the rotation speed of the rollers 7a and 7b before the nitric acid tank 2c (see Fig. 2C). However, the concentration of dissolved oxygen can be controlled.
さらに、 必要に応じて、 ブロワなどの散気装置を設けて酸素量を補ってもよ い。 散気装置の設置場所は、 生物膜床移動ユニット内でもよいが、 各生物膜床 移動ュニットと生物反応槽との間や、 生物膜床移動ュニットと生物膜床移動ュ ニットの間が、 メンテナンス性や、 生物反応槽内の液流に対して乱れを与える ため、 混合が進むので好ましい。 If necessary, a diffuser such as a blower may be provided to supplement the oxygen content. The air diffuser can be installed in the biofilm bed transfer unit, but maintenance is required between each biofilm bed transfer unit and the bioreactor, and between the biofilm bed transfer unit and the biofilm bed transfer unit. Turbulence in the liquid flow in the biological reaction tank Therefore, mixing is preferred.
本発明によれば、 汚水 (被処理水) としての都市下水を標準法と同等な滞留 時間で処理した場合、 全窒素 8 m g / L以下、 全リン 0 . 5 m g / L以下とす ることが可能であった。 このときのブロワ (散気装置) による空気補充量は、 汚水量に対して 2倍とすれば十分であった。 つまり、 標準法の 2分の 1、 高度 処理法の 4分の 1程度の散気量であった。  According to the present invention, when municipal sewage as sewage (water to be treated) is treated with a residence time equivalent to the standard method, total nitrogen should be 8 mg / L or less and total phosphorus should be 0.5 mg / L or less. Was possible. At this time, it was sufficient to double the amount of air supplied by the blower (aeration device) to the amount of sewage. In other words, the amount of air diffused was one half that of the standard method and one fourth that of the advanced treatment method.
この結果を基にして、 1万トンの都巿下水を処理する生物処理装置について 設計したところ、 従来の生物処理装置に比べて所要動力を 2 0 %から 4 0 %節 約できる見込みがついた。  Based on these results, we designed a biological treatment system that treats 10,000 tons of sewage in urban areas, and found that the required power could be reduced by 20% to 40% compared to conventional biological treatment systems. .
図 1乃至図 3 Cに示す本発明によれば、 次のような効果が得られる。  According to the present invention shown in FIGS. 1 to 3C, the following effects can be obtained.
( 1 ) ローラにより生物膜床がたわむため、 生物膜床に過剰の生物膜が着きに くい。 そのためいつも新鮮な微生物が生物膜床に付着し、 代謝活性が常に高レ、。 また、 所要動力を過剰に見積もる必要がなく、 省エネルギーである。  (1) The biofilm bed is deflected by the rollers, so it is difficult for excess biofilm to reach the biofilm bed. Therefore, fresh microorganisms always adhere to the biofilm bed, and the metabolic activity is always high. In addition, there is no need to overestimate the required power, which saves energy.
( 2 ) 生物膜床を移動させることによって、 生物膜を効果的に生物膜床に付着 させることができると共に、 反応槽内の汚水を撹拌できる。 さらに、 生物膜床 の一部を空気に導くことによって、 反応槽内の汚水中に酸素を供給することも 可能になる。  (2) By moving the biofilm bed, the biofilm can be effectively attached to the biofilm bed, and the sewage in the reaction tank can be stirred. Furthermore, by introducing a part of the biofilm bed to air, it becomes possible to supply oxygen to the sewage in the reactor.
( 3 ) 本発明は反応槽の縦横比に制限されないので、 すべての既設生物反応槽 に本発明を適用できる。 さらに、 生物膜床に付着する生物量が増加するので、 反応槽を増やさなくとも標準法から高度処理法への機能ァップをすることがで きる。  (3) Since the present invention is not limited to the aspect ratio of the reaction tank, the present invention can be applied to all existing biological reaction tanks. In addition, since the amount of organisms attached to the biofilm bed increases, it is possible to upgrade from the standard method to the advanced treatment method without increasing the number of reactors.
次に、 本発明の第 2の実施形態に係る生物処理装置について図 4乃至図 1 1 Cを参照して説明する。 なお、 特に説明しない第 2の実施形態の構成及び動作 については第 1の実施形態と同様であるので、 その重複する説明を省略する。 図 4は、 本発明の第 2の実施形態に係る生物処理装置を示す概略図である。 図 4において、 生物反応槽 2内で、 生物膜床としてのシート状の立体網目構造 体 2 7は上下方向に移動しており、 立体網目構造体 2 7の表面に生物膜が形成 される。 立体網目構造体 2 7が上下方向に移動すると、 空気中から液中に没す るときに、 空気中の酸素を生物反応槽 2の液中に取り込むことができる。 立体 網目構造体 2 7によって液自体を撹拌することができ、 活性汚泥 6や立体網目 構造体 2 7からはく離した微生物を十分に混合できるので、 これらを生物反応 槽 2内に沈殿させることなく沈殿槽 3に導くことができる。 生物反応槽 2の底 部には曝気装置 2 8が配置されており、 この曝気装置 2 8から原水 1中に空気 が散気される。 沈殿槽 3で沈殿した汚泥 4は、 返送汚泥 5として生物反応槽 2 に戻り、 生物反応槽 2には活性汚泥 6が存在している。 生物膜による処理のみ を行い、 活性汚泥 6が不要な場合には、 返送汚泥 5は省略してよいし、 曝気装 置 2 8も省略できる。 さらに、 はく離した生物膜の除去が不要である場合は、 沈殿槽 3をも省略することができる。 Next, a biological treatment apparatus according to a second embodiment of the present invention will be described with reference to FIGS. 4 to 11C. Note that the configuration and operation of the second embodiment, which is not particularly described, are the same as those of the first embodiment, and a duplicate description thereof will be omitted. FIG. 4 is a schematic diagram showing a biological treatment device according to a second embodiment of the present invention. In FIG. 4, the sheet-like three-dimensional network structure 27 as a biofilm bed moves vertically in the biological reaction tank 2, and a biofilm is formed on the surface of the three-dimensional network structure 27. When the three-dimensional network structure 27 moves up and down, oxygen in the air can be taken into the liquid in the biological reaction tank 2 when the three-dimensional network structure 27 is submerged in the liquid from the air. The liquid itself can be stirred by the three-dimensional network structure 27, and the activated sludge 6 and the three-dimensional network Since the microorganisms released from the structure 27 can be sufficiently mixed, they can be guided to the sedimentation tank 3 without causing the microorganisms to sediment in the biological reaction tank 2. An aeration device 28 is arranged at the bottom of the biological reaction tank 2, and air is diffused into the raw water 1 from the aeration device 28. The sludge 4 settled in the settling tank 3 returns to the biological reaction tank 2 as returned sludge 5, and the activated sludge 6 is present in the biological reaction tank 2. When only the treatment with the biofilm is performed and the activated sludge 6 is unnecessary, the returned sludge 5 may be omitted, and the aeration device 28 may be omitted. Further, when it is not necessary to remove the detached biofilm, the settling tank 3 can be omitted.
図 5は、 図 4に示す生物処理装置の立体網目構造体、 いわゆるスポンジ状の ものの外観を概念的に表した模式図である。 網目構造は、 リブ構造でも、 ゥォ ール構造でも、 その他の構造でもよいが、 空気や液が抜けやすく染み込みやす. いこと、 すなわち液と空気の交換がスムーズに行われる構造であることが重要 である。 孔 2 7 aの大きさは、 直径として 0 . 2〜 3 mmの範囲にあれば問題 なく使用することができ、 0 . 5〜2 mmであることが望ましい。 立体網目構 造体 2 7の素材は、 強度、 弾力性、 耐摩耗性が十分にあり、 親水性、 生物親和 性に優れたものがよい。 立体網目構造体 2 7の主な素材としては、 ポリウレタ ン、 ポリエチレングリコー/レ、 セノレロース、 ポリスチレン、 ビニロンなどが挙 げられるが、 親水性や強度などを向上させるために他の材料を付加してもよレ、。 シート状の立体網目構造体 2 7の厚みは、 2〜 5 0 mmならば使用可能だが、 3〜 3 O mmが望ましい。 また、 立体網目構造体 2 7が圧迫による収縮から解 放されたときに、 元の厚さに戻る程度の圧縮回復性を有していれば、 問題なく 使用することができるので、 極端に高い弾力性は必要でない。 むしろ一定以上 の圧縮回復率が、 長期間保たれることが重要である。 メンテナンスを考慮する と、 弾力性が 1年以上保たれることが望ましい。  FIG. 5 is a schematic diagram conceptually showing the appearance of a three-dimensional network structure, a so-called sponge-like structure of the biological treatment apparatus shown in FIG. The mesh structure may be a rib structure, a wall structure, or any other structure, but air or liquid is easily leaked and easily permeated. In other words, the structure is such that liquid and air can be exchanged smoothly. is important. The size of the hole 27a can be used without any problem as long as the diameter is in the range of 0.2 to 3 mm, and is preferably 0.5 to 2 mm. The material of the three-dimensional network structure 27 preferably has sufficient strength, elasticity and abrasion resistance, and is excellent in hydrophilicity and biocompatibility. The main materials of the three-dimensional network structure 27 include polyurethane, polyethylene glycol / le, senorelose, polystyrene, and vinylon, but other materials are added to improve hydrophilicity and strength. I'm sorry. The thickness of the sheet-shaped three-dimensional network structure 27 can be used if it is 2 to 50 mm, but is preferably 3 to 3 O mm. In addition, when the three-dimensional network structure 27 is released from contraction due to compression, if it has a compression recovery property of returning to the original thickness, it can be used without any problem, so it is extremely high No elasticity is required. Rather, it is important that the compression recovery rate is kept above a certain level for a long time. Considering maintenance, it is desirable that elasticity be maintained for at least one year.
シート状の立体網目構造体 2 7は、 主に補強や操作性、 機能性向上の目的で 物理的な加工を施し、 加工品として使用することができる。 立体網目構造体 2 7の加工方法は、 立体網自構造体 2 7がよじれたり、 引っ張られて損傷したり、 引つかかったり、 極端な摩擦を受けたりしなければ何でもよい。 例えば、 図 6 Aの加工品 2 9 aのように、 ろ布、 不織布、 網などの布状材 3 0を、 接着、 圧 着、 縫い付け、 といった加工により立体網自構造体 2 7に取り付けてもよい。 また、 図 6 Bの加工品 2 9 bに示すように、 ネット状の保持材 3 1を、 接着、 圧着、 はさみこみ、 包みなどといった加工により立体網自構造体 2 7に取り付 けてもよい。 もしくは図 6 Cの加工品 2 9 cのように、 布状材 3 0又はネット 状の保持材 3 1を 2枚以上の立体網目構造体 2 7で接着、 圧着、 縫い付けなど の加工によりはさみこんでもよい。 これらの加工品は一例であって、 本発明は それらに限定されるものではない。 当然のことながら、 必ずしも立体網目構造 体 2 7の一面全体に加工が施される必要はない。 The sheet-like three-dimensional network structure 27 is subjected to physical processing mainly for the purpose of reinforcement, operability, and improvement of functionality, and can be used as a processed product. The processing method of the three-dimensional network structure 27 may be any method as long as the three-dimensional network structure 27 is not kinked, pulled, damaged, stuck, or subjected to extreme friction. For example, as shown in Fig. 6A, processed material 29a, a cloth material 30 such as a filter cloth, non-woven cloth, or a mesh is attached to the three-dimensional net structure 27 by bonding, pressing, sewing, or the like. You may. Further, as shown in the processed product 29 b in FIG. 6B, the net-shaped holding material 31 may be attached to the three-dimensional net self-structure 27 by processing such as bonding, crimping, scissoring, and wrapping. . Or, as in the processed product 29c in Fig. 6C, the cloth-like material 30 or the net-like holding material 31 is sandwiched by two or more three-dimensional mesh structures 27 by bonding, crimping, sewing, etc. It may be. These processed products are examples, and the present invention is not limited thereto. As a matter of course, it is not always necessary to process the entire surface of the three-dimensional network structure 27.
シート状立体網目構造体 2 7を上下に移動させる移動機構としては、 図 7に 示す構成が挙げられる。 すなわち、 一枚のシート状立体網目構造体 2 7の両端 をつなげてェンドレスにし、 ローラ 2 2 a及ぴローラ 2 2 bで立体網目構造体 2 7を環状に回転させる。 この構成は一例であり、 移動機構はこれに限定され るものではない。 シート状の立体網目構造体 2 7を、 図 6 A乃至図 6 Cの加工 品 2 9 a〜2 9 cに変えてもよレ、。 また、 図 8 A乃至図 8 Cに示すように、 シ ート状の立体網目構造体 2 7の内周面に直接ベルト 1 3を取り付け、 ローラ 2 2 aにガイド 1 4を取り付けてベルト 1 3を保持するなど、 補助具を使用した 構成も実施可能である。 ローラの数を増やせば、 一枚のシートで多段の構造に することができ、 ユニット当たりの効率がよくなる。 多段にした生物膜床移動 ュニットを生物反応層中に設置した例を図 9に示す。 嫌気槽ゃ無酸素槽のよう に液中に酸素を溶解させたくない場合は、 ローラ 2 2 a, 2 2 bを総て水没さ せるとよい。 なお、 シート状の立体網目構造体 2 7の一部又は全部が、 前記の 加工品 2 9 a〜2 9 cであっても、 もちろん構わない。  As a moving mechanism for moving the sheet-shaped three-dimensional network structure 27 up and down, a configuration shown in FIG. 7 is exemplified. That is, both ends of one sheet-shaped three-dimensional network structure 27 are connected to form an endless, and the three-dimensional network structure 27 is rotated in an annular shape by the rollers 22a and 22b. This configuration is an example, and the moving mechanism is not limited to this. The sheet-like three-dimensional network structure 27 may be changed to processed products 29 a to 29 c shown in FIGS. 6A to 6C. Further, as shown in FIGS. 8A to 8C, the belt 13 is directly attached to the inner peripheral surface of the sheet-shaped three-dimensional network structure 27, and the guide 14 is attached to the roller 22a. A configuration using an auxiliary tool such as holding 3 is also feasible. By increasing the number of rollers, a single sheet can be used to form a multi-stage structure, improving the efficiency per unit. Fig. 9 shows an example of a multi-stage biofilm bed transfer unit installed in a biological reaction layer. If you do not want to dissolve oxygen in the liquid as in anaerobic tanks or anoxic tanks, it is recommended that all rollers 22a and 22b be submerged. It should be noted that a part or the whole of the sheet-like three-dimensional network structure 27 may be the processed product 29 a to 29 c as a matter of course.
図 1 0に示すように立体網目構造体 2 7を圧迫する圧迫構造体 1 5を任意の 地点に設けることができる。 この場合、 圧迫構造体 1 5により圧迫された立体 網目構造体 2 7が取り込んだ汚水や空気を吐き出し、 これにより酸素供給を促 進することができる。 圧迫構造体 1 5の設置数は 1つでも、 2つ以上でもよく、 空気中、 液中のいずれか一方に、 また両方にも設置できる。 圧迫地点が空気中 になるように圧迫構造体 1 5 aを設けた場合、 立体網目構造体 2 7が圧迫構造 体 1 5 aに圧迫され、 立体網目構造体 2 7に含まれる汚水が吐き出されて流れ 落ちる。 すると、 生物反応槽 2内の汚水に対する曝気と撹拌の効果が得られる。 さらに、 圧迫された立体網目構造体 2 7は、 厚みの回復と共に空気を含むので、 液中での酸素供給量がよ:り大きくなる。 また、 立体網目構造体 2 7から液の重 みが取れ、 所要動力を低減することができる。 圧迫地点が液中になるように、 圧迫構造体 1 5 bを設けた場合、 空気を取り込んだ立体網目構造体 2 7から空 気が散気されることにより、 生物反応槽 2内に酸素が供給される。 さらに、 立 体網目構造体 2 7は、 生物反応槽 2内の汚水を新たに含んで再び空気中へ移動 する。 これにより酸素供給と汚水の撹拌が促進される。 立体網目構造体 2 7の 最下部であるローラ 2 2 bの下に圧迫構造体 1 5 cを設置すれば、 最も深いと ころで空気を出し切ることになり、 酸素供給の観点から好ましい。 As shown in FIG. 10, a compression structure 15 for compressing the three-dimensional network structure 27 can be provided at an arbitrary point. In this case, the three-dimensional network structure 27 compressed by the compression structure 15 discharges the sewage and air taken in, thereby promoting the supply of oxygen. The number of the compression structures 15 may be one or two or more. The compression structure 15 can be installed in the air, the liquid, or both. When the compression structure 15a is provided so that the compression point is in the air, the three-dimensional network structure 27 is compressed by the compression structure 15a, and the wastewater contained in the three-dimensional network structure 27 is discharged. Flow down. Then, the effects of aeration and stirring on the wastewater in the biological reaction tank 2 can be obtained. Furthermore, the compressed three-dimensional network structure 27 contains air with the recovery of thickness, The oxygen supply in the liquid is better: Further, the weight of the liquid can be removed from the three-dimensional network structure 27, and the required power can be reduced. When the compression structure 15b is provided so that the compression point is in the liquid, oxygen is diffused into the biological reaction tank 2 by diffusing air from the three-dimensional network structure 27 that has taken in air. Supplied. Further, the standing mesh structure 27 newly contains sewage in the biological reaction tank 2 and moves into the air again. This promotes oxygen supply and sewage agitation. If the compression structure 15c is installed under the roller 22b, which is the lowermost part of the three-dimensional network structure 27, air can be exhausted at the deepest point, which is preferable from the viewpoint of oxygen supply.
圧迫構造体 1 5の形状は、 多角柱体でも円筒状でも何でもよい。 立体網目構 造体 2 7と圧迫構造体 1 5との間隔も、 自由に調節することが可能であり、 立 体網目構造体 2 7を圧迫する深さを調節することが可能である。 また、 圧迫構 造体 1 5は、 必ずしも立体網目構造体 2 7の全部を圧迫する大きさ及び形状で なくともよい。 圧迫構造体 1 5を回転圧迫構造体 1 6とすれば、 立体網目構造 体 2 7の移動に合わせて自由に回転することができ、 このため立体網目構造体 2 7の上下移動を妨げることがなく、 所要動力及び運転コストを増大させなレ、。 この場合においても、 立体網目構造体 2 7と回転圧迫構造体 1 6との間隔を調 節可能とすることが好ましい。 これにより、 立体網目構造体 2 7を圧迫する深 さを調節したり、 酸素供給量を調節したりすることができる。 回転圧迫構造体 1 6の形状としては、 その軸心を中心として回転できるものなら多角柱体でも 円筒状でも何でもよい。 特に、 円筒状であれば、 生物膜を傷めることもなく、 立体網目構造体 2 7の移動を妨げてトラブルの原因となることもなく、 しかも、 どの地点でも同じ程度の圧迫が安定して得られやすくて望ましい。 回転円板法 で問題となった生物膜の過剰付着については、 ローラ 2 2 a, 2 2 bでの立体 網目構造体 2 7のたわみによって過剰付着生物膜がはく離される上、 圧迫構造 体 1 5によって過剰付着生物膜がかきとられるので、 問題になりにくい。 圧迫 以外にも振動によっても、 液や空気を吐き出させることができる。  The shape of the compression structure 15 may be a polygonal prism or a cylinder. The space between the three-dimensional network structure 27 and the compression structure 15 can also be freely adjusted, and the depth at which the three-dimensional network structure 27 is pressed can be adjusted. In addition, the compression structure 15 does not necessarily have to have a size and a shape to compress the entire three-dimensional network structure 27. If the compression structure 15 is a rotary compression structure 16, the compression structure 15 can be freely rotated in accordance with the movement of the three-dimensional network structure 27, thereby preventing the three-dimensional network structure 27 from moving up and down. Without increasing the required power and operating costs. Also in this case, it is preferable that the distance between the three-dimensional network structure 27 and the rotary compression structure 16 can be adjusted. This makes it possible to adjust the depth at which the three-dimensional network structure 27 is pressed, and to adjust the oxygen supply amount. The shape of the rotary compression structure 16 may be a polygonal prism or a cylinder as long as it can rotate around its axis. In particular, the cylindrical shape does not damage the biofilm, hinders the movement of the three-dimensional network structure 27 and does not cause trouble, and the same degree of compression can be stably obtained at any point. It is easy to be desirable. Regarding the excessive adhesion of the biofilm, which was a problem in the rotating disk method, the excessively attached biofilm was peeled off by the deflection of the three-dimensional network structure 27 at the rollers 22a and 22b, and the compression structure 1 5 is less likely to be a problem as the over-adherent biofilm is scraped off. Fluid and air can be expelled not only by compression but also by vibration.
[実施例 3 ]  [Example 3]
図 1 1 A乃至図 1 1 Cは、 缣気槽、 無酸素槽、 及び好気槽などの反応槽に、 本発明の第 2の実施形態に係る生物処理装置を適用した例を示す。 図 1 1 Aは 平面図で、 図 1 1 Bは正面図であり、 図 1 1。は図1 1 Aの XI—XI線断面図で ある。 なお、 特に説明しない本実施例の構成は上述した実施例 2と同様である ので、 その重複する説明を省略する。 FIGS. 11A to 11C show examples in which the biological treatment apparatus according to the second embodiment of the present invention is applied to a reaction tank such as an aeration tank, an oxygen-free tank, or an aerobic tank. FIG. 11A is a plan view, FIG. 11B is a front view, and FIG. Is a cross-sectional view taken along the line XI-XI in Fig. 11A. is there. The configuration of the present embodiment, which is not particularly described, is the same as that of the above-described second embodiment, and a duplicate description thereof will be omitted.
本例では、 生物膜床移動ユニット 9 (9 a, 9 b , 9 b, 9 c, 9 c, 9 d) を 6組使用している。 生物膜床移動ユニット 9は、 空気中に位置する複数 のローラ 22 aと液中に位置する複数のローラ 22 bとを備え、 ローラ 22 a とローラ 22 bとは一枚の立体網目構造体 27で連結されている。 隔壁 1 8は、 原水 1の流れ方向に垂直に延ぴ、 各生物膜床移動ュニット 9の両側であって、 かつ各生物移動ュニット 9の前後に配置されている。  In this example, six sets of biofilm bed moving units 9 (9a, 9b, 9b, 9c, 9c, 9d) are used. The biofilm bed moving unit 9 includes a plurality of rollers 22a located in the air and a plurality of rollers 22b located in the liquid, and the roller 22a and the roller 22b are a single three-dimensional network structure 27. Are connected by The partition walls 18 extend perpendicularly to the flow direction of the raw water 1, are disposed on both sides of each biofilm bed moving unit 9, and are arranged before and after each of the biological moving units 9.
図 1 1 Cに示すように、 複数の (本実施例では 3つの) 圧迫構造体 1 5 aが 空気中に位置するように配置されている。 また、 立体網目構造体 27の最下部 には、 圧迫構造体 15 cあるいは回転圧迫構造体 (図示せず) が設置されてい る。 この圧迫構造体 1 5 cにより立体網目構造体 27を一時的に圧迫すれば、 液中での曝気により B ODの酸化及ぴ硝化がさらに進行する。 なお、 シート状 の立体網目構造体 27の一部又は全部が、 前記の加工品 29 a〜29 cであつ てもよい。  As shown in FIG. 11C, a plurality of (three in this embodiment) compression structures 15a are arranged so as to be located in the air. At the bottom of the three-dimensional network structure 27, a compression structure 15c or a rotary compression structure (not shown) is provided. When the three-dimensional network structure 27 is temporarily compressed by the compression structure 15c, oxidation and nitrification of BOD further progress by aeration in a liquid. Note that a part or the whole of the sheet-like three-dimensional network structure 27 may be the processed products 29a to 29c.
上記生物処理装置を使用して、 表 1に示す条件に基づき、 滞留時間 8時間で 都巿下水 (原水) の処理を行ったところ、 表 2に示すように全窒素 8 m gZL、 全リン 0. 3 mg/Lの^理液を得ることが可能であった。 このときのブロワ (散気装置) による空気補充量は、 原水量に対して 1. 5倍とすれば十分であ つた。 つまり、 標準法の 8分の 3、 高度処理法の 1 6分の 3程度の散気量であ つた。 この結果を基にして、 1万トンの都市下水を処理する生物処理装置につ いて設計したところ、 従来の生物処理装置に比べて、 所要動力としては 25% 〜 50 %節約できる見込みがついた。  Using the above biological treatment equipment, sewage (raw water) was treated at a residence time of 8 hours under the conditions shown in Table 1, and as shown in Table 2, total nitrogen 8 mgZL, total phosphorus 0 It was possible to obtain a 3 mg / L solution. At this time, it was sufficient if the amount of air replenishment by the blower (aeration device) was 1.5 times the amount of raw water. In other words, the amount of air diffused was about 3/8 of the standard method and about 3/16 of the advanced treatment method. Based on this result, we designed a biological treatment system to treat 10,000 tons of municipal sewage, and it was expected that the power required would be reduced by 25% to 50% compared to conventional biological treatment units. .
[表 1] [table 1]
原水流量 Q (m3/d) 10 Raw water flow Q (m 3 / d) 10
循環流量 2Q  Circulating flow 2Q
返送流量 0. 5Q [表 2 ] Return flow 0.5Q [Table 2]
Figure imgf000014_0001
Figure imgf000014_0001
図 4乃至図 1 1 Cに示す本発明によれば、 シート状の立体網目構造体がロー ラによりたわむため、 生物膜床としての立体網目構造体に過剰な生物膜がつき にくい。 そのため、 いつも新鮮な微生物が生物膜床に付着し、 代謝活性が常に 高い。 また、 所要動力を過剰に見積もる必要がなく、 省エネルギーである。 生 物膜床としてシート状の立体網目構造体を移動させることによって、 生物膜を 効果的に付着させることができると共に、 反応槽内の汚水を撹拌できる。 さら に、 立体網目構造体の一部を空気中に導くことによって、 酸素の反応槽内への 供給も可能になり、 生物処理能力をより高めることができる。  According to the present invention shown in FIGS. 4 to 11C, since the sheet-shaped three-dimensional network structure is bent by the roller, an excessive biofilm is not easily attached to the three-dimensional network structure as a biofilm bed. Therefore, fresh microorganisms always adhere to the biofilm bed, and the metabolic activity is always high. In addition, there is no need to overestimate the required power, which saves energy. By moving the sheet-shaped three-dimensional network structure as a biofilm bed, a biofilm can be effectively attached and sewage in the reaction tank can be stirred. Furthermore, by introducing a part of the three-dimensional network structure into the air, it becomes possible to supply oxygen into the reaction tank, thereby further improving the biological treatment capacity.
本発明は反応槽の縦横比に制限されないので、 すべての既設生物反応槽に本 発明を適用できる。 また、 生物膜床に付着する生物量が増加するので、 生物反 応槽を増やさなくとも標準法から高度処理法への機能ァップをすることができ る。 さらに、 シート状の立体網目構造体に圧迫構造体を押し付けることで酸素 供給を促進し、 散気装置による散気量を減らして運転コストを節約することが できる。 産業上の利用の可能性  Since the present invention is not limited by the aspect ratio of the reaction tank, the present invention can be applied to all existing biological reaction tanks. In addition, since the amount of organisms attached to the biofilm bed increases, it is possible to upgrade from the standard method to the advanced treatment method without increasing the number of bioreactors. Further, by pressing the compression structure against the sheet-like three-dimensional network structure, oxygen supply can be promoted, and the amount of air diffused by the air diffuser can be reduced, thereby reducing operating costs. Industrial potential
本発明は、 汚水を処理する生物処理方法及び生物処理装置に適用可能であり , 特に、 下水、 有機性排水、 窒素を含んだ無機性排水、 汚濁の進んだ河川水、 湖 沼水等の汚水を移動式生物膜床を用いて処理する生物処理方法及ぴ生物処理装 置に適用可能である。  INDUSTRIAL APPLICABILITY The present invention is applicable to a biological treatment method and a biological treatment apparatus for treating sewage, and in particular, sewage such as sewage, organic wastewater, inorganic wastewater containing nitrogen, highly polluted river water, and lakes and marshes. The present invention can be applied to a biological treatment method and a biological treatment apparatus for treating a plant with a mobile biofilm bed.

Claims

請求の範囲 The scope of the claims
1 . 汚水を処理する水槽中で、 布状材を上下に移動して汚水の攪拌と生物処理 とを行うことを特徴とする生物処理方法。 1. A biological treatment method comprising: moving a cloth material up and down in a tank for treating sewage to perform agitation and biological treatment of the sewage.
2 . 前記布状材の一部を空気中に導き、 それによつて前記水槽内に酸素を供給 することを特徴とする請求項 1記載の生物処理方法。 2. The biological treatment method according to claim 1, wherein a part of the cloth material is introduced into the air, whereby oxygen is supplied into the water tank.
3 . 汚水を処理する水槽と、 該水槽中を上下に移動するように設置した布状材 とを備えることを特徴とする生物処理装置。 3. A biological treatment apparatus comprising: a water tank for treating sewage; and a cloth-like material installed to move up and down in the water tank.
4 . 汚水を生物処理する生物処理方法において、 該生物処理をシート状の立体 網目構造体を用いて行うことを特徴とする生物処理方法。 4. A biological treatment method for biologically treating sewage, wherein the biological treatment is performed using a sheet-like three-dimensional network structure.
5 . 汚水を生物処理する生物処理方法において、 該汚水中でシート状の立体網 目構造体を上下に移動して、 汚水の攪拌と生物処理とを行うことを特徴とする 生物処理方法。 5. A biological treatment method for biologically treating sewage, wherein the sheet-like three-dimensional network structure is moved up and down in the sewage to perform sewage agitation and biological treatment.
6 . 前記立体網目構造体の一部を連続的又は間欠的に空気中に導くことを特徴 とする請求項 4又は 5記載の生物処理方法。 6. The biological treatment method according to claim 4, wherein a part of the three-dimensional network structure is continuously or intermittently introduced into the air.
7 . 前記立体網目構造体内に取り込まれた空気を汚水中で吐き出させることを 特徴とする請求項 6記載の生物処理方法。 7. The biological treatment method according to claim 6, wherein the air taken into the three-dimensional network structure is discharged in sewage.
8 . 前記立体網目構造体内に取り込まれた汚水を空気中で吐き出させることを 特徴とする請求項 6又は 7記載の生物処理方法。 8. The biological treatment method according to claim 6, wherein the wastewater taken into the three-dimensional network structure is discharged in the air.
9 . 汚水を処理する水槽と、 該水槽中を上下に移動するように設置したシート 状の立体網目構造体とを備えることを特徴とする生物処理装置。 9. A biological treatment apparatus comprising: a water tank for treating sewage; and a sheet-shaped three-dimensional mesh structure installed to move up and down in the water tank.
PCT/JP2003/015156 2002-11-27 2003-11-27 Biological treatment method and biological treatment device WO2004048282A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003284461A AU2003284461A1 (en) 2002-11-27 2003-11-27 Biological treatment method and biological treatment device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-343400 2002-11-27
JP2002343400A JP2006130354A (en) 2002-11-27 2002-11-27 Method and apparatus for biological treatment by using biofilm bed
JP2003280910A JP2006095344A (en) 2003-07-28 2003-07-28 Method and apparatus for biological treatment of sewage
JP2003-280910 2003-07-28

Publications (1)

Publication Number Publication Date
WO2004048282A1 true WO2004048282A1 (en) 2004-06-10

Family

ID=32396273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015156 WO2004048282A1 (en) 2002-11-27 2003-11-27 Biological treatment method and biological treatment device

Country Status (2)

Country Link
AU (1) AU2003284461A1 (en)
WO (1) WO2004048282A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728255A (en) * 1971-05-20 1973-04-17 Norton Co Water purification with porous abrasives
JPS5226765A (en) * 1975-08-26 1977-02-28 Takenaka Komuten Co Ltd Waste water purifying apparatus
JPS538058U (en) * 1976-07-05 1978-01-24
JPS5421056A (en) * 1977-07-18 1979-02-16 Mikasa Setsukei Jimushiyo Kk Device for treating waste water
JP2002370096A (en) * 2001-06-14 2002-12-24 Washi Kosan Co Ltd Polluted water cleaning apparatus using bacteria carrier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728255A (en) * 1971-05-20 1973-04-17 Norton Co Water purification with porous abrasives
JPS5226765A (en) * 1975-08-26 1977-02-28 Takenaka Komuten Co Ltd Waste water purifying apparatus
JPS538058U (en) * 1976-07-05 1978-01-24
JPS5421056A (en) * 1977-07-18 1979-02-16 Mikasa Setsukei Jimushiyo Kk Device for treating waste water
JP2002370096A (en) * 2001-06-14 2002-12-24 Washi Kosan Co Ltd Polluted water cleaning apparatus using bacteria carrier

Also Published As

Publication number Publication date
AU2003284461A1 (en) 2004-06-18

Similar Documents

Publication Publication Date Title
US8323494B2 (en) System and method for sewage and wastewater treatment
CN101913732B (en) Sequencing batch type suspended filler biofilm sewage treatment device
CN209778575U (en) Integrated equipment for treating high-concentration organic domestic sewage
WO2013003461A1 (en) Biological treatment and compressed media filter apparatus and method
JP2003251384A (en) Pretreatment method for biological wastewater treatment
CN107746111A (en) Automatic circulating formula AO reactors
KR101927520B1 (en) System for treating sewage and wastewater based on media constant level continuous flow sequencing batch reactor process
JP4409532B2 (en) Apparatus for treating wastewater containing high-concentration nitrogen such as livestock wastewater and manure, and its treatment method
CN109970194A (en) It is a kind of integrate Ao Baoer, biological multiplication, MBBR, MBR diversification technique sewage treatment pot
CN107973402A (en) Pulling flow type AO reactors
JPH07275887A (en) Purifying tank
US6613229B2 (en) Waste treatment method and apparatus with denitrification chamber
WO2004048282A1 (en) Biological treatment method and biological treatment device
KR101268064B1 (en) Device for sewage disposal using the improved hollow composite media
KR100353004B1 (en) Biological Nutrient Removal Method using a Submerged Moving Media Intermittent Aeration Reactor and System
CN101734791B (en) Method for treating biological sewage
JPH11188378A (en) Organism fixing carrier for drainage treatment and drainage treatment apparatus
CN1579959A (en) Carrier circulating biological treating method for sewage treatment
WO2004022488A2 (en) Method and apparatus for enhancing wastewater treatment in lagoons
JPH07185589A (en) Waste water treatment method for removal of nitrogen and device therefor
JPH09276893A (en) Method for treating nitrogen-containing waste water
KR100302266B1 (en) Treatment method of sewage and wastewater using biofilm process and equipment thereof
CN211972069U (en) Energy-efficient sewage treatment system
JP7469911B2 (en) Water treatment facilities and sedimentation tanks
CN219031906U (en) Microorganism waste water purifier

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP